WO2020199414A1 - 流体管道、热交换设备及温度调节设备 - Google Patents

流体管道、热交换设备及温度调节设备 Download PDF

Info

Publication number
WO2020199414A1
WO2020199414A1 PCT/CN2019/095549 CN2019095549W WO2020199414A1 WO 2020199414 A1 WO2020199414 A1 WO 2020199414A1 CN 2019095549 W CN2019095549 W CN 2019095549W WO 2020199414 A1 WO2020199414 A1 WO 2020199414A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe body
fluid
spoiler
optionally
pipe
Prior art date
Application number
PCT/CN2019/095549
Other languages
English (en)
French (fr)
Inventor
代传民
许文明
王飞
Original Assignee
青岛海尔空调器有限总公司
青岛海尔智能技术研发有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔智能技术研发有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020199414A1 publication Critical patent/WO2020199414A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters

Definitions

  • This application relates to the field of heat exchange technology, such as a fluid pipeline, heat exchange equipment, and temperature adjustment equipment.
  • fluid pipes are used to transport fluid media, such as air and refrigerant.
  • the fluid circulates in the pipe body along the axial direction of the pipe body.
  • Part of the fluid always flows close to the inner wall of the pipe body, and part of the fluid always flows at the central axis of the pipe body, and it is not easy to approach the inner wall of the pipe body.
  • the embodiment of the present disclosure provides a fluid pipeline.
  • the fluid conduit includes:
  • the first spoiler is configured to partially spoil the fluid in the pipe body and form a through flow
  • the second spoiler is configured to spoil the flow formed by the first spoiler.
  • the embodiment of the present disclosure also provides a heat exchange device.
  • the heat exchange device includes the fluid pipe provided in the foregoing embodiments.
  • the embodiment of the present disclosure also provides a temperature adjustment device.
  • the temperature adjustment device includes the fluid pipe provided in the foregoing embodiments.
  • part of the fluid in the pipe body is spoiled when the fluid in the pipe body passes through the first spoiler, and then a through flow is formed, and the through flow is then disturbed by the second flow
  • the components continue to disturb the flow, so that the positions of the various parts of the fluid can be changed, which is beneficial for the various parts of the fluid to be close to the inner wall of the pipe body.
  • FIG. 1 is a schematic structural diagram of a fluid pipeline provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a refrigeration or heating circuit of an air conditioner including a fluid pipe provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of an air conditioner including fluid pipes provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the internal structure of a pipe body provided by an embodiment of the present disclosure.
  • Figure 5 is a cross-sectional view of Figure 4 A-A;
  • Figure 6 is a B-B cross-sectional view of Figure 4.
  • Figure 7 is a schematic diagram of the internal structure of a pipe body provided by an embodiment of the present disclosure.
  • Figure 8 is a cross-sectional view taken along line A-A of Figure 7;
  • Figure 9 is a B-B sectional view of Figure 7;
  • Figure 10 is a schematic diagram of the internal structure of a pipe body provided by an embodiment of the present disclosure.
  • Fig. 11 is a schematic structural diagram of a gas-liquid separator provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a fluid pipeline, including a pipeline body 100 and an electromagnetic heating device; wherein the electromagnetic heating device includes an alternating body portion 310, and the alternating body portion 310 is configured to pass through When the current is changed, an alternating magnetic field is generated; the pipe body 100 is placed in an alternating magnetic field and is set to generate an induced electromotive force under the action of the alternating magnetic field.
  • the alternating body 310 may be arranged near the side of the pipe body 100 so that the pipe body 100 is placed in the alternating magnetic field generated by the alternating body 310. It can also be placed in other positions, as long as the pipe body 100 is placed in the alternating magnetic field generated by the alternating body 310, which is not limited in this embodiment.
  • the pipe body 100 and the external pipeline, such as the heating circuit of an air conditioner, form a conductive circuit the pipe body 100 will generate an induced current under the action of the induced electromotive force.
  • the direction of the induced current is the same as that of the electromagnetic heating device.
  • the direction of the driving current (that is, the input current of the alternating body 310) is opposite, so Joule heat is generated in the pipe body 100, and the pipe body 100 transfers the Joule heat to the circulating medium inside the pipe body 100, so as to realize the convection medium such as
  • the heating of the refrigerant effectively increases the specific volume of the refrigerant in the heating circuit, thereby increasing the low-temperature heating capacity of the air conditioner and improving the heating effect.
  • the pipe body 100 is made of a conductive material, which can generate an induced electromotive force under the action of an alternating magnetic field.
  • the pipe body 100 and the heating circuit form a conductive circuit, and the conductive circuit can generate an induced current under the action of an induced electromotive force.
  • the pipe body 100 is a martensitic steel pipe.
  • the pipe body 100 is provided with a conductive path.
  • the pipe body 100 When the pipe body 100 is connected to the heating circuit of the air conditioner, the pipe body 100 forms a conductive circuit with the heating circuit through the conductive path, and the conductive circuit can be under the action of the induced electromotive force. Generate induced current.
  • the electromagnetic heating device further includes a magnetic body part 320 that can surround the pipe body 100 and is configured to concentrate the alternating magnetic field on the magnetic body part 320.
  • the magnetic body portion 320 is arranged around the pipe body 100, when the alternating magnetic field is concentrated on the magnetic body portion 320, the alternating magnetic field will also surround the pipe body 100, thereby enhancing the electromagnetic field around the pipe body 100, Enhance induced electromotive force.
  • the pipe body 100 and an external pipe, such as the heating circuit of an air conditioner form a conductive circuit, the enhanced induced electromotive force will cause an increase in the induced current, thereby generating more Joule heat, improving the heating effect of the refrigerant, and effectively improving the heating circuit
  • the specific volume of the refrigerant can increase the low-temperature heating capacity of the air conditioner and improve the heating effect.
  • the alternating body part 310 is provided on the magnetic body part 320.
  • the alternating body part 310 is an induction coil wound on the magnetic body part 320.
  • the magnetic body part 320 When an alternating current is passed into the induction coil, the magnetic body part 320 generates an alternating magnetic field.
  • the magnetic body portion 320 has a closed structure or an open structure.
  • the magnetic body part 320 of the closed structure Compared with the magnetic body part 320 of the open structure, the magnetic body part 320 of the closed structure further concentrates the alternating magnetic field on the magnetic body part 320 to further enhance the induced electromotive force and induced current, and finally improve the heating effect of the refrigerant and effectively improve the system
  • the specific volume of the refrigerant in the heating circuit increases the low-temperature heating capacity of the air conditioner and improves the heating effect.
  • the magnetic body portion 320 is rectangular or ring-shaped.
  • the alternating body part 310 is wound around a rectangular side of the rectangular magnetic body part; the alternating magnetic field is concentrated inside the magnetic body part 320.
  • a magnetic barrier layer is provided on the alternating body 310.
  • a magnetic barrier layer is provided on the outer surface of the alternating body 310.
  • the alternating body 310 passes through the magnetic barrier layer to avoid electromagnetic interference.
  • an insulation layer is provided on the pipe body 100.
  • an insulation layer is coated on the outer surface of the pipe body 100.
  • the alternating magnetic field directly heats the pipe body 100 through the insulating layer, the thermal efficiency is high, and there is almost no loss of heat energy, and because the pipe body 100 heats itself under the action of the alternating magnetic field, there is no heat transfer. Loss, the overall energy saving is about 30%-70% of resistance heating under the same conditions.
  • a magnetic leakage prevention layer is provided on the magnetic body part 320.
  • the anti-magnetic leakage layer is an anti-magnetic leakage paper coated on the outside of the magnetic body portion 320, or an anti-magnetic leakage paint layer coated on the outside of the magnetic body portion 320.
  • the magnetic leakage prevention layer reduces the amount of magnetic leakage and ensures the electromagnetic induction heating effect.
  • the embodiment of the present disclosure also discloses a fluid pipeline, including:
  • the first spoiler 210 is configured to partially spoil the fluid in the pipe body 100 and form a through flow
  • the second spoiler 220 is configured to spoil the flow formed by the first spoiler 210.
  • through-flow refers to fluid in the state of circulation.
  • the through flow is a straight flow of fluid.
  • the first spoiler 210 is a protruding rib 211 formed along the pipe circumference of the inner wall of the pipe body 100.
  • the center of the rib 211 forms the first channel 101.
  • the fluid flows linearly in the first channel 101.
  • the first spoiler includes an annular baffle, and the center of the annular baffle forms a channel. In this way, the fluid flows in a straight line in the channel.
  • the flow is the fluid flow in a curve.
  • the first spoiler 210 includes one baffle, and there are multiple first spoilers 210 that are staggered along the length of the pipe body. In this way, the formed throughflow flows in a curve.
  • the first spoiler 210 includes a stopper having an outer diameter equal to the inner diameter of the pipe body, and the stopper has a curvilinear channel passing through the stopper along the length direction of the pipe body 100. In this way, the formed throughflow flows in a curve.
  • the first spoiler 210 disturbs the fluid close to the inner wall of the pipe body 100.
  • the first spoiler 210 disturbs the fluid close to the central axis of the pipe body 100. In this way, the turbulence of part of the fluid can be realized.
  • the second spoiler 220 is disposed in the space formed by the first spoiler 210 through which the flow passes. In this way, the flow formed by the first spoiler 210 can be spoiled.
  • the through flow formed by the first spoiler 210 flows through the central axis of the pipe body 100 or flows between the central axis and the inner wall of the pipe body 100.
  • the first spoiler 210 is a protruding rib 211 formed along the pipe circumference of the inner wall of the pipe body 100.
  • the center of the rib 211 forms the first channel 101. In this way, the fluid passes through the central axis of the pipe body 100.
  • the first spoiler 210 includes a stop having an outer diameter equal to the inner diameter of the pipe body 100, and the stop has a channel extending through the stop along the length of the pipe body 100, and the channel is located between the central axis of the pipe body 100 and the inner wall of the pipe body 100. Between.
  • the first spoiler 210 is perpendicular to the inner wall of the pipe body 100.
  • the first spoiler 210 is arranged obliquely with respect to the inner wall of the pipe body 100. In this way, the fluid can be disturbed.
  • the first spoiler 210 is arranged obliquely with respect to the length direction of the pipe body 100, or arranged obliquely with respect to the direction perpendicular to the length direction of the pipe body 100.
  • the first spoiler 210 is in the shape of a plate, and it can be arranged obliquely with respect to the length direction of the pipe body 100, can also be arranged obliquely with respect to the direction perpendicular to the length direction of the pipe body 100, or can be arranged perpendicular to the inner wall of the pipe body 100.
  • the first spoiler 210 is inclined toward the flow direction of the fluid.
  • the first spoiler 210 is inclined away from the flow direction of the fluid. In this way, it is conducive to the disturbance of the fluid.
  • one or more ends or both ends of the first spoiler 210 and the second spoiler 220 are connected to the inner wall of the pipe body 100.
  • the first spoiler 210 is arranged oppositely.
  • the first spoiler 210 is relatively symmetrically arranged.
  • both the first spoiler 210 and the second spoiler 220 are multiple, and one or more of the first spoiler 210 and the second spoiler 220 have the same size or different sizes.
  • a fluid pipeline includes:
  • the first spoiler 210 is arranged on the inner wall of the pipe body 100 and forms a first channel 101 for fluid to pass through at the central axis of the pipe body;
  • the second spoiler 220 is arranged on the extension line of the first channel 101 along the length direction of the pipe body 100.
  • the first spoiler 210 forms a first channel 101 at the central axis of the pipe body 100 for the passage of fluid.
  • the central axis of 100 forms a through flow, and the second spoiler 220 disturbs the formed through flow.
  • the fluid when the fluid passes through the first spoiler 210, the fluid concentrates on the central axis of the pipe body; when the fluid passes through the second spoiler 220, the fluid diverges and approaches the position of the inner wall of the pipe body 100, In the process of merging and diverging, the positions of the various parts of the fluid can be changed, which is beneficial for the various parts of the fluid to approach the inner wall of the pipe body 100.
  • the fluid can be a liquid, a gas, or a gas-liquid mixture.
  • the fluid is a refrigerant.
  • the probability of each part of the refrigerant approaching the inner wall of the pipe body 100 is increased, which is beneficial for the refrigerant to absorb heat outside the pipe body 100 or radiate heat to the outside of the pipe body 100.
  • the second spoiler 220 penetrates the pipe body 100 in the diameter direction and divides the pipe body 100 into two second channels 102. In this way, after the second spoiler is turbulent, the fluid flows through the two second channels 102 respectively.
  • the pipe body 100 is made of stainless steel.
  • the pipe body 100 is made of martensitic stainless steel. In this way, on the one hand, the pipe body 100 is prevented from being corroded by the internal fluid, and on the other hand, the heat exchange between the internal fluid of the pipe body 100 and the external environment of the pipe body 100 is enhanced.
  • first spoiler 210 and the second spoiler 220 are made of stainless steel.
  • both the first spoiler 210 and the second spoiler 220 are made of martensitic stainless steel. In this way, the pipe body 100 is prevented from being corroded by the internal fluid.
  • the ratio of the width of the first channel 101 to the second channel 102 is m, 0.8 ⁇ m ⁇ 1.2. In this way, it is advantageous for each part of the fluid to approach the inner wall of the pipe body 100 during the flow process.
  • the average width of the first channel 101 is a
  • the diameter of the column is d1
  • the inner diameter of the pipe body 100 is d2, 1/4d2 ⁇ a ⁇ 1/2d2
  • the average width of the second channel 102 is b, 1 /8d2 ⁇ b ⁇ 1/4d2.
  • FIG. 7 is a schematic diagram of another internal structure of a pipe body provided by an embodiment of the present disclosure
  • FIG. 8 is a cross-sectional view of A-A in FIG. 7
  • FIG. 9 is a cross-sectional view of B-B in FIG. 7.
  • the first spoiler 210 includes a protruding rib 211 formed along the pipe circumference of the inner wall of the pipe body 100. The space enclosed by the rib 211 forms the first channel 101. In this way, fluid can flow through the center of the fluid channel.
  • the first spoiler 210 includes two baffles formed from opposite inner walls of the pipe body 100 extending toward each other.
  • a first channel 101 is formed between the two baffles, so that the fluid is concentrated in the first channel 101 between the two baffles to flow through.
  • the baffle is arcuate, the arc edges of the baffle are connected to the inner wall of the pipe body 100, and the straight sides of the two baffles and the inner wall of the pipe body 100 enclose the first channel 101. In this way, the fluid is concentrated and passes close to the central axis of the fluid space.
  • first spoilers 210 there are a plurality of first spoilers 210 and are arranged at intervals along the length direction of the pipe body 100, and the second spoilers 220 are arranged between two adjacent first spoilers 210.
  • first spoilers 210 there are a plurality of first spoilers 210 and are arranged at intervals along the length direction of the pipe body 100, and the second spoilers 220 are arranged between two adjacent first spoilers 210.
  • Fig. 10 is a schematic diagram of another internal structure of a pipe body provided by an embodiment of the present disclosure.
  • the second spoiler 220 includes a partition 221, and two ends of the partition 221 are respectively connected to the inner wall of the pipe body 100. In this way, the fluid channel can be divided into two second channels 102.
  • the partition 221 is provided corresponding to the first channel 101. In this way, when the fluid flows out from the first channel 101, the fluid concentrated in the central axis part encounters the partition 221 and can be divided into the second channel 102.
  • the second spoiler 220 includes a column, and two ends of the column are respectively connected to the inner wall of the pipe body 100.
  • the column has an arc-shaped side wall, and when the fluid passes, the resistance of the column side wall to the fluid is small, which is beneficial to the flow of the fluid.
  • the diameter of the column is d1
  • the inner diameter of the pipe body 100 is d2, 1/4d2 ⁇ d1 ⁇ 1/2d2, d2 ⁇ 5. In this way, it is advantageous for the transportation of the fluid and full contact with the inner wall of the pipe body 100.
  • the distance between the first spoiler 210 and the second spoiler 220 is c, a ⁇ c.
  • the second spoiler 220 is provided corresponding to the first channel 101.
  • the fluid flows out of the first channel 101, it can be divided into different second channels 102 when it encounters the second spoiler 220.
  • the fluid pipeline further includes a refrigeration device or a heating device
  • the refrigeration device or the heating device is configured as a refrigeration fluid pipeline or a heating fluid pipeline.
  • each part of the fluid has the opportunity to approach the inner wall of the pipe body, which is beneficial for the fluid to fully absorb the cold energy generated by the refrigeration device or the heat generated by the heating device, thereby improving the refrigeration device to the fluid.
  • the cooling effect or the heating effect of the heating device on the fluid is beneficial.
  • the embodiment of the present disclosure also provides a fluid pipeline, including:
  • the pipeline body 100 and the electromagnetic heating device wherein, the electromagnetic heating device includes an alternating body portion 310, which is configured to generate an alternating magnetic field when an alternating current is passed through; the pipeline body 100 is placed in an alternating magnetic field , Is set to generate induced electromotive force under the action of alternating magnetic field;
  • the first spoiler 210 is configured to partially spoil the fluid in the pipe body 100 and form a through flow
  • the second spoiler 220 is configured to spoil the flow formed by the first spoiler 210.
  • the second spoiler 220 has It is advantageous for the refrigerant located in the middle of the pipe body 100 to flow toward the inner wall of the pipe body 100, that is, the refrigerant in the middle diffuses toward the inner wall, so that the refrigerant located in the middle of the pipe body 100 absorbs the heat generated by the electromagnetic heating on the pipe body 100, and the first turbulence
  • the member 210 facilitates the flow of the refrigerant near the inner wall of the pipe body 100 to the middle of the pipe body 100, that is, the refrigerant near the inner wall gathers in the middle, and then transfers the heat absorbed by the refrigerant from the inner wall of the pipe body 100 to the refrigerant in the middle.
  • the embodiment of the present disclosure also provides a heat exchange device, including the aforementioned fluid pipe.
  • the heat exchange device is an outdoor heat exchanger of an air conditioner.
  • the embodiment of the present disclosure also provides a temperature adjustment device, as shown in Figs. 2 to 3, including a fluid pipe, which includes:
  • the pipeline body 100 and the electromagnetic heating device wherein, the electromagnetic heating device includes an alternating body portion 310, which is configured to generate an alternating magnetic field when an alternating current is passed through; the pipeline body 100 is placed in an alternating magnetic field , Is set to generate induced electromotive force under the action of alternating magnetic field.
  • the pipe body 100 of the fluid pipe is configured to provide a circulation channel for the refrigerant.
  • the temperature adjustment device further includes one or more of a refrigeration circuit and a heating circuit, and the pipe body 100 of the fluid pipe forms a conductive circuit.
  • one or more of the refrigeration circuit and the heating circuit includes an outdoor heat exchanger 700; the fluid pipe is arranged at the entrance of the outdoor heat exchanger 700.
  • one or more of the refrigeration circuit and the heating circuit further include a throttling device 600, and the fluid pipe is arranged between the throttling device 600 and the outdoor heat exchanger 700.
  • one or more of the refrigeration circuit and the heating circuit further include a compressor 400 and an indoor heat exchanger 500.
  • one or more of the refrigeration circuit and the heating circuit further includes a four-way valve, and the compressor realizes switching between the refrigeration circuit and the heating circuit through the four-way valve.
  • the embodiment of the present disclosure also provides a temperature adjusting device, which includes a fluid pipe, and the fluid pipe includes: a first spoiler 210 configured to partially turb the fluid in the pipe body 100 and form a through flow;
  • the second spoiler 220 is configured to spoil the flow formed by the first spoiler 210.
  • the embodiment of the present disclosure also provides a temperature adjustment device, including:
  • the pipeline body 100 and the electromagnetic heating device wherein, the electromagnetic heating device includes an alternating body portion 310, which is configured to generate an alternating magnetic field when an alternating current is passed through; the pipeline body 100 is placed in an alternating magnetic field , Is set to generate induced electromotive force under the action of alternating magnetic field;
  • the first spoiler 210 is configured to partially spoil the fluid in the pipe body 100 and form a through flow
  • the second spoiler 220 is configured to spoil the flow formed by the first spoiler 210.
  • the pipe body 100 and the heating circuit of the temperature regulating device form a conductive circuit
  • the pipe body 100 will generate an induced current under the action of the induced electromotive force, thereby generating Joule heat, and the pipe body 100 transfers the Joule heat to the inside of the pipe body 100
  • the arrangement of the first spoiler and the second spoiler enhances the heat exchange effect of the circulating medium such as refrigerant in the pipe body 100, further increases the specific capacity of the refrigerant in the heating circuit, and further improves the temperature adjustment equipment
  • the low-temperature heating capacity improves the heating effect.
  • the temperature adjustment device is an air conditioner.
  • one or more of the refrigeration circuit and the heating circuit of the temperature regulating device include a gas-liquid separator.
  • the gas-liquid separator includes a gas-liquid separator body 401 and an electromagnetic heating device; wherein, the electromagnetic heating device includes an alternating body portion 310, and the alternating body portion 310 is set to pass through When the current is changed, an alternating magnetic field is generated; the gas-liquid separator body 401 is placed in an alternating magnetic field and is set to generate an induced electromotive force under the action of the alternating magnetic field.
  • the electromagnetic heating device includes an alternating body portion 310, and the alternating body portion 310 is set to pass through
  • the gas-liquid separator body 401 is placed in an alternating magnetic field and is set to generate an induced electromotive force under the action of the alternating magnetic field.
  • the alternating body 310 may be arranged near the side of the gas-liquid separator body 401 so that the gas-liquid separator body 401 is placed in the alternating magnetic field generated by the alternating body 310. It can also be placed in other positions, as long as the gas-liquid separator body 401 is placed in the alternating magnetic field generated by the alternating body 310, which is not limited in this embodiment.
  • the gas-liquid separator body 401 and the external pipeline, such as the heating circuit of an air conditioner, form a conductive circuit the gas-liquid separator body 401 will generate an induced current under the action of the induced electromotive force.
  • the direction of the induced current The direction of the driving current in the electromagnetic heating device (that is, the input current of the alternating body 310) is opposite, so Joule heat is generated in the gas-liquid separator body 401, and the gas-liquid separator body 401 transfers the Joule heat to the gas-liquid separator.
  • heating of the circulating medium such as refrigerant is realized, and the specific volume of the refrigerant in the heating circuit is effectively increased, thereby increasing the low-temperature heating capacity of the air conditioner and improving the heating effect.
  • the gas-liquid separator body 401 is made of a conductive material, which can generate an induced electromotive force under the action of an alternating magnetic field.
  • the gas-liquid separator body 401 is connected to the heating circuit of the air conditioner, the gas-liquid separator body 401 and the heating circuit form a conductive circuit, and the conductive circuit can generate an induced current under the action of an induced electromotive force.
  • the gas-liquid separator body 401 is made of martensitic steel.
  • the gas-liquid separator body 401 is provided with a conductive path.
  • the gas-liquid separator body 401 When the gas-liquid separator body 401 is connected to the heating circuit of the air conditioner, the gas-liquid separator body 401 forms a conductive circuit with the heating circuit through the conductive path.
  • the conductive loop can generate induced current under the action of induced electromotive force.
  • the electromagnetic heating device further includes a magnetic body portion 320 that can surround the gas-liquid separator body 401 and is configured to concentrate the alternating magnetic field on the magnetic body portion 320.
  • the magnetic body part 320 is arranged around the gas-liquid separator body, when the alternating magnetic field is concentrated on the magnetic body part 320, the alternating magnetic field will also surround the gas-liquid separator body 401, thereby enhancing the gas-liquid separation
  • the electromagnetic field around the device body to enhance the induced electromotive force.
  • the gas-liquid separator body 401 and the external pipeline, such as the heating circuit of an air conditioner constitute a conductive circuit, the enhanced induced electromotive force will cause an increase in the induced current, thereby generating more Joule heat, improving the heating effect of the refrigerant, and effectively improving the system.
  • the specific volume of the refrigerant in the heating circuit increases the low-temperature heating capacity of the air conditioner and improves the heating effect.
  • the alternating body part 310 is provided on the magnetic body part 320.
  • the alternating body part 310 is an induction coil wound on the magnetic body part 320.
  • the magnetic body part 320 When an alternating current is passed into the induction coil, the magnetic body part 320 generates an alternating magnetic field.
  • the magnetic body part has a closed structure or an open structure.
  • the magnetic body part of the closed structure Compared with the magnetic body part of the open structure, the magnetic body part of the closed structure further concentrates the alternating magnetic field on the magnetic body part 320 to further enhance the induced electromotive force and induced current, and finally improve the heating effect of the refrigerant and effectively enhance the heating circuit
  • the specific volume of the refrigerant in the air conditioner increases the low-temperature heating capacity of the air conditioner and improves the heating effect.
  • the magnetic body portion 320 is rectangular or ring-shaped.
  • the alternating body part is wound on a rectangular side of the rectangular magnetic body part; the alternating magnetic field is concentrated inside the magnetic body part.
  • the electromagnetic heating device is located close to the inlet port of the compressor 400 of the gas-liquid separator body 401.
  • the part of the gas-liquid separator body close to the compressor interface is preferentially heated, which is beneficial to concentrate heat to heat the refrigerant that will flow into the compressor from the gas-liquid separator body, thereby effectively increasing the refrigerant in the heating pipeline Specific volume increases the low-temperature heating capacity of air conditioners.
  • the gas-liquid separator body 401 is provided with an insulation layer.
  • the heat preservation layer is coated on the outer surface of the gas-liquid separator body 401.
  • the alternating magnetic field directly heats the gas-liquid separator body through the insulating layer, the thermal efficiency is very high, and there is almost no loss of heat energy, and because the gas-liquid separator body heats itself under the action of the alternating magnetic field, there is no heat.
  • the loss of transmission, the overall energy saving is about 30%-70% of resistance heating under the same conditions.
  • a magnetic barrier layer is provided on the alternating body 310.
  • the magnetic barrier layer is provided on the outer surface of the alternating body 310.
  • the alternating body part passes through the magnetic barrier to avoid electromagnetic interference.
  • a magnetic leakage prevention layer is provided on the magnetic body part 320.
  • the magnetic leakage prevention layer is a magnetic leakage prevention paper wrapped on the outside of the magnetic body part 320 or a magnetic leakage prevention paint layer coated on the outside of the magnetic body part 320.
  • the magnetic leakage prevention layer reduces the amount of magnetic leakage and ensures the electromagnetic induction heating effect.
  • one or more of the refrigeration circuit and the heating circuit of the temperature adjustment device include the compressor 400 of the above-mentioned gas-liquid separator.
  • the embodiment of the present disclosure also provides a compressor including the aforementioned gas-liquid separator.
  • the terms "including”, “including” or any other variations thereof are intended to cover non-exclusive inclusion, so that a structure, device or device including a series of elements not only includes those elements, but also includes those not explicitly listed Other elements, or also include elements inherent to this structure, device or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the structure, device or equipment including the element.
  • the various embodiments herein are described in a progressive manner. Each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • General Induction Heating (AREA)

Abstract

本申请涉及一种流体管道,包括:管道本体;第一扰流件,被设置为对所述管道本体内的流体进行部分扰流并形成通流;第二扰流件,被设置为对所述第一扰流件形成的通流进行扰流。通过在管道本体内设置第一扰流件和第二扰流件,使管道本体内的流体经过第一扰流件时部分流体被扰流,然后形成通流,通流再被第二扰流件继续扰流,从而使流体的各部分可以发生位置变换,有利于流体的各部分靠近管道本体的内壁。本申请还涉及一种热交换设备及温度调节设备。

Description

流体管道、热交换设备及温度调节设备
本申请基于申请号为201910262458.7、申请日为2019.04.02的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及热交换技术领域,例如涉及一种流体管道、热交换设备及温度调节设备。
背景技术
目前,流体管道用于传输流体介质,例如空气、冷媒等。流体在管道本体内沿管道本体的轴向流通。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
部分流体始终靠近管道本体的内壁流动,部分流体始终在管道本体的中轴位置流动,不容易靠近管道本体内壁。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种流体管道。
在一些实施例中,流体管道包括:
管道本体;
第一扰流件,被设置为对所述管道本体内的流体进行部分扰流并形成通流;和,
第二扰流件,被设置为对所述第一扰流件形成的通流进行扰流。
本公开实施例还提供了一种热交换设备。
在一些实施例中,所述热交换设备包括前述实施例提供的流体管道。
本公开实施例还提供了一种温度调节设备。
在一些实施例中,所述温度调节设备包括前述实施例提供的流体管道。
本公开实施例提供的一些技术方案可以实现以下技术效果:
通过在管道本体内设置第一扰流件和第二扰流件,使管道本体内的流体经过第一扰流件时部分流体被扰流,然后形成通流,通流再被第二扰流件继续扰流,从而使流体的各部分可以发生位置变换,有利于流体的各部分靠近管道本体的内壁。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是本公开实施例提供的流体管道的结构示意图;
图2是本公开实施例提供的包含有流体管道的空调的制冷或制热回路示意图;
图3是本公开实施例提供的包含流体管道的空调的结构示意图;
图4是本公开实施例提供的管道本体的内部结构示意图;
图5是图4的A-A剖视图;
图6是图4的B-B剖视图;
图7是本公开实施例提供的管道本体的内部结构示意图;
图8是图7的A-A剖视图;
图9是图7的B-B剖视图;
图10是本公开实施例提供的管道本体的内部结构示意图;
图11是本公开实施例提供的气液分离器的结构示意图。
附图标记:
100-管道本体;101-第一通道;102-第二通道;210-第一扰流件;211-凸棱;220-第二扰流件;221-隔板;300-电磁加热装置;310-交变体部;320-磁性体部;400-压缩机;401-气液分离器;500-室内换热器;600-节流装置;700-室外换热器。
具体实施方式
以下描述和附图充分地示出本文的具体实施方案,以使本领域的技术人员能够实践它们。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本文的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。
如图1所示,本公开实施例提供了一种流体管道,包括管道本体100和电磁加热装置;其中,电磁加热装置包括交变体部310,交变体部310被设置为在通有交变电流时,产生交变磁场;管道本体100置于交变磁场中,被设置为在交变磁场的作用下产生感应电动势。
可选地,交变体部310可以设置在管道本体100的侧边附近,使得管道本体100置于交变体部310所产生的交变磁场中。也可以放置在其他位置,只要使得管道本体100置于交变体部310所产生的交变磁场中即可,本实施例对此不作限制。
采用本实施例,当管道本体100与外部管路例如空调的制热回路构成导电回路时,管道本体100在感应电动势的作用下就会产生感应电流,该感应电流的方向与电磁加热装置中的驱动电流(即交变体部310的输入电流)方向相反,因此在管道本体100中产生焦耳热,管道本体100再将焦耳热传递至管道本体100内部的流通介质中,从而实现对流通介质例如冷媒的加热,有效提升制热回路中的冷媒比容,进而提升空调的低温制热量,改善制热效果。
可选地,管道本体100由导体材料制成,可在交变磁场的作用下产生感应电动势。当管道本体100与空调的制热回路连接时,管道本体100与制热回路构成导电回路,该导电回路可在感应电动势的作用下产生感应电流。
可选地,管道本体100为马氏体钢材管道。
可选地,管道本体100上设有导电通路,当管道本体100与空调的制热回路连接时,管道本体100通过导电通路与制热回路构成导电回路,该导电回路可在感应电动势的作用下产生感应电流。
可选地,电磁加热装置还包括能够围绕管道本体100的磁性体部320,被设置为使交变磁场集中于磁性体部320上。
采用本实施例,由于磁性体部320围绕管道本体100设置,当交变磁场集中于磁性体部320上时,该交变磁场也将围绕管道本体100,进而增强管道本体100周围的电磁场,以增强感应电动势。当管道本体100与外部管路例如空调的制热回路构成导电回路时,增强的感应电动势会引起感应电流的增大,进而产生更多的焦耳热,提高冷媒加热效果,有效提升制热回路中的冷媒比容,进而提升空调的低温制热量,改善制热效果。
可选地,交变体部310设置在磁性体部320上。
可选地,交变体部310为缠绕于磁性体部320上的感应线圈。当向感应线圈内通入交变电流时,磁性体部320产生交变磁场。
可选地,磁性体部320为封闭结构或开放结构。
相对于开放结构的磁性体部320而言,封闭结构的磁性体部320进一步使交变磁场集中于磁性体部320上,以进一步增强感应电动势和感应电流,最终提高冷媒加热效果,有效提升制热回路中的冷媒比容,进而提升空调的低温制热量,改善制热效果。
可选地,磁性体部320为矩形或环形。
可选地,交变体部310缠绕在矩形磁性体部的一个矩形边上;交变磁场集中于磁性体部320内部。
可选地,交变体部310上设有隔磁层。
可选地,隔磁层设置在交变体部310的外表面上。
采用本实施例,交变体部310通过隔磁层,规避电磁干扰。
可选地,管道本体100上设有保温层。
可选地,保温层包覆在管道本体100外表面。
采用本实施例,交变磁场透过保温层直接对管道本体100进行加热,热效率很高,热能几乎没有流失,而且由于管道本体100在交变磁场的作用下自身发热,所以也没有热传递的损失,整体节能约是同等条件下电阻加热的30%-70%。
可选地,磁性体部320上设有防漏磁层。
可选地,防漏磁层为在磁性体部320外部包覆的防漏磁纸,或在磁性体部320外部涂敷的防漏磁涂料层。
采用本实施例,通过防漏磁层,减少漏磁量,保证电磁感应加热效果。
如图4所示,本公开实施例还公开了一种流体管道,包括:
管道本体100;
第一扰流件210,被设置为对管道本体100内的流体进行部分扰流并形成通流;
第二扰流件220,被设置为对第一扰流件210形成的通流进行扰流。
本文中,通流是指流通状态的流体。
可选地,通流为流体呈直线流通。例如,如图8所示,第一扰流件210为沿管道本体100的内壁的管周方向延伸成型的凸棱211。凸棱211的中央形成第一通道101。这样,流体在第一通道101内呈直线流通。例如,第一扰流件包括环形挡板,环形挡板中央形成通道。这样,流体在通道内呈直线流通。
可选地,通流为流体呈曲线流通。例如,第一扰流件210包括一个挡片,第一扰流件210为多个且在沿管道本体的长度方向错位设置。这样,形成的通流呈曲线流通。例如,第一扰流件210包括外径等于管道本体内径的挡块,挡块具有沿管道本体100长度方向贯穿挡块的曲线形通道。这样,形成的通流呈曲线流通。
采用本实施例,通过在管道本体100内设置第一扰流件210和第二扰流件220,使管道本体100内的流体经过第一扰流件210时部分流体被扰流,然后形成通流,通流再被第二扰流件220继续扰流,从而使流体的各部分可以发生位置变换,有利于流体的各部分靠近管道本体100的内壁。
可选地,第一扰流件210对靠近管道本体100内壁的流体进行扰流。
可选地,第一扰流件210对靠近管道本体100中轴的流体进行扰流。这样,可以实现对部分流体的扰流。
可选地,第二扰流件220设置于第一扰流件210形成的通流流经的空间。这样,可以对第一扰流件210形成的通流进行扰流。
可选地,第一扰流件210形成的通流流经管道本体100的中轴,或者流经管道本体100的中轴与内壁之间。这样,使靠近管道本体100内壁的流体被扰流,并使流体从管道本体100的中轴部位通过。例如,如图8所示,第一扰流件210为沿管道本体100的内壁的管周方向延伸成型的凸棱211。凸棱211的中央形成第一通道101。这样,使流体从管道本体100的 中轴部位通过。再例如,第一扰流件210包括外径等于管道本体100内径的挡块,挡块具有沿管道本体100长度方向贯穿挡块的通道,该通道位于管道本体100的中轴与管道本体100内壁之间的部位。
可选地,第一扰流件210垂直于管道本体100的内壁。
可选地,第一扰流件210相对管道本体100的内壁倾斜设置。这样,可以对流体进行扰流。
可选地,第一扰流件210相对管道本体100的长度方向倾斜设置,或相对垂直管道本体100长度方向的方向倾斜设置。例如,第一扰流件210为板状,其可以相对相对管道本体100的长度方向倾斜设置,也可以相对垂直管道本体100长度方向的方向倾斜设置,还可以垂直于管道本体100的内壁设置。
可选地,第一扰流件210朝向流体的流动方向倾斜。
可选地,第一扰流件210背向流体的流动方向倾斜。这样,有利于对流体的扰动。
可选地,第一扰流件210和第二扰流件220中一个或一个以上的一端或两端连接到管道本体100的内壁。
可选地,如图4所示,第一扰流件210为相对设置。可选地,如图4所示,第一扰流件210为相对对称设置。可选地,第二扰流件220为多个且相对设置。可选地,第一扰流件210为多个且尺寸不同。可选地,第二扰流件220为多个且尺寸不同。可选地,第一扰流件210和第二扰流件220均为多个,且第一扰流件210和第二扰流件220中的一个或一个以上的尺寸相同或不同。
如图4~6所示,一种流体管道,包括:
管道本体100;
第一扰流件210,设置于管道本体100的内壁并在管道本体的中轴部位形成供流体通过的第一通道101;
第二扰流件220,设置于第一通道101沿管道本体100长度方向的延长线上。
第一扰流件210在管道本体100中轴部位形成供流体通过的第一通道101,流体在流经第一扰流件210时,靠近管道本体100内壁的流体被扰流, 流体集中管道本体100的中轴部位形成通流,第二扰流件220对形成的通流进行扰流。
在实际工作过程中,当流体经过第一扰流件210时,流体集中到管道本体的中轴部位;当流体经过第二扰流件220时,流体分流并靠近管道本体100的内壁的位置,在合流、分流的过程中,流体的各部分可以发生位置变换,有利于流体的各部分靠近管道本体100的内壁。
流体可以是液体,也可以是气体,还可以是气液混合体。例如,流体为冷媒。当冷媒从流体通道经过时,增加冷媒的各部分靠近管道本体100内壁的几率,这样,有利于冷媒吸收管道本体100外部的热量,或者向管道本体100外部散发热量。
可选地,第二扰流件220沿直径方向贯穿管道本体100并将管道本体100内分隔成两个第二通道102。这样,第二扰流件流体扰流后,流体分别从两个第二通道102中流过。
可选地,管道本体100为不锈钢材质。可选地,管道本体100为马氏体不锈钢材质。这样,一方面避免管道本体100被内部的流体腐蚀,另一方面强化管道本体100内部流体与管道本体100外部环境的热量交换。
可选地,第一扰流件210和第二扰流件220均为不锈钢材质。可选地,第一扰流件210和第二扰流件220均为马氏体不锈钢材质。这样,避免管道本体100被内部的流体腐蚀。
可选地,第一通道101与第二通道102的宽度之比为m,0.8≤m≤1.2。这样,有利于流体各部分在流动过程中靠近管道本体100的内壁。
可选地,第一通道101的平均宽度为a,立柱的直径为d1,管道本体100的内直径为d2,1/4d2≤a≤1/2d2;第二通道102的平均宽度为b,1/8d2≤b≤1/4d2。这样,使流体流经第一通道101和第二通道102时,有利于流体的各部分在流动过程中靠近管道本体100的内侧壁。
图7是本公开实施例提供的管道本体的另一种内部结构示意图;图8是图7的A-A剖视图;图9是图7的B-B剖视图。如图7~9所示,可选地,第一扰流件210包括沿管道本体100的内壁的管周方向延伸成型的凸棱211。凸棱211围成的空间形成第一通道101。这样,流体可以从流体通道的中央流过。
可选地,第一扰流件210包括由管道本体100位置相对的内壁相向延伸成型的两个挡板。两个挡板之间形成第一通道101,这样,流体集中在两个挡板之间的第一通道101流过。
可选地,挡板为弓形,挡板的弧边与管道本体100的内壁连接,两个挡板的直边与管道本体100的内壁围成第一通道101。这样,使流体集中并靠近流体空间的中轴部位经过。
可选地,第一扰流件210为多个且沿管道本体100长度方向间隔设置,第二扰流件220设置于相邻的两个第一扰流件210之间。这样,当流体从管道本体100内流过时,交替地被第一扰流件210和第二扰流件220扰流,从而使流体的各部分均有机会靠近管道本体100的内壁。
图10是本公开实施例提供的管道本体的另一种内部结构示意图。如图10所示,可选地,第二扰流件220包括隔板221,隔板221的两端分别与管道本体100的内壁连接。这样,可以将流体通道分隔成两个第二通道102。
可选地,隔板221对应第一通道101设置。这样,当流体从第一通道101流出后,被集中在中轴部位的流体遇到隔板221可被分流进入第二通道102。
可选地,如图4~6所示,第二扰流件220包括立柱,立柱的两端分别与管道本体100的内壁连接。立柱具有弧形的侧壁,当流体经过时,立柱侧壁对流体产生的阻力较小,有利于流体的流动。
可选地,如图4所示,立柱的直径为d1,管道本体100的内直径为d2,1/4d2≤d1≤1/2d2,d2≥5。这样,有利于流体的输送和与管道本体100的内壁充分接触。
可选地,第一扰流件210与第二扰流件220之间的距离为c,a≤c。
可选地,第二扰流件220对应第一通道101设置。这样,当流体从第一通道101流出后,遇到第二扰流件220可以被分流进入不同的第二通道102。
可选地,流体管道还包括制冷装置或加热装置,制冷装置或加热装置被设置为制冷流体管道或加热流体管道。当流体流经流体管道本体100内部时,流体的各部分均有机会靠近管道本体的内壁,有利于流体充分吸收制冷装置产生的冷量或加热装置产生的热量,从而提升了制冷装置对流体 的制冷效果或加热装置对流体的加热效果。
本公开实施例还提供了一种流体管道,包括:
管道本体100和电磁加热装置;其中,电磁加热装置包括交变体部310,交变体部310被设置为在通有交变电流时,产生交变磁场;管道本体100置于交变磁场中,被设置为在交变磁场的作用下产生感应电动势;
还包括:
第一扰流件210,被设置为对管道本体100内的流体进行部分扰流并形成通流;
第二扰流件220,被设置为对第一扰流件210形成的通流进行扰流。
由于电磁加热具有集肤效应,即由电磁加热产生的热量会集中在管道本体100的外表面,当冷媒在热交换设备中的流体管道的管道本体100内流通时,第二扰流件220有利于位于管道本体100中部的冷媒向管道本体100内壁流动,即中间的冷媒向内壁扩散,这样,有利于位于管道本体100中部的冷媒吸收管道本体100上因电磁加热产生的热量,第一扰流件210有利于靠近管道本体100内壁的冷媒向管道本体100中部流动,即内壁附近的冷媒向中间集聚,进而将冷媒从管道本体100内壁吸收的热量传递至中部的冷媒。通过第一扰流件210和第二扰流件220的设置,使得管道本体110内部的冷媒能不断地集聚、扩散,进而更加均匀地吸收管道本体因电磁加热产生的热量,增强换热效果。
本公开实施例还提供了一种热交换设备,包括前述流体管道。
可选地,热交换设备为空调的室外换热器。
本公开实施例还提供了一种温度调节设备,如图2至图3所示,包括流体管道,流体管道包括:
管道本体100和电磁加热装置;其中,电磁加热装置包括交变体部310,交变体部310被设置为在通有交变电流时,产生交变磁场;管道本体100置于交变磁场中,被设置为在交变磁场的作用下产生感应电动势。
流体管道的管道本体100被设置为提供冷媒的流通通道。
可选地,温度调节设备还包括制冷回路和制热回路中的一个或一个以上,与流体管道的管道本体100构成导电回路。
可选地,制冷回路和制热回路中的一个或一个以上包括室外换热器 700;流体管道设置在室外换热器700的入口处。
可选地,制冷回路和制热回路中的一个或一个以上还包括节流装置600,流体管道设置在节流装置600与室外换热器700之间。
可选地,制冷回路和制热回路中的一个或一个以上还包括压缩机400和室内换热器500。
可选地,制冷回路和制热回路中的一个或一个以上还包括四通阀,压缩机通过四通阀实现制冷回路和制热回路之间的切换。
本公开实施例还提供了一种温度调节设备,包括流体管道,流体管道包括:第一扰流件210,被设置为对管道本体100内的流体进行部分扰流并形成通流;
第二扰流件220,被设置为对第一扰流件210形成的通流进行扰流。
本公开实施例还提供了一种温度调节设备,包括:
管道本体100和电磁加热装置;其中,电磁加热装置包括交变体部310,交变体部310被设置为在通有交变电流时,产生交变磁场;管道本体100置于交变磁场中,被设置为在交变磁场的作用下产生感应电动势;
还包括:
第一扰流件210,被设置为对管道本体100内的流体进行部分扰流并形成通流;
第二扰流件220,被设置为对第一扰流件210形成的通流进行扰流。
当管道本体100与温度调节设备的制热回路构成导电回路时,管道本体100在感应电动势的作用下就会产生感应电流,进而产生焦耳热,管道本体100再将焦耳热传递至管道本体100内部的流通介质中,第一扰流件和第二扰流件的设置,增强了管道本体100内流通介质例如冷媒的热交换效果,进一步提升制热回路中的冷媒比容,进一步提升温度调节设备的低温制热量,改善制热效果。
可选地,温度调节设备为空调。
可选地,温度调节设备的制冷回路和制热回路中的一个或一个以上包含气液分离器。
可选地,如图11所示,气液分离器包括气液分离器本体401和电磁加热装置;其中,电磁加热装置包括交变体部310,交变体部310被设置为在 通有交变电流时,产生交变磁场;气液分离器本体401置于交变磁场中,被设置为在交变磁场的作用下产生感应电动势。
可选地,交变体部310可以设置在气液分离器本体401的侧边附近,使得气液分离器本体401置于交变体部310所产生的交变磁场中。也可以放置在其他位置,只要使得气液分离器本体401置于交变体部310所产生的交变磁场中即可,本实施例对此不作限制。
采用本实施例,当气液分离器本体401与外部管路例如空调的制热回路构成导电回路时,气液分离器本体401在感应电动势的作用下就会产生感应电流,该感应电流的方向与电磁加热装置中的驱动电流(即交变体部310的输入电流)方向相反,因此在气液分离器本体401中产生焦耳热,气液分离器本体401再将焦耳热传递至气液分离器本体401内部的流通介质中,从而实现对流通介质例如冷媒的加热,有效提升制热回路中的冷媒比容,进而提升空调的低温制热量,改善制热效果。
可选地,气液分离器本体401由导体材料制成,可在交变磁场的作用下产生感应电动势。当气液分离器本体401与空调的制热回路连接时,气液分离器本体401与制热回路构成导电回路,该导电回路可在感应电动势的作用下产生感应电流。
可选地,气液分离器本体401由马氏体钢材制成。
可选地,气液分离器本体401上设有导电通路,当气液分离器本体401与空调的制热回路连接时,气液分离器本体401通过导电通路与制热回路构成导电回路,该导电回路可在感应电动势的作用下产生感应电流。
可选地,电磁加热装置还包括能够围绕气液分离器本体401的磁性体部320,被设置为使交变磁场集中于磁性体部320上。
采用本实施例,由于磁性体部320围绕气液分离器本体设置,当交变磁场集中于磁性体部320上时,该交变磁场也将围绕气液分离器本体401,进而增强气液分离器本体周围的电磁场,以增强感应电动势。当气液分离器本体401与外部管路例如空调的制热回路构成导电回路时,增强的感应电动势会引起感应电流的增大,进而产生更多的焦耳热,提高冷媒加热效果,有效提升制热回路中的冷媒比容,进而提升空调的低温制热量,改善制热效果。
可选地,交变体部310设置在磁性体部320上。
可选地,交变体部310为缠绕于磁性体部320上的感应线圈。当向感应线圈内通入交变电流时,磁性体部320产生交变磁场。
可选地,磁性体部为封闭结构或开放结构。
相对于开放结构的磁性体部而言,封闭结构的磁性体部进一步使交变磁场集中于磁性体部320上,以进一步增强感应电动势和感应电流,最终提高冷媒加热效果,有效提升制热回路中的冷媒比容,进而提升空调的低温制热量,改善制热效果。
可选地,磁性体部320为矩形或环形。
可选地,交变体部缠绕在矩形磁性体部的一个矩形边上;交变磁场集中于磁性体部内部。
可选地,电磁加热装置的位置靠近气液分离器本体401的压缩机400入口接口。
采用本实施例,优先对气液分离器本体靠近压缩机接口的部分进行加热,有利于集中热量对即将从气液分离器本体流入压缩机的冷媒进行加热,从而有效提升制热管路中的冷媒比容,提升空调的低温制热量。
可选地,气液分离器本体401设有保温层。作为示例,保温层包覆在气液分离器本体401外表面。
采用本实施例,交变磁场透过保温层直接加热气液分离器本体,热效率很高,热能几乎没有流失,而且由于气液分离器本体在交变磁场的作用下自身发热,所以也没有热传递的损失,整体节能约是同等条件下电阻加热30%-70%。
可选地,交变体部310上设有隔磁层。作为示例,隔磁层设置在交变体部310的外表面上。
采用本实施例,交变体部通过隔磁层,规避电磁干扰。
可选地,磁性体部320上设有防漏磁层。作为示例,防漏磁层为在磁性体部320外部包覆的防漏磁纸,或在磁性体部320外部涂敷的防漏磁涂料层。
采用本实施例,通过防漏磁层,减少漏磁量,保证电磁感应加热效果。
可选地,温度调节设备的制冷回路和制热回路中的一个或一个以上包 含上述气液分离器的压缩机400。
本公开实施例还提供了一种压缩机,包括前述气液分离器。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。
本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。
本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的结构、装置或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种结构、装置或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的结构、装置或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本公开实施例并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。

Claims (12)

  1. 一种流体管道,其特征在于,包括:
    管道本体;
    第一扰流件,被设置为对所述管道本体内的流体进行部分扰流并形成通流;和,
    第二扰流件,被设置为对所述第一扰流件形成的通流进行扰流。
  2. 根据权利要求1所述的流体管道,其特征在于,所述第二扰流件设置于所述第一扰流件形成的通流流经的空间。
  3. 根据权利要求1所述的流体管道,其特征在于,所述第一扰流件垂直于所述管道本体的内壁。
  4. 根据权利要求1所述的流体管道,其特征在于,所述第一扰流件相对所述管道本体的内壁倾斜设置。
  5. 根据权利要求4所述的流体管道,其特征在于,所述第一扰流件相对所述管道本体的长度方向或相对垂直所述管道本体长度方向的方向倾斜设置。
  6. 根据权利要求1所述的流体管道,其特征在于,所述第一扰流件和所述第二扰流件中一个或一个以上的一端或两端连接到所述管道本体的内壁。
  7. 根据权利要求1所述的流体管道,其特征在于,所述第一扰流件形成的通流流经所述管道本体的中轴或者流经所述管道本体的中轴与内壁之间。
  8. 根据权利要求1至7任一项所述的流体管道,其特征在于,还包括制冷装置或加热装置,所述制冷装置或加热装置被设置为制冷所述流体管道或加热所述流体管道。
  9. 根据权利要求8所述的流体管道,其特征在于,所述加热装置为电磁加热装置;其中,所述电磁加热装置包括交变体部,所述交变体部被设置为在通有交变电流时,产生交变磁场;所述管道本体置于所述交变磁场中,被设置为在所述交变磁场的作用下产生感应电动势。
  10. 一种热交换设备,其特征在于,包括如权利要求1至9中任一项所述的流体管道。
  11. 一种温度调节设备,其特征在于,包括如权利要求1至9中任一项所述的流体管道。
  12. 根据权利要求11所述的温度调节设备,其特征在于,所述温度调节设备为空调。
PCT/CN2019/095549 2019-04-02 2019-07-11 流体管道、热交换设备及温度调节设备 WO2020199414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910262458.7 2019-04-02
CN201910262458.7A CN111765535A (zh) 2019-04-02 2019-04-02 流体管道、热交换设备及温度调节设备

Publications (1)

Publication Number Publication Date
WO2020199414A1 true WO2020199414A1 (zh) 2020-10-08

Family

ID=72664597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095549 WO2020199414A1 (zh) 2019-04-02 2019-07-11 流体管道、热交换设备及温度调节设备

Country Status (2)

Country Link
CN (1) CN111765535A (zh)
WO (1) WO2020199414A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2751506Y (zh) * 2004-12-13 2006-01-11 廖敬兴 一种电磁线圈加热装置
CN202582317U (zh) * 2012-05-25 2012-12-05 锦州秀亭制管有限公司 刺凸式u型扁管
CN107270763A (zh) * 2017-03-23 2017-10-20 托普工业(江苏)有限公司 一种内翅片管换热器
CN107367186A (zh) * 2017-08-30 2017-11-21 大连海新工程技术有限公司 嵌入管式换热管及由其制成的闪蒸加热器
CN107421376A (zh) * 2016-05-24 2017-12-01 林内株式会社 乱流形成用器具及使用其的热交换器和热水器
CN107726615A (zh) * 2017-09-26 2018-02-23 青岛春雷科技发展有限公司 一种空气源电磁板换加热器
CN207247973U (zh) * 2017-08-30 2018-04-17 大连海新工程技术有限公司 嵌入管式换热管及由其制成的闪蒸加热器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2751506Y (zh) * 2004-12-13 2006-01-11 廖敬兴 一种电磁线圈加热装置
CN202582317U (zh) * 2012-05-25 2012-12-05 锦州秀亭制管有限公司 刺凸式u型扁管
CN107421376A (zh) * 2016-05-24 2017-12-01 林内株式会社 乱流形成用器具及使用其的热交换器和热水器
CN107270763A (zh) * 2017-03-23 2017-10-20 托普工业(江苏)有限公司 一种内翅片管换热器
CN107367186A (zh) * 2017-08-30 2017-11-21 大连海新工程技术有限公司 嵌入管式换热管及由其制成的闪蒸加热器
CN207247973U (zh) * 2017-08-30 2018-04-17 大连海新工程技术有限公司 嵌入管式换热管及由其制成的闪蒸加热器
CN107726615A (zh) * 2017-09-26 2018-02-23 青岛春雷科技发展有限公司 一种空气源电磁板换加热器

Also Published As

Publication number Publication date
CN111765535A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
EP3217135B1 (en) Layered header, heat exchanger, and air-conditioning device
US10119765B2 (en) Arc-shaped plate heat exchanger
WO2017113571A1 (zh) 一体化相变抑制传热换热板结构及其制造方法
KR101827252B1 (ko) 확장성을 갖는 히팅 모듈이 일체로 형성된 소형 자기유도가열 보일러
CN102313466B (zh) 一种变径管路换热器
JP5957535B2 (ja) パラレルフロー型熱交換器及びこれを用いた空気調和気
EP3467420A1 (en) Arc-shaped plate heat exchanger
CN101737941A (zh) 制冷剂加热装置
CN104807082B (zh) 热交换盘管及空气调节机
WO2020199414A1 (zh) 流体管道、热交换设备及温度调节设备
CN210638223U (zh) 电磁加热装置、流体管道和温度调节设备
CN209877186U (zh) 流体管道、热交换设备及温度调节设备
CN105466254A (zh) 一种换热器
CN209877187U (zh) 流体管道、热交换设备及温度调节设备
CN209877425U (zh) 气液分离器、压缩机及温度调节设备
JP2007514127A (ja) 吸収式冷凍機/加熱機の多段再生器のための高効率乱流発生器
CN203671790U (zh) 空调器及其换热系统
WO2021017248A1 (zh) 电磁加热装置、流体管道和温度调节设备
Joshis et al. Review of heat transfer augmentation with tape inserts
CN204806943U (zh) 一种换热器
CN111895687A (zh) 套管式水冷冷凝器
CN210638332U (zh) 换热器和空调系统
CN212511956U (zh) 双管式水冷冷凝器
CN207095375U (zh) 换热器及包括其的船用空调
CN220507331U (zh) 冷媒加热管组及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922757

Country of ref document: EP

Kind code of ref document: A1