WO2021017379A1 - 燃气喷吹用罩顶风压式防逃逸系统及其控制方法 - Google Patents

燃气喷吹用罩顶风压式防逃逸系统及其控制方法 Download PDF

Info

Publication number
WO2021017379A1
WO2021017379A1 PCT/CN2019/126446 CN2019126446W WO2021017379A1 WO 2021017379 A1 WO2021017379 A1 WO 2021017379A1 CN 2019126446 W CN2019126446 W CN 2019126446W WO 2021017379 A1 WO2021017379 A1 WO 2021017379A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
wind pressure
gas
hood
combustible gas
Prior art date
Application number
PCT/CN2019/126446
Other languages
English (en)
French (fr)
Inventor
周浩宇
Original Assignee
中冶长天国际工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶长天国际工程有限责任公司 filed Critical 中冶长天国际工程有限责任公司
Publication of WO2021017379A1 publication Critical patent/WO2021017379A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction

Definitions

  • the invention relates to the field of metallurgical technology, in particular to an escape prevention system for preventing the injected gas from leaking from a blowing hood during the production process of sintering ore.
  • the invention also relates to a method for controlling the operation of the escape prevention system.
  • the sintering process is a key link in the ironmaking process.
  • the principle is to mix various powdered iron-containing raw materials with appropriate amounts of fuel and flux, and add appropriate amounts of water. After mixing and pelletizing, the materials are generated on the sintering equipment. A series of physical and chemical changes are sintered into agglomerates and sent to the blast furnace for the next step.
  • blast furnaces In order to reduce the coke ratio and smelting cost of blast furnace ironmaking, blast furnaces often require high strength and high reducibility for sinter. In the sintering process, the sintered ore is generally required to have higher strength, high yield, lower return rate, and lower fuel consumption. High-strength and high-reducibility sinters consume less coke in the blast furnace smelting process, which can reduce carbon dioxide emissions. From a long-term perspective, the requirement for carbon dioxide emission reduction will become one of the bottlenecks restricting the development of the steel industry. According to relevant information, carbon dioxide emissions from sintering and blast furnace processes account for about 60% of total industrial emissions. Therefore, no matter from the perspective of enterprise cost reduction or environmental protection, reducing the ratio of sintering solid fuel consumption and reducing the fuel ratio of blast furnace charge has become an urgent need for ironmaking technology.
  • a "sintering material surface gas fuel injection technology” came into being.
  • the principle is to inject gas diluted to below the lower limit of combustible concentration through the injection device above the sintering trolley some distance after the ignition furnace.
  • the fuel is burned in the sintered material layer to provide heat.
  • This technology can reduce the amount of solid carbon and CO 2 emissions in sinter production.
  • the sinter temperature of 1200°C ⁇ 1400°C The time is prolonged, so that the strength of the sintered ore and the porosity of 5mm to 10mm are effectively strengthened, which has a better effect of energy saving, emission reduction and quality improvement.
  • the injection device used in the above injection technology has the following defects in long-term production:
  • the purpose of the present invention is to provide a hood-top air pressure type anti-escaping system for gas injection.
  • the anti-escaping system can basically eliminate the phenomenon of gas escape, help to inhale the air outside the hood, and then achieve the purpose of stable, smooth, and optimal production of the sintering production line.
  • Another object of the present invention is to provide a method for controlling the operation of the hood-top air pressure type anti-escaping system for gas injection.
  • a hood-top air pressure type anti-escaping system for gas injection which includes:
  • the blowing hood is located on the top of the sintering machine trolley;
  • the injection pipe row is arranged inside the injection hood and above the sintering machine trolley, and is used to inject combustible gas to the sintering material surface of the sintering machine trolley;
  • the fuel gas pipeline is used to transport combustible gas to the injection pipe row; further including:
  • the air flow device is arranged at the top area of the blowing hood, and is spaced up and down from the blowing pipe row, and is used to drive the external air to generate air flow and input the generated air flow from the top of the blowing hood downwards into the place
  • the inside of the blowing hood forms a wind pressure zone area above the blowing pipe row that prevents combustible gas from passing upwards.
  • it also includes:
  • the wind pressure detection component which is installed in the blowing hood at a higher position than the blowing tube row, to detect the wind pressure value above the blowing tube row;
  • the combustible gas concentration detection component is used to detect the combustible gas concentration value in the wind pressure zone area
  • the control device is configured to receive the wind pressure value measured by the wind pressure detection component and the combustible gas concentration value measured by the combustible gas concentration detection component, and control the station according to the wind pressure value and the combustible gas concentration value
  • the air flow device operates under a working condition where the generated air flow can prevent the combustible gas from passing upward through the wind pressure zone area.
  • the airflow device includes a plurality of rotating impeller devices driven by a motor and distributed on the top of the blowing hood; the airflow generated by the plurality of rotating impeller devices during operation together forms the wind pressure belt area, At least a part of the wind pressure belt area continuously covers the combustible gas escape area of the blowing hood in a cross section and has a longitudinal thickness.
  • a plurality of the rotary impeller devices are arranged and distributed in a rectangular array on the top of the blowing hood.
  • the rotating impeller device includes a rotating frame, rotating blades, a rotating shaft, and a rotating electric machine; the rotating blades are fixedly installed inside the rotating frame through the rotating shaft, and the power output shaft of the rotating electric machine is connected to the rotating shaft.
  • the transmission connection is used to drive the rotating blades to rotate around the rotating shaft.
  • the rotary impeller device further comprises a bearing frame, the bearing frame is connected to the blowing hood, and the rotating frame is connected and positioned inside the bearing frame.
  • the number of the rotating blades is 2-8, and has a self-tilting angle relative to the rotating plane, and the self-tilting angle is between 5° and 30°.
  • the present invention provides a hood-top air pressure type anti-escaping control method for gas injection, which is used in any one of the above-mentioned hood-top air pressure type anti-escaping system for gas injection, including:
  • the monitored combustible gas concentration value is higher than the critical value k3, and the continuous duration of the monitored combustible gas concentration value higher than k3 is greater than the set time t, then adjust k1 and k2, to adjust the air flow device according to the adjusted k1 and k2 so that the monitored combustible gas concentration value is lower than the critical value k3.
  • the permeability index of the sintered aggregate layer ⁇ 0.2 the value of K1 is 400Pa, and the value of K2 is 1000Pa; if 0.2 ⁇ the permeability index of the sintered aggregate layer ⁇ 0.7, the value of K1 is 300Pa, the value of K2 is 1500Pa; if 0.7 ⁇ sintered aggregate layer permeability index ⁇ 1, then the value of K1 is 200Pa, and the value of K2 is 2000Pa.
  • the value of k3 is in the range of 250ppm-350ppm; if the combustible gas is blast furnace gas, the value of k3 is in the range of 750ppm-850ppm; if the combustible gas is natural gas, the value of k3 is taken
  • the value range is between 150ppm-250ppm; if the combustible gas is high coke mixed gas, the value range of k3 is between 450ppm-550ppm.
  • the value of k3 is 300 ppm; if the combustible gas is blast furnace gas, the value of k3 is 800 ppm; if the combustible gas is natural gas, the value of k3 is 200 ppm; If the gas is high coke mixed gas, the value range of k3 is located at 500ppm.
  • the invention is additionally equipped with an airflow device on the top of the blowing hood.
  • the airflow device can form a wind pressure zone area above the blowing pipe row. Since the flow rate of the airflow generated by the airflow device can be adjusted, dynamic wind pressure can be formed inside the blowing hood.
  • Type seal once the combustible gas escapes to the wind pressure zone area, it will be blown back to the vicinity of the nozzle row by the air flow generated by the airflow device, so that the combustible gas cannot pass upwards through the wind pressure zone area, which eliminates the gas from the source
  • the phenomenon of escape can basically achieve "zero" escape of combustible gas.
  • the airflow device can input the air outside the blowing hood into the inside of the blowing hood, which can help supplement the air outside the hood and ensure that the inside of the blowing hood is not caused by Insufficient air results in too low oxygen content and affects normal sintering production.
  • the hood-top air pressure type anti-escaping control method for gas injection provided by the present invention is used in the above-mentioned hood-top air pressure type anti-escaping system for gas injection. Since the hood-top air pressure type anti-escaping system for gas injection has the above technical effects, The hood-top wind pressure type anti-escaping control method for gas injection should also have corresponding technical effects.
  • Fig. 1 is a schematic structural diagram of a hood-top air pressure type anti-escaping system for gas injection disclosed in an embodiment of the present invention
  • Figure 2 is a schematic diagram of the structure of the rotary impeller device shown in Figure 1;
  • Figure 3 is a top view of the rotary impeller device shown in Figure 2;
  • Figure 4 is the electrical wiring diagram of the wind pressure meter, CO detector, rotating impeller device and control device;
  • Fig. 5 is a flowchart of a hood-top wind pressure type anti-escaping control method for gas injection disclosed in an embodiment of the present invention.
  • the present invention optimizes and improves the injection device structure based on it, and develops a wind pressure type anti-escaping system in the hood for the injection process, and develops a matching control method to achieve the entire sintering production line The purpose of stable production, smooth production and excellent production.
  • FIG. 1 is a schematic structural diagram of a hood-top air pressure type anti-escaping system for gas injection according to an embodiment of the present invention.
  • the hood-top air pressure type anti-escaping system for gas blowing provided by the present invention is mainly composed of a blowing hood 1, a blowing pipe row 3, a gas pipeline, an air flow device 7, and the like.
  • the blowing hood 1 is located on the top of the sintering machine trolley 9; the blowing pipe row 3 is arranged inside the blowing hood 1 and above the sintering machine trolley 9, and is used to inject combustible materials to the sintering material surface of the sintering machine trolley 9 Gas; the gas pipeline is divided into the injection main pipe 2-1 and the injection branch pipe 2-2.
  • the injection main pipe 2-1 is located outside the blowing hood 1, and can be connected to the plant gas pipeline.
  • the injection branch pipe 2-2 passes through the injection
  • the side wall of the hood 1 is connected with the blowing pipe row 3, and has a pipe part located outside the blowing hood 1 and a pipe part located inside the blowing hood 1, and its end located outside the blowing hood 1 is connected to the blowing header 2-1 ,
  • One end located inside the blowing hood 1 is connected to the blowing pipe row 3 to transport the combustible gas from the blowing header 2-1 to the blowing pipe row 3.
  • the injection pipe row 3 is located in the injection hood 1 and above the sintering machine trolley 9.
  • the gas enters the injection main pipe 2-1 from the gas pipeline in the plant area, then enters the injection branch pipe 2-2, and finally enters the injection pipe Rows 3 are ejected and mixed with the air in the hood 1 to form a mixed gas of the design required concentration, which enters the sintering material layer of the sintering machine trolley 9 to assist sintering.
  • a horizontal airfoil anti-escape plate 4 is arranged above each nozzle row 3, and the airfoil anti-escape plate 4 of the nozzle row 3 is located in the middle position below the airfoil anti-escape plate 4. Plane, there can be gaps between adjacent wing-shaped escape plates 4, through wing-shaped escape plates 4, the gas that cannot be sucked into the material surface in a short time can be suppressed, so that it will not quickly escape upwards .
  • the airfoil anti-escape plate 4 can be further divided into two parts, a left anti-escape plate and a right anti-escape plate, which can be moved independently.
  • the left anti-escape plate and the right anti-escape plate are provided with a rotating shaft at the joint. Driven by the driving mechanism, the rotating shaft can be turned up to a certain angle from the left and right sides or turned down to a certain angle, so that different escape prevention performance can be obtained through adjustment.
  • the louver stabilizing plate on the top of the blowing hood 1 is eliminated, and an airflow device 7 is added instead.
  • the airflow device 7 is arranged at the top area of the blowing hood 1 and has a vertical distance from the blowing pipe row 3, and In order to drive the external air to generate air flow and input the generated air flow from the top of the blowing hood 1 down to the inside of the blowing hood 1, to form a wind pressure zone above the blowing pipe row 3 so that combustible gas cannot pass upwards, so as to achieve The purpose of preventing the escape of combustible gas.
  • FIG. 2 is a schematic diagram of the structure of the rotary impeller device shown in FIG. 1;
  • FIG. 3 is a top view of the rotary impeller device shown in FIG. 2.
  • the air flow device 7 is composed of a plurality of rotating impeller devices, which are arranged in a rectangular array on the top of the blowing hood 1 to basically cover the top area of the blowing hood 1.
  • Each rotary impeller device is driven by a motor, and the airflow generated by multiple rotary impeller devices in operation forms a wind pressure zone area, and at least a part of the wind pressure zone area continuously covers the combustible gas escape area of the blowing hood 1 in cross section And has a certain thickness in the longitudinal direction.
  • each rotating impeller device is mainly composed of a load-bearing frame 71, a rotating frame 72, a rotating blade 73, a rotating shaft 74, and a rotating electric machine 75;
  • the load-bearing frame 71 is roughly square, connected to the blowing hood 1, and the rotating frame 72 is generally circular, connected and positioned inside the load-bearing frame 71, the rotating blade 73 is fixedly installed inside the rotating frame 72 through the rotating shaft 74, and the power output shaft of the rotating motor 75 is drivingly connected with the rotating shaft 74 to drive the rotating blade 73 It rotates around the rotating shaft 74.
  • the installation number of the rotating blades 73 can be changed between 2-8 pieces, with a certain self-tilting angle relative to the rotating plane during installation, and the self-tilting angle is between 5° and 30°, for example, 8°, 10° °, 15°, 20°, 25°, etc., when rotating, it can suck air fluid from the outside into the inside, forming a wind pressure band above the gas blowing pipe row 3, and use the rotating blade 73 to form the wind pressure Belt, effectively prevent gas from escaping while inhaling air.
  • Holes can be opened or reserved on the top of the blowing hood 1, so that the rotary impeller device can be installed in one of the corresponding holes, or the top of the blowing hood 1 may not be opened or reserved, but the rotating impeller
  • the devices are connected to each other adjacent to each other so as to be fixedly installed on the top of the blowing hood, which is equivalent to forming the top of the blowing hood 1 together by a rotating impeller device.
  • these two installation methods can also be used in combination as long as there is no conflict.
  • This embodiment uses a rotating impeller device driven by a motor as the air flow device 7, which not only facilitates rapid and precise control of the rotating impeller device, but also, under the drive of the motor, the rotating impeller device can generate a stable and consistent air flow, thereby A relatively stable and uniform wind pressure zone is formed above the injection pipe row 3, which can better prevent the escape of combustible gas.
  • the rotary impeller device may be mainly composed of the rotating blade 73, the rotating shaft 74, and the rotating motor 75.
  • the rotating shaft 74 passes through the spray nozzle.
  • the shaft hole at the top of the blowing hood 1 extends into the blowing hood 1
  • the rotating blade 73 is installed on the end of the rotating shaft 74 that extends into the blowing hood 1
  • the rotating motor 75 is installed on the top of the blowing hood 1 and is connected to the rotating shaft 74 in transmission.
  • an air inlet hole corresponding to the rotating blades 73 can be opened at the top of the blowing hood 1 at the same time.
  • Figure 4 is the electrical wiring diagram of the wind pressure meter, CO detector, rotating impeller device and control device.
  • an anemometer 5 and a CO detector 8 can be further provided, wherein the anemometer 5 is installed on the left side wall of the blowing hood 1, and its detection end is at the nozzle The position in the blowing hood 1 is higher than the blowing pipe row 3 to detect the wind pressure value above the gas blowing pipe row 3 in the blowing hood 1 in real time.
  • the CO detector 8 is installed on the right side wall of the blowing hood 1, and its detection end is located in the wind pressure zone area formed during the operation of the rotating impeller device to detect the CO concentration value of the wind pressure zone in the blowing hood 1 in real time ,
  • the position of the detection end of the CO detector 8 is higher than the position of the detection end of the wind pressure meter 5 in the height direction.
  • the signal output ends of the air pressure meter 5 and the CO detector 8 are both connected to the control device, and the control device is used to receive the wind pressure value measured by the air pressure meter 5 and the combustible gas concentration value measured by the CO detector 8, and According to the wind pressure value and the combustible gas concentration value, the rotating motor 75 of the rotating impeller device is controlled so that the air flow generated by the rotating impeller device can prevent the combustible gas from passing upward through the wind pressure zone area.
  • the air pressure meter 5 by setting the air pressure meter 5, the CO detector 8 and the control device, it is possible to monitor in real time whether the gas escape phenomenon occurs inside the blowing hood 1, and automatically adjust the power of the rotating impeller device before the gas escape phenomenon occurs. Decrease or increase the rotation speed of the rotating motor 75 to decrease or increase the flow rate of the airflow generated, so as to achieve the purpose of automatically adjusting to prevent gas escape according to actual working conditions, and to better meet actual use requirements.
  • FIG. 5 is a flowchart of a hood-top air pressure type anti-escaping control method for gas injection according to an embodiment of the present invention.
  • the present invention also provides a hood-top air pressure type anti-escaping control method for gas injection to control the above-mentioned hood top air pressure type anti-escaping system.
  • the control method includes the following steps:
  • the rotating impeller device is activated, so that the rotating impeller device relies on the rotating motor 75 to drive the rotating blades 73 to rotate slowly and uniformly in the rotating frame 72 around the rotating shaft 74.
  • the system monitors the wind pressure value above the nozzle row 3 and the CO concentration value in the wind pressure zone through the wind pressure meter 5 and the CO detector 8 in real time.
  • the critical value of H2&CO concentration k3 is affected by the type of gas injected. If the combustible gas is coke oven gas, the value of the critical value of CO concentration k3 is in the range of 250ppm-350ppm; if the combustible gas is blast furnace gas, the value of k3 The range is between 750ppm-850ppm; if the combustible gas is natural gas, the value range of k3 is between 150ppm-250ppm; if the combustible gas is high coke mixed gas, the value range of k3 is between 450ppm-550ppm.
  • the value of k3 is 300 ppm; if the combustible gas is blast furnace gas, the value of k3 is 800 ppm; if the combustible gas is natural gas, the value of k3 is 200 ppm; If the gas is high coke mixed gas, the value range of k3 is 500 ppm, and its conventional value is shown in Table 2.
  • the above k3 is the criterion used to judge whether the gas escapes.
  • the priority of the judgment is higher than the lower limit k1 and the upper limit k2. That is to say, if k1 ⁇ K ⁇ k2, the gas still escapes, you can adjust it at this time
  • the values of the limit value k1 and the upper limit value k2 form new k1' and k2' adapted to the working condition, so as to adjust the air flow device according to k1' and k2' to eliminate the phenomenon of gas escape.
  • ⁇ k1 and ⁇ k2 are different according to different working conditions such as gas type and sintering machine operating parameters. They can be equal or unequal.
  • the values of the two can be 10Pa, 20Pa, 50Pa or 100Pa, etc., different
  • the value corresponds to different adjustment precision. The smaller the value, the higher the precision of the end value adjustment, but the required adjustment times may be relatively large. The larger the value, the lower the precision of the end value adjustment, but the required The number of adjustments may be relatively small.
  • the system can automatically record each value and the corresponding working condition parameters to form a database. After running multiple times to accumulate certain data, the system will automatically calculate ⁇ k1 and ⁇ k2 according to the current working condition parameters. And the function of automatic adjustment.
  • the gas enters the injection pipe row 3 in the injection hood 1 through the injection main pipe 2-1 and the injection branch pipe 2-2, and is finally injected from below the injection pipe row 3 Out.
  • the system uses the rotating motor 75 to drive the rotating blade 73 to slowly rotate at a uniform speed in the cover top area. Due to the setting of the inclination angle of the rotating blade 73, it can effectively suck air from outside the cover during its rotation and blow it into it.
  • a wind pressure belt is formed in the hood and above the blowing pipe row 3 in the hood.
  • the air pressure belt can ensure that the gas sprayed from the blowing pipe row 3 can be effectively suppressed in the hood and will not escape when the material layer is not strong. At the same time, the air pressure belt can continuously convey air to the sintering surface , To ensure sufficient air volume required for combustion production.
  • the present invention has the following advantages:
  • the present invention is a dynamic wind pressure seal on the roof, the gas cannot pass through the wind pressure belt upwards. Once it escapes to the position of the wind pressure belt, it will be blown back to the vicinity of the pipe row, which completely eliminates gas escape from the source
  • the phenomenon of “zero” gas escape can basically be realized.
  • the present invention is a dynamic wind pressure seal on the top of the hood, when the rotating blade 73 rotates, the atmosphere can be sucked into the hood from outside the hood, which can facilitate the suction of air outside the hood and ensure that the inside of the hood will not be caused by insufficient air.
  • the oxygen content is too low to affect the normal production of sintering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种燃气喷吹用罩顶风压式防逃逸系统及其控制方法,所述防逃逸系统包括:喷吹罩,位于烧结机台车顶部;喷吹管排,设于所述喷吹罩内部并位于所述烧结机台车上方,用于向所述烧结机台车的烧结料面喷吹可燃气体;燃气管道,用于向所述喷吹管排输送可燃气体;还包括:气流装置,设于所述喷吹罩顶部,用于驱动外部空气产生气流并将产生的气流从所述喷吹罩顶部向下输入所述喷吹罩内部,以在所述喷吹管排上方位置形成使可燃气体无法向上穿过的风压带区域。该防逃逸系统可基本消除燃气逃逸现象,有助于吸入罩外空气,进而达到使烧结生产线稳产、顺产、优产的目的。

Description

燃气喷吹用罩顶风压式防逃逸系统及其控制方法
本申请要求2019年07月30日提交中国专利局、申请号为201910696944.X、发明名称为“燃气喷吹用罩顶风压式防逃逸系统及其控制方法”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及冶金技术领域,尤其涉及在烧结矿生产过程中,用于防止喷吹的燃气从喷吹罩泄露的防逃逸系统。本发明还涉及用于控制所述防逃逸系统运行的方法。
背景技术
烧结工艺是炼铁流程中的一个关键环节,其原理是将各种粉状含铁原料,配入适量的燃料和熔剂,加入适量的水,经混合和造球后在烧结设备上使物料发生一系列物理化学变化,烧结成块,从而送往高炉进行下一步工序。
为了降低高炉炼铁的焦比和冶炼成本,高炉对烧结矿的要求往往是高强度和高还原性。烧结工序中,一般要求烧结矿具有较高的强度、高成品率、较低的返矿率,以及较低的燃料消耗。高强度和高还原性的烧结矿在高炉冶炼过程中消耗较少的焦炭,从而可以降低二氧化碳的排放。从长远角度考虑,二氧化碳减排要求将成为制约钢铁工业发展的瓶颈之一。据相关资料介绍,烧结与高炉工序二氧化碳排放量约占工业排放总量的60%。因此,无论从企业降低成本考虑还是从环境保护角度考虑,减少烧结固体燃料消耗比例与降低高炉炉料的燃料比成为炼铁技术的迫切之需。
在此大环境下,一种“烧结料面气体燃料喷吹技术”应运而生,其原理是通过喷吹装置在点火炉后一段距离的烧结台车上方喷吹稀释到可燃浓度下限以下的气体燃料,使其在烧结料层内燃烧供热。该技术可降低烧结矿生产中的固体碳用量以及CO 2排放量,同时,由于气体燃料的燃烧加宽了烧结料层在生产时的高温带宽度,所以使得1200℃~1400℃的烧结矿温度时间得到延长,从而使得烧结矿的强度以及5mm~10mm孔隙率得到有 效加强,具有较好的节能减排提质效果。
上述喷吹技术所采用的喷吹装置,在长期生产中被发现存在以下缺陷:
一方面,仍然存在煤气逃逸现象。由于其密封方式为静态翼型防逃逸板式密封,在密封板与密封板之间存在的缝隙依然能穿透煤气,甚至有的煤气被压制在翼型板底部,出现周期性的井喷逃逸(即每隔几十分钟高浓度逃逸一次)。
另一方面,罩内空气吸入难度较大。由于采用静态翼型防逃逸板密封,料面大部分面积区域被翼型板覆盖,这样料面的负压对罩外空气的吸引力度受到了很大限制,罩外空气很难被吸入罩内进入料层内,从而对烧结效果造成了负面影响。
发明内容
本发明的目的在于提供一种燃气喷吹用罩顶风压式防逃逸系统。该防逃逸系统可基本消除燃气逃逸现象,有助于吸入罩外空气,进而达到使烧结生产线稳产、顺产、优产的目的。
本发明的另一目的是提供一种用于控制所述燃气喷吹用罩顶风压式防逃逸系统运行的方法。
为实现上述目的,本发明提供一种燃气喷吹用罩顶风压式防逃逸系统,包括:
喷吹罩,位于烧结机台车顶部;
喷吹管排,设于所述喷吹罩内部并位于所述烧结机台车上方,用于向所述烧结机台车的烧结料面喷吹可燃气体;
燃气管道,用于向所述喷吹管排输送可燃气体;还包括:
气流装置,设于所述喷吹罩顶部区域,与所述喷吹管排之间具有上下间隔的距离,用于驱动外部空气产生气流并将产生的气流从所述喷吹罩顶部向下输入所述喷吹罩内部,以在所述喷吹管排上方位置形成使可燃气体无法向上穿过的风压带区域。
优选地,还包括:
风压检测部件,其在所述喷吹罩内的安装位置高于所述喷吹管排,以 检测所述喷吹管排上方的风压值;
可燃气体浓度检测部件,用于检测所述风压带区域内的可燃气体浓度值;
控制装置,用于接收所述风压检测部件所测得的风压值和所述可燃气体浓度检测部件所测得的可燃气体浓度值,并根据所述风压值和可燃气体浓度值控制所述气流装置在所产生的气流能够使所述可燃气体无法向上穿过所述风压带区域的工况下运行。
优选地,所述气流装置包括多个由电机驱动并分布于所述喷吹罩顶部的旋转叶轮装置;多个所述旋转叶轮装置在运行时所产生的气流共同形成所述风压带区域,所述风压带区域的至少一部分在横截面上连续覆盖所述喷吹罩的可燃气体逃逸区并具有纵向的厚度。
优选地,多个所述旋转叶轮装置在所述喷吹罩顶部以矩形阵列方式排列分布。
优选地,所述旋转叶轮装置包括旋转框架、旋转叶片、旋转轴和旋转电机;所述旋转叶片通过旋转轴固定安装在所述旋转框架内部,所述旋转电机的动力输出轴与所述旋转轴传动连接,以驱动所述旋转叶片以所述旋转轴为中心进行转动。
优选地,所述旋转叶轮装置还包括承力框架,所述承力框架连接于所述喷吹罩,所述旋转框架连接并定位于所述承力框架内部。
优选地,所述旋转叶片的数量为2~8片,且相对于旋转平面具有自倾斜角度,所述自倾斜角度在5°~30°之间。
为实现上述另一目的,本发明提供一种燃气喷吹用罩顶风压式防逃逸控制方法,用于上述任一项所述的燃气喷吹用罩顶风压式防逃逸系统,包括:
启动气流装置;
通过风压检测部件和可燃气体浓度检测部件实时监测所述喷吹管排上方的风压值和风压带区域的可燃气体浓度值;
当监测到的风压值K偏出设定范围k1~k2时,对气流装置进行调节;若风压值K>k2,则调节并减小所述气流装置的功率,以降低其所产生的气流流速,若风压值K<k1,则调节并增大所述气流装置的功率,以提高 其所产生的气流流速;
继续判断监测到的风压值K是否偏出设定范围k1~k2,若判断结果为是,则重复上述调节步骤,若判断结果为否,则结束本次调节;
当监测到的可燃气体浓度值高于临界值k3时,开始进行计时,若监测到的可燃气体浓度值高于k3的连续持续时间大于设定时间t,则调节并增大所述气流装置的功率,以提高其所产生的气流流速;
继续判断监测到的可燃气体浓度值是否低于临界值k3,若判断结果为否,则重复上述调节步骤,若判断结果为是,则结束本次调节。
进一步地,若k1≤K≤k2,同时,监测到的可燃气体浓度值高于临界值k3,且监测到的可燃气体浓度值高于k3的连续持续时间大于设定时间t,则调整k1和k2,以根据调整后的k1和k2对气流装置进行调节使使监测到的可燃气体浓度值低于临界值k3。
进一步地,将k1调整为k1′,k1′=k1-Δk1,将k2调整为k2′,k2′=k2+Δk2。
进一步地,若烧结矿料层透气性指数δ<0.2,则K1的取值为400Pa,K2的取值为1000Pa;若0.2<烧结矿料层透气性指数δ<0.7,则K1的取值为300Pa,K2的取值为1500Pa;若0.7<烧结矿料层透气性指数δ<1,则K1的取值为200Pa,K2的取值为2000Pa。
进一步地,若可燃气体为焦炉煤气,则k3的取值范围位于250ppm-350ppm;若可燃气体为高炉煤气,则k3的取值范围位于750ppm-850ppm;若可燃气体为天然气,则k3的取值范围位于150ppm-250ppm;若可燃气体为高焦混合煤气,则k3的取值范围位于450ppm-550ppm。
进一步地,若可燃气体为焦炉煤气,则k3的取值为300ppm;若可燃气体为高炉煤气,则k3的取值为800ppm;若可燃气体为天然气,则k3的取值为200ppm;若可燃气体为高焦混合煤气,则k3的取值范围位于500ppm。
本发明在喷吹罩顶部增设有气流装置,通过气流装置可以在喷吹管排上方形成风压带区域,由于气流装置所产生的气流流速可调,从而可以在喷吹罩内部形成动态的风压式密封,一旦有可燃气体逃逸到风压带区域,就又会被气流装置产生的气流吹回喷吹管排附近,使可燃气体无法向上穿 过风压带区域,这就从源头上消除了煤气逃逸的现象,基本可以实现可燃气体“零”逃逸,而且,气流装置能够将喷吹罩外部的空气输入喷吹罩内部,这样可有助于补充罩外空气,确保喷吹罩内部不会因为空气不够导致含氧量过低而影响烧结正常生产。
本发明提供的燃气喷吹用罩顶风压式防逃逸控制方法用于上述燃气喷吹用罩顶风压式防逃逸系统,由于所述燃气喷吹用罩顶风压式防逃逸系统具有上述技术效果,则燃气喷吹用罩顶风压式防逃逸控制方法也应具有相应的技术效果。
附图说明
图1为本发明实施例公开的一种燃气喷吹用罩顶风压式防逃逸系统的结构示意图;
图2为图1中所示旋转叶轮装置的结构示意图;
图3为图2所示旋转叶轮装置的俯视图;
图4为风压仪、CO检测仪、旋转叶轮装置与控制装置的电气接线图;
图5为本发明实施例公开的一种燃气喷吹用罩顶风压式防逃逸控制方法的流程图。
图中:
1.喷吹罩 2-1.喷吹总管 2-2.喷吹支管 3.喷吹管排 4.翼型防逃逸板 5.风压仪 7.气流装置 71.承力框架 72.旋转框架 73.旋转叶片 74.旋转轴 75.旋转电机 8.CO检测仪 9.烧结机台车
具体实施方式
本发明在喷吹装置结构基础上对其加以了优化改进,研发出一种喷吹工艺用罩内风压式防逃逸系统,并开发出与其相匹配的控制方法,以达到使整条烧结生产线稳产、顺产、优产的目的。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
在本文中,“上、下、内、外”等用语是基于附图所示的位置关系而确 立的,根据附图的不同,相应的位置关系也有可能随之发生变化,因此,并不能将其理解为对保护范围的绝对限定;而且,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个与另一个具有相同名称的部件区分开来,而不一定要求或者暗示这些部件之间存在任何这种实际的关系或者顺序。
请参考图1,图1为本发明实施例公开的一种燃气喷吹用罩顶风压式防逃逸系统的结构示意图。
如图所示,在一种具体实施例中,本发明所提供燃气喷吹用罩顶风压式防逃逸系统,主要由喷吹罩1、喷吹管排3、燃气管道和气流装置7等构成。
其中,喷吹罩1位于烧结机台车9的顶部;喷吹管排3设于喷吹罩1内部并位于烧结机台车9上方,用于向烧结机台车9的烧结料面喷吹可燃气体;燃气管道分为喷吹总管2-1和喷吹支管2-2,喷吹总管2-1位于喷吹罩1外部,可与厂区燃气管道相连,喷吹支管2-2穿过喷吹罩1的侧壁与喷吹管排3相连,具有位于喷吹罩1外部的管道部分和位于喷吹罩1内部的管道部分,其位于喷吹罩1外部的一端与喷吹总管2-1相连,位于喷吹罩1内部的一端与喷吹管排3相连,以将喷吹总管2-1的可燃气体输送至喷吹管排3。
喷吹管排3位于喷吹罩1内,并位于烧结机台车9上方,在生产时,燃气从厂区燃气管道进入喷吹总管2-1后再进入喷吹支管2-2,最后进入喷吹管排3并喷出,在喷吹罩1内与罩内空气混合,形成设计要求浓度的混合性气体,进入烧结机台车9的烧结料层内部辅助烧结。
各喷吹管排3的上方设有水平的翼型防逃逸板4,喷吹管排3位于翼型防逃逸板4下方的中间位置,多个喷吹管排3的翼型防逃逸板4大体位于同一平面,相邻的翼型防逃逸板4之间可具有间隙,通过翼型防逃逸板4,可将短时间内无法被吸入料面的燃气压住,使其不至于很快地往上逃逸。
在有些实施例中,翼型防逃逸板4还可以进一步分为可独立活动的左防逃逸板和右防逃逸板两部分,左防逃逸板和右防逃逸板在对接处设有转轴,在驱动机构的带动下,可以绕转轴从左右两侧向上翻转一定角度或向下翻转一定角度,从而通过调节获得不同的防逃逸性能。
本实施例取消了喷吹罩1顶部的百叶窗稳流板,取而代之增设了气流 装置7,此气流装置7设于喷吹罩1顶部区域,与喷吹管排3之间具有上下间隔的距离,用于驱动外部空气产生气流并将产生的气流从喷吹罩1顶部向下输入喷吹罩1内部,以在喷吹管排3上方位置形成使可燃气体无法向上穿过的风压带区域,从而达到防止可燃气体逃逸的目的。
请参考图2、图3,图2为图1中所示旋转叶轮装置的结构示意图;图3为图2所示旋转叶轮装置的俯视图。
本实施例中,与实施例一相同的部分,给予相同的附图标记,并省略相同的文字说明。
如图所示,气流装置7由多个旋转叶轮装置组成,多个旋转叶轮装置在喷吹罩1顶部以矩形阵列方式排列分布,以基本覆盖喷吹罩1的顶部区域为宜。各旋转叶轮装置分别由电机驱动,多个旋转叶轮装置在运行时所产生的气流共同形成风压带区域,风压带区域的至少一部分在横截面上连续覆盖喷吹罩1的可燃气体逃逸区并在纵向上具有一定的厚度。
具体地,各旋转叶轮装置主要由承力框架71、旋转框架72、旋转叶片73、旋转轴74和旋转电机75等部件组成;承力框架71大体呈正方形,连接于喷吹罩1,旋转框架72大体呈圆形,连接并定位于承力框架71内部,旋转叶片73通过旋转轴74固定安装在旋转框架72内部,旋转电机75的动力输出轴与旋转轴74传动连接,以驱动旋转叶片73以旋转轴74为中心进行转动。
旋转叶片73的安装数量可在2~8片之间变化,安装时相对于旋转平面带有一定的自倾斜角度,自倾斜角度在5°~30°之间,例如,可以是8°、10°、15°、20°、25°等等,在转动时可起到从外部将空气流体吸入内部、在燃气喷吹管排3上方位置形成风压带的效果,使用旋转叶片73来形成风压带,在吸入空气的同时有效防止燃气逃逸。
喷吹罩1顶部可开设或预留孔位,以便将旋转叶轮装置安装在与之一一对应的孔位中,也可以不在喷吹罩1顶部开设或预留孔位,而是将旋转叶轮装置彼此相邻地连接在一起,从而固定安装在喷吹罩顶部,相当于由旋转叶轮装置一起形成喷吹罩1的顶部。当然,在不会产生矛盾的情况下,这两种安装方式也可以组合使用。
本实施例采用由电机驱动的旋转叶轮装置来作为气流装置7,不仅易 于对旋转叶轮装置进行快速、精确的控制,而且,在电机的驱动下,旋转叶轮装置能够产生稳定、一致的气流,从而在喷吹管排3上方形成较为稳定、均匀的风压带区域,可以更好的防止可燃气体逃逸。
当然,旋转叶轮装置的具体结构并不局限于以上形式,在另外一些实施例中,旋转叶轮装置可主要由旋转叶片73、旋转轴74和旋转电机75等几部分组成,旋转轴74穿过喷吹罩1顶部的轴孔伸入喷吹罩1,旋转叶片73安装在旋转轴74伸入喷吹罩1的一端,旋转电机75则安装在喷吹罩1顶部并与旋转轴74传动连接,以带动旋转轴74和旋转叶片73旋转,为了能够吸入外部空气,可以同时在喷吹罩1顶部开设对应于旋转叶片73的进气孔。
请一并参考图4,图4为风压仪、CO检测仪、旋转叶轮装置与控制装置的电气接线图。
本实施例中,与实施例一相同的部分,给予相同的附图标记,并省略相同的文字说明。
如图所示,在上述实施例的基础上,可进一步设置风压仪5和CO检测仪8,其中,风压仪5安装在喷吹罩1的左侧侧壁上,其检测端在喷吹罩1内的位置高于喷吹管排3,以实时检测喷吹罩1内燃气喷吹管排3上方的风压值。
CO检测仪8安装在喷吹罩1的右侧侧壁上,其检测端位于旋转叶轮装置运行时所形成的风压带区域,以实时检测喷吹罩1内风压带位置的CO浓度值,CO检测仪8的检测端所处的位置在高度方向上高于风压仪5的检测端所处的位置。
风压仪5和CO检测仪8的信号输出端均连接于控制装置,控制装置用于接收风压仪5所测得的风压值和CO检测仪8所测得的可燃气体浓度值,并根据风压值和可燃气体浓度值,控制旋转叶轮装置的旋转电机75,使旋转叶轮装置所产生的气流能够使可燃气体无法向上穿过风压带区域。
由于风压仪5、CO检测仪8和控制装置采用通用技术即可实现,其本身并非本发明的核心所在,因此,这里对风压仪5、CO检测仪8和控制装置的结构、组成和工作原理就不再展开进行说明。
本实施例通过设置风压仪5、CO检测仪8和控制装置,能够实时监测 喷吹罩1内部是否发生了燃气逃逸现象,并在发生燃气逃逸现象之前,自动调节旋转叶轮装置的功率,减小或增加旋转电机75的转速,使其产生的气流流速变小或变大,从而达到根据实际工况自动调节防止燃气逃逸的目的,能够更好的满足实际使用需求。
上述实施例仅是本发明的优选方案,具体并不局限于此,在此基础上可根据实际需要作出具有针对性的调整,从而得到不同的实施方式。例如,采用其他方式排列旋转叶轮装置,或者,根据喷吹罩1的大小,对旋转叶轮装置的尺寸和数量作出相应的调整,等等。由于可能实现的方式较多,这里就不再一一举例说明。
请参考图5,图5为本发明实施例公开的一种燃气喷吹用罩顶风压式防逃逸控制方法的流程图。
除了上述燃气喷吹用罩顶风压式防逃逸系统,本发明还提供一种燃气喷吹用罩顶风压式防逃逸控制方法,以用于控制上述燃气喷吹用罩顶风压式防逃逸系统。
该控制方法包括以下步骤:
启动旋转叶轮装置,使旋转叶轮装置依靠旋转电机75驱动旋转叶片73围绕旋转轴74在旋转框架72内作缓慢匀速转动。
同时系统通过风压仪5和CO检测仪8实时监测喷吹管排3上方的风压值和风压带区域的CO浓度值。
当监测到的风压值K偏出设定范围k1~k2时,对旋转叶轮装置进行调节;若风压值K>k2,则调节并减小旋转电机75的功率,以降低旋转电机75的转速,使旋转叶轮装置所产生的气流流速变小,若风压值K<k1,则调节并增大旋转电机75的功率,以提高旋转电机75的转速,使旋转叶轮装置所产生的气流流速变大;也就是说,系统将自动对风压偏高的工况实行“调小电机功率、减慢叶片转速”的操作,对风压偏低的工况实行“调大电机功率、加快叶片转速”操作。
继续判断监测到的风压值K是否偏出设定范围k1~k2,若判断结果为是,则重复上述调节步骤,若判断结果为否,则结束本次调节。
当监测到的CO浓度值高于临界值k3时,开始进行计时,若监测到的CO浓度值高于k3的连续持续时间大于设定时间t,则判断此时为逃逸工 况,则调节并增大旋转电机75的功率,加快旋转叶片73的转速,提高其所产生的气流流速。
继续判断监测到的可燃气体浓度值是否低于临界值k3,若判断结果为否,则重复上述调节步骤,若判断结果为是,则结束本次调节。
如果风压太高则易在喷吹罩1内产生正压,导致燃气被鼓出罩外。如果风压太低则易引起喷吹罩1内燃气往上逃逸,经研究发现,风压合理范围下限值k1、上限值k2受烧结矿料层透气性指数影响,其常规取值见表1所示。
表1
Figure PCTCN2019126446-appb-000001
此外,H2&CO浓度临界值k3受喷吹煤气介质种类影响,若可燃气体为焦炉煤气,则CO浓度临界值k3的取值范围位于250ppm-350ppm;若可燃气体为高炉煤气,则k3的取值范围位于750ppm-850ppm;若可燃气体为天然气,则k3的取值范围位于150ppm-250ppm;若可燃气体为高焦混合煤气,则k3的取值范围位于450ppm-550ppm。
进一步地,若可燃气体为焦炉煤气,则k3的取值为300ppm;若可燃气体为高炉煤气,则k3的取值为800ppm;若可燃气体为天然气,则k3的取值为200ppm;若可燃气体为高焦混合煤气,则k3的取值范围位于500ppm,其常规取值见表2所示。
表2
  焦炉煤气 高炉煤气 天然气 高焦混合煤气
k3 300ppm 800ppm 200ppm 500ppm
上述k3是用来判断煤气是否逃逸的标准,其判断的优先级高于下限值k1和上限值k2,也就是说,如果k1≤K≤k2,煤气仍然逃逸,则此时可调整下限值k1和上限值k2的取值,形成适应该工况的新的的k1′与k2′,以根据k1′和k2′对气流装置进行调节,消除煤气逃逸现象。
具体地,可以将k1调整为k1′,其中k1′=k1-Δk1,和/或,将k2调整 为k2′,其中k2′=k2+Δk2。
若在k1′≤K≤k2′的条件下,煤气仍然逃逸,则重复上述步骤对k1′与k2′作出进一步调整,直至煤气不再逃逸。
其中的Δk1与Δk2根据燃气种类、烧结机运行参数等工况条件不同而不同,既可以相等,也可以不相等,例如两者的取值可以是10Pa、20Pa、50Pa或100Pa等等,不同的取值对应不同的调整到位精度,取值越小,端值调整到位精度越高,但所需的调整次数可能相对较多,取值越大,端值调整到位精度越低,但所需的调整次数可能相对较少。
此外,对于Δk1和Δk2,系统可自动记录其每次取值与对应工况条件参数,形成数据库,在运行多次累计一定数据后,系统将具备自动根据当前工况条件参数推算Δk1、Δk2,并自动调整的功能。
使用本发明技术方案进行燃气喷吹强化烧结生产时,燃气通过喷吹总管2-1、喷吹支管2-2进入喷吹罩1中的喷吹管排3内,最终从喷吹管排3下方喷出。与此同时,系统通过旋转电机75驱动旋转叶片73在罩顶区域做匀速缓慢转动,由于旋转叶片73的倾斜角度设置,使得在其转动过程中可以有效地从罩外吸入空气,将其鼓入罩内并在罩内喷吹管排3的上方区域形成风压带。风压带可以确保从喷吹管排3内喷出的煤气在料层透气性不强的时候,可以被有效压制在罩内不会逃逸,同时风压带可以源源不断地给烧结料面输送空气,保证其燃烧生产所需的足够空气量。
本发明相比现有技术,具有以下优势:
一方面,可消除煤气逃逸现象。由于本发明为罩顶动态风压式密封,煤气无法往上穿过风压带,一旦逃逸到风压带位置,就又会被吹回管排附近,这就从源头上完全消除了煤气逃逸的现象,基本上可以实现煤气“零”逃逸。
另一方面,可有助于罩外空气的吸入。由于本发明为罩顶动态风压式密封,旋转叶片73在转动时,能够从罩外吸入大气鼓入罩内,这样可有助于罩外空气的吸入,确保罩内不会因为空气不够导致氧含量过低从而影响烧结正常生产。
可见,通过使用本发明技术,可有效解决现有技术的各项缺陷,强化罩内密封度与空气吸入度,有效强化煤气喷吹强化烧结技术的强化效果与 经济性指标,相比较现有技术更加可靠、安全与稳定。
以上对本发明所提供的燃气喷吹用罩顶风压式防逃逸系统及其控制方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (13)

  1. 燃气喷吹用罩顶风压式防逃逸系统,包括:
    喷吹罩,位于烧结机台车顶部;
    喷吹管排,设于所述喷吹罩内部并位于所述烧结机台车上方,用于向所述烧结机台车的烧结料面喷吹可燃气体;
    燃气管道,用于向所述喷吹管排输送可燃气体;其特征在于,还包括:
    气流装置,设于所述喷吹罩顶部区域,与所述喷吹管排之间具有上下间隔的距离,用于驱动外部空气产生气流并将产生的气流从所述喷吹罩顶部向下输入所述喷吹罩内部,以在所述喷吹管排上方位置形成使可燃气体无法向上穿过的风压带区域。
  2. 根据权利要求1所述的燃气喷吹用罩顶风压式防逃逸系统,其特征在于,还包括:
    风压检测部件,其在所述喷吹罩内的安装位置高于所述喷吹管排,以检测所述喷吹管排上方的风压值;
    可燃气体浓度检测部件,用于检测所述风压带区域内的可燃气体浓度值;
    控制装置,用于接收所述风压检测部件所测得的风压值和所述可燃气体浓度检测部件所测得的可燃气体浓度值,并根据所述风压值和可燃气体浓度值控制所述气流装置在所产生的气流能够使所述可燃气体无法向上穿过所述风压带区域的工况下运行。
  3. 根据权利要求2所述的燃气喷吹用罩顶风压式防逃逸系统,其特征在于,所述气流装置包括多个由电机驱动并分布于所述喷吹罩顶部的旋转叶轮装置;多个所述旋转叶轮装置在运行时所产生的气流共同形成所述风压带区域,所述风压带区域的至少一部分在横截面上连续覆盖所述喷吹罩的可燃气体逃逸区并具有纵向的厚度。
  4. 根据权利要求3所述的燃气喷吹用罩顶风压式防逃逸系统,其特征在于,多个所述旋转叶轮装置在所述喷吹罩顶部以矩形阵列方式排列分布。
  5. 根据权利要求4所述的燃气喷吹用罩顶风压式防逃逸系统,其特征在于,所述旋转叶轮装置包括旋转框架、旋转叶片、旋转轴和旋转电机;所述旋转叶片通过旋转轴固定安装在所述旋转框架内部,所述旋转电机的 动力输出轴与所述旋转轴传动连接,以驱动所述旋转叶片以所述旋转轴为中心进行转动。
  6. 根据权利要求5所述的燃气喷吹用罩顶风压式防逃逸系统,其特征在于,所述旋转叶轮装置还包括承力框架,所述承力框架连接于所述喷吹罩,所述旋转框架连接并定位于所述承力框架内部。
  7. 根据权利要求5或6所述的燃气喷吹用罩顶风压式防逃逸系统,其特征在于,所述旋转叶片的数量为2~8片,且相对于旋转平面具有自倾斜角度,所述自倾斜角度在5°~30°之间。
  8. 燃气喷吹用罩顶风压式防逃逸控制方法,用于上述权利要求1至7中任一项所述的燃气喷吹用罩顶风压式防逃逸系统,其特征在于,包括:
    启动气流装置;
    通过风压检测部件和可燃气体浓度检测部件实时监测所述喷吹管排上方的风压值和风压带区域的可燃气体浓度值;
    当监测到的风压值K偏出设定范围k1~k2时,对气流装置进行调节;若风压值K>k2,则调节并减小所述气流装置的功率,以降低其所产生的气流流速,若风压值K<k1,则调节并增大所述气流装置的功率,以提高其所产生的气流流速;
    继续判断监测到的风压值K是否偏出设定范围k1~k2,若判断结果为是,则重复上述调节步骤,若判断结果为否,则结束本次调节;
    当监测到的可燃气体浓度值高于临界值k3时,开始进行计时,若监测到的可燃气体浓度值高于k3的连续持续时间大于设定时间t,则调节并增大所述气流装置的功率,以提高其所产生的气流流速;
    继续判断监测到的可燃气体浓度值是否低于临界值k3,若判断结果为否,则重复上述调节步骤,若判断结果为是,则结束本次调节。
  9. 根据权利要求8所述的燃气喷吹用罩顶风压式防逃逸控制方法,其特征在于,若k1≤K≤k2,同时,监测到的可燃气体浓度值高于临界值k3,且监测到的可燃气体浓度值高于k3的连续持续时间大于设定时间t,则调整k1和k2,以根据调整后的k1和k2对气流装置进行调节使监测到的可燃气体浓度值低于临界值k3。
  10. 根据权利要求9所述的燃气喷吹用罩顶风压式防逃逸控制方法, 其特征在于,将k1调整为k1′,k1′=k1-Δk1,将k2调整为k2′,k2′=k2+Δk2。
  11. 根据权利要求8所述的燃气喷吹用罩顶风压式防逃逸控制方法,其特征在于,若烧结矿料层透气性指数δ<0.2,则K1的取值为400Pa,K2的取值为1000Pa;若0.2<烧结矿料层透气性指数δ<0.7,则K1的取值为300Pa,K2的取值为1500Pa;若0.7<烧结矿料层透气性指数δ<1,则K1的取值为200Pa,K2的取值为2000Pa。
  12. 根据权利要求8至11任一项所述的燃气喷吹用罩顶风压式防逃逸控制方法,其特征在于,若可燃气体为焦炉煤气,则k3的取值范围位于250ppm-350ppm;若可燃气体为高炉煤气,则k3的取值范围位于750ppm-850ppm;若可燃气体为天然气,则k3的取值范围位于150ppm-250ppm;若可燃气体为高焦混合煤气,则k3的取值范围位于450ppm-550ppm;
  13. 根据权利要求12所述的燃气喷吹用罩顶风压式防逃逸控制方法,其特征在于,若可燃气体为焦炉煤气,则k3的取值为300ppm;若可燃气体为高炉煤气,则k3的取值为800ppm;若可燃气体为天然气,则k3的取值为200ppm;若可燃气体为高焦混合煤气,则k3的取值范围位于500ppm。
PCT/CN2019/126446 2019-07-30 2019-12-19 燃气喷吹用罩顶风压式防逃逸系统及其控制方法 WO2021017379A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910696944.XA CN110345766B (zh) 2019-07-30 2019-07-30 燃气喷吹用罩顶风压式防逃逸系统及其控制方法
CN201910696944.X 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021017379A1 true WO2021017379A1 (zh) 2021-02-04

Family

ID=68180277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126446 WO2021017379A1 (zh) 2019-07-30 2019-12-19 燃气喷吹用罩顶风压式防逃逸系统及其控制方法

Country Status (2)

Country Link
CN (1) CN110345766B (zh)
WO (1) WO2021017379A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345766B (zh) * 2019-07-30 2021-07-20 中冶长天国际工程有限责任公司 燃气喷吹用罩顶风压式防逃逸系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125456A (ja) * 1991-11-06 1993-05-21 Nippon Steel Corp 下方吸引式焼結機の点火方法
CN204554768U (zh) * 2015-04-17 2015-08-12 北京京能未来燃气热电有限公司 正压锅炉穿炉墙管道密封系统
CN205119813U (zh) * 2015-08-21 2016-03-30 上海梅山钢铁股份有限公司 解决可燃气体辅助烧结着火的烧结装置
CN106370008A (zh) * 2015-07-24 2017-02-01 上海梅山钢铁股份有限公司 节能型富氧烧结动态调控方法
CN107356119A (zh) * 2016-05-10 2017-11-17 中冶长天国际工程有限责任公司 一种多段式强化辅助烧结型点火保温炉及其使用方法
CN110345766A (zh) * 2019-07-30 2019-10-18 中冶长天国际工程有限责任公司 燃气喷吹用罩顶风压式防逃逸系统及其控制方法
CN110343852A (zh) * 2019-07-30 2019-10-18 中冶长天国际工程有限责任公司 一种喷吹罩燃气防逃逸系统及其控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108120298B (zh) * 2017-06-29 2023-09-01 中冶长天国际工程有限责任公司 一种燃气喷吹装置及燃气喷吹方法
CN207713789U (zh) * 2017-11-23 2018-08-10 中冶长天国际工程有限责任公司 一种自适应可调式防逃逸的燃气喷吹装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125456A (ja) * 1991-11-06 1993-05-21 Nippon Steel Corp 下方吸引式焼結機の点火方法
CN204554768U (zh) * 2015-04-17 2015-08-12 北京京能未来燃气热电有限公司 正压锅炉穿炉墙管道密封系统
CN106370008A (zh) * 2015-07-24 2017-02-01 上海梅山钢铁股份有限公司 节能型富氧烧结动态调控方法
CN205119813U (zh) * 2015-08-21 2016-03-30 上海梅山钢铁股份有限公司 解决可燃气体辅助烧结着火的烧结装置
CN107356119A (zh) * 2016-05-10 2017-11-17 中冶长天国际工程有限责任公司 一种多段式强化辅助烧结型点火保温炉及其使用方法
CN110345766A (zh) * 2019-07-30 2019-10-18 中冶长天国际工程有限责任公司 燃气喷吹用罩顶风压式防逃逸系统及其控制方法
CN110343852A (zh) * 2019-07-30 2019-10-18 中冶长天国际工程有限责任公司 一种喷吹罩燃气防逃逸系统及其控制方法

Also Published As

Publication number Publication date
CN110345766B (zh) 2021-07-20
CN110345766A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2019056930A1 (zh) 一种水平连续加料预热装置及其强化预热方法
EP3666372A1 (en) Flue gas mixing device and method
CN103075881A (zh) 利用烟气预热的电弧炉连续加料装置
CN201764828U (zh) 一种短流程废钢预热输送装置
CN112048616B (zh) 一种液气两相介质耦合移动喷吹烧结方法及喷吹装置
WO2021017379A1 (zh) 燃气喷吹用罩顶风压式防逃逸系统及其控制方法
CN108344298B (zh) 一种自适应优化料面负压的燃气喷吹装置及其控制方法
CN112048617B (zh) 一种液气两相介质耦合分区喷吹烧结方法及喷吹装置
KR20170082664A (ko) 소결기의 기체 연료 공급 장치
CN207713789U (zh) 一种自适应可调式防逃逸的燃气喷吹装置
CN208349836U (zh) 一种自适应优化料面负压的燃气喷吹装置
CN110345765B (zh) 一种烧结料面喷吹燃气防逃逸系统及其控制方法
CN110343852B (zh) 一种喷吹罩燃气防逃逸系统及其控制方法
CN109136457B (zh) 一种转炉煤气回收系统及方法
CN107604123A (zh) 一种有效提高转炉煤气回收质量和数量的方法
CN203100422U (zh) 利用烟气预热的电弧炉连续加料装置
CN108120290B (zh) 一种燃气喷吹装置及燃气喷吹方法
CN108267010B (zh) 一种消除侧风影响的燃气喷吹装置及喷吹方法
CN101354137B (zh) 一种三次风余热锅炉烟灰的输送装置及方法
CN108118144B (zh) 一种自适应可调式防逃逸的燃气喷吹装置及其方法
CN215676449U (zh) 烧结机台车料面打孔装置
CN216432499U (zh) 一种耦合热风烧结与燃气喷吹的装置
CN208382882U (zh) 一种消除侧风影响的燃气喷吹装置
CN115466808B (zh) 高富氧大渣量的高炉冶炼方法
CN108085482A (zh) 一种强化边部烧结的喷吹装置及其烧结工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939338

Country of ref document: EP

Kind code of ref document: A1