WO2021017653A1 - 一种基于分区硬化的装配结合面连接性能均匀性提升方法 - Google Patents

一种基于分区硬化的装配结合面连接性能均匀性提升方法 Download PDF

Info

Publication number
WO2021017653A1
WO2021017653A1 PCT/CN2020/095373 CN2020095373W WO2021017653A1 WO 2021017653 A1 WO2021017653 A1 WO 2021017653A1 CN 2020095373 W CN2020095373 W CN 2020095373W WO 2021017653 A1 WO2021017653 A1 WO 2021017653A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardening
joint surface
assembly joint
uniformity
dispersion
Prior art date
Application number
PCT/CN2020/095373
Other languages
English (en)
French (fr)
Inventor
林起崟
杨楠
洪军
张瑜寒
周意葱
刘炼
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2021017653A1 publication Critical patent/WO2021017653A1/zh
Priority to US17/585,625 priority Critical patent/US20220275473A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the invention relates to a technology for improving the performance of the assembly bonding surface of mechanical equipment, in particular to a method for improving the uniformity of the assembly bonding surface connection performance based on partition hardening.
  • connection performance of the carrier and assembly bonding surface plays an important role in the high-performance service of mechanical equipment.
  • poor connection uniformity and stiffness uniformity of the assembly joint surface are one of the main factors for high-cycle fatigue and excessive vibration of high-end equipment components such as aero engines. It has important engineering application value by carrying out precise shape control design and processing on the assembly joint surface to improve its connection uniformity and rigidity uniformity.
  • the surface morphology and surface hardness of the joint surface are two important factors that affect the uniformity of the assembly connection performance.
  • the surface topography design of the assembly joint surface has been applied more and more.
  • the world aero engine manufacturing giants such as the British Rolls Royce Company have designed the diameter of the assembly joint surface between the aero engine high-pressure turbine disc and the rear journal.
  • the "micro-spline" morphology of the texture has significantly improved the overall performance of aero-engines and effectively enhanced the competitiveness of its products in the international market.
  • the differential hardening design provides a new technology to improve the connection performance of the assembly interface of high-end equipment such as aero engines. way.
  • the purpose of the present invention is to propose a method for improving the uniformity of the connection performance of the assembly joint surface based on zone hardening, and optimize the design of the hardened layer layout on the assembly joint surface through finite element contact analysis, and then use laser strengthening technology According to the theoretical optimization results, the assembly bonding surface is hardened by partitions to achieve the purpose of improving the uniformity of the connection performance of the assembly bonding surface.
  • a method for improving the connection performance uniformity of the assembly bonding surface based on zone hardening including the following steps:
  • step 1) the non-uniform and consistent partitioned hardening layout design of the assembly joint surface is specifically: the assembly joint surface includes a first mating surface and a second mating surface matching the first mating surface. On the mating surface, the second mating surface, or the first mating surface and the second mating surface, non-uniform and uniform zone hardening is designed at the same time.
  • a further improvement of the present invention is that the steps of designing non-uniform and uniform zone hardening on the first mating surface, the second mating surface, or the first mating surface and the second mating surface at the same time are as follows:
  • step (6) According to the new value of the material elastic modulus obtained in step (6), update the finite element model of the assembly joint surface described in step (1), and perform a new finite element contact analysis.
  • a further improvement of the present invention is that, in step (3), the relative change rates ⁇ p and ⁇ s of the contact pressure dispersion and the connection stiffness dispersion between two adjacent optimization iteration steps;
  • Is the contact pressure dispersion of the k-th iteration step Is the contact pressure dispersion of iterative step k-1; Is the contact stiffness dispersion of the k-th iteration step, Is the contact stiffness dispersion of the k-1 iteration step.
  • a further improvement of the present invention is that in step (4), the weighting factor c between the contact pressure dispersion and the connection stiffness dispersion is in the range of 0 ⁇ c ⁇ 1.
  • a further improvement of the present invention is that in step (6), the elastic modulus of the material in the zone hardening optimization design area is optimized and updated by selecting one of the following two relational expressions:
  • a further improvement of the present invention is that in step 1), the length L and width W of each sub-region are 1-3 times the size D of the pulse laser spot.
  • step 2) the equivalent elastic modulus E T and the equivalent hardened thickness H T in the mating surface region T to be hardened are as follows:
  • the present invention Compared with the prior art, the present invention has the beneficial effects: the present invention optimizes the design of the hardened layer layout on the assembly joint surface through finite element contact analysis, and according to the pulse laser spot size D of the laser to be used, the assembly joint surface to be The hardened mating surface is divided into N sub-regions.
  • the pulse energy, pulse frequency and pulse width of the pulsed laser are determined, and the information matrix of the mating surface to be hardened is divided.
  • the pulse energy matrix, pulse frequency matrix and pulse width matrix of the pulsed laser are used as the control signals or parameters of the laser shock strengthening equipment, and the zone laser hardening can effectively improve the uniformity and stiffness uniformity of the assembly joint surface, and improve the high-end aviation engine High cycle fatigue and vibration problems of equipment.
  • Figure 1 is a schematic diagram of bolted flange connection
  • Figure 2 is a schematic diagram of the flange assembly joint surface
  • Figure 3 is a finite element mesh model diagram of the flange assembly joint surface
  • Figure 4 is a schematic diagram of the mating surface to be hardened
  • Figure 5 is a finite element mesh model diagram of the contact analysis of the joint surface of an aeroengine high-pressure rotor stop bolt connection assembly
  • Figure 6 is a cloud diagram of the contact pressure distribution of the high-pressure rotor stop bolt connection assembly joint surface shown in Figure 5 before the differential hardening design;
  • Fig. 7 is a three-dimensional distribution diagram of the contact pressure of the high-pressure rotor stop bolt connection assembly joint surface shown in Fig. 5 before the differential hardening design;
  • Fig. 8 is a cloud diagram of the contact pressure distribution after the differential hardening design of the high-pressure rotor stop bolt connection assembly joint surface shown in Fig. 5;
  • Fig. 9 is a three-dimensional distribution diagram of the contact pressure of the assembling surface of the high-pressure rotor stop bolt connection as shown in Fig. 5 after the differential hardening design.
  • 1 is the first mating surface
  • 2 is the second mating surface
  • 3 is the hardened area
  • the present invention is described by taking the assembly joint surface of bolt flange connection (see Fig. 1) as an example.
  • the assembly joint surface adopts a non-uniform and consistent zone hardening layout design.
  • the assembly joint surface includes a first mating surface 1 and a second mating surface 2 matching the first mating surface.
  • the non-uniform and uniform zone hardening is designed on the first mating surface, the second mating surface or Simultaneously designed on the first mating surface and the second mating surface.
  • Is the contact pressure dispersion of the k-th iteration step Is the contact pressure dispersion of iterative step k-1; Is the contact stiffness dispersion of the k-th iteration step, Is the contact stiffness dispersion of the k-1 iteration step.
  • step (6) Judge the uniformity of the connection performance and optimize the design objective function ⁇ . If ⁇ is satisfied, or the number of optimization iteration steps k meets k ⁇ N, the optimization is terminated, and the material elastic modulus data is output and saved; if ⁇ is not satisfied , Or the number of optimization iteration steps k does not satisfy k ⁇ N, that is, the above two conditions are not met, then execute step (6); where ⁇ is a set small constant value, generally 10 -3 , 10 -4 Or 10 -5 is used to control convergence, and N is the maximum number of iteration steps allowed.
  • e j is the elastic modulus of the finite element mesh j in the design domain
  • j 1, 2, 3,..., M
  • M is the total number of finite element meshes in the design domain
  • is the element Von Mises stress
  • ⁇ max and ⁇ min are the maximum and minimum element Von Mises stress on the contact interface
  • is the element connection stiffness
  • ⁇ max and ⁇ min are the maximum and minimum element connection stiffness on the contact interface.
  • step (6) update the finite element model of the assembly joint surface contact analysis in step (1), perform new finite element contact analysis and optimization design, that is, repeat step (2) Go to step (6) analysis.
  • the corresponding processing and manufacturing steps include:
  • the dispersion of the contact pressure described in the present invention can be characterized by the variance of the contact pressure on the mating surface or the range of the contact pressure on the mating surface.
  • connection stiffness described in the present invention can be characterized by the variance of the connection stiffness on the mating surface or the extreme difference of the connection stiffness on the mating surface.
  • the uniformity of pressure distribution and the uniformity of connection stiffness distribution are both characterized (0 ⁇ c ⁇ 1 case).
  • the invention optimizes the design of the hardened layer layout on the assembly joint surface through finite element contact analysis, and then uses the laser strengthening technology to perform regional differential hardening on the assembly joint surface according to the theoretical optimization results, which can effectively improve the uniformity and rigidity of the assembly joint surface. Uniformity, to improve high-cycle fatigue and vibration problems of high-end equipment such as aero engines.
  • the Chinese philosophy of "hardness and softness” is broad and profound and contains very profound design connotations. Only the combination of rigidity and softness can complement each other!
  • the present invention introduces the design scientific connotation contained in the philosophy of "Rigid and Flexible”-the differentiated design ("simultaneous development") of high-hardness (“rigid”) and low-hardness (“flexible”) surfaces into the mechanical assembly interface
  • the design of the "rigid” and “flexible” structures cooperate with each other to achieve load equalization, prevent and control stress concentration, and achieve uniform connection performance, which has important scientific significance.

Abstract

一种基于分区硬化的装配结合面连接性能均匀性提升方法,通过装配结合面有限元接触分析,以装配结合面连接性能均匀性为目标,进行装配结合面硬化层布局的拓扑优化设计,以优化的理论数据为依据,通过利用激光强化技术,进行装配结合面的分区差异性硬化。该方法通过在装配结合面上进行分区差异性硬化,可以有效提高装配结合面连接性能的均匀性,实现改善航空发动机等高端装备零部件高周疲劳和整机振动的目的。

Description

一种基于分区硬化的装配结合面连接性能均匀性提升方法 技术领域
本发明涉及一种机械装备装配结合面性能提升技术,具体是指一种基于分区硬化的装配结合面连接性能均匀性提升方法。
背景技术
机械装备是由若干个零件经螺栓等连接方式组装而成的具有一定功用的功能体;其零部件之间的装配结合面(又称装配连接界面)是承载和保障机械装备实现既定功能的关键载体,装配结合面连接性能的均匀性(即结合面上接触压力、连接刚度等的分布均匀程度)对机械装备高性能服役具有重要作用。譬如装配结合面连接均匀程度和刚度均匀性差是航空发动机等高端装备零部件高周疲劳和振动过大的主要因素之一。通过对装配结合面开展精准控形控性设计与加工,以提高其连接均匀程度和刚度均匀性,具有重要的工程应用价值。抛开装配结合面的连接紧固工艺,聚焦于装配结合面的设计,结合面的的表面形貌和表面硬度是影响装配连接性能均匀性的两大重要因素。目前,装配结合面的表面形貌设计已得到越来越多的应用,如英国Rolls Royce公司等世界航空发动机制造巨头通过在航空发动机高压涡轮盘与后轴颈之间的装配结合面上设计径向纹理“micro-spline”形貌,显著提升了航空发动机的综合性能,有效增强了其产品在国际市场的竞争力。过往,囿于表面硬度优化技术和加工技术的制约,装配结合面的表面硬度差异性主动控制与设计应用鲜有报道。随着激光表面强化技术的发展和成熟应用,使得装配结合面表面差异性硬化的精准控制与制造成为可能,差异性硬化设计为提高航空发动机等高端装备装配结合面的连接性能提供了新的技术途径。
发明内容
本发明针对现有技术的不足,目的在于提出一种基于分区硬化的装配结合面连接性能均匀性提升方法,通过有限元接触分析在装配结合面上优化设计出硬化层布局,再利用激光强 化技术对装配结合面根据理论优化结果进行分区差异性硬化,实现提升装配结合面连接性能均匀性的目的。
为达到以上目的,本发明采取的技术方案为:
一种基于分区硬化的装配结合面连接性能均匀性提升方法,包括以下步骤:
1)根据拟采用激光器的脉冲激光光斑尺寸D,将装配结合面的待硬化配合面划分为N个子区域N=P×Q,P、Q为整数;其中,装配结合面采用非均匀一致的分区硬化布局设计;
2)若待硬化配合面子区域T内包含有n个有限元网格,有限元网格i区域内的弹性模量为e i、面积为s i、硬化厚度为h i,则得到待硬化配合面子区域T内的当量弹性模量E T和当量硬化厚度H T
3)将待硬化配合面N个子区域的当量弹性模型E T和当量硬化厚度H T分别按P×Q的矩阵存储,即[E] P×Q和[H] P×Q;根据待硬化配合面N个子区域的材料当量弹性模量和当量硬化厚度,确定脉冲激光的脉冲能量NL、脉冲频率PL和脉宽MK,并分别按P×Q的矩阵存储,即脉冲激光的脉冲能量矩阵[NL] P×Q、脉冲频率矩阵[PL] P×Q和脉宽矩阵[MK] P×Q
4)将待硬化配合面分区信息矩阵[N] P×Q、脉冲激光的脉冲能量矩阵[NL] P×Q、脉冲频率矩阵[PL] P×Q和脉宽矩阵[MK] P×Q作为激光冲击强化装备的控制信号或参数,进行分区激光硬化。
本发明进一步的改进在于,步骤1)中,装配结合面采用非均匀一致的分区硬化布局设计具体为:装配结合面包括第一配合面和与第一配合面相匹配的第二配合面,第一配合面上、第二配合面上或第一配合面和第二配合面上同时设计非均匀一致的分区硬化。
本发明进一步的改进在于,第一配合面上、第二配合面上或第一配合面和第二配合面上同时设计非均匀一致的分区硬化的步骤如下:
(1)对装配结合面划分有限元网格,设置材料弹性模量,构建装配结合面接触分析有限元模型;
(2)对装配结合面接触分析有限元模型,执行有限元接触分析,输出配合面上接触压力值和连接刚度值,分别计算接触压力和连接刚度的离散度θ p和θ s
(3)分别计算相邻两个优化迭代步之间接触压力离散度和连接刚度离散度的相对变化率Δ p和Δ s
(4)根据接触压力离散度和连接刚度离散度之间的权重因子c,构建连接性能均匀性优化设计目标函数Δ,则优化设计目标为minΔ;
Δ=-[c·Δ p+(1-c)·Δ s],c∈[0,1]
(5)判断连接性能均匀性优化设计目标函数Δ,若满足Δ≤ε,或优化迭代步数k满足k≤N,则优化终止,输出并保存材料弹性模量数据;否则,执行步骤(6);
(6)设置开展分区硬化优化设计的区域,以材料弹性模量作为优化设计变量,设置加速常数因子α和松弛常数因子β,在新的优化迭代步(k+1)中,分区硬化优化设计区域内的材料弹性模量进行优化和更新:
(7)根据步骤(6)获得的材料弹性模量新数值,更新步骤(1)所述的装配结合面有限元模型,执行新的有限元接触分析。
本发明进一步的改进在于,步骤(3)中,相邻两个优化迭代步之间接触压力离散度和连接刚度离散度的相对变化率Δ p和Δ s
Figure PCTCN2020095373-appb-000001
Figure PCTCN2020095373-appb-000002
其中,式中,
Figure PCTCN2020095373-appb-000003
为第k迭代步的接触压力离散度,
Figure PCTCN2020095373-appb-000004
为第k-1迭代步的接触压力离散度;
Figure PCTCN2020095373-appb-000005
为第k迭代步的接触刚度离散度,
Figure PCTCN2020095373-appb-000006
为第k-1迭代步的接触刚度离散度。
本发明进一步的改进在于,步骤(4)中,接触压力离散度和连接刚度离散度之间的权重因子c范围为0≤c≤1。
本发明进一步的改进在于,步骤(6)中,分区硬化优化设计区域内的材料弹性模量选用下列两个关系式中的一个进行优化和更新:
Figure PCTCN2020095373-appb-000007
Figure PCTCN2020095373-appb-000008
式中:e j为设计域内有限元网格j的弹性模量,j=1,2,3,...,M,M为设计域内有限元网格的总数量;σ为单元Von Mises应力,σ max和σ min为接触界面上单元Von Mises应力的最大值和最小值;δ为单元连接刚度,δ max和δ min为接触界面上单元单元连接刚度的最大值和最小值。
本发明进一步的改进在于,步骤1)中,每个子区域的长度L和宽度W为脉冲激光光斑尺寸D的1-3倍。
本发明进一步的改进在于,步骤2)中,待硬化配合面子区域T内的当量弹性模量E T和当量硬化厚度H T如下:
Figure PCTCN2020095373-appb-000009
Figure PCTCN2020095373-appb-000010
与现有技术相比,本发明具有的有益效果:本发明通过有限元接触分析在装配结合面上优化设计出硬化层布局,根据拟采用激光器的脉冲激光光斑尺寸D,将装配结合面的待硬化配合面划分为N个子区域,根据待硬化配合面N个子区域的材料当量弹性模量和当量硬化厚度,确定脉冲激光的脉冲能量、脉冲频率和脉宽,将待硬化配合面分区信息矩阵、脉冲激光的脉冲能量矩阵、脉冲频率矩阵和脉宽矩阵作为激光冲击强化装备的控制信号或参数,进行分区激光硬化,可以有效提高装配结合面的连接均匀程度和刚度均匀性,改善航空发动机等高端装备的高周疲劳和振动问题。
附图说明
图1是螺栓法兰连接示意图;
图2是法兰装配结合面示意图;
图3是法兰装配结合面有限元网格模型图;
图4是待硬化配合面示意图;
图5是某航空发动机高压转子止口螺栓连接装配结合面接触分析有限元网格模型图;
图6是图5所示的高压转子止口螺栓连接装配结合面在差异性硬化设计前的接触压力分布云图;
图7是图5所示的高压转子止口螺栓连接装配结合面在差异性硬化设计前的接触压力三维分布图;
图8是图5所示的高压转子止口螺栓连接装配结合面经差异性硬化设计后的接触压力分布云图;
图9是图5所示的高压转子止口螺栓连接装配结合面经差异性硬化设计后的接触压力三维分布图。
其中,1为第一配合面,2为第二配合面,3为硬化区域。
具体实施方式
下面结合附图对本发明作进一步的说明。
本发明以螺栓法兰连接装配结合面(见图1)为例进行说明。
本发明中装配结合面采用非均匀一致的分区硬化布局设计。
参见图2,装配结合面包括第一配合面1和与第一配合面相匹配的第二配合面2,所述的非均匀一致的分区硬化设计于第一配合面上、第二配合面上或同时设计于第一配合面和第二配合面上。
非均匀一致的分区硬化设计的步骤如下:
(1)参见图3,对装配结合面划分有限元网格,设置材料弹性模量,构建装配结合面接触分析有限元模型;
(2)进行有限元接触分析,得到配合面上接触压力值和连接刚度值,根据接触压力值和连接刚度值分别计算接触压力离散度和连接刚度离散度θ p和θ s
(3)分别计算相邻两个优化迭代步之间接触压力离散度和连接刚度离散度的相对变化率Δ p和Δ s
Figure PCTCN2020095373-appb-000011
Figure PCTCN2020095373-appb-000012
式中,
Figure PCTCN2020095373-appb-000013
为第k迭代步的接触压力离散度,
Figure PCTCN2020095373-appb-000014
为第k-1迭代步的接触压力离散度;
Figure PCTCN2020095373-appb-000015
为第k迭代步的接触刚度离散度,
Figure PCTCN2020095373-appb-000016
为第k-1迭代步的接触刚度离散度。
(4)设置接触压力离散度和连接刚度离散度之间的权重因子c(0≤c≤1),构建表征配合面连接性能均匀性的数学表达式Δ,则优化设计目标为minΔ;
Δ=-[c·Δ p+(1-c)·Δ s],c∈[0,1]
(5)判断连接性能均匀性优化设计目标函数Δ,若满足Δ≤ε,或优化迭代步数k满足k≤N,则优化终止,输出并保存材料弹性模量数据;若不满足Δ≤ε,或优化迭代步数k不满足k≤N,即上述两条件均不满足,则执行步骤(6);其中,ε为设定的一较小常值,一般为10 -3、10 -4或10 -5用于控制收敛,N为允许最大迭代步数。
(6)设置开展分区硬化优化设计的区域即硬化区域3(参见图3),一般将距离结合面0.5mm-5mm的区域设置为硬化优化设计区域,以材料弹性模量作为理论分析时的优化设计变量,设置加速常数因子α和松弛常数因子β,在新的优化迭代步(k+1)中,分区硬化优化设计区域内的材料弹性模量选用下列两个关系式中的一个进行优化和更新:
Figure PCTCN2020095373-appb-000017
Figure PCTCN2020095373-appb-000018
式中:e j为设计域内有限元网格j的弹性模量,j=1,2,3,...,M,M为设计域内有限元网格 的总数量;σ为单元Von Mises应力,σ max和σ min为接触界面上单元Von Mises应力的最大值和最小值;δ为单元连接刚度,δ max和δ min为接触界面上单元连接刚度的最大值和最小值。
(7)根据步骤(6)获得的材料弹性模量新数值,更新步骤(1)中的装配结合面接触分析有限元模型,执行新的有限元接触分析和优化设计,即重复步骤(2)到步骤(6)的分析。
所述的配合面上上述设计之后的非均匀一致的分区硬化布局,其对应的加工制造步骤包括:
(1)根据拟采用激光器的脉冲激光光斑尺寸D,将装配结合面的待硬化配合面划分为N个子区域(N=P×Q,P、Q为整数,P与Q的数值由结构尺寸和光斑尺寸决定,参见图4),且每个子区域的长度L和宽度W约为脉冲激光光斑尺寸D的1-3倍;
(2)将上述的步骤(5)所保存的材料弹性模量数据按待硬化配合面上划分的有限元网格进行存储;若待硬化配合面子区域T内包含有n个有限元网格(参见图4),有限元网格i区域内的弹性模量为e i、面积为s i、硬化厚度为h i,则待硬化配合面子区域T内的当量弹性模量E T和当量硬化厚度H T的计算公式如下:
Figure PCTCN2020095373-appb-000019
Figure PCTCN2020095373-appb-000020
(3)将待硬化配合面N个子区域的当量弹性模型E T和当量硬化厚度H T分别按P×Q的矩阵存储,即[E] P×Q和[H] P×Q;根据待硬化配合面N个子区域的材料当量弹性模量和当量硬化厚度,确定脉冲激光的脉冲能量NL、脉冲频率PL和脉宽MK,并分别按P×Q的矩阵存储,即脉冲激光的脉冲能量矩阵[NL] P×Q、脉冲频率矩阵[PL] P×Q和脉宽矩阵[MK] P×Q
(4)将待硬化配合面分区信息矩阵[N] P×Q、脉冲激光的脉冲能量矩阵[NL] P×Q、脉冲频率矩阵[PL] P×Q和脉宽矩阵[MK] P×Q作为激光冲击强化装备的控制信号或参数,进行分区激光硬化。
本发明中所述的接触压力离散度既可用配合面上接触压力的方差表征,也可用配合面上接触压力的极差表征。
本发明中所述的连接刚度离散度既可用配合面上连接刚度的方差表征,也可用配合面上连接刚度的极差表征。
通过引入权重因子c,所述的连接性能均匀性既可仅由接触压力分布均匀性表征(c=1情况),也可仅由连接刚度分布均匀性表征(c=0情况),还可由接触压力分布均匀性和连接刚度分布均匀性共同表征(0<c<1情况)。
以某型航空发动机高压转子止口螺栓连接装配结合面的差异性硬化设计为例,进一步说明本发明的有益效果。某型航空发动机高压转子止口螺栓连接装配结合面的有限元网格模型如图5所示,由于高压转子止口螺栓连接装配结合面是360°对称结构,为了清晰显示装配连接内部结构,图5只显示了高压转子止口螺栓连接一半(即180°)的有限元网格模型。每个连接螺栓所施加的预紧力是9kN,装配结合面未进行差异性硬化设计前,装配结合面处的接触压力分布如图6和图7所示;装配结合面进行差异性硬化设计后,装配结合面处的接触压力分布如图8和图9所示。对比图6和图8、图7和图9,可以清楚看出:经差异性硬度设计后,装配结合面处的接触压力峰值显著降低,接触压力的分布均匀性显著提高,接触压力分布均匀程度提高了42.75%,实际接触面积增加了97.8%。可见,差异性硬化设计技术可以有效提升装配结合面的连接性能。本发明通过有限元接触分析在装配结合面上优化设计出硬化层布局,再利用激光强化技术对装配结合面根据理论优化结果进行分区差异性硬化,可以有效提高装配结合面的连接均匀程度和刚度均匀性,改善航空发动机等高端装备的高周疲劳和振动问题。
当前工程界对于装配结合面的表面硬度采取的是均匀一致性的设计思路,且工程图纸对于表面硬度设计要点的描述和刻画比较笼统、内容少、设计内涵缺失,已远远达不到航空发 动机等高端装备高性能装配结合面的设计要求。《易经》云:“刚柔节也”。《道德经》曰:“万物负阴而抱阳,冲气以为和”。哲学思想是人类在社会经济生产历史发展过程中,通过不断探索、不断试错、不断创造和持续积累而凝练总结出的生产实践规律和物质精神财富。“刚柔并济”的中华哲学思想博大精深,蕴藏有非常深奥的设计学内涵,唯有刚柔相济,方能相得益彰!本发明将“刚柔并济”哲学思想所蕴含的设计科学内涵——高硬度(“刚”)与低硬度(“柔”)表面差异化设计(“并举”),引入到机械装配结合面的设计,经“刚”“柔”结构相互配合,实现载荷均化,防控应力集中,实现连接性能均匀化,具有重要的科学意义。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,亦均落入本发明保护范围之内;本发明未涉及的技术均可通过现有技术加以实现。

Claims (8)

  1. 一种基于分区硬化的装配结合面连接性能均匀性提升方法,其特征在于,包括以下步骤:
    1)根据拟采用激光器的脉冲激光光斑尺寸D,将装配结合面的待硬化配合面划分为N个子区域N=P×Q,P、Q为整数;其中,装配结合面采用非均匀一致的分区硬化布局设计;
    2)若待硬化配合面子区域T内包含有n个有限元网格,有限元网格i区域内的弹性模量为e i、面积为s i、硬化厚度为h i,则得到待硬化配合面子区域T内的当量弹性模量E T和当量硬化厚度H T
    3)将待硬化配合面N个子区域的当量弹性模型E T和当量硬化厚度H T分别按P×Q的矩阵存储,即[E] P×Q和[H] P×Q;根据待硬化配合面N个子区域的材料当量弹性模量和当量硬化厚度,确定脉冲激光的脉冲能量NL、脉冲频率PL和脉宽MK,并分别按P×Q的矩阵存储,即脉冲激光的脉冲能量矩阵[NL] P×Q、脉冲频率矩阵[PL] P×Q和脉宽矩阵[MK] P×Q
    4)将待硬化配合面分区信息矩阵[N] P×Q、脉冲激光的脉冲能量矩阵[NL] P×Q、脉冲频率矩阵[PL] P×Q和脉宽矩阵[MK] P×Q作为激光冲击强化装备的控制信号或参数,进行分区激光硬化。
  2. 根据权利要求1所述的一种基于分区硬化的装配结合面连接性能均匀性提升方法,其特征在于,步骤1)中,装配结合面采用非均匀一致的分区硬化布局设计具体为:装配结合面包括第一配合面和与第一配合面相匹配的第二配合面,第一配合面上、第二配合面上或第一配合面和第二配合面上同时设计非均匀一致的分区硬化。
  3. 根据权利要求2所述的一种基于分区硬化的装配结合面连接性能均匀性提升方法,其特征在于,第一配合面上、第二配合面上或第一配合面和第二配合面上同时设计非均匀一致的分区硬化的步骤如下:
    (1)对装配结合面划分有限元网格,设置材料弹性模量,构建装配结合面接触分析有限元模型;
    (2)对装配结合面接触分析有限元模型,执行有限元接触分析,输出配合面上接触压力值和连接刚度值,分别计算接触压力和连接刚度的离散度θ p和θ s
    (3)分别计算相邻两个优化迭代步之间接触压力离散度和连接刚度离散度的相对变化率Δ p和Δ s
    (4)根据接触压力离散度和连接刚度离散度之间的权重因子c,构建连接性能均匀性优化设计目标函数Δ,则优化设计目标为minΔ;
    Δ=-[c·Δ p+(1-c)·Δ s],c∈[0,1]
    (5)判断连接性能均匀性优化设计目标函数Δ,若满足Δ≤ε,或优化迭代步数k满足k≤N,则优化终止,输出并保存材料弹性模量数据;否则,执行步骤(6);
    (6)设置开展分区硬化优化设计的区域,以材料弹性模量作为优化设计变量,设置加速常数因子α和松弛常数因子β,在新的优化迭代步(k+1)中,分区硬化优化设计区域内的材料弹性模量进行优化和更新:
    (7)根据步骤(6)获得的材料弹性模量新数值,更新步骤(1)所述的装配结合面有限元模型,执行新的有限元接触分析。
  4. 根据权利要求3所述的一种基于分区硬化的装配结合面连接性能均匀性提升方法,其特征在于,步骤(3)中,相邻两个优化迭代步之间接触压力离散度和连接刚度离散度的相对变化率Δ p和Δ s
    Figure PCTCN2020095373-appb-100001
    Figure PCTCN2020095373-appb-100002
    其中,式中,
    Figure PCTCN2020095373-appb-100003
    为第k迭代步的接触压力离散度,
    Figure PCTCN2020095373-appb-100004
    为第k-1迭代步的接触压力离散度;
    Figure PCTCN2020095373-appb-100005
    为第k迭代步的接触刚度离散度,
    Figure PCTCN2020095373-appb-100006
    为第k-1迭代步的接触刚度离散度。
  5. 根据权利要求3所述的一种基于分区硬化的装配结合面连接性能均匀性提升方法,其特征在于,步骤(4)中,接触压力离散度和连接刚度离散度之间的权重因子c范围为0≤c ≤1。
  6. 根据权利要求3所述的一种基于分区硬化的装配结合面连接性能均匀性提升方法,其特征在于,步骤(6)中,分区硬化优化设计区域内的材料弹性模量选用下列两个关系式中的一个进行优化和更新:
    Figure PCTCN2020095373-appb-100007
    Figure PCTCN2020095373-appb-100008
    式中:e j为设计域内有限元网格j的弹性模量,j=1,2,3,…,M,M为设计域内有限元网格的总数量;σ为单元Von Mises应力,σ max和σ min为接触界面上单元Von Mises应力的最大值和最小值;δ为单元连接刚度,δ max和δ min为接触界面上单元单元连接刚度的最大值和最小值。
  7. 根据权利要求1所述的一种基于分区硬化的装配结合面连接性能均匀性提升方法,其特征在于,步骤1)中,每个子区域的长度L和宽度W为脉冲激光光斑尺寸D的1-3倍。
  8. 根据权利要求1所述的一种基于分区硬化的装配结合面连接性能均匀性提升方法,其特征在于,步骤2)中,待硬化配合面子区域T内的当量弹性模量E T和当量硬化厚度H T如下:
    Figure PCTCN2020095373-appb-100009
    Figure PCTCN2020095373-appb-100010
PCT/CN2020/095373 2019-08-01 2020-06-10 一种基于分区硬化的装配结合面连接性能均匀性提升方法 WO2021017653A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/585,625 US20220275473A1 (en) 2019-08-01 2022-01-27 Connection performance uniformity improving method for assembly joint surface based on partition hardening

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910707693.0 2019-08-01
CN201910707693.0A CN110532632B (zh) 2019-08-01 2019-08-01 一种基于分区硬化的装配结合面连接性能均匀性提升方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/585,625 Continuation US20220275473A1 (en) 2019-08-01 2022-01-27 Connection performance uniformity improving method for assembly joint surface based on partition hardening

Publications (1)

Publication Number Publication Date
WO2021017653A1 true WO2021017653A1 (zh) 2021-02-04

Family

ID=68662040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095373 WO2021017653A1 (zh) 2019-08-01 2020-06-10 一种基于分区硬化的装配结合面连接性能均匀性提升方法

Country Status (3)

Country Link
US (1) US20220275473A1 (zh)
CN (1) CN110532632B (zh)
WO (1) WO2021017653A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532632B (zh) * 2019-08-01 2021-05-28 西安交通大学 一种基于分区硬化的装配结合面连接性能均匀性提升方法
CN111898290B (zh) * 2020-06-29 2024-04-12 西安交通大学 一种基于界面软硬程度设计的装配体动静态性能提升方法
CN113109191A (zh) * 2021-03-26 2021-07-13 陕西飞机工业有限责任公司 一种2a50、2a14合金结合面及r区强化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060080069A1 (en) * 2004-10-12 2006-04-13 William Fujimoto System for analyzing fastener loads
CN106709142A (zh) * 2016-11-18 2017-05-24 大连理工大学 一种获取螺栓连接结合面应力分布的方法
CN108531714A (zh) * 2018-07-04 2018-09-14 北京航空航天大学 一种榫接结构激光冲击强化的多重精度优化方法
CN110532632A (zh) * 2019-08-01 2019-12-03 西安交通大学 一种基于分区硬化的装配结合面连接性能均匀性提升方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676497B2 (en) * 2010-01-21 2017-06-13 The Boeing Company High rate pulsing wing assembly line
CN106682291B (zh) * 2016-12-14 2019-12-20 西安交通大学 一种优化螺栓连接件结合面接触压力分布的形状设计方法
CN109033516B (zh) * 2018-06-20 2020-08-28 西安交通大学 一种机械装备拟织构化装配结合面设计方法
CN109063357B (zh) * 2018-08-15 2020-08-14 大连理工大学 基于拓扑优化的自适应多步变域的汽车构件焊点布局优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060080069A1 (en) * 2004-10-12 2006-04-13 William Fujimoto System for analyzing fastener loads
CN106709142A (zh) * 2016-11-18 2017-05-24 大连理工大学 一种获取螺栓连接结合面应力分布的方法
CN108531714A (zh) * 2018-07-04 2018-09-14 北京航空航天大学 一种榫接结构激光冲击强化的多重精度优化方法
CN110532632A (zh) * 2019-08-01 2019-12-03 西安交通大学 一种基于分区硬化的装配结合面连接性能均匀性提升方法

Also Published As

Publication number Publication date
CN110532632B (zh) 2021-05-28
US20220275473A1 (en) 2022-09-01
CN110532632A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021017653A1 (zh) 一种基于分区硬化的装配结合面连接性能均匀性提升方法
CN105261065B (zh) 一种面向适应性加工的叶片零件前后缘外形再设计方法
CN111177906B (zh) 一种离散化模具型面精确补偿方法
Xu et al. Surface quality prediction and processing parameter determination in electrochemical mechanical polishing of bearing rollers
CN109117504B (zh) 一种双向功能梯度曲壳振动分析方法
CN109227226B (zh) 一种光学元件加工过程中驻留时间的匀滑方法
WO2024066281A1 (zh) 活塞型线设计方法、活塞和内燃机系统
CN109766638B (zh) 一种燃油喷嘴及其轻量化设计方法
CN108875176B (zh) 一种提高载荷保持性的装配结合面形状主动设计方法
CN106874526A (zh) 叶轮机叶片的生产坐标的生成方法和装置
CN111079327B (zh) 一种基于各向异性过滤技术的异形曲面加筋拓扑优化方法
CN112163275A (zh) 一种高超声速飞行器损伤主要累积面分析方法
CN111922922A (zh) 大曲率双凸外型带筋整体壁板喷丸强化变形调控方法
CN113388836B (zh) 一种化学蚀刻减薄FeNi合金箔带的方法
CN111046487B (zh) 一种复合材料蒙皮结构的硬涂层阻尼减振方法
CN108664739A (zh) 基于改进粒子群算法的栓接结合部螺栓间距的优化方法
CN105205291B (zh) 中空涡轮的设计方法
CN111859817B (zh) 一种基于cfd软件激波模拟能力的飞行器气动选型方法
CN111898290B (zh) 一种基于界面软硬程度设计的装配体动静态性能提升方法
CN210118201U (zh) 一种铸态复合涂层缸套
Kegl Optimal design of conventional in-line fuel injection equipment
CN113268828B (zh) 基于均匀设计的涡轮叶片非对称前缘结构的优化设计方法
CN116738855A (zh) 基于dfp优化算法的整体涡轮盘电解加工阴极设计方法
CN114896699B (zh) 一种航空发动机中向心涡轮叶轮的多学科优化设计方法
CN115391852A (zh) 一种加筋板结构可靠性拓扑及尺寸联合优化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848402

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20848402

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20848402

Country of ref document: EP

Kind code of ref document: A1