WO2021018429A1 - Brennstoffzellenstapel beinhaltend endplatte mit integriertem befeuchter - Google Patents

Brennstoffzellenstapel beinhaltend endplatte mit integriertem befeuchter Download PDF

Info

Publication number
WO2021018429A1
WO2021018429A1 PCT/EP2020/062047 EP2020062047W WO2021018429A1 WO 2021018429 A1 WO2021018429 A1 WO 2021018429A1 EP 2020062047 W EP2020062047 W EP 2020062047W WO 2021018429 A1 WO2021018429 A1 WO 2021018429A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
cathode
cell stack
connections
Prior art date
Application number
PCT/EP2020/062047
Other languages
English (en)
French (fr)
Inventor
Christian Lucas
Original Assignee
Audi Ag
Volkswagen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag, Volkswagen Ag filed Critical Audi Ag
Priority to US17/631,753 priority Critical patent/US11855325B2/en
Priority to CN202080055062.6A priority patent/CN114144914A/zh
Publication of WO2021018429A1 publication Critical patent/WO2021018429A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04171Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal using adsorbents, wicks or hydrophilic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention is formed by a fuel cell stack with a plurality of fuel cells that are accommodated between two end plates, of which flow channels with connections for the fresh anode gas and the anode exhaust gas and for the fresh cathode gas and the cathode exhaust gas are formed in at least one end plate, wherein a hygroscopic material forms the wall between the connections for the anode exhaust gas and the cathode fresh gas.
  • Fuel cells are used to provide electrical energy from an electrochemical reaction in which a fuel, usually hydrogen, reacts with an oxidizing agent, usually oxygen taken from air. To increase performance, it is possible to combine a plurality of fuel cells into a fuel cell stack, in particular to meet the performance requirements that exist in motor vehicles.
  • Each of the fuel cells comprises an anode and a cathode as well as a proton-conductive membrane separating the anode from the cathode, which membrane is permeable to hydrogen nuclei but impermeable to the electrons originating from the hydrogen. It is necessary that the membrane has sufficient moisture. Since a sufficient amount of oxygen must be provided for the large number of fuel cells combined in a fuel cell stack, a compressor is used on the cathode side with which the ambient air is compressed with the oxygen contained therein, the air being strongly heated and as a result of this compression is dried.
  • humidifiers and possibly charge air coolers are therefore used in a fuel cell device for charging the fuel cell stack with the cathode fresh gas, the humidifier being a large component with a large space requirement and the complexity of the fuel cell device as well as that required for its manufacture and operation Costs increased.
  • the humidifier itself is provided with the required moisture from the fuel cell stack, since when the electrochemical reaction takes place from the starting materials hydrogen and oxygen, the product water is formed and, in addition, water is also available on the anode side, which is collected in a water separator and regularly or can be deposited continuously.
  • a fuel cell stack is known in which a heat exchanger is angeord net between the end plates and the fuel cells to isolate the fuel cell stack from the end plates.
  • the heat exchanger consists of a plurality of plates that are confi gured to the gaseous To conduct reactants, the exhaust gases and the coolant into the fuel cell stack and to remove it therefrom.
  • In the heat exchanger there are areas that allow a heat flow from the relatively hot anode exhaust gas to the relatively cold cathode fresh gas, where these areas can also be permeable to water in order to transfer water from the relatively moist anode exhaust gas to the relatively dry cathode fresh gas for humidification enable.
  • WO 2009/092433 A1 describes a fuel cell structure which has a first bipolar plate and a second bipolar plate together with a membrane electrode arrangement. An anode flow field is formed between the first bipolar plate and the membrane electrode arrangement and a cathode flow field is formed between the second bipolar plate and the membrane electrode arrangement.
  • the membrane electrode arrangement comprises an opening through which anode exhaust gas can be passed into the cathode fresh gas. It should be noted that the anode exhaust gas also contains unused, potentially recyclable hydrogen, so that a controlled lated reaction, including to adjust the temperature of the fuel cells, a control element is arranged in the opening.
  • US 2011/0171551 A1 also describes how cathode exhaust gas and anode exhaust gas is mixed together with fresh air in a gas mixture and post-burned in a catalytic burner in order to then be fed back to the connection for the fresh cathode gas.
  • the object of the present invention is to design a fuel cell stack in such a way that the moisture occurring therein can be used more effectively to humidify the fresh cathode gas.
  • the fuel cell stack described at the outset is characterized in that the wall between the connections for the anode exhaust gas and the fresh cathode gas is formed from a hygroscopic material in at least one end plate, so that the end plate is designed specifically to reduce the moisture contained in the anode exhaust gas to be able to use for humidification of the cathode fresh gas, it being unnecessary to provide additional elements such as a heat exchanger or the like between the fuel cell stack and the end plates themselves.
  • the waste water from the anode which was previously collected and discarded in a separator, is used directly in the fuel cell stack for humidifying the cathode fresh gas, with rapid water transfer being ensured by the short paths through the hygroscopic material. Since the hygroscopic material is integrated into the end plate of the fuel cell stack, installation space is saved, with further installation space advantages arising from the fact that the Fabric cell device given humidifier can be made smaller or even omitted entirely.
  • hygroscopic material as a wall also ensures that there are separate flow channels for the anode exhaust gas and the cathode fresh gas, i.e. it is ensured that the unused hydrogen contained in the anode exhaust gas does not react with the oxygen contained in the cathode fresh gas, so that the oxygen contained in the cathode fresh gas is fully available for reaction on the membrane electrode assembly of the fuel cell and undesirable heat generation is avoided.
  • the hygroscopic material is preferably gas-tight. It is also preferred if the hygroscopic material is thermally coupled to the end plate, so that, if necessary, energy can also be provided for water evaporation.
  • connections for the cathode fresh gas and the anode exhaust gas are passed through the hygroscopic material in order to ensure a compact structure.
  • a flow channel with associated connections for a coolant is formed, which enables the possibility of improved thermal control.
  • flow channels for the anode exhaust gas and / or the cathode fresh gas are formed in part of its cross section in the hygroscopic material.
  • the size and cross-section of the flow channels thus makes it possible to keep the pressure losses in the gas flow from the anode exhaust gas and the fresh cathode gas within acceptable levels, in particular to adjust the cross-section of the flow channels.
  • the end plate is assigned a cover carrying the connections, since this results in the shaping of the end plate with the formation of the flow channels and the placement of the hygroscopic Material that can be formed for example by calcium silicate is simplified.
  • the hygroscopic material is sealed off from the end plate by a seal in order to have complete control over the movement of the moisture and to ensure its use in the fresh cathode gas.
  • connections for the cathode fresh gas and the cathode exhaust gas are formed on opposite longitudinal sides of the end plate, the hygroscopic material extending parallel to the longitudinal side with the connection for the cathode fresh gas, at least in part a recycling channel from the connection for the Anode exhaust fills to the connection for the anode fresh gas.
  • a jet pump to the recycling channel so that an anode circuit is integrated into the end plate, thus saving its separate design, which again results in advantages in terms of installation space.
  • Fig. 1 is a schematic representation of a plan view of an end plate, with a symbolization of the currents present in the end plate
  • Fig. 2 is a longitudinal section through a fuel cell stack with between two end plates added fuel cells
  • FIG. 3 shows a schematic representation of the conditions in the hygroscopic material with the connection for the cathode fresh gas, the connection for the anode exhaust gas and the water transport between the two,
  • FIG. 4 shows a representation corresponding to FIG. 1 of an alternative
  • Fig. 5 shows the section V-V from Figure 4 to illustrate the flow channels for the anode exhaust gas and the cathode fresh gas
  • FIG. 6 shows a side view of the hygroscopic material with a representation of the flow channels formed therein
  • FIG. 7 shows a representation corresponding to FIG. 6 with an alternative shape of the flow channels
  • FIG. 8 shows an illustration corresponding to FIG. 1 of a further embodiment with an anode circuit formed in the end plate
  • FIG. 9 shows a schematic representation of a fuel cell device known from the prior art with a fuel material cell stack and a separate humidifier and an anode circuit
  • FIG. 10 shows an illustration of an end plate from the prior art corresponding to FIG. 1, and FIG.
  • FIG. 11 shows a representation corresponding to FIG. 2 for the end plate according to FIG. 10.
  • FIG. 1 a fuel cell device 1 known from the prior art is shown schematically, which has a fuel cell stack 2 which consists of a plurality of fuel cells 3 connected in series.
  • Each of the fuel cells 3 comprises an anode and a cathode as well as a proton-conductive membrane separating the anode from the cathode.
  • the membrane is formed from an ionomer, preferably a sulfonated tetrafluoroethylene polymer (PTFE) or a polymer of perfluorinated sulfonic acid (PFSA).
  • PTFE sulfonated tetrafluoroethylene polymer
  • PFSA perfluorinated sulfonic acid
  • the membrane can be formed as a sulfonated hydrocarbon membrane.
  • a catalyst can additionally be mixed with the anodes and / or the cathodes, the membranes preferably having a catalyst layer made of a noble metal or of mixtures comprising noble metals such as platinum, palladium, ruthenium or the like on their first side and / or on their second side are coated, which serve as an accelerator in the reaction of the respective fuel cell.
  • the membranes preferably having a catalyst layer made of a noble metal or of mixtures comprising noble metals such as platinum, palladium, ruthenium or the like on their first side and / or on their second side are coated, which serve as an accelerator in the reaction of the respective fuel cell.
  • the fuel for example hydrogen
  • the fuel is supplied to the anode via anode spaces within the fuel cell stack 2.
  • PEM fuel cell polymer electrolyte membrane fuel cell
  • fuel or fuel molecules are split into protons and electrons at the anode.
  • the membrane lets the protons (e.g. FT) through, but is impermeable to the electrons (e-).
  • the following takes place at the anode Reaction: 2H2 -> 4H + + 4e _ (oxidation / electron donation). While the protons pass through the membrane to the cathode, the electrons are conducted to the cathode or an energy storage device via an external circuit.
  • Cathode gas for example oxygen or air containing oxygen
  • Cathode gas can be supplied to the cathode via cathode compartments within the fuel cell stack 2, so that the following reaction takes place on the cathode side: O2 + 4H + + 4e _ -> 2H2O (reduction / electron uptake).
  • the humidifier 6 is an expensive component that requires a large amount of space, so that there is an effort to make the humidifier 6 smaller or to make it dispensable.
  • FIG. 10 shows an end plate 10 which delimits the fuel cell stack 2 on one side, this end plate 10 having a connection 11 for the fresh anode gas and a connection 12 for the anode exhaust gas, which are connected by a flow channel 16. Furthermore, connections 13, 14 for the cathode fresh gas and the cathode exhaust gas are formed, which in turn are connected by a flow channel 17. Finally, there is also the possibility that the end plate 10 has connections 15 for a coolant, which in turn are connected by a further flow channel 18. With this end plate 10 known from the prior art, there is a clearly structured, separated flow of the individual fluids that are required for the reaction in the fuel cell 3.
  • FIG. 1 shows a first embodiment of the invention in which the wall between the adjacent connections 12, 13 for the anode exhaust gas and the cathode fresh gas is formed by a hygroscopic material 20, the effect of which is symbolized in FIG.
  • the fresh cathode gas is guided through the hygroscopic material 20 by the arrow pointing to the left, while the anode exhaust gas is likewise guided through the hygroscopic material 20, symbolized by the case pointing to the right.
  • the water transport from the anode exhaust gas through the hygroscopic material 20 into the cathode fresh gas is symbolized by the arrow pointing perpendicular to these flows, so that the wastewater from the anode is used for humidifying the cathode fresh gas directly in the fuel cell stack 2 and accordingly the humidifier 6 of the fuel cell device 1 according to FIG. 9 known from the prior art can be made correspondingly smaller or, if necessary, can even be completely dispensed with.
  • the hygroscopic material 20 is gas-tight and thermally coupled to the end plate 10 with a seal 23.
  • FIG. 2 shows the positioning of the hygroscopic material 20 in the end plates 10 of the flow network with the flue gas channels 21 (fleader) for the supply of flow fields in the bipolar plates of the fuel cells 3.
  • Figures 4 and 5 show an embodiment in which flow channels 19 for the anode exhaust gas and / or the cathode fresh gas are formed in the hygroscopic material 20 in part of its cross-section, the cross-section of which is dimensioned such that the pressure loss of the gas flows in the hygroscopic Material 20 is kept within the required framework.
  • FIG. 6 shows an embodiment in which the flow channels 19 are formed several times with a circular cross section
  • FIG 7 refers to an embodiment with likewise multiple flow channels 19 which have a rectangular cross section.
  • Figure 8 shows a further embodiment in which the connections 13, 14 for the cathode fresh gas and the cathode exhaust gas are formed on opposite longitudinal sides of the end plate 10, the hygroscopic material 20 extending parallel to the longitudinal side with the connection 13 for the cathode fresh gas and at least to the Part of a recycling channel 22 from the connection 12 for the anode waste gas to the connection 11 for the fresh anode gas fills.
  • a jet pump 9 is assigned to the recycling channel 22, so that an anode circuit 7 is implemented in the end plate 10 and this results in a further saving in installation space.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft einen Brennstoffzellenstapel mit einer Mehrzahl von Brennstoffzellen (3), die zwischen zwei Endplatten (10) aufgenommen sind, von denen in mindestens einer Endplatte (10) Strömungskanälen (16, 17) mit Anschlüssen (11, 12) für das Anodenfrischgas und das Anodenabgas sowie mit Anschlüsse (13, 14) für das Kathodenfrischgas und das Kathodenabgas ausgebildet sind, wobei ein hygroskopisches Material (20) die Wandung zwischen den Anschlüssen (12, 13) für das Anodenabgas und das Kathodenfrischgas bildet.

Description

BRENNSTOFFZELLENSTAPEL BEINHALTEND ENDPLATTE MIT
INTEGRIERTEM BEFEUCHTER
BESCHREIBUNG: Die Erfindung ist gebildet durch einen Brennstoffzellenstapel mit einer Mehr zahl von Brennstoffzellen, die zwischen zwei Endplatten aufgenommen sind, von denen in mindestens einer Endplatte Strömungskanäle mit Anschlüssen für das Anodenfrischgas und das Anodenabgas sowie für das Kathoden frischgas und das Kathodenabgas ausgebildet sind, wobei ein hygroskopi- sches Material die Wandung zwischen den Anschlüssen für das Anodenab gas und das Kathodenfrischgas bildet.
Brennstoffzellen dienen der Bereitstellung elektrischer Energie aus einer elektrochemischen Reaktion, in der ein Brennstoff, in der Regel Wasserstoff, mit einem Oxidationsmittel, in der Regel aus Luft entnommener Sauerstoff, reagiert. Zur Leistungssteigerung ist es dabei möglich, eine Mehrzahl von Brennstoffzellen zu einem Brennstoffzellenstapel zusammenzufassen, um insbesondere den Leistungsanforderungen zu genügen, die in Kraftfahrzeu gen bestehen.
Jede der Brennstoffzellen umfasst eine Anode und eine Kathode sowie eine die Anode von der Kathode trennende protonenleitfähige Membran, die per meabel ist für Wasserstoffkerne, aber undurchlässig für die den Wasserstoff entstammenden Elektronen. Es ist erforderlich, dass die Membran eine aus- reichende Feuchte aufweist. Da für die Vielzahl in einem Brennstoffzellen stapel zusammengefasster Brennstoffzellen eine ausreichende Menge an Sauerstoff bereitgestellt werden muss, wird kathodenseitig ein Verdichter eingesetzt, mit dem die Umgebungsluft mit dem darin enthaltenen Sauerstoff verdichtet wird, wobei infolge dieser Kompression die Luft stark erwärmt und getrocknet wird. Für die Konditionierung des Kathodenfrischgases werden daher in einer Brennstoffzellenvorrichtung für die Beschickung des Brenn stoffzellenstapels mit dem Kathodenfrischgas Befeuchter und gegebenenfalls Ladeluftkühler eingesetzt, wobei der Befeuchter ein großes Bauteil mit einem großen Bauraumbedarf darstellt und die Komplexität der Brennstoffzellenvor richtung sowie die zu deren Herstellung und Betrieb erforderlichen Kosten erhöht. Dem Befeuchter selbst wird die erforderliche Feuchtigkeit aus dem Brennstoffzellenstapel Verfügung gestellt, da bei der stattfindenden elektro chemischen Reaktion aus den Edukten Wasserstoff und Sauerstoff das Pro dukt Wasser gebildet wird und darüber hinaus anodenseitig auch Wasser zur Verfügung steht, das in einem Wasserabscheider gesammelt und regelmä ßig oder kontinuierlich abgeschieden werden kann.
Aus der US 7,923,162 B2 ist ein Brennstoffzellenstapel bekannt, bei dem zwischen Endplatten und den Brennstoffzellen ein Wärmetauscher angeord net ist, um den Brennstoffzellenstapel gegenüber den Endplatten zu isolie ren. Der Wärmetauscher besteht aus einer Mehrzahl von Platten, die konfi guriert sind, um die gasförmigen Reaktanten, die Abgase und das Kühlmittel in den Brennstoffzellenstapel zu leiten und daraus abzuführen. In dem Wär metauscher befinden sich Bereiche, die einen Wärmefluss von dem relativ heißen Anodenabgas zu dem relativ kalten Kathodenfrischgas erlauben, wo bei diese Bereiche auch wasserdurchlässig sein können, um einen Wasser transfer von dem relativ feuchten Anodenabgas zu dem relativ trockenen Kathodenfrischgas zu dessen Befeuchtung zu ermöglichen.
WO 2009/092433 A1 beschreibt einen Brennstoffzellenaufbau, der eine erste Bipolarplatte und eine zweite Bipolarplatte aufweist zusammen mit einer Membranelektrodenanordnung. Ein Anodenflussfeld ist zwischen der ersten Bipolarplatte und der Membranelektrodenanordnung und ein Kathodenfluss feld ist zwischen der zweiten Bipolarplatte und der Membranelektrodenano rdnung ausgebildet. Die Membranelektrodenanordnung umfasst eine Öff nung, durch die Anodenabgas in das Kathodenfrischgas geleitet werden kann. Dabei ist zu beachten, dass das Anodenabgas auch nicht verbrauch ten, potenziell rezyklierfähigen Wasserstoff enthält, sodass für eine kontrol- lierte Reaktion, unter anderem zur Einstellung der Temperatur der Brenn stoffzellen, ein Kontrollelement in der Öffnung angeordnet ist.
In der US 2011/0171551 A1 wird gleichfalls beschrieben, wie Kathodenab gas und Anodenabgas zusammen mit Frischluft in einem Gasgemisch ge mischt wird und in einem katalytischen Brenner nachverbrannt werden, um sodann wieder dem Anschluss für das Kathodenfrischgas zugeführt zu wer den.
Aufgabe der vorliegenden Erfindung ist es, einen Brennstoffzellenstapel so auszubilden, dass die darin anfallende Feuchte effektiver zur Befeuchtung des Kathodenfrischgases genutzt werden kann.
Diese Aufgabe wird durch einen Brennstoffzellenstapel mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angege ben.
Der eingangs beschriebene Brennstoffzellenstapel zeichnet sich dadurch aus, dass in mindestens einer Endplatte die Wandung zwischen den An schlüssen für das Anodenabgas und das Kathodenfrischgas aus einem hyg roskopischen Material gebildet ist, sodass eine gezielte Gestaltung der End platte vorliegt, um die in dem Anodenabgas enthaltene Feuchte zur Befeuch tung des Kathodenfrischgases nutzen zu können, wobei es verzichtbar ist, zwischen dem Brennstoffzellenstapel und den Endplatten selber zusätzliche Elemente wie einen Wärmetauscher oder ähnliches vorzusehen. Bei diesem Brennstoffzellenstapel wird das Abwasser der Anode, das bisher in einem Abscheider aufgefangen und verworfen wurde, direkt im Brennstoffzellensta pel für die Befeuchtung des Kathodenfrischgases verwendet, wobei eine schnelle Wasserübertragung durch die kurzen Wege durch das hygroskopi sche Material sichergestellt ist. Da das hygroskopische Material in die End platte des Brennstoffzellenstapels integriert ist, wird Bauraum eingespart, wobei weitere Bauraumvorteile, dadurch entstehen, dass der in einer Brenn- Stoffzellenvorrichtung gegebene Befeuchter kleiner ausgeführt werden oder sogar gänzlich entfallen kann.
Die Nutzung hygroskopischen Materials als Wandung stellt weiterhin sicher, dass separierte Strömungskanäle für das Anodenabgas und das Kathoden frischgas vorliegen, also sichergestellt ist, dass nicht der im Anodenabgas enthaltene, nicht verbrauchte Wasserstoff mit dem im Kathodenfrischgas enthaltenen Sauerstoff reagiert, sodass der im Kathodenfrischgas enthaltene Sauerstoff in vollständigem Umfang zur Reaktion an der Membranelektro denanordnung der Brennstoffzelle zur Verfügung steht und eine unerwünsch te Wärmegenerierung vermieden ist. Dazu ist vorzugsweise das hygroskopi sche Material gasdicht. Bevorzugt ist weiterhin, wenn das hygroskopische Material thermische an die Endplatte gekoppelt ist, so dass nötigenfalls auch Energie für die Wasserverdampfung bereitgestellt werden kann.
Es ist weiterhin vorgesehen, dass die Anschlüsse für das Kathodenfrischgas und das Anodenabgas durch das hygroskopische Material hindurchgeführt sind, um so einen kompakten Aufbau zu gewährleisten.
Zumindest in der die Anschlüsse aufweisende Endplatte ist ein Strömungs kanal mit zugeordneten Anschlüssen für ein Kühlmittel ausgebildet, was die Möglichkeit einer verbesserten thermischen Kontrolle ermöglicht.
Bevorzugt ist weiterhin, dass in dem hygroskopischen Material in einem Teil seines Querschnitts Strömungskanäle für das Anodenabgas und/oder das Kathodenfrischgas ausgebildet sind. Über die Größe und den Querschnitt der Strömungskanäle besteht damit die Möglichkeit, die Druckverluste in der Gasströmung von dem Anodenabgas und dem Kathodenfrischgas in akzep tablen Maßen zu halten, insbesondere über den Querschnitt der Strömungs kanäle einzustellen.
Fertigungstechnisch ist es günstig, wenn der Endplatte ein die Anschlüsse tragender Deckel zugeordnet ist, da somit die Formung der Endplatte mit der Ausbildung der Strömungskanäle und der Platzierung des hygroskopischen Materials, das beispielsweise durch Calciumsilikat gebildet sein kann, verein facht ist.
Das hygroskopische Material ist durch eine Dichtung gegenüber der Endplat te abgedichtet, umso eine vollständige Kontrolle über die Bewegung der Feuchte zu haben und deren Nutzung in dem Kathodenfrischgas zu gewähr leisten.
Bevorzugt ist auch eine Ausführungsform, bei der die Anschlüsse für das Kathodenfrischgas und das Kathodenabgas auf gegenüberliegenden Längs seiten der Endplatte ausgebildet sind, wobei das hygroskopische Material sich parallel zur Längsseite mit dem Anschluss für das Kathodenfrischgas erstreckt zumindest zum Teil einen Rezyklierkanal von dem Anschluss für das Anodenabgas zu dem Anschluss für das Anoedenfrischgas ausfüllt. Au ßerdem besteht die Möglichkeit, dem Rezyklierkanal eine Strahlpumpe zu zuordnen, sodass ein Anodenkreislauf in die Endplatte integriert ist, somit dessen separate Ausbildung eingespart werden kann, wodurch sich erneut Bauraumvorteile ergeben.
Die vorstehend in der Beschreibung genannten Merkmale und Merkmals kombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombina tionen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Es sind somit auch Ausführungen als von der Erfindung umfasst und offenbart anzusehen, die in den Figuren nicht explizit gezeigt oder erläutert sind, jedoch durch separierte Merkmalskombi nationen aus den erläuterten Ausführungen hervorgehen und erzeugbar sind.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Ansprüchen, der nachfolgenden Beschreibung bevorzugter Ausfüh rungsformen sowie anhand der Zeichnungen. Dabei zeigen: Fig. 1 eine schematische Darstellung einer Draufsicht auf eine End platte, mit einer Symbolisierung der in der Endplatte vorliegen den Strömungen, Fig. 2 einen Längsschnitt durch einen Brennstoffzellenstapel mit zwi schen zwei Endplatten aufgenommenen Brennstoffzellen,
Fig. 3 eine schematische Darstellung der Verhältnisse in dem hygro skopisches Material mit dem Anschluss für das Kathodenfrisch gas, dem Anschluss für das Anodebgas sowie dem zwischen beiden erfolgenden Wassertransport,
Fig. 4 eine der Figur 1 entsprechende Darstellung einer alternativen
Ausführungsform mit einem Strömungskanal für das Ano- denabgas und das Kathodenfrischgas aufweisendem hygro skopischen Material,
Fig. 5 den Schnitt V-V aus Figur 4 zur Veranschaulichung der Strö mungskanäle für das Anodenabgas und das Kathodenfrisch gas,
Fig. 6 eine Seitenansicht des hygroskopischen Material mit einer Dar stellung der darin ausgebildeten Strömungskanäle, Fig. 7 eine der Figur 6 entsprechende Darstellung mit einer alternati ven Form der Strömungskanäle,
Fig. 8 eine der Figur 1 entsprechende Darstellung einer weiteren Aus führungsform mit einem in der Endplatte ausgebildeten Ano denkreislauf,
Fig.9 eine schematische Darstellung einer aus dem Stand der Tech nik bekannten Brennstoffzellenvorrichtung mit einem Brenn- stoffzellenstapel und einem separat von diesem ausgebildeten Befeuchter und einem Anodenkreislauf,
Fig. 10 ein der Figur 1 entsprechende Darstellung einer Endplatte aus dem Stand der Technik, und
Fig. 11 eine der Figur 2 entsprechende Darstellung zu der Endplatte gemäß Figur 10.
In der Figur 1 ist schematisch eine aus dem Stand der Technik bekannte Brennstoffzellenvorrichtung 1 gezeigt, die einen Brennstoffzellenstapel 2 aufweist, der aus einer Mehrzahl in Reihe geschalteter Brennstoffzellen 3 besteht.
Jede der Brennstoffzellen 3 umfasst eine Anode und eine Kathode sowie eine die Anode von der Kathode trennende protonenleitfähige Membran. Die Membran ist aus einem lonomer, vorzugsweise einem sulfonierten Tetrafluo- rethylen-Polymer (PTFE) oder einem Polymer der perfluorierten Sulfonsäure (PFSA) gebildet. Alternativ kann die Membran als eine sulfonierte Hydrocar- bon-Membran gebildet sein.
Den Anoden und/oder den Kathoden kann zusätzlich ein Katalysator beige mischt sein, wobei die Membranen vorzugsweise auf ihrer ersten Seite und/oder auf ihrer zweiten Seite mit einer Katalysatorschicht aus einem Edelmetall oder aus Gemischen umfassend Edelmetalle wie Platin, Palladi um, Ruthenium oder dergleichen beschichtet sind, die als Reaktionsbe schleuniger bei der Reaktion der jeweiligen Brennstoffzelle dienen.
Über Anodenräume innerhalb des Brennstoffzellenstapels 2 wird den Ano den Brennstoff (zum Beispiel Wasserstoff) zugeführt. In einer Polymerelekt rolytmembranbrennstoffzelle (PEM-Brennstoffzelle) werden an der Anode Brennstoff oder Brennstoffmoleküle in Protonen und Elektronen aufgespaltet. Die Membran lässt die Protonen (zum Beispiel FT) hindurch, ist aber un durchlässig für die Elektronen (e-). An der Anode erfolgt dabei die folgende Reaktion: 2H2 -> 4H+ + 4e_ (Oxidation/Elektronenabgabe). Während die Pro tonen durch die Membran zur Kathode hindurchtreten, werden die Elektro nen über einen externen Stromkreis an die Kathode oder an einen Energie speicher geleitet. Über Kathodenräume innerhalb des Brennstoffzellensta pels 2 kann den Kathoden Kathodengas (zum Beispiel Sauerstoff oder Sau erstoff enthaltende Luft) zugeführt werden, so dass kathodenseitig die fol gende Reaktion stattfindet: O2 + 4H+ + 4e_ -> 2H2O (Redukti on/Elektronenaufnahme).
Durch die Vielzahl der in einem Brennstoffzellenstapel 2 zusammengefasster Brennstoffzellen 3 besteht ein hoher Bedarf an Sauerstoff, sodass durch ei nen Verdichter 4 die Umgebungsluft verdichtet wird, wobei infolge der gege benen Kompression stark erwärmte, trockene Luft vorliegt. Deren Konditio nierung auf die Bedürfnisse in der Brennstoffzelle 3 erfolgt in einem Ladeluft kühler 5 und einem Befeuchter 6, um die in der Brennstoffzelle 3 gegebene Membran auf das erforderliche Maß feucht zu halten. Dem Befeuchter 6 wird Feuchte zugeführt aus dem Kathodenabgas, wobei auch das in einem Ano denkreislauf 7 anfallende Wasser in einem Wasserabscheider 8 gesammelt und gegebenenfalls dem Befeuchter 6 zugeführt werden kann.
Der Befeuchter 6 ist ein teures Bauteil mit einem großen Bauraum bedarf, sodass das Bestreben besteht, den Befeuchter 6 kleiner ausführen zu kön nen oder entbehrlich werden zu lassen.
In Figur 10 ist eine Endplatte 10 gezeigt, die den Brennstoffzellenstapel 2 einseitig begrenzt, wobei diese Endplatte 10 einen Anschluss 11 für das Anodenfrischgas und einen Anschluß 12 für das Anodenabgas aufweist, die durch einen Strömungskanal 16 verbunden sind. Des Weiteren sind An schlüsse 13, 14 für das Kathodenfrischgas und das Kathodenabgas ausge bildet, die wiederum durch einen Strömungskanal 17 verbunden sind. Schließlich besteht auch die Möglichkeit, dass die Endplatte 10 Anschlüsse 15 für ein Kühlmittel aufweist, die wiederum durch einen weiteren Strö mungskanal 18 verbunden sind. Mit dieser aus dem Stand der Technik be kannten Endplatte 10 erfolgt eine klar strukturierte, separierte Strömung der einzelnen Fluide, die für die Reaktion in der Brennstoffzelle 3 erforderlich sind.
Figur 1 zeigt eine erste Ausführungsform der Erfindung, bei der die Wandung zwischen den benachbarten Anschlüssen 12, 13 für das Anodenabgas und das Kathodenfrischgas durch ein hygroskopische Material 20 gebildet ist, dessen Wirkung in der Figur 3 symbolisiert ist. Das Kathodenfrischgas wird durch den nach links weisenden Pfeil durch das hygroskopische Material 20 geleitet, während das Anodenabgas durch den nach rechts weisenden Fall symbolisiert gleichfalls durch das hygroskopische Material 20 geführt wird. Durch den senkrecht zu diesen Strömungen ausgerichteten, von unten nach oben weisenden Pfeil wird der Wassertransport aus dem Anodenabgas durch das hygroskopische Material 20 in das Kathodenfrischgas symbolisiert, so dass das Abwasser der Anode für die Befeuchtung des Kathodenfrisch gases direkt im Brennstoffzellenstapel 2 genutzt wird und dementsprechend der aus dem Stand der Technik bekannte Befeuchter 6 der Brennstoffzellen vorrichtung 1 gemäß Figur 9 entsprechend kleiner ausgeführt werden kann oder gegebenenfalls sogar vollständig verzichtbar ist. Das hygroskopische Material 20 ist mit einer Dichtung 23 gasdicht sowie thermisch an die End platte 10 gekoppelt.
Die Figur 2 zeigt die Positionierung des hygroskopischen Materials 20 in der Endplatten 10 Strömungsverbund mit den Flauptgaskanälen 21 (Fleader) für die Versorgung von Flussfeldern in den Bipolarplatten der Brennstoffzellen 3.
Die Figuren 4 und 5 zeigen eine Ausführungsform, bei der in dem hygroskopischen Material 20 in einem Teil seines Querschnitts Strömungs kanäle 19 für das Anodenabgas und/oder das Kathodenfrischgas ausgebildet sind, deren Querschnitt so bemessen ist, dass der Druckverlust der Gas strömungen in dem hygroskopischen Material 20 im erforderlichen Rahmen gehalten wird.
Figur 6 zeigt dabei eine Ausführungsform, bei der die Strömungskanäle 19 mehrfach ausgebildet sind mit einem kreisrunden Querschnitt, während Figur 7 auf eine Ausführungsform verweist, mit gleichfalls mehrfach vorhandenen Strömungskanälen 19, die einen rechteckigen Querschnitt aufweisen.
Figur 8 zeigt eine weitere Ausführungsform, bei dem die Anschlüsse 13, 14 für das Kathodenfrischgas und das Kathodenabgas auf gegenüberliegenden Längsseiten der Endplatte 10 ausgebildet sind, wobei das hygroskopische Material 20 sich parallel zur Längsseite mit dem Anschluss 13 für das Katho denfrischgas erstreckt und zumindest zum Teil einen Rezyklierkanal 22 von dem Anschluss 12 für das Anodenabgas zu dem Anschluss 11 für das Ano- denfrischgas ausfüllt. Dem Rezyklierkanal 22 ist eine Strahlpumpe 9 zuge ordnet, sodass in der Endplatte 10 ein Anodenkreislauf 7 realisiert ist und sich dadurch eine weitere Bauraumersparnis ergibt.
BEZUGSZEICHENLISTE
I Brennstoffzellenvorrichtung
2 Brennstoffzellenstapel
3 Brennstoffzelle
4 Verdichter
5 Ladeluftkühler
6 Befeuchter
7 Anodenkreislauf
8 Wasserabscheider
9 Strahlpumpe
10 Endplatte
I I Anschluss Anodenfrischgas
12 Anschluss Anodenabgas
13 Anschluss Kathodenfrischgas
14 Anschluss Kathodenabgas
15 Anschluss Kühlmittel
16 Strömungskanal Anodenfrischgas
17 Strömungskanal Kathodenfrischgas
18 Strömungskanal Kühlmittel
19 Strömungskanal in hydroskopisches Material
20 hygroskopisches Material
21 Hauptgaskanal
22 Rezyklierkanal
23 Dichtung

Claims

ANSPRÜCHE:
1. Brennstoffzellenstapel mit einer Mehrzahl von Brennstoffzellen (3), die zwischen zwei Endplatten (10) aufgenommen sind, von denen in min- destens einer Endplatte (10) Strömungskanälen (16, 17) mit An schlüssen (11 , 12) für das Anodenfrischgas und das Anodenabgas sowie mit Anschlüsse (13, 14) für das Kathodenfrischgas und das Ka thodenabgas ausgebildet sind, wobei ein hygroskopisches Material 20 die Wandung zwischen den Anschlüssen (12, 13) für das Anodenab- gas und das Kathodenfrischgas bildet.
2. Brennstoffzellenstapel nach Anspruch 1 , dadurch gekennzeichnet, dass das hygroskopische Material (20) gasdicht ist.
3. Brennstoffzellenstapel nach Anspruch 1 oder 2, dadurch gekenn zeichnet, dass das hygroskopische Material (20) thermisch an die Endplatte (10) gekoppelt ist.
4. Brennstoffzellenstapel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Anschlüsse (13, 12) für das Kathoden frischgas und das Anodenabgas durch das hygroskopische Material (20) hindurch geführt sind.
5. Brennstoffzellenstapel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zumindest in der die Anschlüsse aufweisenden
Endplatte (10) ein Strömungskanal (18) mit zugeordneten Anschlüs sen für ein Kühlmittel ausgebildet ist.
6. Brennstoffzellenstapel nach einem der Anschlüsse 1 bis 5, dadurch gekennzeichnet, dass in dem hygroskopischen Material (20) in einem
Teil seines Querschnitts Strömungskanäle (19) für das Anodenabgas und/oder das Kathodenfrischgas ausgebildet sind.
7. Brennstoffzellenstapel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Endplatte (10) ein die Anschlüsse tragender Deckel zugeordnet ist.
8. Brennstoffzellenstapel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das hygroskopische Material (20) durch eine Dichtung gegenüber der Endplatte (10) abgedichtet ist.
9. Brennstoffzellenstapel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Anschlüsse (13, 14) für das Kathoden frischgas und das Kathodenabgas auf gegenüber liegenden Längssei ten der Endplatte (10) ausgebildet sind, dass das hygroskopische Ma terial (20) sich parallel zu der Längsseite mit dem Anschluss (13) für das Kathodenfrischgas erstreckt und zumindest zum Teil einen
Rezyklierkanal (22) von dem Anschluss (12) für das Anodenabgas zu dem Anschluss (11 ) für das Anodenfrischgas ausfüllt.
10. Brennstoffzellenstapel nach Anspruch 9, dadurch gekennzeichnet, dass dem Rezyklierkanal (22) eine Strahlpumpe (9) zugeordnet ist.
PCT/EP2020/062047 2019-08-01 2020-04-30 Brennstoffzellenstapel beinhaltend endplatte mit integriertem befeuchter WO2021018429A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/631,753 US11855325B2 (en) 2019-08-01 2020-04-30 Fuel cell stack
CN202080055062.6A CN114144914A (zh) 2019-08-01 2020-04-30 包括具有集成的润湿器的端板的燃料电池堆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019211586.1 2019-08-01
DE102019211586.1A DE102019211586A1 (de) 2019-08-01 2019-08-01 Brennstoffzellenstapel

Publications (1)

Publication Number Publication Date
WO2021018429A1 true WO2021018429A1 (de) 2021-02-04

Family

ID=70482662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/062047 WO2021018429A1 (de) 2019-08-01 2020-04-30 Brennstoffzellenstapel beinhaltend endplatte mit integriertem befeuchter

Country Status (4)

Country Link
US (1) US11855325B2 (de)
CN (1) CN114144914A (de)
DE (1) DE102019211586A1 (de)
WO (1) WO2021018429A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041984A1 (en) * 1997-12-01 2002-04-11 Chow Clarence Y.F. Method and apparatus for distributing water in an array of fuel cell stacks
WO2009092433A1 (en) 2008-01-22 2009-07-30 Daimler Ag Fuel cell, in particular for arrangement in a fuel cell stack, and fuel cell stack
US7923162B2 (en) 2008-03-19 2011-04-12 Dana Canada Corporation Fuel cell assemblies with integrated reactant-conditioning heat exchangers
US20110171551A1 (en) 2008-09-19 2011-07-14 Mtu Onsite Energy Gmbh Fuel cell assembly with a modular construction
EP2375485A1 (de) * 2010-04-06 2011-10-12 Samsung SDI Co., Ltd. Brennstoffzellensystem
US20120015261A1 (en) * 2010-07-15 2012-01-19 Samsung Sdi Co., Ltd. Fuel cell system and stack thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2242176C (en) * 1997-06-30 2009-01-27 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
JP5234879B2 (ja) * 2006-03-03 2013-07-10 本田技研工業株式会社 燃料電池
KR100821034B1 (ko) * 2007-04-24 2008-04-08 삼성에스디아이 주식회사 습도조절장치 겸용 캐소드 엔드 플레이트 및 이를 채용한공기호흡형 연료전지 스택
US8192885B2 (en) * 2009-01-26 2012-06-05 GM Global Technology Operations LLC Shutdown strategy for enhanced water management
KR101417454B1 (ko) * 2012-12-07 2014-07-08 현대자동차주식회사 연료전지 스택용 엔드 플레이트의 물 배출 및 유량 분배 장치
KR102371604B1 (ko) * 2017-05-26 2022-03-07 현대자동차주식회사 연료전지 스택

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041984A1 (en) * 1997-12-01 2002-04-11 Chow Clarence Y.F. Method and apparatus for distributing water in an array of fuel cell stacks
WO2009092433A1 (en) 2008-01-22 2009-07-30 Daimler Ag Fuel cell, in particular for arrangement in a fuel cell stack, and fuel cell stack
US7923162B2 (en) 2008-03-19 2011-04-12 Dana Canada Corporation Fuel cell assemblies with integrated reactant-conditioning heat exchangers
US20110171551A1 (en) 2008-09-19 2011-07-14 Mtu Onsite Energy Gmbh Fuel cell assembly with a modular construction
EP2375485A1 (de) * 2010-04-06 2011-10-12 Samsung SDI Co., Ltd. Brennstoffzellensystem
US20120015261A1 (en) * 2010-07-15 2012-01-19 Samsung Sdi Co., Ltd. Fuel cell system and stack thereof

Also Published As

Publication number Publication date
CN114144914A (zh) 2022-03-04
DE102019211586A1 (de) 2021-02-04
US11855325B2 (en) 2023-12-26
US20220278348A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
DE102015122144A1 (de) Befeuchter mit integriertem Wasserabscheider für ein Brennstoffzellensystem, Brennstoffzellensystem sowie Fahrzeug mit einem solchen
DE102006000112A1 (de) Separatoreinheit
EP3430662A1 (de) Bipolarplatte mit variabler breite der reaktionsgaskanäle im eintrittsbereich des aktiven bereichs, brennstoffzellenstapel und brennstoffzellensystem mit solchen bipolarplatten sowie fahrzeug
WO2019233988A1 (de) Befeuchter sowie kraftfahrzeug mit einer einen befeuchter aufweisenden brennstoffzellenvorrichtung
DE102010048253A1 (de) Vor-Ort-Rekonditionierung von Brennstoffzellenstapeln
DE10220183B4 (de) Brennstoffzelle, Brennstoffzellensystem und Verfahren zur Herstellung einer Brennstoffzelle
DE102019200449A1 (de) Befeuchter mit Kühlmittelrohren und Brennstoffzellenvorrichtung
DE102018215217A1 (de) Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung
WO2015110236A1 (de) Feuchtetauscher und brennstoffzellenanordnung mit einem solchen
EP4008035B1 (de) Befeuchter, brennstoffzellenvorrichtung mit befeuchter sowie kraftfahrzeug
WO2021018429A1 (de) Brennstoffzellenstapel beinhaltend endplatte mit integriertem befeuchter
WO2003090301A2 (de) Elektrodenplatte mit befeuchtungsbereich
DE102019126308A1 (de) Befeuchter, Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung
EP4037812B1 (de) Befeuchter, brennstoffzellenvorrichtung sowie kraftfahrzeug mit einer brennstoffzellenvorrichtung
DE102019126306A1 (de) Brennstoffzellensystem
DE102019133091A1 (de) Brennstoffzellenvorrichtung, Kraftfahrzeug mit einer Brennstoffzellenvorrichtung und Verfahren zum Betreiben einer Brennstoffzellenvorrichtung
DE102019205814A1 (de) Konditionierungsvorrichtung sowie Brennstoffzellenvorrichtung mit einer solchen
DE102019205815A1 (de) Befeuchter, Brennstoffzellenvorrichtung und Verfahren zur Ermittlung und/oder Regulierung des Feuchtegehalts
WO2020030346A1 (de) Befeuchter, brennstoffzellenvorrichtung mit befeuchter sowie kraftfahrzeug
DE102012011441A1 (de) Membran-Elektroden-Einheit für eine Brennstoffzelle
DE102019126301A1 (de) Befeuchter sowie Brennstoffzellenvorrichtung mit Befeuchter
DE102020132103A1 (de) Brennstoffzellensystem und Verfahren zur temporär vermehrten Erzeugung von Flüssigwasser in einem Teil des Brennstoffzellenstapels
EP3990159A1 (de) Befeuchter, brennstoffzellenvorrichtung sowie kraftfahrzeug mit einer brennstoffzellenvorrichtung
DE102020114311A1 (de) Befeuchter, Brennstoffzellenvorrichtung sowie Kraftfahrzeug
DE102020101528A1 (de) Brennstoffzellenvorrichtung und Kraftfahrzeug mit einer Brennstoffzellenvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20723370

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20723370

Country of ref document: EP

Kind code of ref document: A1