WO2021016866A1 - 雾化装置及其方法 - Google Patents

雾化装置及其方法 Download PDF

Info

Publication number
WO2021016866A1
WO2021016866A1 PCT/CN2019/098389 CN2019098389W WO2021016866A1 WO 2021016866 A1 WO2021016866 A1 WO 2021016866A1 CN 2019098389 W CN2019098389 W CN 2019098389W WO 2021016866 A1 WO2021016866 A1 WO 2021016866A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
heating
heating element
width
hole
Prior art date
Application number
PCT/CN2019/098389
Other languages
English (en)
French (fr)
Inventor
阳祖刚
付尧
冯舒婷
张金
Original Assignee
深圳雾芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳雾芯科技有限公司 filed Critical 深圳雾芯科技有限公司
Priority to PCT/CN2019/098389 priority Critical patent/WO2021016866A1/zh
Publication of WO2021016866A1 publication Critical patent/WO2021016866A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present invention generally relates to an atomization device and a method thereof, and in particular to an electronic device and method for providing inhalable aerosol (aerosol).
  • an electronic cigarette is an electronic product that heats and atomizes a volatile solution and generates an aerosol for users to smoke.
  • an electronic cigarette product includes a casing, an oil storage chamber, an atomization chamber, a heating component, an air inlet, an air flow channel, an air outlet, a power supply device, a sensing device, and a control device.
  • the oil storage chamber is used to store the volatile solution
  • the heating component is used to heat and atomize the volatile solution and generate aerosol.
  • the air inlet and the atomizing chamber communicate with each other, and provide air to the heating assembly when the user inhales.
  • the aerosol generated by the heating element is first generated in the atomization chamber, and then inhaled by the user through the air flow channel and the air outlet.
  • the power supply device provides power required by the heating element, and the control device controls the heating time of the heating element according to the user's inhalation action detected by the sensing device.
  • the shell covers the above-mentioned components.
  • the existing electronic cigarette products have different defects, which may be caused by poor design of the relative positions of different components.
  • common electronic cigarette products design the heating element, the air flow channel and the air outlet to be aligned with each other in a vertical direction. Because the air flow channel has a certain length, the aerosol cools when passing through the air flow channel, and a condensed liquid is formed to adhere to the air flow channel wall. Under this design, when the residual condensed liquid reaches a certain volume, the condensed liquid is easily sucked into the mouth when the user inhales, causing a bad experience of choking.
  • the existing electronic cigarette products do not take into account the prevention of condensate backflow.
  • the condensed liquid remaining in the atomization chamber or the air flow channel may overflow from the air inlet or outlet.
  • the spilled condensate may cause damage to the electrical components (for example, sensing devices and control devices) in the electronic cigarette product.
  • the existing e-cigarette products do not take into account the control of the power output of the heating element.
  • the power supply device continues to heat the heating element, the heating element may overheat and produce a scorching smell. Burnt smell will cause a bad experience for users. Overheated heating components may also cause the internal components of the electronic cigarette to collapse or even catch fire.
  • Existing electronic cigarette products that do not control power output generally have the disadvantage of fast power consumption.
  • the proposed atomization device includes a heating element base, a heating element top cover, and a heating element arranged between the heating element base and the heating element top cover.
  • the heating element has a first surface and a second surface opposite to the first surface, and the heating element has a heating circuit.
  • the heating circuit has a first section, a first section of the first section has a first width and a second section of the first section has a second width, wherein the first section of the first section A width is greater than the second width of the first section.
  • a heating assembly is proposed.
  • the proposed heating element includes a first surface and a second surface opposite to the first surface.
  • the proposed heating component includes a first conductive component, a second conductive component, and a heating circuit connected between the first conductive component and the second conductive component.
  • the heating circuit has a first section, a first section of the first section has a first width and a second section of the first section has a second width, wherein the first section of the first section A width is greater than the second width of the first section.
  • a method of operating the atomization device includes setting a first threshold according to the atomization temperature of the e-liquid.
  • the proposed method involves setting high power time parameters.
  • the proposed method includes setting a first power according to the first threshold and the high power time parameter.
  • the proposed method includes outputting the first power to the heating assembly in response to a user's inhalation action.
  • the proposed method includes outputting a second power to the heating assembly, the second power being less than the first power.
  • FIG. 1A and 1B illustrate an exploded view of a part of an atomization device according to some embodiments of the present invention.
  • FIGS. 2A and 2B illustrate an exploded view of a part of an atomization device according to some embodiments of the present invention.
  • 3A and 3B illustrate cross-sectional views of cartridges according to some embodiments of the invention.
  • Figure 4 illustrates a cross-sectional view of a cartridge according to some embodiments of the invention.
  • FIGS 5A and 5B illustrate cross-sectional views of cartridges according to some embodiments of the present invention.
  • Figures 6A, 6B, 6C, 6D and 6E illustrate top views of some embodiments of the heating assembly top cover according to the present invention.
  • FIG. 7A, 7B, 7C, and 7D illustrate schematic diagrams of heating components according to some embodiments of the present invention.
  • FIGS 7E and 7F illustrate schematic diagrams of the temperature of the heating circuit according to some embodiments of the present invention.
  • FIGS 7G and 7H illustrate schematic diagrams of heating circuits according to some embodiments of the present invention.
  • FIGS 7I and 7J illustrate schematic diagrams of heating components and heating circuits according to some embodiments of the present invention.
  • FIGS 7K and 7L illustrate schematic diagrams of heating components and heating circuits according to some embodiments of the present invention.
  • FIGS 7M and 7N illustrate schematic diagrams of heating components and heating circuits according to some embodiments of the present invention.
  • FIG. 8A, 8B and 8C illustrate schematic diagrams of heating element bases according to some embodiments of the present invention.
  • Figure 8D illustrates a cross-sectional view of a heating assembly base according to some embodiments of the present invention.
  • FIG. 9A illustrates a schematic diagram of an atomization device assembly according to some embodiments of the present invention.
  • FIGS 9B and 9C illustrate cross-sectional views of cartridges according to some embodiments of the present invention.
  • Figure 10 illustrates a schematic diagram of a power circuit according to some embodiments of the invention.
  • FIG. 11A illustrates a flowchart of an output power control method according to some embodiments of the present invention.
  • FIG. 11B illustrates a flowchart of an output power control method according to some embodiments of the present invention.
  • FIG. 11C and 11D illustrate flowcharts of output power control methods according to some embodiments of the present invention.
  • first feature on or on the second feature may include embodiments in which the first feature and the second feature are formed in direct contact, and may also include additional features that may be formed on An embodiment between the first feature and the second feature so that the first feature and the second feature may not directly contact.
  • present invention may repeat reference numerals and/or letters in various examples. This repetition is for the purpose of simplification and clarity, and does not in itself indicate the relationship between the various embodiments and/or configurations discussed.
  • FIG. 1A and 1B illustrate an exploded view of a part of an atomization device according to some embodiments of the present invention.
  • the atomization device 100 may include a cartridge 100A (as shown in FIGS. 1A and 1B) and a main body 100B (as shown in FIGS. 2A and 2B).
  • the cartridge 100A and the main body 100B can be designed as a whole.
  • the cartridge 100A and the main body 100B can be designed as two separate components.
  • the cartridge 100A may be designed to be removably combined with the main body 100B.
  • the cartridge 100A may be designed to be partially received in the main body 100B.
  • Cigarette cartridge 100A includes mouthpiece 1, cigarette holder silicone sleeve 2, cartridge housing 3, heating element top cover 4, heating element silicone sleeve 5, heating element 6, sensor start tube 7, heating element base 8, conductive contacts 9.
  • the volatile material can be stored in the cartridge shell 3.
  • the volatile liquid can be stored in the cartridge shell 3.
  • the volatile material can contact the heating element 6 through the through hole 4h on the top cover 4 of the heating element and the through hole 5h on the silicone sleeve 5 of the heating element.
  • the heating element 6 includes a groove 6c, and the volatile material can directly contact the heating element 6 through the inner wall of the groove 6c.
  • the volatile material can be a liquid.
  • the volatile material can be a solution.
  • the volatile material may also be referred to as e-liquid.
  • Smoke oil is edible.
  • the heating element 6 includes a conductive element 6p.
  • the atomizing device 100 can provide power to the heating component 6 via the conductive component 6p to increase the temperature of the heating component 6.
  • the sensor activation tube 7 may be a hollow tube.
  • the sensor activation tube 7 can be placed on one side of the heating element base 8.
  • the sensor activation tube 7 can be arranged on the heating element base 8 on the side close to the air inlet channel.
  • the sensor activation tube 7 can pass through the through hole 8h2 on the heating assembly base 8.
  • the sensor activation tube 7 can be fixed to the through hole 8h2 on the base 8 of the heating assembly.
  • One end of the sensor activation tube 7 can be exposed through the through hole 11c on the metal base 11 of the cartridge.
  • the conductive contact 9 passes through the through hole 8h1 on the heating component base 8 to contact the conductive component 6p of the heating component 6.
  • the conductive contact 9 can physically contact the conductive component 6p.
  • the conductive contact 9 and the conductive component 6p can be electrically connected to each other.
  • the base O-ring 10 can be fixed in the groove 8g of the heating element base 8. After the base O-ring 10 and the heating element base 8 are combined with each other, they are inserted into the metal base 11 of the cartridge.
  • the metal base 11 of the cartridge can cover the base O-ring 10.
  • the metal base 11 of the cartridge can cover at least a part of the base 8 of the heating element.
  • One end of the conductive contact 9 passes through the through hole 8h1 on the heating element base 8, and the other end of the conductive contact 9 can be exposed through the through hole 11h on the metal base 11 of the cartridge.
  • FIGS. 2A and 2B illustrate an exploded view of a part of an atomization device according to some embodiments of the present invention.
  • the main body 100B includes a power supply component bracket silica gel 12, a magnetic component 13, a power component bracket O-ring 14, a conductive spring pin 15, a sensor 16, a circuit board 17, a light guide component 18, a buffer component 19, a power component 20, and a power component bracket 21 , Motor 22, charging board 23 and main body casing 24.
  • the power supply component bracket silicone 12 may be the component closest to the metal base 11 of the cartridge in the main body 100B.
  • the upper surface 12s of the silicone rubber 12 of the power supply component bracket is adjacent to the lower surface 11s of the metal base 11 of the cartridge.
  • the power component bracket silicone 12 includes through holes 12h1, 12h2, and 12h3. One end of the magnetic component 13 may be exposed through the through hole 12h1. One end of the conductive spring pin 15 can be exposed through the through hole 12h2.
  • the magnetic component 13 can generate attractive force with the metal base 11 of the cartridge. The attractive force enables the cartridge 100A and the main body 100B to be removably combined.
  • the magnetic component 13 may be a permanent magnet.
  • the magnetic component 13 may be an electromagnet.
  • the magnetic component 13 itself is magnetic.
  • the magnetic component 13 has magnetism after being energized.
  • a part of the conductive spring pin 15 can be exposed through the through hole 12h2 and exceed the upper surface 12s of the silicone rubber 12 of the power assembly bracket.
  • the conductive elastic pin 15 may have flexibility.
  • the conductive pin 15 and the conductive contact 9 are in contact with each other.
  • the conductive pin 15 and the conductive contact 9 are electrically connected to each other.
  • the conductive contact 9 compresses the conductive spring pin 15 and shortens the length of the conductive spring pin 15.
  • the conductive spring pin 15 may be a conductive contact.
  • the sensor 16 can detect an air flow through the through hole 12h3.
  • the sensor 16 can detect changes in air pressure through the through hole 12h3.
  • the sensor 16 can detect a negative pressure through the through hole 12h3.
  • the sensor 16 can be used to detect whether the air pressure is lower than a threshold value.
  • the sensor 16 can detect sound waves through the through hole 12h3. Through the through hole 12h3, the sensor 16 can be used to detect whether the amplitude of the sound wave is higher than a threshold value.
  • the senor 16 may be an airflow sensor. In some embodiments, the sensor 16 may be an air pressure sensor. In some embodiments, the sensor 16 may be an acoustic wave sensor. In some embodiments, the sensor 16 may be an acoustic wave receiver. In some embodiments, the sensor 16 may be a microphone.
  • the controller 171 may be a microprocessor.
  • the controller 171 may be a programmable integrated circuit.
  • the controller 171 may be a programmable logic circuit.
  • the arithmetic logic in the controller 171 cannot be changed after the controller 171 is manufactured.
  • the arithmetic logic in the controller 171 can be programmed and changed after the controller 171 is manufactured.
  • the circuit board 17 may also include memory (not shown in the figure).
  • the memory can be integrated in the controller 171. In some embodiments, the memory can be provided separately from the controller 171.
  • the controller 171 may be electrically connected with the sensor 16.
  • the controller 171 can be electrically connected to the conductive spring pin 15.
  • the controller 171 may be electrically connected to the power supply assembly 20.
  • the controller 171 can control the power supply assembly 20 to output power to the conductive spring pin 15.
  • the controller 171 can control the power supply assembly 20 to output power to the conductive spring pin 15.
  • the controller 171 can control the power supply assembly 20 to output power to the conductive spring pin 15.
  • the controller 171 determines that the air pressure detected by the sensor 16 is lower than a threshold value
  • the controller 171 can control the power supply assembly 20 to output power to the conductive spring pin 15.
  • the controller 171 can control the power supply assembly 20 to output power to the conductive spring pin 15.
  • the controller 171 determines that the amplitude of the sound wave detected by the sensor 16 is higher than a threshold value, the controller 171 can control the power supply assembly 20 to output power to the conductive spring pin 15.
  • the other side of the circuit board 17 may include one or more light-emitting components (not shown in the figure). According to different operating states of the atomization device 100, the controller 171 can control one or more light-emitting components on the circuit board 17 to generate different visual effects.
  • one or more light-emitting components on the circuit board 17 may be arranged in an array. In some embodiments, an array of one or more light-emitting components may have one or more rows. In some embodiments, the array of one or more light-emitting components may have one or more columns.
  • the controller 171 when the user inhales the atomization device 100, the controller 171 can control one or more light-emitting components to produce a visual effect. In some embodiments, when the user charges the atomization device 100, the controller 171 can control one or more light-emitting components to produce a visual effect. In some embodiments, the controller 171 can control one or more light-emitting components to generate different visual effects according to the power of the power component 20. In some embodiments, the visual effects produced by one or more light-emitting components may include flickering, intermittent lighting, or continuous lighting. In some embodiments, the controller 171 may control the brightness generated by one or more light-emitting components. In some embodiments, the controller 171 may display a specific pattern in an array of one or more light-emitting components. In some embodiments, the controller 171 can control two light-emitting components of different colors to emit light and generate a mixed color light.
  • the light guide component 18 is disposed on one side of the circuit board 17 including one or more light emitting components.
  • the light generated by one or more light-emitting components can be refracted after passing through the light guide component 18.
  • the light generated by one or more light-emitting components may be scattered after passing through the light guide component 18.
  • the light guide component 18 can make the light emitted by one or more light emitting components on the circuit board 17 more uniform.
  • the power supply assembly 20 can be disposed in the groove 21c of the power supply assembly bracket 21.
  • the buffer component 19 can be disposed on the surface 20s of the power supply component 20.
  • the buffer assembly 19 can be disposed between the power supply assembly 20 and the main body casing 24.
  • the buffer component 19 can directly contact the surface 20s of the power supply component 20 and the inner wall of the main body shell 24.
  • an additional buffer component can be disposed between the power supply component 20 and the groove 21.
  • the power supply component 20 may be a battery. In some embodiments, the power supply assembly 20 may be a rechargeable battery. In some embodiments, the power supply assembly 20 may be a disposable battery.
  • the power supply component bracket 21 can be fixedly connected to the main body shell 24 by the fixing component 25.
  • the fixing assembly 25 can be fixed to the two through the through hole 21h on the power supply assembly bracket 21 and the through hole 24h1 on the main body shell 24.
  • the motor 22 may be electrically connected to the controller 171. According to different operating states of the atomization device 100, the controller 171 can control the motor 22 to generate different body sensation effects. In some embodiments, when the user inhales for more than a certain period of time, the controller 171 can control the motor 22 to vibrate to remind the user to stop inhaling. In some embodiments, when the user charges the atomization device 100, the controller 171 may control the motor 22 to vibrate to indicate that the charging has started. In some embodiments, when the charging of the atomizing device 100 has been completed, the controller 171 may control the motor 22 to vibrate to indicate that the charging has been completed.
  • the charging board 23 is arranged at the bottom of the main body casing 24. One end of the charging board 23 is exposed through the through hole 24h2 of the main body casing 24.
  • the power supply assembly 20 can be charged via the charging board 23.
  • the main body shell 24 includes a light-transmitting component 241.
  • the light-transmitting component 241 may include one or more holes penetrating the main body shell 24.
  • the light-transmitting component 241 may exhibit a substantially circular shape.
  • the light-transmitting component 241 may exhibit a substantially rectangular shape.
  • the light-transmitting component 241 may have a symmetrical appearance.
  • the light-transmitting component 241 may have an asymmetrical appearance. The light emitted by one or more light-emitting components on the circuit board 17 is visible through the light-transmitting component 241.
  • 3A and 3B illustrate cross-sectional views of cartridges according to some embodiments of the invention.
  • the cartridge housing 3 includes an oil storage compartment 30, an air inlet passage 31 and an air outlet passage 32.
  • the air inlet channel 31 and the air outlet channel 32 may be located inside the cartridge housing 3.
  • the air inlet channel 31 and the air outlet channel 32 may be defined by the internal structure of the cartridge housing 3.
  • the air inlet channel 31 and the air outlet channel 32 may be defined by the cartridge shell 3 and the main body shell 24 together.
  • the air inlet passage 31 may be defined by the internal structure of the housing 3 and the heating element base 8 together.
  • the air outlet channel 32 may be defined by the internal structure of the housing 3 and the heating element base 8 together.
  • the air inlet channel 31 is located on one side of the cartridge housing 3, and the air outlet channel 32 is located on the other side of the cartridge housing 3.
  • the air inlet passage 31 may be located on one side of the heating assembly 6, and the air outlet passage 32 may be located on the other side of the heating assembly 6 relative to the air inlet passage 31.
  • the pipe diameter of the air inlet passage 31 may be the same as the pipe diameter of the air outlet passage 32. In some embodiments, the diameter of the inlet passage 31 may be different from the diameter of the outlet passage 32. In some embodiments, the diameter of the inlet passage 31 may be smaller than the diameter of the outlet passage 32. The smaller diameter of the intake passage 31 can make the sensor start pipe 7 easier to generate a negative pressure. The smaller diameter of the air intake passage 31 makes it easier for the sensor 16 to detect the user's inhalation action.
  • the air inlet channel 31 and the air outlet channel 32 may present an asymmetrical configuration in the cartridge housing 3.
  • the atomization chamber 8c may be a cavity between the heating assembly 6 and the heating assembly base 8. As shown in FIG. 3A, the atomization chamber 8c can be defined by the heating element 6 and the heating element base 8 together.
  • the intake passage 31 communicates with the atomizing chamber 8c.
  • the air outlet channel 32 communicates with the atomizing chamber 8c.
  • the part where the air inlet passage 31 communicates with the atomizing chamber 8c is located below the heating assembly 6.
  • the part where the air outlet channel 32 communicates with the atomizing chamber 8c is located below the heating assembly 6.
  • the influence of the heating element material on the taste of the e-liquid (volatile material) is reduced.
  • the condensed liquid remaining on the inner wall of the air outlet channel will not drip onto the heating assembly 6 even if it flows backwards, which can prevent the condensate from blocking the heating assembly 6.
  • the sensor activation tube 7 is arranged on the base 8 of the heating assembly.
  • the sensor activation tube 7 has a length 7L protruding from the heating assembly base 8.
  • the part of the sensor activation tube 7 beyond the heating element base 8 can be arranged in the air intake passage 31.
  • the aerosol may condense into a liquid 32d and remain on the inner wall of the air outlet channel 32.
  • the liquid 32d may flow back and accumulate in the oil storage tank 8t (see Figures 8A to 8D).
  • the volatile materials stored in the oil storage tank 30 may also leak into the oil storage tank 8t through the bottom of the heating element 6.
  • the part of the sensor activation tube 7 beyond the heating element base 8 can prevent the liquid accumulated in the oil storage tank 8t from leaking through the through hole 8h2.
  • the length 7L is in the range of 1 mm to 10 mm. In some embodiments, the length 7L is in the range of 1 mm to 6 mm. In some embodiments, the length 7L is in the range of 1 mm to 4 mm. In some embodiments, the length 7L is in the range of 1 mm to 2 mm. In some embodiments, the length 7L may be 1.5 mm. In some embodiments, the length 7L may be 2 mm.
  • the sensor activation tube 7 and the heating component base 8 may be two separate components. In some embodiments, the sensor activation tube 7 and the heating element base 8 may be integrally formed. In some embodiments, the sensor activation tube 7 may be made of a metal material. In some embodiments, the sensor activation tube 7 may be made of plastic material. In some embodiments, the sensor activation tube 7 and the heating assembly base 8 can be made of the same material. In some embodiments, the sensor activation tube 7 and the heating element base 8 can be made of different materials.
  • the air inlet passage 31 has a length of 31L
  • the air outlet passage 32 has a length of 32L.
  • the length 31L may be different from the length 32L.
  • the length 31L may be shorter than the length 32L.
  • the length 7L and the length 31L may have a proportional relationship.
  • the ratio of the length 31L to the length 7L may be in the range of 6-7.
  • the ratio of the length 31L to the length 7L may be in the range of 7-8.
  • the ratio of the length 31L to the length 7L may be in the range of 8-9.
  • the ratio of the length 31L to the length 7L may be in the range of 9-10.
  • the air inlet passage 31 communicates with the outside through the through hole 31h on the cartridge housing 3.
  • the air outlet channel 32 communicates with the outside through the through hole 1h on the cigarette holder cover 1.
  • the through hole 31h and the through hole 1h are located at different positions in the horizontal direction.
  • the distance from the through hole 31 h to the heating element 6 is different from the distance from the through hole 1 h to the heating element 6.
  • the distance from the through hole 31 h to the heating element 6 is smaller than the distance from the through hole 1 h to the heating element 6.
  • the oil storage tank 30 is a sealed area.
  • the oil storage compartment 30 may be formed by the compartment structures 30w1 and 30w2 in the cartridge housing 3 and the heating assembly top cover 4.
  • the sealing member 4r can make the top cover 4 of the heating assembly closely contact the compartment structures 30w1 and 30w2.
  • the sealing member 4r can prevent the volatile material stored in the oil storage tank 30 from leaking out.
  • the heating element top cover 4 and the sealing member 4r can be formed using the same manufacturing process. In some embodiments, the heating element top cover 4 and the sealing member 4r can be formed by using different materials through the same manufacturing process. In some embodiments, the heating element top cover 4 and the sealing member 4r can be formed by injection molding. In some embodiments, plastic material is used for injection molding to produce the heating assembly top cover 4. In some embodiments, liquid silicone is used for injection molding on the top cover 4 of the heating assembly to produce the sealing member 4r.
  • the heating element top cover 4 and the sealing member 4r can be formed using different processes, and then the heating element top cover 4 and the sealing member 4r are combined with each other.
  • a plastic material is used for injection molding to produce the heating assembly top cover 4, and compression molding is used to produce the sealing member 4r. The resulting heating assembly top cover 4 and the sealing member 4r are combined with each other using an additional assembly step.
  • Figure 4 illustrates a cross-sectional view of a cartridge according to some embodiments of the invention.
  • Figure 4 shows the gas channel structure in the cartridge 100A.
  • the intake passage 31 extends in one direction (the vertical direction in FIG. 4).
  • the connecting portion 31c (see FIG. 8D) of the air inlet passage 31 and the atomizing chamber 8c extends in one direction (the horizontal direction in FIG. 4).
  • the direction in which the intake passage 31 extends is different from the direction in which the communication portion 31c extends.
  • the air outlet channel 32 extends in one direction (the vertical direction in the figure).
  • the connecting portion 32c (see FIG. 8D) between the air outlet passage 32 and the atomization chamber 8c extends in one direction (the horizontal direction in the figure).
  • the direction in which the air outlet passage 32 extends is different from the direction in which the communication portion 32c extends.
  • the air outlet channel 32 may have a first part (as shown in FIG. 4, a part between 3f3 and 3f4) and a second part (as shown in FIG. 4, a part between 3f4 and 3f5).
  • the direction in which the first part extends and the direction in which the second part extends may be different.
  • the air inlet passage 31 communicates with the atomizing chamber 8c.
  • the connection between the atomization chamber 8c and the air outlet channel 32 has a direction change 3f3.
  • the air outlet channel 32 has a direction change 3f4 near the through hole 1h on the cigarette holder cover 1.
  • the place where the air outlet channel 32 communicates with the through hole 1h on the cigarette holder cover 1 has a direction change 3f5.
  • FIG. 4 shows the direction of the air flow generated when the user inhales the cartridge 100A.
  • air enters from the gap between the cartridge 100A and the main body shell 24, and a direction change 3f1 is generated between the cartridge 100A and the main body shell 24. Then the air enters the air inlet passage 31 from the through hole 31h, and produces a direction change 3f2 before entering the atomizing chamber 8c.
  • the user's inhalation action generates an airflow 7f in the sensor activation tube 7.
  • the air flow 7f enters the cartridge 100A from the sensor activation tube 7.
  • the air flow 7f may enter the intake passage 31.
  • the airflow 7f can enter the atomization chamber 8c as the user inhales.
  • part of the airflow 7f may enter the air outlet channel 32 as the user inhales.
  • the airflow 7f is detected by the sensor 16 when it passes through the gap between the cartridge 100A and the main body 100B.
  • the controller 171 activates the heating element 6 according to the result detected by the sensor 16 and generates aerosol in the atomizing chamber 8c.
  • a direction change of 3f3 occurs.
  • the generated aerosol then produces another direction change 3f4 in the outlet channel 32 near the through hole 1h on the cigarette holder cover 1.
  • another direction change 3f5 occurs.
  • the aerosol may condense into a liquid 32d and remain on the inner wall of the air outlet channel 32.
  • the condensed liquid 32d has viscosity and is not easy to flow on the inner wall of the air outlet channel 32.
  • the multiple direction changes 3f3, 3f4, and 3f5 included in the outlet channel 32 can better prevent the condensed liquid 32d from being inhaled by the user through the through hole 1h.
  • the temperature rise Tr may be in the range of 200°C to 220°C. In some embodiments, the temperature rise Tr may be in the range of 240°C to 260°C. In some embodiments, the temperature rise Tr may be in the range of 260°C to 280°C. In some embodiments, the temperature rise Tr may be in the range of 280°C to 300°C. In some embodiments, the temperature rise Tr may be in the range of 300°C to 320°C. In some embodiments, the temperature rise Tr may be in the range of 200°C to 320°C.
  • the air flow out of the atomization chamber 8c can generate a temperature drop Tf before reaching the through hole 1h.
  • the airflow flowing out of the atomizing chamber 8c may generate a temperature drop Tf during the passage through the air outlet channel 32.
  • the temperature drop Tf may be in the range of 145°C to 165°C. In some embodiments, the temperature drop Tf may be in the range of 165°C to 185°C. In some embodiments, the temperature drop Tf may be in the range of 205°C to 225°C. In some embodiments, the temperature drop Tf may be in the range of 225°C to 245°C. In some embodiments, the temperature drop Tf may be in the range of 245°C to 265°C. In some embodiments, the temperature drop Tf may be in the range of 145°C to 265°C.
  • the aerosol inhaled by the user through the through hole 1h may have a temperature lower than 65°C. In some embodiments, the aerosol inhaled by the user through the through hole 1h may have a temperature lower than 55°C. In some embodiments, the aerosol inhaled by the user through the through hole 1h may have a temperature lower than 50°C. In some embodiments, the aerosol inhaled by the user through the through hole 1h may have a temperature lower than 45°C. In some embodiments, the aerosol inhaled by the user through the through hole 1h may have a temperature lower than 40°C.
  • FIGS 5A and 5B illustrate cross-sectional views of cartridges according to some embodiments of the present invention.
  • a blocking component 33a may be provided in the intake passage 31.
  • the blocking component 33a may have a through hole 33h.
  • the pipe diameter of the through hole 33h is smaller than the pipe diameter of the intake passage 31.
  • the through hole 33h may be regarded as a part of the intake passage 31.
  • the blocking component 33a may have a thickness 33L.
  • the thickness 33L of the blocking component 33a creates a height difference in the intake passage 31. Because the liquid or e-liquid stored in the oil storage tank 8t has viscous properties, the height difference can further prevent the liquid or e-liquid stored in the oil storage tank 8t from flowing backward. This height difference can further prevent the liquid or smoke oil stored in the oil storage tank 8t from leaking through the through hole 31h.
  • the blocking component 33a may be made of silicone. In some embodiments, the blocking component 33a may be a silicone ring. In some embodiments, the blocking component 33a can be made of the same material as the housing 3. In some embodiments, the blocking component 33a and the housing 3 may be made of different materials. In some embodiments, the blocking assembly 33a and the housing 3 may be two separate components. In some embodiments, the blocking component 33a and the housing 3 may be integrally formed.
  • a blocking component 33b may be provided in the intake passage 31.
  • the blocking component 33b can allow air to enter the intake passage 31 through the through hole 31h.
  • the blocking component 33b can prevent the liquid from flowing from the oil storage tank 8t to the through hole 31h.
  • the blocking component 33b may be a check valve.
  • a blocking component 34 can be provided in the air outlet channel 32.
  • the blocking component 34 may have one or more through holes 34h.
  • the blocking component 34 allows the aerosol to flow from the atomizing chamber 8c to the through hole 1h. Because the liquid or e-liquid stocked in the oil storage tank 8t is viscous, the aperture of the through hole 34h is designed to prevent the liquid or e-liquid from flowing from the oil storage tank 8t to the through hole 1h.
  • Figures 6A, 6B, 6C, 6D and 6E illustrate top views of some embodiments of the heating assembly top cover according to the present invention.
  • the e-liquid stored in the oil storage compartment 30 is in contact with the heating element 6 through the through hole 4h on the top cover 401 of the heating element and the through hole 5h on the silicone sleeve 5 of the heating element.
  • the aperture and shape of the through hole 4h can be adjusted according to the nature of the e-liquid. In some embodiments, if the viscosity of the e-liquid is relatively high, the through hole 4h can be designed to have a relatively large diameter. In some embodiments, if the viscosity of the e-liquid is low, the through hole 4h can be designed to have a smaller pore size. The through hole 4h with a smaller diameter can prevent excessive e-liquid from directly contacting the heating element 6. The through hole 4h with a larger diameter can ensure that more e-liquid directly contacts the heating element 6.
  • Adjusting the aperture size of the through hole 4h appropriately according to the nature of the e-liquid can prevent the heating assembly 6 from contacting excessive e-liquid. Excessive e-liquid cannot be absorbed by the heating assembly 6 and will gradually penetrate from the oil storage compartment 30 through the heating assembly 6 into the oil storage tank 8t. If the amount of e-liquid that penetrates into the oil storage tank 8t is too large, the probability of e-liquid flowing into the air inlet channel 31 and the air outlet channel 32 will increase. If the amount of e-liquid penetrating into the oil storage tank 8t is too large, the probability of e-liquid seeping from the through hole 31h of the air inlet channel or the through hole 32h of the air outlet channel will increase.
  • the top cover 401 of the heating assembly may have a single through hole 4h.
  • the shape of the through hole 4h is substantially the same as the shape of the top cover 401 of the heating assembly.
  • the aperture area of the through hole 4h is approximately 80% to 90% of the cross-sectional area of the top cover 401 of the heating element.
  • the aperture area of the through hole 4h is approximately 70% to 80% of the cross-sectional area of the top cover 401 of the heating element.
  • the heating element silicone sleeve 5 matched with the heating element top cover 401 may have a through hole 5h.
  • the through hole 5h may have a similar appearance to the through hole 4h on the top cover 401 of the heating element.
  • the through hole 5h may have a similar aperture area as the through hole 4h on the top cover 401 of the heating element.
  • the through hole 5h may have a similar position to the through hole 4h on the top cover 401 of the heating element.
  • the through hole 5h may have a different shape from the through hole 4h on the top cover 401 of the heating element.
  • the through hole 5h may have a different position from the through hole 4h on the top cover 401 of the heating element.
  • the through hole 5h may have a different aperture area than the through hole 4h on the top cover 401 of the heating element.
  • the top cover 402 of the heating assembly may have a single through hole 4h.
  • the shape of the through hole 4h is different from the shape of the top cover 401 of the heating assembly.
  • the aperture area of the through hole 4h is approximately 50% to 60% of the cross-sectional area of the top cover 401 of the heating element.
  • the aperture area of the through hole 4h is approximately 40% to 50% of the cross-sectional area of the top cover 401 of the heating element.
  • the aperture area of the through hole 4h is approximately 30% to 40% of the cross-sectional area of the top cover 401 of the heating element.
  • the heating element silicone sleeve 5 matched with the heating element top cover 402 may have a through hole 5h.
  • the through hole 5h may have a similar appearance to the through hole 4h on the top cover 402 of the heating element.
  • the through hole 5h may have a similar aperture area as the through hole 4h on the top cover 402 of the heating element.
  • the through hole 5h may have a similar position to the through hole 4h on the top cover 402 of the heating element.
  • the through hole 5h may have a different shape from the through hole 4h on the top cover 402 of the heating element.
  • the through hole 5h may have a different position from the through hole 4h on the top cover 402 of the heating element.
  • the through hole 5h and the through hole 4h on the top cover 402 of the heating element may have a different aperture area.
  • the top cover 403 of the heating assembly may have a single through hole 4h.
  • the through hole 4h is substantially circular.
  • the aperture area of the through hole 4h is approximately 3 mm 2 to 4 mm 2 .
  • the aperture area of the through hole 4h is approximately 4 mm 2 to 5 mm 2 .
  • the aperture area of the through hole 4h is approximately 5 mm 2 to 6 mm 2 .
  • the aperture area of the through hole 4h is approximately 6 mm 2 to 7 mm 2 .
  • the aperture area of the through hole 4h is approximately 7 mm 2 to 8 mm 2 .
  • the aperture area of the through hole 4h is approximately 5.5 mm 2 .
  • the heating element silicone sleeve 5 matched with the heating element top cover 403 may have a through hole 5h.
  • the through hole 5h may have a similar appearance to the through hole 4h on the top cover 403 of the heating element.
  • the through hole 5h may have a similar aperture area as the through hole 4h on the top cover 403 of the heating element.
  • the through hole 5h may have a similar position to the through hole 4h on the top cover 403 of the heating element.
  • the through hole 5h may have a different shape from the through hole 4h on the top cover 403 of the heating element.
  • the through hole 5h may have a different position from the through hole 4h on the top cover 403 of the heating element.
  • the through hole 5h may have a different aperture area than the through hole 4h on the top cover 403 of the heating element.
  • the top cover 404 of the heating assembly may have a single through hole 4h.
  • the through hole 4h is substantially rectangular.
  • the aperture area of the through hole 4h is approximately 3 mm 2 to 4 mm 2 .
  • the aperture area of the through hole 4h is approximately 4 mm 2 to 5 mm 2 .
  • the aperture area of the through hole 4h is approximately 5 mm 2 to 6 mm 2 .
  • the aperture area of the through hole 4h is approximately 6 mm 2 to 7 mm 2 .
  • the aperture area of the through hole 4h is approximately 7 mm 2 to 8 mm 2 .
  • the aperture area of the through hole 4h is approximately 5.5 mm 2 .
  • the heating element silicone sleeve 5 matched with the heating element top cover 404 may have a through hole 5h.
  • the through hole 5h may have a similar appearance to the through hole 4h on the top cover 404 of the heating element.
  • the through hole 5h may have a similar aperture area as the through hole 4h on the top cover 404 of the heating element.
  • the through hole 5h may have a similar position to the through hole 4h on the top cover 404 of the heating element.
  • the through hole 5h may have a different shape from the through hole 4h on the top cover 404 of the heating element.
  • the through hole 5h may have a different position from the through hole 4h on the top cover 404 of the heating element.
  • the through hole 5h and the through hole 4h on the top cover 404 of the heating element may have a different aperture area.
  • the through hole 4h has a shape other than a circle and a rectangle.
  • the top cover 405 of the heating element may have through holes 4h1 and 4h2.
  • the through hole 4h1 may be located on one side of the top cover 405 of the heating assembly.
  • the through hole 4h2 may be located on the other side of the top cover 405 of the heating element.
  • the aperture area of the through hole 4h1 may be the same as the aperture area of the through hole 4h2.
  • the aperture area of the through hole 4h1 may be different from the aperture area of the through hole 4h2.
  • the aperture area of the through hole 4h1 may be smaller than the aperture area of the through hole 4h2.
  • the heating element silicone sleeve 5 matched with the heating element top cover 405 may have two through holes.
  • the two through holes on the silicone sleeve 5 of the heating element can have a similar appearance to the through holes 4h1 and 4h2 on the top cover 404 of the heating element.
  • the two through holes on the silicone sleeve 5 of the heating element and the through holes 4h1 and 4h2 on the top cover 404 of the heating element have similar aperture areas.
  • the two through holes on the silicone sleeve 5 of the heating element can have similar positions to the through holes 4h1 and 4h2 on the top cover 404 of the heating element.
  • the two through holes on the silicone sleeve 5 of the heating element and the through holes 4h1 and 4h2 on the top cover 404 of the heating element have different shapes. In some embodiments, the two through holes on the silicone sleeve 5 of the heating element may have different positions from the through holes 4h1 and 4h2 on the top cover 404 of the heating element. In some embodiments, the two through holes on the silicone sleeve 5 of the heating element and the through holes 4h1 and 4h2 on the top cover 404 of the heating element have different aperture areas.
  • FIG. 7A, 7B, 7C, and 7D illustrate schematic diagrams of heating components according to some embodiments of the present invention.
  • the heating element 6 includes a conductive element 6p and a heating circuit 61.
  • the heating circuit 61 may be provided on the bottom surface of the heating element 6. In some embodiments, the heating circuit 61 may be exposed on the bottom surface of the heating element 6. In some embodiments, the heating circuit 61 may be disposed inside the heating assembly 6. In some embodiments, the heating circuit 61 may be partially covered by the heating component 6. In some embodiments, the heating circuit 61 may be completely covered by the heating component 6.
  • the heating circuit 61 may include a section 61a, a section 61b, and a section 61c.
  • the section 61a extends in one direction.
  • the section 61b extends in one direction.
  • the section 61c extends in one direction.
  • the extending direction of the section 61a and the extending direction of the section 61b may be parallel.
  • the extending direction of the section 61a and the extending direction of the section 61c may be parallel.
  • the extending direction of the section 61b and the extending direction of the section 61c may be parallel.
  • the extending direction of the section 61a and the extending direction of the section 61b may not be parallel. In some embodiments, the extending direction of the section 61a and the extending direction of the section 61c may not be parallel. In some embodiments, the extending direction of the section 61b and the extending direction of the section 61c may not be parallel.
  • the section 61a, the section 61b, and the section 61c are connected to each other.
  • the heating circuit 61 may include connecting portions 61d and 61e.
  • the section 61a and the section 61b are connected to each other via a connecting portion 61d.
  • the section 61b and the section 61c are connected to each other via a connecting portion 61e.
  • the connecting portion 61d has a curved shape. In some embodiments, the connecting portion 61e has a curved shape. In some embodiments, the connecting portion 61d has a curvature. In some embodiments, the connecting portion 61e has a curvature. In some embodiments, the curvature of the connecting portion 61d and the curvature of the connecting portion 61e may be the same. In some embodiments, the curvature of the connecting portion 61d and the curvature of the connecting portion 61e may be different.
  • the connecting portion 61d has a concave shape facing one direction. In some embodiments, the connecting portion 61e has a concave shape facing one direction. In some embodiments, the concave shape of the connecting portion 61d and the concave shape of the connecting portion 61e face different directions. In some embodiments, the concave shape of the connecting portion 61d and the concave shape of the connecting portion 61e face opposite directions.
  • the section 61a, the section 61b, and the section 61c are arranged between the two conductive components 6p.
  • the connecting portions 61d and 61e are arranged between the two conductive components 6p.
  • the section 61a, section 61b, and section 61c can increase the contact area between the heating circuit 61 and the heating element 6.
  • the section 61a, section 61b, and section 61c can increase the heating efficiency of the heating circuit 61. In some embodiments, it may also be considered that the heating circuit 61 has more sections. In some embodiments, the case where the heating circuit 61 has fewer sections can also be considered. In some embodiments, it may also be considered that the heating circuit 61 has more connection parts. In some embodiments, it may also be considered that the heating circuit 61 has fewer connecting parts.
  • the heating circuit 61 may be printed on the bottom surface of the heating element 6 through circuit printing technology. Manufacturing the heating circuit 61 by circuit printing technology can simplify the manufacturing process of the heating circuit 61. Manufacturing the heating circuit 61 with circuit printing technology can reduce the manufacturing cost of the heating circuit 61. In some embodiments, the heating circuit 61 may be covered inside the heating component 6 during the manufacturing process of the heating component 6. The heating circuit 61 is covered in the heating assembly 6 to prevent the heating circuit 61 from being damaged during the subsequent assembly process.
  • the heating circuit 61 is electrically connected to the conductive component 6p.
  • the heating circuit 61 is physically connected to the conductive component 6p.
  • the heating circuit 61 may be directly connected to the conductive component 6p.
  • the heating circuit 61 may be indirectly connected to the conductive component 6p.
  • the heating circuit 61 may include a metal material. In certain embodiments, the heating circuit 61 may include silver. In certain embodiments, the heating circuit 61 may include platinum. In some embodiments, the heating circuit 61 may include palladium. In some embodiments, the heating circuit 61 may include a nickel alloy material.
  • the heating element 6 may include ceramic material.
  • the heating element 6 may include diatomaceous earth material.
  • the heating element 6 may include alumina.
  • the heating element 6 may include a semiconductor ceramic material.
  • the heating element 6 may include heavily doped silicon carbide.
  • the heating element 6 may include barium titanate.
  • the heating element 6 may include strontium titanate.
  • the heating component 6 may have self-limiting temperature characteristics.
  • the resistance value of the heating element 6 can increase as the temperature increases. When the temperature of the heating element 6 reaches a threshold value T1, it has a resistance value R1. In some embodiments, when the temperature of the heating element 6 reaches a threshold T1, the heating circuit 61 can no longer increase the temperature of the heating element 6. In some embodiments, when the resistance value of the heating element 6 reaches R1, the heating power output by the heating circuit 61 can no longer increase the temperature of the heating element 6.
  • the threshold T1 is in the range of 200°C to 220°C. In some embodiments, the threshold value T1 is in the range of 220°C to 240°C. In some embodiments, the threshold T1 is in the range of 240°C to 260°C. In some embodiments, the threshold value T1 is in the range of 260°C to 280°C. In some embodiments, the threshold T1 is in the range of 280°C to 300°C. In some embodiments, the threshold T1 is in the range of 280°C to 300°C. In some embodiments, the threshold T2 is in the range of 300°C to 320°C.
  • the heating element 6 when heated to the threshold T1, has a resistance value greater than 10 ⁇ . In some embodiments, when heated to the threshold T1, the heating element 6 has a resistance value greater than 15 ⁇ . In some embodiments, when heated to the threshold T1, the heating element 6 has a resistance value greater than 20 ⁇ . In some embodiments, when heated to the threshold T1, the heating element 6 has a resistance value greater than 30 ⁇ .
  • the self-limiting temperature characteristic of the heating component 6 can prevent the heating component 6 from burning dry.
  • the self-limiting temperature characteristic of the heating element 6 can reduce the probability of the atomization device 100 being burnt.
  • the self-limiting temperature characteristic of the heating component 6 can increase the safety of the atomization device 100.
  • the self-limiting temperature characteristic of the heating component 6 can increase the service life of each component in the atomization device 100.
  • the self-limiting temperature characteristic of the heating element 6 can effectively reduce the risk of nicotine cracking.
  • the self-limiting temperature characteristic of the heating component 6 can control the smoke outlet temperature of the cigarette holder within a specific temperature to avoid burns to the lips.
  • the smoke outlet temperature of the cigarette holder can be controlled within the range of 35°C to 40°C.
  • the smoke outlet temperature of the cigarette holder can be controlled within the range of 40°C to 45°C.
  • the smoke outlet temperature of the cigarette holder can be controlled within the range of 45°C to 50°C.
  • the smoke outlet temperature of the cigarette holder can be controlled within the range of 50°C to 55°C.
  • the smoke outlet temperature of the cigarette holder can be controlled within the range of 55°C to 60°C.
  • the smoke outlet temperature of the cigarette holder can be controlled within the range of 60°C to 65°C.
  • the heating circuit 61 may be indirectly connected to the conductive component 6p.
  • a protection component 62 may be provided between the heating circuit 61 and the conductive component 6p.
  • the protection component 62 has recoverable characteristics.
  • the protection component 62 When the temperature of the protection component 62 rises to a threshold T2, the protection component 62 forms an open circuit. When the temperature of the protection component 62 drops to a threshold T3, the protection component 62 forms a short circuit. When the temperature of the protection component 62 rises to a threshold T2, the conductive component 6p cannot provide current to the heating circuit 61. When the temperature of the protection component 62 drops to a threshold T3, the conductive component 6p can provide current to the heating circuit 61.
  • the threshold value T3 may be the same as the threshold value T2. In some embodiments, the threshold T3 may be different from the threshold T2. In some embodiments, the threshold T3 may be lower than the threshold T2.
  • the threshold T2 is in the range of 200°C to 220°C. In some embodiments, the threshold value T2 is in the range of 220°C to 240°C. In some embodiments, the threshold value T2 is in the range of 240°C to 260°C. In some embodiments, the threshold value T2 is in the range of 260°C to 280°C. In some embodiments, the threshold value T2 is in the range of 280°C to 300°C. In some embodiments, the threshold T2 is in the range of 300°C to 320°C.
  • the threshold T3 is in the range of 180°C to 200°C. In some embodiments, the threshold T3 is in the range of 200°C to 220°C. In some embodiments, the threshold value T3 is in the range of 220°C to 240°C. In some embodiments, the threshold value T3 is in the range of 240°C to 260°C. In some embodiments, the threshold T3 is in the range of 260°C to 280°C. In some embodiments, the threshold value T3 is in the range of 280°C to 300°C. In some embodiments, the protection component 62 may be a resettable fuse.
  • the protection component 62 does not have recoverable characteristics.
  • the protection component 62 When the temperature of the protection component 62 rises to a threshold T2, the protection component 62 forms an open circuit. In some embodiments, the protection component 62 that forms an open circuit does not form a short circuit due to a temperature drop.
  • the protection component 62 can prevent the heating component 6 from burning dry.
  • the protection component 62 can reduce the probability of the atomization device 100 being burnt.
  • the protection component 62 can increase the safety of the atomization device 100.
  • the protection component 62 can increase the service life of each component in the atomization device 100.
  • the heating element 6 may have an axisymmetric shape with respect to a shaft 6x. In some embodiments, the heating element 6 may have an asymmetrical shape.
  • the heating element 6 may have a groove 6c on the top surface.
  • the groove 6c may have an axisymmetric shape with respect to a shaft 6x. In some embodiments, the groove 6c may have an asymmetrical shape.
  • the heating element 6 is arranged between the heating element top cover 4 and the heating element base 8.
  • the through hole 4h1 and the shaft 6x do not overlap.
  • the through hole 4h2 and the shaft 6x do not overlap.
  • the extending direction of the shaft 6x does not pass through the through hole 4h1.
  • the heating element 6 is disposed between the heating element top cover 4 and the heating element base 8 shown in FIG. 6E, the extending direction of the shaft 6x does not pass through the through hole 4h2.
  • the extending direction of the shaft 6x does not pass through the air inlet passage 31.
  • the extending direction of the shaft 6x and the extending direction of the intake passage 31 do not overlap.
  • the heating assembly 6 is arranged inside the cartridge 100A
  • the extending direction of the shaft 6x passes through the through hole 1h.
  • the heating assembly 6 is arranged inside the cartridge 100A
  • the extending direction of the shaft 6x passes through the part of the air outlet channel 32 close to the through hole 1h.
  • the heating element 6 is arranged inside the cartridge 100A, the extending direction of the shaft 6x does not pass through the air outlet channel 32 and is not close to the other part of the through hole 1h.
  • the volatile material can directly contact the heating element 6 via the inner wall of the groove 6c.
  • the groove 6c may have an opening 6s1.
  • the groove 6c may have a bottom surface 6s2.
  • the area of the opening 6s1 may be the same as the area of the bottom surface 6s2.
  • the area of the opening 6s1 may be different from the area of the bottom surface 6s2.
  • the area of the opening 6s1 may be greater than the area of the bottom surface 6s2.
  • the groove 6c of the heating assembly 6 can increase the contact area between the heating assembly 6 and the e-liquid.
  • FIG. 7D shows an enlarged view of a part of the heating assembly 6.
  • the heating element 6 may have apertures.
  • the shape of the pores may be square.
  • the pore shape may be cylindrical.
  • the shape of the aperture may be ring-shaped.
  • the shape of the pores may be a hexagonal column shape.
  • the pore shape may be a honeycomb structure.
  • the smoke oil can penetrate into the pores of the heating element 6.
  • the pores of the heating element 6 can be soaked in the smoke oil.
  • the pores of the heating element 6 can increase the contact area between the heating element 6 and the e-liquid.
  • the pores of the heating element 6 can surround small molecules of e-liquid from all sides. During the heating process, the pores of the heating element 6 can heat the e-liquid more evenly. During the heating process, the pores of the heating element 6 can make the e-liquid reach the predetermined temperature faster. During the heating process, the pores of the heating element 6 can avoid the generation of burnt smell.
  • the heating element 6 has a porosity of 20% to 30%. In some embodiments, the heating element 6 has a porosity of 30% to 40%. In some embodiments, the heating element 6 has a porosity of 40% to 50%. In some embodiments, the heating element 6 has a porosity of 50% to 60%. In some embodiments, the heating element 6 has a porosity of 60% to 70%. In some embodiments, the heating element 6 has a porosity of 70% to 80%.
  • the heating element 6 has a certain number of closed air holes.
  • the closed pores may include alumina.
  • the closed pores may include silicon carbide.
  • the heating element 6 has a closed porosity of 10% to 20%.
  • the heating element 6 has a closed porosity of 20% to 30%.
  • the heating element 6 has a closed porosity of 30% to 40%.
  • FIGS 7E and 7F illustrate schematic diagrams of the temperature of the heating circuit according to some embodiments of the present invention.
  • the temperature generated by the heating circuit 61 can be obtained through actual measurement.
  • the temperature generated by the heating circuit 61 can be obtained through software simulation.
  • the heating circuit 61 shown in FIGS. 7E and 7F has the same material.
  • the heating circuit 61 shown in FIGS. 7E and 7F has different appearances.
  • FIG. 7E shows a schematic diagram of the temperature of different sections of the heating circuit 61.
  • the heating circuit 61 has the same width.
  • the heating circuit 61 has a uniform cross-sectional area between the two conductive components 6p.
  • the heating circuit 61 may have temperatures 61t1, 61t2, 61t3, and 61t4 in different sections.
  • the temperature 61t4 can be the highest temperature of the heating circuit 61.
  • temperature 61t4 is greater than temperature 61t3; temperature 61t3 is greater than temperature 61t2; temperature 61t2 is greater than temperature 61t1.
  • the temperature of the heating circuit 61 can vary with the difference in the material of the heating circuit 61.
  • the temperature of the heating circuit 61 may vary with the difference in the cross-sectional area of the heating circuit 61.
  • the temperature 61t1 may have a temperature of about 280°C.
  • the temperature 61t2 may have a temperature of about 380°C.
  • the temperature 61t3 may have a temperature of about 400°C.
  • the temperature 61t4 may have a temperature of about 440°C.
  • FIG. 7F shows a schematic diagram of the temperature of different sections of the heating circuit 61.
  • the heating circuit 61 has a different width.
  • the heating circuit 61 has a non-uniform cross-sectional area between the two conductive components 6p.
  • the heating circuit 61 has a larger cross-sectional area near the conductive component 6p.
  • the heating circuit 61 may have temperatures 61t1', 61t2', 61t3' and 61t4' in different sections.
  • the temperature 61t2' can be the highest temperature of the heating circuit 61.
  • temperature 61t2' is greater than temperature 61t1'; temperature 61t2' is greater than temperature 61t3'; temperature 61t2' is greater than temperature 61t4'.
  • the temperature of the heating circuit 61 can vary with the difference in the material of the heating circuit 61.
  • the temperature of the heating circuit 61 may vary with the difference in the cross-sectional area of the heating circuit 61.
  • the temperature 61t1' may have a temperature of about 500°C.
  • the temperature 61t2' may have a temperature of about 600°C.
  • the temperature 61t3' may have a temperature of about 550°C.
  • the temperature 61t4' may have a temperature of about 490°C.
  • the maximum temperature of the heating circuit 61 can be adjusted by changing the cross-sectional area of the heating circuit 61.
  • the heating efficiency of the heating circuit 61 can be adjusted by changing the cross-sectional area of the heating circuit 61.
  • the heating circuit 61 of FIG. 7E has only one section to reach the maximum temperature 61t4, but the heating circuit 61 of FIG. 7E has two sections to reach the maximum temperature 61t2'.
  • FIGS 7G and 7H illustrate schematic diagrams of heating components and heating circuits according to some embodiments of the present invention.
  • the heating circuit 61 shown in FIG. 7G has a section 61a, a section 61b, and a section 61c.
  • the section 61a may have a non-uniform cross-sectional area.
  • the section 61a has a width 61aL1 at one end and a width 61aL2 at the other end.
  • the width 61aL1 is greater than the width 61aL2.
  • the section 61c may have a non-uniform cross-sectional area.
  • One end of the section 61c has a larger width.
  • the section 61b may have a uniform cross-sectional area. In some embodiments, the section 61b may also have a non-uniform cross-sectional area.
  • the heating circuit 61 is provided on the bottom surface of the heating assembly 6.
  • the heating circuit 61 is arranged substantially parallel to the bottom surface of the heating assembly 6.
  • the heating circuit 61 shown in FIG. 7H has a section 61a, a section 61b, and a section 61c.
  • the section 61a may have a non-uniform cross-sectional area.
  • the section 61a has several subsections with a width of 61aL1 and several subsections with a width of 61aL2.
  • the width 61aL1 is greater than the width 61aL2.
  • the section 61c may have a non-uniform cross-sectional area.
  • the section 61b may have a uniform cross-sectional area. In some embodiments, the section 61b may also have a non-uniform cross-sectional area.
  • FIGS 7I and 7J illustrate schematic diagrams of heating components and heating circuits according to some embodiments of the present invention.
  • the heating circuit 61 shown in FIG. 7I has a section 61a, a section 61b, and a section 61c.
  • the heating circuit 61 may extend inside the heating assembly 6.
  • the heating circuit 61 may be provided inside the heating assembly 6.
  • the section 61a may have a non-uniform cross-sectional area.
  • the section 61a has a width 61aL1 at one end and a width 61aL2 at the other end.
  • the width 61aL1 is greater than the width 61aL2.
  • the section 61c may have a non-uniform cross-sectional area.
  • One end of the section 61c has a larger width.
  • the section 61b may have a uniform cross-sectional area. In some embodiments, the section 61b may also have a non-uniform cross-sectional area.
  • FIG. 7J shows a horizontal perspective view of the heating assembly 6 and the heating circuit 61.
  • the heating assembly 6 and the heating circuit 61 shown in FIG. 7J correspond to the heating assembly 6 and the heating circuit 61 shown in FIG. 7I.
  • one end of the section 61a is connected to the conductive element 6p, and the other end of the section 61a extends into the heating element 6.
  • the section 61a extends from the bottom surface 6s3 of the heating assembly 6 toward the top surface 6s4 of the heating assembly 6. In some embodiments, the section 61a is not in contact with the bottom surface 6s2 of the groove 6c in the heating assembly 6. In some embodiments, the section 61a is not in contact with the groove 6c in the heating assembly 6.
  • the section 61b extends parallel to the bottom surface 6s3 in the heating assembly 6. In some embodiments, the section 61b may not be parallel to the bottom surface 6s3 in the heating assembly 6.
  • the section 61b is not in contact with the bottom surface 6s2 of the groove 6c in the heating assembly 6. In some embodiments, the section 61b may be exposed to the bottom surface 6s2 of the groove 6c.
  • One end of the section 61c is connected to the conductive element 6p, and the other end of the section 61c extends into the heating element 6.
  • the section 61c extends from the bottom surface 6s3 of the heating assembly 6 toward the top surface 6s4 of the heating assembly 6.
  • the section 61b is connected between the section 61a and the section 61c.
  • the section 61c is not in contact with the bottom surface 6s2 of the groove 6c in the heating assembly 6.
  • the section 61c is not in contact with the groove 6c in the heating assembly 6.
  • the section 61a extends along the first direction from the bottom surface 6s3 of the heating assembly 6 toward the top surface 6s4 of the heating assembly 6.
  • the section 61c extends along the second direction from the bottom surface 6s3 of the heating assembly 6 toward the top surface 6s4 of the heating assembly 6.
  • the first direction in which the section 61a extends and the second direction in which the section 61c extends may not be parallel.
  • the first direction in which the section 61a extends and the second direction in which the section 61c extends may not be perpendicular.
  • FIGS 7K and 7L illustrate schematic diagrams of heating components and heating circuits according to some embodiments of the present invention.
  • the heating circuit 61 shown in FIG. 7K has a section 61a, a section 61b, and a section 61c.
  • the heating circuit 61 may extend inside the heating assembly 6.
  • a part of the heating circuit 61 may be provided on the bottom surface 6s3 of the heating assembly 6.
  • a part of the heating circuit 61 may be provided inside the heating assembly 6.
  • the section 61a may be provided on the bottom surface 6s3 of the heating assembly 6.
  • the section 61b and the section 61c may be disposed inside the heating assembly 6.
  • the section 61a may have a non-uniform cross-sectional area.
  • the section 61a has a width 61aL1 at one end and a width 61aL2 at the other end.
  • the width 61aL1 is greater than the width 61aL2.
  • the section 61c may have a non-uniform cross-sectional area.
  • One end of the section 61c has a larger width.
  • the section 61b may have a uniform cross-sectional area. In some embodiments, the section 61b may also have a non-uniform cross-sectional area.
  • FIG. 7L shows a transverse perspective view of the heating assembly 6 and the heating circuit 61.
  • the heating assembly 6 and the heating circuit 61 shown in FIG. 7L correspond to the heating assembly 6 and the heating circuit 61 shown in FIG. 7K.
  • the section 61a is disposed on the bottom surface 6s3 of the heating element 6, and one end of the section 61a is connected to the conductive element 6p.
  • the section 61b is arranged in the heating assembly 6.
  • the section 61b extends parallel to the bottom surface 6s3 in the heating element 6.
  • the section 61c is arranged in the heating assembly 6.
  • the section 61c extends parallel to the bottom surface 6s3 in the heating element 6.
  • One end of the section 61c is connected to the conductive component 6p.
  • the section 61b is connected between the section 61a and the section 61c.
  • the distance of the section 61c from the bottom surface 6s3 is greater than the distance of the section 61b from the bottom surface 6s3.
  • FIGS 7M and 7N illustrate schematic diagrams of heating components and heating circuits according to some embodiments of the present invention.
  • the heating circuit 61 may have a substantially flat upper surface 61s.
  • the upper surface 61s of the heating circuit 61 may be substantially flush with the bottom surface 6s3 of the heating assembly 6.
  • the upper surface 61s of the heating circuit 61 may not be flush with the bottom surface 6s3 of the heating component 6.
  • the upper surface 61s of the heating circuit 61 may be lower than the bottom surface 6s3 of the heating component 6.
  • the heating circuit 61 may have a thickness.
  • the heating circuit 61 may have a substantially flat upper surface 61s.
  • the upper surface 61s of the heating circuit 61 may not be flush with the bottom surface 6s3 of the heating assembly 6.
  • the upper surface 61s of the heating circuit 61 may be higher than the bottom surface 6s3 of the heating assembly 6.
  • the upper surface 61s of the heating circuit 61 may protrude from the bottom surface 6s3 of the heating component 6.
  • FIG. 8A, 8B and 8C illustrate schematic diagrams of heating element bases according to some embodiments of the present invention.
  • the heating element base 8 includes a supporting member 81 and a supporting member 82.
  • the support member 81 is provided adjacent to the intake passage 31.
  • the supporting member 82 is disposed adjacent to the air outlet channel 32.
  • the supporting member 81 has a snap portion 81c.
  • the supporting member 82 has a snap portion 82c.
  • the heating element base 8 is combined with the heating element top cover 4 via the snap parts 81c and 82c.
  • the heating element base 8 is removably combined with the heating element top cover 4 via the snap parts 81c and 82c.
  • the heating element 6 is arranged between the heating element top cover 4 and the heating element base 8.
  • the support member 81 may have one or more through holes 81h. In some embodiments, the support member 81 may have 6 through holes 81h.
  • the through hole 81h penetrates the support member 81.
  • the through hole 81h communicates the atomization chamber 8c and the intake passage 31 with each other.
  • the aperture area of the through hole 81h is designed to allow gas to pass through.
  • the arrangement of the through holes 81h is designed to allow gas to pass through.
  • the aperture area of the through hole 81h is designed to make it difficult for e-liquid to pass through.
  • the arrangement of the through holes 81h is designed to make it difficult for e-liquid to pass through.
  • the diameter of each of the through holes 81h is in the range of 0.2 mm to 0.3 mm. In some embodiments, the diameter of each of the through holes 81h is in the range of 0.3 mm to 0.4 mm. In some embodiments, the diameter of each of the through holes 81h is in the range of 0.4 mm to 0.5 mm. In some embodiments, the diameter of each of the through holes 81h is in the range of 0.5 mm to 0.6 mm. In some embodiments, the diameter of each of the through holes 81h is in the range of 0.6 mm to 0.7 mm. In certain embodiments, each of the through holes 81h may have a diameter of 0.55 mm.
  • the supporting member 82 has a ramp structure 82r near the bottom of the heating element base 8.
  • One end of the cross section of the ramp structure 82r has a height of 82L.
  • the height 82L may be the maximum distance between the slope structure 82r and the bottom of the oil storage tank 8t.
  • the ramp structure 82r can be replaced by a stepped structure. Both ends of the cross section of the stepped structure may have substantially the same height.
  • the ramp structure 82r may form a blocking part of the oil storage tank 8t.
  • the slope structure 82r can prevent the smoke or liquid stored in the oil storage tank 8t from entering the air outlet channel 32.
  • the stepped structure can prevent the e-liquid or liquid stored in the oil storage tank 8t from entering the air outlet channel 32.
  • an oil absorbent cotton (not shown in the figure) may be provided at the bottom of the oil storage tank 8t.
  • the absorbent cotton can absorb the smoke oil or liquid stored in the oil storage tank 8t.
  • the smoke oil or liquid absorbed by the oil-absorbing cotton is not easy to flow in the oil storage tank 8t.
  • the supporting member 81 may have a window 81w.
  • the window 81w may be an opening.
  • the window 81w penetrates the supporting member 81.
  • the window 81w communicates the atomization chamber 8c and the intake passage 31 with each other.
  • the aperture area of the window 81w is designed to allow gas to pass through.
  • the height of 81L can prevent the e-liquid or liquid accumulated in the oil storage tank 8t from entering the air inlet passage 31.
  • the height 81L is in the range of 1 mm to 2 mm.
  • the height 81L is in the range of 2 mm to 3 mm.
  • the height 81L is in the range of 3 mm to 4 mm.
  • the height 81L is in the range of 4mm to 5mm.
  • the height 81L can form a blocking part of the oil storage tank 8t.
  • the minimum height between one or more through holes 81h and the bottom of the oil storage tank 8t may be equal to 81L.
  • the minimum height between one or more through holes 81h and the bottom of the oil storage tank 8t may be different from 81L. In some embodiments, the minimum height between the one or more through holes 81h and the bottom of the oil storage tank 8t may be greater than 81L.
  • the height 82L is in the range of 1 mm to 2 mm. In some embodiments, the height 82L is in the range of 2 mm to 3 mm. In some embodiments, the height 82L is in the range of 3 mm to 4 mm. In some embodiments, the height 82L is in the range of 4mm to 5mm.
  • Figure 8D illustrates a cross-sectional view of a heating assembly base according to some embodiments of the present invention.
  • the oil storage tank 8t has a depth of 83L.
  • the depth 83L may be smaller than the height 81L.
  • the depth 83L may be smaller than the height 82L.
  • the depth 83L may be equal to the height 82L.
  • the intake passage 31 communicates with the atomizing chamber 8c via the communication portion 31c.
  • the air outlet passage 32 communicates with the atomizing chamber 8c via the communicating portion 32c.
  • FIG. 9A illustrates a schematic diagram of an atomization device assembly according to some embodiments of the present invention.
  • the atomization device 100 may include a cartridge 100A and a main body 100B.
  • the cartridge 100A can be designed to be removably combined with the main body 100B.
  • the main body 100B may have a receiving portion 24c.
  • a part of the cartridge 100A can be stored in the storage portion 24c.
  • the receiving portion 24c may surround a part of the cartridge 100A.
  • the receiving portion 24c can cover a part of the cartridge 100A.
  • a part of the cartridge 100A may be exposed by the main body 100B.
  • the cartridge 100A can be removably combined with the main body 100B in two directions.
  • the air inlet channel 31 may face the left side of the cartridge 100A.
  • the air inlet channel 31 may face the right side of the cartridge 100A.
  • the conductive contact 9 of the cartridge 100A and the conductive pin 15 of the main body 100B contact each other.
  • the conductive contact 9 of the cartridge 100A and the conductive pin 15 of the main body 100B are electrically connected to each other.
  • the conductive contact 9 of the cartridge 100A and the conductive pin 15 of the main body 100B contact each other.
  • the conductive contact 9 of the cartridge 100A and the conductive pin 15 of the main body 100B are electrically connected to each other.
  • FIGS 9B and 9C illustrate cross-sectional views of cartridges according to some embodiments of the present invention.
  • FIG. 9B A cross section 3s1 of the cartridge 100A at a length 100L1 from the lower surface 11s of the metal base 11 is shown in FIG. 9B.
  • FIG. 9C A cross section 3s2 of the cartridge 100A at a length 100L2 from the lower surface 11s of the metal base 11 is shown in FIG. 9C.
  • the cartridge case 3 may have an asymmetrical cross section 3s1 at a length 100L1 away from the lower surface 11s of the metal base 11.
  • FIG. 9C the cartridge case 3 may have a symmetrical cross section 3s2 at a length 100L2 away from the lower surface 11s of the metal base 11.
  • the section 3s1 is non-axisymmetric with respect to the axis 100x.
  • the section 3s2 is axisymmetric with respect to the axis 100x.
  • the shaft 100x extends from the top to the bottom of the cartridge 100A.
  • the receiving portion 24c covers the cross section 3s1.
  • the receiving portion 24c covers the cross section 3s2.
  • Figure 10 illustrates a schematic diagram of a power circuit according to some embodiments of the invention.
  • the output power of the atomization device 100 can be controlled by the controller 171 and the electronic components connected to it.
  • the controller 171 is connected to the power supply VCC via resistors R1 and R2.
  • the power source VCC may be provided by the power source assembly 20.
  • the controller 171 can be connected to a switch via a resistor R1.
  • a transistor Q1 can be used as a switch.
  • the transistor Q1 may be a p-type transistor.
  • the transistor Q1 may be an n-type transistor.
  • the controller 171 can control the transistor Q1 to turn on, and the controller 171 can control the transistor Q1 to turn off.
  • the controller 171 can control the power output of the heating element 6 by controlling the on/off of the transistor Q1.
  • the controller 171 can adjust the power provided by the power supply VCC to the heating element 6 by adjusting the values of the resistors R1 and R2.
  • the power circuit of the atomization device 100 may include more resistors or other electronic components.
  • the controller 171 can adjust the power provided by the power supply VCC to the heating element 6 by adjusting the connection relationship between the resistor and the electronic component.
  • the heating element 6 can be connected to the power supply VCC via the transistor Q1.
  • the heating element 6 may be electrically connected to the ground GND.
  • the heating element 6 may be connected to the power source VCC via the conductive element 6p.
  • the heating element 6 may be connected to the ground GND via the conductive element 6p.
  • a temperature sensor 63 can be provided on the heating assembly 6.
  • the temperature sensor 63 can sense the temperature of the heating element 6 and provide a signal to the controller 171.
  • the temperature sensor 63 may include a thermistor.
  • the temperature sensor 63 may include a positive temperature coefficient (PTC) thermistor.
  • the temperature sensor 63 may include a negative temperature coefficient (NTC) thermistor.
  • the temperature sensor 63 can be set to send a signal to the controller 171 when the temperature of the heating element 6 rises to the threshold 6T1.
  • the controller 171 can turn off the transistor Q1 according to the signal provided by the temperature sensor 63.
  • the temperature sensor 63 can be set to send a signal to the controller 171 when the temperature of the heating element 6 drops to the threshold 6T2.
  • the controller 171 can turn on the transistor Q1 according to the signal provided by the temperature sensor 63.
  • the controller 171 may monitor the resistance value of the thermistor. In some embodiments, the controller 171 can determine whether the temperature of the heating element 6 rises to the threshold 6T1 according to the resistance value of the thermistor. The controller 171 may turn off the transistor Q1 according to the resistance value of the thermistor. The controller 171 may turn on the transistor Q1 according to the resistance value of the thermistor.
  • Different smoke oils can have different atomization temperatures. For example, a certain kind of e-liquid may have more volatile components and a lower atomization temperature, and a certain other kind of e-liquid may have less volatile components and a higher atomization temperature .
  • the threshold 6T1 can be preset.
  • the threshold 6T1 can be changed according to the atomization temperature of different e-liquid.
  • the threshold 6T1 may be set to 90% of the atomization temperature of the e-liquid. In some embodiments, the threshold 6T1 may be set to 85% of the atomization temperature of the e-liquid. In some embodiments, the threshold 6T1 may be set between 85% and 90% of the atomization temperature of the e-liquid.
  • FIG. 11A illustrates a flowchart of an output power control method according to some embodiments of the present invention.
  • the output power control method 200 may include several steps. In some embodiments, several steps in the output power control method 200 may be performed sequentially in the order shown in FIG. 11A. In some embodiments, the steps in the output power control method 200 may not be performed in the order shown in FIG. 11A.
  • Step 201 the user's inhalation action is detected.
  • Step 201 can be performed by the sensor 16 and the controller 171 in combination.
  • step 202 it is determined whether the time for stopping the power output to the heating assembly 6 is greater than the threshold TN1. If the time for stopping power output to the heating assembly 6 is greater than or equal to the threshold TN1, step 203 is performed. If the time for stopping the power output to the heating assembly 6 does not reach the threshold TN1, step 204 is performed. Step 202 can be performed by setting a timer in the controller 171. A timer can be set in the controller 171 to start counting from the time when the power supply assembly 20 stops supplying power to the heating assembly 6.
  • the threshold TN1 is in the range of 15 seconds to 60 seconds. In some embodiments, the threshold TN1 is in the range of 25 seconds to 40 seconds. In some embodiments, the threshold TN1 may be 30 seconds.
  • step 203 the power P1 is output to the heating assembly 6 in the time period S1, and the power P2 is output to the heating assembly in the time period S2 immediately after the time period S1.
  • the time period S1 and the time period S2 are both within the user's continuous inhalation action.
  • Step 204 can be performed by the combination of the controller 171, the circuit board 17, the power supply component 20, the conductive contact 9, the conductive spring pin 15 and the heating component 6.
  • the power P1 may be greater than the power P2.
  • P1 is in the range of 6W to 15W.
  • P1 is in the range of 7.2W to 9W.
  • P2 is in the range of 4.5W to 9W.
  • P2 is in the range of 6W to 8W.
  • S1 is in the range of 0.1 seconds to 2 seconds. In some embodiments, S1 is in the range of 0.1 second to 1 second. In some embodiments, S1 is in the range of 0.1 seconds to 0.6 seconds.
  • S2 is in the range of 0.1 seconds to 4 seconds. In some embodiments, S2 is in the range of 0.1 seconds to 3.5 seconds.
  • Step 202 and step 203 have many advantages.
  • the threshold TN1 it can be determined whether the atomization device 100 has not been used for a long time.
  • the heating assembly 6 assumes a cooling state.
  • the atomization device 100 can output a larger power P1 during the time period S1.
  • Higher power P1 can accelerate the aerosol generation speed.
  • the heating element 6 has a specific temperature, and the atomizing device 100 can reduce the output power to P2.
  • the reduced power P2 can make the aerosol evenly generated.
  • the reduced power P2 can increase the use time of the power supply assembly 20.
  • step 204 power P3 is output to the heating assembly.
  • Step 203 can be performed by a combination of the controller 171, the circuit board 17, the power component 20, the conductive contact 9, the conductive spring pin 15 and the heating component 6.
  • P3 is in the range of 3.5W to 10W. In certain embodiments, P3 is in the range of 4.5W to 9W. In certain embodiments, P3 is in the range of 6W to 8W. In some embodiments, P3 may be the same as P2. In some embodiments, P3 may be different from P2.
  • Step 202 and step 204 have many advantages.
  • the threshold TN1 it can be determined whether the atomization device 100 has been used by the user in a short time. If the atomization device 100 has been used by the user in a short period of time, the heating element 6 has not been completely cooled. If the atomization device 100 has been used by the user in a short time, the heating element 6 has a specific temperature. At this time, the atomization device 100 can adjust the output power to P3. The adjusted power P3 can make the aerosol evenly generated. The adjusted power P3 can increase the use time of the power supply assembly 20.
  • step 205 when the time for outputting power to the heating assembly has reached the threshold TN2, the output of power to the heating assembly is stopped. Step 205 can be performed by setting a timer in the controller 171.
  • Step 205 has many advantages.
  • stopping heating can prevent the heating component 6 from overheating. Overheating of the heating component 6 may cause damage to other components inside the atomization device 100. Overheating of the heating component 6 may reduce the life of the internal components of the atomization device 100.
  • stopping heating can prevent the heating component 6 from burning dry. Dry burning of the heating element 6 may produce a burnt smell. Dry burning of the heating element 6 may produce toxic substances.
  • the threshold TN2 is in the range of 2 seconds to 10 seconds.
  • step 206 when the duration of the inhalation action not detected reaches the threshold TN3, the atomization device 100 is triggered to enter a standby state.
  • the power consumption of the atomizing device 100 is reduced.
  • the sensor 16 remains active. Step 206 can be performed by setting a timer in the controller 171.
  • the output power control method 200 may further include the step of stopping the output of power to the heating assembly 6. This step can be performed by the controller 171 and the sensor 16 in combination.
  • FIG. 11B illustrates a flowchart of an output power control method according to some embodiments of the present invention.
  • the output power control method 300 may include several steps. In some embodiments, the steps in the output power control method 300 may be performed sequentially in the order shown in FIG. 11B. In some embodiments, the steps in the output power control method 300 may be performed out of the order shown in FIG. 11B.
  • the threshold 6T1 is set according to the atomization temperature of the e-liquid in the cartridge 100A. In some embodiments, the threshold 6T1 may be set to 90% of the atomization temperature of the e-liquid. In some embodiments, the threshold 6T1 may be set to 85% of the atomization temperature of the e-liquid. In some embodiments, the threshold 6T1 may be set between 85% and 90% of the atomization temperature of the e-liquid.
  • the high power time parameter HP is set.
  • the high power time parameter HP can be set according to the desired user experience. For example, when the user inhales the atomization device, the user may wish to inhale a larger amount of smoke in a short time.
  • the high power time parameter HP can be set according to the aerosol generation time expected by the user.
  • the high-power time parameter HP may be set in the range of 0.01 second to 0.9 second.
  • the high power time parameter HP can be set in the range of 0.01 second to 1.2 seconds.
  • the high-power time parameter HP can be set in the range of 0.01 second to 1.5 seconds. Within range.
  • the high power time parameter HP can be set in the range of 0.01 second to 1.2 seconds.
  • the high power time parameter HP may be set in the range of 0.01 second to 1.8 seconds.
  • the power W1 is set according to the threshold 6T1 and the high power time parameter HP.
  • the atomizing device provides power W1 until the heating element 6 continues to HP, the temperature of the heating element 6 can rise to the threshold 6T1.
  • the value of the power W1 is associated with the threshold 6T1.
  • the value of the power W1 is associated with the high-power time parameter HP.
  • the power W1 may be in the range of 9W to 10W. In some embodiments, the power W1 may be in the range of 10W to 12W. In some embodiments, the power W1 may be in the range of 9W to 12W. In some embodiments, the power W1 may be in the range of 12W to 15W.
  • Step 304 the user's inhalation is detected.
  • Step 304 can be performed by the sensor 16 and the controller 171 in combination.
  • step 305 the atomizing device outputs power W1 to the heating assembly 6.
  • step 306 it is determined that the temperature of the heating assembly 6 has reached the threshold 6T1.
  • Step 306 can be performed by the temperature sensor 63 and the controller 171 in combination.
  • step 308 if the temperature of the heating element 6 reaches the threshold 6T1, step 308 is performed.
  • the atomizing device outputs power W2 to the heating assembly 6.
  • the output power W2 may be less than the output power W1.
  • the output power W2 may be in the range of 7W to 8W.
  • the power W2 may be in the range of 8W to 10W.
  • the power W2 may be in the range of 10W to 13W.
  • step 307 it is determined whether the time from supplying the power W1 to the heating element has reached HP. If the time from supplying the power W1 to the heating element reaches HP, step 308 is performed.
  • FIG. 11C and 11D illustrate flowcharts of output power control methods according to some embodiments of the present invention.
  • FIGS. 11C and 11D can be executed after step 308 in FIG. 11B.
  • step 501 it is determined whether the total time from the atomizing device to the heating element 6 has reached the threshold TM1. If the total time from the atomization device providing power to the heating element 6 has reached the threshold TM1, step 502 is performed. In step 502, the atomizing device stops supplying power to the heating assembly 6.
  • the threshold TM1 can be set to 3 seconds. In some embodiments, the threshold TM1 can be set to 3.5 seconds. In some embodiments, the threshold TM1 can be set to 4 seconds. In some embodiments, the threshold TM1 can be set to 4.5 seconds.
  • step 503 it is determined whether the total time from the atomizing device to the heating element 6 has reached the threshold TM2. If the total time from the atomization device providing power to the heating element 6 has reached the threshold TM2, step 504 is performed.
  • the atomization device outputs power W3 to the heating assembly 6.
  • the output power W3 may be less than the output power W2.
  • the output power W3 may be in the range of 5W to 6W.
  • the power W3 may be in the range of 6W to 8W.
  • the power W3 may be in the range of 8W to 11W.
  • the threshold TM2 may be set in the range of 1.2 seconds to 1.5 seconds.
  • the threshold TM2 may be set in the range of 1.5 seconds to 1.8 seconds. In some embodiments, the threshold TM2 may be set in the range of 1.8 seconds to 2.1 seconds. In some embodiments, the threshold TM2 may be set in the range of 2.1 seconds to 2.4 seconds.
  • step 505 it is determined whether the total time from the atomizing device to the heating element 6 has reached the threshold TM3. If the total time from the atomization device providing power to the heating element 6 has reached the threshold TM3, step 506 is performed. In step 506, the atomizing device stops supplying power to the heating assembly 6.
  • the threshold TM3 may be set in the range of 3.2 seconds to 3.5 seconds. In some embodiments, the threshold TM3 may be set in the range of 3.5 seconds to 3.8 seconds. In some embodiments, the threshold TM3 may be set in the range of 3.8 seconds to 4.1 seconds. In some embodiments, the threshold TM3 may be set in the range of 4.1 seconds to 4.4 seconds.
  • Operating the atomization device according to the process shown in Figure 11B has many advantages. Operating the atomization device according to the process shown in FIG. 11B can accelerate the speed of aerosol generation and improve user experience. Operating the atomization device according to the process shown in FIG. 11B can accelerate the speed of aerosol generation and optimize the power loss of the atomization device.
  • Operating the atomization device according to the process shown in Figure 11C has many advantages. Operating the atomization device according to the process shown in FIG. 11C can accelerate the speed of aerosol generation and improve user experience. Operating the atomization device according to the process shown in FIG. 11C can accelerate the aerosol generation speed and optimize the power loss of the atomization device.
  • Operating the atomization device according to the process shown in Figure 11D has many advantages. Operating the atomization device according to the process shown in FIG. 11D can accelerate the speed of aerosol generation and improve user experience. Operating the atomization device according to the process shown in FIG. 11D can accelerate the speed of aerosol generation and optimize the power loss of the atomization device.
  • spatial relative terms for example, “below”, “below”, “lower”, “above”, “upper”, “lower”, “left”, “right” and the like may be The simplicity of description is used herein to describe the relationship between one element or feature and another element or feature as illustrated in the figure.
  • the spatial relative terms are intended to cover different orientations of the device in use or operation.
  • the device can be oriented in other ways (rotated by 90 degrees or in other orientations), and the spatial relative descriptors used herein can also be interpreted accordingly. It should be understood that when an element is referred to as being “connected to” or “coupled to” another element, it can be directly connected or coupled to the other element, or intervening elements may be present.
  • the terms “approximately”, “substantially”, “substantially” and “about” are used to describe and consider small variations. When used in conjunction with an event or situation, the term may refer to an example in which the event or situation occurs precisely and an example in which the event or situation occurs in close proximity. As used herein with respect to a given value or range, the term “about” generally means within ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5% of the given value or range. Ranges can be expressed herein as from one endpoint to another or between two endpoints. Unless otherwise specified, all ranges disclosed herein include endpoints.
  • substantially coplanar may refer to two surfaces located within a few micrometers ( ⁇ m) along the same plane, for example, within 10 ⁇ m, within 5 ⁇ m, within 1 ⁇ m, or within 0.5 ⁇ m located along the same plane.
  • ⁇ m micrometers
  • the term may refer to a value within ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5% of the average value of the stated value.
  • the terms “approximately”, “substantially”, “substantially” and “about” are used to describe and explain small changes.
  • the term may refer to an example in which the event or situation occurs precisely and an example in which the event or situation occurs in close proximity.
  • the term when used in combination with a value, the term may refer to a range of variation less than or equal to ⁇ 10% of the stated value, for example, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3% , Less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • the difference between two values is less than or equal to ⁇ 10% of the average value of the value (for example, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than Or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%), then the two values can be considered “substantially” or " About” is the same.
  • substantially parallel may refer to a range of angular variation less than or equal to ⁇ 10° relative to 0°, for example, less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 3°, Less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • substantially perpendicular may refer to an angular variation range of less than or equal to ⁇ 10° relative to 90°, for example, less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 3°, Less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • the two surfaces can be considered coplanar or substantially coplanar if the displacement between two surfaces is equal to or less than 5 ⁇ m, equal to or less than 2 ⁇ m, equal to or less than 1 ⁇ m, or equal to or less than 0.5 ⁇ m, then the two surfaces can be considered coplanar or substantially coplanar if the displacement between any two points on the surface relative to the plane is equal to or less than 5 ⁇ m, equal to or less than 2 ⁇ m, equal to or less than 1 ⁇ m, or equal to or less than 0.5 ⁇ m, then the surface can be considered to be flat or substantially flat .
  • the terms "conductive,””electricallyconductive,” and “conductivity” refer to the ability to transfer current.
  • Conductive materials generally indicate those materials that exhibit little or zero resistance to current flow.
  • One measure of conductivity is Siemens/meter (S/m).
  • the conductive material is a material with a conductivity greater than approximately 10 4 S/m (for example, at least 10 5 S/m or at least 10 6 S/m).
  • the conductivity of materials can sometimes change with temperature. Unless otherwise specified, the conductivity of the material is measured at room temperature.
  • a/an and “said” may include plural indicators.
  • a component provided “on” or “above” another component may cover the case where the previous component is directly on the latter component (for example, in physical contact with the latter component), and one or more A situation where an intermediate component is located between the previous component and the next component.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种雾化装置(100),包含加热组件底座(8)、加热组件顶盖(4)、及设置于加热组件底座(8)及加热组件顶盖(4)之间的加热组件(6)。加热组件(6)具有第一表面及相对于第一表面的第二表面,加热组件(6)具有加热电路(61)。加热电路(61)具有第一区段,第一区段的第一部分具有第一宽度且第一区段的第二部分具有第二宽度,其中第一区段的第一宽度大于第一区段的第二宽度。还提供了一种加热组件以及一种操作雾化装置的方法。

Description

雾化装置及其方法 技术领域
本发明大体上涉及一种雾化装置及其方法,具体而言涉及一种提供可吸入气雾(aerosol)之电子装置及其方法。
背景技术
电子烟系一种电子产品,其将可挥发性溶液加热雾化并产生气雾以供用户吸食。近年来,各大厂商开始生产各式各样的电子烟产品。一般而言,一电子烟产品包括外壳、储油室、雾化室、加热组件、進氣口、气流通道、出气口、电源装置、感测装置及控制装置。储油室用于储存可挥发性溶液,加热组件用于将可挥发性溶液加热雾化并产生气雾。進氣口與雾化室彼此連通,當使用者吸氣時提供空氣給加熱組件。由加热组件产生之气雾首先產生於雾化室内,随后经由气流通道及出气口被使用者吸入。电源装置提供加热组件所需之电力,控制装置根据感测装置侦测到的用户吸气动作,控制加热组件的加热时间。外壳则包覆上述各个组件。
现有的电子烟产品存在不同的缺陷,这些缺陷可能因不同构件间相对位置设计不良而产生。举例言之,常见的电子烟产品将加热组件、气流通道与出气口设计成在垂直方向上彼此对齐。因气流通道具有一定长度,气雾通过气流通道时冷却,会形成冷凝液体附着在气流通道壁上。在此种设计下,当残留的冷凝液体达到一特定体积,冷凝液体很容易在使用者吸气时被直接吸入口中,造成呛到的不良体验。
此外,现有的电子烟产品并未考虑到防止冷凝液逆流。当电子烟产品倾斜或倒立放置时,残存在雾化室或气流通道内的冷凝液体,可能从进气口或出气口溢出。溢出的冷凝液可能造成电子烟产品内电气组件(例如,感测装置及控制装置)的损坏。
此外,现有的电子烟产品并未考虑到对加热组件的功率输出进行控制,当使用者进行长时间吸气时,电源装置对加热组件持续加热,加热组件可能过热并产生烧焦味,烧焦味將造成使用者的不良體驗。过热之加热组件亦可能造成电子烟内部构件镕毁甚至起火燃烧。未对功率输出进行控制的现有的电子烟产品普遍具有电源能量消耗快的缺点。
因此,提出一种可解决上述问题之雾化装置及其方法。
发明内容
提出一种雾化装置。所提出的雾化装置包含加热组件底座、加热组件顶盖、及设置于所述加热组件底座及所述加热组件顶盖之间的加热组件。所述加热组件具有第一表面及相对于所述第一表面的第二表面,所述加热组件具有加热电路。所述加热电路具有第一区段,所述第一区段的第一部分具有第一宽度且所述第一区段的第二部分具有第二宽度,其中所述第一区段的所述第一宽度大于所述第一区段的所述第二宽度。
提出一种加热组件。所提出的加热组件包括第一表面及相对于所述第一表面的第二表面。所提出的加热组件包括第一导电组件、第二导电组件及连接于所述第一导电组件及所述第二导电组件之间的加热电路。所述加热电路具有第一区段,所述第一区段的第一部分具有第一宽度且所述第一区段的第二部分具有第二宽度,其中所述第一区段的所述第一宽度大于所述第一区段的所述第二宽度。
提出一种操作雾化装置的方法。所提出的方法包含根据烟油的雾化温度设定第一阈值。所提出的方法包含设定高功率时间参数。所提出的方法包含根据所述第一阈值及所述高功率时间参数设定第一功率。所提出的方法包含响应于使用者的吸气动作向所述加热组件输出所述第一功率。所提出的方法包含向所述加热组件输出第二功率,所述第二功率小于所述第一功率。
附图说明
当结合附图阅读时,从以下详细描述容易理解本发明的各方面。应注意,各种特征可能未按比例绘制,且各种特征的尺寸可出于论述的清楚起见而任意增大或减小。
图1A及1B说明根据本发明的一些实施例的雾化装置的一部分的分解图。
图2A及2B说明根据本发明的一些实施例的雾化装置的一部分的分解图。
图3A及3B说明根据本发明的一些实施例的烟弹的截面图。
图4说明根据本发明的一些实施例的烟弹的截面图。
图5A及5B说明根据本发明的一些实施例的烟弹的截面图。
图6A、6B、6C、6D和6E说明根据本发明的加热组件顶盖的一些实施例的俯视图。
图7A、7B、7C及7D说明根据本发明的一些实施例的加热组件示意图。
图7E及7F说明根据本发明的一些实施例的加热电路温度示意图。
图7G及7H说明根据本发明的一些实施例的加热电路示意图。
图7I及7J说明根据本发明的一些实施例的加热组件及加热电路示意图。
图7K及7L说明根据本发明的一些实施例的加热组件及加热电路示意图。
图7M及7N说明根据本发明的一些实施例的加热组件及加热电路示意图。
图8A、8B及8C说明根据本发明的一些实施例的加热组件底座示意图。
图8D说明根据本发明的一些实施例的加热组件底座截面图。
图9A说明根据本发明的一些实施例的雾化装置组合示意图。
图9B及9C说明根据本发明的一些实施例的烟弹截面图。
图10说明根据本发明的一些实施例的功率电路示意图。
图11A说明根据本发明的一些实施例的输出功率控制方法流程图。
图11B说明根据本发明的一些实施例的输出功率控制方法流程图。
图11C及11D说明根据本发明的一些实施例的输出功率控制方法流程图。
贯穿图式和详细描述使用共同参考标号来指示相同或类似元件。根据以下结合附图作出的详细描述,本发明将将更显而易见。
具体实施方式
以下公开内容提供用于实施所提供的标的物的不同特征的许多不同实施例或实例。下文描述组件和布置的特定实例。当然,这些仅是实例且并不意图为限制性的。在本发明中,在以下描述中对第一特征在第二特征之上或上的形成的参考可包含第一特征与第二特征直接接触形成的实施例,并且还可包含额外特征可形成于第一特征与第二特征之间从而使得第一特征与第二特征可不直接接触的实施例。另外,本发明可能在各个实例中重复参考标号和/或字母。此重复是出于简化和清楚的目的,且本身并不指示所论述的各种实施例和/或配置之间的关系。
下文详细论述本发明的实施例。然而,应了解,本发明提供了可在多种多样的特定情境中实施的许多适用的概念。所论述的特定实施例仅仅是说明性的且并不限制本发明的范围。
图1A及1B说明根据本发明的一些实施例的雾化装置的一部分的分解图。
雾化装置100可包含烟弹(cartridge)100A(如图1A及1B所示)及主体100B(如图2A及2B所示)。在某些实施例中,烟弹100A及主体100B可设计为一个整体。在某些实施例中,烟弹100A及主体100B可设计成分开的两组件。在某些实施例中,烟弹100A可设计成可移除式地与主体100B结合。在某些实施例中,烟弹100A可设计成一部分收纳于主体100B中。
烟弹100A包含烟嘴盖(mouthpiece)1、烟嘴硅胶套2、烟弹外壳3、加热组件顶盖4、加热组件硅胶套5、加热组件6、传感器启动管7、加热组件底座8、导电触点9、底座 O型环10及烟弹金属底座11。
可挥发性材料可储存于烟弹外壳3中。可挥发性液体可储存于烟弹外壳3中。可挥发性材料可经由加热组件顶盖4上的通孔4h以及加热组件硅胶套5上的通孔5h与加热组件6接触。加热组件6包含一槽6c,可挥发性材料可经由槽6c的内壁与加热组件6直接接触。可挥发性材料可以是一種液體。可挥发性材料可以是一種溶液。在本申请后续段落中,可挥发性材料亦可称为烟油。烟油系可食用的。
加热组件6包含导电组件6p。雾化装置100可经由导电组件6p对加热组件6提供电源,使加热组件6温度上升。
传感器启动管7可以是一中空管。传感器启动管7可安置于加热组件底座8的一侧。传感器启动管7可安置于加热组件底座8上靠近进气通道的一侧。传感器启动管7可穿过加热组件底座8上的通孔8h2。传感器启动管7可固定于加热组件底座8上的通孔8h2。传感器启动管7的一端可经由烟弹金属底座11上的通孔11c暴露。
导电触点9穿过加热组件底座8上的通孔8h1与加热组件6的导电组件6p接触。导电触点9可与导电组件6p实体接触。导电触点9可与导电组件6p彼此电连接。
底座O型环10可固定于加热组件底座8的沟槽8g内。底座O型环10与加热组件底座8彼此结合后,套入烟弹金属底座11内。烟弹金属底座11可包覆底座O型环10。烟弹金属底座11可包覆加热组件底座8之至少一部分。
导电触点9之一端穿过加热组件底座8上的通孔8h1,导电触点9之另一端可经由烟弹金属底座11上的通孔11h暴露。
图2A及2B说明根据本发明的一些实施例的雾化装置的一部分的分解图。
主体100B包含电源组件支架硅胶12、磁性组件13、电源组件支架O型环14、导电弹针15、传感器16、电路板17、导光组件18、缓冲组件19、电源组件20、电源组件支架21、马达22、充电板23及主体外壳24。
电源组件支架硅胶12可以是主体100B中最靠近烟弹金属底座11的组件。电源组件支架硅胶12的上表面12s邻近于烟弹金属底座11的下表面11s。电源组件支架硅胶12包含通孔12h1、12h2及12h3。磁性组件13之一端可经由通孔12h1暴露。导电弹针15之一端可经由通孔12h2暴露。
磁性组件13可与烟弹金属底座11之间产生吸引力。所述吸引力使烟弹100A与主体100B可移除式地结合。在某些实施例中,磁性组件13可以是一种永久磁铁。在某些实施例中,磁性组件13可以是一种电磁铁。在某些实施例中,磁性组件13本身具有磁性。在某些实施例中,磁性组件13在通电之后才具有磁性。
导电弹针15之一部分可经由通孔12h2暴露并超过电源组件支架硅胶12的上表面12s。导电弹针15可具有可伸缩性。当烟弹100A与主体100B可移除式地结合时,导电弹针15与导电触点9彼此接触。当烟弹100A与主体100B可移除式地结合时,导电弹针15与导电触点9彼此电连接。当烟弹100A与主体100B可移除式地结合时,导电触点9压缩导电弹针15并使导电弹针15长度变短。在某些实施例中,导电弹针15可以是一种导电触点。
传感器16可经由通孔12h3侦测一气流。传感器16可经由通孔12h3侦测气压变化。传感器16可经由通孔12h3侦测一负压。经由通孔12h3,传感器16可用于侦测气压是否低于一临限值。传感器16可经由通孔12h3侦测声波。经由通孔12h3,传感器16可用于侦测声波之振幅是否高于一临限值。
在某些实施例中,传感器16可以是一气流传感器。在某些实施例中,传感器16可以是一气压传感器。在某些实施例中,传感器16可以是一声波传感器。在某些实施例中,传感器16可以是一声波接收器。在某些实施例中,传感器16可以是一麦克风。
电路板17之一侧包含一控制器171。控制器171可以是一种微处理器。控制器171可以是一种可程序化集成电路。控制器171可以是一种可程序化逻辑电路。在某些实施例中,控制器171内的运算逻辑在控制器171制造后便无法更改。在某些实施例中,控制器171内的运算逻辑在控制器171制造后可程序化更改。
电路板17上亦可包含内存(图中未显示)。在某些实施例中,内存可整合于控制器171内。在某些实施例中,内存可与控制器171分开设置。
控制器171可与传感器16电连接。控制器171可与导电弹针15电连接。控制器171可与电源组件20电连接。当传感器16侦测到一气流时,控制器171可以控制电源组件20输出功率至导电弹针15。当传感器16侦测到一气压变化时,控制器171可以控制电源组件20输出功率至导电弹针15。当传感器16侦测到一负压时,控制器171可以控制电源组件20输出功率至导电弹针15。当控制器171判定传感器16侦测到之气压低于一临限值时,控制器171可以控制电源组件20输出功率至导电弹针15。当传感器16侦测到一声波时,控制器171可以控制电源组件20输出功率至导电弹针15。当控制器171判定传感器16侦测到之声波之振幅高于一临限值时,控制器171可以控制电源组件20输出功率至导电弹针15。
电路板17之另一侧可包含一或多个发光组件(图中未显示)。根据雾化装置100的不同操作状态,控制器171可以控制电路板17上的一或多个发光组件产生不同的视觉效果。在某些实施例中,电路板17上的一或多个发光组件可以排列成一个阵列(array)。 在某些实施例中,由一或多个发光组件排列成的阵列可具有一或多个行。在某些实施例中,由一或多个发光组件排列成的阵列可具有一或多个列。
在某些实施例中,当使用者对雾化装置100吸气时,控制器171可以控制一或多个发光组件产生一种视觉效果。在某些实施例中,当使用者对雾化装置100充电时,控制器171可以控制一或多个发光组件产生一种视觉效果。在某些实施例中,根据电源组件20的电量,控制器171可以控制一或多个发光组件产生不同视觉效果。在某些實施例中,一或多个发光组件產生的视觉效果可以包括闪烁、间歇式发亮或持续发亮。在某些实施例中,控制器171可以控制一或多个发光组件产生的亮度。在某些实施例中,控制器171可以使由一或多个发光组件排列成的阵列显现特定的图案。在某些实施例中,控制器171可以控制两个不同颜色之发光组件发光并产生混和之色光。
导光组件18设置于电路板17包含一或多个发光组件之一侧。一或多个发光组件产生的光透过导光组件18之后可产生折射。一或多个发光组件产生的光透过导光组件18之后可产生散射。导光组件18可使电路板17上一或多个发光组件发射出的光更加均匀。
电源组件20可设置于电源组件支架21的凹槽21c内。缓冲组件19可设置于电源组件20的表面20s。缓冲组件19可设置于电源组件20与主体外壳24之间。缓冲组件19可与电源组件20的表面20s及主体外壳24之内壁直接接触。虽然图中未显示,可以思及一额外缓冲组件可设置于电源组件20及凹槽21之间。
在某些实施例中,电源组件20可以是电池。在某些实施例中,电源组件20可以是可充电电池。在某些实施例中,电源组件20可以是一次性电池。
电源组件支架21可藉由固定组件25与主体外壳24固接。固定组件25可经由电源组件支架21上的通孔21h及主体外壳24上的通孔24h1将两者固接。
马达22可电连接至控制器171。根据雾化装置100的不同操作状态,控制器171可以控制马达22产生不同的体感效果。在某些实施例中,当使用者吸气超过一特定时间长度时,控制器171可控制马达22产生震动以提醒使用者停止吸气。在某些实施例中,当用户对雾化装置100进行充电时,控制器171可控制马达22产生震动以指示充电已经开始。在某些实施例中,当雾化装置100充电已经完成时,控制器171可控制马达22产生震动以指示充电已经完成。
充电板23设置于主体外壳24底部。充电板23之一端经由主体外壳24之通孔24h2暴露。可经由充电板23对电源组件20进行充电。
主体外壳24包含一透光组件241。透光组件241可包含一或多个穿透主体外壳24之孔。在某些实施例中,透光组件241可呈现大体上圆形。在某些实施例中,透光组件 241可呈现大体上矩形。在某些实施例中,透光组件241可呈现对称外型。在某些实施例中,透光组件241可呈现不对称外型。由电路板17上的一或多个发光组件发出之光经由透光组件241系可视的(visible)。
图3A及3B说明根据本发明的一些实施例的烟弹的截面图。
如图3A所示,烟弹外壳3包含了储油舱30、进气通道31及出气通道32。在某些实施例中,进气通道31及出气通道32可位于烟弹外壳3之内部。在某些实施例中,进气通道31及出气通道32可由烟弹外壳3之内部结构界定。在某些实施例中,进气通道31及出气通道32可由烟弹外壳3与主体外壳24一起界定。在某些实施例中,进气通道31可由外壳3之内部结构与加热组件底座8一同界定。在某些实施例中,出气通道32可由外壳3之内部结构与加热组件底座8一同界定。
进气通道31位于烟弹外壳3之一侧,出气通道32位于烟弹外壳3之另一侧。在某些实施例中,进气通道31可位于加热组件6之一侧,出气通道32可位于加热组件6相对于进气通道31之另一侧。
在某些实施例中,进气通道31之管径可相同于出气通道32之管径。在某些实施例中,进气通道31之管径可不同于出气通道32之管径。在某些实施例中,进气通道31之管径可小于出气通道32之管径。较小的进气通道31管径可以使传感器启动管7更容易产生一负压。较小的进气通道31管径可以使传感器16更容易侦测使用者的吸气动作。
在某些实施例中,进气通道31与出气通道32在烟弹外壳3内可呈现不对称配置。
如图3A所示,雾化室8c可为加热组件6与加热组件底座8之间的空腔。如图3A所示,雾化室8c可由加热组件6与加热组件底座8一同界定。进气通道31与雾化室8c连通。出气通道32与雾化室8c连通。进气通道31与雾化室8c连通的部分位于加热组件6下方。出气通道32与雾化室8c连通的部分位于加热组件6下方。上述配置方式具有许多优点。上述配置方式可以至少部分地使气流避开加热组件6。上述配置方式可以至少部分地使气流不直接流經加热组件6。与气流需直接经过加热组件的现有技术相比,减少了加热组件材料对烟油(可挥发性材料)口味的影响。此外,当用户垂直握持雾化装置100时,出气通道内壁上残留的冷凝液体即使向下倒流也不会滴落在加热组件6上,可避免冷凝液堵塞加热组件6。
如图3A所示,传感器启动管7设置于加热组件底座8上。传感器启动管7具有凸出于加热组件底座8之一长度7L。传感器启动管7超出加热组件底座8之部分可设置于进气通道31内。在雾化装置100的使用过程中,气雾可能冷凝成液体32d并残留在出气通道32内壁上。液体32d可能回流并囤积于储油槽8t(见图8A至8D)中。在某些 情况下,储存于储油舱30内的可挥发材料亦可能经由加热组件6底部渗漏至储油槽8t中。传感器启动管7超出加热组件底座8之部分可避免储油槽8t中囤积的液体经由通孔8h2渗漏。
在某些实施例中,长度7L在1mm至10mm之范围内。在某些实施例中,长度7L在1mm至6mm之范围内。在某些实施例中,长度7L在1mm至4mm之范围内。在某些实施例中,长度7L在1mm至2mm之范围内。在某些实施例中,长度7L可为1.5mm。在某些实施例中,长度7L可为2mm。
在某些实施例中,传感器启动管7与加热组件底座8可为分开之两组件。在某些实施例中,传感器启动管7与加热组件底座8可为一体成型。在某些实施例中,传感器启动管7可由金属材料制成。在某些实施例中,传感器启动管7可由塑料材料制成。在某些实施例中,传感器启动管7与加热组件底座8可由相同材料制成。在某些实施例中,传感器启动管7与加热组件底座8可由不同材料制成。
如图3B所示,进气通道31具有长度31L,出气通道32具有长度32L。在某些实施例中,长度31L可不同于长度32L。在某些实施例中,长度31L可短于长度32L。
长度7L与长度31L可呈一比例关系。在某些实施例中,长度31L与长度7L的比例可在6至7的范围内。在某些实施例中,长度31L与长度7L的比例可在7至8的范围内。在某些实施例中,长度31L与长度7L的比例可在8至9的范围内。在某些实施例中,长度31L与长度7L的比例可在9至10的范围内。
进气通道31经由烟弹外壳3上的通孔31h与外部连通。出气通道32经由烟嘴盖1上的通孔1h与外部连通。在某些实施例中,通孔31h与通孔1h在水平方向上位于不同位置。在某些实施例中,通孔31h至加热组件6的距离与通孔1h至加热组件6的距离不同。在某些实施例中,通孔31h至加热组件6的距离小于通孔1h至加热组件6的距离。
储油舱30系一密封区域。储油舱30可由烟弹外壳3内的隔间结构30w1、30w2以及加热组件顶盖4形成。加热组件顶盖4与隔间结构30w1及30w2接触处具有一密封构件4r。密封构件4r可使加热组件顶盖4与隔间结构30w1及30w2紧密接触。密封构件4r可避免储存于储油舱30内的可挥发性材料渗出。
在某些实施例中,加热组件顶盖4及密封构件4r可以使用相同制程形成。在某些实施例中,加热组件顶盖4及密封构件4r可以使用不同材料经由相同制程形成。在某些实施例中,加热组件顶盖4及密封构件4r可使用射出成型(injection molding)形成。在某些实施例中,使用塑料材料射出成型以产生加热组件顶盖4。在某些实施例中,使用 液态硅胶在加热组件顶盖4上射出成型以产生密封构件4r。
在某些实施例中,加热组件顶盖4及密封构件4r可以使用不同制程形成,随后再将加热组件顶盖4及密封构件4r彼此组合。在某些实施例中,使用塑料材料射出成型以产生加热组件顶盖4,并以热压成型(compression molding)以产生密封构件4r。使用额外的组装步骤将产生的加热组件顶盖4及密封构件4r彼此结合。
图4说明根据本发明的一些实施例的烟弹的截面图。
图4显示了烟弹100A内的气体通道结构。
进气通道31延着一方向延伸(如图4中垂直方向)。进气通道31与雾化室8c的连通部分31c(见图8D)延着一方向延伸(如图4中水平方向)。进气通道31延伸的方向与连通部分31c延伸的方向不同。
出气通道32延着一方向延伸(如图中垂直方向)。出气通道32与雾化室8c的连通部分32c(见图8D)延着一方向延伸(如图中水平方向)。出气通道32延伸的方向与连通部分32c延伸的方向不同。
出气通道32可具有第一部分(如图4中所示,介于3f3至3f4之间的部分)及第二部分(如图4中所示,介于3f4至3f5之间的部分)。第一部分延伸的方向与第二部分延伸的方向可以不同。
进气通道31与雾化室8c连通处具有一方向改变3f2。雾化室8c与出气通道32连通处具有一方向改变3f3。出气通道32在靠近烟嘴盖1上的通孔1h处具有一方向改变3f4。出气通道32与烟嘴盖1上的通孔1h连通处具有一方向改变3f5。
图4显示了使用者对烟弹100A吸气时产生的气流流动方向。当使用者吸气时,空气从烟弹100A与主体外壳24间的空隙进入,并在烟弹100A与主体外壳24之间产生一方向改变3f1。随后空气从通孔31h进入进气通道31,并在进入雾化室8c前产生一方向改变3f2。
使用者吸气的动作使传感器启动管7内产生气流7f。气流7f从传感器启动管7进入烟弹100A。在某些实施例中,气流7f可以进入进气通道31。在某些实施例中,气流7f可随着使用者吸气的动作进入雾化室8c。在某些实施例中,部分的气流7f可随着使用者吸气的动作进入出气通道32。
气流7f经过烟弹100A及主体100B之间的间隙时被传感器16侦测。控制器171根据传感器16侦测之结果启动加热组件6并在雾化室8c中产生气雾。产生的气雾在刚进入出气通道32时产生一方向改变3f3。产生的气雾随后在出气通道32内靠近烟嘴盖1上的通孔1h处产生另一方向改变3f4。产生的气雾在离开烟嘴盖1上的通孔1h时产生 另一方向改变3f5。
在雾化装置100的使用过程中,气雾可能冷凝成液体32d并残留在出气通道32内壁上。冷凝的液体32d具有黏稠性,在出气通道32内壁上不容易产生流动。在用户吸气过程,出气通道32内包含的多个方向改变3f3、3f4、3f5可更佳地避免冷凝的液体32d经由通孔1h被使用者吸入。
气流从进气通道31经过雾化室8c之后产生一温度上升Tr。在某些实施例中,温度上升Tr可以在200℃至220℃的范围内。在某些实施例中,温度上升Tr可以在240℃至260℃的范围内。在某些实施例中,温度上升Tr可以在260℃至280℃的范围内。在某些实施例中,温度上升Tr可以在280℃至300℃的范围内。在某些实施例中,温度上升Tr可以在300℃至320℃的范围内。在某些实施例中,温度上升Tr可以在200℃至320℃的范围内。
从雾化室8c流出的气流在到达通孔1h之前可产生一温度下降Tf。从雾化室8c流出的气流在通过出气通道32期间可产生一温度下降Tf。在某些实施例中,温度下降Tf可以在145℃至165℃的范围内。在某些实施例中,温度下降Tf可以在165℃至185℃的范围内。在某些实施例中,温度下降Tf可以在205℃至225℃的范围内。在某些实施例中,温度下降Tf可以在225℃至245℃的范围内。在某些实施例中,温度下降Tf可以在245℃至265℃的范围内。在某些实施例中,温度下降Tf可以在145℃至265℃的范围内。
在某些实施例中,经由通孔1h被使用者吸入的气雾可以具有低于65℃的温度。在某些实施例中,经由通孔1h被使用者吸入的气雾可以具有低于55℃的温度。在某些实施例中,经由通孔1h被使用者吸入的气雾可以具有低于50℃的温度。在某些实施例中,经由通孔1h被使用者吸入的气雾可以具有低于45℃的温度。在某些实施例中,经由通孔1h被使用者吸入的气雾可以具有低于40℃的温度。
图5A及5B说明根据本发明的一些实施例的烟弹的截面图。
如图5A所示,进气通道31内可设置一阻挡组件33a。阻挡组件33a可具有一通孔33h。通孔33h的管径小于进气通道31的管径。通孔33h可以视为进气通道31的一部分。阻挡组件33a可具有一厚度33L。阻挡组件33a的厚度33L在进气通道31内产生一高度落差。因囤积于储油槽8t内的液体或烟油具有黏稠性,该高度落差可更加地避免囤积于储油槽8t内的液体或烟油逆流。该高度落差可更加地避免囤积于储油槽8t内的液体或烟油经由通孔31h渗漏。
在某些实施例中,阻挡组件33a可以由硅胶制成。在某些实施例中,阻挡组件33a 可以是一个硅胶环。在某些实施例中,阻挡组件33a可以与外壳3使用相同的材料制成。在某些实施例中,阻挡组件33a可以与外壳3使用不同的材料制成。在某些实施例中,阻挡组件33a与外壳3可以是两个分离的构件。在某些实施例中,阻挡组件33a与外壳3可以一体成型。
如图5B所示,进气通道31内可设置一阻挡组件33b。阻挡组件33b可使空气由通孔31h进入进气通道31。阻挡组件33b可防止液体从储油槽8t往通孔31h方向流动。在某些实施例中,阻挡组件33b可以是一个逆止阀。
出气通道32内可设置一阻挡组件34。阻挡组件34可具有一或多个通孔34h。阻挡组件34可使气雾从雾化室8c往通孔1h方向流动。因囤积于储油槽8t内的液体或烟油具有黏稠性,通孔34h之孔径设计为可防止液体或烟油从储油槽8t往通孔1h方向流动。
图6A、6B、6C、6D和6E说明根据本发明的加热组件顶盖的一些实施例的俯视图。
储存于储油舱30内的烟油经过加热组件顶盖401上的通孔4h以及加热组件硅胶套5上的通孔5h与加热组件6接触。
通孔4h的孔径及外型可以依照烟油的性质加以调整。在某些实施例中,若烟油的黏稠度较高,通孔4h可以设计成具有较大孔径。在某些实施例中,若烟油的黏稠度较低,通孔4h可以设计成具有较小孔径。具有较小孔径之通孔4h可以避免过多的烟油直接与加热组件6接触。具有较大孔径之通孔4h可以确保较多的烟油直接与加热组件6接触。
根据烟油的性质适当地调整通孔4h的孔径大小,使加热组件6与充足的烟油接触,可避免加热过程中产生干烧,亦可避免产生之气雾带有焦味。
根据烟油的性质适当地调整通孔4h的孔径大小,可避免加热组件6与过多的烟油接触。过多的烟油无法被加热组件6吸附,会逐渐从储油舱30经由加热组件6渗透至储油槽8t内。渗透至储油槽8t内的烟油量如果太大,将增加烟油流进进气通道31及出气通道32的机率。渗透至储油槽8t内的烟油量如果太大,将增加烟油从进气通道的通孔31h或出气通道的通孔32h渗出的机率。
如图6A所示,加热组件顶盖401上可具有单一通孔4h。通孔4h之外型大致上与加热组件顶盖401之外型相同。在某些实施例中,通孔4h之孔径面积大致上为加热组件顶盖401截面积之80%至90%。在某些实施例中,通孔4h之孔径面积大致上为加热组件顶盖401截面积之70%至80%。
与加热组件顶盖401搭配之加热组件硅胶套5上可具有一通孔5h。通孔5h可与加热组件顶盖401上之通孔4h具有相似外型。通孔5h可与加热组件顶盖401上之通孔4h 具有相似孔径面积。通孔5h可与加热组件顶盖401上之通孔4h具有相似位置。在某些实施例中,通孔5h可与加热组件顶盖401上之通孔4h具有不同外型。在某些实施例中,通孔5h可与加热组件顶盖401上之通孔4h具有不同位置。在某些实施例中,通孔5h可与加热组件顶盖401上之通孔4h具有不同孔径面积。
如图6B所示,加热组件顶盖402上可具有单一通孔4h。通孔4h之外型与加热组件顶盖401之外型不同。在某些实施例中,通孔4h之孔径面积大致上为加热组件顶盖401截面积之50%至60%。在某些实施例中,通孔4h之孔径面积大致上为加热组件顶盖401截面积之40%至50%。在某些实施例中,通孔4h之孔径面积大致上为加热组件顶盖401截面积之30%至40%。
与加热组件顶盖402搭配之加热组件硅胶套5上可具有一通孔5h。通孔5h可与加热组件顶盖402上之通孔4h具有相似外型。通孔5h可与加热组件顶盖402上之通孔4h具有相似孔径面积。通孔5h可与加热组件顶盖402上之通孔4h具有相似位置。在某些实施例中,通孔5h可与加热组件顶盖402上之通孔4h具有不同外型。在某些实施例中,通孔5h可与加热组件顶盖402上之通孔4h具有不同位置。在某些实施例中,通孔5h可与加热组件顶盖402上之通孔4h具有不同孔径面积。
如图6C所示,加热组件顶盖403上可具有单一通孔4h。通孔4h大致上呈圆形。在某些实施例中,通孔4h之孔径面积大致上为3mm 2至4mm 2。在某些实施例中,通孔4h之孔径面积大致上为4mm 2至5mm 2。在某些实施例中,通孔4h之孔径面积大致上为5mm 2至6mm 2。在某些实施例中,通孔4h之孔径面积大致上为6mm 2至7mm 2。在某些实施例中,通孔4h之孔径面积大致上为7mm 2至8mm 2。在某些实施例中,通孔4h之孔径面积大致上为5.5mm 2
与加热组件顶盖403搭配之加热组件硅胶套5上可具有一通孔5h。通孔5h可与加热组件顶盖403上之通孔4h具有相似外型。通孔5h可与加热组件顶盖403上之通孔4h具有相似孔径面积。通孔5h可与加热组件顶盖403上之通孔4h具有相似位置。在某些实施例中,通孔5h可与加热组件顶盖403上之通孔4h具有不同外型。在某些实施例中,通孔5h可与加热组件顶盖403上之通孔4h具有不同位置。在某些实施例中,通孔5h可与加热组件顶盖403上之通孔4h具有不同孔径面积。
如图6D所示,加热组件顶盖404上可具有单一通孔4h。通孔4h大致上呈矩形。在某些实施例中,通孔4h之孔径面积大致上为3mm 2至4mm 2。在某些实施例中,通孔4h之孔径面积大致上为4mm 2至5mm 2。在某些实施例中,通孔4h之孔径面积大致上为5mm 2至6mm 2。在某些实施例中,通孔4h之孔径面积大致上为6mm 2至7mm 2。 在某些实施例中,通孔4h之孔径面积大致上为7mm 2至8mm 2。在某些实施例中,通孔4h之孔径面积大致上为5.5mm 2
与加热组件顶盖404搭配之加热组件硅胶套5上可具有一通孔5h。通孔5h可与加热组件顶盖404上之通孔4h具有相似外型。通孔5h可与加热组件顶盖404上之通孔4h具有相似孔径面积。通孔5h可与加热组件顶盖404上之通孔4h具有相似位置。在某些实施例中,通孔5h可与加热组件顶盖404上之通孔4h具有不同外型。在某些实施例中,通孔5h可与加热组件顶盖404上之通孔4h具有不同位置。在某些实施例中,通孔5h可与加热组件顶盖404上之通孔4h具有不同孔径面积。
虽然并未于图中绘制,但可以考虑通孔4h具有除了圆形及矩形以外的形状。
如图6E所示,加热组件顶盖405上可具个通孔4h1及4h2。通孔4h1可位于加热组件顶盖405之一侧。通孔4h2可位于加热组件顶盖405之另一侧。在某些实施例中,通孔4h1之孔径面积可与通孔4h2之孔径面积相同。在某些实施例中,通孔4h1之孔径面积可与通孔4h2之孔径面积不同。在某些实施例中,通孔4h1之孔径面积可小于通孔4h2之孔径面积。
与加热组件顶盖405搭配之加热组件硅胶套5上可具有两通孔。加热组件硅胶套5上之两通孔可与加热组件顶盖404上之通孔4h1及4h2具有相似外型。加热组件硅胶套5上之两通孔可与加热组件顶盖404上之通孔4h1及4h2具有相似孔径面积。加热组件硅胶套5上之两通孔可与加热组件顶盖404上之通孔4h1及4h2具有相似位置。在某些实施例中,加热组件硅胶套5上之两通孔可与加热组件顶盖404上之通孔4h1及4h2具有不同外型。在某些实施例中,加热组件硅胶套5上之两通孔可与加热组件顶盖404上之通孔4h1及4h2具有不同位置。在某些实施例中,加热组件硅胶套5上之两通孔可与加热组件顶盖404上之通孔4h1及4h2具有不同孔径面积。
图7A、7B、7C及7D说明根据本发明的一些实施例的加热组件示意图。
如图7A所示,加热组件6包含导电组件6p及加热电路61。在某些实施例中,加热电路61可设置于加热组件6之底部表面。在某些实施例中,加热电路61可暴露于加热组件6之底部表面。在某些实施例中,加热电路61可设置于加热组件6内部。在某些实施例中,加热电路61可部分被加热组件6包覆。在某些实施例中,加热电路61可完全被加热组件6包覆。
在某些实施例中,加热电路61可以包含区段61a、区段61b及区段61c。
区段61a沿着一方向延伸。区段61b沿着一方向延伸。区段61c沿着一方向延伸。在某些实施例中,区段61a的延伸方向与区段61b的延伸方向可以平行。在某些实施例 中,区段61a的延伸方向与区段61c的延伸方向可以平行。在某些实施例中,区段61b的延伸方向与区段61c的延伸方向可以平行。
在某些实施例中,区段61a的延伸方向与区段61b的延伸方向可以不平行。在某些实施例中,区段61a的延伸方向与区段61c的延伸方向可以不平行。在某些实施例中,区段61b的延伸方向与区段61c的延伸方向可以不平行。
区段61a、区段61b及区段61c彼此连接。加热电路61可以包含连接部分61d及61e。区段61a与区段61b经由连接部分61d彼此连接。区段61b与区段61c经由连接部分61e彼此连接。
在某些实施例中,连接部分61d具有弯曲外型。在某些实施例中,连接部分61e具有弯曲外型。在某些实施例中,连接部分61d具有一曲率。在某些实施例中,连接部分61e具有一曲率。在某些实施例中,连接部分61d的曲率与连接部分61e的曲率可以相同。在某些实施例中,连接部分61d的曲率与连接部分61e的曲率可以不同。
在某些实施例中,连接部分61d朝向一方向具有凹外型。在某些实施例中,连接部分61e朝向一方向具有凹外型。在某些实施例中,连接部分61d的凹外型与连接部分61e的凹外型朝向不同方向。在某些实施例中,连接部分61d的凹外型与连接部分61e的凹外型朝向相反方向。
区段61a、区段61b及区段61c设置于两个导电组件6p之间。连接部分61d及61e设置于两个导电组件6p之间。区段61a、区段61b及区段61c可以增加加热电路61与加热组件6之接触面积。区段61a、区段61b及区段61c可以增加加热电路61之加热效率。在某些实施例中,亦可考虑加热电路61具有更多区段的情况。在某些实施例中,亦可考虑加热电路61具有较少区段的情况。在某些实施例中,亦可考虑加热电路61具有更多连接部分的情况。在某些实施例中,亦可考虑加热电路61具有较少连接部分的情况。
在某些实施例中,加热电路61可以经由电路印刷技术印刷于加热组件6之底部表面。以电路印刷技术制造加热电路61可以简化加热电路61的制造流程。以电路印刷技术制造加热电路61可以降低加热电路61的制造成本。在某些实施例中,加热电路61可以在加热组件6制造过程中包覆于加热组件6内部。加热电路61包覆于加热组件6内可以避免加热电路61在后续组装过程中产生损坏。
加热电路61电连接至导电组件6p。加热电路61实体连接至导电组件6p。在某些实施例中,加热电路61可直接连接至导电组件6p。在某些实施例中,加热电路61可间接连接至导电组件6p。
加热电路61可包含金属材料。在某些实施例中,加热电路61可包含银。在某些实施例中,加热电路61可包含铂。在某些实施例中,加热电路61可包含钯。在某些实施例中,加热电路61可包含镍合金材料。
加热组件6可包含陶瓷材料。加热组件6可包含硅藻土材料。加热组件6可包含氧化铝。在某些实施例中,加热组件6可包含半导体陶瓷材料。在某些实施例中,加热组件6可包含重掺杂碳化硅。在某些实施例中,加热组件6可包含钛酸钡。在某些实施例中,加热组件6可包含钛酸锶。
加热组件6可具有自限温特性。加热组件6的电阻值可随温度升高而上升。当加热组件6之温度到达一临限值T1时具有电阻值R1。在某些实施例中,當加热组件6之温度到达一临限值T1时,加热电路61无法再使加热组件6温度上升。在某些实施例中,當加热组件6之电阻值到达R1时,加热电路61输出的加热功率无法再使加热组件6温度上升。
在某些实施例中,临限值T1在200℃至220℃的范围内。在某些实施例中,临限值T1在220℃至240℃的范围内。在某些实施例中,临限值T1在240℃至260℃的范围内。在某些实施例中,临限值T1在260℃至280℃的范围内。在某些实施例中,临限值T1在280℃至300℃的范围内。在某些实施例中,临限值T1在280℃至300℃的范围内。在某些实施例中,临限值T2在300℃至320℃的范围内。
在某些实施例中,当加热至临限值T1时,加热组件6具有大于10Ω的电阻值。在某些实施例中,当加热至临限值T1时,加热组件6具有大于15Ω的电阻值。在某些实施例中,当加热至临限值T1时,加热组件6具有大于20Ω的电阻值。在某些实施例中,当加热至临限值T1时,加热组件6具有大于30Ω的电阻值。
加热组件6的自限温特性可以避免加热组件6干烧。加热组件6的自限温特性可以降低雾化装置100烧毁的机率。加热组件6的自限温特性可以增加雾化装置100的安全性。加热组件6的自限温特性可以提高雾化装置100中各组件的使用寿命。加热组件6的自限温特性可以有效降低尼古丁裂解的风险。
加热组件6的自限温特性可以将烟嘴出烟温度控制在特定温度内,避免烫伤嘴唇。在某些实施例中,烟嘴出烟温度可控制在35℃至40℃的範圍內。在某些实施例中,烟嘴出烟温度可控制在40℃至45℃的範圍內。在某些实施例中,烟嘴出烟温度可控制在45℃至50℃的範圍內。在某些实施例中,烟嘴出烟温度可控制在50℃至55℃的範圍內。在某些实施例中,烟嘴出烟温度可控制在55℃至60℃的範圍內。在某些实施例中,烟嘴出烟温度可控制在60℃至65℃的範圍內。
如图7B所示,加热电路61可与导电组件6p间接连接。在某些实施例中,加热电路61可与导电组件6p之间可设置一保护组件62。
在某些实施例中,保护组件62具有可恢复特性。
当保护组件62的温度上升至一临限值T2时,保护组件62形成一开路(open circuit)。当保护组件62的温度下降至一临限值T3时,保护组件62形成一短路(short circuit)。当保护组件62的温度上升至一临限值T2时,导电组件6p无法提供电流至加热电路61。当保护组件62的温度下降至一临限值T3时,导电组件6p可以提供电流至加热电路61。
在某些实施例中,临限值T3可与临限值T2相同。在某些实施例中,临限值T3可与临限值T2不同。在某些实施例中,临限值T3可低于临限值T2。
在某些实施例中,临限值T2在200℃至220℃的范围内。在某些实施例中,临限值T2在220℃至240℃的范围内。在某些实施例中,临限值T2在240℃至260℃的范围内。在某些实施例中,临限值T2在260℃至280℃的范围内。在某些实施例中,临限值T2在280℃至300℃的范围内。在某些实施例中,临限值T2在300℃至320℃的范围内。
在某些实施例中,临限值T3在180℃至200℃的范围内。在某些实施例中,临限值T3在200℃至220℃的范围内。在某些实施例中,临限值T3在220℃至240℃的范围内。在某些实施例中,临限值T3在240℃至260℃的范围内。在某些实施例中,临限值T3在260℃至280℃的范围内。在某些实施例中,临限值T3在280℃至300℃的范围内。在某些实施例中,保护组件62可以是自恢复保险丝。
在某些实施例中,保护组件62不具有可恢复特性。
当保护组件62的温度上升至一临限值T2时,保护组件62形成一开路(open circuit)。在某些实施例中,形成开路的保护组件62不因温度下降形成一短路。
保护组件62可以避免加热组件6干烧。保护组件62可以降低雾化装置100烧毁的机率。保护组件62可以增加雾化装置100的安全性。保护组件62可以提高雾化装置100中各组件的使用寿命。
如图7C所示,加热组件6相对于一轴6x可具有轴对称外型。在某些實施例中,加热组件6可具有不對稱外型。加热组件6在顶部表面可具有一槽6c。槽6c相对于一轴6x可具有轴对称外型。在某些實施例中,槽6c可具有不對稱外型。
加热组件6设置于加热组件顶盖4及加热组件底座8之间。当加热组件6设置于图6E中所示的加热组件顶盖4及加热组件底座8之间时,通孔4h1与轴6x不重迭。当加热组件6设置于图6E中所示的加热组件顶盖4及加热组件底座8之间时,通孔4h2与轴6x不重迭。当加热组件6设置于图6E中所示的加热组件顶盖4及加热组件底座8之 间时,轴6x的延伸方向不经过通孔4h1。当加热组件6设置于图6E中所示的加热组件顶盖4及加热组件底座8之间时,轴6x的延伸方向不经过通孔4h2。
再次参考图3B,当加热组件6设置于烟弹100A内部时,轴6x的延伸方向不经过进气通道31。轴6x的延伸方向與进气通道31的延伸方向不重迭。当加热组件6设置于烟弹100A内部时,轴6x的延伸方向经过通孔1h。当加热组件6设置于烟弹100A内部时,轴6x的延伸方向经过出气通道32靠近通孔1h的部分。当加热组件6设置于烟弹100A内部时,轴6x的延伸方向不经过出气通道32不靠近通孔1h之另一部分。
可挥发性材料可经由槽6c的内壁与加热组件6直接接触。槽6c可具有一开口6s1。槽6c可具有一底部表面6s2。在某些实施例中,开口6s1的面积可以与底部表面6s2的面积相同。在某些实施例中,开口6s1的面积可以与底部表面6s2的面积不同。在某些实施例中,开口6s1的面积可以大于底部表面6s2的面积。加热组件6的槽6c可以增加加热组件6与烟油的接触面积。
图7D显示加热组件6之一部分放大图。如图7D所示,加热组件6可具有孔隙。在某些实施例中,孔隙形状可以呈方块状。在某些实施例中,孔隙形状可以呈圆柱状。在某些实施例中,孔隙形状可以呈环状。在某些实施例中,孔隙形状可以呈六角柱状。在某些实施例中,孔隙形状可以呈蜂巢结构。
烟油可以渗透至加热组件6的孔隙中。加热组件6的孔隙可以浸润在烟油中。加热组件6的孔隙可以增加加热组件6与烟油的接触面积。加热组件6的孔隙可以从四周包围烟油的小分子。在加热过程中,加热组件6的孔隙可使烟油受热更均匀。在加热过程中,加热组件6的孔隙可使烟油更快到达预定温度。在加热过程中,加热组件6的孔隙可以避免焦味产生。
在某些實施例中,加热组件6具有20%至30%之孔隙率。在某些实施例中,加热组件6具有30%至40%之孔隙率。在某些实施例中,加热组件6具有40%至50%之孔隙率。在某些实施例中,加热组件6具有50%至60%之孔隙率。在某些实施例中,加热组件6具有60%至70%之孔隙率。在某些实施例中,加热组件6具有70%至80%之孔隙率。
在某些实施例中,加热组件6具有一定数量的闭气孔。在某些实施例中,闭气孔可包含氧化铝。在某些实施例中,闭气孔可包含碳化硅。在某些实施例中,加热组件6具有10%至20%之闭气孔率。在某些实施例中,加热组件6具有20%至30%之闭气孔率。在某些实施例中,加热组件6具有30%至40%之闭气孔率。
图7E及7F说明根据本发明的一些实施例的加热电路温度示意图。
加热电路61产生的温度可以经由实际量测而得。加热电路61产生的温度可以经由 软件仿真而得。
图7E及7F中显示的加热电路61具有相同材质。图7E及7F中显示的加热电路61具有不同外型。
图7E显示了加热电路61不同区段的温度示意图。在图7E的实施例中,加热电路61具有相同的宽度。在图7E的实施例中,加热电路61在两个导电组件6p之间具有均匀的截面积。加热电路61在不同区段可具有温度61t1、61t2、61t3及61t4。
根据实际量测或软件仿真结果,温度61t4可为加热电路61之最高温度。
根据实际量测或软件仿真结果,温度61t4大于温度61t3;温度61t3大于温度61t2;温度61t2大于温度61t1。
加热电路61的温度可以随着加热电路61的材质差异而变化。加热电路61的温度可以随着加热电路61的截面积差异而变化。在某些实施例中,温度61t1可具有温度约280℃。在某些实施例中,温度61t2可具有温度约380℃。在某些实施例中,温度61t3可具有温度约400℃。在某些实施例中,温度61t4可具有温度约440℃。
图7F显示了加热电路61不同区段的温度示意图。在图7F的实施例中,加热电路61具有不相同的宽度。在图7F的实施例中,加热电路61在两个导电组件6p之间具有非均匀的截面积。在图7F的实施例中,加热电路61在靠近导电组件6p处具有较大截面积。加热电路61在不同区段可具有温度61t1′、61t2′、61t3′及61t4′。
根据实际量测或软件仿真结果,温度61t2′可为加热电路61之最高温度。
根据实际量测或软件仿真结果,温度61t2′大于温度61t1′;温度61t2′大于温度61t3′;温度61t2′大于温度61t4′。
加热电路61的温度可以随着加热电路61的材质差异而变化。加热电路61的温度可以随着加热电路61的截面积差异而变化。在某些实施例中,温度61t1′可具有温度约500℃。在某些实施例中,温度61t2′可具有温度约600℃。在某些实施例中,温度61t3′可具有温度约550℃。在某些实施例中,温度61t4′可具有温度约490℃。
比较图7E及图7F的量测或软件仿真结果可知,图7F的加热电路61的最高温度61t2′大于图7E的加热电路61的最高温度61t4。温度61t2′与温度61t4之间的差异可以达到160℃。
由图7E及图7F的量测或软件仿真结果可知,可以藉由改变加热电路61的截面积来调整加热电路61的最高温度。此外,可以藉由改变加热电路61的截面积来调整加热电路61的加热效率。举例言之,由图7E的加热电路61仅具有一区段达到最高温度61t4,但图7E的加热电路61具有两个区段达到最高温度61t2′。
图7G及7H说明根据本发明的一些实施例的加热组件及加热电路示意图。
图7G所示加热电路61具有区段61a、区段61b及区段61c。区段61a可具有非均匀截面积。区段61a的一端具有宽度61aL1,另一端具有宽度61aL2。宽度61aL1大于宽度61aL2。类似地,区段61c可具有非均匀截面积。区段61c的一端具有较大的宽度。
区段61b可具有均匀截面积。在某些实施例中,区段61b亦可具有非均匀截面积。
加热电路61设置于加热组件6的底部表面上。加热电路61实质上平行于加热组件6的底部表面设置。
图7H所示加热电路61具有区段61a、区段61b及区段61c。
区段61a可具有非均匀截面积。区段61a具有数个宽度为61aL1的子区段,及数个宽度为61aL2的子区段。宽度61aL1大于宽度61aL2。类似地,区段61c可具有非均匀截面积。区段61b可具有均匀截面积。在某些实施例中,区段61b亦可具有非均匀截面积。
图7I及7J说明根据本发明的一些实施例的加热组件及加热电路示意图。
图7I所示加热电路61具有区段61a、区段61b及区段61c。在某些实施例中,加热电路61可以向加热组件6内部延伸。在某些实施例中,加热电路61可以设置于加热组件6的内部。区段61a可具有非均匀截面积。区段61a的一端具有宽度61aL1,另一端具有宽度61aL2。宽度61aL1大于宽度61aL2。类似地,区段61c可具有非均匀截面积。区段61c的一端具有较大的宽度。区段61b可具有均匀截面积。在某些实施例中,区段61b亦可具有非均匀截面积。
图7J显示了加热组件6及加热电路61的横向透视图。图7J显示的加热组件6及加热电路61对应于图7I显示的加热组件6及加热电路61。
如图7J所示,区段61a之一端与导电组件6p连接,区段61a之另一端延伸进入加热组件6内。区段61a从加热组件6的底部表面6s3朝着加热组件6的顶部表面6s4延伸。在某些实施例中,区段61a在加热组件6内并未与槽6c的底部表面6s2接触。在某些实施例中,区段61a在加热组件6内并未与槽6c接触。
区段61b在加热组件6内平行于底部表面6s3延伸。在某些实施例中,区段61b在加热组件6内可以不平行于底部表面6s3。
在某些实施例中,区段61b在加热组件6内并未与槽6c的底部表面6s2接触。在某些实施例中,区段61b可以暴露于槽6c的底部表面6s2。
区段61c之一端与导电组件6p连接,区段61c之另一端延伸进入加热组件6内。区段61c从加热组件6的底部表面6s3朝着加热组件6的顶部表面6s4延伸。区段61b 连接于区段61a及区段61c之间。在某些实施例中,区段61c在加热组件6内并未与槽6c的底部表面6s2接触。在某些实施例中,区段61c在加热组件6内并未与槽6c接触。
区段61a沿着第一方向,从加热组件6的底部表面6s3朝着加热组件6的顶部表面6s4延伸。区段61c沿着第二方向,从加热组件6的底部表面6s3朝着加热组件6的顶部表面6s4延伸。区段61a延伸的第一方向与区段61c延伸的第二方向可以不平行。区段61a延伸的第一方向与区段61c延伸的第二方向可以不垂直。
图7K及7L说明根据本发明的一些实施例的加热组件及加热电路示意图。
图7K所示加热电路61具有区段61a、区段61b及区段61c。在某些实施例中,加热电路61可以向加热组件6内部延伸。在某些实施例中,加热电路61的一部分可以设置于加热组件6的底部表面6s3上。在某些实施例中,加热电路61的一部分可以设置于加热组件6的内部。在某些实施例中,区段61a可以设置于加热组件6的底部表面6s3上。在某些实施例中,区段61b及区段61c可以设置于加热组件6的内部。
区段61a可具有非均匀截面积。区段61a的一端具有宽度61aL1,另一端具有宽度61aL2。宽度61aL1大于宽度61aL2。类似地,区段61c可具有非均匀截面积。区段61c的一端具有较大的宽度。区段61b可具有均匀截面积。在某些实施例中,区段61b亦可具有非均匀截面积。
图7L显示了加热组件6及加热电路61的横向透视图。图7L显示的加热组件6及加热电路61对应于图7K显示的加热组件6及加热电路61。
如图7L所示,区段61a设置于加热组件6的底部表面6s3上,区段61a的一端与导电组件6p连接。区段61b设置于加热组件6内。区段61b于加热组件6内平行于底部表面6s3延伸。区段61c设置于加热组件6内。区段61c于加热组件6内平行于底部表面6s3延伸。区段61c的一端与导电组件6p连接。区段61b连接于区段61a及区段61c之间。
区段61c距离底部表面6s3的距离大于区段61b距离底部表面6s3的距离。
图7M及7N说明根据本发明的一些实施例的加热组件及加热电路示意图。
如图7M所示,加热电路61可具有实质上平坦的上表面61s。在某些实施例中,加热电路61的上表面61s可以与加热组件6的底部表面6s3实质上齐平。在某些实施例中,加热电路61的上表面61s可以不与加热组件6的底部表面6s3齐平。在某些实施例中,加热电路61的上表面61s可以低于加热组件6的底部表面6s3。
如图7N所示,加热电路61可具有厚度。加热电路61可具有实质上平坦的上表面61s。在某些实施例中,加热电路61的上表面61s可以不与加热组件6的底部表面6s3 齐平。在某些实施例中,加热电路61的上表面61s可以高于加热组件6的底部表面6s3。在某些实施例中,加热电路61的上表面61s可以突出于加热组件6的底部表面6s3。
图8A、8B及8C说明根据本发明的一些实施例的加热组件底座示意图。
如图8A所示,加热组件底座8包含支撑构件81及支撑构件82。支撑构件81邻近于进气通道31设置。支撑构件82邻近于出气通道32设置。支撑构件81具有一卡扣部分81c。支撑构件82具有一卡扣部分82c。加热组件底座8经由卡扣部分81c及82c与加热组件顶盖4结合。加热组件底座8经由卡扣部分81c及82c与加热组件顶盖4可移除式地结合。加热组件6设置于加热组件顶盖4及加热组件底座8之间。
支撑构件81可具有一或多个通孔81h。在某些实施例中,支撑构件81可具有6个通孔81h。通孔81h贯穿支撑构件81。通孔81h使雾化室8c与进气通道31彼此连通。通孔81h之孔径面积设计为可使气体通过。通孔81h之排列方式设计为可使气体通过。
通孔81h之孔径面积设计为使烟油不易通过。通孔81h之排列方式设计为使烟油不易通过。在某些实施例中,通孔81h之每一者之直径在0.2mm至0.3mm的范围内。在某些实施例中,通孔81h之每一者之直径在0.3mm至0.4mm的范围内。在某些实施例中,通孔81h之每一者之直径在0.4mm至0.5mm的范围内。在某些实施例中,通孔81h之每一者之直径在0.5mm至0.6mm的范围内。在某些实施例中,通孔81h之每一者之直径在0.6mm至0.7mm的范围内。在某些实施例中,通孔81h之每一者可具有0.55mm的直径。
支撑构件82在靠近加热组件底座8之底部具有一斜坡(ramp)结构82r。斜坡结构82r的横截面一端具有一高度82L。高度82L可以是斜坡结构82r与储油槽8t底部之间的最大距离。在某些实施例中,斜坡结构82r可被一阶梯结构替换。阶梯结构的横截面两端可具有实质相同的高度。斜坡结构82r可形成储油槽8t的一阻挡部分。
在使用者吸气过程中,斜坡结构82r可避免囤积于储油槽8t内的烟油或液体进入出气通道32。在使用者吸气过程中,阶梯结构可避免囤积于储油槽8t内的烟油或液体进入出气通道32。
在某些实施例中,储油槽8t底部可以设置一吸油棉(图中未显示)。吸油棉可以吸附储油槽8t内囤积之烟油或液体。被吸油棉吸附之烟油或液体在储油槽8t内不易产生流动。
如图8B所示,支撑构件81可具有一窗81w。窗81w可以是一开口。窗81w贯穿支撑构件81。窗81w使雾化室8c与进气通道31彼此连通。窗81w之孔径面积设计为可使气体通过。窗81w与储油槽8t底部之间具有一高度81L。高度81L可避免囤积于 储油槽8t内的烟油或液体进入进气通道31。在某些实施例中,高度81L在1mm至2mm的范围中。在某些实施例中,高度81L在2mm至3mm的范围中。在某些实施例中,高度81L在3mm至4mm的范围中。在某些实施例中,高度81L在4mm至5mm的范围中。
高度81L可形成储油槽8t的一阻挡部分。再次参照图8A,一或多个通孔81h與储油槽8t底部之间的最小高度可以等于81L。再次参照图8A,一或多个通孔81h与储油槽8t底部之间的最小高度可以与81L不同。在某些實施例中,一或多个通孔81h與储油槽8t底部之间的最小高度可以大於81L。
如图8C所示,斜坡结构82r与储油槽8t底部之间具有一高度82L。在某些实施例中,高度82L在1mm至2mm的范围中。在某些实施例中,高度82L在2mm至3mm的范围中。在某些实施例中,高度82L在3mm至4mm的范围中。在某些实施例中,高度82L在4mm至5mm的范围中。
图8D说明根据本发明的一些实施例的加热组件底座截面图。储油槽8t具有一深度83L。深度83L可以小于高度81L。深度83L可以小于高度82L。深度83L可以等于高度82L。进气通道31经由连通部分31c与雾化室8c连通。出气通道32经由连通部分32c与雾化室8c连通。
图9A说明根据本发明的一些实施例的雾化装置组合示意图。雾化装置100可包含烟弹100A及主体100B。烟弹100A可设计成可移除式地与主体100B结合。主体100B可具有一收纳部分24c。烟弹100A之一部分可以收纳至收纳部分24c内。收纳部分24c可环绕烟弹100A之一部分。收纳部分24c可覆盖烟弹100A之一部分。烟弹100A之一部分可以被主体100B暴露。
烟弹100A可以以两个方向与主体100B可移除式地结合。在某些实施例中,烟弹100A与主体100B结合时进气通道31可以朝向烟弹100A的左侧。在某些实施例中,烟弹100A与主体100B结合时进气通道31可以朝向烟弹100A的右侧。在上述情况中,不论烟弹100A以何种方向与主体100B结合,雾化装置100皆可正常操作。
当烟弹100A以第一方向(例如,进气通道31可以朝向烟弹100A的左侧)与主体100B结合时,烟弹100A的导电触点9与主体100B的导电弹针15彼此接触。当烟弹100A以第一方向与主体100B结合时,烟弹100A的导电触点9与主体100B的导电弹针15彼此电连接。当烟弹100A以第二方向(例如,进气通道31可以朝向烟弹100A的右侧)与主体100B结合时,烟弹100A的导电触点9与主体100B的导电弹针15彼此接触。当烟弹100A以第二方向与主体100B结合时,烟弹100A的导电触点9与主体 100B的导电弹针15彼此电连接。
图9B及9C说明根据本发明的一些实施例的烟弹截面图。
烟弹100A在距离金属底座11的下表面11s的一长度100L1处的一横截面3s1显示于图9B。烟弹100A在距离金属底座11的下表面11s的一长度100L2处的一横截面3s2显示于图9C。如图9B所示,烟弹外壳3在距离金属底座11的下表面11s的一长度100L1处可具有一不对称横截面3s1。如图9C所示,烟弹外壳3在距离金属底座11的下表面11s的一长度100L2处可具有一对称横截面3s2。在某些实施例中,截面3s1相对于轴100x呈现非轴对称。在某些实施例中,截面3s2相对于轴100x呈现轴对称。如图9A所示,轴100x从烟弹100A顶部延伸至底部。
当烟弹100A与主体100B可移除式地结合时,收纳部分24c包覆横截面3s1。当烟弹100A与主体100B可移除式地结合时,收纳部分24c包覆横截面3s2。
图10说明根据本发明的一些实施例的功率电路示意图。
雾化装置100的输出功率可以由控制器171及与其连接之电子组件控制。如图10所示,控制器171经由电阻R1及R2连接至电源VCC。电源VCC可以由电源组件20提供。控制器171可以经由电阻R1连接至一开关。在某些实施例中,可以使用一晶体管Q1作为开关。在某些实施例中,晶体管Q1可以是一种p型晶体管。在某些实施例中,晶体管Q1可以是一种n型晶体管。控制器171可以控制晶体管Q1开启,控制器171可以控制晶体管Q1关闭。控制器171可以藉由控制晶体管Q1的开启/关闭来控制加热组件6的功率输出。
控制器171可以藉由调整电阻R1及R2的数值来调整电源VCC提供至加热组件6的功率。虽然图10中未绘制,雾化装置100的功率电路可包括更多的电阻或其他电子组件。控制器171可以藉由调整电阻与电子组件之间的连接关系而调整电源VCC提供至加热组件6的功率。
加热组件6可经由晶体管Q1连接至电源VCC。加热组件6可电连接至接地GND。在某些实施例中,加热组件6可经由导电组件6p连接至电源VCC。在某些实施例中,加热组件6可经由导电组件6p连接至接地GND。
加热组件6上可设置一温度传感器63。温度传感器63可以感测加热组件6的温度并提供一讯号至控制器171。在某些实施例中,温度传感器63可包含热敏电阻器。在某些实施例中,温度传感器63可包含正温度系数(PTC)热敏电阻器。在某些实施例中,温度传感器63可包含负温度系数(NTC)热敏电阻器。
温度传感器63可以设定成当加热组件6温度上升至阈值6T1时传送一讯号给控制 器171。控制器171可根据温度传感器63提供的讯号关闭晶体管Q1。温度传感器63可以设定成当加热组件6温度下降至阈值6T2时传送一讯号给控制器171。控制器171可根据温度传感器63提供的讯号开启晶体管Q1。
在某些实施例中,控制器171可以监控热敏电阻器的电阻值。在某些实施例中,控制器171可以根据热敏电阻器的电阻值判断加热组件6的温度是否上升至阈值6T1。控制器171可根据热敏电阻器的电阻值关闭晶体管Q1。控制器171可根据热敏电阻器的电阻值开启晶体管Q1。
不同烟油的可具有不同的雾化温度。举例言之,某一种烟油可能具有较多的可挥发性成分而具有较低的雾化温度,某另一种烟油可能具有较少的可挥发性成分而具有较高的雾化温度。
阈值6T1可以预先设置。阈值6T1可以根据不同烟油的雾化温度而改变。
在某些实施例中,阈值6T1可以设置为烟油的雾化温度的90%。在某些实施例中,阈值6T1可以设置为烟油的雾化温度的85%。在某些实施例中,阈值6T1可以设置为烟油的雾化温度的85%至90%之间。
图11A说明根据本发明的一些实施例的输出功率控制方法流程图。
输出功率控制方法200可包含数个步骤。在某些实施例中,输出功率控制方法200中的数个步骤可以依照图11A中所示顺序依序进行。在某些实施例中,输出功率控制方法200中的数个步骤可以不依照图11A中所示顺序进行。
在步骤201中侦测使用者的吸气动作。步骤201可以由传感器16及控制器171搭配进行。
在步骤202中判断停止向加热组件6输出功率的时间是否大于阈值TN1。若停止向加热组件6输出功率的时间大于或等于阈值TN1,进行步骤203。若停止向加热组件6输出功率的时间未达阈值TN1,进行步骤204。步骤202可以由控制器171内设定一定时器进行。控制器171内可以设定一定时器,从电源组件20停止向加热组件6提供功率的时间点开始计时。
在某些实施例中,阈值TN1在15秒至60秒的范围内。在某些实施例中,阈值TN1在25秒至40秒的范围内。在某些实施例中,阈值TN1可以是30秒。
在步骤203中,在时间段S1向加热组件6输出功率P1,并在紧随时间段S1之后的时间段S2向加热组件输出功率P2。时间段S1及时间段S2皆处于使用者持续吸气的动作内。步骤204可以由控制器171、电路板17、电源组件20、导电触点9、导电弹针15及加热组件6搭配进行。
在某些实施例中,功率P1可以大于功率P2。在某些实施例中,P1在6W至15W的范围中。在某些实施例中,P1在7.2W至9W的范围中。在某些实施例中,P2在4.5W至9W的范围中。在某些实施例中,P2在6W至8W的范围中。
在某些实施例中,S1在0.1秒至2秒的范围中。在某些实施例中,S1在0.1秒至1秒的范围中。在某些实施例中,S1在0.1秒至0.6秒的范围中。
在某些实施例中,S2在0.1秒至4秒的范围中。在某些实施例中,S2在0.1秒至3.5秒的范围中。
步骤202及步骤203具有许多优点。藉由阈值TN1,可以判定雾化装置100是否长时间未被使用。当用户长时间未使用雾化装置100时,加热组件6呈现冷却状态。当用户对雾化装置100进行第一口吸气动作,雾化装置100可以在时间段S1输出较大功率P1。较大功率P1可以加速气雾产生速度。当使用者的吸气动作达到时间段S2,加热组件6已经具有特定温度,雾化装置100可以将输出功率降低至P2。降低的功率P2可以使气雾均匀产生。降低的功率P2可以使电源组件20的使用时间增加。
在步骤204中,向加热组件输出功率P3。步骤203可以由控制器171、电路板17、电源组件20、导电触点9、导电弹针15及加热组件6搭配进行。
在某些实施例中,P3在3.5W至10W的范围中。在某些实施例中,P3在4.5W至9W的范围中。在某些实施例中,P3在6W至8W的范围中。在某些实施例中,P3可以与P2相同。在某些实施例中,P3可以与P2不同。
步骤202及步骤204具有许多优点。藉由阈值TN1,可以判定雾化装置100是否在短时间内曾被用户使用。若雾化装置100在短时间内曾被用户使用,加热组件6尚未完全冷却。若雾化装置100在短时间内曾被用户使用,加热组件6具有特定温度。此时雾化装置100可以将输出功率调整为P3。经调整的功率P3可以使气雾均匀产生。经调整的功率P3可以使电源组件20的使用时间增加。
在步骤205中,当向加热组件输出功率的时间已到达阈值TN2,停止向加热组件输出功率。步骤205可以由控制器171内设定一定时器进行。
步骤205具有许多优点。当加热组件6持续加热时间到达阈值TN2时停止加热可以避免加热组件6过热。加热组件6过热可能造成雾化装置100内部其他组件损坏。加热组件6过热可能降低雾化装置100内部组件寿命。当加热组件6持续加热时间到达阈值TN2时停止加热可以避免加热组件6干烧。加热组件6干烧可能产生焦味。加热组件6干烧可能产生有毒物质。
在某些实施例中,阈值TN2在2秒至10秒的范围中。
在步骤206中,当未侦测到吸气动作的持续时间到达阈值TN3,触发雾化装置100進入一待机状态。在处于待机状态时,雾化装置100功率消耗降低。在处于待机状态时,传感器16仍保持活动状态。步骤206可以由控制器171内设定一定时器进行。
當使用者停止吸氣動作時,输出功率控制方法200可進一步包含停止向加热组件6输出功率的步驟。此步驟可藉由控制器171及传感器16搭配进行。
图11B说明根据本发明的一些实施例的输出功率控制方法流程图。
输出功率控制方法300可包含数个步骤。在某些实施例中,输出功率控制方法300中的数个步骤可以依照图11B中所示顺序依序进行。在某些实施例中,输出功率控制方法300中的数个步骤可以不依照图11B中所示顺序进行。
在步骤301中,根据烟弹100A内的烟油雾化温度设定阈值6T1。在某些实施例中,阈值6T1可以设置为烟油的雾化温度的90%。在某些实施例中,阈值6T1可以设置为烟油的雾化温度的85%。在某些实施例中,阈值6T1可以设置为烟油的雾化温度的85%至90%之间。
在步骤302中,设定高功率时间参数HP。高功率时间参数HP可根据所欲达成之使用者体验设定。举例言之,当用户对雾化装置吸气时,用户可能希望在短时间内可以吸取较大的烟雾量。高功率时间参数HP可根据用户期待的气雾产生时间设定。在某些实施例中,高功率时间参数HP可以设定在0.01秒至0.9秒的范围内。在某些实施例中,高功率时间参数HP可以设定在0.01秒至1.2秒的范围内。在某些实施例中,高功率时间参数HP可以设定在0.01秒至1.5秒的范围内。范围内。在某些实施例中,高功率时间参数HP可以设定在0.01秒至1.2秒的范围内。在某些实施例中,高功率时间参数HP可以设定在0.01秒至1.8秒的范围内。
在步骤303中,根据阈值6T1及高功率时间参数HP设定功率W1。当雾化装置提供功率W1至加热组件6持续HP后,加热组件6的温度可上升至阈值6T1。功率W1的数值与阈值6T1相关联。功率W1的数值与高功率时间参数HP相关联。
在某些实施例中,功率W1可在9W到10W的范围中。在某些实施例中,功率W1可在10W到12W的范围中。在某些实施例中,功率W1可在9W到12W的范围中。在某些实施例中,功率W1可在12W至15W的范围中。
在步骤304中侦测使用者的吸气动作。步骤304可以由传感器16及控制器171搭配进行。
在步骤305中,雾化装置向加热组件6输出功率W1。
在步骤306中,判断加热组件6的温度到达阈值6T1。步骤306可由温度传感器63 及控制器171搭配进行。在步骤306中,若加热组件6的温度到达阈值6T1,则进行步骤308。在步骤308中,雾化装置向加热组件6输出功率W2。输出功率W2可小于输出功率W1。在某些实施例中输出功率W2可在7W到8W的范围中。在某些实施例中,功率W2可在8W到10W的范围中。在某些实施例中,功率W2可在10W至13W的范围中。在步骤307中,判断提供功率W1至加热组件之时间是否已达到HP。若提供功率W1至加热组件之时间已达到HP,则进行步骤308。
图11C及11D说明根据本发明的一些实施例的输出功率控制方法流程图。
图11C及11D所示流程图可以接续在图11B之步骤308之后执行。
参考图11C。在步骤501中,判断雾化装置提供功率至加热组件6之总时间是否已达到阈值TM1。若雾化装置提供功率至加热组件6之总时间已达到阈值TM1,则进行步骤502。在步骤502中雾化装置停止向加热组件6提供功率。在某些实施例中,阈值TM1可以设定为3秒。在某些实施例中,阈值TM1可以设定为3.5秒。在某些实施例中,阈值TM1可以设定为4秒。在某些实施例中,阈值TM1可以设定为4.5秒。
参考图11D。在步骤503中,判断雾化装置提供功率至加热组件6之总时间是否已达到阈值TM2。若雾化装置提供功率至加热组件6之总时间已达到阈值TM2,则进行步骤504。在步骤504中,雾化装置向加热组件6输出功率W3。输出功率W3可小于输出功率W2。在某些实施例中输出功率W3可在5W到6W的范围中。在某些实施例中,功率W3可在6W到8W的范围中。在某些实施例中,功率W3可在8W至11W的范围中。在某些实施例中,阈值TM2可以设定在1.2秒至1.5秒的范围内。在某些实施例中,阈值TM2可以设定在1.5秒至1.8秒的范围内。在某些实施例中,阈值TM2可以设定在1.8秒至2.1秒的范围内。在某些实施例中,阈值TM2可以设定在2.1秒至2.4秒的范围内。
在步骤505中,判断雾化装置提供功率至加热组件6之总时间是否已达到阈值TM3。若雾化装置提供功率至加热组件6之总时间已达到阈值TM3,则进行步骤506。在步骤506中雾化装置停止向加热组件6提供功率。在某些实施例中,阈值TM3可以设定在3.2秒至3.5秒的范围内。在某些实施例中,阈值TM3可以设定在3.5秒至3.8秒的范围内。在某些实施例中,阈值TM3可以设定在3.8秒至4.1秒的范围内。在某些实施例中,阈值TM3可以设定在4.1秒至4.4秒的范围内。
根据图11B所示之流程操作雾化装置具有许多优势。根据图11B所示之流程操作雾化装置可以加速气雾产生的速度,提高用户体验。根据图11B所示之流程操作雾化装置可以加速气雾产生的速度,同时优化雾化装置的功率损耗。
根据图11C所示之流程操作雾化装置具有许多优势。根据图11C所示之流程操作雾化装置可以加速气雾产生的速度,提高用户体验。根据图11C所示之流程操作雾化装置可以加速气雾产生的速度,同时优化雾化装置的功率损耗。
根据图11D所示之流程操作雾化装置具有许多优势。根据图11D所示之流程操作雾化装置可以加速气雾产生的速度,提高用户体验。根据图11D所示之流程操作雾化装置可以加速气雾产生的速度,同时优化雾化装置的功率损耗。
如本文中所使用,空间相对术语,例如,“之下”、“下方”、“下部”、“上方”、“上部”、“下部”、“左侧”、“右侧”及类似者可在本文中用于描述的简易以描述如图中所说明的一个元件或特征与另一元件或特征的关系。除了图中所描绘的定向之外,空间相对术语意图涵盖在使用或操作中的装置的不同定向。设备可以其它方式定向(旋转90度或处于其它定向),且本文中所使用的空间相对描述词同样可相应地进行解释。应理解,当一元件被称为“连接到”或“耦合到”另一元件时,其可直接连接或耦合到另一元件,或可存在中间元件。
如本文中所使用,术语“近似地”、“基本上”、“基本”及“约”用于描述并考虑小变化。当与事件或情况结合使用时,所述术语可指事件或情况精确地发生的例子以及事件或情况极近似地发生的例子。如本文中相对于给定值或范围所使用,术语“约”大体上意味着在给定值或范围的±10%、±5%、±1%或±0.5%内。范围可在本文中表示为自一个端点至另一端点或在两个端点之间。除非另外规定,否则本文中所公开的所有范围包括端点。术语“基本上共面”可指沿同一平面定位的在数微米(μm)内的两个表面,例如,沿着同一平面定位的在10μm内、5μm内、1μm内或0.5μm内。当参考“基本上”相同的数值或特性时,术语可指处于所述值的平均值的±10%、±5%、±1%或±0.5%内的值。
如本文中所使用,术语“近似地”、“基本上”、“基本”和“约”用于描述和解释小的变化。当与事件或情况结合使用时,所述术语可指事件或情况精确地发生的例子以及事件或情况极近似地发生的例子。举例来说,当与数值结合使用时,术语可指小于或等于所述数值的±10%的变化范围,例如,小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%,或小于或等于±0.05%。举例来说,如果两个数值之间的差小于或等于所述值的平均值的±10%(例如,小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%,或小于或等于±0.05%),那么可认为所述两个数值“基本上”或“约”相同。举例来说,“基本上”平行可以指相对于0°的小于或等于±10°的角度变化范围,例如,小于或等于±5°、小于或等于±4°、小于或等于 ±3°、小于或等于±2°、小于或等于±1°、小于或等于±0.5°、小于或等于±0.1°,或小于或等于±0.05°。举例来说,“基本上”垂直可以指相对于90°的小于或等于±10°的角度变化范围,例如,小于或等于±5°、小于或等于±4°、小于或等于±3°、小于或等于±2°、小于或等于±1°、小于或等于±0.5°、小于或等于±0.1°,或小于或等于±0.05°。
举例来说,如果两个表面之间的位移等于或小于5μm、等于或小于2μm、等于或小于1μm或等于或小于0.5μm,那么两个表面可以被认为是共面的或基本上共面的。如果表面相对于平面在表面上的任何两个点之间的位移等于或小于5μm、等于或小于2μm、等于或小于1μm或等于或小于0.5μm,那么可以认为表面是平面的或基本上平面的。
如本文中所使用,术语“导电(conductive)”、“导电(electrically conductive)”和“电导率”是指转移电流的能力。导电材料通常指示对电流流动呈现极少或零对抗的那些材料。电导率的一个量度是西门子/米(S/m)。通常,导电材料是电导率大于近似地10 4S/m(例如,至少10 5S/m或至少10 6S/m)的一种材料。材料的电导率有时可以随温度而变化。除非另外规定,否则材料的电导率是在室温下测量的。
如本文中所使用,除非上下文另外明确规定,否则单数术语“一(a/an)”和“所述”可包含复数指示物。在一些实施例的描述中,提供于另一组件“上”或“上方”的组件可涵盖前一组件直接在后一组件上(例如,与后一组件物理接触)的情况,以及一或多个中间组件位于前一组件与后一组件之间的情况。
除非另外规定,否则例如“上方”、“下方”、“上”、“左”、“右”、“下”、“顶部”、“底部”、“垂直”、“水平”、“侧面”、“高于”、“低于”、“上部”、“在……上”、“在……下”、“向下”等等的空间描述是相对于图中所示的定向来指示的。应理解,本文中所使用的空间描述仅出于说明的目的,且本文中所描述的结构的实际实施方案可以任何定向或方式在空间上布置,其前提是本发明的实施例的优点是不会因此类布置而有偏差。
虽然已参考本发明的特定实施例描述并说明本发明,但是这些描述和说明并不限制本发明。所属领域的技术人员可清晰地理解,在不脱离如由所附权利要求书定义的本发明的真实精神和范围的情况下,可进行各种改变,且可在实施例内取代等效组件。图示可能未必按比例绘制。归因于制造过程中的变量等等,本发明中的艺术再现与实际设备之间可能存在区别。可能存在并未特定说明的本发明的其它实施例。应将本说明书和图式视为说明性而非限定性的。可进行修改,以使特定情形、材料、物质组成、物质、方法或过程适宜于本发明的目标、精神和范围。所有此类修改都意图在此所附权利要求书的范围内。虽然已参考按特定次序执行的特定操作描述本文中所公开的方法,但应理解, 可在不脱离本发明的教示的情况下组合、细分或重新排序这些操作以形成等效方法。因此,除非本文中特别指示,否则操作的次序和分组并非本发明的限制。
前文概述本发明的若干实施例及细节方面的特征。本发明中描述的实施例可容易地用作用于设计或修改其它过程的基础以及用于执行相同或相似目的和/或获得引入本文中的实施例的相同或相似优点的结构。此类等效构造并不脱离本发明的精神和范围,并且可在不脱离本发明的精神和范围的情况下作出各种改变、替代和变化。

Claims (21)

  1. 一种雾化装置,其包括:
    加热组件底座、加热组件顶盖、及设置于所述加热组件底座及所述加热组件顶盖之间的加热组件;
    所述加热组件具有第一表面及相对于所述第一表面的第二表面,所述加热组件具有加热电路;
    所述加热电路具有第一区段,所述第一区段的第一部分具有第一宽度且所述第一区段的第二部分具有第二宽度,其中所述第一区段的所述第一宽度大于所述第一区段的所述第二宽度。
  2. 根据权利要求1所述的雾化装置,所述加热电路进一步包括第二区段,所述第二区段的第一部分具有第一宽度且所述第二区段的第二部分具有第二宽度,其中所述第二区段的所述第一宽度等于所述第二区段的所述第二宽度。
  3. 根据权利要求2所述的雾化装置,所述加热电路进一步包括第三区段,所述第三区段的第一部分具有第一宽度且所述第三区段的第二部分具有第二宽度,其中所述第三区段的所述第一宽度大于所述第三区段的所述第二宽度。
  4. 根据权利要求1所述的雾化装置,其中所述第一区段设置于所述加热组件的所述第二表面上,且所述第一区段平行于所述加热组件的所述第二表面。
  5. 根据权利要求1所述的雾化装置,其中所述第一区段从所述加热组件的所述第二表面延伸至所述加热组件内,且所述第一区段与所述加热组件的所述第二表面不平行。
  6. 根据权利要求1所述的雾化装置,其中所述第一区段具有第一表面,且所述第一区段的所述第一表面与所述加热组件的所述第二表面齐平。
  7. 根据权利要求1所述的雾化装置,其中所述第一区段具有第一表面,且所述第一区段的所述第一表面突出于所述加热组件的所述第二表面。
  8. 根据权利要求3所述的雾化装置,所述第二区段及所述第三区段设置于所述加热组件的所述第一表面及所述第二表面之间,且所述第三区段与所述第二表面间的距离大于所述第二区段与所述第二表面间的距离。
  9. 根据权利要求3所述的雾化装置,所述第一区段从所述加热组件的所述第二表面以第一方向延伸至所述加热组件内,所述第三区段从所述加热组件的所述第二表面以第二方向延伸至所述加热组件内,且所述第一方向与所述第二方向不平行。
  10. 根据权利要求3所述的雾化装置,所述第一区段从所述加热组件的所述第二表面以第一方向延伸至所述加热组件内,所述第三区段从所述加热组件的所述第二表面以第二方向延伸至所述加热组件内,且所述第一方向与所述第二方向不垂直。
  11. 一种加热组件,其包括:
    第一表面及相对于所述第一表面的第二表面;
    第一导电组件、第二导电组件及连接于所述第一导电组件及所述第二导电组件之间的加热电路;
    所述加热电路具有第一区段,所述第一区段的第一部分具有第一宽度且所述第一区段的第二部分具有第二宽度,其中所述第一区段的所述第一宽度大于所述第一区段的所述第二宽度。
  12. 根据权利要求11所述的加热组件,其中所述第一区段的所述第一部分与所述第一导电组件连接。
  13. 根据权利要求11所述的加热组件,其中所述第一区段的所述第二部分与所述第一导电组件连接。
  14. 根据权利要求11所述的加热组件,所述加热电路进一步包括第二区段及第三区段,所述第二区段连接于所述第一区段及所述第三区段之间,所述第三区段的第一部分具有第一宽度且所述第三区段的第二部分具有第二宽度,其中所述第三区段的所述第一宽度大于所述第三区段的所述第二宽度。
  15. 根据权利要求11所述的加热组件,其中所述第一表面上具有开口,所述开口从所述 第一表面向所述第二表面延伸形成槽,所述第一区段从所述第二表面延伸至所述的加热组件内,所述第一区段与所述槽不接触。
  16. 根据权利要求11所述的加热组件,所述第一区段进一步包括具有第三宽度的第三部分及具有第四宽度的第四部分,其中所述第三宽度等于所述第一宽度,且所述第四宽度等于所述第二宽度。
  17. 一种操作雾化装置的方法,所述雾化装置包括根据权利要求11所述的加热组件,所述方法包含:
    根据烟油的雾化温度设定第一阈值;
    设定高功率时间参数;
    根据所述第一阈值及所述高功率时间参数设定第一功率;
    响应于使用者的吸气动作向所述加热组件输出所述第一功率;及
    向所述加热组件输出第二功率,所述第二功率小于所述第一功率。
  18. 根据权利要求17所述的方法,其中向所述加热组件输出所述第二功率系回应于所述加热组件的温度到达所述第一阈值而执行。
  19. 根据权利要求17所述的方法,其中向所述加热组件输出所述第二功率系回应于提供所述第一功率至所述加热组件之时间已达到所述高功率时间参数而执行。
  20. 根据权利要求17所述的方法,其中所述第一功率在9W到12W的范围中。
  21. 根据权利要求17所述的方法,其中所述第一阈值为所述烟油的所述雾化温度的90%。
PCT/CN2019/098389 2019-07-30 2019-07-30 雾化装置及其方法 WO2021016866A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098389 WO2021016866A1 (zh) 2019-07-30 2019-07-30 雾化装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098389 WO2021016866A1 (zh) 2019-07-30 2019-07-30 雾化装置及其方法

Publications (1)

Publication Number Publication Date
WO2021016866A1 true WO2021016866A1 (zh) 2021-02-04

Family

ID=74229336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098389 WO2021016866A1 (zh) 2019-07-30 2019-07-30 雾化装置及其方法

Country Status (1)

Country Link
WO (1) WO2021016866A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1190335A (zh) * 1995-04-20 1998-08-12 菲利普莫里斯生产公司 用于电气吸烟系统中的卷烟和加热器
CN102781266A (zh) * 2009-12-30 2012-11-14 菲利普莫里斯生产公司 用于生成浮质的系统的成形的加热器
CN104799438A (zh) * 2015-04-30 2015-07-29 云南昆船数码科技有限公司 一种低温加热电子卷烟烟具发热器
CN108851244A (zh) * 2018-07-24 2018-11-23 深圳麦克韦尔股份有限公司 烘烤烟具及真空隔热的加热组件
CN208657988U (zh) * 2018-08-18 2019-03-29 珠海腾鑫电子有限公司 电子烟用氧化锆尖头陶瓷发热体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1190335A (zh) * 1995-04-20 1998-08-12 菲利普莫里斯生产公司 用于电气吸烟系统中的卷烟和加热器
CN102781266A (zh) * 2009-12-30 2012-11-14 菲利普莫里斯生产公司 用于生成浮质的系统的成形的加热器
CN104799438A (zh) * 2015-04-30 2015-07-29 云南昆船数码科技有限公司 一种低温加热电子卷烟烟具发热器
CN108851244A (zh) * 2018-07-24 2018-11-23 深圳麦克韦尔股份有限公司 烘烤烟具及真空隔热的加热组件
CN208657988U (zh) * 2018-08-18 2019-03-29 珠海腾鑫电子有限公司 电子烟用氧化锆尖头陶瓷发热体

Similar Documents

Publication Publication Date Title
WO2020034771A1 (zh) 雾化装置及其方法
EP3771353A1 (en) Vaporization device and method thereof
CN211510568U (zh) 加热组件和雾化装置
US20200015524A1 (en) Personal vaporizer
US11986012B2 (en) Aerosol delivery device including a control body, an atomizer body, and a cartridge and related methods
WO2017161715A1 (zh) 一种超声波雾化器及电子烟
WO2017011419A1 (en) Wickless vaporizing devices and methods
CN110731544A (zh) 雾化芯及电子雾化装置
CN110547514A (zh) 一种雾化装置
WO2021016866A1 (zh) 雾化装置及其方法
WO2021000399A1 (zh) 一种雾化装置
CN212088060U (zh) 一种雾化装置
CN111035064A (zh) 一种雾化装置
WO2021134224A1 (zh) 一种雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939298

Country of ref document: EP

Kind code of ref document: A1