WO2021018159A1 - 利用单原子碳还原制备单质材料的方法 - Google Patents

利用单原子碳还原制备单质材料的方法 Download PDF

Info

Publication number
WO2021018159A1
WO2021018159A1 PCT/CN2020/105339 CN2020105339W WO2021018159A1 WO 2021018159 A1 WO2021018159 A1 WO 2021018159A1 CN 2020105339 W CN2020105339 W CN 2020105339W WO 2021018159 A1 WO2021018159 A1 WO 2021018159A1
Authority
WO
WIPO (PCT)
Prior art keywords
elemental
melt
reduction
carbon
materials
Prior art date
Application number
PCT/CN2020/105339
Other languages
English (en)
French (fr)
Inventor
孙旭阳
Original Assignee
孙旭阳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孙旭阳 filed Critical 孙旭阳
Priority to US17/631,127 priority Critical patent/US20220275476A1/en
Priority to EP20848016.0A priority patent/EP4006186A4/en
Publication of WO2021018159A1 publication Critical patent/WO2021018159A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • C01B33/025Preparation by reduction of silica or free silica-containing material with carbon or a solid carbonaceous material, i.e. carbo-thermal process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/023Boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the invention relates to the field of materials, and in particular to a method for preparing elemental materials by reduction of single-atom carbon.
  • Elementary materials include metals and non-metals.
  • simple materials are basic materials for various high-end manufacturing industries. Products are widely used in high-tech fields such as aviation, aerospace, shipbuilding, nuclear industry, electronics, automobiles, and new energy.
  • very few substances in nature exist in the form of elemental substances, and most of them exist in the form of compounds such as oxides, carbides, nitrides, sulfides, and various acid salts. For this reason, it is necessary to reduce the compounds to obtain elemental materials.
  • the most important methods are thermal reduction and electrolysis.
  • metal thermal methods such as carbothermic method, silicon thermal method, thermite method, and magnesium thermal method are commonly used thermal reduction methods.
  • the above methods generally require high-temperature reactions, high energy consumption, and high cost.
  • the temperature of blast furnace iron making using carbothermal reduction is 1000°C ⁇ 1400°C
  • the temperature of silicon production by the aluminothermic reduction method is 1600°C ⁇ 1700°C
  • ferrosilicon Pidgeon magnesium smelting with Si-Fe as reducing agent not only requires high temperature 1200°C ⁇ 1250°C, but also requires high vacuum (1 ⁇ 13Pa) conditions.
  • the simple substance has poor crystallinity, and is generally polycrystalline or amorphous.
  • the purpose of the present invention is to provide a method for preparing elemental materials by reduction of monoatomic carbon, which can prepare high-quality, self-crystallized elemental materials at a lower temperature and at a lower cost.
  • the method for preparing elemental materials by reduction of monoatomic carbons includes: in a melt medium, at 300°C to 1500°C, an organic carbon source is cracked into atomic carbon and dissolved in the melt medium.
  • the atomic carbon undergoes an oxidation-reduction reaction with the elemental precursor compound placed in the melt medium, and the precursor compound is reduced to elemental, and the elemental substance is supersaturated and crystallized in the melt medium to obtain the elemental material.
  • the elemental materials prepared by the present invention include elemental metals and elemental non-metals, specifically, including but not limited to metals Mg, Zn, Cu, Fe, Li, Ge, V, Cr, Ni, Co, Mn, Bi, Ti, Mo , Y, Ir, W, Pt, Ta, Nb, Re, Hf, Pd, Zr, non-metallic B, Si, and more preferably Mg, Cu, Fe, Li, Ge, Ni, Co, Ti, Pt, Nb , Zr, B or Si.
  • metals Mg, Zn, Cu, Fe, Li, Ge, V, Cr, Ni, Co, Mn, Bi, Ti, Mo , Y, Ir, W, Pt, Ta, Nb, Re, Hf, Pd, Zr, non-metallic B, Si, and more preferably Mg, Cu, Fe, Li, Ge, Ni, Co, Ti, Pt, Nb , Zr, B or Si.
  • the elemental precursor compound refers to a compound of an elemental element to be prepared, including but not limited to oxides, nitrides, sulfides, and salts containing the elemental element.
  • the elemental precursor compound is an elemental element.
  • the elemental precursor compound is preferably ground into powder for use, and the particle size is preferably 900-8000 mesh.
  • the melt medium refers to a melt of one or more selected from inorganic salts, inorganic bases, oxides, nitrides, carbides, metals and alloys.
  • the organic carbon source is cracked to form atomic carbon, and the atomic carbon does not react with the melt compound, or only the reaction to generate the element to be prepared occurs.
  • the maximum solubility of atomic carbon in the melt is not Less than 10 -7 (g/100g); preferably, the melt medium is an inorganic salt or a mixture of inorganic salts with a melting point lower than 810°C, or an inorganic alkali or a mixture of inorganic alkalis with a melting point lower than 400°C, or a melting point lower than 500°C low melting point alloy.
  • the inorganic salt is such as magnesium chloride, sodium chloride, potassium chloride, lithium chloride, calcium chloride, aluminum chloride, potassium fluoride, sodium fluoride, lithium fluoride, sodium nitrate, potassium nitrate, sulfuric acid Lithium, sodium sulfate;
  • the inorganic bases include sodium hydroxide, potassium hydroxide, lithium hydroxide, aluminum hydroxide;
  • the alloys include the binary and tribasic of Bi and Sn, Pb, In, Cd, Hg, Zn Elementary, quaternary, five-element alloys, Bi and Pt alloys, Pb and Sn, In, Cd, Hg binary, ternary, and quaternary alloys, Sn and Cd alloys.
  • the organic carbon source includes one or more carbon-containing organic substances selected from aliphatic hydrocarbons, aromatic hydrocarbons, hydrocarbon derivatives, and carbon-containing macromolecule polymers; the temperature range at which the organic carbon source can be completely cracked is between 300°C and 1500°C, preferably the organic carbon source with a temperature range of 300°C to 1000°C at which the organic carbon source is completely cracked.
  • the method for preparing elemental materials by reduction of monoatomic carbon of the present invention further includes: after elemental supersaturated crystals are precipitated, the elemental materials are separated and washed with water, acid and/or alkali to obtain pure elemental materials.
  • the element density when the element density is greater than the density of the melt compound, the element will sink to the bottom of the melt, and the element at the bottom will be separated and washed with water, acid, and/or alkali to remove the adhered melt compound to obtain pure The simple substance;
  • the reaction mixture is cooled and then washed with water, acid and/or alkali to remove the crystalline compound after the melt is cooled to obtain a pure element.
  • the method for preparing elemental materials by reduction of monoatomic carbon of the present invention further includes: adding elemental crystals as seed crystals in the melt medium to promote the precipitation of elemental supersaturated crystals.
  • the core technology of the method of the present invention is: the atomic carbon obtained by cracking the organic carbon source in the high-temperature melt medium has extremely strong reducibility, and can directly cut off the bond of the elementary precursor compound at a very low temperature, and the elemental atoms are released, and a large amount of Elemental atom crystallization directly generates elemental material. Therefore, it has the following advantages:
  • the cost of monoatomic carbon reduction to prepare elemental materials of the present invention is low. Mainly because the process temperature can be quite low, the energy consumption is low, and the pollution is small. If NaCl/KCl mixed molten salt and glucose carbon source are used, the process temperature can be around 900°C. The general carbothermic reduction requires a high temperature of 1500-2000°C.
  • the elemental material prepared by the present invention grows by self-crystal, it has low impurity content and high purity.
  • the elemental material prepared by the present invention grows by self-crystal, the crystal quality is good. It can be controlled to grow high purity single crystal.
  • the element material prepared by the reduction of monoatomic carbon in the present invention has excellent performance and quality, and has the characteristics of low production cost, high efficiency and less pollution.
  • Figure 1 is an XRD pattern of Ni prepared by reduction of single-atom carbon in Example 1 of the present invention
  • Figure 2 is an SEM photograph of the morphology of silica powder used in Example 4 of the present invention.
  • Example 3 is the SEM photograph of elemental silicon prepared by the first reduction in Example 4 of the present invention and the element types and contents detected by EDS energy spectrum analysis.
  • NiO dispersed NiO in the melt to produce Ni
  • the nickel powder sinks to the bottom of the high-temperature melt and cools to room temperature.
  • the cooled crystals of the melt are dissolved and washed away with water to remove MgCl 2 , and Ni and a small amount of unreacted NiO are filtered out
  • the NiO is dissolved, so that 19g of pure nickel powder is obtained by filtering and drying.
  • Figure 1 shows the XRD pattern of the prepared nickel powder.
  • a vertical conveying screw to transport ZrF 4 (melting point 640°C, as elemental Zr precursor compound) powder to the container while melting; pressurized acetylene is passed into the alloy melt through a round tube, at this high temperature, acetylene is cracked into atoms Carbon and atomic carbon dissolve and reduce ZrF 4 in the melt and generate Zr elemental substance.
  • anhydrous borax Na 2 B 4 O 5 (OH) 4
  • 500g of anhydrous borax Na 2 B 4 O 5 (OH) 4
  • 100g of organic carbon source bisphenol A is conveyed to the container with a vertical conveying screw while stirring to make it uniformly dispersed in the melt; because the melt contains acidic oxide B 2 O 3 (as the elemental B precursor compound), double Phenol A is completely cracked, cracked into atomic carbon, atomic carbon is dissolved, and B 2 O 3 in the melt is reduced to generate elemental boron B.
  • the elemental boron B and the recrystallized anhydrous borax are repeatedly washed and filtered with water, and the easy solubility of anhydrous borax in water is used to finally obtain pure elemental boron B.
  • the stainless steel container is filled with 200g of NaCl and 20g of organic carbon source sucrose to be uniformly mixed, and another 10g of fumed silica is used as the elemental Si precursor compound (see Figure 2, which shows that fumed silica is an aggregate of nano-silica. (The average particle size of silica is 20-30nm) is placed at the bottom of the container, heated to above 900°C to form a melt, kept for 6 hours, and then slowly cooled to room temperature.
  • the carbon source is cracked into atomic carbon in the molten salt, the white carbon black floats in the molten salt, and the atomic carbon dissolved in the molten salt reduces the floating white carbon black; part of the white carbon black is reduced to form silicon crystals and part of the dioxide Silicon has not been reduced, and part of the atomic carbon is supersaturated and precipitated to form carbon black and graphene-like particles attached to the white carbon black; during the reduction growth process of silicon crystals increase in size and density, and gradually sink to the bottom; The white carbon black floats to the surface of molten salt with the carbon attached to it.
  • the lower layer mixture in the cooled solid mixture is taken out, washed repeatedly with water to remove the NaCl salt crystals, filtered and dried to obtain a high-silicon powder (see Figure 3).
  • the silicon crystals in the silicon powder have grown significantly, and the particle size can reach more than 10 ⁇ m (from tens of nanometers to tens of microns, growing thousands of times); Si and O analyzed from EDS energy spectrum In terms of element content ratio, the Si/O element ratio is much higher than SiO 2 .
  • 200g of NaCl, the above-mentioned high silicon powder and 10g of organic carbon source sucrose are uniformly mixed; heated to above 900°C to form a melt, kept for 6 hours, and then slowly cooled to room temperature; then, the NaCl salt crystals in the lower mixture are repeatedly washed with water Remove, filter and dry. This process is repeated 10 times to obtain silicon powder with higher purity.
  • the two stainless steel containers A and B are both filled with NaCl and heated to 900°C to form a melt.
  • Tank A is continuously added with organic carbon source vitamin C and stirred, and tank B is continuously added with quartz powder (as elemental Si precursor compound). Stirring;
  • the stainless steel container tank C contains NaCl and is heated to above 850°C to form a melt.
  • a set of bare silicon wafers ie, pure silicon wafers with no silicon dioxide layer on the surface) are juxtaposed; the three tanks are connected to each other.
  • the carbon source is decomposed into atomic carbon [C] in the molten salt of A tank, diffused into the B tank to reduce the quartz powder in it to atomic silicon [Si], and the atomic silicon [Si] is diffused into the C tank to use the silicon wafer as the parent crystal Supersaturated precipitation produces silicon crystals. After a period of time, the grown silicon plate is taken out.
  • Example 4 The difference from Example 4 is that on the one hand, the silicon wafer is preset to make the silicon crystals with the silicon wafer as the parent crystal grow faster and the crystal quality is better; on the other hand, there is no precursor compound SiO 2 and C in the growth area. , To avoid the introduction of impurities in the product, so high-purity crystalline silicon can be grown on the silicon wafer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种利用单原子碳还原制备单质材料的方法,包括:在熔体介质中,在300℃~1500℃下,有机碳源裂解成原子碳并溶解于熔体介质,原子碳与置于熔体介质中的单质前体化合物发生氧化还原反应,该前体化合物被还原成单质,单质在熔体介质中过饱和结晶析出,得到单质材料。该方法能够在较低的温度下以较低的成本制备品质好的、自结晶生长的单质材料。

Description

利用单原子碳还原制备单质材料的方法 技术领域
对相关申请的交叉引用
本申请要求于2019年7月29日提交的中国专利申请No.201910689302.7的优先权和权益,该申请的全部内容通过引用并入到本申请中。
技术领域
本发明涉及材料领域,具体而言,涉及一种利用单原子碳还原制备单质材料的方法。
背景技术
单质材料包括金属和非金属。单质材料作为特种功能材料和结构材料,是各种高端制造工业的基础材料,产品广泛应用于航空、航天、船舶、核工业、电子、汽车、新能源等高科技领域。然而,自然界的物质极少以单质的形式存在,大多以氧化物、碳化物、氮化物、硫化物、各种酸盐等化合物的形式存在,为此需要将化合物还原才能得到单质材料。最主要的方法有热还原和电解法。其中,碳热法和硅热法、铝热法、镁热法等金属热法是常用的热还原方法。但是上述方法普遍需要高温反应,能耗大、成本高,如采用碳热还原的高炉炼铁温度在1000℃~1400℃,铝热还原法制硅温度在1600℃~1700℃,而用硅铁(Si-Fe)作还原剂的皮江法炼镁不仅需高温1200℃~1250℃,还需要高真空(1~13Pa)的条件。另外,单质的结晶性不佳,一般为多晶或无定形态。
因此,迫切需要一种非高温的制备单质材料的方法,该方法能够在较低的温度下以较低的成本制备品质好的、自结晶生长的单质材料。
发明内容
针对上述技术问题,本发明的目的在于提供了一种利用单原子碳还原制备单质材料的方法,该方法能够在较低的温度下以较低的成本制备品质好的、 自结晶生长的单质材料。
根据本发明,本发明提供的利用单原子碳还原制备单质材料的方法,包括:在熔体介质中,在300℃~1500℃下,有机碳源裂解成原子碳并溶解于熔体介质,所述原子碳与置于熔体介质中的单质前体化合物发生氧化还原反应,该前体化合物被还原成单质,单质在熔体介质中过饱和结晶析出,得到单质材料。
下面,更详细地描述本发明的利用单原子碳还原制备单质材料的方法。
本发明所制备的单质材料包括单质金属和单质非金属,具体地,包括且不限于金属Mg、Zn、Cu、Fe、Li、Ge、V、Cr、Ni、Co、Mn、Bi、Ti、Mo、Y、Ir、W、Pt、Ta、Nb、Re、Hf、Pd、Zr,非金属B、Si,且更优选为Mg、Cu、Fe、Li、Ge、Ni、Co、Ti、Pt、Nb、Zr、B或Si。
所述单质前体化合物是指待制备单质元素的化合物,包括且不限于该单质元素的氧化物、氮化物、硫化物和包含该单质元素的盐,优选地,所述单质前体化合物为单质元素的氧化物或包含该单质元素的盐,且更优选为单质元素的氧化物。在本发明中,所述单质前体化合物优选研磨成粉末形式使用,优选粒度在900~8000目。
所述熔体介质是指选自无机盐、无机碱、氧化物、氮化物、碳化物、金属和合金中的一种或几种的熔融体。在300℃~1500℃下,有机碳源裂解形成原子碳,且原子碳不与该熔体化合物发生反应,或只发生生成待制备单质的反应,原子碳在所述熔体中的最大溶解度不低于10 -7(g/100g);优选地,所述熔体介质为熔点低于810℃的无机盐、无机盐混合物,或熔点低于400℃无机碱、无机碱混合物,或熔点低于500℃的低熔点合金。具体地,所述的无机盐例如氯化镁、氯化钠、氯化钾、氯化锂、氯化钙、氯化铝,氟化钾、氟化钠、氟化锂,硝酸钠、硝酸钾,硫酸锂、硫酸钠;所述的无机碱包括氢氧化钠、氢氧化钾、氢氧化锂、氢氧化铝;所述的合金包括Bi与Sn、Pb、In、Cd、Hg、Zn的二元、三元、四元、五元合金,Bi与Pt的合金,Pb与Sn、In、Cd、Hg的二元、三元、四元合金,Sn与Cd的合金。
所述有机碳源包括选自脂肪烃、芳香烃、烃类衍生物、含碳高分子聚合物中一种或多种含碳有机物;上述有机碳源可被完全裂解的温度区间在300℃~1500℃,优选所述有机碳源被完全裂解的温度区间在300℃~1000℃的有机碳源。
在本发明中,本发明的利用单原子碳还原制备单质材料的方法还包括:在单质过饱和结晶析出后,分离单质材料,经水洗、酸洗和/或碱洗,得到纯净的单质。
更具体地,当单质密度大于熔体化合物密度时,单质会下沉至熔体底部,分离出底部的单质,经水洗、酸洗和/或碱洗,以除去附着的熔体化合物,得到纯净的单质;
当单质密度小于熔体化合物密度时,单质会上浮至熔体表面,采用重力浮选方法分离出熔体表面上的单质,经水洗、酸洗和/或碱洗,以除去附着的熔体化合物,得到纯净的单质;
当单质悬浮于熔体中时,将反应混合物冷却后,经水洗、酸洗和/或碱洗,以除去熔体冷却后的结晶化合物,得到纯净的单质。
在本发明中,本发明的利用单原子碳还原制备单质材料的方法还包括:在所述熔体介质中加入单质晶体作为晶种,从而促进单质过饱和结晶析出。
本发明方法的核心技术是:在高温熔体介质中裂解有机碳源得到的原子碳其还原性极强,可以在非常低的温度下直接切断单质前体化合物的化合键,单质原子脱出,大量单质原子结晶直接生成单质材料。因此有如下优点:
(1)本发明单原子碳还原制备单质材料的成本低。主要是由于工艺温度可以相当低,能耗低、污染小。如采用NaCl/KCl混合熔盐和葡萄糖碳源时,工艺温度可在900℃左右。而一般的碳热还原需要1500-2000℃的高温。
(2)本发明单原子碳还原制备单质材料由于单原子碳的还原性超强,使得部分原来只能采用电解法还原的单质,可以采用热还原法还原。特别是采用熔融态电解质电解还原纯单质时,既需要高温使得前体物质熔融,又需要提供电解电流,能耗大、成本高,采用本发明的方法则工艺简单、成本低廉。
(3)本发明制备的单质材料由于是自结晶生长的,杂质含量少、纯度高。
(4)本发明制备的单质材料由于是自结晶生长的,结晶质量好。经过控制可以生长高纯单晶。
因此,本发明利用单原子碳还原制备的单质材料性能质量优良,具有生产成本低、效率高、污染少的特点。
附图说明
图1为本发明实施例1单原子碳还原制备的Ni的XRD图谱;
图2为本发明实施例4所用二氧化硅微粉原料白炭黑形貌的SEM照片;
图3为本发明实施例4第一次还原制备的单质硅的SEM照片和EDS能谱分析检测的元素种类与含量。
具体实施方式
下面,通过实施例更具体地说明本发明,但本发明的保护范围不局限于这些实施例中。
实施例1
将30g氧化镍NiO球磨制粉。
在真空室内放置平底罐体容器,在平底罐体容器中将500gMgCl 2加温至900℃以上形成熔盐;将30gNiO粉末(作为单质Ni前体化合物)逐步从熔盐表面加入,NiO粉末沉降的同时采用搅拌装置使粉末在熔体中均匀分散;同时将有机碳源乙炔气持续通入熔盐,高温使得乙炔裂解成原子碳和含氢气体,气体放出,原子碳溶解扩散在熔盐中,并且原子碳还原熔体中分散的NiO生成Ni;镍粉下沉至高温熔体底部,冷却至室温,先用水将熔体的冷却结晶物溶解洗去MgCl 2,过滤得到Ni和少量未反应NiO的混合物,在氨水中浸洗120h,NiO溶解,从而,过滤烘干得到19g纯镍粉。
图1为所制备镍粉的XRD图谱。
实施例2
真空室内放置方形平底容器罐体,罐体中盛装Bi/In合金(Bi:In=21.5:78.5,以原子分数比计;此时合金熔点仅72℃),合金加温至700℃形成熔体;采用垂直传送螺杆将ZrF 4(熔点640℃,作为单质Zr前体化合物)粉体输送至容器同时熔融;通过圆管将加压乙炔通入合金熔体,在此高温下,乙炔裂解成原子碳、原子碳溶解并且还原熔体中的ZrF 4并生成Zr单质。由于Bi/In合金密度接近10g/cm 3,Zr最终上浮至高温熔体表面;采用水平刮板将浮起的产物从熔体表面上移除后收集;将所得到的固态晶体上沾有的少量Bi/In合金用95℃的热水加超声冲洗脱除,得到海绵状Zr成品。
实施例3
镍制圆筒容器中盛装500g无水硼砂(Na 2B 4O 5(OH) 4),加温至950℃熔化为玻璃状物。将100g有机碳源双酚A用垂直传送螺杆输送至容器中同时搅拌使之在熔体中均匀分散布;因为熔体中含有酸性氧化物B 2O 3(作为单质B前体化合物),双酚A完全裂解、裂解成原子碳、原子碳溶解并且还原熔体中的B 2O 3生成单质硼B。冷却至室温,将单质硼B和再次结晶的无水硼砂,用水反复清洗过滤,利用无水硼砂在水中的易溶解性,最终得到纯单质硼B。
实施例4
不锈钢容器罐体中盛装200gNaCl与20g有机碳源蔗糖均匀混合,另取10g气相白炭黑作为单质Si前体化合物(参见图2,可见到气相白炭黑即纳米二氧化硅的集聚体,纳米二氧化硅平均粒径为20-30nm)置于容器底部,加温至900℃以上形成熔体,保温6小时,然后缓慢降温至室温。首先,碳源在熔盐中裂解成原子碳,白炭黑在熔盐中上浮,溶解在熔盐中的原子碳还原上浮的白炭黑;部分白炭黑被还原生成硅晶体,部分二氧化硅未被还原,部分原子碳过饱和析出生成炭黑和类石墨烯附着于白炭黑上;硅晶体在还原生长过程中尺度增大,密度不断增加,逐步下沉至底部;而未被还原的白炭黑带着附着于其上的碳上浮至熔盐表面。将降温冷却固体混合物中的下层混合物取出, 用水反复清洗脱除NaCl盐晶,过滤烘干得到高含硅粉末(参见图3)。
从图3的产物SEM照片可见硅粉末中硅晶体明显长大,粒径可达10μm以上(从几十纳米-几十微米,长大了上千倍);从EDS能谱分析的Si和O元素含量比例来看Si/O元素比远高于SiO 2。再将200gNaCl、上述高含硅粉末与10g有机碳源蔗糖均匀混合;加温至900℃以上形成熔体,保温6小时,然后缓慢降温至室温;然后,将下层混合物中NaCl盐晶用水反复清洗脱除,过滤烘干。此过程重复10次,得到纯度较高的硅粉。
实施例5
两个不锈钢容器罐体A、B中均盛装NaCl加温至900℃形成熔体,其中A罐连续加入有机碳源维生素C并搅拌,B罐连续加入石英粉(作为单质Si前体化合物)并搅拌;不锈钢容器罐体C盛装NaCl加温至850℃以上形成熔体其中并置有一组裸硅片(即表面无二氧化硅层的纯硅片);三罐相互连通。首先,碳源在A罐熔盐中裂解成原子碳[C],扩散到B罐将其中的石英粉还原成原子硅[Si],原子硅[Si]扩散到C罐以硅片为母晶过饱和析出生成硅晶体。过一段时间将长大硅板取出。
与实施例4不同的是,一方面预置了硅片,使得以硅片为母晶的硅晶体生长更加迅速、结晶质量更好;另一方面生长区内没有作为前体化合物SiO 2以及C,避免了产物中的杂质引入,因此硅片上可以生长出高纯度的晶体硅。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种利用单原子碳还原制备单质材料的方法,在熔体介质中,在300℃~1500℃下,有机碳源裂解成原子碳并溶解于熔体介质,所述原子碳与置于熔体介质中的单质前体化合物发生氧化还原反应,该前体化合物被还原成单质,单质在熔体介质中过饱和结晶析出,得到单质材料。
  2. 如权利要求1所述的利用单原子碳还原制备单质材料的方法,其特征是,所述单质材料包括Mg、Zn、Cu、Fe、Li、Ge、V、Cr、Ni、Co、Mn、Bi、Ti、Mo、Y、Ir、W、Pt、Ta、Nb、Re、Hf、Pd、Zr、B和Si
  3. 如权利要求2所述的利用单原子碳还原制备单质材料的方法,其特征是,所述单质材料包括Mg、Cu、Fe、Li、Ge、Ni、Co、Ti、Pt、Nb、Zr、B和Si。
  4. 如权利要求1-3中任一项所述的利用单原子碳还原制备单质材料的方法,其特征是,所述单质前体化合物是该单质元素的氧化物、氮化物、硫化物和包含该单质元素的盐,
  5. 如权利要求4所述的利用单原子碳还原制备单质材料的方法,其特征是,所述单质前体化合物为该单质元素的氧化物。
  6. 如权利要求1-3中任一项所述的利用单原子碳还原制备单质材料的方法,其特征是,所述熔体介质是指选自无机盐、无机碱、氧化物、氮化物、碳化物、金属和合金中的一种或几种的熔融体;优选地,所述熔体介质为熔点低于810℃的无机盐、无机盐混合物,或熔点低于400℃无机碱、无机碱混合物,或熔点低于500℃的低熔点合金;具体地,所述的无机盐例如氯化镁、氯化钠、氯化钾、氯化锂、氯化钙、氯化铝,氟化钾、氟化钠、氟化锂,硝酸钠、硝酸钾,硫酸锂、硫酸钠;所述的无机碱包括氢氧化钠、氢氧化钾、氢氧化锂、氢氧化铝;所述的合金包括Bi与Sn、Pb、In、Cd、Hg、Zn的二元、三元、四元、五元合金,Bi与Pt的合金,Pb与Sn、In、Cd、Hg的二元、三元、四元合金,Sn与Cd的合金。
  7. 如权利要求1-3中任一项所述的利用单原子碳还原制备单质材料的方 法,其特征是,所述有机碳源包括选自脂肪烃、芳香烃、烃类衍生物、含碳高分子聚合物中一种或多种含碳有机物,且所述有机碳源可被完全裂解的温度区间在300℃~1500℃。
  8. 如权利要求1-3中任一项所述的利用单原子碳还原制备单质材料的方法,其特征是,该方法还包括:在单质过饱和结晶析出后,分离单质材料,经水洗、酸洗和/或碱洗,得到纯净的单质。
  9. 如权利要求8所述的利用单原子碳还原制备单质材料的方法,其特征是,当单质密度大于熔体化合物密度时,单质会下沉至熔体底部,分离出底部的单质,经水洗、酸洗和/或碱洗,以除去附着的熔体化合物,得到纯净的单质;
    当单质密度小于熔体化合物密度时,单质会上浮至熔体表面,采用重力浮选方法分离出熔体表面上的单质,经水洗、酸洗和/或碱洗,以除去附着的熔体化合物,得到纯净的单质;
    当单质悬浮于熔体中时,将反应混合物冷却后,经水洗、酸洗和/或碱洗,以除去熔体冷却后的结晶化合物,得到纯净的单质。
  10. 如权利要求1-3中任一项所述的利用单原子碳还原制备单质材料的方法,其特征是,该方法还包括:在所述熔体介质中加入单质晶体作为晶种,从而促进单质过饱和结晶析出。
PCT/CN2020/105339 2019-07-29 2020-07-29 利用单原子碳还原制备单质材料的方法 WO2021018159A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/631,127 US20220275476A1 (en) 2019-07-29 2020-07-29 A method for preparing an elemental material by reduction using monoatomic carbon
EP20848016.0A EP4006186A4 (en) 2019-07-29 2020-07-29 METHOD FOR PREPARING ELEMENTAL MATERIAL BY MONOATOMIC CARBON REDUCTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910689302.7 2019-07-29
CN201910689302.7A CN110527833B (zh) 2019-07-29 2019-07-29 利用单原子碳还原制备单质材料的方法

Publications (1)

Publication Number Publication Date
WO2021018159A1 true WO2021018159A1 (zh) 2021-02-04

Family

ID=68660615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105339 WO2021018159A1 (zh) 2019-07-29 2020-07-29 利用单原子碳还原制备单质材料的方法

Country Status (4)

Country Link
US (1) US20220275476A1 (zh)
EP (1) EP4006186A4 (zh)
CN (2) CN110527833B (zh)
WO (1) WO2021018159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818615A (zh) * 2022-11-23 2023-03-21 浙江工业大学 一种碳基材料二氧化碳捕获剂及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527833B (zh) * 2019-07-29 2021-10-01 孙旭阳 利用单原子碳还原制备单质材料的方法
CN113130879B (zh) * 2021-04-12 2022-04-26 肇庆市华师大光电产业研究院 一种锂硫电池高吸附催化性能正极材料的制备方法
CN115947313A (zh) * 2023-02-06 2023-04-11 天津大学 电池级硫化锂及其合成方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554531A (en) * 1978-10-17 1980-04-21 Kloeckner Humboldt Deutz Ag Method of desulfurizing and purifying melt metallsulfur compound
CN101616867A (zh) * 2007-01-02 2009-12-30 瑟米克尔Ip公司 碳热法
CN102041398A (zh) * 2010-11-19 2011-05-04 重庆大学 一种熔融还原碳热法制镁工艺及装置
CN110527833A (zh) * 2019-07-29 2019-12-03 孙旭阳 利用单原子碳还原制备单质材料的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB329159A (en) * 1929-02-26 1930-05-22 Edgar Arthur Ashcroft Improvements in the reduction of tin and other metals from their salts and in the purification of molten baths of metal salts
SE441189B (sv) * 1984-02-07 1985-09-16 Boliden Ab Forfarande for framstellning av metalliskt bly genom smeltreduktion
US4701217A (en) * 1986-11-06 1987-10-20 University Of Birmingham Smelting reduction
DE4108687A1 (de) * 1991-03-16 1992-11-05 Metallgesellschaft Ag Verfahren zur reduktion von ne-metalloxiden in schlacken
RU2121518C1 (ru) * 1997-05-21 1998-11-10 Открытое акционерное общество "Институт Гинцветмет" Способ переработки оксидного сырья, содержащего цветные металлы
GB0216484D0 (en) * 2002-07-15 2002-08-21 Warner Noel A Direct production of refined metals and alloys
ITMI20081085A1 (it) * 2008-06-16 2009-12-17 N E D Silicon S P A Metodo per la preparazione di silicio di grado metallurgico di elevata purezza.
CN103667564B (zh) * 2013-05-20 2016-06-01 江苏省冶金设计院有限公司 制备金属单质的方法
CN105274576B (zh) * 2014-05-28 2017-12-22 奥勇新材料科技(上海)有限公司 一种熔盐介质中连续还原制备金属的方法
CN105779767B (zh) * 2016-03-18 2018-06-12 西北师范大学 利用混合盐熔融制备过渡金属单质的方法
CN107119316A (zh) * 2017-04-13 2017-09-01 孙旭阳 一种变温区液态床直接沉积生长石墨烯的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554531A (en) * 1978-10-17 1980-04-21 Kloeckner Humboldt Deutz Ag Method of desulfurizing and purifying melt metallsulfur compound
CN101616867A (zh) * 2007-01-02 2009-12-30 瑟米克尔Ip公司 碳热法
CN102041398A (zh) * 2010-11-19 2011-05-04 重庆大学 一种熔融还原碳热法制镁工艺及装置
CN110527833A (zh) * 2019-07-29 2019-12-03 孙旭阳 利用单原子碳还原制备单质材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006186A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818615A (zh) * 2022-11-23 2023-03-21 浙江工业大学 一种碳基材料二氧化碳捕获剂及其制备方法和应用

Also Published As

Publication number Publication date
CN110527833A (zh) 2019-12-03
CN113528821A (zh) 2021-10-22
CN110527833B (zh) 2021-10-01
CN113528821B (zh) 2023-05-02
US20220275476A1 (en) 2022-09-01
EP4006186A4 (en) 2024-03-13
EP4006186A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
WO2021018159A1 (zh) 利用单原子碳还原制备单质材料的方法
TWI472485B (zh) 利用酸洗以提供純化之矽晶體
She et al. Synthesis of ZnS nanoparticles by solid-liquid chemical reaction with ZnO and Na2S under ultrasonic
AU2017202621B2 (en) Process for pure carbon production, compositions, and methods thereof
CN108640117B (zh) 一种以石墨烯为模板熔盐法合成二维SiC超薄纳米结构及其制备方法
Kamali et al. Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure
Morito et al. Low-temperature purification of silicon by dissolution and solution growth in sodium solvent
US20070298536A1 (en) Single-crystal metal nanocrystals
CN110474030B (zh) 一种锂离子电池碳复合硅系负极材料制备方法
Zhou et al. Facile synthesis and shape evolution of highly symmetric 26-facet polyhedral microcrystals of Cu 2 O
CN109354012B (zh) 一种低成本大批量石墨烯的制备方法
WO2016117138A1 (ja) ニッケル粉の製造方法
EP1550636A1 (en) Process for producing high-purity silicon and apparatus
Wang et al. Synthesis of PbS microcrystals via a hydrothermal process
Wang et al. A general strategy for synthesis of silver dendrites by galvanic displacement under hydrothermal conditions
Zhou et al. Microwave-assisted synthesis of Sb2Se3 submicron rods, compared with those of Bi2Te3 and Sb2Te3
Tang et al. Controllable synthesis, characterization and growth mechanism of three-dimensional hierarchical PbWO 4 microstructures
JP5796696B1 (ja) ニッケル粉の製造方法
CN113184870A (zh) 一种宏量粒度可控LaB6粉体的制备方法
Berchmans et al. Electrosynthesis of samarium hexaboride using tetra borate melt
Zhu et al. Controlled hydrothermal synthesis of tri-wing tellurium nanoribbons and their template reaction
Li et al. Synthesis of CdSe micro/nanocrystals with controllable multiform morphologies and crystal phases
Cao et al. Rapid phosphine-free growth of diverse CdSe multipods via microwave irradiation route
CN111453748B (zh) 制备雪花状单晶高纯碳酸锂的沉锂结晶方法
TWI541195B (zh) 利用酸洗以提供純化之矽晶體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020848016

Country of ref document: EP

Effective date: 20220228