WO2021018108A1 - 皮下组织厚度测量方法、装置、设备及存储介质 - Google Patents

皮下组织厚度测量方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021018108A1
WO2021018108A1 PCT/CN2020/105022 CN2020105022W WO2021018108A1 WO 2021018108 A1 WO2021018108 A1 WO 2021018108A1 CN 2020105022 W CN2020105022 W CN 2020105022W WO 2021018108 A1 WO2021018108 A1 WO 2021018108A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcutaneous tissue
ultrasonic
thickness
echo signal
receiving time
Prior art date
Application number
PCT/CN2020/105022
Other languages
English (en)
French (fr)
Inventor
何琼
邵金华
孙锦
段后利
Original Assignee
无锡海斯凯尔医学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡海斯凯尔医学技术有限公司 filed Critical 无锡海斯凯尔医学技术有限公司
Priority to EP20847157.3A priority Critical patent/EP4008263A4/en
Priority to BR112022001734A priority patent/BR112022001734A2/pt
Priority to JP2022506602A priority patent/JP7249711B2/ja
Priority to US17/631,103 priority patent/US20220273259A1/en
Publication of WO2021018108A1 publication Critical patent/WO2021018108A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts

Definitions

  • the invention relates to the technical field of subcutaneous tissue thickness measurement, in particular to a subcutaneous tissue thickness measurement method, device, equipment and storage medium.
  • the administration of drugs to patients includes oral and injection.
  • the purpose of drug administration, patient health factors, etc. to determine drug administration.
  • the body area where the injection is performed can be determined based on the purpose of drug administration, patient health factors, and the like.
  • Insulin is most often injected subcutaneously, and is mainly injected into the abdomen, arms, thighs, buttocks, and other parts of the body.
  • the subcutaneous tissue is the loose connective tissue and fat tissue below the skin, which connects the skin and muscles, and is often called the superficial fascia.
  • the subcutaneous tissue is located between the skin and the muscle. A needle that is too short will cause insulin to be applied to the skin, and a needle that is too long will cause insulin to be applied to the muscle. Therefore, although it may be necessary to select an appropriate injection needle length according to the thickness of the subcutaneous tissue, the impossibility of observing the thickness of the subcutaneous tissue makes it difficult to achieve safe and effective insulin supply. How to accurately measure the thickness of the subcutaneous tissue has become an urgent technical problem.
  • the invention provides a method, device, equipment and storage medium for measuring the thickness of subcutaneous tissue, which are used for accurately measuring the thickness of subcutaneous tissue.
  • One aspect of the present invention is to provide a method for measuring the thickness of subcutaneous tissue, including:
  • the thickness of the subcutaneous tissue is calculated according to the receiving time of the ultrasound echo signal at the boundary of the subcutaneous tissue.
  • Another aspect of the present invention is to provide a device for measuring the thickness of subcutaneous tissue, including:
  • the measurement module is used to transmit ultrasonic detection waves inward from the skin surface to obtain ultrasonic echo signals of the ultrasonic detection waves;
  • the boundary determination module is configured to determine the receiving time of the ultrasound echo signal at the boundary of the subcutaneous tissue according to the ultrasound parameter value of the ultrasound echo signal and the characteristic parameter threshold value of the subcutaneous tissue;
  • the thickness calculation module is used to calculate the thickness of the subcutaneous tissue according to the receiving time of the ultrasonic echo signal of the boundary of the subcutaneous tissue.
  • Another aspect of the present invention is to provide a subcutaneous tissue thickness measurement device, including:
  • a memory a processor, and a computer program stored on the memory and running on the processor,
  • Another aspect of the present invention is to provide a computer-readable storage medium storing a computer program
  • the subcutaneous tissue thickness measurement method, device, equipment, and storage medium provided by the present invention transmit ultrasonic detection waves inward from the skin surface by using an ultrasonic detection device, and receive the ultrasonic echo signals of the ultrasonic detection waves; according to the ultrasonic echo
  • the ultrasonic parameter value of the signal and the characteristic parameter threshold value of the subcutaneous tissue determine the receiving time of the ultrasound echo signal of the subcutaneous tissue boundary; the thickness of the subcutaneous tissue is calculated according to the receiving time of the ultrasound echo signal of the subcutaneous tissue boundary, It can accurately measure the thickness of subcutaneous tissue.
  • FIG. 1 is a flowchart of a method for measuring thickness of subcutaneous tissue according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a method for measuring the thickness of subcutaneous tissue according to the second embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a subcutaneous tissue thickness measurement device provided by Embodiment 3 of the present invention.
  • Fig. 4 is a schematic structural diagram of a subcutaneous tissue thickness measurement device provided in Embodiment 5 of the present invention.
  • FIG. 1 is a flowchart of a method for measuring the thickness of subcutaneous tissue according to Embodiment 1 of the present invention. As shown in Figure 1, the specific steps of the method are as follows:
  • Step S101 Transmit an ultrasonic detection wave inward from the skin surface, and obtain an ultrasonic echo signal of the ultrasonic detection wave.
  • the ultrasonic detection device is used to transmit ultrasonic detection waves to the measured object, and at the same time receive ultrasonic echo signals generated by the ultrasonic detection waves through the subcutaneous tissue and the deep fascia layer.
  • the transmission time of the ultrasonic detection wave of the ultrasonic detection device and the ultrasonic echo signal generated by the received ultrasonic detection wave through the subcutaneous tissue and the deep fascia can be acquired.
  • Step S102 according to the ultrasonic parameter value of the ultrasonic echo signal and the characteristic parameter threshold value of the subcutaneous tissue, determine the receiving time of the ultrasonic echo signal at the boundary of the subcutaneous tissue.
  • the ultrasonic parameters include at least one of the following: scattering peak, scatterer density, scatterer distribution characteristics, reflection value and reflection value distribution, etc.
  • the ultrasonic parameters may also be other parameters that can reflect the different reflection or transmission characteristics of the subcutaneous tissue and the deep fascia layer to the ultrasonic detection wave, which is not specifically limited in this embodiment.
  • the characteristic parameter threshold of the subcutaneous tissue is used to indicate the reflection or transmission characteristics of the subcutaneous tissue, which can be set by a technician based on a large number of experimental results and experience, and this embodiment is not specifically limited here.
  • the ultrasonic echo signal that meets the characteristic parameter threshold of the subcutaneous tissue can be segmented according to the ultrasonic parameter value of the ultrasonic echo signal of the ultrasonic detection wave, and The ultrasonic echo signal that does not meet the characteristic parameter threshold of the subcutaneous tissue can obtain the ultrasonic echo signal of the subcutaneous tissue, and further determine the receiving time of the ultrasonic echo signal at the boundary of the subcutaneous tissue.
  • the distance from the surface of the ultrasonic detection device to the boundary of the subcutaneous tissue is the thickness of the subcutaneous tissue.
  • Step S103 Calculate the thickness of the subcutaneous tissue according to the receiving time of the ultrasound echo signal at the boundary of the subcutaneous tissue.
  • the time interval from the transmission of the ultrasonic test wave to the receiving of the ultrasonic echo signal at the subcutaneous tissue boundary can be calculated.
  • the time interval and the propagation speed of the ultrasonic echo signal in the subcutaneous tissue can be calculated to obtain the thickness of the subcutaneous tissue.
  • an ultrasonic detection device is used to transmit ultrasonic detection waves from the skin surface inward, and receive ultrasonic echo signals of the ultrasonic detection waves; determine the subcutaneous tissue according to the ultrasonic parameter value of the ultrasonic echo signal and the characteristic parameter threshold value of the subcutaneous tissue The receiving time of the ultrasonic echo signal of the boundary; according to the receiving time of the ultrasonic echo signal of the subcutaneous tissue boundary, the thickness of the subcutaneous tissue can be calculated, and the thickness of the subcutaneous tissue can be accurately measured.
  • Fig. 2 is a flowchart of a method for measuring the thickness of subcutaneous tissue provided in the second embodiment of the present invention.
  • this embodiment after calculating the thickness of the subcutaneous tissue according to the receiving time of the ultrasound echo signal at the boundary of the subcutaneous tissue, it also includes correcting the calculated thickness of the subcutaneous tissue.
  • the specific steps of the method are as follows:
  • Step S201 Transmit an ultrasonic detection wave inward from the skin surface, and receive an ultrasonic echo signal of the ultrasonic detection wave.
  • the ultrasonic detection device is used to transmit ultrasonic detection waves to the measured object, and at the same time receive ultrasonic echo signals generated by the ultrasonic detection waves through the subcutaneous tissue and the deep fascia layer.
  • Step S202 Determine the receiving time of the ultrasound echo signal at the boundary of the subcutaneous tissue according to the ultrasound parameter value of the ultrasound echo signal and the characteristic parameter threshold value of the subcutaneous tissue.
  • the ultrasonic parameter is any one of the following: scattering peak, scatterer density, scatterer distribution characteristics, reflection value and reflection value distribution, etc.
  • the ultrasonic parameters may also be other parameters that can reflect the different reflection or transmission characteristics of the subcutaneous tissue and the deep fascia layer to the ultrasonic detection wave, which is not specifically limited in this embodiment.
  • the characteristic parameter threshold value of the subcutaneous tissue includes the first threshold value, which is used to indicate the reflection or transmission characteristics of the subcutaneous tissue, which can be set by a technician based on a large number of experimental results and experience, and this embodiment is not specifically limited here. .
  • the ultrasonic echo signal that meets the characteristic parameter threshold of the subcutaneous tissue can be segmented according to the ultrasonic parameter value of the ultrasonic echo signal of the ultrasonic detection wave, and The ultrasonic echo signal that does not meet the characteristic parameter threshold of the subcutaneous tissue can obtain the ultrasonic echo signal of the subcutaneous tissue, and further determine the receiving time of the ultrasonic echo signal at the boundary of the subcutaneous tissue.
  • the distance from the surface of the ultrasonic detection device to the boundary of the subcutaneous tissue is the thickness of the subcutaneous tissue.
  • the receiving time of the ultrasonic echo signal at the boundary of the subcutaneous tissue is determined, which can be implemented in the following steps:
  • Step 1 After transmitting the ultrasonic detection wave, starting from the first received ultrasonic echo signal, sequentially calculate the first average value of the ultrasonic parameter values of the consecutive N ultrasonic echo signals.
  • step 2 is executed cyclically until the first average value of the ultrasound parameter values of a group of consecutive N ultrasound echo signals is obtained that is greater than the first threshold value. If the first average value is greater than the first threshold, step three is executed.
  • Step 2 Obtain the next group of continuous N ultrasonic echo signals, and calculate the first mean value of the ultrasonic parameter values of this group of continuous N ultrasonic echo signals.
  • Step 3 If the first average value is greater than the first threshold, the N ultrasonic echo signals are used as the first group of signals, and the second average value of the ultrasonic parameter values of the consecutive N ultrasonic echo signals after the first group of signals is calculated.
  • step two If the second average value is greater than or equal to the second threshold value, jump to step two to re-acquire the next set of N consecutive ultrasound echo signals.
  • Step 4 If the second average value is less than the second threshold, determine the receiving time of the last ultrasonic echo signal in the first group of signals as the first receiving time, and the first ultrasonic echo signal after the first group of signals
  • the receiving time is regarded as the second receiving time; the intermediate time between the first receiving time and the second receiving time is determined as the receiving time of the ultrasound echo signal of the subcutaneous tissue boundary.
  • N is a positive integer
  • the value of N can be set by technicians based on a large number of experimental results and experience.
  • the value of N can be set to a value in the interval [1, 20]. This embodiment does not Make specific restrictions.
  • N can be 5, starting from the skin surface where the ultrasonic detection device is located, if the average value of the scattering peak value of the ultrasonic echo signal received at 5 consecutive times is greater than the first threshold, and 5 consecutive times after these 5 times
  • the average value of the scattering peak value of the ultrasonic echo signal received at a time is less than the second threshold, then the middle time between the last time in the previous group of 5 consecutive times and the first time in the next group of 5 consecutive times is regarded as the subcutaneous tissue
  • the receiving time of the ultrasonic echo signal of the boundary can determine the boundary of the subcutaneous tissue.
  • the distance from the surface of the skin where the ultrasonic detection device is located to the boundary of the subcutaneous tissue is the thickness of the subcutaneous tissue.
  • the first threshold and the second threshold can be set by a technician based on a large amount of experimental results and experience, and this embodiment does not specifically limit it here.
  • Step S203 Calculate the thickness of the subcutaneous tissue according to the receiving time of the ultrasound echo signal at the boundary of the subcutaneous tissue.
  • this step can be implemented in the following manner:
  • Step S204 adding the calculated thickness of the subcutaneous tissue to the length of the blind zone measured by the ultrasonic detection device, and correcting the calculated thickness of the subcutaneous tissue.
  • the ultrasonic detection device Because the ultrasonic detection device has a certain measurement blind zone during measurement, it will bring errors to the measurement of the thickness of the subcutaneous tissue.
  • the calculated thickness of the subcutaneous tissue can be corrected according to the length of the blind zone measured by the ultrasonic detection device.
  • the sum of the thickness of the subcutaneous tissue and the length of the blind zone measured by the ultrasonic detection device is calculated, and the sum of the thickness of the subcutaneous tissue and the length of the blind zone measured by the ultrasonic detection device is taken as the modified subcutaneous tissue thickness value.
  • Step S205 Subtract the length of the matching layer of the ultrasonic detection device from the calculated thickness of the subcutaneous tissue to correct the calculated thickness of the subcutaneous tissue.
  • the ultrasonic detection device includes a piezoelectric layer in which a piezoelectric material vibrates to perform conversion between an electric signal and an acoustic signal.
  • the matching layer reduces the difference in acoustic impedance between the piezoelectric layer and the object to maximize the transmission of ultrasonic waves generated from the piezoelectric layer to the object.
  • the matching layer of the ultrasonic detection device will bring errors to the measurement of the thickness of the subcutaneous tissue.
  • the calculated thickness of the subcutaneous tissue can be corrected according to the length of the matching layer of the ultrasonic detection device.
  • the thickness of the currently obtained subcutaneous tissue calculate the difference of the thickness of the subcutaneous tissue minus the length of the matching layer of the ultrasonic detection device, and use the thickness of the subcutaneous tissue minus the length of the matching layer of the ultrasonic detection device as the correction The thickness value of the posterior subcutaneous tissue.
  • Step S206 Add the calculated thickness of the subcutaneous tissue to the pressing depth of the ultrasonic detection device on the skin surface to correct the calculated thickness of the subcutaneous tissue.
  • the ultrasonic detection device When the ultrasonic detection device is used for measurement, the ultrasonic detection device will press the skin surface, causing the skin to dent inward to a certain depth under pressure (ie, the pressing depth), which will cause errors in the measurement of the thickness of the subcutaneous tissue.
  • the calculated thickness of the subcutaneous tissue can be corrected according to the pressing depth of the ultrasonic detection device on the skin surface.
  • the calculated thickness of the subcutaneous tissue is added to the pressing depth of the ultrasonic detection device to correct the calculated thickness of the subcutaneous tissue, which can be implemented in the following manner:
  • obtaining the pressing depth of the ultrasonic detection device on the skin surface can be achieved in the following manner:
  • the pressing depth of the ultrasonic detection device on the skin surface can be determined by the measurement information of sensors such as pressure sensor, displacement sensor, or position sensor; or according to the collection during the period from when the ultrasonic detection device is placed on the skin surface to when the pressure is stabilized
  • the block matching methods such as cross-correlation and auto-correlation or filtering methods, the cumulative deformation degree of the tissue is calculated to obtain the compression depth.
  • the method for obtaining the pressing depth of the ultrasonic detection device on the skin surface in this embodiment can also be implemented by any method in the prior art for determining the pressing depth of the ultrasonic detection device during the measurement process. This embodiment will not be specifically described here. limited.
  • the calculated thickness of the subcutaneous tissue is corrected according to the content to be corrected by the ultrasonic detection device.
  • the ultrasonic detection device may be an ultrasonic probe, considering the measurement blind area formed by the shape of the ultrasonic probe, the matching layer of the ultrasonic probe, and so on.
  • the thickness value of the calculated subcutaneous tissue can also be calculated according to one or more correction values of the length of the blind zone measured by the ultrasonic detection device, the length of the matching layer, and the pressing depth of the ultrasonic detection device on the skin surface during measurement. Make corrections to improve the accuracy of the final measured thickness of the subcutaneous tissue.
  • the thickness of the subcutaneous tissue can also be corrected according to other factors that affect the thickness of the subcutaneous tissue. This embodiment does not make specific limitations here.
  • the calculated thickness of the subcutaneous tissue is corrected by using at least two correction values of the length of the blind zone, the length of the matching layer, and the pressing depth of the ultrasonic detection device on the skin surface during the measurement, one correction can be completed. Correction of at least two correction values; or as shown in the above steps S204-S206, the calculated thickness of the subcutaneous tissue is corrected multiple times for different correction values. In this case, since each correction value is used for correction The process is independent of each other, and the order of correcting each correction value does not need to be limited. In this embodiment, the above steps S204-S206 are an exemplary description. In other embodiments, other methods can also be used for correction. This embodiment There is no specific limitation here.
  • the ultrasonic detection wave after transmitting the ultrasonic detection wave, starting from the first received ultrasonic echo signal, sequentially calculate the first average value of the ultrasonic parameter values of consecutive N ultrasonic echo signals, where N is a positive integer; If the first average value is greater than the first threshold, the N ultrasonic echo signals are taken as the first group of signals, and the second average value of the ultrasonic parameter values of the consecutive N ultrasonic echo signals after the first group of signals is calculated; if the second average value Less than the second threshold, the first receiving time of the last ultrasonic echo signal in the first group of signals and the second receiving time of the first ultrasonic echo signal after the first group of signals are determined; the first receiving time The intermediate time between the second receiving time and the second receiving time is determined as the receiving time of the ultrasound echo signal of the subcutaneous tissue boundary; the receiving time of the ultrasound echo signal of the subcutaneous tissue boundary can be accurately determined, which provides a basis for obtaining accurate subcutaneous tissue thickness; , By correcting the obtained subcutaneous tissue thickness according to the measurement blind
  • Fig. 3 is a schematic structural diagram of a subcutaneous tissue thickness measuring device provided in the third embodiment of the present invention.
  • the subcutaneous tissue thickness measurement device provided in the embodiment of the present invention can execute the processing procedure provided in the embodiment of the subcutaneous tissue thickness measurement method.
  • the subcutaneous tissue thickness measurement device 30 includes a measurement module 301, a boundary determination module 302 and a thickness calculation module 303.
  • the measurement module 301 is used to transmit ultrasonic detection waves inward from the skin surface to obtain ultrasonic echo signals of the ultrasonic detection waves.
  • the boundary determination module 302 is configured to determine the receiving time of the ultrasound echo signal at the boundary of the subcutaneous tissue according to the ultrasound parameter value of the ultrasound echo signal and the characteristic parameter threshold value of the subcutaneous tissue.
  • the thickness calculation module 303 is configured to calculate the thickness of the subcutaneous tissue according to the receiving time of the ultrasound echo signal at the boundary of the subcutaneous tissue.
  • the device provided in the embodiment of the present invention may be specifically used to execute the method embodiment provided in the first embodiment above, and the specific functions are not repeated here.
  • an ultrasonic detection device is used to transmit ultrasonic detection waves from the skin surface inward, and receive ultrasonic echo signals of the ultrasonic detection waves; determine the subcutaneous tissue according to the ultrasonic parameter value of the ultrasonic echo signal and the characteristic parameter threshold value of the subcutaneous tissue The receiving time of the ultrasonic echo signal of the boundary; according to the receiving time of the ultrasonic echo signal of the subcutaneous tissue boundary, the thickness of the subcutaneous tissue can be calculated, and the thickness of the subcutaneous tissue can be accurately measured.
  • the ultrasonic parameter is any one of the following: scattering peak, scatter density, scatter distribution characteristics, reflection value and reflection value distribution.
  • the boundary determination module is also used to:
  • the first mean value of the ultrasonic parameter values of the consecutive N ultrasonic echo signals is sequentially calculated, where N is a positive integer; if the first mean value is greater than The first threshold, the N ultrasonic echo signals are used as the first group of signals, and the second average value of the ultrasonic parameter values of the consecutive N ultrasonic echo signals after the first group of signals is calculated; if the second average value is less than the second threshold, Then determine the receiving time of the last ultrasonic echo signal in the first group of signals as the first receiving time, and the receiving time of the first ultrasonic echo signal after the first group of signals as the second receiving time; The intermediate time between the time and the second receiving time is determined as the receiving time of the ultrasound echo signal of the subcutaneous tissue boundary.
  • the thickness calculation module is also used to:
  • the thickness calculation module is also used to:
  • the calculated thickness of the subcutaneous tissue is added to the measurement blind zone length of the ultrasonic detection device to correct the calculated thickness of the subcutaneous tissue.
  • the thickness calculation module is also used to:
  • the calculated thickness of the subcutaneous tissue is subtracted from the matching layer length of the ultrasonic detection device to correct the calculated thickness of the subcutaneous tissue.
  • the thickness calculation module is also used to:
  • the device provided in the embodiment of the present invention may be specifically used to execute the method embodiment provided in the second embodiment above, and the specific functions are not repeated here.
  • the ultrasonic detection wave after transmitting the ultrasonic detection wave, starting from the first received ultrasonic echo signal, sequentially calculate the first average value of the ultrasonic parameter values of consecutive N ultrasonic echo signals, where N is a positive integer; If the first average value is greater than the first threshold, the N ultrasonic echo signals are taken as the first group of signals, and the second average value of the ultrasonic parameter values of the consecutive N ultrasonic echo signals after the first group of signals is calculated; if the second average value Less than the second threshold, the receiving time of the last ultrasonic echo signal in the first group of signals is determined as the first receiving time, and the receiving time of the first ultrasonic echo signal after the first group of signals is determined as the second receiving time ; Determine the intermediate moment between the first receiving time and the second receiving time as the receiving time of the ultrasound echo signal of the subcutaneous tissue boundary; can accurately determine the receiving time of the ultrasound echo signal of the subcutaneous tissue boundary, in order to obtain accurate subcutaneous tissue
  • the thickness provides the basis; in addition, the thickness of the subcutaneous
  • Fig. 4 is a schematic structural diagram of a subcutaneous tissue thickness measurement device provided in Embodiment 5 of the present invention.
  • the subcutaneous tissue thickness measurement device 40 includes a processor 401, a memory 402, and a computer program stored on the memory 402 and executable by the processor 401.
  • the processor 401 implements the subcutaneous tissue thickness measurement method provided by any of the foregoing method embodiments when executing a computer program stored on the memory 402.
  • an ultrasonic detection device is used to transmit ultrasonic detection waves from the skin surface inward, and receive ultrasonic echo signals of the ultrasonic detection waves; determine the subcutaneous tissue according to the ultrasonic parameter value of the ultrasonic echo signal and the characteristic parameter threshold value of the subcutaneous tissue The receiving time of the ultrasound echo signal of the boundary; the thickness of the subcutaneous tissue is calculated according to the receiving time of the ultrasound echo signal of the subcutaneous tissue boundary, and the thickness of the subcutaneous tissue can be accurately measured.
  • an embodiment of the present invention also provides a computer-readable storage medium that stores a computer program that, when executed by a processor, implements the subcutaneous tissue thickness measurement method provided by any of the foregoing method embodiments.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute the method described in the various embodiments of the present invention. Part of the steps.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种皮下组织厚度测量方法、装置、设备及存储介质。利用超声检测装置从皮肤表面向内发射超声检测波,接收超声检测波的超声回波信号(S101);根据检测波的超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻(S102);根据皮下组织边界的超声回波信号的接收时刻,计算皮下组织的厚度(S103)。该方法能够准确地测量皮下组织的厚度。

Description

皮下组织厚度测量方法、装置、设备及存储介质 技术领域
本发明涉及皮下组织厚度测量技术领域,尤其涉及一种皮下组织厚度测量方法、装置、设备及存储介质。
背景技术
对患者的药物的施用包括口服和注射。考虑药物施用的目的、患者健康因素等来确定药物施用。在注射的情况下,可基于药物施用的目的、患者健康因素等来确定执行注射的身体区域。
糖尿病患者需要周期性的胰岛素的施用,通过注射来执行胰岛素的施用。胰岛素最常被皮下注射,并且被主要注射到腹部、手臂、大腿、臀部等以及身体的其他部位。
皮下组织是皮肤以下的疏松结缔组织和脂肪组织,连接皮肤与肌肉,常称为浅筋膜。皮下组织位于皮肤和肌肉之间,过于短的注射针会导致胰岛素被施用到皮肤,而过长的注射针会导致胰岛素被施用到肌肉。因此,尽管根据皮下组织的厚度来选择合适的注射针长度可能是必须的,但是观察皮下组织的厚度的不可能性使得难以实现安全有效的胰岛素的供给。如何准确地测量皮下组织的厚度成为一个亟需解决的技术问题。
发明内容
本发明提供一种皮下组织厚度测量方法、装置、设备及存储介质,用以准确地测量皮下组织的厚度。
本发明的一个方面是提供一种皮下组织厚度测量方法,包括:
从皮肤表面向内发射超声检测波,获取所述超声检测波的超声回波信号;
根据所述超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻;
根据所述皮下组织边界的超声回波信号的接收时刻,计算所述皮下组织的厚度。
本发明的另一个方面是提供一种皮下组织厚度测量装置,包括:
测量模块,用于从皮肤表面向内发射超声检测波,获取所述超声检测波的超声回波信号;
边界确定模块,用于根据所述超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻;
厚度计算模块,用于根据所述皮下组织边界的超声回波信号的接收时刻,计算所述皮下组织的厚度。
本发明的另一个方面是提供一种皮下组织厚度测量设备,包括:
存储器,处理器,以及存储在所述存储器上并可在所述处理器上运行的计算机程序,
所述处理器运行所述计算机程序时实现上述所述的皮下组织厚度测量方法。
本发明的另一个方面是提供一种计算机可读存储介质,存储有计算机程序,
所述计算机程序被处理器执行时实现上述所述的皮下组织厚度测量方法。
本发明提供的皮下组织厚度测量方法、装置、设备及存储介质,通过利用超声检测装置从皮肤表面向内发射超声检测波,接收所述超声检测波的超声回波信号;根据所述超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻;根据所述皮下组织边界的超声回波信号的接收时刻,计算所述皮下组织的厚度,能够准确地测量皮下组织的厚度。
附图说明
图1为本发明实施例一提供的皮下组织厚度测量方法流程图;
图2为本发明实施例二提供的皮下组织厚度测量方法流程图;
图3为本发明实施例三提供的皮下组织厚度测量装置的结构示意图;
图4为本发明实施例五提供的皮下组织厚度测量设备的结构示意图。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
对本发明所涉及的术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在以下各实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本发明的实施例进行描述。
实施例一
图1为本发明实施例一提供的皮下组织厚度测量方法流程图。如图1所示,该方法具体步骤如下:
步骤S101、从皮肤表面向内发射超声检测波,获取超声检测波的超声回波信号。
超声检测装置用于向被测对象发射超声检测波,同时接收该超声检测波经由皮下组织以及深筋膜层所产生的超声回波信号。
本实施例中,可以获取超声检测装置的超声检测波的发射时刻以及接收到的该超声检测波经由皮下组织以及深筋膜层所产生的超声回波信号。
步骤S102、根据超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻。
其中,超声参数包括以下至少一种:散射峰值、散射子密度、散射子分布特征、反射值和反射值分布,等。另外,超声参数还可以是其他能够反映皮下组织和深筋膜层对超声检测波的不同反射或透射特性的参数,本实施例此处不做具体限定。
本实施例中,皮下组织的特性参数阈值用于表示皮下组织的反射或透射特性,可以由技术人员根据大量实验结果和经验进行设定,本实施例此处不 做具体限定。
由于皮下组织和深筋膜层对超声检测波的反射或透射特性不同,可以根据超声检测波的超声回波信号的超声参数值,分割出满足皮下组织的特性参数阈值的超声回波信号,以及不满足皮下组织的特性参数阈值的超声回波信号,从而可以得到皮下组织的超声回波信号,并可以进一步确定皮下组织边界的超声回波信号的接收时刻。超声检测装置表面到皮下组织边界的距离即为皮下组织厚度。
步骤S103、根据皮下组织边界的超声回波信号的接收时刻,计算皮下组织的厚度。
根据皮下组织边界的超声回波信号的接收时刻,以及超声检测装置发射超声检测波的发射时刻,可以计算得到从发射超声检测波至接收到皮下组织边界的超声回波信号经过的时间间隔,根据时间间隔以及超声回波信号在皮下组织内的传播速度,可以计算得到皮下组织的厚度值。
本发明实施例通过利用超声检测装置从皮肤表面向内发射超声检测波,接收超声检测波的超声回波信号;根据超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻;根据皮下组织边界的超声回波信号的接收时刻,计算皮下组织的厚度,能够准确地测量皮下组织的厚度。
实施例二
图2为本发明实施例二提供的皮下组织厚度测量方法流程图。在上述实施例一的基础上,本实施例中,在根据皮下组织边界的超声回波信号的接收时刻,计算皮下组织的厚度之后,还包括对计算得到皮下组织的厚度进行修正。如图2所示,该方法具体步骤如下:
步骤S201、从皮肤表面向内发射超声检测波,接收超声检测波的超声回波信号。
超声检测装置用于向被测对象发射超声检测波,同时接收该超声检测波经由皮下组织以及深筋膜层所产生的超声回波信号。
步骤S202、根据超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻。
其中,超声参数为以下任意一种:散射峰值、散射子密度、散射子分布特征、反射值和反射值分布,等。另外,超声参数还可以是其他能够反映皮下组织和深筋膜层对超声检测波的不同反射或透射特性的参数,本实施例此处不做具体限定。
本实施例中,皮下组织的特性参数阈值包括第一阈值,用于表示皮下组织的反射或透射特性,可以由技术人员根据大量实验结果和经验进行设定,本实施例此处不做具体限定。
由于皮下组织和深筋膜层对超声检测波的反射或透射特性不同,可以根据超声检测波的超声回波信号的超声参数值,分割出满足皮下组织的特性参数阈值的超声回波信号,以及不满足皮下组织的特性参数阈值的超声回波信号,从而可以得到皮下组织的超声回波信号,并可以进一步确定皮下组织边界的超声回波信号的接收时刻。超声检测装置表面到皮下组织边界的距离即为皮下组织厚度。
本实施例中,根据超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻,具体可以采用如下步骤实现:
步骤一、在发射超声检测波之后,从接收到的第一个超声回波信号开始,依次计算连续的N个超声回波信号的超声参数值的第一均值。
若第一均值小于或者等于第一阈值,则循环执行步骤二,直至获取到一组连续的N个超声回波信号的超声参数值的第一均值大于第一阈值。若第一均值大于第一阈值,则执行步骤三。
步骤二、获取下一组连续的N个超声回波信号,计算这一组连续的N个超声回波信号的超声参数值的第一均值。
步骤三、若第一均值大于第一阈值,则将N个超声回波信号作为第一组信号,计算第一组信号之后的连续N个超声回波信号的超声参数值的第二均值。
若第二均值大于或者等于第二阈值,则跳转执行步骤二,重新获取下一组连续的N个超声回波信号。
步骤四、若第二均值小于第二阈值,则确定第一组信号中的最后一个超声回波信号的接收时刻作为第一接收时刻,以及第一组信号之后的第一个超 声回波信号的接收时刻作为第二接收时刻;将第一接收时刻和第二接收时刻的中间时刻确定为皮下组织边界的超声回波信号的接收时刻。
其中,N为正整数,N的值可以由技术人员根据大量实验结果和经验进行设定,例如,N的值可以设定为在区间[1,20]内取值,本实施例此处不做具体限定。
例如,N可以为5,从超声检测装置所在的皮肤表面算起,如果连续的5个时刻接收的超声回波信号的散射峰值的均值大于第一阈值,且这5个时刻之后的连续5个时刻接收的超声回波信号的散射峰值的均值小于第二阈值,那么将前一组连续5个时刻中最后一个时刻与后一组连续5个时刻中第一个时刻的中间时刻,作为皮下组织边界的超声回波信号的接收时刻,从而可以确定皮下组织的边界,超声检测装置所在的皮肤表面到皮下组织边界的距离即为皮下组织厚度。
另外,第一阈值和第二阈值可以由技术人员根据大量实验结果和经验进行设定,本实施例此处不做具体限定。
步骤S203、根据皮下组织边界的超声回波信号的接收时刻,计算皮下组织的厚度。
本实施例中,该步骤具体可以采用如下方式实现:
根据超声检测波的发射时刻,以及皮下组织边界的超声回波信号的接收时刻,确定皮下组织边界的超声回波信号的传播时长;根据皮下组织边界的超声回波信号的传播时长,以及超声回波信号在皮下组织内的传播速度,计算得到皮下组织的厚度。
步骤S204、将计算得到的皮下组织的厚度加上超声检测装置的测量盲区长度,对计算得到皮下组织的厚度进行修正。
由于超声检测装置在进行测量时,有一定的测量盲区,会给皮下组织的厚度的测量带来误差。本实施例中,可以根据超声检测装置的测量盲区的长度,对计算得到皮下组织的厚度进行修正。
具体的,针对当前得到皮下组织的厚度,计算皮下组织的厚度与超声检测装置的测量盲区长度之和,将皮下组织的厚度与超声检测装置的测量盲区长度之和作为修正后的皮下组织的厚度值。
步骤S205、将计算得到的皮下组织的厚度减去超声检测装置的匹配层长 度,对计算得到皮下组织的厚度进行修正。
超声检测装置包括压电层,在压电层中,压电材料振动以执行电信号和声信号之间的转换。匹配层减少压电层和对象之间的声阻抗差异,以将从压电层产生的超声波最大化地发送到对象。
由于超声检测装置的匹配层会给皮下组织的厚度的测量带来误差。本实施例中,可以根据超声检测装置的匹配层长度,对计算得到皮下组织的厚度进行修正。
具体的,针对当前得到皮下组织的厚度,计算皮下组织的厚度减去超声检测装置的匹配层长度后的差值,将皮下组织的厚度减去超声检测装置的匹配层长度后的差值作为修正后的皮下组织的厚度值。
步骤S206、将计算得到的皮下组织的厚度加上超声检测装置在皮肤表面的按压深度,对计算得到皮下组织的厚度进行修正。
由于在使用超声检测装置在进行测量时,超声检测装置会按压皮肤表面,导致皮肤在压力作用下向内凹陷一定的深度(即为按压深度),会给皮下组织的厚度的测量带来误差。本实施例中,可以根据超声检测装置在皮肤表面的按压深度,对计算得到皮下组织的厚度进行修正。
具体的,将计算得到的皮下组织的厚度加上超声检测装置的按压深度,对计算得到皮下组织的厚度进行修正,具体可以采用如下方式实现:
获取超声检测装置在皮肤表面的按压深度;计算皮下组织的厚度与按压深度之和,将皮下组织的厚度与按压深度之和作为修正后的皮下组织的厚度。
进一步地,获取超声检测装置在皮肤表面的按压深度可以采用如下方式实现:
可以通过压力传感器、位移传感器、或者位置传感器等传感器的测量信息确定超声检测装置在皮肤表面的按压深度;或者,根据从超声检测装置放在皮肤表面时开始到按压稳定后的这一段时间内采集的数据,根据互相关、自相关等块匹配方法或滤波等方法计算出组织的累计形变程度,得到按压深度。
另外,本实施例中获取超声检测装置在皮肤表面的按压深度的方法还可以采用现有技术中任意一种确定测量过程中超声检测装置的按压深度的方法实现,本实施例此处不做具体限定。
在计算得到皮下组织的厚度之后,根据超声检测装置需要修正的内容,对计算得到的皮下组织厚度进行修正。例如,超声检测装置可以是超声探头,考虑超声探头形态形成的测量盲区,超声探头的匹配层,等等。
本实施例中,还可以根据超声检测装置的测量盲区长度、匹配层长度、以及测量时超声检测装置在皮肤表面的按压深度中的一个或者多个修正值,对计算得到的皮下组织的厚度值进行修正,以提高最终测量得到的皮下组织的厚度的准确性。另外,除超声检测装置的测量盲区长度、匹配层长度、以及测量时超声检测装置在皮肤表面的按压深度之外,还可以根据其他对皮下组织厚度测量有影响的因素,对皮下组织厚度进行修正,本实施例此处不做具体限定。
需要说明的是,对计算得到的皮下组织的厚度采用测量盲区长度、匹配层长度、以及测量时超声检测装置在皮肤表面的按压深度中的至少两个修正值进行修正时,可以进行一次修正完成至少两个修正值的修正;或者如上述步骤S204-S206所示,针对不同的修正值,对计算得到的皮下组织的厚度进行多次修正,这种情况下,由于采用每种修正值进行修正的过程是相互独立,对各个修正值进行修正的顺序无需限定,本实施例中上述步骤S204-S206为一示例性地说明,在其他实施例中,还可以采用其他方式进行修正,本实施例此处不做具体限定。本发明实施例通过在发射超声检测波之后,从接收到的第一个超声回波信号开始,依次计算连续的N个超声回波信号的超声参数值的第一均值,其中N为正整数;若第一均值大于第一阈值,则将N个超声回波信号作为第一组信号,计算第一组信号之后的连续N个超声回波信号的超声参数值的第二均值;若第二均值小于第二阈值,则确定第一组信号中的最后一个超声回波信号的第一接收时刻,以及第一组信号之后的第一个超声回波信号的第二接收时刻;将第一接收时刻和第二接收时刻的中间时刻确定为皮下组织边界的超声回波信号的接收时刻;能够准确地确定皮下组织边界的超声回波信号的接收时刻,为得到准确的皮下组织厚度提供了基础;另外,通过根据超声检测装置的测量盲区长度、匹配层长度以及测量时在皮肤表面的按压深度,对得到的皮下组织厚度进行修正,提高了皮下组织厚度测量的准确性。
实施例三
图3为本发明实施例三提供的皮下组织厚度测量装置的结构示意图。本发明实施例提供的皮下组织厚度测量装置可以执行皮下组织厚度测量方法实施例提供的处理流程。如图3所示,该皮下组织厚度测量装置30包括:测量模块301,边界确定模块302和厚度计算模块303。
具体地,测量模块301用于从皮肤表面向内发射超声检测波,获取超声检测波的超声回波信号。
边界确定模块302用于根据超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻。
厚度计算模块303用于根据皮下组织边界的超声回波信号的接收时刻,计算皮下组织的厚度。
本发明实施例提供的装置可以具体用于执行上述实施例一所提供的方法实施例,具体功能此处不再赘述。
本发明实施例通过利用超声检测装置从皮肤表面向内发射超声检测波,接收超声检测波的超声回波信号;根据超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻;根据皮下组织边界的超声回波信号的接收时刻,计算皮下组织的厚度,能够准确地测量皮下组织的厚度。
实施例四
在上述实施例三的基础上,本实施例中,超声参数为以下任意一种:散射峰值、散射子密度、散射子分布特征、反射值和反射值分布。
可选的,边界确定模块还用于:
在发射超声检测波之后,从接收到的第一个超声回波信号开始,依次计算连续的N个超声回波信号的超声参数值的第一均值,其中N为正整数;若第一均值大于第一阈值,则将N个超声回波信号作为第一组信号,计算第一组信号之后的连续N个超声回波信号的超声参数值的第二均值;若第二均值小于第二阈值,则确定第一组信号中的最后一个超声回波信号的接收时刻作为第一接收时刻,以及第一组信号之后的第一个超声回波信号的接收时刻作为第二接收时刻;将第一接收时刻和第二接收时刻的中间时刻确定为皮下组 织边界的超声回波信号的接收时刻。
可选的,厚度计算模块还用于:
根据超声检测波的发射时刻,以及皮下组织边界的超声回波信号的接收时刻,确定皮下组织边界的超声回波信号的传播时长;根据皮下组织边界的超声回波信号的传播时长,以及超声回波信号在皮下组织内的传播速度,计算得到皮下组织的厚度。
可选的,厚度计算模块还用于:
将计算得到的皮下组织的厚度加上超声检测装置的测量盲区长度,对计算得到皮下组织的厚度进行修正。
可选的,厚度计算模块还用于:
将计算得到的皮下组织的厚度减去超声检测装置的匹配层长度,对计算得到皮下组织的厚度进行修正。
可选的,厚度计算模块还用于:
获取超声检测装置在皮肤表面的按压深度;将计算得到的皮下组织的厚度加上按压深度,对计算得到皮下组织的厚度进行修正。
本发明实施例提供的装置可以具体用于执行上述实施例二所提供的方法实施例,具体功能此处不再赘述。
本发明实施例通过在发射超声检测波之后,从接收到的第一个超声回波信号开始,依次计算连续的N个超声回波信号的超声参数值的第一均值,其中N为正整数;若第一均值大于第一阈值,则将N个超声回波信号作为第一组信号,计算第一组信号之后的连续N个超声回波信号的超声参数值的第二均值;若第二均值小于第二阈值,则确定第一组信号中的最后一个超声回波信号的接收时刻作为第一接收时刻,以及第一组信号之后的第一个超声回波信号的接收时刻作为第二接收时刻;将第一接收时刻和第二接收时刻的中间时刻确定为皮下组织边界的超声回波信号的接收时刻;能够准确地确定皮下组织边界的超声回波信号的接收时刻,为得到准确的皮下组织厚度提供了基础;另外,通过根据超声检测装置的测量盲区长度、匹配层长度以及测量时在皮肤表面的按压深度,对得到的皮下组织厚度进行修正,提高了皮下组织厚度测量的准确性。
实施例五
图4为本发明实施例五提供的皮下组织厚度测量设备的结构示意图。如图4所示,该皮下组织厚度测量设备40包括:处理器401,存储器402,以及存储在存储器402上并可由处理器401执行的计算机程序。
处理器401在执行存储在存储器402上的计算机程序时实现上述任一方法实施例提供的皮下组织厚度测量方法。
本发明实施例通过利用超声检测装置从皮肤表面向内发射超声检测波,接收超声检测波的超声回波信号;根据超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻;根据皮下组织边界的超声回波信号的接收时刻,计算所述皮下组织的厚度,能够准确地测量皮下组织的厚度。
另外,本发明实施例还提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述任一方法实施例提供的皮下组织厚度测量方法。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机 可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本发明旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求书指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求书来限制。

Claims (16)

  1. 一种皮下组织厚度测量方法,其特征在于,包括:
    从皮肤表面向内发射超声检测波,获取所述超声检测波的超声回波信号;
    根据所述超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻;
    根据所述皮下组织边界的超声回波信号的接收时刻,计算所述皮下组织的厚度。
  2. 根据权利要求1所述的方法,其特征在于,所述超声参数包括以下至少一种:
    散射峰值、散射子密度、散射子分布特征、反射值和反射值分布。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻,包括:
    在发射所述超声检测波之后,从接收到的第一个超声回波信号开始,依次计算连续的N个超声回波信号的超声参数值的第一均值,其中N为正整数;
    若所述第一均值大于第一阈值,则将所述N个超声回波信号作为第一组信号,计算所述第一组信号之后的连续N个超声回波信号的超声参数值的第二均值;
    若所述第二均值小于第二阈值,则确定所述第一组信号中的最后一个超声回波信号的接收时刻作为第一接收时刻,以及所述第一组信号之后的第一个超声回波信号的接收时刻作为第二接收时刻;
    将所述第一接收时刻和所述第二接收时刻的中间时刻确定为所述皮下组织边界的超声回波信号的接收时刻。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述皮下组织边界的超声回波信号的接收时刻,计算所述皮下组织的厚度,包括:
    根据所述超声检测波的发射时刻,以及所述皮下组织边界的超声回波信号的接收时刻,确定所述皮下组织边界的超声回波信号的传播时长;
    根据所述皮下组织边界的超声回波信号的传播时长,以及所述超声回波信号在皮下组织内的传播速度,计算得到所述皮下组织的厚度。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述根据所述皮 下组织边界的超声回波信号的接收时刻,计算所述皮下组织的厚度之后,还包括:
    将计算得到的皮下组织的厚度加上超声检测装置的测量盲区长度,对计算得到皮下组织的厚度进行修正。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述根据所述皮下组织边界的超声回波信号的接收时刻,计算所述皮下组织的厚度之后,还包括:
    将计算得到的皮下组织的厚度减去超声检测装置的匹配层长度,对计算得到皮下组织的厚度进行修正。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述根据所述皮下组织边界的超声回波信号的接收时刻,计算所述皮下组织的厚度之后,还包括:
    获取超声检测装置在皮肤表面的按压深度;
    将计算得到的皮下组织的厚度加上所述按压深度,对计算得到皮下组织的厚度进行修正。
  8. 一种皮下组织厚度测量装置,其特征在于,包括:
    测量模块,用于从皮肤表面向内发射超声检测波,获取所述超声检测波的超声回波信号;
    边界确定模块,用于根据所述超声回波信号的超声参数值,以及皮下组织的特性参数阈值,确定皮下组织边界的超声回波信号的接收时刻;
    厚度计算模块,用于根据所述皮下组织边界的超声回波信号的接收时刻,计算所述皮下组织的厚度。
  9. 根据权利要求8所述的装置,其特征在于,所述超声参数包括以下至少一种:
    散射峰值、散射子密度、散射子分布特征、反射值和反射值分布。
  10. 根据权利要求8所述的装置,其特征在于,所述边界确定模块还用于:
    在发射所述超声检测波之后,从接收到的第一个超声回波信号开始,依次计算连续的N个超声回波信号的超声参数值的第一均值,其中N为正整数;
    若所述第一均值大于第一阈值,则将所述N个超声回波信号作为第一组 信号,计算所述第一组信号之后的连续N个超声回波信号的超声参数值的第二均值;
    若所述第二均值小于第二阈值,则确定所述第一组信号中的最后一个超声回波信号的接收时刻作为第一接收时刻,以及所述第一组信号之后的第一个超声回波信号的接收时刻作为第二接收时刻;
    将所述第一接收时刻和所述第二接收时刻的中间时刻确定为所述皮下组织边界的超声回波信号的接收时刻。
  11. 根据权利要求8所述的装置,其特征在于,所述厚度计算模块还用于:
    根据所述超声检测波的发射时刻,以及所述皮下组织边界的超声回波信号的接收时刻,确定所述皮下组织边界的超声回波信号的传播时长;
    根据所述皮下组织边界的超声回波信号的传播时长,以及所述超声回波信号在皮下组织内的传播速度,计算得到所述皮下组织的厚度。
  12. 根据权利要求8-11任一项所述的装置,其特征在于,所述厚度计算模块还用于:
    将计算得到的皮下组织的厚度加上超声检测装置的测量盲区长度,对计算得到皮下组织的厚度进行修正。
  13. 根据权利要求8-11任一项所述的装置,其特征在于,所述厚度计算模块还用于:
    将计算得到的皮下组织的厚度减去超声检测装置的匹配层长度,对计算得到皮下组织的厚度进行修正。
  14. 根据权利要求8-11任一项所述的装置,其特征在于,所述厚度计算模块还用于:
    获取超声检测装置在皮肤表面的按压深度;
    将计算得到的皮下组织的厚度加上所述按压深度,对计算得到皮下组织的厚度进行修正。
  15. 一种皮下组织厚度测量设备,其特征在于,包括:
    存储器,处理器,以及存储在所述存储器上并可在所述处理器上运行的计算机程序,
    所述处理器运行所述计算机程序时实现如权利要求1-7中任一项所述的 方法。
  16. 一种计算机可读存储介质,其特征在于,存储有计算机程序,
    所述计算机程序被处理器执行时实现如权利要求1-7中任一项所述的方法。
PCT/CN2020/105022 2019-08-01 2020-07-28 皮下组织厚度测量方法、装置、设备及存储介质 WO2021018108A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20847157.3A EP4008263A4 (en) 2019-08-01 2020-07-28 METHOD, APPARATUS AND DEVICE FOR MEASURING SUBCUTANEOUS TISSUE THICKNESS, AND RECORDING MEDIUM
BR112022001734A BR112022001734A2 (pt) 2019-08-01 2020-07-28 Método, aparelho e dispositivo de medição de espessura de tecido subcutâneo e mídia de armazenamento
JP2022506602A JP7249711B2 (ja) 2019-08-01 2020-07-28 皮下組織の厚さの測定方法、装置、デバイス及び記憶媒体
US17/631,103 US20220273259A1 (en) 2019-08-01 2020-07-28 Method, apparatus and device for measuring thickness of subcutaneous tissue, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910706602.1 2019-08-01
CN201910706602.1A CN110313938B (zh) 2019-08-01 2019-08-01 皮下组织厚度测量方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021018108A1 true WO2021018108A1 (zh) 2021-02-04

Family

ID=68123429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105022 WO2021018108A1 (zh) 2019-08-01 2020-07-28 皮下组织厚度测量方法、装置、设备及存储介质

Country Status (6)

Country Link
US (1) US20220273259A1 (zh)
EP (1) EP4008263A4 (zh)
JP (1) JP7249711B2 (zh)
CN (1) CN110313938B (zh)
BR (1) BR112022001734A2 (zh)
WO (1) WO2021018108A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110313938B (zh) * 2019-08-01 2021-03-23 无锡海斯凯尔医学技术有限公司 皮下组织厚度测量方法、装置、设备及存储介质
CN114428527A (zh) * 2022-01-26 2022-05-03 云南贝泰妮生物科技集团股份有限公司 一种基于超声回波的射频美容仪温控系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165401A (ja) * 1996-12-16 1998-06-23 Ge Yokogawa Medical Syst Ltd 超音波診断装置および壁厚計測方法
CN101527047A (zh) * 2008-03-05 2009-09-09 深圳迈瑞生物医疗电子股份有限公司 使用超声图像检测组织边界的方法与装置
CN102636252A (zh) * 2012-04-10 2012-08-15 吉林大学 一种超声波到达精确时刻检测的方法及装置
CN103096811A (zh) * 2010-07-25 2013-05-08 赛诺龙医疗公司 用于测量脂肪组织厚度的方法和设备
CN103429163A (zh) * 2011-01-05 2013-12-04 皇家飞利浦电子股份有限公司 用于确定身体的实际组织层边界的装置和方法
CN106137251A (zh) * 2016-07-15 2016-11-23 北京百思声创科技有限公司 用于皮下组织厚度测量的超声探头及测量仪
CN106937864A (zh) * 2016-01-05 2017-07-11 财团法人工业技术研究院 皮肤组织估计方法及应用其的系统
CN110313938A (zh) * 2019-08-01 2019-10-11 无锡海斯凯尔医学技术有限公司 皮下组织厚度测量方法、装置、设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103126726B (zh) * 2011-11-25 2015-03-04 重庆海扶医疗科技股份有限公司 一种脂肪厚度测量装置
CN107106142B (zh) * 2014-12-26 2020-08-04 古野电气株式会社 超声波体组织检测装置与方法、以及存储介质
BR112019002320A2 (pt) * 2016-08-08 2019-06-18 Koninklijke Philips Nv sistema para medição de componentes de tecido corporal adiposo e magro, método para medição de componentes de tecido corporal adiposo e magro do tecido corporal, e programa de computador
CN106770647B (zh) * 2016-11-17 2019-07-09 四川大学 脂肪含量测量系统及方法
CN109009224A (zh) * 2018-07-06 2018-12-18 北京工业大学 基于超声的皮下脂肪厚度测量仪
CN109864762A (zh) * 2019-03-08 2019-06-11 北京工业大学 一种压力控制超声波的人体皮脂厚度测量仪

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165401A (ja) * 1996-12-16 1998-06-23 Ge Yokogawa Medical Syst Ltd 超音波診断装置および壁厚計測方法
CN101527047A (zh) * 2008-03-05 2009-09-09 深圳迈瑞生物医疗电子股份有限公司 使用超声图像检测组织边界的方法与装置
CN103096811A (zh) * 2010-07-25 2013-05-08 赛诺龙医疗公司 用于测量脂肪组织厚度的方法和设备
CN103429163A (zh) * 2011-01-05 2013-12-04 皇家飞利浦电子股份有限公司 用于确定身体的实际组织层边界的装置和方法
CN102636252A (zh) * 2012-04-10 2012-08-15 吉林大学 一种超声波到达精确时刻检测的方法及装置
CN106937864A (zh) * 2016-01-05 2017-07-11 财团法人工业技术研究院 皮肤组织估计方法及应用其的系统
CN106137251A (zh) * 2016-07-15 2016-11-23 北京百思声创科技有限公司 用于皮下组织厚度测量的超声探头及测量仪
CN110313938A (zh) * 2019-08-01 2019-10-11 无锡海斯凯尔医学技术有限公司 皮下组织厚度测量方法、装置、设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4008263A4 *
ZHANG XING-HONG, ZHANG HUI, CHEN XI-HOU, WANG XIAN-QUAN, FENG JI-QIN: "A Method to Precisely Measure Ultrasonic Transmission Time", JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, vol. 31, no. 6, 25 March 2012 (2012-03-25), pages 717 - 721, XP009525721, ISSN: 1001-0645, DOI: 10.15918/j.tbit1001-0645.2011.06.018 *

Also Published As

Publication number Publication date
JP7249711B2 (ja) 2023-03-31
CN110313938B (zh) 2021-03-23
BR112022001734A2 (pt) 2022-04-12
JP2022543233A (ja) 2022-10-11
EP4008263A4 (en) 2023-01-25
EP4008263A1 (en) 2022-06-08
US20220273259A1 (en) 2022-09-01
CN110313938A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2021018108A1 (zh) 皮下组织厚度测量方法、装置、设备及存储介质
AU2016378228B2 (en) Method and apparatus for measuring viscoelastic parameter of viscoelastic medium
US7736315B2 (en) Method and apparatus providing improved ultrasonic strain measurements of soft tissue
JP6077184B2 (ja) 被検者の膀胱容量をモニタリングするための装置及び方法
US10736522B2 (en) Method and terminal for obtaining fetal heart
CN1188801C (zh) 用于在活体内确定活体顺应函数及系统血流量的装置
CN106456019A (zh) 血压测量设备的连续校准
CN104622509A (zh) 超声波诊断装置以及弹性评价方法
US20140296709A1 (en) System and method for non-invasive determination of tissue wall viscoelasticity using ultrasound vibrometry
Nagle et al. Comparison of 2D and 3D ultrasound methods to measure serial bladder volumes during filling: Steps toward development of non-invasive ultrasound urodynamics
CN101999910A (zh) 眼科超声测量设备中应用的自适应时间-增益补偿方法
CN111110275A (zh) 血管力学性能的测量方法、装置、系统及存储介质
CN110402104A (zh) 血压测量装置、方法以及程序
CN102860842A (zh) 一种实时准静态超声弹性成像方法
US20240138810A1 (en) Method and apparatus for evaluating contact state of ultrasound probe on basis of soft tissue morphology
CN101410055B (zh) 通过测量速度变化来确定水合程度的方法和装置
CN101410057B (zh) 确定水合程度的方法和装置
CN109414248A (zh) 脂肪层相关传感器调整
KR101778845B1 (ko) 맥파 전달 시간을 이용한 수축기 혈압 산출 장치 및 그 방법
Deng et al. Evaluation of TT-based local PWV estimation for different propagation velocities
US20200107812A1 (en) Ultrasonic-based pulse-taking device and pulse-taking method
Dell'Italia et al. Time-varying wall stress: an index of ventricular vascular coupling
Rosen et al. Non-Invasive Measurement of the Internal Pressure of a Pressurized Biological Compartment Using Lamb Waves
CN116584975A (zh) 皮下组织厚度测量方法、装置、电子设备及存储介质
CN116549782A (zh) 输液管路的气泡检测方法、装置、注射装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022506602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022001734

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020847157

Country of ref document: EP

Effective date: 20220301

ENP Entry into the national phase

Ref document number: 112022001734

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220131