WO2021018002A1 - 热塑性复合材料工形加筋构件的模压成型模具组件及方法 - Google Patents

热塑性复合材料工形加筋构件的模压成型模具组件及方法 Download PDF

Info

Publication number
WO2021018002A1
WO2021018002A1 PCT/CN2020/103851 CN2020103851W WO2021018002A1 WO 2021018002 A1 WO2021018002 A1 WO 2021018002A1 CN 2020103851 W CN2020103851 W CN 2020103851W WO 2021018002 A1 WO2021018002 A1 WO 2021018002A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
preform
block
pressure
molding
Prior art date
Application number
PCT/CN2020/103851
Other languages
English (en)
French (fr)
Inventor
湛利华
戴光明
关成龙
黄明辉
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910696498.2A external-priority patent/CN110341210B/zh
Priority claimed from CN201910696503.XA external-priority patent/CN110341211B/zh
Priority claimed from CN201910696485.5A external-priority patent/CN110341209B/zh
Application filed by 中南大学 filed Critical 中南大学
Publication of WO2021018002A1 publication Critical patent/WO2021018002A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding

Definitions

  • the invention relates to the technical field of composite material molding, in particular to a compression molding die assembly and a compression molding method of a thermoplastic composite material I-shaped reinforced component.
  • thermoplastic composite material has good heat resistance, excellent damage tolerance, good impact resistance, short molding cycle, high production efficiency, and repeated molding.
  • the aerospace industry is getting more and more attention.
  • a class of advanced thermoplastic composite materials represented by carbon fiber reinforced polyether ether ketone are increasingly applied to primary/secondary load-bearing components in the aerospace field.
  • the thermoplastic resin infiltrates the fibers. Poor performance and penetration, difficulty in bonding between adjacent layers, difficult to eliminate voids in the laminate, and difficulty in resin flow during the molding process, so the manufacture of its parts depends on high temperature and high pressure.
  • Existing thermosetting materials mostly use autoclaves for thermo-compression curing and molding.
  • the safe working temperature and safety pressure of ordinary autoclaves are below 250°C and below 1Mpa, respectively.
  • the temperature and pressure can meet the molding needs of thermosetting materials.
  • thermoplastic materials such as carbon fiber reinforced polyether ether ketone
  • the molding temperature and pressure are respectively above 300°C and above 1Mpa. Therefore, most of the existing thermoplastic materials use a compression molding process.
  • thermoplastic composite components mostly use primary or secondary compression molding methods: primary compression molding technology is suitable for flat plate molding, and when applied to structural parts molding, it will produce uneven surface, uneven resin distribution, and mechanical properties. No guarantees and other issues.
  • the secondary hot pressing adopts the method of clamping the female mold and the male mold, and can only carry out one-way pressure transmission (usually in the vertical direction), and is only suitable for simple structural parts such as "C” and "L” shapes Forming, that is, pre-forming the flat parts first, and then softening the flat parts at high temperature for secondary consolidation molding.
  • the pressure of the filled gas is used to form a uniform pressure on the composite material, so the composite material I-shaped long truss can be easily formed in the autoclave, but the autoclave equipment is expensive, and its forming cost is high.
  • the molding process is complicated, time-consuming and labor-intensive, and it is difficult to meet the requirements of industrialization. Therefore, in the prior art, there is a need for an economical, fast and reliable molding solution that does not require the use of autoclaves and is suitable for thermoplastic composite I-shaped stiffener components to help thermoplastic composite I-shaped stiffener components to enter the industry To promote the development of my country’s aerospace industry.
  • the purpose of the present invention is to provide a compression molding die assembly and a compression molding method of a thermoplastic composite material I-shaped reinforced component, so as to solve the problems raised in the background art.
  • the present invention first provides a compression molding die assembly of a thermoplastic composite material I-shaped reinforced component, which includes a flat plate preform die (1), a C-shaped preform die (2), and an I-shaped reinforced component die (3).
  • the flat plate preform mold is used to compress the thermoplastic composite material prepreg into a flat plate preform (10), the C-shaped preform mold is used to press the flat plate preform into a C-shaped preform, and the I-shaped reinforced component mold It can at least be used to combine the upper edge block (41), lower edge block (42), upper filler block (45), lower filler block (46), left C-shaped preform (43) and right C-shaped preform ( 44) Compressed into I-shaped reinforcement ribs together, the upper edge block and the lower edge block used to press the I-shaped reinforcement ribs are arranged in parallel up and down, and the left C-shaped preform used to press the I-shaped reinforcement ribs and The right C-shaped preform is arranged between the upper edge block and the lower edge block and back to
  • the I-shaped reinforced component mold includes a base (31) and an upper module set on the base, and the upper module includes a left trapezoidal bar (32), a right trapezoidal bar (33), a left wedge (34), Right wedge (35) and pressing block (36), the right side wall of the left trapezoidal strip is provided with a left forming surface (321) matching the front groove of the left C-shaped preform, and the left side wall of the right trapezoidal strip A right molding surface (331) matching the front groove shape of the right C-shaped preform is provided, the left side wall of the left trapezoidal strip and the right side wall of the right trapezoidal strip are both provided with inclined surfaces (322/332), so The inclination direction of the inclined surface is set such that the upper end of the area corresponding to the inclined surface of the left trapezoidal strip and the right trapezoidal strip is a narrow end, and the lower end is a wide end; the pressure block is used to apply the downward molding pressure provided by the external pressure mechanism
  • the left wedge and the right wedge are respectively fixed
  • the inclination angle of the inclined surfaces of the left and right trapezoidal strips is 65-85°
  • the vertical dimensions of the left and right wedges are set to meet the following conditions: when the pressure block is at the end of the molding stroke When the pressure block is at the end of the downward displacement stroke, the bottom surface of the left and right trapezoidal strips just abut the pressure-bearing surface (311) of the base, and the bottom surface of the pressure block is located between the left wedge and the right wedge. The middle area also just abuts the top surfaces of the left and right trapezoidal strips. At this time, there is still a gap between the bottom surfaces of the left and right wedges and the pressure-bearing surface of the base, or there is no collision state to prevent the bottom ends of the left and right wedges from affecting the molding process.
  • the middle area of the bottom surface of the pressure block is provided with a left relief groove (361) and a right relief groove (362) at positions close to the left and right wedges, respectively, the left relief groove and the right relief groove
  • the bit slot is used to prevent the molding from not being in place due to the uneven bottom surface of the press block.
  • the I-shaped stiffened component mold is also used to integrally press the main body wall panel (7), the lower edge block, two C-shaped preforms arranged back to back and the upper edge block into an I-shape A stiffened member, the pressure-bearing surface of the base is recessed with a groove (312) for placing part or all of the main body wall (7), and the transverse dimension of the groove does not exceed the transverse dimension of the left and right trapezoidal strips.
  • the depth is less than or equal to the thickness of the main body wall plate, so that the top surface of the main body wall plate placed in the groove is higher than or equal to the height of the pressure-bearing surface of the base, so that the main body wall plate and the I-shaped stiffener can be combined into One.
  • the left and right sides of the base are respectively provided with a left baffle (313) and a right baffle (314) for limiting the pressure block and the left and right wedges, and the left baffle and the right baffle
  • the baffle is used to prevent lateral movement of the pressure block and the left and right wedges during the molding process, so as to accurately ensure the relative position between the I-shaped stiffener and the main body wall.
  • the main body wall panel is connected with a plurality of I-shaped reinforcing ribs, correspondingly, a plurality of groups of upper modules are provided on the base, and each group of upper molds corresponds to an I-shaped reinforcing rib. .
  • the flat plate preform mold includes an upper module (11) and a lower module (12), and the bottom surface of the upper module and the top surface of the lower module are both used to press the prepreg. Straight profile.
  • the C-shaped preform mold includes an upper male mold (23) and a lower female mold (24), and the female mold is provided with a positioning slot for positioning and placing the flat plate preform ( 25)
  • the bottom of the positioning groove is provided with a cavity (26) for pressing a flat flat preform into a curved C-shaped preform, and a downwardly extending convex portion (231) is provided on the male mold ,
  • the convex part is provided with the same profile as the front groove of the C-shaped preform to be finally obtained.
  • the materials of the I-shaped reinforcing ribs and the main body wall panels are made of thermoplastic resin-based composite materials, and the fiber reinforced material in the thermoplastic resin-based composite material is carbon fiber or glass fiber.
  • the resin base in the composite material is polypropylene, polyether ether ketone or polyphenylene sulfide, and the material of the compression molding die is a hard metal material.
  • the invention also provides a compression molding method of a thermoplastic composite material I-shaped reinforced member, which includes the following steps:
  • step S2 Making a C-shaped preform: the flat preform obtained in step S1 is press-bent into a C-shaped preform by means of compression molding.
  • Step S3 Making I-shaped reinforced components: Take two C-shaped preforms produced in step S2, and set the two C-shaped preforms back to back.
  • the left side C-shaped preform is defined as the left-side C-shaped preform.
  • Edge block preform or lower edge block prepreg Three, lower filling block prepreg five, two C-shaped preforms arranged back to back, upper filling block prepreg four and upper edge block preform or upper edge block prepreg
  • the second material is placed in the I-shaped reinforced component mold, and the main body wall panel, the lower edge block preform or the lower edge block prepreg, two back-to-back C-shaped preforms and the upper edge block preform or
  • the upper edge block prepreg is integrally pressed into an I-shaped reinforced component; the upper filling block and the lower filling block can be composed of prepreg filaments and/or prepreg strips, or prepreg filaments and/ Or thin strips of prepreg are molded into preforms and used as upper and lower filling blocks.
  • the I-shaped reinforced component mold in step S3 includes a base and an upper module set on the base.
  • the upper module includes a left trapezoidal bar, a right trapezoidal bar, a left wedge, a right wedge, and a pressing block.
  • the right side wall of the left trapezoidal strip is provided with a left molding surface matching the front groove shape of the left C-shaped preform
  • the left side wall of the right trapezoidal strip is provided with a right molding surface matching the front groove shape of the right C-shaped preform.
  • the left side wall of the left trapezoidal strip and the right side wall of the right trapezoidal strip are both provided with an inclined surface, and the inclination direction of the inclined surface is set such that the upper end of the area corresponding to the inclined surface of the left trapezoidal strip and the right trapezoidal strip is The narrow end, the lower end is the wide end;
  • the pressure block is used to transmit the downward molding pressure provided by the external pressure mechanism to the left and right trapezoidal bars, and the left and right wedges are respectively fixedly arranged at the left and right edges of the bottom surface of the pressure plate
  • the inner side wall of the left wedge block is set in an inclined surface structure matching the inclined surface on the left trapezoidal block, and the inner side wall of the right wedge block is also set in an inclined surface structure matching the inclined surface on the right trapezoidal block;
  • the inclined surface structure between the bars makes a part of the downward molding pressure of the pressure block converted by the left and right trapezoidal bars into the pressure pointing to the horizontal direction of the I-shaped stiffener, that is, the
  • the inclination angle of the inclined surfaces of the left and right trapezoidal strips is 65-85°, that is, the angle between the inclined surfaces of the left and right trapezoidal strips and the bottom surface is equal to 65-85°.
  • the vertical dimensions of the left and right wedges are set to meet the following conditions: when the pressure block is at the end of the molding stroke, that is, when the pressure block is at the end of the downward displacement stroke, the bottom surface of the left and right trapezoidal strips It just abuts against the pressure-bearing surface of the base, and the bottom surface of the pressure block is located in the middle area between the left and right wedges and also just abuts the top surface of the left and right trapezoidal strips. At this time, the bottom surface of the left and right wedges is against the pressure-bearing surface of the base There is still a gap or a state of non-compensation between them to prevent the bottom of the left and right wedges from affecting the molding process.
  • the middle area of the bottom surface of the pressure block is provided with a left relief groove and a right relief groove at a position close to the left and right wedges, respectively, and the left relief groove and the right relief groove are used to prevent the uneven bottom surface of the pressure block from being caused. Caused the molding is not in place.
  • the pressure-bearing surface of the base is recessed with grooves for placing part or all of the main body wall, the transverse dimension of the groove does not exceed the transverse dimension of the left and right trapezoidal bars, and the depth of the groove is less than or equal to the main body wall
  • the thickness of the board makes the top surface of the main body wall plate placed in the groove higher than or equal to the height of the pressure-bearing surface of the base, thereby facilitating the combination of the main body wall plate and the I-shaped stiffener in the molding process.
  • the left and right sides of the base are respectively provided with a left baffle and a right baffle for restricting the pressure block and the left and right wedges.
  • the left baffle and the right baffle are used to prevent the pressure block and the left and right baffles during the molding process.
  • the wedge moves laterally, so as to accurately ensure the relative position between the I-shaped stiffener and the main body wall.
  • main body wall panels are connected with a plurality of I-shaped reinforcing ribs.
  • a plurality of groups of upper modules are provided on the base, and each group of upper molds corresponds to one I-shaped reinforcing rib.
  • the flat plate preforms, the upper edge block preforms, and the lower edge block preforms in the step S1 are all compression molded using a flat plate preform mold.
  • the flat plate preform mold includes an upper module and a lower module, and the bottom surface of the upper module The top surface of the lower module and the lower module are all flat surfaces used to press the prepreg.
  • the C-shaped preform in the step S2 is compression-molded by a C-shaped preform mold
  • the C-shaped preform mold includes an upper male mold and a lower female mold
  • the female mold is provided with positioning and placing
  • the positioning groove of the flat plate preform the bottom of the positioning groove is provided with a cavity for pressing the flat flat plate preform into a curved C-shaped preform
  • the male mold is provided with a downwardly protruding convex part.
  • the part is provided with the same profile as the front groove of the C-shaped preform to be finally obtained.
  • the materials of the I-shaped reinforcing ribs and the main body wall panels are made of thermoplastic resin-based composite materials
  • the fiber reinforced material in the thermoplastic resin-based composite material is carbon fiber or glass fiber
  • the resin-based composite material in the thermoplastic resin-based composite material is Resins such as polypropylene (PP), polyether ether ketone (PEEK) or polyphenylene sulfide (PPS) are used
  • the material of the compression molding mold is a hard metal material.
  • the process parameters of the steps S1 to S3 are as follows:
  • the molding temperature of the flat plate preform, the upper edge block preform and the lower edge block preform are all 370°C to 380°C, the applied molding pressure is 1 MPa to 4 MPa, and the holding time is 10 to 30 minutes.
  • the pressure holding time is 50min ⁇ 60min;
  • the molding temperature of the C-shaped preform is 370°C to 380°C
  • the holding time is 10 to 30 minutes
  • the applied molding pressure is 1 MPa to 2 MPa
  • the molding pressure holding time is 50 to 60 minutes;
  • the molding temperature of the I-shaped reinforced member is 390°C to 410°C
  • the holding time is 20 to 40 minutes
  • the applied molding pressure is 3 MPa to 5 MPa
  • the molding pressure is maintained for 50 to 70 minutes.
  • the present invention provides a compression molding method for a thermoplastic composite material component with I-shaped reinforcement ribs.
  • the thermoplastic composite prepreg is preformed into a flat plate with a certain thickness through one molding press, and then two C Shape preforms are then combined with the upper and lower edge block preforms to pre-assemble the I-shaped reinforced components, and finally the components are molded three times in the mold.
  • the present invention overcomes the problems of uneven thickness and high porosity of components caused by the inability to carry out multi-directional pressure transmission and difficulty in forming pressure transmission of complex components in the existing molding process, thereby realizing low-cost manufacturing of I-shaped reinforced components.
  • the application of advanced thermoplastic resin-based composite materials in the aviation field lays the foundation.
  • the compression mold includes a flat mold, a C-shaped preform mold and an I-shaped reinforced component mold.
  • the flat mold is used to press the thermoplastic composite prepreg into a flat preform
  • the C-shaped preform mold is used to preform the flat
  • the parts are pressed into a C-shaped preform.
  • the I-shaped reinforced component mold is used to press two C-shaped preforms arranged back to back into an I-shaped reinforcing rib.
  • the I-shaped reinforced component mold includes a base and a set or set on the base. Multiple sets of upper modules.
  • the C-shaped preform is molded by a flat plate preform, and the flat plate preform can be molded only by placing the flat plate preform in the positioning groove of the C-shaped preform mold.
  • the molding method pasted on the C-shaped convex mold is more convenient and faster to process with the mold assembly of the present invention, and the positioning groove has a positioning effect on the flat plate preform, and the obtained C-shaped preform has high dimensional accuracy, which saves time and effort. Reduced cost and reliable.
  • the upper module of the I-shaped reinforced component mold is provided with inclined surfaces
  • the left and right wedges are provided with inclined surfaces with upper and lower widths
  • the left and right trapezoidal blocks are provided with upper and lower widths matching the inclined surfaces on the left and right wedges.
  • the downward molding pressure of the pressure block is converted by the left and right trapezoidal strips into the pressure pointing to the horizontal direction of the I-shaped stiffener, that is, a single
  • the vertical molding pressure is converted to downwards plus left and right directions, a total of three directions, so there is no need to set additional horizontal molding pressure, which simplifies the equipment and process, and the entire upper module and base can be placed
  • the heating system of the plate vulcanizer is used for heating and heating, without vacuuming, economical, fast and reliable, and promotes the mass production of products with I-shaped ribs.
  • Fig. 1 is a step diagram of a method for compression molding of an I-shaped reinforced member according to a preferred embodiment of the present invention
  • FIG. 2 is a cross-sectional structure diagram of a flat die of a preferred embodiment of the present invention.
  • FIG. 3 is a cross-sectional structure diagram of a C-shaped preform mold in a preferred embodiment of the present invention.
  • Figure 4 is a cross-sectional exploded structural view of the I-shaped reinforced component mold of the preferred embodiment of the present invention (the corresponding main wall panel has only one I-shaped reinforcing rib);
  • Figure 5 is a cross-sectional structural view of the I-shaped ribbed member mold of the preferred embodiment of the present invention when the main body wall panel has only one I-shaped reinforcing rib when the components of the I-shaped ribbed component mold are at the end of the molding stroke;
  • Figure 6 is a cross-sectional structural view of the I-shaped reinforced component mold of the present invention when the components of the I-shaped reinforced component mold are at the end of the molding stroke when the main body wall has two I-shaped reinforcing ribs;
  • Figure 7 is a step diagram of another compression molding method for an I-shaped reinforced member of a preferred embodiment of the present invention.
  • Fig. 8 is a cross-sectional exploded structural view of the I-shaped stiffener and the main body wall plate to be obtained by molding the mold assembly of the preferred embodiment of the present invention.
  • FIG. 1 for the steps of the compression molding method of the I-shaped stiffened member in the preferred embodiment of the present invention, and the selected molds set in the compression molding method of the I-shaped stiffened member in the preferred embodiment of the present invention in FIGS. 2 to 6.
  • the upper edge block, the lower edge block, the upper filling block, the lower filling block, the I-shaped reinforcing ribs and the main wall panel are all made of carbon fiber reinforced polyether ether ketone thermoplastic resin-based composite material.
  • the compression molding method of the I-shaped stiffened member of this embodiment includes the following steps:
  • the ideal molding temperature of carbon fiber reinforced polyether ether ketone composite material is 370°C ⁇ 410°C.
  • the single layer thickness of prepreg 1, prepreg 2 and prepreg 3 are all 0.14mm, according to the single layer thickness and target forming thickness
  • the first compression molding can be carried out to obtain flat plate preforms, upper edge block preforms and lower edge block preforms. Calculate the dimensions of the flat plate preforms, the upper edge block preforms and the lower edge block preforms that need to be preformed according to the size of the I-shaped reinforcement 4, and cut a certain amount of prepreg 1, prepreg 2, and prepreg respectively Third, set up a flat mold as shown in Figure 2.
  • the first compression molding temperature is 370°C ⁇ 380°C
  • the applied pressure is 1MPa ⁇ 4MPa
  • the holding time is 10 ⁇ 30min
  • the pressure holding time is 50min ⁇ 60min.
  • the second compression preform is performed to obtain a C-shaped preform.
  • the molding die is shown in FIG. 3.
  • the second molding temperature is 370°C ⁇ 380°C
  • the holding time is 10 ⁇ 30min.
  • the molding pressure is 1MPa-2MPa
  • the pressure holding time is 50-60min.
  • step S3 Making I-shaped reinforced components: Take two C-shaped preforms produced in step S2, and set the two C-shaped preforms back to back.
  • the left C-shaped preform is defined as the left C-shaped preform with the notch facing the right.
  • Is defined as the right C-shaped preform and then cut the prepreg sheet and cut the dipping sheet into filaments or strips for use as the upper filling block 45 and the lower filling block 46, and the upper filling block is used to set the upper edge In the triangular area enclosed by the two C-shaped preforms, the lower filling block is used to be set in the triangular area enclosed by the lower edge block and the two C-shaped preforms.
  • edge block preform, the lower filling block prepreg 5460, the two C-shaped preforms arranged back to back, the upper filling block prepreg 4450 and the upper edge block preform are placed in the I-shaped reinforced component mold and pressed
  • the main body wall panel, the lower edge block preform, the lower filling block prepreg 5, two C-shaped preforms arranged back to back, the upper filling block prepreg 4 and the upper edge block preform are integrally pressed into an I-shaped plus Rib component
  • the I-shaped reinforced component After prefabricating a pair of C-shaped preforms, the I-shaped reinforced component can be formed.
  • the pre-assembly method is shown in Figure 1. All parts of the I-shaped reinforced component are pre-assembled using preforms. According to the process requirements, the parts must be pressed in the horizontal and vertical directions at the same time to ensure the molding quality, and most of the existing presses can only provide one-way pressure (usually the vertical direction), so the design of the present invention I-shaped reinforced component mold, the mold is placed on the press and subjected to longitudinal pressure. Under the squeezing action of the wedge and the trapezoidal bar, the part can be subjected to the transverse pressure at the same time.
  • the molds selected for the compression molding method of this embodiment include a flat mold 1, a C-shaped preform mold 2, and an I-shaped reinforced component mold 3.
  • the flat mold is used for stacking a plurality of pre-cut thermoplastic composite materials.
  • the prepreg sheet is pressed into a flat plate preform 10, and the C-shaped preform mold is used to press the flat plate preform 10 into a C-shaped preform 20.
  • the C-shaped preform 20 includes the left C-shaped preform 43 and The right C-shaped preform 44
  • the I-shaped reinforced component mold 3 is used to combine the upper edge block prepreg 410, the lower edge block prepreg 420, the left C-shaped preform 43 and the right C-shaped preform 44 together
  • the upper edge block and the lower edge block used to press the I-shaped stiffener 4 are arranged in parallel up and down, and the upper edge block and the lower edge block can be thermoplastic composite prepregs or Thermoplastic composite material preforms, the left C-shaped preforms and the right C-shaped preforms used to press the I-shaped reinforcing ribs are arranged between the upper edge block and the lower edge block and are arranged back to back symmetrically.
  • the C-shaped preforms The back direction is shown in Figure 3, referring to the side opposite to the vertical groove surface of the C-shaped preform.
  • the I-shaped stiffened component mold 3 includes a base 31 and an upper module set on the base.
  • the upper module includes a left trapezoidal bar 32, a right trapezoidal bar 33, a left wedge 34, and a right wedge 35.
  • the right side wall of the left trapezoidal strip is provided with a left molding surface 321 matching the front groove of the left C-shaped preform
  • the left side wall of the right trapezoidal strip is provided with the front surface of the right C-shaped preform.
  • the groove-shaped matching right molding surface 331, the left side wall of the left trapezoidal strip and the right side wall of the right trapezoidal strip are respectively provided with a left inclined surface 322 and a right inclined surface 332, the inclination direction of the inclined surface is set such that the left trapezoidal strip
  • the upper end of the area with the inclined surface corresponding to the right trapezoidal bar is a narrow end, and the lower end is a wide end;
  • the pressure block is used to transmit the downward molding pressure provided by the external pressure mechanism to the left and right trapezoidal bars, and the external press may be a flat plate
  • the I-shaped reinforced component mold is placed between the upper and lower templates of the flat vulcanizing machine, and then the molding process can be performed.
  • the flat mold 1 and the C-shaped preform mold 2 can also be molded using a flat vulcanizing machine.
  • the left wedge and the right wedge are respectively fixedly arranged at the left and right edges of the bottom surface of the pressure plate, the left wedge and the right wedge are symmetrical with respect to the transverse symmetry center of the pressure block, and the inner side wall of the left wedge is set as an inclined surface matching the left inclined surface Structure, the inner side wall of the right wedge is also set to a slope structure matching the right slope; the slope structure between the left and right wedges and the left and right trapezoidal strips makes a part of the downward molding pressure of the pressure block converted into a pointing work by the left and right trapezoidal strips.
  • the horizontal pressure of the glyph ribs is to convert a single vertical molding pressure into downwards plus left and right directions, a total of three directions.
  • the inclination angle of the left inclined surface is 80°, that is, the angle between the left and right inclined surface and the bottom surface (also the horizontal plane) of the left and right trapezoidal strip is equal to 80°.
  • the vertical height of the left and right trapezoidal strips is equal to the target height of the I-shaped stiffener to be finally obtained.
  • the left and right trapezoidal strips are used to set the left and right C-shaped preforms back to back.
  • a top groove 5 with upward opening is enclosed at the position, and a bottom groove 6 with downward opening is enclosed at the bottom position of the left and right molding surfaces.
  • the depth of the top groove is greater than that of the top edges 21 of the left and right C-shaped preforms.
  • Thickness The depth of the bottom groove is greater than the thickness of the bottom edge 22 of the left and right C-shaped preforms, so that the upper edge block and the lower edge block are placed and positioned in the top groove and the bottom groove respectively for molding.
  • the bottom of the left trapezoidal strip is continuously provided with a left vertical surface 323 at the end of the left inclined surface
  • the bottom of the right trapezoidal strip is continuously provided with a left vertical surface 333 at the end of the right inclined surface.
  • the vertical surface can prevent pressure
  • the bottom of the left and right trapezoidal strips interferes with the bottom of the left and right wedge blocks due to the size error or the molding is not in place.
  • the horizontal size of the left and right trapezoidal strips can be reduced, reducing the space occupation and making it easier to carry out. Pre-assembly of the entire upper module before molding.
  • the middle area of the bottom surface of the pressure block is provided with a left relief groove 361 and a right relief groove 362 at positions close to the left and right wedges respectively.
  • the left relief groove and the right relief groove are used to prevent the pressure block.
  • the uneven bottom surface affects the sliding guide of the left and right wedges on the left and right inclined surfaces, which facilitates better conversion and transfer of molding pressure.
  • the pressure-bearing surface 311 of the base is recessed with a groove 312 for placing part or all of the main body wall panel 7.
  • the transverse dimension of the groove does not exceed the transverse dimension of the left and right trapezoidal strips, and the depth of the groove Less than or equal to the thickness of the main body wall panel 7, so that the top surface of the main body wall panel placed in the groove is higher than or equal to the height of the pressure-bearing surface of the base, thereby facilitating the integration of the main body wall panel and the I-shaped stiffener in the molding process , Forming an I-shaped reinforced component.
  • the main body wall panel refers to the prefabricated skin of the main body (the main body can be an aircraft wing shell or other small components) to be installed and served by the I-shaped stiffener formed by pre-pressing the composite material prepreg sheet.
  • the wall board used for combining with the I-shaped reinforcing ribs may be formed by stacking several layers of fiber reinforced composite material prepreg blocks.
  • the vertical dimensions of the left and right wedges are set to meet the following conditions: when the pressure block is at the end of the molding stroke, that is, when the pressure block is at the end of the downward displacement stroke, the left and right trapezoidal strips
  • the bottom surface of the pressure block just abuts against the bearing surface of the base, and the bottom surface of the pressure block is located in the middle area between the left wedge and the right wedge. It also just abuts against the top surface of the left and right trapezoidal strips. There is still a gap between the pressing surfaces or a state of not being offset to prevent the bottom of the left and right wedges from affecting the molding process.
  • the left side wall and the right side wall of the pressure block respectively form a plane with the outer side wall of the left wedge and the outer side wall of the right wedge.
  • the left and right sides of the base are respectively provided with the opposing block and
  • the left baffle 313 and the right baffle 314 are limited by the left and right wedges.
  • the inner side walls of the left baffle and the right baffle are both flat and parallel, and the lateral width of the pressing block is equal to that of the left and right baffles.
  • the inner side wall of the left baffle is attached to the outer side wall of the left wedge
  • the inner side wall of the right baffle is attached to the outer side wall of the right wedge
  • the left and right baffles are used to prevent the molding process
  • the middle pressure block and the left and right wedges move laterally, so as to accurately ensure the relative position between the I-shaped stiffener and the main body wall.
  • the main body wall plate is connected with two I-shaped reinforcing ribs.
  • two groups of upper modules are provided on the base, each of which is The mold corresponds to an I-shaped reinforcing rib, and the pressing blocks of the two sets of upper modules are integrally arranged, and the left and right wedges at adjacent positions of the two sets of upper modules are also integrally arranged.
  • the flat mold 1 includes an upper module 11 and a lower module 12.
  • the bottom surface of the upper module and the top surface of the lower module are flat surfaces used to press the thermoplastic composite material prepreg.
  • Straight profile, the top surface of the upper module and the bottom surface of the lower module are both flat and straight, so as to fit the upper and lower templates of the plate vulcanizing machine, and to facilitate the transfer of heat and molding pressure.
  • the thermoplastic composite material prepreg is vulcanized on the plate After being pressed by a flat die on the machine, the flat preform 10 can be obtained.
  • the C-shaped preform mold 2 includes an upper male mold 23 and a lower female mold 24.
  • the female mold is provided with a positioning groove 25 for positioning and placing the flat plate preform 10.
  • the side wall of the groove matches the outer contour of the flat plate preform to have a good positioning effect on the flat plate preform, so that no additional positioning parts are required, which is simple and convenient.
  • the groove bottom of the positioning groove is provided with a cavity 26 and the bottom surface of the cavity is set
  • the male mold is provided with a downwardly protruding convex part 231 that matches the cavity, and the convex part is provided with
  • the C-shaped preform has the same groove shape on the front surface. Under the temperature and pressure provided by the plate vulcanizing machine, the flat plate preform is formed into a C-shaped preform under the combined action of the convex part and the cavity. The position of the cavity is determined according to the structure of the C-shaped preform to be obtained. See Fig. 3.
  • the cavity is closer to the right side wall of the positioning groove in the transverse direction, and the shorter side of the obtained C-shaped preform is on the right.
  • the corner at the junction of the top of the side wall of the cavity and the positioning groove is provided with a round chamfer 261 to facilitate bending of the flat plate preform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本发明提供了一种热塑性复合材料工形加筋构件的模压成型模具组件及模压成型方法,所述模压成型模具组件包括平板预制件模具、C形预制件模具以及工形加筋构件模具,C形预制件由平板预制件模压而成,只需将平板预制件放置在C形预制件模具的定位槽中即可进行模压。工形加筋构件模具的左右梯形条上设置有上窄下宽的倾斜面,左右楔块上设置有与左右梯形块上的倾斜面匹配的上宽下窄的倾斜面,通过左右两边各形成一组贴合的可相对滑动的倾斜面,使得压块的向下的模压压力被左右梯形条转化为指向工字形加强筋的水平方向的压力,即将单一的竖向方向的模压压力转化为向下加上左右两个方向共三个方向的模压压力,简化了设备与工艺,经济、快速又可靠。

Description

热塑性复合材料工形加筋构件的模压成型模具组件及方法 技术领域
本发明涉及复合材料成型技术领域,尤其是一种热塑性复合材料工形加筋构件的模压成型模具组件及模压成型方法。
背景技术
热塑性树脂基复合材料(本申请中简称热塑性复合材料)具有较好的耐热性、优秀的损伤容限、良好的抗冲击性能且成型周期短、生产效率高、能反复成型,近些年来受到航空航天领域越来越广泛的关注。以碳纤维增强聚醚醚酮为代表的一类先进热塑性复合材料越来越多地应用到航空领域的主/次承力构件上,但热塑性复合材料由于基体熔融粘性高,热塑性树脂对纤维的浸润性和穿透性差,临近层之间粘结困难、层合板中空隙较难排除,成型过程中树脂流动困难,因此其零件制造依赖高温高压。现有的热固性材料多采用热压罐进行热压固化成型,普通的热压罐的安全工作温度与安全压力分别在250℃以下及1Mpa以下,该温度与压力可以满足热固性材料的成型需要。而像碳纤维增强聚醚醚酮这种热塑性材料,其成型温度与压力分别在300℃以上及1Mpa以上,因此,现有的热塑性材料多采用模压成型工艺。
现有的热塑性复合材料构件多采用一次模压或二次模压成型的方法:一次模压成型技术适用于平板件成型,应用于结构件成型则会产生制件表面不平整,树脂分布不均匀,力学性能无法保证等问题。二次热压采用的是阴模与阳模合模成型的方法,只能进行单向传压(一般为竖直方向),只适用于“C”形、“L”形等简单的结构件成型,即先进行平板件预成型,再对平板件进行高温软化进行二次固结成型。但是对于工形加强筋这类航空领域常用的复杂构件,上述一次、二次热压成型工艺所使用的阴模、阳模等单向传压模具在结构与合模方法上均不再适用带工形加强筋的复杂构件,现有技术中,并没有专门针对于热塑性复合材料工形加强筋构件的模压模具。中国专利201710401959.X公开了一种复合材料工字型长桁成型工艺,从其说明书可知,其提供的是一种在热压罐中进行的针对热固性材料的热压固化模具与固化工艺。热压罐中利用所填充气体的压力对复合材料形成均匀压力,因而热压罐中能轻松实现对复合材料工字型长桁的成型,但热压罐设备价格昂贵,其成型成本高,且成型工艺较复杂,费时费工,较难满足产业化要求。因此,现有技术中,需要一种不需要使用热压罐且适用于热塑性复合材料工形加强筋构 件的、经济、快速又可靠的成型方案,来帮助热塑性复合材料工形加强筋构件走向产业化道路,促进我国航空航天事业的发展。
发明内容
本发明目的在于提供一种热塑性复合材料工形加筋构件的模压成型模具组件及模压成型方法,以解决背景技术中提出的问题。
本发明首先提供一种热塑性复合材料工形加筋构件的模压成型模具组件,包括平板预制件模具(1)、C形预制件模具(2)以及工形加筋构件模具(3),所述平板预制件模具用于将热塑性复合材料预浸料压制成平板预制件(10),所述C形预制件模具用于将平板预制件压制成C形预制件,所述工形加筋构件模具至少能够用于将上缘块(41)、下缘块(42)、上填充块(45)、下填充块(46)、左侧C形预制件(43)及右侧C形预制件(44)一起压制成工字形加强筋,用于压制成工字形加强筋的所述上缘块与下缘块上下平行设置,用于压制成工字形加强筋的所述左侧C形预制件及右侧C形预制件设置在上缘块与下缘块中间且背对背设置,所述上填充块设置在上缘块与两个C形预制件所围成的三角区域中,所述下填充块设置在下缘块与两个C形预制件所围成的三角区域中;
所述工形加筋构件模具包括底座(31)及设置在底座上的上模组,所述上模组包括左梯形条(32)、右梯形条(33)、左楔块(34)、右楔块(35)与压块(36),所述左梯形条的右侧壁设置有与左侧C形预制件正面槽形匹配的左成型面(321),右梯形条的左侧壁设置有与右侧C形预制件正面槽形匹配的右成型面(331),所述左梯形条的左侧壁及右梯形条的右侧壁均设置有倾斜面(322/332),所述倾斜面的倾斜方向设置为使得左梯形条与右梯形条对应有倾斜面的区域的上端为窄端,下端为宽端;所述压块用于将由外部压力机构提供的向下的模压压力传递给左右梯形条,所述左楔块与右楔块分别固定设置在压板底面左右边缘位置处,左楔块的内侧壁设置成与左梯形块上的倾斜面匹配的斜面结构,右楔块的内侧壁也设置成与右梯形块上的倾斜面匹配的斜面结构;左右楔块与左右梯形条之间的斜面结构使得压块的向下的模压压力的一部分被左右梯形条转化为指向工字形加强筋的水平方向的压力,即将单一的竖向方向的模压压力转化为向下加上左右两个方向共三个方向的模压压力。
在一种具体的实施方式中,所述左右梯形条的倾斜面的倾斜角度为65~85°,所述左右楔块的竖向尺寸设置为满足以下条件:当所述压块位于模压行程终点时,即所述压块位于向下位移行程的终点时,所述左右梯形条的底面刚好与底座的承压面(311)相抵,且压块底面位于左楔块与右楔块之间的中间区域也刚好与左右梯形条顶面相抵,此时,左 右楔块的底面与底座的承压面之间还存有间隙或未达到相抵的状态,以防止左右楔块底端影响模压进程。
在一种具体的实施方式中,所述压块底面中间区域于靠近左右楔块的位置处分别设置有左让位槽(361)与右让位槽(362),左让位槽与右让位槽用于防止因压块底面不平整而造成模压不到位的情况。
在一种具体的实施方式中,所述工形加筋构件模具还用于将主体壁板(7)、下缘块、两个背对背设置的C形预制件与上缘块一体压制成工形加筋构件,所述底座的承压面上凹设有用于放置部分或全部主体壁板(7)的凹槽(312),所述凹槽横向尺寸不超过左右梯形条的横向尺寸,凹槽的深度小于或等于主体壁板的厚度,使得放置在凹槽内的主体壁板顶面高于或等于底座承压面的高度,从而便于主体壁板与工字形加强筋在模压过程中结合成一体。
在一种具体的实施方式中,所述底座的左右边部分别设置有用于对压块与左右楔块进行限位的左挡板(313)与右挡板(314),左挡板与右挡板用于防止模压过程中压块与左右楔块发生横向游移,从而准确的保证工字形加强筋与主体壁板之间的相对位置。
在一种具体的实施方式中,所述主体壁板连接设置有多根工字形加强筋,相应的,所述底座上设置有多组上模组,每组上模具对应一根工字形加强筋。
在一种具体的实施方式中,所述平板预制件模具包括上模块(11)与下模块(12),上模块的底面及下模块的顶面均为用于对预浸料片施压的平直的型面。
在一种具体的实施方式中,所述C形预制件模具包括在上的阳模(23)与在下的阴模(24),阴模上设置有用于定位与放置平板预制件的定位槽(25),定位槽的槽底设置有用于将平直的平板预制件压成弯曲的C形预制件的凹腔(26),所述阳模上设置有向下伸出的凸部(231),凸部上设置有与最终所要得到的C形预制件正面槽形相同的型面。
在一种具体的实施方式中,工字形加强筋与主体壁板的材质均采用热塑性树脂基复合材料,所述热塑性树脂基复合材料中的纤维增强材料采用碳纤维或玻璃纤维,所述热塑性树脂基复合材料中的树脂基采用聚丙烯、聚醚醚酮或聚苯硫醚,所述模压成型模具的材质为硬质金属材料。
本发明还提供一种热塑性复合材料工形加筋构件的模压成型方法,包括以下步骤:
S1)制作平板预制件、可选择地制作上缘块预制件与下缘块预制件:用模压的方式将层铺叠在一起的事先裁剪好的热塑性复合材料预浸料一压制成平板预制件,可选地用模 压的方式将层铺叠在一起的事先裁剪好的热塑性复合材料预浸料二与预浸料三分别压制成上缘块预制件与下缘块预制件。
S2)制作C形预制件:用模压的方式将步骤S1制得的平板预制件压弯制成C形预制件。
S3)制作工形加筋构件:取两个由步骤S2制得的C形预制件,将两个C形预制件背对背设置,槽口朝左的定义为左侧C形预制件,可选地另分别裁取并层叠热塑性复合材料预浸料二(410)与预浸料三(420)作为工字形加强筋的上缘块(41)与下缘块(42)的原材料,槽口朝右的定义为右侧C形预制件,再裁取另取预浸料片并将浸料片裁剪成细丝或细条用于作为上填充块与下填充块,上填充块用于设置在上缘块与两个C形预制件所围成的三角区域中,下填充块用于设置在下缘块与两个C形预制件所围成的三角区域中,从下至上依次将主体壁板、下缘块预制件或下缘块预浸料三、下填充块预浸料五、两个背对背设置的C形预制件、上填充块预浸料四与上缘块预制件或上缘块预浸料二放置在工形加筋构件模具中,用模压的方式将主体壁板、下缘块预制件或下缘块预浸料、两个背对背设置的C形预制件与上缘块预制件或上缘块预浸料一体压制成工形加筋构件;上填充块与下填充块均可采用预浸料细丝和/或预浸料细条堆积构成,也可将预浸料细丝和/或预浸料细条模压制成预制件后作为上填充块与下填充块使用。
所述步骤S3中的工形加筋构件模具包括底座及设置在底座上的上模组,所述上模组包括左梯形条、右梯形条、左楔块、右楔块与压块,所述左梯形条的右侧壁设置有与左侧C形预制件正面槽形匹配的左成型面,右梯形条的左侧壁设置有与右侧C形预制件正面槽形匹配的右成型面,所述左梯形条的左侧壁及右梯形条的右侧壁均设置有倾斜面,所述倾斜面的倾斜方向设置为使得左梯形条与右梯形条对应有倾斜面的区域的上端为窄端,下端为宽端;所述压块用于将由外部压力机构提供的向下的模压压力传递给左右梯形条,所述左楔块与右楔块分别固定设置在压板底面左右边缘位置处,左楔块的内侧壁设置成与左梯形块上的倾斜面匹配的斜面结构,右楔块的内侧壁也设置成与右梯形块上的倾斜面匹配的斜面结构;左右楔块与左右梯形条之间的斜面结构使得压块的向下的模压压力的一部分被左右梯形条转化为指向工字形加强筋的水平方向的压力,即将单一的竖向方向的模压压力转化为向下加上左右两个方向共三个方向的模压压力。
所述左右梯形条的倾斜面的倾斜角度为65~85°,即左右梯形条的倾斜面与底面之间的夹角等于65~85°。
进一步的,所述左右楔块的竖向尺寸设置为满足以下条件:当所述压块位于模压行程终点时,即所述压块位于向下位移行程的终点时,所述左右梯形条的底面刚好与底座的承压面相抵,且压块底面位于左楔块与右楔块之间的中间区域也刚好与左右梯形条顶面相抵,此时,左右楔块的底面与底座的承压面之间还存有间隙或未达到相抵的状态,以防止左右楔块底端影响模压进程。
进一步的,所述压块底面中间区域于靠近左右楔块的位置处分别设置有左让位槽与右让位槽,左让位槽与右让位槽用于防止因压块底面不平整而造成模压不到位的情况。
进一步的,所述底座的承压面上凹设有用于放置部分或全部主体壁板的凹槽,所述凹槽横向尺寸不超过左右梯形条的横向尺寸,凹槽的深度小于或等于主体壁板的厚度,使得放置在凹槽内的主体壁板顶面高于或等于底座承压面的高度,从而便于主体壁板与工字形加强筋在模压过程中结合成一体。
进一步的,所述底座的左右边部分别设置有用于对压块与左右楔块进行限位的左挡板与右挡板,左挡板与右挡板用于防止模压过程中压块与左右楔块发生横向游移,从而准确的保证工字形加强筋与主体壁板之间的相对位置。
进一步的,所述主体壁板连接设置有多根工字形加强筋,相应的,所述底座上设置有多组上模组,每组上模具对应一根工字形加强筋。
进一步的,所述步骤S1中的平板预制件、上缘块预制件与下缘块预制件均采用平板预制件模具模压成型,所述平板预制件模具包括上模块与下模块,上模块的底面及下模块的顶面均为用于对预浸料片施压的平直的型面。
进一步的,所述步骤S2中的C形预制件采用C形预制件模具模压成型,所述C形预制件模具包括在上的阳模与在下的阴模,阴模上设置有用于定位与放置平板预制件的定位槽,定位槽的槽底设置有用于将平直的平板预制件压成弯曲的C形预制件的凹腔,所述阳模上设置有向下伸出的凸部,凸部上设置有与最终所要得到的C形预制件正面槽形相同的型面。
优选的,工字形加强筋与主体壁板的材质均采用热塑性树脂基复合材料,所述热塑性树脂基复合材料中的纤维增强材料采用碳纤维或玻璃纤维,所述热塑性树脂基复合材料中的树脂基采用聚丙烯(PP)、聚醚醚酮(PEEK)或聚苯硫醚(PPS)等树脂,所述模压成型模具的材质为硬质金属材料。
当工字形加强筋与主体壁板的材质均采用碳纤维增强聚醚醚酮这种热塑性复合材料时所述步骤S1~S3的工艺参数条件如下:
所述步骤S1中,平板预制件、上缘块预制件与下缘块预制件的模压成型温度均为370℃~380℃,施加的模压压力为1MPa~4MPa,保温时间为10~30min,模压压力的保持时间为50min~60min;
所述步骤S2中,C形预制件的模压成型温度为370℃~380℃,保温时间10~30min,施加模压压力1MPa~2MPa,模压压力的保持时间为50~60min;
所述步骤S3中,工形加筋构件的模压成型温度为390℃~410℃,保温时间20~40min,施加模压压力3MPa~5MPa,模压压力的保持时间为50~70min。
本发明至少具有以下有益效果:
本发明提供了一种带工字形加强筋的热塑性复合材料构件的模压成型方法,先通过一次模压将热塑性复合材料预浸料片预制成一定厚度的平板,然后通过二次模压预制两个C形预制件,然后结合上下缘块预制件进行工形加筋构件预组合,最终在模具中进行构件三次模压成型。先用模压模具将复合材料预浸料压制成平板预制件,再将平板预制件压弯成C形预制件,再将两块背对背设置的C形预制件与上缘块预浸料、下缘块预浸料及主体壁板一体压制成工形加筋构件,其中主体壁板可为预浸料或预制件。
本发明克服了现有的模压工艺中存在的无法进行多向传压、复杂构件成型传压困难导致的构件厚度不均匀和孔隙率高等问题,从而实现工形加筋构件的低成本制造,为先进热塑性树脂基复合材料在航空领域的应用奠定基础。
本发明中,模压模具包括平板模具、C形预制件模具以及工形加筋构件模具,平板模具用于将热塑性复合材料预浸料压制成平板预制件,C形预制件模具用于将平板预制件压制成C形预制件,工形加筋构件模具用于将两块背对背设置的C形预制件压制成工字形加强筋,工形加筋构件模具包括底座及设置在底座上的一组或多组上模组。
本发明中,C形预制件由平板预制件模压而成,只需将平板预制件放置在C形预制件模具的定位槽中即可进行模压,相比于现有的采用预浸料片铺贴在C形凸模上的成型方法,用本发明的模具组件加工起来更加方便快捷,且定位槽对平板预制件有定位作用,得到的C形预制件尺寸精度也较高,省时省力,减小成本且又可靠。
工形加筋构件模具的上模组内部设置有倾斜面,左右楔块上设置有上窄下宽的倾斜面,左右梯形块上设置有与左右楔块上的倾斜面匹配的上宽下窄的倾斜面,通过左右两边各形成一组贴合的可相对滑动的倾斜面,使得压块的向下的模压压力被左右梯形条转化为指向工字形加强筋的水平方向的压力,即将单一的竖向方向的模压压力转化为向下加上左右两个方向共三个方向的模压压力,从而无需另外设置水平方向的模压压力,简 化了设备与工艺,整个上模组与底座均可放到平板硫化机的上下模板之间,并利用平板硫化机的加热系统进行加热升温,无需抽真空,经济、快速又可靠,促进了带工字形加强筋的产品的量产化。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明优选实施例的工形加筋构件的模压成型方法步骤图;
图2是本发明优选实施例的平板模具横截面剖视结构图;
图3是本发明优选实施例的C形预制件模具横截面剖视结构图;
图4是本发明优选实施例的工形加筋构件模具横截面分解式结构图(对应的主体壁板只有一根工字形加强筋);
图5是在主体壁板只有一根工字形加强筋时,本发明优选实施例的工形加筋构件模具的各部件位于模压行程终点时的横截面剖视结构图;
图6是在主体壁板有两根工字形加强筋时,本发明的工形加筋构件模具的各部件位于模压行程终点时的横截面剖视结构图;
图7是本发明优选实施例的工形加筋构件的另一种模压成型方法步骤图;
图8是本发明优选实施例的模具组件所要模压加工得到的工字形加强筋与主体壁板的横截面分解式结构图。
图中:1-平板模具,10-平板预制件,101-预浸料一,11-上模块,12-下模块,2-C形预制件模具,20-C形预制件,21-顶边,22-底边,23-阳模,231-凸部,24-阴模,25-定位槽,26-凹腔,261-圆倒角,3-工形加筋构件模具,31-底座,311-承压面,312-凹槽,313-左挡板,314-右挡板,32-左梯形条,321-左成型面,322-左倾斜面,33-右梯形条,331-右成型面,332-右倾斜面,34-左楔块,35-右楔块,36-压块,361-左让位槽,362-右让位槽,4-工字形加强筋,41-上缘块预制件,410-预浸料二,42-下缘块预制件,420-预浸料三,43-左侧C形预制件,44-右侧C形预制件,45-上填充块,450-上填充块预浸料四,46-下填充块,460-下填充块预浸料五,5-顶槽,6-底槽,7-主体壁板。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。
参见图1的本发明优选实施例的工形加筋构件的模压成型方法步骤,以及图2~图6的本发明优选实施例的工形加筋构件的模压成型方法所设置选用的模具。
本实施例中,上缘块、下缘块、上填充块、下填充块、工字形加强筋与主体壁板的材质均采用碳纤维增强聚醚醚酮这种热塑性树脂基复合材料。
参见图1,本实施例的工形加筋构件的模压成型方法包括以下步骤:
S1)制作平板预制件10、上缘块预制件41与下缘块预制件42:用模压的方式将层铺叠在一起的事先裁剪好的热塑性复合材料预浸料一101压制成平板预制件,用模压的方式将层铺叠在一起的事先裁剪好的热塑性复合材料预浸料二410与预浸料三420分别压制成上缘块预制件与下缘块预制件。
碳纤维增强聚醚醚酮复合材料的理想成型温度为370℃~410℃,预浸料一、预浸料二与预浸料三的单层厚度均为0.14mm,根据单层厚度及目标成型厚度算出预浸料层数后,即可进行第一次模压成型,得到平板预制件、上缘块预制件与下缘块预制件。根据工字形加强筋4的尺寸计算出须要预成型的平板预制件、上缘块预制件与下缘块预制件人尺寸,分别裁剪一定量的预浸料一、预浸料二与预浸料三,设置如图2所示的平板模具。为尽可能降低高温反复成型对复合材料性能的影响,第一次模压成型的温度为370℃~380℃,施加压力为1MPa~4MPa,保温时间为10~30min,保压时间为50min~60min。
S2)制作C形预制件:用C形预制件模具2将步骤S1制得的平板预制件压弯制成C形预制件2。
平板预制件模压成型后进行第二次模压预制成型,得到C形预制件,成型模具如图3所示。为尽可能降低高温反复成型对制件性能的影响,第二次模压成型温度为370℃~380℃,保温时间10~30min。为避免压力过大成型过程中溢胶导致制件厚度不均匀,成型压力1MPa~2MPa,保压时间为50~60min。
S3)制作工形加筋构件:取两个步骤S2制得的C形预制件,将两个C形预制件背对背设置,槽口朝左的定义为左侧C形预制件,槽口朝右的定义为右侧C形预制件,再裁取预浸料片并将浸料片裁剪成细丝或细条用于作为上填充块45与下填充块46,上填充块用于设置在上缘块与两个C形预制件所围成的三角区域中,下填充块用于设置在下缘块与两个C形预制件所围成的三角区域中,从下至上依次将主体壁板、下缘块预制件、下填充块预浸料五460、两个背对背设置的C形预制件、上填充块预浸料四450与上缘块预 制件放置在工形加筋构件模具中,用模压的方式将主体壁板、下缘块预制件、下填充块预浸料五、两个背对背设置的C形预制件、上填充块预浸料四与上缘块预制件一体压制成工形加筋构件;
预制完一对C形预制件后即可进行工形加筋构件成型,预组合方式如图1所示,工形加筋构件的所有部件均采用预制件进行预组合。根据工艺要求制件须在水平方向和垂直方向同时受压才能保证成型质量,而现有的绝大部分压机都只能提供单向压力(一般为竖直方向),因此设计了本发明的工形加筋构件模具,将模具置于压机上受纵向压力,在楔块及梯形条的挤压作用下制件能同时受横向压力,具体成型过程中,预浸料铺层完成后,将制件与模具温度同时加热至390℃~410℃后施加压力3MPa~5MPa,保温20min~40min,保压50min~70min。待模具降至室温后脱模,热塑性复合材料工形加筋构件即制备完成。
本实施例的模压成型方法所设置选用的模具包括平板模具1、C形预制件模具2以及工形加筋构件模具3,平板模具用于将若干层叠设在一起的事先裁剪好的热塑性复合材料预浸料片压制成平板预制件10,C形预制件模具用于将平板预制件10压制成C形预制件20,本实施例中,C形预制件20包括左侧C形预制件43及右侧C形预制件44,工形加筋构件模具3用于将上缘块预浸料410、下缘块预浸料420、左侧C形预制件43及右侧C形预制件44一起压制成工字形加强筋4,用于压制成工字形加强筋的所述上缘块与下缘块上下平行设置,上缘块与下缘块可以是热塑性复合材料预浸料片,也可以是热塑性复合材料预制件,用于压制成工字形加强筋的所述左侧C形预制件及右侧C形预制件设置在上缘块与下缘块中间且背对背对称设置,C形预制件的背面方向如图3所示,指与C形预制件竖直槽面相反的一侧。
本实施例中,工形加筋构件模具3包括底座31及设置在底座上的上模组,所述上模组包括左梯形条32、右梯形条33、左楔块34、右楔块35与压块36,所述左梯形条的右侧壁设置有与左侧C形预制件正面槽形匹配的左成型面321,右梯形条的左侧壁设置有与右侧C形预制件正面槽形匹配的右成型面331,所述左梯形条的左侧壁及右梯形条的右侧壁分别设置有左倾斜面322与右倾斜面332,所述倾斜面的倾斜方向设置为使得左梯形条与右梯形条对应有倾斜面的区域的上端为窄端,下端为宽端;所述压块用于将由外部压力机构提供的向下的模压压力传递给左右梯形条,外部压力机可以为平板硫化机,将本工形加筋构件模具放置在平板硫化机的上下模板之间,即可进行模压加工,所述平板模具1与C形预制件模具2也可以用平板硫化机进行模压加工,所述左楔块与右楔块分别 固定设置在压板底面左右边缘位置处,左楔块与右楔块关于压块的横向对称中心对称,左楔块的内侧壁设置成与左倾斜面匹配的斜面结构,右楔块的内侧壁也设置成与右倾斜面匹配的斜面结构;左右楔块与左右梯形条之间的斜面结构使得压块的向下的模压压力的一部分被左右梯形条转化为指向工字形加强筋的水平方向的压力,即将单一的竖向方向的模压压力转化为向下加上左右两个方向共三个方向的模压压力。
本实施例中,左倾斜面的倾斜角度均为80°,即左右倾斜面与左右梯形条的底面(亦为水平面)之间的夹角等于80°。
本实施例中,左右梯形条的竖向高度等于最终所要得到的工字形加强筋的目标高度,通过左右梯形条将左右侧C形预制件背对背相抵设置,左右梯形条会在左右成型面的顶部位置处围合成一条开口向上的顶槽5,并在左右成型面的底部位置处围合成一条开口向下的底槽6,所述顶槽的深度大于左右侧C形预制件的顶边21的厚度,所述底槽的深度大于左右侧C形预制件的底边22的厚度,以便于分别在顶槽与底槽内放置并定位上缘块与下缘块,进行模压。
本实施例中,左梯形条底部于左倾斜面的末端延续设置有左竖直面323,右梯形条底部于右倾斜面的末端延续设置有左竖直面333,竖直面一方面可防止在压块位于模压行程终点时,左右梯形条底部与左右楔块底部因尺寸误差而发生干涉或模压不到位的情况,另一方面可减小左右梯形条的横向尺寸,减小空间的占用,便于进行模压前整个上模组的预组装。
本实施例中,所述压块底面中间区域于靠近左右楔块的位置处分别设置有左让位槽361与右让位槽362,左让位槽与右让位槽用于防止因压块底面不平整而影响左右倾斜面对左右楔块的滑动导向,便于更好的转换并传递模压压力。
本实施例中,所述底座的承压面311上凹设有用于放置部分或全部主体壁板7的凹槽312,所述凹槽横向尺寸不超过左右梯形条的横向尺寸,凹槽的深度小于或等于主体壁板7的厚度,使得放置在凹槽内的主体壁板顶面高于或等于底座承压面的高度,从而便于主体壁板与工字形加强筋在模压过程中结合成一体,形成工形加筋构件。主体壁板指将复合材料预浸料片预压形成的工字形加强筋所要安装与服役的主体(主体可为飞机机翼壳体或其他小型构件)蒙皮预制件。当主体壁板尺横向尺寸较小时,用于与工字形加强筋结合的所述壁板可由若干层纤维增强复合材料预浸料块层叠而成。
本实施例中,所述左右楔块的竖向尺寸设置为满足以下条件:当所述压块位于模压行程终点时,即所述压块位于向下位移行程的终点时,所述左右梯形条的底面刚好与底 座的承压面相抵,且压块底面位于左楔块与右楔块之间的中间区域也刚好与左右梯形条顶面相抵,此时,左右楔块的底面与底座的承压面之间还存有间隙或未达到相抵的状态,以防止左右楔块底端影响模压进程。
本实施例中,压块的左侧壁、右侧壁分别与左楔块的外侧壁、右楔块的外侧壁共同构成一块平面,所述底座的左右边部分别设置有用于对压块与左右楔块进行限位的左挡板313与右挡板314,左挡板与右挡板的内侧壁均为平直面且两者的内侧壁平行设置,压块的横向宽度等于左右挡板之间的横向距离,且左挡板的内侧壁与左楔块的外侧壁相贴,右挡板的内侧壁与右楔块的外侧壁相贴,左挡板与右挡板用于防止模压过程中压块与左右楔块发生横向游移,从而准确的保证工字形加强筋与主体壁板之间的相对位置。
参见图6的本发明的工形加筋构件模具的另一种形式,主体壁板连接设置有两根工字形加强筋,相应的,所述底座上设置有两组上模组,每组上模具对应一根工字形加强筋,且两组上模组的压块一体设置,两组上模组相邻位置处的左右楔块也设置成一体。
参见图2,本实施例中,所述平板模具1包括上模块11与下模块12,上模块的底面及下模块的顶面均为用于对热塑性复合材料料预浸料片施压的平直的型面,上模块顶面与下模块底面均为平直面,以便于与平板硫化机的上下模板贴合,便于对热和模压压力进行传递,热塑性复合材料料预浸料片在平板硫化机上经平板模具压制后即可得到平板预制件10。
参见图3,本实施例中,所述C形预制件模具2包括在上的阳模23与在下的阴模24,阴模上设置有用于定位与放置平板预制件10的定位槽25,定位槽的侧壁与平板预制件外轮廓匹配,以对平板预制件起到良好的定位作用,从而无需另外设置定位部件,简单又方便,定位槽的槽底设置有凹腔26,凹腔底面设置为与最终所要得到的C形预制件背面轮廓相同的型面一,所述阳模上设置有向下伸出的与所述凹腔匹配的凸部231,凸部上设置有与最终所要得到的C形预制件正面槽形相同的型面二,在平板硫化机提供的温度与压力下,平直的平板预制件经凸部与凹腔的共同作用下成型为C形预制件。凹腔的位置根据所要得到的C形预制件结构确定,参见图3,凹腔在横向方向上更靠近定位槽右边侧壁,则得到的平放的C形预制件的较短边位于右边。本实施例中,凹腔的侧壁顶部与定位槽交界位置处的拐角处设置有便于平板预制件发生弯曲的圆倒角261。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种热塑性复合材料工形加筋构件的模压成型模具组件,其特征在于,包括平板预制件模具(1)、C形预制件模具(2)以及工形加筋构件模具(3),所述平板预制件模具用于将热塑性复合材料预浸料压制成平板预制件(10),所述C形预制件模具用于将平板预制件压制成C形预制件,所述工形加筋构件模具至少能够用于将上缘块(41)、下缘块(42)、上填充块(45)、下填充块(46)、左侧C形预制件(43)及右侧C形预制件(44)一起压制成工字形加强筋,用于压制成工字形加强筋的所述上缘块与下缘块上下平行设置,用于压制成工字形加强筋的所述左侧C形预制件及右侧C形预制件设置在上缘块与下缘块中间且背对背设置,所述上填充块设置在上缘块与两个C形预制件所围成的三角区域中,所述下填充块设置在下缘块与两个C形预制件所围成的三角区域中;
    所述工形加筋构件模具包括底座(31)及设置在底座上的上模组,所述上模组包括左梯形条(32)、右梯形条(33)、左楔块(34)、右楔块(35)与压块(36),所述左梯形条的右侧壁设置有与左侧C形预制件正面槽形匹配的左成型面(321),右梯形条的左侧壁设置有与右侧C形预制件正面槽形匹配的右成型面(331),所述左梯形条的左侧壁及右梯形条的右侧壁均设置有倾斜面(322/332),所述倾斜面的倾斜方向设置为使得左梯形条与右梯形条对应有倾斜面的区域的上端为窄端,下端为宽端;所述压块用于将由外部压力机构提供的向下的模压压力传递给左右梯形条,所述左楔块与右楔块分别固定设置在压板底面左右边缘位置处,左楔块的内侧壁设置成与左梯形块上的倾斜面匹配的斜面结构,右楔块的内侧壁也设置成与右梯形块上的倾斜面匹配的斜面结构;左右楔块与左右梯形条之间的斜面结构使得压块的向下的模压压力的一部分被左右梯形条转化为指向工字形加强筋的水平方向的压力,即将单一的竖向方向的模压压力转化为向下加上左右两个方向共三个方向的模压压力。
  2. 根据权利要求1所述的一种热塑性复合材料工形加筋构件的模压成型模具组件,其特征在于,所述左右梯形条的倾斜面的倾斜角度为65~85°,所述左右楔块的竖向尺寸设置为满足以下条件:当所述压块位于模压行程终点时,即所述压块位于向下位移行程的终点时,所述左右梯形条的底面刚好与底座的承压面(311)相抵,且压块底面位于左楔块与右楔块之间的中间区域也刚好与左右梯形条顶面相抵,此时,左右楔块的底面与底座的承压面之间还存有间隙或未达到相抵的状态,以防止左右楔块底端影响模压进程。
  3. 根据权利要求1所述的一种热塑性复合材料工形加筋构件的模压成型模具组件,其特征在于,所述压块底面中间区域于靠近左右楔块的位置处分别设置有左让位槽(361)与右让位槽(362),左让位槽与右让位槽用于防止因压块底面不平整而造成模压不到位的情况。
  4. 根据权利要求1所述的一种热塑性复合材料工形加筋构件的模压成型模具组件,其特征在于,所述工形加筋构件模具还用于将主体壁板(7)、下缘块、两个背对背设置的C形预制件与上缘块一体压制成工形加筋构件,所述底座的承压面上凹设有用于放置部分或全部主体壁板(7)的凹槽(312),所述凹槽横向尺寸不超过左右梯形条的横向尺寸,凹槽的深度小于或等于主体壁板的厚度,使得放置在凹槽内的主体壁板顶面高于或等于底座承压面的高度,从而便于主体壁板与工字形加强筋在模压过程中结合成一体。
  5. 根据权利要求1所述的一种热塑性复合材料工形加筋构件的模压成型模具组件,其特征在于,所述底座的左右边部分别设置有用于对压块与左右楔块进行限位的左挡板(313)与右挡板(314),左挡板与右挡板用于防止模压过程中压块与左右楔块发生横向游移,从而准确的保证工字形加强筋与主体壁板之间的相对位置。
  6. 根据权利要求5所述的一种热塑性复合材料工形加筋构件的模压成型模具组件,其特征在于,所述主体壁板连接设置有多根工字形加强筋,相应的,所述底座上设置有多组上模组,每组上模具对应一根工字形加强筋。
  7. 根据权利要求1~6中任意一项所述的一种热塑性复合材料工形加筋构件的模压成型模具组件,其特征在于,所述平板预制件模具包括上模块(11)与下模块(12),上模块的底面及下模块的顶面均为用于对预浸料片施压的平直的型面。
  8. 根据权利要求1~6中任意一项所述的一种热塑性复合材料工形加筋构件的模压成型模具组件,其特征在于,所述C形预制件模具包括在上的阳模(23)与在下的阴模(24),阴模上设置有用于定位与放置平板预制件的定位槽(25),定位槽的槽底设置有用于将平直的平板预制件压成弯曲的C形预制件的凹腔(26),所述阳模上设置有向下伸出的凸部(231),凸部上设置有与最终所要得到的C形预制件正面槽形相同的型面。
  9. 根据权利要求8所述的一种热塑性复合材料工形加筋构件的模压成型模具组件,其特征在于,工字形加强筋与主体壁板的材质均采用热塑性树脂基复合材料,所述热塑性树脂基复合材料中的纤维增强材料采用碳纤维或玻璃纤维,所述热塑性树脂基复合材料中的树脂基采用聚丙烯、聚醚醚酮或聚苯硫醚,所述模压成型模具的材质为硬质金属材料。
  10. 一种热塑性复合材料工形加筋构件的模压成型方法,其特征在于,包括以下步骤:
    S1)制作平板预制件(10),可选择地制作上缘块预制件(41)与下缘块预制件(42):用模压的方式将层铺叠在一起的事先裁剪好的热塑性复合材料预浸料一(101)压制成平板预制件,可选地用模压的方式将层铺叠在一起的事先裁剪好的热塑性复合材料预浸料二(410)与预浸料三(420)分别压制成上缘块预制件与下缘块预制件;
    S2)制作C形预制件(20):用模压的方式将步骤S1制得的平板预制件压弯制成C形预制件;
    S3)制作工形加筋构件:取两个由步骤S2制得的C形预制件,可选地另分别裁取并层叠热塑性复合材料预浸料二(410)与预浸料三(420)作为工字形加强筋的上缘块(41)与下缘块(42)的原材料,将两个C形预制件(20)背对背设置,槽口朝左的定义为左侧C形预制件(43),槽口朝右的定义为右侧C形预制件(44),再裁取预浸料片并将浸料片裁剪成细丝或细条用于作为上填充块(45)与下填充块(46),上填充块用于设置在上缘块与两个C形预制件所围成的三角区域中,下填充块用于设置在下缘块与两个C形预制件所围成的三角区域中,从下至上依次将主体壁板(7)、下缘块预制件(42)或下缘块预浸料三(420)、下填充块预浸料五(460)、两个背对背设置的C形预制件、上填充块预浸料四(450)与上缘块预制件(41)或上缘块预浸料二(410)放置在工形加筋构件模具(3)中,用模压的方式将主体壁板、下缘块预制件或下缘块预浸料、两个背对背设置的C形预制件与上缘块预制件或上缘块预浸料一体压制成工形加筋构件;
    所述步骤S3中的工形加筋构件模具(3)包括底座(31)及设置在底座上的上模组,所述上模组包括左梯形条(32)、右梯形条(33)、左楔块(34)、右楔块(35)与压块(36),所述左梯形条的右侧壁设置有与左侧C形预制件正面槽形匹配的左成型面(321),右梯形条的左侧壁设置有与右侧C形预制件正面槽形匹配的右成型面(331),所述左梯形条的左侧壁及右梯形条的右侧壁均设置有倾斜面(322/332),所述倾斜面的倾斜方向设置为使得左梯形条与右梯形条对应有倾斜面的区域的上端为窄端,下端为宽端;所述压块用于将由外部压力机构提供的向下的模压压力传递给左右梯形条,所述左楔块与右楔块分别固定设置在压板底面左右边缘位置处,左楔块的内侧壁设置成与左梯形块上的倾斜面匹配的斜面结构,右楔块的内侧壁也设置成与右梯形块上的倾斜面匹配的斜面结构;左右楔块与左右梯形条之间的斜面结构使得压块的向下的模压压力的一部分被左右梯形条转化为指向工字形 加强筋的水平方向的压力,即将单一的竖向方向的模压压力转化为向下加上左右两个方向共三个方向的模压压力。
  11. 根据权利要求10所述的热塑性复合材料工形加筋构件的模压成型方法,其特征在于,所述左右梯形条的倾斜面的倾斜角度为65~85°,所述左右楔块的竖向尺寸设置为满足以下条件:当所述压块位于模压行程终点时,即所述压块位于向下位移行程的终点时,所述左右梯形条的底面刚好与底座的承压面(311)相抵,且压块底面位于左楔块与右楔块之间的中间区域也刚好与左右梯形条顶面相抵,此时,左右楔块的底面与底座的承压面之间还存有间隙或未达到相抵的状态,以防止左右楔块底端影响模压进程。
  12. 根据权利要求10所述的一种热塑性复合材料工形加筋构件的模压成型方法,其特征在于,所述压块底面中间区域于靠近左右楔块的位置处分别设置有左让位槽(361)与右让位槽(362),左让位槽与右让位槽用于防止因压块底面不平整而造成模压不到位的情况。
  13. 根据权利要求10所述的一种热塑性复合材料工形加筋构件的模压成型方法,其特征在于,所述底座的承压面上凹设有用于放置部分或全部主体壁板(7)的凹槽(312),所述凹槽横向尺寸不超过左右梯形条的横向尺寸,凹槽的深度小于或等于主体壁板的厚度,使得放置在凹槽内的主体壁板顶面高于或等于底座承压面的高度,从而便于主体壁板与工字形加强筋在模压过程中结合成一体。
  14. 根据权利要求10所述的一种热塑性复合材料工形加筋构件的模压成型方法,其特征在于,所述底座的左右边部分别设置有用于对压块与左右楔块进行限位的左挡板(313)与右挡板(314),左挡板与右挡板用于防止模压过程中压块与左右楔块发生横向游移,从而准确的保证工字形加强筋与主体壁板之间的相对位置。
  15. 根据权利要求10所述的一种热塑性复合材料工形加筋构件的模压成型方法,其特征在于,所述主体壁板连接设置有多根工字形加强筋,相应的,所述底座上设置有多组上模组,每组上模具对应一根工字形加强筋。
  16. 根据权利要求10~15中任意一项所述的一种热塑性复合材料工形加筋构件的模压成型方法,其特征在于,所述步骤S1中的平板预制件采用平板预制件模具(1)模压成型,所述平板预制件模具包括上模块(11)与下模块(12),上模块的底面及下模块的顶面均为用于对预浸料片施压的平直的型面。
  17. 根据权利要求10~15中任意一项所述的一种热塑性复合材料工形加筋构件的模压成型方法,其特征在于,所述步骤S2中的C形预制件采用C形预制件模具(2)模压成型, 所述C形预制件模具包括在上的阳模(23)与在下的阴模(24),阴模上设置有用于定位与放置平板预制件的定位槽(25),定位槽的槽底设置有用于将平直的平板预制件压成弯曲的C形预制件的凹腔(26),所述阳模上设置有向下伸出的凸部(231),凸部上设置有与最终所要得到的C形预制件正面槽形相同的型面。
  18. 根据权利要求17所述的一种热塑性复合材料工形加筋构件的模压成型方法,其特征在于,工字形加强筋与主体壁板的材质采用热塑性树脂基复合材料,所述热塑性树脂基复合材料中的纤维增强材料采用碳纤维或玻璃纤维,所述热塑性树脂基复合材料中的树脂基采用聚丙烯、聚醚醚酮或聚苯硫醚,所述模压成型模具的材质为硬质金属材料。
  19. 根据权利要求18所述的一种热塑性复合材料工形加筋构件的模压成型方法,其特征在于,所述上缘块、下缘块、上填充块、下填充块、工字形加强筋与主体壁板的材质均采用碳纤维增强聚醚醚酮这种热塑性树脂基复合材料,所述步骤S1中,平板预制件、上缘块预制件与下缘块预制件的模压成型温度均为370℃~380℃,施加的模压压力为1MPa~4MPa,保温时间为10~30min,模压压力的保持时间为50min~60min;
    所述步骤S2中,C形预制件的模压成型温度为370℃~380℃,保温时间10~30min,施加模压压力1MPa~2MPa,模压压力的保持时间为50~60min;
    所述步骤S3中,工形加筋构件的模压成型温度为390℃~410℃,保温时间20~40min,施加模压压力3MPa~5MPa,模压压力的保持时间为50~70min。
PCT/CN2020/103851 2019-07-30 2020-07-23 热塑性复合材料工形加筋构件的模压成型模具组件及方法 WO2021018002A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910696498.2A CN110341210B (zh) 2019-07-30 2019-07-30 带工字形加强筋的热塑性复合材料构件的模压成型方法
CN201910696498.2 2019-07-30
CN201910696503.XA CN110341211B (zh) 2019-07-30 2019-07-30 一种热塑性复合材料工形加筋构件的模压成型模具组件
CN201910696485.5A CN110341209B (zh) 2019-07-30 2019-07-30 一种热塑性复合材料工形加筋构件的模压成型方法
CN201910696503.X 2019-07-30
CN201910696485.5 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021018002A1 true WO2021018002A1 (zh) 2021-02-04

Family

ID=74229463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103851 WO2021018002A1 (zh) 2019-07-30 2020-07-23 热塑性复合材料工形加筋构件的模压成型模具组件及方法

Country Status (1)

Country Link
WO (1) WO2021018002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3142118A1 (fr) * 2022-11-23 2024-05-24 Daher Aerospace Procédé pour l’intégration d’une ferrure entre des ailes d’un profilé

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130049258A1 (en) * 2011-08-24 2013-02-28 The Boeing Company Method and Apparatus for Fabricating Variable Gauge, Contoured Composite Stiffeners
US20130168009A1 (en) * 2011-12-29 2013-07-04 Airbus Operations, S.L. Method for manufacturing pieces of composite material having varied thicknesses
CN106799848A (zh) * 2016-12-09 2017-06-06 中国商用飞机有限责任公司 “c”形橡胶芯模成型方法、用于“工”形构件的成型方法和用于“工”形构件的成型装置
CN108789962A (zh) * 2018-07-13 2018-11-13 中国航发北京航空材料研究院 一种制备复合材料加筋结构的模具
CN108973159A (zh) * 2017-05-31 2018-12-11 中国商用飞机有限责任公司 一种复合材料工字型长桁成型工艺
CN109676959A (zh) * 2018-12-07 2019-04-26 中国航空工业集团公司济南特种结构研究所 一种t型复合材料制件模压成型装置
CN110341211A (zh) * 2019-07-30 2019-10-18 中南大学 一种热塑性复合材料工形加筋构件的模压成型模具组件
CN110341210A (zh) * 2019-07-30 2019-10-18 中南大学 带工字形加强筋的热塑性复合材料构件的模压成型方法
CN110341209A (zh) * 2019-07-30 2019-10-18 中南大学 一种热塑性复合材料工形加筋构件的模压成型方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130049258A1 (en) * 2011-08-24 2013-02-28 The Boeing Company Method and Apparatus for Fabricating Variable Gauge, Contoured Composite Stiffeners
US20130168009A1 (en) * 2011-12-29 2013-07-04 Airbus Operations, S.L. Method for manufacturing pieces of composite material having varied thicknesses
CN106799848A (zh) * 2016-12-09 2017-06-06 中国商用飞机有限责任公司 “c”形橡胶芯模成型方法、用于“工”形构件的成型方法和用于“工”形构件的成型装置
CN108973159A (zh) * 2017-05-31 2018-12-11 中国商用飞机有限责任公司 一种复合材料工字型长桁成型工艺
CN108789962A (zh) * 2018-07-13 2018-11-13 中国航发北京航空材料研究院 一种制备复合材料加筋结构的模具
CN109676959A (zh) * 2018-12-07 2019-04-26 中国航空工业集团公司济南特种结构研究所 一种t型复合材料制件模压成型装置
CN110341211A (zh) * 2019-07-30 2019-10-18 中南大学 一种热塑性复合材料工形加筋构件的模压成型模具组件
CN110341210A (zh) * 2019-07-30 2019-10-18 中南大学 带工字形加强筋的热塑性复合材料构件的模压成型方法
CN110341209A (zh) * 2019-07-30 2019-10-18 中南大学 一种热塑性复合材料工形加筋构件的模压成型方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3142118A1 (fr) * 2022-11-23 2024-05-24 Daher Aerospace Procédé pour l’intégration d’une ferrure entre des ailes d’un profilé
EP4378671A1 (en) 2022-11-23 2024-06-05 Daher Aerospace Method for integrating a fitting between the wings of a profile

Similar Documents

Publication Publication Date Title
CN110341212B (zh) 带工字形加强筋的热塑性复合材料构件的模压成型模具
CN110341210B (zh) 带工字形加强筋的热塑性复合材料构件的模压成型方法
CN110385861B (zh) 一种复合材料工字梁成型的方法
CN104766934B (zh) 一种用于轻量化电池箱的三明治结构的制备方法
CN106891548B (zh) 一种复合材料t型加筋壁板成型工装及成型方法
CN107199714A (zh) 一种共固化的变曲率复合材料加筋壁板成型工艺方法
CN110341209B (zh) 一种热塑性复合材料工形加筋构件的模压成型方法
CN112454938A (zh) 一种碳纤维蜂窝夹心复合材料构件的成型方法
CN104029397A (zh) 一种飞机复合材料机身壁板的制备装置及制备方法
CN111070724B (zh) 复合材料“u”型长桁壁板整体成型方法及其工装
WO2021018002A1 (zh) 热塑性复合材料工形加筋构件的模压成型模具组件及方法
CN109353027A (zh) 碳纤维复合材料交叉类网格结构的成型方法
CN110341211B (zh) 一种热塑性复合材料工形加筋构件的模压成型模具组件
CN206528102U (zh) 一种复合材料t型加筋壁板成型工装
CN106672203A (zh) 一种混杂复合材料平板梁式结构及其加工方法
CN105711110A (zh) 一种复合材料成型件的模具及模压成型方法
CN210283313U (zh) 带工字形加强筋的热塑性复合材料构件的模压成型模具
CN103434142A (zh) 制造复合材料型材的方法和模具
CN110103489A (zh) 一种高性能热塑性复合材料工字梁熔融粘接成型方法
CN112388993A (zh) 单侧加强的t型复合材料制件rtm整体成型模具及工艺
CN110561665B (zh) 一种复合材料帽型长桁成型模具
CN112606434A (zh) 一种h型梁的热膨胀性芯模辅助成型方法及h型梁
CN106926479A (zh) 一种复合材料多梁盒段共固化成型工装
CN106739001B (zh) 一种纤维复合材料的方形模组盒及其制作方法
CN108215239A (zh) 一种适用于t形和l形复合材料壁板的成型方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20845885

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20845885

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20845885

Country of ref document: EP

Kind code of ref document: A1