WO2021016876A1 - 一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法 - Google Patents

一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法 Download PDF

Info

Publication number
WO2021016876A1
WO2021016876A1 PCT/CN2019/098413 CN2019098413W WO2021016876A1 WO 2021016876 A1 WO2021016876 A1 WO 2021016876A1 CN 2019098413 W CN2019098413 W CN 2019098413W WO 2021016876 A1 WO2021016876 A1 WO 2021016876A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
film
nanowire
tellurium
preparation
Prior art date
Application number
PCT/CN2019/098413
Other languages
English (en)
French (fr)
Inventor
曾小亮
曾祥亮
孙蓉
许建斌
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2019/098413 priority Critical patent/WO2021016876A1/zh
Publication of WO2021016876A1 publication Critical patent/WO2021016876A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the invention relates to the field of flexible thermoelectric films, in particular to a silver telluride nanowire flexible thermoelectric film welded at room temperature and a preparation method thereof.
  • thermoelectric materials can directly convert thermal energy into electrical energy, which not only effectively helps solve the problem of global energy demand growth, but also helps alleviate the greenhouse effect.
  • flexible thermoelectric materials have attracted widespread attention from scientists because they can obtain energy from body temperature and environmental temperature gradients, and thus act as generators to provide electrical energy to flexible wearable electronic devices. Therefore, the development of high-performance flexible thermoelectric materials has become one of the research hotspots in the development of next-generation flexible electronic devices.
  • Tellurium and its alloys are considered a promising thermoelectric material due to its high Seebeck coefficient.
  • Silver telluride is one of them. It has many unique properties: low thermal conductivity, high electron mobility and controllable carrier concentration. At the same time, reducing the size of silver telluride to nanoscale can obtain good strain ability, so silver telluride nanowires can be used as a high-performance flexible thermoelectric material.
  • Miao Lei, Gao Jie and others prepared a flexible thermoelectric film (CN106505142A) after cold-pressing and compounding silver telluride nanowires and glass fibers. Since the cold-pressed silver telluride nanowires still have simple physical contact, resulting in the low conductivity and power factor of the film, there are still huge challenges in preparing high-performance flexible thermoelectric films.
  • the purpose of the present invention is to overcome the above-mentioned defects of the prior art and provide a method for preparing a flexible thermoelectric film of silver telluride nanowires welded at room temperature.
  • One aspect of the present invention provides a silver telluride nanowire flexible thermoelectric film welded at room temperature, which comprises a silver telluride nanowire flexible thermoelectric film connected by welding points.
  • the thickness of the silver telluride nanowire flexible thermoelectric film is less than 10 ⁇ m, preferably less than 5 ⁇ m, and more preferably less than 3 ⁇ m.
  • One aspect of the present invention provides a method for preparing a silver telluride nanowire flexible thermoelectric film welded at room temperature, including the following steps:
  • the concentration of the tellurium nanowire dispersion in step (1) is 0.01-0.1 mg/ml, preferably 0.02-0.08 mg/ml, more preferably 0.03-0.05 mg/ml.
  • the first solvent in step (1) is alcohol and water, preferably ethanol, methanol, ethylene glycol, propanol, propylene glycol.
  • the volume of the tellurium nanowire dispersion in step (1) is 10-100ml, preferably 30-80ml, more preferably 40-60ml.
  • the dispersion described in step (1) is dispersion by means of stirring, ultrasound, and oscillation.
  • the operation of the stirring and dispersing mode is: magnetic stirring by a stir bar
  • the speed of the stir bar is 200-1000 revolutions/min, preferably 400-800 revolutions/min, more preferably 600-700 revolutions/min
  • the stirring time is 5 40 minutes, preferably 10-30 minutes, more preferably 15-20 minutes.
  • the method for preparing the tellurium nanowire film from the tellurium nanowire dispersion liquid in step (2) is a suction filtration method, a solvent evaporation method, and a spin coating method.
  • the suction filtration method is a method of vacuum filtration of the tellurium nanowire dispersion liquid to form a tellurium nanowire film on the filter membrane.
  • the solvent evaporation method is to drop the nanowire dispersion liquid onto the substrate and evaporate the solution to obtain a tellurium nanowire film.
  • the spin coating method is to drop the nanowire dispersion onto the substrate, and spin it with a spin coater to obtain a tellurium nanowire film.
  • the vacuum degree of the vacuum filtration of the suction filtration method in step (2) is 0.2-10 Pa.
  • the silver ion salt in step (3) is selected from silver nitrate, silver sulfate, silver chloride...
  • the thickness of the tellurium nanowire film in step (3) is less than 10 ⁇ m, preferably less than 5 ⁇ m, and more preferably less than 3 ⁇ m.
  • the second solvent in step (3) is a reducing solvent capable of dissolving silver ion salt, preferably ethylene glycol.
  • the concentration of the silver nitrate solution described in step (3) is 1-10 mg/ml, preferably 3-8 mg/ml, more preferably 5-7 mg/ml.
  • the dropping amount of the silver ion salt solution in step (4) is 2-10ml, preferably 4-8ml. More preferably, it is 5-6 ml.
  • the reaction time in step (4) is 30-300s, preferably 60-200s, more preferably 90-150s.
  • the drying temperature in step (4) is 50-70°C.
  • the method for reacting the silver ion salt solution with the tellurium nanowire film in step (4) is to contact the silver ion salt solution with the tellurium nanowire film, preferably, dropping the silver ion salt solution Coat on the tellurium nanowire film, or soak the tellurium nanowire film in a silver ion salt solution.
  • Yet another aspect of the present invention provides a flexible thermoelectric film of silver telluride nanowires welded at room temperature prepared by the above method of the present invention.
  • Another aspect of the present invention provides a silver telluride nanowire flexible thermoelectric film.
  • the silver telluride nanowire thermoelectric film is composed of silver telluride nanowires, and the silver telluride nanowires are connected by solder joints.
  • the present invention is to solve the problems of low conductivity and power factor in the prior art.
  • the present invention is to solve the problem of welding silver telluride nanowires at room temperature.
  • the tellurium nanowires are used as the precursor and the tellurium nanowires are prepared by vacuum filtration.
  • the thin film is then dripped with a silver nitrate solution on the tellurium nanowire film, and after the reaction, a flexible thermoelectric film of silver telluride nanowire welded at room temperature is prepared.
  • the chemical reaction welding method is more convenient and efficient.
  • the soldered silver telluride nanowires become interconnected network structures, and the interatomic bonding between the nanowires greatly improves the electrical conductivity of the film, thereby improving the thermoelectric properties of the film.
  • the silver telluride nanowires are welded together to improve the bonding force between the nanowires, the flexibility of the film is also improved.
  • Vacuum filtration can easily prepare a thin film.
  • the present invention first uses a vacuum filtration method to prepare a tellurium nanowire thin film with uniform thickness. Therefore, tellurium nanowires of different qualities can be added to prepare films with different thicknesses, but the thickness of the tellurium nanowire film cannot exceed 3 ⁇ m, otherwise the silver nitrate cannot completely react with the tellurium nanowire. And prepared a direct silver telluride nanowire film, that is, first synthesize the silver telluride nanowires and then filter them into a film, and compare the effects of welding on the silver telluride nanowire film.
  • the present invention uses tellurium nanowires as precursors to obtain a tellurium nanowire film with uniform thickness by vacuum filtration, and then reacts to form a silver telluride nanowire film by dropping a silver ion solution on the film, and Make the silver telluride nanowires welded together.
  • the present invention finds that the silver telluride nanowires can be welded at room temperature through a simple chemical reaction, thereby obtaining a flexible thermoelectric film with high conductivity and high power factor.
  • the nanowires in the present invention are welded together by a simple method to form a tightly connected network structure.
  • the welding between nanowires can serve as a bridge for electron migration, thereby improving the conductivity of the thermoelectric film.
  • thermoelectric film prepared by the invention not only improves the thermoelectric performance, but also improves its flexibility.
  • the preparation method of the invention is simple and has good repeatability. Using tellurium nanowires as precursors, reacting with silver nitrate to prepare a room-temperature-welded silver telluride nanowire flexible thermoelectric film, which effectively improves the electrical conductivity and power factor of the thermoelectric film. It can effectively solve the technical problem of low conductivity of flexible thermoelectric film, and has good application prospects.
  • FIG. 1 is an electron micrograph of a flexible thermoelectric film of silver telluride nanowires welded at room temperature prepared in Example 1 under different magnifications;
  • Example 2 is an electron micrograph of a film formed by direct suction filtration of the silver telluride nanowire prepared in Example 2 under different magnifications;
  • Fig. 3 is a diagram showing the conductivity of the thermoelectric films prepared in Examples 1 and 2 at different temperatures;
  • Figure 4 is a graph of power factors of the thermoelectric films prepared in Examples 1 and 2 at different temperatures.
  • Fig. 5 is a graph showing the flexibility results of Examples 1 and 2.
  • Figures 1 and 2 are respectively the electron microscope images of the silver telluride nanowire flexible thermoelectric film welded at room temperature in Example 1 and the unwelded silver telluride nanowire thermoelectric film in Example 2. It can be observed that the prepared silver telluride nanowires are uniform in diameter and have good morphology, but the flexible thermoelectric film of silver telluride nanowires welded at room temperature can see the formation of solder joints between the silver telluride nanowires. Welded up.
  • thermoelectric films prepared in the above embodiments 1 and 2 at different temperatures is shown in Figure 3. It can be seen that the flexible thermoelectric film of silver telluride nanowires welded at room temperature is better than that of the unsoldered silver telluride nanowires. Compared with the thermoelectric film, the conductivity of the former has been significantly improved.
  • thermoelectric film The power factor of the thermoelectric film is shown in Figure 4. It can be seen that the power factor of the silver telluride nanowire flexible thermoelectric film welded at room temperature is significantly higher than that of the unsoldered silver telluride nanowire thermoelectric film.
  • thermoelectric film The flexibility of the thermoelectric film is shown in Figure 5 (R 0 and R respectively represent the resistance of the film before and after bending). Compared with the former, the flexibility of the former has also been significantly improved.
  • thermoelectric properties of the silver telluride thermoelectric films prepared in the foregoing Examples 1 and 2 are shown in Table 1 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法,所述制备方法,包括以下步骤:(1)将碲纳米线在第一溶剂中分散,得到碲纳米线分散液;(2)将所述碲纳米线分散液制成碲纳米线薄膜;(3)将银离子盐溶于第二溶剂中,配制成银离子盐溶液;(4)将所述的银离子盐与碲纳米线薄膜反应,待其反应后清洗薄膜,干燥后即得到室温下焊接的碲化银纳米线柔性热电薄膜。本发明制备的柔性热电薄膜电导率和功率因子高。

Description

一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法 技术领域
本发明涉及柔性热电薄膜领域,尤其是涉及一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法。
背景技术
能源短缺和环境污染问题近年来备受关注,而造成这些问题的很大一部分原因是由于超过50%的能量以热量形式被浪费掉了,因此提高能量利用率至关重要。热电材料可直接将热能转化为电能,这不仅能有效的帮助解决全球能源需求增长的问题,也有助于缓解温室效应。近年来,柔性热电材料引起了科学家们的广泛关注,因为它可以从体温和环境温度梯度中获取能量,从而作为发电机给柔性可穿戴电子设备提供电能。因此,高性能柔性热电材料的开发已成为下一代柔性电子器件发展的研究热点之一。
碲及其合金由于其高塞贝克系数而被认为是一种很有前途的热电材料。碲化银便是其中一种,它具有许多独特的性质:低的导热性,高的电子迁移率和可控的载流子浓度。同时,将碲化银的尺寸下降到纳米级可以获得良好的应变能力,因此碲化银纳米线能被用作一种高性能的柔性热电材料。苗蕾和高杰等人将碲化银纳米线与玻璃纤维冷压复合后制备了柔性热电薄膜(CN106505142A)。由于冷压后的碲化银纳米线依旧是简单的物理接触,从而导致其薄膜低的电导率和功率因子,因此制备高性能的柔性热电薄膜仍然存在巨大的挑战。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷,提供一种室温下焊接的碲化银纳米线柔性热电薄膜的制备方法。
本发明一个方面提供了一种室温下焊接的碲化银纳米线柔性热电薄膜,其包括由焊接点连接起来的碲化银纳米线柔性热电薄膜。
在本发明的技术方案中,所述碲化银纳米线柔性热电薄膜的厚度低于10μm,优选为低于5μm,更优选为低于3μm。
本发明一个方面提供了一种室温下焊接的碲化银纳米线柔性热电薄膜的制备方法,包括以下步骤:
(1)将碲纳米线在第一溶剂中分散,得到碲纳米线分散液;
(2)将所述碲纳米线分散液制成碲纳米线薄膜;
(3)将银离子盐溶于第二溶剂中,配制成银离子盐溶液;
(4)将所述的银离子盐溶液与碲纳米线薄膜反应,待其反应后用清洗薄膜,干燥后即得到室温下焊接的碲化银纳米线柔性热电薄膜。
在本发明的技术方案中,步骤(1)中所述碲纳米线分散液浓度为0.01-0.1mg/ml,优选为0.02-0.08mg/ml,更优选为0.03-0.05mg/ml。
在本发明的技术方案中,步骤(1)中所述第一溶剂为醇、水,优选为乙醇、甲醇、乙二醇、丙醇、丙二醇。
在本发明的技术方案中,步骤(1)中所述碲纳米线分散液的体积为10-100ml,优选为30-80ml,更优选为40-60ml。
在本发明的技术方案中,步骤(1)中所述的分散为通过搅拌、超声、振荡方式进行分散。
其中搅拌分散方式的操作为:通过搅拌子进行磁力搅拌,搅拌子转速为 200-1000转/min,优选为400-800转/min,更优选为600-700转/min,搅拌时间为5-40min,优选为10-30min,更优选为15-20min。
在本发明的技术方案中,步骤(2)中碲纳米线分散液制成碲纳米线薄膜的方法为抽滤法、溶剂蒸发法、旋涂法。
在本发明中,所述抽滤法为将碲纳米线分散液通过减压抽滤的方式,在滤膜上形成碲纳米线薄膜。
在本发明中,所述溶剂蒸发法为将纳米线分散液滴涂在基底上,蒸干溶液得到碲纳米线薄膜。
在本发明中,所述旋涂法为将将纳米线分散液滴涂在基底上,通过旋涂机旋转得到碲纳米线薄膜。
在本发明的技术方案中,步骤(2)中抽滤法的真空抽滤的真空度为0.2~10Pa。
在本发明的技术方案中,步骤(3)中银离子盐选自硝酸银,硫酸银,氯化银……。
在本发明的技术方案中,步骤(3)中所述碲纳米线薄膜的厚度低于10μm,优选为低于5μm,更优选为低于3μm。
在本发明的技术方案中,步骤(3)中所述第二溶剂为能够溶解银离子盐的还原性溶剂,优选为乙二醇。
在本发明的技术方案中,步骤(3)中所述的硝酸银溶液的浓度为1-10mg/ml,优选为3-8mg/ml,更优选为5-7mg/ml。
在本发明的技术方案中,步骤(4)中所述的银离子盐溶液的滴加量为2-10ml,优选为4-8ml。更优选为5-6ml。
在本发明的技术方案中,步骤(4)中所述的反应时间为30-300s,优选为 60-200s,更优选为90-150s。
在本发明的技术方案中,步骤(4)中所述的烘干温度为50-70℃。
在本发明的技术方案中,步骤(4)中所述的银离子盐溶液与碲纳米线薄膜反应的方式为将银离子盐溶液与碲纳米线薄膜接触,优选为,将银离子盐溶液滴涂在碲纳米线薄膜上,或将碲纳米线薄膜浸泡在银离子盐溶液中。
本发明再一个方面提供了一种由本发明上述方法制备得到的室温下焊接的碲化银纳米线柔性热电薄膜。
本发明再一个方面提供了一种碲化银纳米线柔性热电薄膜,所述碲化银纳米线热电薄膜由碲化银纳米线构成,且碲化银纳米线之间通过焊点连接。
本发明为了解决现有技术中存在电导率低、功率因子等问题本发明为解决碲化银纳米线室温下焊接的问题,以碲纳米线作为前驱体,将碲纳米线通过真空抽滤制备成薄膜,然后通过在碲纳米线薄膜上滴加硝酸银溶液,反应后即制备成室温下焊接的碲化银纳米线柔性热电薄膜。化学反应的焊接方法与常规的热压焊接法相比,化学焊接法更加便捷高效。焊接后的碲化银纳米线成为相互连接的网络状结构,纳米线之间原子间结合大大提高了薄膜的电导率,从而提高了薄膜的热电性能。另外,由于碲化银纳米线焊接在了一起提高了纳米线之间的结合力,因此薄膜的柔性也有提高。
真空抽滤能很方便地制备薄膜,本发明首先用真空抽滤的方法制备出厚度均一的碲纳米线薄膜。因此可以加入不同质量的碲纳米线以制备出不同厚底的薄膜,但是碲纳米线薄膜的厚度不能超过3μm,否则硝酸银无法和碲纳米线完全反应。并且制备了直接将碲化银纳米线薄膜,即先将碲化银纳米线合成出来再抽滤成膜,以此进行对比,比较焊接对碲化银纳米线薄膜的影响。
在制备好的碲纳米线薄膜上滴加硝酸银溶液使其反应形成室温下焊接的碲 化银薄膜,硝酸银浓度为5-7mg/ml,滴加量为5-6ml,反应时间为90-150s。由于硝酸银很容易与碲纳米线反应,因此在只需很短的时间就能将碲纳米线完全转化为碲化银纳米线,并且形成焊接网络。实验过程中,反应程度和银离子盐浓度、反应时间和碲纳米线薄膜有关,通过过量银离子,延长反应时间,均可以实现碲纳米线完全转化成碲化银纳米线。
有益效果
(1)本发明以碲纳米线为前驱体,通过真空抽滤的方法得到厚度均一的碲纳米线薄膜,然后通过在薄膜上滴加银离子溶液的方法反应形成碲化银纳米线薄膜,并使得碲化银纳米线之间焊接在一起。本发明发现通过简单的化学反应便可实现碲化银纳米线的室温下焊接,从而获得高电导率和高功率因子的柔性热电薄膜。
(2)不同于其他的纳米线柔性热电薄膜,本发明中纳米线通过简单的方法焊接起来,形成的紧密连接的网络状结构。纳米线之间的焊接可以作为电子迁移的桥梁,从而提高热电薄膜的导电性。
(3)碲化银纳米线之间的焊接能增强纳米线之间的结合,从而更有利于纳米线之间的连接,提高热电薄膜的柔性。本发明制备的热电薄膜不仅提高了热电性能,其柔性也得到了提高。
(4)本发明制备方法简单,可重复性好。以碲纳米线为前驱体,与硝酸银反应制备室温焊接的碲化银纳米线柔性热电薄膜,有效改善热电薄膜的电导率和功率因子。能有效解决柔性热电薄膜电导率较低的技术问题,具有很好应用前景。
附图说明
图1为实施例1制备的室温下焊接的碲化银纳米线柔性热电薄膜在不同放大倍数下的电子显微镜图;
图2为实施例2制备的碲化银纳米线直接抽滤形成的薄膜在不同放大倍数下的电子显微镜图;
图3为实施例1、2制备的热电薄膜在不同温度下的电导率图;
图4为实施例1、2制备的热电薄膜在不同温度下的功率因子图。
图5为实施例1和2的柔性结果图。
具体实施方式
本发明通过下述实施例和附图对本发明进行详细说明。但本领域技术人员了解,下述实施例不是对本发明保护范围的限制,任何在本发明基础上做出的改进和变化,都在本发明的保护范围之内。
实施例1
(1)取50ml碲纳米线分散液(0.04mg/ml)将其进行真空抽滤,得到厚度为1μm的碲纳米线薄膜。
(2)将配制好的硝酸银溶液(6mg/ml)滴加6ml到碲纳米线薄膜上,待其反应120s后用乙醇清洗,最后在烘箱中50℃干燥1h得到室温下焊接的碲化银纳米线柔性热电薄膜。
实施例2
(1)取50ml碲化银纳米线分散液(0.07mg/ml)将其进行真空抽滤,随后在烘箱中50℃干燥1h得到未焊接的碲化银纳米线热电薄膜
图1和图2分别为实施例1中室温下焊接的碲化银纳米线柔性热电薄膜和实施例2中未焊接的碲化银纳米线热电薄膜的电子显微镜图。可以观察到所制 备的出的碲化银纳米线直径均一,形态良好,但室温下焊接的碲化银纳米线柔性热电薄膜可以看到碲化银纳米线之间形成了焊接点,将纳米线焊接起来了。
上述1、2实施例中的所制备的热电薄膜在不同温度下的电导率如图3所示,可以看出室温下焊接的碲化银纳米线柔性热电薄膜较未焊接的碲化银纳米线热电薄膜相比,前者的电导率有了显著的提高。
热电薄膜的功率因子如图4所示,可以看出室温下焊接的碲化银纳米线柔性热电薄膜较未焊接的碲化银纳米线热电薄膜相比,前者的功率因子也有了显著的提高。
热电薄膜的柔性如图5所示(R 0和R分别表示弯曲前后薄膜的电阻),可以看出室温下焊接的碲化银纳米线柔性热电薄膜较未焊接的碲化银纳米线热电薄膜相比,前者的柔性也有了显著的提高。
上述实施例1、2中制备的碲化银热电薄膜的热电性能具体见下表1.。
表1
Figure PCTCN2019098413-appb-000001
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的。

Claims (10)

  1. 一种室温下焊接的碲化银纳米线柔性热电薄膜的制备方法,其特征在于,包括以下步骤:
    (1)将碲纳米线在第一溶剂中分散,得到碲纳米线分散液;
    (2)将所述碲纳米线分散液制成碲纳米线薄膜;
    (3)将银离子盐溶于第二溶剂中,配制成银离子盐溶液;
    (4)将所述的银离子盐溶液与碲纳米线薄膜反应,待其反应后清洗薄膜,干燥后即得到室温下焊接的碲化银纳米线柔性热电薄膜。
  2. 如权利要求1所述的制备方法,其特征在于,步骤(1)中所述碲纳米线分散液浓度为0.01-0.1mg/ml,优选为0.02-0.08mg/ml,更优选为0.03-0.05mg/ml。
  3. 如权利要求1所述的制备方法,其特征在于,步骤(1)中所述第一溶剂为醇、水,优选为乙醇、甲醇、乙二醇、丙醇、丙二醇。
  4. 如权利要求1所述的制备方法,其特征在于,步骤(2)中碲纳米线分散液制成碲纳米线薄膜的方法为抽滤法、溶剂蒸发法、旋涂法。
  5. 如权利要求1所述的制备方法,其特征在于,步骤(3)中银离子盐选自硝酸银、硫酸银、氯化银、氟化银、碳酸银、乙酸银。
  6. 如权利要求1所述的制备方法,其特征在于,步骤(3)中所述碲纳米线薄膜的厚度低于10μm,优选为低于5μm,更优选为低于3μm。
  7. 如权利要求1所述的制备方法,其特征在于,步骤(3)中所述第二溶剂为能够溶解银离子盐的还原性溶剂,优选为乙二醇。
  8. 如权利要求1所述的制备方法,其特征在于,步骤(4)中所述的银离子盐溶液与碲纳米线薄膜反应的方式为将银离子盐溶液与碲纳米线薄膜接触,优选为,将银离子盐溶液滴涂在碲纳米线薄膜上,或将碲纳米线薄膜浸泡在银离子盐溶液中。
  9. 如权利要求1-8任一项所述的制备方法制备所得的碲化银纳米线柔性热电薄膜。
  10. 一种碲化银纳米线柔性热电薄膜,其特征在于,所述碲化银纳米线热电薄膜由碲化银纳米线构成,且碲化银纳米线之间通过焊点连接。
PCT/CN2019/098413 2019-07-30 2019-07-30 一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法 WO2021016876A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098413 WO2021016876A1 (zh) 2019-07-30 2019-07-30 一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098413 WO2021016876A1 (zh) 2019-07-30 2019-07-30 一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2021016876A1 true WO2021016876A1 (zh) 2021-02-04

Family

ID=74229612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098413 WO2021016876A1 (zh) 2019-07-30 2019-07-30 一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2021016876A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443609A (zh) * 2021-07-02 2021-09-28 之江实验室 一种基于二维碲模板法合成新物相二维方铅矿碲化银及其制备方法和应用
CN113953525A (zh) * 2021-10-18 2022-01-21 中国人民解放军国防科技大学 一种大尺寸功率半导体集成电路封装互连用纳米线银膜的制备方法
CN115274998A (zh) * 2022-07-11 2022-11-01 上海应用技术大学 一种柔性Cu-Se纳米线/甲基纤维素复合热电薄膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080263A (zh) * 2010-12-10 2011-06-01 同济大学 一种Ag2X薄膜的制备方法
CN103011070A (zh) * 2012-12-18 2013-04-03 中国科学技术大学 有序的异质纳米线柔性导电薄膜及其制备方法
CN109935679A (zh) * 2019-03-26 2019-06-25 东华大学 一种柔性碲化铜热电薄膜及其制备方法和应用
CN110061121A (zh) * 2019-03-27 2019-07-26 同济大学 一种聚乙烯吡咯烷酮/银/碲化银三元柔性复合热电薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080263A (zh) * 2010-12-10 2011-06-01 同济大学 一种Ag2X薄膜的制备方法
CN103011070A (zh) * 2012-12-18 2013-04-03 中国科学技术大学 有序的异质纳米线柔性导电薄膜及其制备方法
CN109935679A (zh) * 2019-03-26 2019-06-25 东华大学 一种柔性碲化铜热电薄膜及其制备方法和应用
CN110061121A (zh) * 2019-03-27 2019-07-26 同济大学 一种聚乙烯吡咯烷酮/银/碲化银三元柔性复合热电薄膜的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443609A (zh) * 2021-07-02 2021-09-28 之江实验室 一种基于二维碲模板法合成新物相二维方铅矿碲化银及其制备方法和应用
CN113443609B (zh) * 2021-07-02 2022-03-08 之江实验室 一种基于二维碲模板法合成新物相二维方铅矿碲化银及其制备方法和应用
CN113953525A (zh) * 2021-10-18 2022-01-21 中国人民解放军国防科技大学 一种大尺寸功率半导体集成电路封装互连用纳米线银膜的制备方法
CN113953525B (zh) * 2021-10-18 2024-01-16 中国人民解放军国防科技大学 一种大尺寸功率半导体集成电路封装互连用纳米线银膜的制备方法
CN115274998A (zh) * 2022-07-11 2022-11-01 上海应用技术大学 一种柔性Cu-Se纳米线/甲基纤维素复合热电薄膜的制备方法

Similar Documents

Publication Publication Date Title
WO2021016876A1 (zh) 一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法
CN110364616B (zh) 一种室温下焊接的碲化银纳米线柔性热电薄膜及其制备方法
Yangi et al. A novel 2D perovskite as surface “patches” for efficient flexible perovskite solar cells
CN100580876C (zh) 一种选择性刻蚀硅纳米线的方法
CN112435867B (zh) 柔性自支撑MXene/CuS超级电容器电极材料的制备方法
CN103864062A (zh) 一种石墨烯透明导电薄膜的制备方法
JP2008547195A5 (zh)
CN106495133A (zh) 高导热柔性石墨烯薄膜制备方法
CN111082147B (zh) 基于大面积厚膜可控织构光子晶体锂硫电池的制备方法
CN109181654B (zh) 一种石墨烯基复合导热膜及其制备方法及其应用
JP2010199034A5 (zh)
CN103311502A (zh) 一种金属箔/石墨烯复合电极片及其制备方法
CN103613114B (zh) 一种硫化亚铜薄膜的液相制备方法
CN105810831B (zh) 一种铅锡混合钙钛矿薄膜、其制备方法及应用
CN104505509A (zh) 一种碳包覆多孔氮化钒纳米线薄膜及其制备方法
KR20120055010A (ko) 전도성이 우수한 팽창흑연 및 이의 제조방법
Zheng et al. Efficient sinter-free nanostructure Pt counter electrode for dye-sensitized solar cells
CN103972465B (zh) 一种柔性薄膜电极的制备方法
CN105948026A (zh) 液相化学法插层剥离石墨制备石墨烯的方法
CN105679725B (zh) 一种用于激光显示的散热装置的制备方法
CN110845752A (zh) 一种具有仿生结构的复合石墨烯导热薄膜及其制备
CN107381517A (zh) 一种二维氮化钛膜的制备方法
CN112490204A (zh) 一种基于石墨烯的三明治结构散热薄膜、半导体器件及其制备方法
Zhang et al. Honeycomb-like gallium nitride prepared via dual-ion synergistic etching mechanism using amino acid as etchant
CN110649151A (zh) 一种图形化n、p型热电薄膜及制备方法和柔性薄膜热电器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939436

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19939436

Country of ref document: EP

Kind code of ref document: A1