WO2021017248A1 - 电磁加热装置、流体管道和温度调节设备 - Google Patents

电磁加热装置、流体管道和温度调节设备 Download PDF

Info

Publication number
WO2021017248A1
WO2021017248A1 PCT/CN2019/115676 CN2019115676W WO2021017248A1 WO 2021017248 A1 WO2021017248 A1 WO 2021017248A1 CN 2019115676 W CN2019115676 W CN 2019115676W WO 2021017248 A1 WO2021017248 A1 WO 2021017248A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic heating
heating device
alternating
heated part
magnet
Prior art date
Application number
PCT/CN2019/115676
Other languages
English (en)
French (fr)
Inventor
代传民
劳春峰
许文明
王飞
武凤玲
齐兆乾
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021017248A1 publication Critical patent/WO2021017248A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures

Definitions

  • This application relates to the technical field of air conditioning equipment, for example, to an electromagnetic heating device, a fluid pipe, and a temperature adjustment equipment.
  • the air conditioner is difficult to continuously absorb sufficient heat from the outdoors, resulting in unsatisfactory heating effect.
  • the embodiments of the present disclosure provide an electromagnetic heating device, a fluid pipeline, and a temperature adjusting device, which are realized as refrigerant and/or compressor oil heating, so as to solve the technical problem that the air conditioner is difficult to continuously absorb sufficient heat from the outside, which causes the heating effect to be unsatisfactory.
  • an electromagnetic heating device includes:
  • Alternating body is set to produce an alternating magnetic field when an alternating current is passed;
  • the receiving magnet is arranged inside the heated part and is located in the alternating magnetic field; the receiving magnet generates an induced current under the action of the alternating magnetic field, and simultaneously generates a Lorentz force.
  • a fluid pipeline includes,
  • the aforementioned electromagnetic heating device is arranged on the pipe body.
  • a temperature adjustment device includes the foregoing electromagnetic heating device; or, includes the foregoing fluid pipe; the fluid pipe is connected to the refrigerant circuit of the temperature adjustment device.
  • the electromagnetic heating device, fluid pipeline, and temperature adjustment equipment provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the alternating magnetic field generated by the alternating body directly acts on the receiving magnet located inside the heated part, and the induced current generated by the receiving magnet under the action of the alternating magnetic field is an alternating current (ie eddy current), so that Joules are generated on the receiving magnet Heat, and most of the heat is concentrated on the outer surface of the magnet, which is more conducive to the transfer of Joule heat to the heated part, thereby heating the heated part or the material inside, heating from the inside to the outside, and the heat from the inside to the outside
  • the heat transfer resistance is smaller than the heat resistance from the outside to the inside, and the heat transfer efficiency is high.
  • the heating of the refrigerant is realized, the specific volume of the refrigerant is effectively increased, the solubility of the lubricating oil is effectively increased, the viscosity of the lubricating oil is reduced, the oil return is beneficial, and the heating effect is improved, thereby improving the system reliability.
  • Fig. 1 is a schematic structural diagram of an electromagnetic heating device provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of the A-A sectional structure in Figure 1;
  • FIG. 3 is a schematic diagram of an A-A cross-sectional structure of an electromagnetic heating device provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an A-A cross-sectional structure of an electromagnetic heating device provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic sectional view of the electromagnetic heating device in the direction of B-B in FIG. 4;
  • FIG. 6 is a schematic structural diagram of an electromagnetic heating device provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of an electromagnetic heating device provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic cross-sectional view of the structure taken along the line C-C in Figure 7;
  • FIG. 9 is a schematic structural diagram of an electromagnetic heating device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a temperature adjustment device provided by an embodiment of the present disclosure.
  • FIG. 11 is a partial structural diagram of a temperature adjustment device provided by an embodiment of the present disclosure.
  • the heated part body (pipe body); 21, the alternating body; 22, the receiving magnet; 221, the first receiving magnet; 222, the second receiving magnet; 23, the limiting body; 24, the conductive magnet; 251, the first One guide bridge; 252, second guide bridge; 31, throttling device; 32, outdoor heat exchanger; 33, gas-liquid separator; 34, compressor.
  • connection should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be inside two components.
  • the connection may be a direct connection or an indirect connection through an intermediary.
  • the embodiment of the present disclosure provides an electromagnetic heating device, shown in conjunction with FIG. 1 to FIG. 9, including:
  • the alternating body 21 is set to generate an alternating magnetic field when an alternating current is passed through;
  • the receiving magnet 22 is arranged inside the heated component 10 and is located in the alternating magnetic field; the receiving magnet 22 generates an induced current under the action of the alternating magnetic field, and simultaneously generates a Lorentz force.
  • the alternating magnetic field generated by the alternating body 21 directly acts on the receiving magnet 22 located inside the heated component 10, and the induced current generated by the receiving magnet 22 under the action of the alternating magnetic field is an alternating current (ie Eddy current), so that Joule heat is generated on the receiving magnet 22, and most of the heat is concentrated on the outer surface of the receiving magnet, which is more conducive to the transfer of Joule heat to the heated part 10, so as to affect the heated part 10 or the material inside.
  • ie Eddy current alternating current
  • Joule heat is generated on the receiving magnet 22, and most of the heat is concentrated on the outer surface of the receiving magnet, which is more conducive to the transfer of Joule heat to the heated part 10, so as to affect the heated part 10 or the material inside.
  • the thermal resistance of heat transfer from the inside to the outside is smaller than the thermal resistance from the outside to the inside, and the heat transfer efficiency is high.
  • the receiving magnet 22 is located inside the fluid in the fluid pipe, such as a refrigerant in a pipe in an air conditioning system, so as to heat the refrigerant flowing into the fluid pipe.
  • a refrigerant in a pipe in an air conditioning system
  • the heated part 10 is not limited.
  • the heated part 10 when an electromagnetic heating device is applied to an air conditioning system, can be a pipe on a refrigerant circuit at any position, or a gas-liquid separator. and many more.
  • the magnet 22 since the magnet 22 is used as an internal heating component, the material of the heated component is not limited, and it may be a non-conductor material. Of course, it is not restricted to use conductive materials for the heated parts.
  • the receiving magnet 22 is made of a conductive material and can generate an alternating current under the action of an alternating magnetic field.
  • the material of the receiving magnet 22 is martensitic steel.
  • the alternating body 21 may be arranged near the side of the heated part 10, or it may be sleeved on the outside of the heated part 10, so that the heated part 10 is placed on the alternating current generated by the alternating body 21. In the magnetic field. It can also be placed in other positions, as long as the heated component 10 is placed in the alternating magnetic field generated by the alternating body 21, which is not limited in the embodiment of the present disclosure.
  • the alternating body 21 adopts an induction coil.
  • the induction coil is sleeved on the outer wall of the heated component 10.
  • the induction coil is sleeved on the outer wall of the pipe body 10 of the fluid pipe.
  • the direction of the alternating magnetic field generated by the induction coil is parallel to the axial direction of the heated part 10, and the alternating current generated in the heated part 10 forms a closed current loop along the circumferential direction of the pipe.
  • the heating device further includes a power source configured to output alternating current to the alternating body 21.
  • the power supply adopts an intermediate frequency induction heating power supply.
  • the heating temperature can be controlled by controlling parameters such as the frequency and intensity of the output alternating current.
  • the receiving magnet 22 is arranged inside the heated component 10, and the arrangement method is not limited, and it can be fixed or movably arranged.
  • the receiving magnet 22 includes a first receiving magnet 221, and the first receiving magnet 221 is movably arranged inside the heated component 10 (fluid pipe).
  • the movable first magnet 221 moves inside the heated part 10 under the action of Lorentz force, can fully agitate the heated material in the heated part 10, increase disturbance, and perform turbulent heat exchange. For example, in the refrigerant Or the disturbance in the compressor oil improves the heat exchange efficiency.
  • the first receiving magnet 221 uses conductive small balls.
  • the conductive ball can be placed inside the heated part 10 (fluid pipe). The movement resistance of the first receiving magnet 221 is reduced.
  • the conductive pellets can be metal pellets, or pellets coated with a conductive material on the outer layer (that is, the interior can be a non-conductive body).
  • the first receiving magnet 221 uses magnetic conductive beads.
  • the induced current and the Lorentz force can be enhanced, the mobility of the first magnet 221 can be improved, and the disturbance to the heated object inside the heated component 10 can be enhanced.
  • the electromagnetic heating device further includes a limiting body 23 which is arranged inside the heated part 10 and is configured to confine the first magnet 221 within a set active area of the heated part.
  • a limiting body 23 which is arranged inside the heated part 10 and is configured to confine the first magnet 221 within a set active area of the heated part.
  • the heated component 10 does not have a closed space, for example, a fluid pipe, the movable range of the first magnet 221 that is movably arranged needs to be limited.
  • limiting bodies 23 which divide the set active area of the first receiving magnet 221 into multiple sub-active areas. Reducing the active area of the first magnet 221 can increase the activity rate and increase the disturbance to the heated object (for example, refrigerant or compressor oil).
  • the limiting member 23 includes a mesh portion. It is suitable for the scene of heating fluid materials.
  • the limiting member 23 adopts a mesh body. Can play a certain filtering role.
  • the shape of the stopper 23 is adapted to the shape of the inner wall of the fluid pipeline, which can filter the refrigerant to a certain extent.
  • the receiving magnet 22 further includes second receiving magnets 222, which are arranged oppositely and alternately in the heated part 10.
  • the number of the second receiving magnet 222 is multiple. Acting as a magnet to heat the heated part 10 or the heated material in it, when the heated material is a fluid, it can further function as a turbulence for the fluid (for example, refrigerant or compressor oil) Function to increase the heat exchange effect.
  • the shape of the second receiving magnet 222 is not limited, and it can be set in the aforementioned manner, and a flow path can still be formed in the heated part 10.
  • the second receiving magnet 222 is block-shaped (or plate-shaped), and is arranged on the inner wall of the heated part 10 (for example, fluid pipe) in a manner that is perpendicular to the inner wall of the heated part 10 (for example, fluid pipe). .
  • the second receiving magnet 222 may be inclined with respect to the inner wall of the heated part 10. In this way, the fluid can be disturbed.
  • the second receiving magnet 222 is arranged obliquely toward the flow direction of the fluid.
  • the second receiving magnet 222 is arranged obliquely away from the flow direction of the fluid. It is more conducive to disturbing the fluid (for example, refrigerant or compressor oil) entering the heated component 10.
  • the second receiving magnet 222 has a tubular shape and is sleeved in the heated part 10.
  • the fluid flow path in the heated part 10 is divided into two flow paths, one flow path is the inner circle area of the tubular second magnet receiving body; the other flow path is the outer wall of the tubular second magnet receiving body and the inner wall of the heated part 10 Constitute the ring area.
  • the first receiving magnet 110 is also movably arranged in the aforementioned two flow path regions.
  • both ends of the tubular second magnet receiving body are fixedly arranged on the limiting body 24.
  • the restricting body 24 can limit the active area of the first magnet 221, filter the fluid, and provide support for the tubular second magnet.
  • the electromagnetic heating device further includes a conductive magnet 24, which is arranged around the heated part 10 and configured to concentrate an alternating magnetic field.
  • the magnetic conductor 24 concentrates the alternating magnetic field generated by the alternating body 21 therein, and the intensity of the magnetic field in the magnetic conductor 24 is increased, and the magnetic field is wound outside the heated part 10 to strengthen the heated part 10.
  • the surrounding magnetic field enhances the induced current, which in turn generates more Joule heat.
  • the material of the magnetic conductor 23 is ferrite.
  • the magnetic conductor 24 is wound around the heated part 10, so the magnetic field direction of the alternating magnetic field and the axial direction of the heated part 10 form an included angle, which can be greater than 0° and less than 180°, then
  • the alternating current generated in the heated part 10 flows in the pipe wall along its axial direction and forms a potential difference between the two ends of the heated part 10; at the same time, when the included angle is not 90°, it will also produce
  • the circumferential direction forms a closed current loop.
  • the heated part 10 is connected with an external pipeline (for example, an air-conditioning pipeline) to form a conductive circuit
  • the potential difference between the two ends of the heated part 10 forms a current in the conductive circuit, thereby generating Joule heat.
  • part of the magnetic conductor 24 is arranged in an alternating magnetic field generated by the alternating body 21.
  • the alternating body 21 is an induction coil, and a part of the magnetic conductor 24 penetrates the magnetic channel of the induction coil.
  • the alternating body 21 is an induction coil wound on the magnetic conductor 24. When an alternating current is passed into the induction coil, an alternating magnetic field is generated in the magnetic conductor 24.
  • the magnetizer 24 has a closed structure or an open structure.
  • the closed structure of the magnetizer 24 further concentrates the alternating magnetic field on the magnetizer 24 to further enhance the induced electromotive force and induced current, and ultimately improve the heating effect of the refrigerant (or the heating of the compressor oil). Effect), effectively increase the specific volume of the refrigerant entering the heat exchanger, effectively increase the solubility of the lubricating oil, reduce the viscosity of the lubricating oil, reduce the separation and adhesion of the lubricating oil in the heat exchanger as an evaporator, and facilitate oil return , Improve oil return rate.
  • the conductor 24 is rectangular or ring-shaped.
  • the alternating body 21 is wound on a rectangular side of the rectangular magnet; the alternating magnetic field is concentrated inside the magnet 24.
  • a magnetic barrier layer is provided on the alternating body 21.
  • a magnetic barrier layer is provided on the outer surface of the alternating body 21.
  • the alternating body 21 passes through the magnetic barrier to avoid electromagnetic interference.
  • a magnetic leakage prevention layer is provided on the magnetic conductor 24.
  • the anti-magnetic leakage layer the amount of magnetic leakage is reduced and the electromagnetic induction heating effect is ensured.
  • the anti-magnetic leakage layer is an anti-magnetic leakage paper coated on the outside of the magnetic conductor 24, or an anti-magnetic leakage paint layer coated on the outside of the magnetic conductor 24.
  • the structure is simple and effective.
  • the heating device further includes a bridge guide, both ends of which are respectively connected to the heated part 10 to form a self-conducting circuit.
  • a self-conducting circuit is constructed on the heated part 10. Under the action of the alternating magnetic field, an alternating current is generated on the self-conducting circuit to form eddy currents, thereby generating Joule heat and Joule heat on the heated part 10 and the guide bridge. Then it is transferred to the working fluid in the heated part 10.
  • the bridge guide is arranged inside and/or outside the heated part 10.
  • the Joule heat generated on the entire self-conducting circuit can be used to heat the working fluid.
  • the Joule heat generated on the heated component 10 can heat the working fluid. According to the actual situation, determine the setting method of the guide bridge.
  • the shape of the guide bridge is not limited, as long as it can form a self-conducting circuit with the heated part 10.
  • the number of guide bridges is not limited, and more than one can be provided to form a plurality of self-conducting loops to enhance eddy current and increase Joule heat.
  • the cross-section of the bridge guide is U-shaped, and both ends of the U-shaped bridge guide are connected to the side wall of the heated component 10.
  • the side walls of the heated part 10 are inner side walls and/or outer side walls.
  • a plurality of first bridge guides 251 are connected to the inner side wall of the heated part 10 at intervals; a plurality of second guide bridges 252 are connected to the outer side of the heated part 10 at intervals On the wall; and, the first bridge guide 251 and the second bridge guide 252 are staggered.
  • the bridge guide member adopts the aforementioned tubular second receiving magnet structure.
  • the heating device further includes a heat preservation layer disposed on the heated part 10.
  • a heat preservation layer is coated on the outer wall of the heated part 10.
  • the alternating magnetic field directly heats the heated part 10 through the insulating layer.
  • the thermal efficiency is very high, and there is almost no loss of thermal energy.
  • the heated part 10 heats itself under the action of the alternating magnetic field, there is no heat transfer loss. Energy saving is about 30%-70% of resistance heating under the same conditions.
  • the embodiment of the present disclosure also discloses a fluid pipeline, as described with reference to FIGS. 1 to 9, including the pipeline body 10 and the aforementioned electromagnetic heating device.
  • the electromagnetic heating device is arranged on the pipe body 10.
  • the pipe body 10 serves as the heated component 10. That is, the receiving magnet 22 is arranged in the pipe body 10, and the pipe body 10 is arranged in an alternating magnetic field.
  • the manner in which the structural components of the electromagnetic heating device are arranged on the pipe body 10 can refer to the foregoing electromagnetic heating device, and the heated part 10 can be replaced with the pipe body 10 for understanding.
  • the material of the pipe body 10 is not limited, and it can be a non-conducting material, and the magnet 22 can be directly used for heating from the inside of the pipe. It can be a conductive material (for example, martensitic steel) that heats the fluid in the pipe from the inside and the outside at the same time, and the heating efficiency is high.
  • the embodiment of the present disclosure also discloses a temperature adjustment device, as shown in FIG. 10 and FIG. 11, including the foregoing electromagnetic heating device; or, including the foregoing fluid pipe; the fluid pipe is connected to the refrigerant circuit of the temperature adjustment device.
  • the temperature adjustment device may be an air conditioner
  • the refrigerant circuit includes a heating circuit and a refrigeration circuit.
  • the fluid pipeline is connected as part of the refrigerant circuit, so that the fluid pipeline heats the refrigerant flowing through, which effectively increases the specific volume of the refrigerant, effectively increases the solubility of the lubricating oil, reduces the viscosity of the lubricating oil, facilitates oil return, and improves heating Effect, thereby improving system reliability.
  • the temperature adjustment device includes a heat exchanger, and the fluid pipe is arranged on the inlet side of the heat exchanger.
  • the heat exchanger is an indoor heat exchanger and/or an outdoor heat exchanger.
  • the heat exchanger heats the refrigerant entering the heat exchanger, increases the temperature of the refrigerant, increases the specific volume of the refrigerant, effectively increases the solubility of the lubricant, reduces the viscosity of the lubricant, and reduces the lubricant inside the heat exchanger
  • the separation and adhesion of the oil is beneficial to oil return and increase the oil return rate. It can also effectively solve a large amount of compressor oil left in the outdoor heat exchanger during heating, thereby providing a guarantee for the reliable operation of the compressor and the entire refrigeration system.
  • the temperature adjustment device further includes a throttling device 31, and the fluid pipe is arranged between the throttling device 31 and the outdoor heat exchanger 32.
  • the temperature adjustment device further includes a gas-liquid separator 33 as a heated part; the electromagnetic heating device is provided in the gas-liquid separator 33.
  • the electromagnetic heating device includes an alternating body 21 that adopts an induction coil and is wound on the outer wall of the gas-liquid separator 33, and the receiving magnet 22 is arranged inside the gas-liquid separator 33.
  • the receiving magnet 22 includes the first receiving magnet 221
  • a limiting body 23 is provided at the inlet and the outlet of the gas-liquid separator 33.
  • the electromagnetic heating device includes an alternating body 21 and a magnetic conductor 24.
  • the magnetic conductor 24 is arranged around the gas-liquid separator 33 and configured to concentrate the alternating current generated by the alternating body 21. magnetic field.
  • a limiting body 23 is provided at the inlet and the outlet of the gas-liquid separator 33.
  • the electromagnetic heating device includes two limiting bodies 23, and the limiting body 23 limits the first magnet 221 in a set active area of the gas-liquid separator 33 close to the inlet side of the compressor 34. For example, as shown in FIG. 11, in the lower half of the gas-liquid separator 33.
  • the electromagnetic heating device includes a first bridge guide 251 and/or a second bridge guide 252 correspondingly disposed on the inner wall and/or outer wall of the gas-liquid separator 33.
  • first bridge guide 251 and/or the second bridge guide 252 are correspondingly disposed on the inner wall and/or outer wall of the gas-liquid separator 33 close to the inlet side of the compressor 34.
  • first bridge guide 251 and/or the second bridge guide 252 are correspondingly disposed on the inner wall and/or outer wall of the gas-liquid separator 33 close to the inlet side of the compressor 34.
  • the inner wall and/or outer wall of the lower half of the gas-liquid separator 33 are correspondingly disposed on the inner wall and/or outer wall of the gas-liquid separator 33 close to the inlet side of the compressor 34.
  • the part of the gas-liquid separator body close to the inlet side of the compressor is preferentially heated, which is beneficial to concentrate heat to heat the refrigerant that will flow into the compressor from the gas-liquid separator body, thereby effectively improving the heating pipe
  • the specific volume of the refrigerant improves the low-temperature heating capacity of the air conditioner.
  • the arrangement of other structural parts in the electromagnetic heating device can be understood by referring to the relevant content of the aforementioned electromagnetic heating device part, and the heated part 10 is replaced by a gas-liquid separator 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Induction Heating (AREA)

Abstract

一种电磁加热装置,包括,交变体(21),被设置为在通有交变电流时,产生交变磁场;受磁体(22),被设置于被加热部件内部且位于交变磁场内;受磁体(22)在交变磁场的作用下产生感应电流,并同时产生洛伦兹力。

Description

电磁加热装置、流体管道和温度调节设备
本申请基于申请号为201910690230.8、申请日为2019年07月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空气调节设备技术领域,例如涉及一种电磁加热装置、流体管道和温度调节设备。
背景技术
在一般家用空气源热泵空调器使用过程中,冬季供暖时随着室外环境温度的降低,空调器的供热量有明显的衰减,并且空调压缩机在超低温运行下压缩比将变大,导致排气温度不断升高,长期运行将对机组构成安全隐患。热泵低温高湿环境运行结霜快,正常工作时间短,除霜会向室内空调房间吹冷风,舒适性变差。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:空调难以从室外持续吸取足够的热量,导致制热效果不理想。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了电磁加热装置、流体管道和温度调节设备,实现为冷媒和/或压缩机油加热,以解决空调难以从室外持续吸取足够的热量,导致制热效果不理想技术问题。
在一些实施例中,一种电磁加热装置,包括,
交变体,被设置为在通有交变电流时,产生交变磁场;
受磁体,被设置于被加热部件内部且位于所述交变磁场内;所述受磁体在所述交变磁场的作用下产生感应电流,并同时产生洛伦兹力。
在一些实施例中,一种流体管道,包括,
管道本体;
前述的电磁加热装置,设置于所述管道本体。
在一些实施例中,一种温度调节设备,包括前述的电磁加热装置;或者,包括前述的流体管道;所述流体管道接入温度调节设备的冷媒回路中。
本公开实施例提供的电磁加热装置、流体管道和温度调节设备,可以实现以下技术效果:
交变体产生的交变磁场直接作用于位于被加热部件内部的受磁体上,受磁体在交变磁场的作用下产生的感应电流为交变电流(即涡流),从而的受磁体上产生焦耳热,而且热量大部分集中在受磁体的外表面,更利于焦耳热再传递至被加热部件内,从而对被加热部件或者对其内的物料进行加热,加热由内而外,热量由内向外传递的热阻比由外向内的热阻小,传热效率高。例如,应用至温度调至设备中时,实现对冷媒的加热,有效提升冷媒比容,有效增加润滑油的溶解度,降低润滑油的粘度,有利于回油,并提升制热效果,从而提升系统可靠性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或一个以上实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一种电磁加热装置的结构示意图;
图2是图1中的A-A向剖视结构示意图;
图3是本公开实施例提供的一种电磁加热装置的A-A向剖视结构示意图;
图4是本公开实施例提供的一种电磁加热装置的A-A向剖视结构示意图;
图5是图4中的B-B向的电磁加热装置的剖视结构示意图;
图6是本公开实施例提供的一种电磁加热装置的结构示意图;
图7是本公开实施例提供的一种电磁加热装置的结构示意图;
图8是图7的C-C向剖视结构示意图;
图9是本公开实施例提供的一种电磁加热装置的结构示意图;
图10是本公开实施例提供的一种温度调节设备的结构示意图;
图11是本公开实施例提供的一种温度调节设备的局部结构示意图;
附图标记:
10、被加热部体(管道本体);21、交变体;22、受磁体;221、第一受磁体;222、第二受磁体;23、限位体;24、导磁体;251、第一导桥件;252、第二导桥件;31、节流装置;32、室外换热器;33、气液分离器;34、压缩机。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或一个以上实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
在本文中,需要理解的是,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者结构与另一个实体或结构区分开来,而不要求或者暗示这些实体或结构之间存在任何实际的关系或者顺序。
在本文中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本文中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
在本文中,需要理解的是,术语“多个”是指两个或两个以上。
本公开实施例提供了一种电磁加热装置,结合图1至图9所示,包括,
交变体21,被设置为在通有交变电流时,产生交变磁场;
受磁体22,被设置于被加热部件10内部且位于交变磁场内;受磁体22在交变磁场的作用下产生感应电流,并同时产生洛伦兹力。
本公开实施例中,交变体21产生的交变磁场直接作用于位于被加热部件10内部的受磁体22上,受磁体22在交变磁场的作用下产生的感应电流为交变电流(即涡流),从而的受磁体22上产生焦耳热,而且热量大部分集中在受磁体的外表面,更利于焦耳热再传递至被加热部件10内,从而对被加热部件10或者对其内的物料进行加热,加热由内而外,热量由内向外传递的热阻比由外向内的热阻小,传热效率高。例如,被加热部件10为流体管道时,则受磁体22位于流体管道内的流体内部,如,空调系统中的管路内的冷媒,从而实现对流入流体管道内部的冷媒的加热。有效提升冷媒比容,有效增加润滑油的溶解度,降低润滑油的粘度,有利于回油,并提升制热效果,从而提升系统可靠性。
本公开实施例中,被加热部件10不限定,例如,将电磁加热装置应用至空调系统中时,被加热部件10可以是任意位置处的冷媒回路上的管道,也可以是气液分离器,等等。同时,由于受磁体22作为内部加热部件,则对被加热部件的材质没有限定,可以为非导体材料。当然,不限制被加热部件采用导体材料。
可选地,受磁体22由导体材料制成,可在交变磁场的作用下产生交流电流。
可选地,受磁体22的材质为马氏体钢材。
本公开实施例中,交变体21可以设置在被加热部件10的侧边附近,也可以套设在被加热部件10的外部,使得被加热部件10置于交变体21所产生的交变磁场中。也可以放置在其他位置,只要使得被加热部件10置于交变体21所产生的交变磁场中即可,本公开实施例中对此不作限制。
可选地,交变体21采用感应线圈。感应线圈套设在被加热部件10的外壁上,例如, 如图1所示,感应线圈套设在流体管道的管道本体10外壁上。此时,感应线圈产生的交变磁场的方向与被加热部件10的轴向平行,则在被加热部件10产生的交流电流沿管道的周向形成闭合电流环。
在一些实施例中,加热装置,还包括,电源,配置为向交变体21输出交流电。可选地,电源采用中频感应加热电源。可通过控制输出的交流电的频率和强度等参数,来控制加热温度。
本公开实施例中,受磁体22设置于被加热部件10内部,设置方式不限定,可以固定设置,也可以活动设置。
在一些实施例中,受磁体22包括第一受磁体221,第一受磁体221活动设置于被加热部件10(流体管道)内部。活动设置的第一受磁体221在洛伦兹力的作用下,在被加热部件10内部移动,可充分搅拌被加热部件10内被加热物料,增加扰动,进行扰流换热,例如,在冷媒或者压缩机油内的扰动,提高换热效率。
可选地,第一受磁体221采用导电小球。导电小球放置于被加热部件10(流体管道)内部即可。降低第一受磁体221的活动阻力。导电小球可以为金属小球,也可以为外层包覆导电材料的小球(即,内部可以为非导电体)。
可选地,第一受磁体221采用磁性导电小球。可增强感应电流和洛伦兹力,提高第一受磁体221活动性,增强对被加热部件10内部被加热物体的扰动。
在一些实施例中,电磁加热装置,还包括,限位体23,被设置于被加热部件10内部,并配置为将第一受磁体221限制在被加热部件内的设定活动区域内。针对被加热部件10不具有封闭式空间的情况,例如,流体管道,需要将活动设置的第一受磁体221的活动范围进行限定。
可选地,如图2所示,限位体23为多个,将第一受磁体221的设定活动区域分隔为多个子活动区域。减小第一受磁体221的活动区域,可增加活动率,增加对被加热物体(例如,冷媒或者压缩机油)的扰动。
可选地,限位件23包括网状部。适用于对流体物料进行加热的场景。
可选地,限位件23采用网状体。可起到一定的过滤作用。例如,电磁加热装置应用至空调系统的冷媒流路的流体管道上时,限位件23的外形与流体管道的内壁形状相适配,可以对冷媒起到一定的过滤作用。
在一些实施例中,如图3所示,受磁体22,还包括第二受磁体222,呈相对且交错地设置于被加热部件10内。第二受磁体222的数量为多个。作为受磁体起到对被加热部件10或其内的被加热物料进行加热的同时,当被加热物料为流体时,还可进一步起到对流体(例如,冷媒或者压缩机油)进行扰流的作用,增加换热效果。本实施例中,第二受磁体222的形状不限定,以可以前述方式设置,并仍可在被加热部件10内形成流路即可。
如图3所示,第二受磁体222呈块状(或者,板状),以垂直于被加热部件10(例如,流体管道)内壁的方式,相对且交错地设置在被加热部件10内壁上。
可选地,第二受磁体222可相对于被加热部件10内壁倾斜设置。这样,可以对流体进行扰流。
可选地,第二受磁体222朝向流体的流动方向倾斜设置。
可选地,第二受磁体222背向流体的流动方向倾斜设置。更有利于对进入被加热部件10的流体(例如,冷媒或者压缩机油)进行扰流。
可选地,如图4和图5所示,第二受磁体222为管状,套设于被加热部件10内。在被加热部件10内的流体流路被分隔为两个流路,一个流路为管状第二受磁体的内圆区域;一个流路为管状第二受磁体的外壁与被加热部件10的内壁构成的环形区域。在流体进入被加热部件10后,被分流,分别流经上述的两个流路,增加换热面积,提高换热效果。此时,第一受磁体110也分别活动设置于前述的两个流路区域内。
可选地,管状第二受磁体的两端固定设置于限位体24上。限位体24即能够限制第一受磁体221的活动区域,还能其流体进行过滤,还能为管状第二受磁体提供支撑。
在一些实施例中,电磁加热装置,还包括,导磁体24,绕设于被加热部件10,并配置为集中交变磁场。
本实施例中,导磁体24将交变体21产生的交变磁场集中在其内,则导磁体24内的磁场强度增强,并绕设在被加热部件10外部,则增强了被加热部件10周围的磁场,以增强感应电流,进而产生更多的焦耳热。
可选地,导磁体23的材质为铁氧体。
本实施例中,导磁体24绕设在被加热部件10外部,故交变磁场的磁场方向与被加热部件10的轴向呈一夹角,该夹角可以大于0°,小于180°,则在被加热部件10产生的交流电流沿其轴向在管道的管壁内流动,并在被加热部件10的两端形成电势差;同时,当夹角不为90°,也会产生沿被加热部件的周向形成闭合电流环。当将被加热部件10与外部管路(例如,空调管路)连接构成导电回路时,被加热部件10的两端的电势差在导电回路中形成电流,进而产生焦耳热。
可选地,导磁体24的部分设置于交变体21产生的交流磁场中。
可选地,如图6所示,交变体21为感应线圈,导磁体24的部分穿设在感应线圈的磁通道内。或者,交变体21为感应线圈,缠绕于导磁体24上。当向感应线圈内通入交变电流时,导磁体24内产生交变磁场。
可选地,导磁体24为封闭结构或开放结构。
相对于开放结构的导磁体24而言,封闭结构的导磁体24进一步使交变磁场集中于导磁体24上,以进一步增强感应电动势和感应电流,最终提高冷媒加热效果(或者压缩机油的加热效果),有效提升进入换热器的冷媒比容,有效增加润滑油的溶解度,降低润滑油的粘度,降低在换热器作为蒸发器时,润滑油在其内部的分离和附着,利于回油,提高回油率。
可选地,导磁体24为矩形或环形。
可选地,如图6所示,交变体21缠绕在矩形导磁体的一个矩形边上;交变磁场集中于导磁体24内部。
可选地,交变体21上设有隔磁层。
可选地,隔磁层设置在交变体21的外表面上。交变体21通过隔磁层,规避电磁干扰。
可选地,导磁体24上设有防漏磁层。通过防漏磁层,减少漏磁量,保证电磁感应加热效果。
可选地,防漏磁层为在导磁体24外部包覆的防漏磁纸,或在导磁体24外部涂敷的防漏磁涂料层。结构简单,有效。
在一些实施例中,加热装置,还包括,导桥件,两端分别与被加热部件10连接,构成自导电回路。在被加热部件10上构建一个自导电回路,在交变磁场的作用下,该自导电回路上产生交变电流,形成涡流,从而在被加热部件10和导桥件上产生焦耳热,焦耳热再传递至被加热部件10内的工质中。
可选地,导桥件设置于被加热部件10的内部和/或外部。如图7所示,第一导桥件251设置于被加热部件10的内部时,整个自导电回路上产生的焦耳热均可用于加热工质。如图9所示,第二导桥件252设置于被加热部件10的外部时,被加热部件10上产生的焦耳热可以为工质加热。依据实际情况,确定导桥件的设置方式即可。
其中,导桥件的形状不限定,只要可与被加热部件10构成自导电回路即可。导桥件的数量不限定,可以设置多个,以形成多个自导电回路,增强涡流,增大焦耳热。
可选地,如图8所示,导桥件的截面呈U形,U形导桥件的两端部连接至被加热部件10的侧壁上。其中被加热部件10的侧壁为内侧壁和/或外侧壁。
可选地,导桥件为多个,间隔连接至被加热部件10的侧壁上。
可选地,如图7至图9所示,多个第一导桥件251间隔连接至被加热部件10的内侧壁上;多个第二导桥件252间隔连接至被加热部件10的外侧壁上;且,第一导桥件251和第二导桥件252交错设置。
可选地,导桥件采用前述的管状第二受磁体的结构形式。
在一些实施例中,加热装置,还包括,保温层,设置于被加热部件10。可选地,保温层包覆在被加热部件10的外壁上。交变磁场透过保温层直接对被加热部件10进行加热,热效率很高,热能几乎没有流失,而且由于被加热部件10在交变磁场的作用下自身发热,所以也没有热传递的损失,整体节能约是同等条件下电阻加热的30%-70%。
本公开实施例还公开了一种流体管道,结合图1至图9所述,包括,管道本体10和前述的电磁加热装置。电磁加热装置设置于管道本体10。
其中,管道本体10,即作为被加热部件10。即,受磁体22设置于管道本体10内,且,管道本体10设置于交变磁场内。
本公开实施例中,电磁加热装置中的各结构件设置于管道本体10上的方式参考前述电磁加热装置部分内容即可,将其中的被加热部件10替换为管道本体10进行理解即可。
本公开实施例中,管道本体10的材质不限定,可以为非导体材料,直接利用受磁体22从管道内部进行加热即可。可以为导体材料(例如,马氏体钢材)对管道内的流体同时从内部和外部加热,加热效率高。
本公开实施例还公开了一种温度调节设备,结合图10和图11所示,包括前述的电磁加热装置;或者,包括前述的流体管道;流体管道接入温度调节设备的冷媒回路中。
本公开实施例中,温度调节设备可以为空调,冷媒回路包括制热回路和制冷回路。将流体管道作为冷媒回路的一部分接入,使该流体管道对流经的冷媒进行加热,有效提升冷媒比容,有效增加润滑油的溶解度,降低润滑油的粘度,有利于回油,并提升制热效果,从而提升系统可靠性。
可选地,温度调节设备包括换热器,流体管道设置在换热器的入口侧。换热器为室内换热器和/或室外换热器。当换热器作为蒸发器使用时,对进入换热器的冷媒加热,提高冷媒温度,提升冷媒比容,有效增加润滑油的溶解度,降低润滑油的粘度,从而降低润滑油在换热器内部的分离和附着,利于回油,提高回油率。还可有效解决制热时室外换热器中遗留大量压缩机油,从而为压缩机及整个制冷系统的可靠运行提供了保障。
可选地,如图10所示,温度调节设备还包括节流装置31,流体管道设置在节流装置31与室外换热器32之间。
在一些实施例中,温度调节设备还包括气液分离器33,作为被加热部件;电磁加热装置设置于气液分离器33。
可选地,电磁加热装置包括,交变体21,采用感应线圈,缠绕于气液分离器33的外壁,受磁体22设置在气液分离器33内部。当受磁体22包括第一受磁体221时,在气液分离器33的进口和出口处设置限位体23。
在一些实施例中,如图11所示,电磁加热装置包括,交变体21和导磁体24,导磁体24绕设于气液分离器33,并配置为集中交变体21产生的交变磁场。当受磁体22包括第一受磁体221时,在气液分离器33的进口和出口处设置限位体23。
可选地,电磁加热装置,包括,两个限位体23,限位体23将第一受磁体221限制在气液分离器33的靠近压缩机34的入口侧的设定活动区域内。例如,如图11所示,在气液分离器33的下半部分。
可选地,电磁加热装置,包括,第一导桥件251和/或第二导桥件252,对应设置于气液分离器33的内壁和/或外壁。
可选地,第一导桥件251和/或第二导桥件252,对应设置于气液分离器33的靠近压缩机34的入口侧的内壁和/或外壁。例如,在气液分离器33的下半部分的内壁和/或外壁。
采用本实施例,优先对气液分离器本体靠近压缩机入口侧的部分进行加热,有利于集中热量对即将从气液分离器本体流入压缩机的冷媒进行加热,从而有效提升制热管路中的冷媒比容,提升空调的低温制热量。
本公开实施例中,电磁加热装置中的其它结构件的设置,可参考前述电磁加热装置部 分的相关内容,将被加热部件10采用气液分离器33代替进行理解即可。
本申请并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (12)

  1. 一种电磁加热装置,其特征在于,包括,
    交变体,被设置为在通有交变电流时,产生交变磁场;
    受磁体,被设置于被加热部件内部且位于所述交变磁场内;所述受磁体在所述交变磁场的作用下产生感应电流,并同时产生洛伦兹力。
  2. 根据权利要求1所述的电磁加热装置,其特征在于,所述受磁体,包括,
    第一受磁体,所述第一受磁体活动设置于被加热部件内部。
  3. 根据权利要求2所述的电磁加热装置,其特征在于,还包括,
    限位体,被设置于被加热部件内部,并配置为将所述第一受磁体限制在被加热部件内的设定活动区域内。
  4. 根据权利要求3所述的电磁加热装置,其特征在于,所述限位件为多个,将所述第一受磁体的所述设定活动区域分隔为多个子活动区域。
  5. 根据权利要求3所述的电磁加热装置,其特征在于,所述限位件包括网状部。
  6. 根据权利要求2所述的电磁加热装置,其特征在于,所述受磁体,还包括第二受磁体,呈相对且交错地设置于被加热部件内。
  7. 根据权利要求1至6中任一项所述的电磁加热装置,其特征在于,还包括,
    导磁体,绕设于被加热部件,并配置为集中所述交变磁场。
  8. 根据权利要求7所述的电磁加热装置,其特征在于,还包括,
    导桥件,两端分别与所述入口侧管道连接,构成自导电回路。
  9. 根据权利要求8所述的电磁加热装置,其特征在于,所述导桥件设置于所述入口侧管道的内部和/或外部。
  10. 一种流体管道,其特征在于,包括,
    管道本体;
    如权利要求1至9中任一项所述的电磁加热装置,设置于所述管道本体。
  11. 一种温度调节设备,其特征在于,包括如权利要求1至9中任一项所述的电磁加热装置;或者,
    包括如权利要求10所述的流体管道;所述流体管道接入温度调节设备的冷媒回路中。
  12. 根据权利要求11所述的温度调节设备,其特征在于,还包括,气液分离器,作为被加热部件;所述电磁加热装置设置于所述气液分离器。
PCT/CN2019/115676 2019-07-29 2019-11-05 电磁加热装置、流体管道和温度调节设备 WO2021017248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910690230.8 2019-07-29
CN201910690230.8A CN110360689A (zh) 2019-07-29 2019-07-29 电磁加热装置、流体管道和温度调节设备

Publications (1)

Publication Number Publication Date
WO2021017248A1 true WO2021017248A1 (zh) 2021-02-04

Family

ID=68222748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115676 WO2021017248A1 (zh) 2019-07-29 2019-11-05 电磁加热装置、流体管道和温度调节设备

Country Status (2)

Country Link
CN (1) CN110360689A (zh)
WO (1) WO2021017248A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360689A (zh) * 2019-07-29 2019-10-22 青岛海尔空调器有限总公司 电磁加热装置、流体管道和温度调节设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110037490A (ko) * 2009-10-07 2011-04-13 신대용 고주파 유도가열에 의한 가열면적을 넓힌 보일러 물탱크용 홀컵
CN102147177A (zh) * 2011-04-12 2011-08-10 海信科龙电器股份有限公司 一种除霜变频热泵空调器
DE102013211578A1 (de) * 2013-06-19 2014-12-24 Behr Gmbh & Co. Kg Heizvorrichtung
CN105042842A (zh) * 2014-12-31 2015-11-11 李镇南 一种水循环热水器
CN205249514U (zh) * 2015-11-30 2016-05-18 台州乔恩特工业产品设计有限公司 一种电磁感应加热器
CN206944499U (zh) * 2017-07-21 2018-01-30 唐秀昌 电磁加热管
CN110360689A (zh) * 2019-07-29 2019-10-22 青岛海尔空调器有限总公司 电磁加热装置、流体管道和温度调节设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108332A (ja) * 1999-10-01 2001-04-20 Daikin Ind Ltd 冷媒加熱装置
FR2841475B1 (fr) * 2002-06-28 2005-01-14 Deschamps Lathus Sa Procede de traitement thermique par induction d'une canalisation d'eau sanitaire et systeme pour sa mise en oeuvre
CN104132449B (zh) * 2014-06-30 2017-10-10 李镇南 电磁液体加热器
CN207019355U (zh) * 2017-06-10 2018-02-16 佛山吉宝信息科技有限公司 一种小化霜的空调系统
CN109931690A (zh) * 2019-03-19 2019-06-25 济南三达冶金工程技术有限公司 一种加热管道内流体介质的装置以及加热方法
CN210638223U (zh) * 2019-07-29 2020-05-29 青岛海尔空调器有限总公司 电磁加热装置、流体管道和温度调节设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110037490A (ko) * 2009-10-07 2011-04-13 신대용 고주파 유도가열에 의한 가열면적을 넓힌 보일러 물탱크용 홀컵
CN102147177A (zh) * 2011-04-12 2011-08-10 海信科龙电器股份有限公司 一种除霜变频热泵空调器
DE102013211578A1 (de) * 2013-06-19 2014-12-24 Behr Gmbh & Co. Kg Heizvorrichtung
CN105042842A (zh) * 2014-12-31 2015-11-11 李镇南 一种水循环热水器
CN205249514U (zh) * 2015-11-30 2016-05-18 台州乔恩特工业产品设计有限公司 一种电磁感应加热器
CN206944499U (zh) * 2017-07-21 2018-01-30 唐秀昌 电磁加热管
CN110360689A (zh) * 2019-07-29 2019-10-22 青岛海尔空调器有限总公司 电磁加热装置、流体管道和温度调节设备

Also Published As

Publication number Publication date
CN110360689A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
KR101827252B1 (ko) 확장성을 갖는 히팅 모듈이 일체로 형성된 소형 자기유도가열 보일러
WO2021017248A1 (zh) 电磁加热装置、流体管道和温度调节设备
CN105202630A (zh) 节能型空调冷却系统
CN210638223U (zh) 电磁加热装置、流体管道和温度调节设备
CN205561111U (zh) 一种恒温除湿系统
CN105788826A (zh) 一种干式变压器夹件热空气导流装置
CN204651723U (zh) 一种大电流开关柜的热管散热系统
CN207800318U (zh) 一种基于磁制冷技术的变压器
CN204345959U (zh) 空调器
CN203633038U (zh) 空调机组
CN202613594U (zh) 电影院机房用恒温恒湿空调系统
CN210638332U (zh) 换热器和空调系统
CN206145876U (zh) 室内通风与温度调节装置
CN104501340A (zh) 节能型环境控制系统
CN205332588U (zh) 制冷设备
CN205316552U (zh) 一种户用型气体涡流制冷供热系统
CN220321554U (zh) 空调系统
CN109210656B (zh) 磁流体空调系统
CN207019355U (zh) 一种小化霜的空调系统
CN109026731B (zh) 一种液态金属电磁泵驱动系统
CN208952376U (zh) 空调系统及其制冷剂节流降噪装置
CN207881268U (zh) 除湿机及除湿系统
WO2020199414A1 (zh) 流体管道、热交换设备及温度调节设备
CN111503954A (zh) 用于压缩机的补气装置及空调器
CN207713777U (zh) 一种软磁合金在网带炉退火时快速冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939705

Country of ref document: EP

Kind code of ref document: A1