WO2021134224A1 - 一种雾化装置 - Google Patents

一种雾化装置 Download PDF

Info

Publication number
WO2021134224A1
WO2021134224A1 PCT/CN2019/129950 CN2019129950W WO2021134224A1 WO 2021134224 A1 WO2021134224 A1 WO 2021134224A1 CN 2019129950 W CN2019129950 W CN 2019129950W WO 2021134224 A1 WO2021134224 A1 WO 2021134224A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
controller
time
power
assembly
Prior art date
Application number
PCT/CN2019/129950
Other languages
English (en)
French (fr)
Inventor
阳祖刚
付尧
陶兴明
张金
冯舒婷
Original Assignee
深圳雾芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳雾芯科技有限公司 filed Critical 深圳雾芯科技有限公司
Priority to PCT/CN2019/129950 priority Critical patent/WO2021134224A1/zh
Publication of WO2021134224A1 publication Critical patent/WO2021134224A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring

Definitions

  • the present disclosure generally relates to an electronic device, and in particular, to a vaporization device that provides an aerosol.
  • an electronic cigarette is an electronic product that heats and atomizes an atomizable solution and generates an aerosol for users to inhale.
  • an electronic cigarette product includes a casing, an oil storage chamber, an atomization chamber, a heating component, an air inlet, an air flow channel, an air outlet, a power supply device, a sensing device, and a control device.
  • the oil storage chamber is used to store the atomizable solution
  • the heating component is used to heat and atomize the atomizable solution and generate aerosol.
  • the air inlet and the atomizing chamber communicate with each other, and provide air to the heating assembly when the user inhales.
  • the aerosol generated by the heating element is first generated in the atomization chamber, and then inhaled by the user through the air flow channel and the air outlet.
  • the power supply device provides the power required by the heating element, and the control device controls the heating time of the heating element according to the user's inhalation action detected by the sensing device.
  • the shell covers the above-mentioned components.
  • the existing electronic cigarette products have different defects.
  • the existing e-cigarette products do not take into account the control of the power output of the heating element.
  • the power supply device continues to heat the heating element, and the heating element may overheat and produce a burning smell.
  • the burning smell will cause a bad user experience.
  • Overheated heating components may also cause the internal components of the electronic cigarette to be destroyed or even catch fire.
  • Existing electronic cigarette products that do not control the power output generally have the disadvantage of fast power consumption.
  • electronic cigarette products that do not control the power output of the heating component may generate excessive aerosol each time the user inhales, and the excessive aerosol that is not inhaled by the user will remain in the electronic cigarette product and condense. Become a liquid. Excessive condensed liquid inside the e-cigarette product will cause leakage, which not only easily causes damage to the electronic components in the e-cigarette product, but also easily pollutes the user's other personal belongings, resulting in a bad user experience.
  • the present disclosure proposes an atomization device that can solve the above-mentioned problems.
  • the atomization device includes an atomization device, which includes a heating component, a power supply component, and a controller electrically connected to the power supply component, and the heating component includes an adsorption component and a heating circuit wound around the adsorption component;
  • the controller controls the power supply assembly to output a first power to the heating assembly at a first time, and controls the power supply assembly to output a second power to the heating assembly at a second time; wherein the heating circuit is wound Wrap the suction assembly in 5 turns, the controller determines the second time according to the first time, and the second power is different from the first power.
  • the atomization device includes a heating component, the heating component includes an adsorption component and a heating circuit, and the adsorption component is wound; a power supply component; and a controller electrically connected to the power supply component; the controller is configured to control
  • the power supply component outputs the first power and the second power to the heating component; wherein the wire diameter of the heating circuit is in the range of 0.16mm to 0.24mm.
  • FIG. 1 illustrates a schematic diagram of an atomization device according to some embodiments of the present disclosure.
  • FIGS. 2A and 2B illustrate an exploded view of a part of an atomization device according to some embodiments of the present disclosure.
  • 3A and 3B illustrate an exploded view of a part of an atomization device according to some embodiments of the present disclosure.
  • FIGS. 4A and 4B illustrate cross-sectional views of cigarette cartridges according to some embodiments of the present disclosure.
  • FIG. 5 illustrates a circuit block diagram of an atomization device according to some embodiments of the present disclosure.
  • FIG. 6 illustrates a schematic diagram of the interaction between an electronic cigarette and a smart terminal according to some embodiments of the present disclosure.
  • FIG. 7 illustrates a schematic diagram of a heating element according to some embodiments of the present disclosure.
  • first feature on or on the second feature may include embodiments in which the first feature and the second feature are formed in direct contact, and may also include additional features that may be formed on An embodiment between the first feature and the second feature so that the first feature and the second feature may not be in direct contact.
  • present disclosure may repeat reference numerals and/or letters in various examples. This repetition is for the purpose of simplification and clarity, and does not in itself indicate the relationship between the various embodiments and/or configurations discussed.
  • FIG. 1 illustrates a schematic diagram of an atomization device according to some embodiments of the present disclosure.
  • the atomization device 100 may include a cartridge 100A and a main body 100B.
  • the cartridge 100A and the main body 100B can be designed as a whole.
  • the cartridge 100A and the main body 100B can be designed as two separate components.
  • the cartridge 100A may be designed to be removably combined with the main body 100B. In some embodiments, when the cartridge 100A is combined with the main body 100B, a part of the cartridge 100A is received in the main body 100B.
  • FIGS. 2A and 2B illustrate an exploded view of a part of an atomization device according to some embodiments of the present disclosure.
  • the cartridge 100A includes a mouthpiece 1, a cartridge housing 2, a sealing component 3, a heating component top cover 4, a heating component 5, a heating component base 6 and a cartridge base 7.
  • the cigarette holder cover 1 and the cartridge housing 2 may be two separate components. In some embodiments, the cigarette holder cover 1 and the cartridge housing 2 may be integrally formed.
  • the cigarette holder cover 1 has a hole 1h. The hole 1h forms a part of the aerosol channel. The aerosol generated by the atomizing device 100 can be ingested by the user through the hole 1h.
  • the sealing assembly 3 can be sleeved on the tube 4t1 of the top cover 4 of the heating assembly.
  • the tube 4t1 of the sealing assembly 3 and the top cover 4 of the heating assembly has a similar appearance.
  • the seal assembly 3 has an annular shape.
  • the sealing component 3 may have other shapes.
  • the sealing component 3 may have flexibility.
  • the sealing assembly 3 may have ductility.
  • the sealing component 3 may comprise silicone material.
  • the sealing component 3 may have a hardness between 20-40. In some embodiments, the sealing component 3 may have a hardness between 40-60. In some embodiments, the sealing component 3 may have a hardness between 60 and 75.
  • the hardness unit used here is Shore Hardness A (HA).
  • the top cover 4 of the heating assembly has a hole 4h on one side.
  • the heating element top cover 4 also has a hole on the other side.
  • the top cover 4 of the heating assembly may contain a plastic material.
  • the top cover 4 of the heating element may comprise polypropylene (PP), high-pressure polyethylene (LDPE), high-density polyethylene (HDPE) and other materials.
  • the top cover 4 of the heating element may comprise silica gel.
  • the heating assembly top cover 4 and the sealing assembly 3 can be made of the same material.
  • the heating assembly top cover 4 and the sealing assembly 3 can be made of different materials.
  • the heating assembly top cover 4 and the sealing assembly 3 may contain different materials.
  • the hardness of the top cover 4 of the heating assembly may be greater than the hardness of the sealing assembly 3.
  • the heating element top cover 4 may have a hardness between 65 and 75.
  • the top cover 4 of the heating assembly may have a hardness between 75 and 85.
  • the heating element top cover 4 may have a hardness between 85 and 90.
  • Both ends of the heating element 5 may extend beyond the hole 4h. Both ends of the heating element 5 can be exposed by the holes 4h.
  • the heating assembly 5 includes a heating circuit 51 and an adsorption assembly 52.
  • the heating circuit 51 may be wound around a part of the suction assembly 52.
  • the heating circuit 51 may be wound around the central part of the suction assembly 52.
  • the heating circuit 51 may include a metal material. In some embodiments, the heating circuit 51 may include silver. In certain embodiments, the heating circuit 51 may include platinum. In some embodiments, the heating circuit 51 may include palladium. In some embodiments, the heating circuit 51 may include nickel. In some embodiments, the heating circuit 51 may include a nickel alloy material. In some embodiments, the heating circuit 51 may include a nickel-chromium alloy material.
  • the suction component 52 may include a cotton core material. In some embodiments, the suction component 52 may comprise a non-woven fabric material. In some embodiments, the suction component 52 may include ceramic material. In some embodiments, the adsorption component 52 may include a combination of cotton core, non-woven fabric or ceramics.
  • the heating element base 6 includes a groove 6r.
  • the heating element 5 may be arranged on the groove 6r.
  • the heating assembly 5 may be supported by the groove 6r.
  • the heating component 5 can be fixed between the top cover 4 of the heating component and the groove 6r.
  • the heating element base 6 includes holes 6h1 and 6h2.
  • the holes 6h1 and 6h2 extend into the heating element base 6.
  • the holes 6h1 and 6h2 penetrate the heating element base 6.
  • the cartridge base 7 includes columnar structures 7p1 and 7p2.
  • the columnar structure 7p1 may extend into the hole 6h1.
  • the columnar structure 7p1 may be mechanically coupled with the hole 6h1.
  • the columnar structure 7p2 may extend into the hole 6h2.
  • the columnar structure 7p2 may be mechanically coupled with the hole 6h2.
  • the cartridge base 7 can be fixed to the heating element base 6 by the columnar structures 7p1 and 7p2.
  • the cartridge base 7 includes a hole 7h1 and a hole 7h2. Hole 7h1 forms part of the aerosol channel.
  • the heating circuit 51 extends through the hole 7h2 to form an electrical connection with the conductive component 11 provided in the main body 100B.
  • the cartridge base 7 includes a suction assembly 7m.
  • the adsorption component 7m may include a metal material.
  • the suction component 7m may be magnetically coupled with the magnetic component 12 provided in the main body 100B.
  • the suction assembly 7m may be removably coupled with the magnetic assembly 12 provided in the main body 100B.
  • 3A and 3B illustrate an exploded view of a part of an atomization device according to some embodiments of the present disclosure.
  • the main body 100B includes a frame 8, a sensor upper cover 9, a sealing component 10, a conductive component 11, a magnetic component 12, a sensor 13, a circuit board bracket 14, a circuit board 15, a flat cable 16, a vibrator 17, a charging component 18, and a buffer component 19 ,
  • the frame 8 is fixed on the periphery 21p of the upper end of the power supply assembly bracket 21.
  • the frame 8 may comprise plastic material.
  • the frame 8 may comprise a metal material.
  • the upper sensor cover 9 is arranged in the cavity 21c of the power supply assembly bracket 21.
  • the sealing assembly 10 is arranged in the groove 21r of the power supply assembly bracket 21.
  • the magnetic component 12 is disposed in the hole 21h of the power supply component bracket 21.
  • the magnetic component 12 may be a permanent magnet.
  • the magnetic component 12 may be an electromagnet.
  • the magnetic component 12 itself is magnetic. In some embodiments, the magnetic component 12 does not become magnetic until it is energized.
  • the upper sensor cover 9 has holes 9h1 and 9h2.
  • the hole 9h1 can accommodate the conductive component 11.
  • the hole 9h2 is in fluid communication with the sensor 13.
  • the sensor 13 can detect air flow generation through the hole 9h2.
  • the sensor 13 can detect changes in air pressure through the hole 9h2.
  • the sensor 13 can detect sound waves through the hole 9h2.
  • the conductive component 11 includes a conductive pin 11p1 and a conductive pin 11p2.
  • the conductive pin 11p1 can be electrically connected to the heating element 5, and the conductive pin 11p2 can be electrically connected to the heating element 5.
  • the conductive pin 11p1 can be electrically connected to the heating circuit 51, and the conductive pin 11p2 can be electrically connected to the heating circuit 51.
  • the circuit board 15 is arranged between the circuit board support 14 and the power component support 21.
  • the circuit board 15 includes a controller 151.
  • the controller 151 may be a microprocessor.
  • the controller 151 may be a programmable integrated circuit.
  • the controller 151 may be a programmable logic circuit.
  • the arithmetic logic in the controller 151 cannot be changed after the controller 151 is manufactured.
  • the arithmetic logic in the controller 151 can be programmed and changed after the controller 151 is manufactured.
  • the circuit board 15 may also include memory (not shown in the figure).
  • the memory can be integrated in the controller 151.
  • the memory can be provided separately from the controller 151.
  • the controller 151 may be electrically connected with the sensor 13.
  • the controller 151 may be electrically connected with the conductive component 11.
  • the controller 151 may be electrically connected with the power supply assembly 20.
  • the controller 151 can control the power supply assembly 20 to output power to the conductive assembly 11.
  • the controller 151 can control the power supply component 20 to output power to the conductive component 11.
  • the controller 151 can control the power component 20 to output power to the conductive component 11.
  • the controller 151 determines that the air pressure detected by the sensor 13 is lower than a threshold, the controller 151 can control the power component 20 to output power to the conductive component 11.
  • the controller 151 can control the power supply component 20 to output power to the conductive component 11.
  • the controller 151 determines that the amplitude of the sound wave detected by the sensor 13 is higher than a threshold, the controller 151 can control the power supply component 20 to output power to the conductive component 11.
  • the vibrator 17 may be electrically connected to the controller 151. In some embodiments, the vibrator 17 is electrically connected to the controller 151 on the circuit board 15 via a flat cable 16.
  • the controller 151 can control the vibrator 17 to generate different body sensation effects. In some embodiments, when the user inhales for more than a certain length of time, the controller 151 can control the vibrator 17 to vibrate to remind the user to stop inhaling. In some embodiments, when the user charges the atomization device 100, the controller 151 may control the vibrator 17 to vibrate to indicate that the charging has started. In some embodiments, when the charging of the atomizing device 100 has been completed, the controller 151 may control the vibrator 17 to vibrate to indicate that the charging has been completed.
  • the charging assembly 18 is arranged at the bottom of the main body housing 22. One end of the charging assembly 18 is exposed through the through hole 22h of the main body housing 22.
  • the power supply assembly 20 can be charged via the charging assembly 18.
  • the charging assembly 18 includes a USB interface.
  • the charging component 18 includes a USB Type-C interface.
  • the power supply assembly 20 can be installed in the power supply assembly bracket 21.
  • the buffer component 19 can be disposed on the surface 20S of the power supply component 20.
  • the buffer assembly 19 can be arranged between the power supply assembly 20 and the main body housing 22.
  • the buffer component 19 can directly contact the surface 20S of the power supply component 20 and the inner wall of the main body housing 22.
  • an additional buffer component can be disposed between the power component 20 and the power component bracket 21.
  • the power supply component 20 may be a battery. In some embodiments, the power supply assembly 20 may be a rechargeable battery. In some embodiments, the power supply assembly 20 may be a disposable battery.
  • the main housing 22 includes a light-transmitting component 221.
  • the light-transmitting component 221 may include one or more holes penetrating the main body housing 22.
  • the light-transmitting component 221 may exhibit a substantially circular shape.
  • the light-transmitting component 221 may exhibit a substantially rectangular shape.
  • the light-transmitting component 221 may have a symmetrical appearance.
  • FIGS. 4A and 4B illustrate cross-sectional views of cigarette cartridges according to some embodiments of the present disclosure.
  • the cartridge housing 2 and the heating assembly top cover 4 define a storage compartment 30.
  • the atomizable material can be stored in the storage compartment 30.
  • the atomizable liquid can be stored in the storage compartment 30.
  • the atomizable material can be a liquid.
  • the atomizable material can be a solution. In the subsequent paragraphs of this application, the atomizable material may also be referred to as e-liquid. Smoke oil is edible.
  • the inner wall of the cartridge case 2 has ribs 2r1, 2r2, 2r3, and 2r4.
  • the rib 2r1 and the rib 2r2 are spaced apart.
  • the rib 2r1 and the rib 2r4 are spaced apart.
  • the rib 2r2 and the rib 2r3 are spaced apart.
  • the ribs 2r1, 2r2, 2r3, and 2r4 can be arranged parallel to each other. In some embodiments, the ribs 2r1, 2r2, 2r3, and 2r4 may be arranged non-parallel.
  • the inner wall of the cartridge housing 2 may have more ribs. In some embodiments, the inner wall of the cartridge housing 2 may have fewer ribs. In some embodiments, the inner wall of the cartridge housing 2 may have a total of 6 ribs.
  • the ribs 2r1, 2r2, 2r3, and 2r4 extend from the part of the cartridge housing 2 close to the hole 1h toward the top cover 4 of the heating assembly. One ends of the ribs 2r1, 2r2, 2r3, and 2r4 are in direct contact with the top cover 4 of the heating assembly. One end of the ribs 2r1, 2r2, 2r3 and 2r4 presses against a part of the top cover 4 of the heating element. As shown in the dashed circle A in FIG. 4A, the rib 2r3 presses against a part of the top cover 4 of the heating element.
  • the ribs 2r1, 2r2, 2r3, and 2r4 can prevent the top cover 4 of the heating element from being separated from the base 6 of the heating element.
  • the ribs 2r1, 2r2, 2r3, and 2r4 can strengthen the rigidity of the cartridge shell 2.
  • the ribs 2r1, 2r2, 2r3, and 2r4 can prevent the cartridge shell 2 from being deformed by external force.
  • the ribs 2r1, 2r2, 2r3, and 2r4 can prevent the e-liquid in the storage compartment 30 from overflowing due to external force.
  • the heating assembly top cover 4 and the heating assembly base 6 define an atomization chamber 40.
  • the atomization chamber 40 may be a cavity between the top cover 4 of the heating element and the base 6 of the heating element.
  • the heating assembly 5 has a length of 5L.
  • the atomization chamber 40 has a maximum width of 4L1.
  • the length 5L of the heating assembly 5 is greater than the maximum width 4L1 of the atomization chamber 40.
  • a part of the heating element 5 is arranged in the atomization chamber 40.
  • the two ends of the heating assembly 5 extend into the storage compartment 30 from the hole 4h of the heating assembly top cover 4.
  • the top cover 4 of the heating element exposes a part of the heating element 5.
  • the heating assembly top cover 4 exposes the two end portions of the heating assembly 5. Both ends of the heating assembly 5 are exposed in the storage compartment 30.
  • the e-liquid in the storage compartment 30 can be adsorbed by the heating assembly 5 through the two ends of the heating assembly 5.
  • the smoke oil adsorbed on the heating assembly 5 is heated by the heating circuit 51 to generate aerosol in the atomizing chamber 40.
  • the aerosol can be ingested by the user through the airflow channel 100t formed by the tube 4t2, the tube 2t, and the tube 1t.
  • the cigarette holder cover 1 and the cartridge housing 2 may be integrally formed, and the tube 2t and the tube 1t are the same component.
  • the air flow passage 100t formed by the tube 4t2, the tube 2t, and the tube 1t may have a smooth inner diameter.
  • the inner diameter of the air flow channel 100t does not have a significant step difference at the junction of the tube 1t and the tube 2t.
  • the inner diameter of the air flow channel 100t does not have a significant step difference at the junction of the tube 2t and the tube 4t2.
  • the inner diameter of the air flow channel 100t does not have an obvious interface at the junction of the tube 1t and the tube 2t.
  • the inner diameter of the air flow channel 100t does not have an obvious interface at the junction of the tube 2t and the tube 4t2.
  • the air flow channel 100t formed by the tube 4t2, the tube 2t, and the tube 1t may have a non-uniform inner diameter.
  • the tube 2t may have inner diameters 2L1 and 2L2, and the inner diameter 2L1 is greater than 2L2.
  • the tube 1t has inner diameters 1L1 and 1L2, and the inner diameter 1L1 is greater than 1L2.
  • the air flow channel formed by the tube 4t2, the tube 2t, and the tube 1t may have a uniform inner diameter.
  • the top cover 4 of the heating assembly may have two parts.
  • a part of the top cover 4 of the heating assembly has a relatively large width.
  • the inner wall of the atomization chamber 40 may have an uneven width.
  • the inner wall of the atomization chamber 40 has a width of 4L2 and a maximum width of 4L1 due to the shape of the top cover 4 of the heating element.
  • the width 4L2 is smaller than the width 4L1.
  • the sealing assembly 3 is arranged between the tube 2t of the cartridge housing 2 and the tube 4t1 of the top cover 4 of the heating assembly.
  • the hardness of the sealing assembly 3 may be less than the hardness of the cartridge housing 2.
  • the hardness of the sealing assembly 3 may be less than the hardness of the top cover 4 of the heating assembly.
  • the sealing assembly 3 can increase the tightness between the tube 2t and the tube 4t1.
  • the sealing assembly 3 can reduce the tolerance requirements of the tube 2t and the tube 4t1.
  • the sealing assembly 3 can reduce the manufacturing difficulty of the cartridge shell 2 and the heating assembly top cover 4.
  • the sealing assembly 3 can prevent the cartridge shell 2 and the heating assembly top cover 4 from being damaged during the assembly process.
  • the seal 3 can also prevent the e-liquid in the storage compartment 30 from being drawn out from the hole 1h.
  • the tube 4t2 of the heating assembly top cover 4 may have an inner diameter smaller than that of the tube 4t1.
  • the tube 4t2 of the heating assembly top cover 4 may have an outer diameter smaller than that of the tube 4t1.
  • the tube 4t2 of the top cover 4 of the heating assembly extends into the atomization chamber 40.
  • the tube 4t2 of the top cover 4 of the heating assembly extends into the atomization chamber 40.
  • the tube 4t2 of the top cover 4 of the heating assembly extends in a direction opposite to the hole 1h.
  • the tube 4t2 can make the air flow path closer to the heating assembly 5.
  • the tube 4t2 allows the aerosol generated in the atomization chamber 40 to be more completely discharged from the air flow channel.
  • the tube 4t2 can prevent the aerosol generated in the atomization chamber 40 from leaking into the storage compartment 30 from the gap between the seal 3 and the top cover 4 of the heating assembly.
  • an airflow 100f is generated in the cartridge 100A.
  • the front section of the airflow 100f includes fresh air entering the atomization chamber 40 through the hole 7h1 of the cartridge base 7.
  • the rear section of the airflow 100f contains aerosol generated by the heating assembly 5.
  • Fresh air enters the atomization chamber 40 through the hole 7h1, and the aerosol generated by the heating assembly 5 is discharged from the hole 1h1 along the airflow channel 100t.
  • the air flow 100f produces a temperature change between the heating element 5 and the tube 4t2.
  • the aerosol generated by the heating assembly 5 changes in temperature before reaching the tube 4t2.
  • the uneven width of the inner wall of the atomization chamber 40 can enhance the temperature change of the airflow 100f.
  • the uneven width of the inner wall of the atomization chamber 40 can accelerate the temperature change of the airflow 100f.
  • the temperature drops.
  • the temperature drop is larger, and the temperature drops faster.
  • the atomization chamber 40 may also have substantially the same inner wall width.
  • the temperature rise Tr may be in the range of 200°C to 220°C. In some embodiments, the temperature rise Tr may be in the range of 240°C to 260°C. In some embodiments, the temperature rise Tr may be in the range of 260°C to 280°C. In some embodiments, the temperature rise Tr may be in the range of 280°C to 300°C. In some embodiments, the temperature rise Tr may be in the range of 300°C to 320°C. In some embodiments, the temperature rise Tr may be in the range of 200°C to 320°C.
  • the air flow out of the atomization chamber 40 can generate a temperature drop Tf before reaching the hole 1h.
  • the temperature drop Tf may be in the range of 145°C to 165°C. In some embodiments, the temperature drop Tf may be in the range of 165°C to 185°C. In some embodiments, the temperature drop Tf may be in the range of 205°C to 225°C. In some embodiments, the temperature drop Tf may be in the range of 225°C to 245°C. In some embodiments, the temperature drop Tf may be in the range of 245°C to 265°C. In some embodiments, the temperature drop Tf may be in the range of 145°C to 265°C.
  • the air flow channel 100t may have an uneven inner diameter.
  • the inner diameter of the air flow channel 100t gradually increases from the position close to the heating element 5 toward the hole 1h.
  • the larger inner diameter near the hole 1h can increase the volume of the aerosol.
  • the width of the inner wall of the atomization chamber 40 and the inner diameter width of the air flow channel 100t By adjusting the width of the inner wall of the atomization chamber 40 and the inner diameter width of the air flow channel 100t, the temperature of the aerosol sucked by the user from the hole 1h can be controlled. By adjusting the width of the inner wall of the atomization chamber 40 and the inner diameter width of the air flow channel 100t, the volume of aerosol sucked by the user from the hole 1h can be controlled.
  • Controlling the temperature of the aerosol can prevent users from being burned by the aerosol. Controlling the aerosol volume can improve the user's inhalation experience.
  • the aerosol inhaled by the user via the through hole 1h may have a temperature lower than 65°C. In some embodiments, the aerosol inhaled by the user through the through hole 1h may have a temperature lower than 55°C. In some embodiments, the aerosol inhaled by the user through the through hole 1h may have a temperature lower than 50°C. In some embodiments, the aerosol inhaled by the user through the through hole 1h may have a temperature lower than 45°C. In some embodiments, the aerosol inhaled by the user via the through hole 1h may have a temperature lower than 40°C. In some embodiments, the aerosol inhaled by the user via the through hole 1h may have a temperature lower than 30°C.
  • FIG. 5 illustrates a circuit block diagram of an atomization device according to some embodiments of the present disclosure.
  • the atomization device 100 includes a cartridge 100A and a main body 100B.
  • the cartridge 100A may include a heating element 5 and an authentication circuit 23.
  • the main body 100B may include a timing circuit 24, a wireless communication circuit 25, an indicator light 26, and a memory 27. 5 will illustrate the interaction between the controller 151 and the sensor 13, the vibrator 17, the power assembly 20, the authentication circuit 23, the timing circuit 24, the wireless communication circuit 25, the indicator light 26, the memory 27, and the heating assembly 5.
  • the controller 151 controls the power supply assembly 20 to output power P1 to the heating assembly 5 at time Tm1, and the controller 151 controls the power supply assembly 20 to output power P2 to the heating assembly 5 at time Tm2.
  • power P1 is different from power P2.
  • the power P1 is greater than the power P2.
  • the power P2 is zero.
  • the time Tm2 and the time Tm1 are separated by 1.0 second to 2.0 seconds. That is, when the controller 151 controls the power supply assembly 20 to output power P1 to the heating assembly 5 at time Tm1, the controller 151 controls the power supply assembly 20 to change the output power to the heating assembly 5 after 1.0 second to 2.0 seconds.
  • the time Tm2 and the time Tm1 are separated by 2.0 seconds to 3.0 seconds.
  • the time Tm2 and the time Tm1 are separated by 3.0 seconds to 4.0 seconds.
  • the time Tm2 and the time Tm1 are separated by 4.0 seconds to 5.0 seconds.
  • the time Tm2 and the time Tm1 are separated by 1.0 second to 3.0 seconds.
  • the time Tm2 and the time Tm1 are separated by 1.0 second to 4.0 seconds.
  • the time Tm2 and the time Tm1 are separated by 1.0 second to 5.0 seconds.
  • the controller 151 and the authentication circuit 23 are not electrically connected.
  • the controller 151 is electrically connected to the authentication circuit 23.
  • the authentication circuit 23 stores a piece of information. This information can be related to the type of e-liquid stored in the atomization device. In some embodiments, the information includes resistance that characterizes the flavor information of the cartridge 100A.
  • the connecting pin of the controller 151 forms an electrical connection loop with the resistor.
  • the controller 151 determines the level of the resistance corresponding to the connecting pin, and determines the cartridge 100A of different flavors according to the different levels. For example, when the resistance is 2 ohms, it is characterized by the grapefruit-flavored cartridge 100A that is combined with the main body 100B. When the resistance is 4 ohms, it means that the menthol-flavored cartridge 100A is combined with the main body 100B. It should be noted that the resistance value of the specific resistor and the taste of the corresponding cartridge 100A are not limited to this. It can be determined according to the actual situation.
  • the authentication circuit 23 includes an encryption chip (not shown in the figure).
  • the encryption chip stores encrypted data information of the cartridge 100A, and the data information may include a unique ID number, cartridge flavor, and cartridge oil volume.
  • the controller 151 includes a decryption module corresponding to the encryption chip. The decryption module is used to decrypt the encrypted information when the cartridge 100A and the main body 100B are in a combined state, and send decryption success information after the decryption is successful, and send decryption failure information after the decryption fails. After receiving the decryption failure information, the controller 151 can cut off the power between the power supply assembly 20 and the heating assembly 5.
  • the controller 151 may set the atomization device 100 to a disabled state. In the disabled state, even if the sensor 13 detects that the user inhales the cartridge 100A, the controller 151 will not control the power supply assembly 20 to output power to the heating assembly 5.
  • the controller 151 After receiving the decryption success message, the controller 151 drives the indicator light 26 to flash 3 times and drives the vibrator 17 to vibrate 3 times. After successfully decrypting the encrypted data information obtained from the encryption chip, the controller 151 activates the Bluetooth module to send a broadcast signal.
  • the controller 151 determines the time Tm2 according to the time Tm1 and the information stored in the authentication circuit 23. For example, when the taste of the cartridge 100A is different, the information stored in the authentication circuit 23 is different. The controller 151 determines a different time Tm2 according to the time Tm1 and different information stored in the authentication circuit 23. For example, when the e-liquid flavor of the cartridge 100A is mint flavor, the time Tm2 can be separated from the time Tm1 by 2.0 seconds, that is, the controller 151 controls the power supply assembly 20 to output power P1 to the heating assembly 5 at the time Tm1. After 2.0 seconds, The controller 151 controls the power supply unit 20 to output power P2 to the heating unit 5.
  • the time Tm2 can be separated from the time Tm1 by 2.5 seconds, that is, the controller 151 controls the power supply assembly 20 to output the power P1 to the heating assembly 5 at the time Tm1, and after 2.5 seconds, the control The device 151 controls the power supply unit 20 to output power P2 to the heating unit 5.
  • the controller 151 determines the time Tm2 according to the time Tm1 and the information stored in the authentication circuit 23.
  • the authentication circuit 23 stores information related to the atomized amount of the smoke liquid for different smoke liquids stored in the cartridge 100A.
  • the atomization amount mentioned here refers to the volume of aerosol generated after heating the same volume of e-liquid. Different flavors of smoke oil have the same volume, but due to the difference in composition, the volume of the aerosol produced after heating is different.
  • the interval between the time Tm1 and the time Tm2 of the mint-flavored e-liquid cartridge can be set to be smaller than that of the oolong tea-flavored cartridge.
  • the time Tm2 of the peppermint-flavored smoke bomb can be separated from the time Tm1 by 2 seconds, and the time Tm2 of the oolong-flavored smoke bomb can be separated from the time Tm1 by 2.5 seconds.
  • the timing circuit 24 is electrically connected to the controller 151.
  • the timing circuit 24 is used to provide time information.
  • the timing circuit 24 can be used to provide time information of the user's location.
  • the time information is, for example, 3:00am and 6:30pm, and this time information can be changed according to the location of the user. For example, at the same time, when the user is in the United States and Japan, the timing circuit 24 provides different time information.
  • the controller 151 determines the time Tm2 according to the time Tm1 and the time information provided by the timing circuit 24. As the time information is different, the time Tm2 is different. For example, when the time information is 6:00am, the time Tm2 can be separated from the time Tm1 by 3.0 seconds, that is, the controller 151 controls the power supply assembly 20 to output power P1 to the heating assembly 5 at the time Tm1, and after 3.0 seconds, the controller 151 controls The power supply unit 20 outputs power P2 to the heating unit 5.
  • the time Tm2 can be separated from the time Tm1 by 4.0 seconds, that is, the controller 151 controls the power supply assembly 20 to output power P1 to the heating assembly 5 at the time Tm1, and after 4.0 seconds, the controller 151 controls the power supply The assembly 20 outputs power P2 to the heating assembly 5.
  • adjusting the heating time of the heating assembly 5 correspondingly at different times can enable the user to get a better experience.
  • the wireless communication circuit 25 is used for wireless communication.
  • the memory 27 can be used to store information and be read and written.
  • the memory 27 stores smoking information, and the smoking information includes the ID of the cartridge 100A, the number of smoking puffs, the smoking time, and so on.
  • the wireless communication circuit 25 is electrically connected to the controller 151.
  • the wireless communication can adopt one or more of the following modes: Bluetooth (Bluetooth), Wi-Fi, 3G (the 3rd Generation, third-generation mobile communication technology), 4G (the 4th Generation, third-generation mobile communication technology), 5G (the 5th Generation, third-generation mobile communication technology), near field communication, ultrasonic communication, ZigBee (Zifeng Protocol), RFID (Radio Frequency Identification, radio frequency identification), etc.
  • the controller 151 may transmit the smoking information stored in the memory 27 to the smart terminal through Bluetooth communication.
  • the dedicated APP (Application) of the smart terminal performs data analysis according to the received smoking information, so as to better guide users in smoking control, smoking replacement, and smoking cessation.
  • the wireless communication circuit 25 interacts with the smart terminal to obtain a piece of information.
  • the controller 151 interacts with the smart terminal through the wireless communication circuit 25.
  • Smart terminals include mobile phones, computers, smart wearable devices (such as smart watches), tablet computers, and so on.
  • the smoking information stored in the memory 27 includes the smoking habits of the user, and can store the taste of the cartridge 100A used by the user, the model of the main body 100B, the time of each puff, and the time or scene of smoking.
  • the smoking scene may include the user's physiological information or environmental information.
  • the user's physiological information includes the user's current heartbeat number.
  • Environmental information includes the location of the user, such as indoors or outdoors, the temperature where the user is located, and the humidity where the user is located.
  • the smart terminal receives the above information, and the controller 151 determines the time Tm2 through the information received by the wireless communication circuit 25.
  • the time Tm2 can be separated from the time Tm1 by 2.0 seconds. That is, the controller 151 controls the power supply assembly 20 to output power P1 to the heating assembly 5 at the time Tm1. After 2.0 seconds, the controller 151 controls the power supply assembly 20 to The heating assembly 5 outputs power P2.
  • the time Tm2 can be separated from the time Tm1 by 2.5 seconds, that is, the controller 151 controls the power supply assembly 20 to output power P1 to the heating assembly 5 at the time Tm1, and after 2.5 seconds, the controller 151 controls the power supply assembly 20 to the heating assembly 5 Output power P2.
  • the wireless communication circuit 25 can immediately interact with the smart terminal to obtain a piece of information.
  • the controller 151 determines the time Tm2 through the information received by the wireless communication circuit 25.
  • the heating time of the heating assembly 5 is adjusted correspondingly at different times to customize the suction parameters for each time, so that the user can get a better experience.
  • two or more thresholds can be set for the sensor signal received by the sensor 13. For example, 3 to 5 thresholds can be set for sensing signals; 5 to 10 thresholds can be set for sensing signals; 10 to 100 thresholds can be set for sensing signals.
  • the above-mentioned threshold can correspond to the size of the airflow detected by the sensor 13.
  • the above-mentioned threshold can correspond to the size of the air pressure detected by the sensor 13.
  • the above-mentioned threshold can correspond to the magnitude of the sound wave detected by the sensor 13.
  • three thresholds can be set for the sensor signal received by the sensor 13, which are the threshold TH1, the threshold TH2 that is greater than the threshold TH1, and the threshold TH3 that is greater than the threshold TH2.
  • the controller 151 controls the power supply assembly 20 to output the power P1 to the heating assembly 5 at a time Tm1.
  • the controller 151 controls the power supply assembly 20 to output the power P2 to the heating assembly 5 at a time Tm1.
  • the controller 151 controls the power supply assembly 20 to output power P3 to the heating assembly 5.
  • the power P3 may be greater than the power P1.
  • the power P3 may be greater than the power P2.
  • the power P3 may be different from the power P1 and the power P2.
  • the controller 151 When the airflow detected by the sensor 13 is less than the threshold TH1, the controller 151 does not control the power supply assembly 20 to output power to the heating assembly 5 (or the output power is 0).
  • the sensing signal received by the sensor 13 is a continuous signal. In some embodiments, the sensing signal received by the sensor 13 is an analog signal. In some embodiments, the sensor signal received by the sensor 13 is related to the air pressure detected by the sensor 13. In some embodiments, the sensor signal received by the sensor 13 is positively correlated with the air pressure detected by the sensor 13. In some embodiments, the sensor signal received by the sensor 13 is related to the magnitude of the sound wave detected by the sensor 13. In some embodiments, the sensor signal received by the sensor 13 is positively correlated with the magnitude of the sound wave detected by the sensor 13.
  • the power output from the power supply assembly 20 to the heating assembly 5 can be positively correlated with the sensor signal received by the sensor 13.
  • the power output from the power supply assembly 20 to the heating assembly 5 is a continuous value.
  • the power output to the heating assembly 5 is related to the continuous signal of vibration received by the sensor 13. For example, the user's inhalation can cause the sensor 13 to receive an analog signal, and the controller 151 can adjust the power output to the heating element 5 in real time according to the vibration change of the analog signal.
  • FIG. 6 is a schematic diagram of the interaction between the atomization device 100 and the smart terminal 201 according to some embodiments of the application.
  • the smart terminal 201 turns on Bluetooth and matches with the atomization device 100, and receives the data information sent by the atomization device 100 after the matching is successful.
  • the smart terminal 201 sends the above-mentioned data information to the server 202.
  • the server 202 is used to send the analyzed and processed information about the atomization device 100 to the smart terminal 201.
  • the smart terminal 201 displays the data information of the cartridge 100A through a dedicated APP, including Information such as the flavor of the cartridge, the number of puffs per day, the number of puffs per week, the number of puffs per month, the cumulative number of puffs, and the amount of remaining e-liquid are displayed as a curve chart. Wherein, the remaining amount of e-liquid can be calculated based on the cumulative number of puffs for the cartridge 100A.
  • the “stop heating” touch control on the dedicated APP is activated by the user, and the smart terminal 201 obtains the “stop heating” instruction and sets the The “stop heating” command is sent to the controller 151 via the Bluetooth communication link.
  • the controller 151 disconnects the power supply from the power supply assembly 20 to the heating assembly 5, and the heating assembly 5 stops heating. Even if the sensor 13 detects the airflow and outputs a high level, that is, the user draws, the heating assembly 5 is not powered, that is, the heating assembly 5 cannot heat the e-liquid.
  • FIG. 7 is a schematic diagram of the heating assembly 5 according to some embodiments of the application.
  • the heating circuit 51 is wound around the suction assembly 52 in a manner of winding five times. The number of turns the heating circuit 51 wraps around the suction assembly 52 will affect the resistance of the heating circuit 51.
  • the heating circuit 51 is wound around the suction assembly 52 in a manner of 5 turns, so that the smallest resistance can be obtained.
  • the heating circuit 51 has a resistance in the range of 0.9 ⁇ to 1.0 ⁇ at normal temperature (for example, 25° C.). In some embodiments, the resistance of the heating circuit 51 is in the range of 1.0 ⁇ to 1.1 ⁇ at room temperature.
  • the diameter T1 of the heating wire 51 wound around the suction assembly 52 is in the range of 1.9 mm to 2.1 mm. In some embodiments, the diameter T1 of the heating circuit 51 wound around the suction assembly 52 is in the range of 1.95 mm to 2.00 mm. In some embodiments, the diameter T1 of the heating circuit 51 wound around the suction component 52 is in the range of 2.00 mm to 2.05 mm. In some embodiments, the diameter T1 of the heating wire 51 wound around the suction component 52 is in the range of 2.05 mm to 2.10 mm.
  • the wire diameter T2 of the heating circuit 51 is in the range of 0.16 mm to 0.18 mm. In some embodiments, the wire diameter T2 of the heating circuit 51 is in the range of 0.18 mm to 0.20 mm. In some embodiments, the wire diameter T2 of the heating circuit 51 is in the range of 0.20 mm to 0.22 mm. In some embodiments, the wire diameter T2 of the heating circuit 51 is in the range of 0.22 mm to 0.24 mm.
  • the length of the suction component 52 is in the range of 14.98 mm to 15.00 mm. In some embodiments, the length of the suction component 52 is in the range of 15.00 mm to 15.02 mm.
  • the heating circuit 51 is wound around the suction assembly 52 in a right-handed manner. In some embodiments, the heating circuit 51 is wound around the suction assembly 52 in a left-handed manner.
  • the heating circuit 51 When the heating circuit 51 is wound around the adsorption assembly 52 in 5 turns, the diameter of the heating circuit 51 is wound around the adsorption assembly 52, the wire diameter of the heating circuit 51 and/or the length of the adsorption assembly 52 are within the above range, the user can be improved every time.
  • the amount of smoke sucked in one puff (TPM, total particulate matter).
  • TPM total particulate matter
  • the experimental results can be obtained, using a 0.2mm wire diameter heating circuit 51 and winding 6 times, the amount of TPM produced by the heating assembly 5 is 6.75 mg (milligrams).
  • the heating circuit 51 with a wire diameter of 0.2 mm is wound 4 times, and the amount of TPM produced by the heating assembly 5 is 6.7 mg.
  • the heating circuit 51 with a wire diameter of 0.2 mm is used and wound 5 times, and the amount of TPM produced by the heating assembly 5 is 6.84 mg.
  • the heating circuit 51 with a wire diameter of 0.25 mm is wound 5 times, and the amount of TPM produced by the heating assembly 5 is 5.2 mg.
  • the heating circuit 51 with a wire diameter of 0.2 mm when used, a significantly larger amount of smoke can be generated by winding it for 5 turns.
  • the heating circuit 51 using a 0.2mm wire diameter can increase the TPM by more than 30% compared to using a 0.25mm wire diameter.
  • the controller 151 determines the time Tm2 according to the time Tm1. In some embodiments, the controller 151 only determines the time Tm2 based on the time Tm1. In some embodiments, the controller 151 does not determine the time Tm2 according to the sensing signal of the sensor 13. In some embodiments, the controller 151 does not determine the time Tm2 according to the signal of the authentication circuit 23. In some embodiments, the controller 151 does not determine the time Tm2 according to the signal of the timing circuit 24. In some embodiments, the controller 151 does not determine the time Tm2 according to the signal received by the wireless communication circuit 25.
  • the controller 151 determines the time Tm2 according to the time Tm1 and at least one of the sensing signal of the sensor 13, the signal of the authentication circuit 23, the signal of the timing circuit 24, and the signal received by the wireless communication circuit 25. For example, the controller can determine the time Tm2 according to the time Tm1, the sensing signal of the sensor 13 and the signal of the authentication circuit 23. The controller can also determine the time Tm2 according to the time Tm1, the signal from the timing circuit 24, and the signal received by the wireless communication circuit 25.
  • the controller 151 can heat the heating element 5 according to a preset time period.
  • the time Tm1 and the time Tm2 are fixed values when the atomization device 100 is produced.
  • the controller 151 controls the power supply assembly 20 to output power to the heating assembly 5 for a duration Tm1, and then changes the output power at a time Tm2.
  • the terms “approximately”, “substantially”, “substantially” and “about” are used to describe and consider small variations. When used in conjunction with an event or situation, the term may refer to an example in which the event or situation occurs precisely and an example in which the event or situation occurs in close proximity. As used herein with respect to a given value or range, the term “about” generally means within ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5% of the given value or range. Ranges can be expressed herein as from one endpoint to another or between two endpoints. Unless otherwise specified, all ranges disclosed herein include endpoints.
  • substantially coplanar may refer to two surfaces located within a few micrometers ( ⁇ m) along the same plane, for example, within 10 ⁇ m, within 5 ⁇ m, within 1 ⁇ m, or within 0.5 ⁇ m located along the same plane.
  • ⁇ m micrometers
  • the term may refer to a value within ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5% of the average value of the stated value.
  • the terms “approximately”, “substantially”, “substantially” and “about” are used to describe and explain small changes.
  • the term may refer to an example in which the event or situation occurs precisely and an example in which the event or situation occurs in close proximity.
  • the term when used in combination with a value, can refer to a range of variation less than or equal to ⁇ 10% of the stated value, for example, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3% , Less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • the difference between two values is less than or equal to ⁇ 10% of the average value of the value (for example, less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than Or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%), then the two values can be considered “substantially” or " About” is the same.
  • substantially parallel can refer to a range of angular variation less than or equal to ⁇ 10° relative to 0°, for example, less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 3°, Less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • substantially perpendicular may refer to an angular variation range of less than or equal to ⁇ 10° relative to 90°, for example, less than or equal to ⁇ 5°, less than or equal to ⁇ 4°, less than or equal to ⁇ 3°, Less than or equal to ⁇ 2°, less than or equal to ⁇ 1°, less than or equal to ⁇ 0.5°, less than or equal to ⁇ 0.1°, or less than or equal to ⁇ 0.05°.
  • the two surfaces can be considered coplanar or substantially coplanar if the displacement between two surfaces is equal to or less than 5 ⁇ m, equal to or less than 2 ⁇ m, equal to or less than 1 ⁇ m, or equal to or less than 0.5 ⁇ m, then the two surfaces can be considered coplanar or substantially coplanar if the displacement between any two points on the surface relative to the plane is equal to or less than 5 ⁇ m, equal to or less than 2 ⁇ m, equal to or less than 1 ⁇ m, or equal to or less than 0.5 ⁇ m, then the surface can be considered to be flat or substantially flat .
  • the terms "conductive,””electricallyconductive,” and “conductivity” refer to the ability to transfer current. Conductive materials generally indicate those materials that exhibit little or zero resistance to current flow. One measure of conductivity is Siemens/meter (S/m). Generally, the conductive material is a material with a conductivity greater than approximately 10 4 S/m (for example, at least 10 5 S/m or at least 10 6 S/m). The electrical conductivity of a material can sometimes change with temperature. Unless otherwise specified, the electrical conductivity of the material is measured at room temperature.
  • a/an and “said” may include plural indicators.
  • a component provided “on” or “above” another component may cover the case where the former component is directly on the latter component (for example, in physical contact with the latter component), and one or more A situation in which an intermediate component is located between the previous component and the next component.
  • spatially relative terms such as “below”, “below”, “lower”, “above”, “upper”, “lower”, “left”, “right” may be used herein. Describes the relationship between one component or feature and another component or feature as illustrated in the figure. In addition to the orientation depicted in the figures, the spatial relative terms are intended to cover different orientations of the device in use or operation. The device can be oriented in other ways (rotated by 90 degrees or in other orientations), and the spatial relative descriptors used herein can also be interpreted accordingly. It should be understood that when a component is referred to as being “connected to” or “coupled to” another component, it can be directly connected or coupled to the other component, or intervening components may be present.
  • the terms “about”, “substantially”, “substantially” and “about” are used to describe and consider small variations. When used in conjunction with an event or situation, the term can refer to a situation in which the event or situation clearly occurs and a situation in which the event or situation is very close to occurrence. As used herein in relation to a given value or range, the term “about” generally means within ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5% of the given value or range. Ranges can be expressed herein as from one endpoint to the other or between two endpoints. Unless otherwise specified, all ranges disclosed herein include endpoints.
  • substantially coplanar may refer to two surfaces located along the same plane within a few microns ( ⁇ m), for example, within 10 ⁇ m, within 5 ⁇ m, within 1 ⁇ m, or within 0.5 ⁇ m along the same plane.
  • ⁇ m microns
  • the term may refer to a value within ⁇ 10%, ⁇ 5%, ⁇ 1%, or ⁇ 0.5% of the average value of the stated value.

Abstract

一种雾化装置(100),包括:加热组件(5)、电源组件(20)、及与电源组件(20)电连接的控制器(151),加热组件(5)包括吸附组件(52)及缠绕吸附组件(52)的加热线路(51);控制器(151)于第一时间控制电源组件(20)向加热组件(5)输出第一功率,且于第二时间控制电源组件(20)向加热组件(5)输出第二功率;其中加热线路(51)以缠绕5圈的方式缠绕吸附组件(52),控制器(151)根据第一时间决定第二时间,且第二功率与第一功率不同。

Description

一种雾化装置 技术领域
本揭露大体上涉及一种电子装置,具体而言涉及一种提供可吸入气雾(aerosol)之雾化装置(vaporization device)。
背景技术
电子烟系一种电子产品,其将可雾化溶液加热雾化并产生气雾以供用户吸食。近年来,各大厂商开始生产各式各样的电子烟产品。一般而言,一电子烟产品包括外壳、储油室、雾化室、加热组件、进气口、气流通道、出气口、电源装置、感测装置及控制装置。储油室用于储存可雾化溶液,加热组件用于将可雾化溶液加热雾化并产生气雾。进气口与雾化室彼此连通,当用戶吸气时提供空气给加热组件。由加热组件产生之气雾首先产生于雾化室内,随后经由气流通道及出气口被用戶吸入。电源装置提供加热组件所需之电力,控制装置根据感测装置侦测到的用户吸气动作,控制加热组件的加热时间。外壳则包覆上述各个组件。
现有的电子烟产品存在不同的缺陷。举例言之,现有的电子烟产品并未考虑到对加热组件的功率输出进行控制,当用戶进行长时间吸气时,电源装置对加热组件持续加热,加热组件可能过热并产生烧焦味,烧焦味将造成用戶的不良体验。过热之加热组件亦可能造成电子烟内部构件镕毁甚至起火燃烧。未对功率输出进行控制的现有的电子烟产品普遍具有电源能量消耗快的缺点。
此外,未对加热组件的功率输出进行控制的电子烟产品,可能在用户每次吸气时产生过多的气雾,未被用户吸食的过多气雾将残留在电子烟产品内部,并冷凝成为液体。电子烟产品内部过多的冷凝液体将产生渗漏的疑虑,不但容易造成电子烟产品内的电子组件损坏,亦容易污染用户的其他随身物品,带来不好的用户体验。
因此,本揭露提出一种可解决上述问题之雾化装置。
发明内容
提出一种雾化装置。所述雾化装置包括一种雾化装置,其包括:加热组件、电源组件、及与所述电源组件电连接的控制器,所述加热组件包括吸附组件及缠绕所述吸附组件的加热线路;所述控制器于第一时间控制所述电源组件向所述加热组件输出第一功 率,且于第二时间控制所述电源组件向所述加热组件输出第二功率;其中所述加热线路以缠绕5圈的方式缠绕所述吸附组件,所述控制器根据所述第一时间决定所述第二时间,且所述第二功率与所述第一功率不同。
提出一种雾化装置。所述雾化装置包括加热组件,所述加热组件包括吸附组件及加热线路,缠绕所述吸附组件;电源组件;及与所述电源组件电连接的控制器;所述控制器经组态以控制所述电源组件向所述加热组件输出第一功率及第二功率;其中所述加热线路的线径介于0.16mm至0.24mm的范围间。
附图说明
当结合附图阅读时,从以下详细描述容易理解本揭露的各方面。应注意,各种特征可能未按比例绘制,且各种特征的尺寸可出于论述的清楚起见而任意增大或减小。
图1说明根据本揭露的一些实施例的雾化装置的示意图。
图2A及2B说明根据本揭露的一些实施例的雾化装置的一部分的分解图。
图3A及3B说明根据本揭露的一些实施例的雾化装置的一部分的分解图。
图4A及4B说明根据本揭露的一些实施例的烟弹的截面图。
图5说明根据本揭露的一些实施例的雾化装置电路方块图。
图6说明根据本揭露的一些实施例的电子烟与智能终端交互的原理示意图。
图7说明根据本揭露的一些实施例的加热组件之示意图。
贯穿图式和详细描述使用共同参考标号来指示相同或类似组件。根据以下结合附图作出的详细描述,本揭露的特点将更加明显。
具体实施方式
以下公开内容提供用于实施所提供的标的物的不同特征的许多不同实施例或实例。下文描述组件和布置的特定实例。当然,这些仅是实例且并不意图为限制性的。在本揭露中,在以下描述中对第一特征在第二特征之上或上的形成的参考可包含第一特征与第二特征直接接触形成的实施例,并且还可包含额外特征可形成于第一特征与第二特征之间从而使得第一特征与第二特征可不直接接触的实施例。另外,本揭露可能在各个实例中重复参考标号和/或字母。此重复是出于简化和清楚的目的,且本身并不指示所论述的各种实施例和/或配置之间的关系。
下文详细论述本揭露的实施例。然而,应了解,本揭露提供了可在多种多样的特定情境中实施的许多适用的概念。所论述的特定实施例仅仅是说明性的且并不限制本揭露 的范围。
图1说明根据本揭露的一些实施例的雾化装置的示意图。
雾化装置100可包含烟弹(cartridge)100A及主体100B。在某些实施例中,烟弹100A及主体100B可设计为一个整体。在某些实施例中,烟弹100A及主体100B可设计成分开的两组件。在某些实施例中,烟弹100A可设计成可移除式地与主体100B结合。在某些实施例中,当烟弹100A与主体100B结合时,烟弹100A的一部分收纳于主体100B中。
图2A及2B说明根据本揭露的一些实施例的雾化装置的一部分的分解图。
烟弹100A包含烟嘴盖(mouthpiece)1、烟弹外壳2、密封组件3、加热组件顶盖4、加热组件5、加热组件底座6及烟弹底座7。
在某些实施例中,烟嘴盖1与烟弹外壳2可以是分开的两个组件。在某些实施例中,烟嘴盖1与烟弹外壳2可以一体成形。烟嘴盖1具有孔1h。孔1h构成气雾通道的一部份。雾化装置100产生的气雾可经由孔1h被用戶吸食。
密封组件3可以套于加热组件顶盖4的管4t1上。密封组件3与加热组件顶盖4的管4t1具有相似外型。在某些实施例中,密封组件3具有环状外型。在某些实施例中,密封组件3可具有其他外型。密封组件3可以具有可挠性。密封组件3可以具有延展性。在某些实施例中,密封组件3可以包含硅胶材质。
在某些实施例中,密封组件3可具有20至40之间的硬度。在某些实施例中,密封组件3可具有40至60之间的硬度。在某些实施例中,密封组件3可具有60至75之间的硬度。此处采用的硬度单位为邵氏硬度A型(Shore Hardness A;HA)。
加热组件顶盖4之一侧具有孔4h。加热组件顶盖4之另一侧亦具有孔。加热组件顶盖4可以包含塑料材料。在某些实施例中,加热组件顶盖4可以包含聚丙烯(PP)、高压聚乙烯(LDPE)、高密度聚乙烯(HDPE)等材料。在某些实施例中,加热组件顶盖4可以包含硅胶材质。
加热组件顶盖4与密封组件3可以使用相同材料制成。加热组件顶盖4与密封组件3可以使用不同材料制成。加热组件顶盖4与密封组件3可以包含不同材料。在某些实施例中,加热组件顶盖4的硬度可以大于密封组件3的硬度。在某些实施例中,加热组件顶盖4可具有65至75之间的硬度。在某些实施例中,加热组件顶盖4可具有75至85之间的硬度。在某些实施例中,加热组件顶盖4可具有85至90之间的硬度。
加热组件5的两端可以延伸超出孔4h。加热组件5的两端可由孔4h暴露。
加热组件5包括加热线路51及吸附组件52。加热线路51可以缠绕吸附组件52的 一部份。加热线路51可以缠绕吸附组件52的中心部份。经由向加热线路51提供电源,雾化装置100可使加热组件5温度上升。
加热线路51可包含金属材料。在某些实施例中,加热线路51可包含银。在某些实施例中,加热线路51可包含铂。在某些实施例中,加热线路51可包含钯。在某些实施例中,加热线路51可包含镍。在某些实施例中,加热线路51可包含镍合金材料。在某些实施例中,加热线路51可包含镍铬合金材料。
在某些实施例中,吸附组件52可以包含棉芯材质。在某些实施例中,吸附组件52可以包含无纺布材质。在某些实施例中,吸附组件52可以包含陶瓷材质。在某些实施例中,吸附组件52可以包含棉芯、无纺布或陶瓷之组合物。
加热组件底座6包含凹槽6r。加热组件5可以设置于凹槽6r上。加热组件5可以被凹槽6r支撑。加热组件5可以固定于加热组件顶盖4与凹槽6r之间。加热组件底座6包括孔6h1及6h2。孔6h1及6h2向加热组件底座6内延伸。孔6h1及6h2贯穿加热组件底座6。
烟弹底座7包含柱状结构7p1及7p2。柱状结构7p1可以延伸进入孔6h1中。柱状结构7p1可以与孔6h1机械耦合。柱状结构7p2可以延伸进入孔6h2中。柱状结构7p2可以与孔6h2机械耦合。烟弹底座7可以藉由柱状结构7p1及7p2固定至加热组件底座6。烟弹底座7包括孔7h1及孔7h2。孔7h1构成气雾通道的一部份。加热线路51延伸穿过孔7h2以与设置于主体100B的导电组件11形成电连接。烟弹底座7包括吸附组件7m。吸附组件7m可包含金属材料。吸附组件7m可以与设置于主体100B的磁性组件12以磁性耦合。吸附组件7m可以与设置于主体100B的磁性组件12可移除性地耦合。
图3A及3B说明根据本揭露的一些实施例的雾化装置的一部分的分解图。
主体100B包含框架8、传感器上盖9、密封组件10、导电组件11、磁性组件12、传感器13、电路版支架14、电路板15、扁平电缆16、振动器17、充电组件18、缓冲组件19、电源组件20、电源组件支架21、及主体外壳22。
框架8固定于电源组件支架21的上端周围21p。在某些实施例中,框架8可以包含塑料材质。在某些实施例中,框架8可以包含金属材质。传感器上盖9设置于电源组件支架21的空腔21c中。密封组件10设置于电源组件支架21的槽21r中。磁性组件12设置于电源组件支架21的孔21h中。在某些实施例中,磁性组件12可以是一种永久磁铁。在某些实施例中,磁性组件12可以是一种电磁铁。在某些实施例中,磁性组件12本身具有磁性。在某些实施例中,磁性组件12在通电之后才具有磁性。
传感器上盖9具有孔9h1及9h2。孔9h1可以容纳导电组件11。孔9h2与传感器13 流体连通。传感器13可以经由孔9h2侦测气流产生。传感器13可以经由孔9h2侦测气压变化。传感器13可以经由孔9h2侦测声波。
导电组件11,包括导电接脚11p1及导电接脚11p2。导电接脚11p1可与加热组件5电连结,导电接脚11p2可与加热组件5电连结。导电接脚11p1可与加热线路51电连结,导电接脚11p2可与加热线路51电连结。
电路板15设置于电路版支架14及电源组件支架21之间。电路板15上包含控制器151。
控制器151可以是一种微处理器。控制器151可以是一种可程序化集成电路。控制器151可以是一种可程序化逻辑电路。在某些实施例中,控制器151内的运算逻辑在控制器151制造后便无法更改。在某些实施例中,控制器151内的运算逻辑在控制器151制造后可程序化更改。
电路板15上亦可包含内存(图中未显示)。在某些实施例中,内存可整合于控制器151内。在某些实施例中,内存可与控制器151分开设置。
控制器151可与传感器13电连接。控制器151可与导电组件11电连接。控制器151可与电源组件20电连接。当传感器13侦测到一气流时,控制器151可以控制电源组件20输出功率至导电组件11。当传感器13侦测到一气压变化时,控制器151可以控制电源组件20输出功率至导电组件11。当传感器13侦测到一负压时,控制器151可以控制电源组件20输出功率至导电组件11。
当控制器151判定传感器13侦测到之气压低于一阈值时,控制器151可以控制电源组件20输出功率至导电组件11。当传感器13侦测到一声波时,控制器151可以控制电源组件20输出功率至导电组件11。当控制器151判定传感器13侦测到之声波之振幅高于一阈值时,控制器151可以控制电源组件20输出功率至导电组件11。
振动器17可电连接至控制器151。在某些实施例中,振动器17经由扁平电缆16电连接至电路板15上的控制器151。
根据雾化装置100的不同操作状态,控制器151可以控制振动器17产生不同的体感效果。在某些实施例中,当用戶吸气超过一特定时间长度时,控制器151可控制振动器17产生震动以提醒用戶停止吸气。在某些实施例中,当用户对雾化装置100进行充电时,控制器151可控制振动器17产生震动以指示充电已经开始。在某些实施例中,当雾化装置100充电已经完成时,控制器151可控制振动器17产生震动以指示充电已经完成。
充电组件18设置于主体外壳22底部。充电组件18之一端经由主体外壳22之通孔 22h暴露。可经由充电组件18对电源组件20进行充电。在某些实施例中,充电组件18包含USB接口。在某些实施例中,充电组件18包含USB Type-C接口。
电源组件20可设置于电源组件支架21内。缓冲组件19可设置于电源组件20的表面20S。缓冲组件19可设置于电源组件20与主体外壳22之间。缓冲组件19可与电源组件20的表面20S及主体外壳22之内壁直接接触。虽然图中未显示,可以思及一额外缓冲组件可设置于电源组件20及电源组件支架21之间。
在某些实施例中,电源组件20可以是电池。在某些实施例中,电源组件20可以是可充电电池。在某些实施例中,电源组件20可以是一次性电池。
主体外壳22包含一透光组件221。透光组件221可包含一或多个穿透主体外壳22之孔。在某些实施例中,透光组件221可呈现大体上圆形。在某些实施例中,透光组件221可呈现大体上矩形。在某些实施例中,透光组件221可呈现对称外型。
图4A及4B说明根据本揭露的一些实施例的烟弹的截面图。
烟弹外壳2与加热组件顶盖4界定储存舱30。可雾化材料可储存于储存舱30中。可雾化液体可储存于储存舱30中。可雾化材料可以是一种液体。可雾化材料可以是一种溶液。在本申请后续段落中,可雾化材料亦可称为烟油。烟油系可食用的。
烟弹外壳2内壁具有肋2r1、2r2、2r3及2r4。肋2r1与肋2r2间隔设置。肋2r1与肋2r4间隔设置。肋2r2与肋2r3间隔设置。肋2r1、2r2、2r3及2r4彼此可呈平行设置。在某些实施例中,肋2r1、2r2、2r3及2r4可呈现非平行设置。
在某些实施例中,烟弹外壳2内壁可具有更多条肋。在某些实施例中,烟弹外壳2内壁可具有较少条肋。在某些实施例中,烟弹外壳2内壁可具有共6条肋。
肋2r1、2r2、2r3及2r4自烟弹外壳2靠近孔1h的部分朝着加热组件顶盖4延伸。肋2r1、2r2、2r3及2r4的一端与加热组件顶盖4直接接触。肋2r1、2r2、2r3及2r4的一端抵压在加热组件顶盖4的一部份。如图4A虚线圈A内所示,肋2r3抵压在加热组件顶盖4的一部份。肋2r1、2r2、2r3及2r4可避免加热组件顶盖4与加热组件底座6分离。
肋2r1、2r2、2r3及2r4可强化烟弹外壳2的刚性。肋2r1、2r2、2r3及2r4可避免烟弹外壳2因外力挤压而变形。肋2r1、2r2、2r3及2r4可避免储存舱30内的烟油因外力挤压而溢出。
加热组件顶盖4与加热组件底座6界定雾化室40。雾化室40可为加热组件顶盖4与加热组件底座6之间的空腔。
加热组件5具有长度5L。雾化室40具有最大宽度4L1。加热组件5的长度5L大于 雾化室40的最大宽度4L1。
加热组件5的一部份设置于雾化室40内。加热组件5的两端从加热组件顶盖4的孔4h延伸进入储存舱30内。加热组件顶盖4暴露加热组件5的一部份。加热组件顶盖4暴露加热组件5的两端部分。加热组件5的两端暴露于储存舱30内。储存舱30内的烟油可经由加热组件5两端被加热组件5吸附。加热组件5上吸附的烟油经过加热线路51加热后在雾化室40内产生气雾。气雾可经由管4t2、管2t及管1t形成的气流通道100t而被用户吸食。
在某些实施例中,烟嘴盖1与烟弹外壳2可以一体成形,此时管2t及管1t为相同组件。
管4t2、管2t及管1t形成的气流通道100t可具有平滑的内径。气流通道100t内径于管1t与管2t相接处不具有明显的段差。气流通道100t内径于管2t与管4t2相接处不具有明显的段差。气流通道100t内径于管1t与管2t相接处不具有明显的界面。气流通道100t内径于管2t与管4t2相接处不具有明显的界面。
管4t2、管2t及管1t形成的气流通道100t可具有非均匀的内径大小。举例言之,管2t可具有内径2L1及2L2,且内径2L1大于2L2。管1t具有内径1L1及1L2,且内径1L1大于1L2。在某些实施例中,管4t2、管2t及管1t形成的气流通道可具有均匀的内径。
参阅图4B,加热组件顶盖4可具有两部分。加热组件顶盖4的一部分具有较大宽度。雾化室40内壁可具有不均匀宽度。举例言之,雾化室40内壁因加热组件顶盖4的外型而具有宽度4L2及最大宽度4L1。宽度4L2小于宽度4L1。
密封组件3设置于烟弹外壳2的管2t与加热组件顶盖4的管4t1之间。密封组件3的硬度可以小于烟弹外壳2的硬度。密封组件3的硬度可以小于加热组件顶盖4的硬度。密封组件3可以增加管2t与管4t1之间的密合程度。密封组件3可以降低管2t与管4t1之公差要求。密封组件3可以降低烟弹外壳2与加热组件顶盖4的制造难度。密封组件3可以避免烟弹外壳2与加热组件顶盖4在组装过程中产生损坏。密封件3也可避免储存舱30内的烟油从孔1h被抽出。
加热组件顶盖4的管4t2可具有小于管4t1的内径。加热组件顶盖4的管4t2可具有小于管4t1的外径。加热组件顶盖4的管4t2向雾化室40内延伸。加热组件顶盖4的管4t2延伸至雾化室40内。加热组件顶盖4的管4t2朝着与孔1h相反的方向延伸。管4t2可使气流通道更接近加热组件5。管4t2可使雾化室40内产生的气雾更完整地从气流通道排出。管4t2可避免雾化室40内产生的气雾从密封件3与加热组件顶盖4间的空隙泄 漏至储存舱30内。
参阅图4B。当用戶从孔1h吸气时,烟弹100A内产生气流100f。气流100f前段包含由烟弹底座7的孔7h1进入雾化室40内的新鲜空气。气流100f后段包含由加热组件5产生的气雾。新鲜空气经由孔7h1进入雾化室40,加热组件5产生的气雾沿着气流通道100t从达孔1h1排出。
气流100f在加热组件5及管4t2之间产生温度改变。加热组件5产生的气雾在到达管4t2之前产生温度改变。
雾化室40内壁的不均匀宽度可以强化气流100f的温度改变。雾化室40内壁的不均匀宽度可以加速气流100f的温度改变。气流100f从宽度4L1处流至4L2时温度下降。与具有均匀内壁宽度的雾化室相比,气流100f从宽度4L1处流至4L2时温度下降幅度较大,温度下降速度较快。藉由调整雾化室40内壁宽度,可以控制用戶从孔1h吸取的气雾温度。在某些实施例中,雾化室40亦可以具有实质上相同的内壁宽度。
气流100f从孔7h1进入雾化室40之后,经加热组件5加热产生一温度上升Tr。在某些实施例中,温度上升Tr可以在200℃至220℃的范围内。在某些实施例中,温度上升Tr可以在240℃至260℃的范围内。在某些实施例中,温度上升Tr可以在260℃至280℃的范围内。在某些实施例中,温度上升Tr可以在280℃至300℃的范围内。在某些实施例中,温度上升Tr可以在300℃至320℃的范围内。在某些实施例中,温度上升Tr可以在200℃至320℃的范围内。
从雾化室40流出的气流在到达孔1h之前可产生一温度下降Tf。在某些实施例中,温度下降Tf可以在145℃至165℃的范围内。在某些实施例中,温度下降Tf可以在165℃至185℃的范围内。在某些实施例中,温度下降Tf可以在205℃至225℃的范围内。在某些实施例中,温度下降Tf可以在225℃至245℃的范围内。在某些实施例中,温度下降Tf可以在245℃至265℃的范围内。在某些实施例中,温度下降Tf可以在145℃至265℃的范围内。
气流通道100t可具有不均匀的内径。气流通道100t的内径从靠近加热组件5处向孔1h方向逐渐变大。靠近孔1h处的较大内径可使气雾体积变大。
藉由调整雾化室40内壁宽度以及气流通道100t的内径宽度,可以控制用戶从孔1h吸取的气雾温度。藉由调整雾化室40内壁宽度以及气流通道100t的内径宽度,可以控制用戶从孔1h吸取的气雾体积。
控制气雾温度可以避免用户被气雾烫伤。控制气雾体积可以提升用戶的吸气体验。
在某些实施例中,经由通孔1h被用戶吸入的气雾可以具有低于65℃的温度。在某 些实施例中,经由通孔1h被用戶吸入的气雾可以具有低于55℃的温度。在某些实施例中,经由通孔1h被用戶吸入的气雾可以具有低于50℃的温度。在某些实施例中,经由通孔1h被用戶吸入的气雾可以具有低于45℃的温度。在某些实施例中,经由通孔1h被用戶吸入的气雾可以具有低于40℃的温度。在某些实施例中,经由通孔1h被用户吸入的气雾可以具有低于30℃的温度。
图5说明根据本揭露的一些实施例的雾化装置电路方块图。
雾化装置100包含烟弹100A及主体100B。
如图5所示,在某些实施例中,烟弹100A可包含加热组件5及一认证电路23。主体100B可包含计时电路24、无线通信电路25、指示灯26及存储器27。图5将说明控制器151与传感器13、振动器17、电源组件20、认证电路23、计时电路24、无线通信电路25、指示灯26、存储器27及加热组件5之间的交互关系。
在某些实施例,控制器151于时间Tm1控制电源组件20向加热组件5输出功率P1,且控制器151于时间Tm2控制电源组件20向加热组件5输出功率P2。在某些实施例,功率P1与功率P2不同。在某些实施例,功率P1大于功率P2。在某些实施例,功率P2为零。
在某些实施例,时间Tm2与时间Tm1之间相隔1.0秒至2.0秒。亦即,当控制器151于时间Tm1控制电源组件20向加热组件5输出功率P1时,1.0秒至2.0秒后控制器151控制电源组件20改变向加热组件5输出的功率。在某些实施例,时间Tm2与时间Tm1之间相隔2.0秒至3.0秒。在某些实施例,时间Tm2与时间Tm1之间相隔3.0秒至4.0秒。在某些实施例,时间Tm2与时间Tm1之间相隔4.0秒至5.0秒。在某些实施例,时间Tm2与时间Tm1之间相隔1.0秒至3.0秒。在某些实施例,时间Tm2与时间Tm1之间相隔1.0秒至4.0秒。在某些实施例,时间Tm2与时间Tm1之间相隔1.0秒至5.0秒。
当烟弹100A与主体100B处于未结合状态时,控制器151与认证电路23无电连接。当烟弹100A与主体100B处于结合状态时,控制器151与认证电路23电连接。认证电路23储存一信息。该信息可与雾化装置内储存的烟油种类相关连。在某些实施例,该信息包括表征烟弹100A的口味信息的电阻。当烟弹100A和主体100B处于结合状态时,控制器151的连接引脚与该电阻形成电连接回路。根据每个烟弹100A中的该电阻阻值的不同,控制器151确定该连接引脚的对应该电阻的电平,并根据不同电平确定不同的口味的烟弹100A。比如,当该电阻为2欧姆时,表征与主体100B结合的是西柚口味的烟弹100A。当该电阻为4欧姆时,表征与主体100B结合的是薄荷口味的烟弹100A。 需要说明的是,具体电阻的阻值和对应的烟弹100A的口味并不限定于此。可以根据实际情况进行确定。
在某些实施例中,认证电路23包括加密芯片(图中未标示)。加密芯片存储有烟弹100A的加密的数据信息,数据信息可包括唯一ID号、烟弹口味、烟弹油量等。控制器151包括与加密芯片对应的解密模块。该解密模块用于在当烟弹100A与主体100B处于结合状态时对加密信息进行解密,并在解密成功后发送解密成功信息,在解密失败后发送解密失败信息。在接收到解密失败信息后,控制器151可将电源组件20与加热组件5之间断电。在接收到解密失败信息后,控制器151可将雾化装置100设定为禁用(disable)状态。在禁用状态中,即使传感器13侦测到使用者对烟弹100A吸气,控制器151也不会控制电源组件20对加热组件5输出功率。
若在接收到解密成功信息后,控制器151驱动指示灯26快闪3次,并驱动振动器17短震3次。控制器151在将从加密芯片获取的加密的数据信息解密成功后,启动蓝牙模块发送广播信号。
在某些实施例中,控制器151根据时间Tm1及认证电路23储存的信息决定时间Tm2。例如,烟弹100A的口味不同时,认证电路23储存的信息不同。控制器151根据时间Tm1及认证电路23储存的不同的信息,决定出不同的时间Tm2。例如,当烟弹100A的烟油口味是薄荷口味时,时间Tm2可与时间Tm1间隔2.0秒,亦即,控制器151于时间Tm1控制电源组件20向加热组件5输出功率P1,2.0秒后,控制器151控制电源组件20向加热组件5输出功率P2。当烟弹100A的烟油口味为西柚口味时,时间Tm2可与时间Tm1间隔2.5秒,亦即,控制器151于时间Tm1控制电源组件20向加热组件5输出功率P1,2.5秒后,控制器151控制电源组件20向加热组件5输出功率P2。
在某些实施例中,控制器151根据时间Tm1及认证电路23储存的信息决定时间Tm2。在某些实施例中,针对烟弹100A内储存的不同烟油,认证电路23储存与烟油的雾化量相关的信息。此处所述的雾化量为对相同体积的烟油加热后所产生的气雾体积。不同口味的烟油,即使体积相同,但因成分差异,加热后产生的气雾体积有差异。
举例言之,若薄荷口味的烟油与乌龙茶口味的烟油相比具有较高的雾化量,则薄荷口味烟油烟弹的时间Tm1与时间Tm2的间隔可设定为小于乌龙茶口味烟弹。举例言之,薄荷口味烟油烟弹的时间Tm2可与时间Tm1间隔2秒,而乌龙茶口味烟弹的时间Tm2可与时间Tm1间隔2.5秒。
由于用户对于不同口味的烟弹100A有不同的抽吸习惯,对于不同口味的烟弹100A对应调整加热组件5的加热时间,可以使用户得到更佳的使用体验。
在某些实施例中,计时电路24与控制器151电连接。计时电路24用于提供时间信息。例如,计时电路24可用来提供用户的所在地的时间信息。时间信息例如为3:00am、6:30pm,且此时间信息可根据用户的所在地而改变,例如,同一时间,当用户在美国与在日本时,计时电路24提供不同的时间信息。
在某些实施例中,控制器151根据时间Tm1及计时电路24提供的时间信息,决定时间Tm2。随着时间信息不同时,时间Tm2不同。例如,当时间信息为6:00am时,时间Tm2可与时间Tm1间隔3.0秒,亦即,控制器151于时间Tm1控制电源组件20向加热组件5输出功率P1,3.0秒后,控制器151控制电源组件20向加热组件5输出功率P2。当时间信息改变为3:00pm时,时间Tm2可与时间Tm1间隔4.0秒,亦即,控制器151于时间Tm1控制电源组件20向加热组件5输出功率P1,4.0秒后,控制器151控制电源组件20向加热组件5输出功率P2。
由于用户对于不同时间有不同的抽吸习惯,例如用户习惯上午抽吸较大口的烟雾,因此于不同时间对应调整加热组件5的加热时间,可以使用户得到更佳的使用体验。
无线通信电路25用于进行无线通信。存储器27可用于存储信息并被读和写。存储器27存储吸烟信息,吸烟信息包括烟弹100A的ID、吸烟口数、吸烟时间等等。在某些实施例中,无线通信电路25与控制器151电连接。该无线通信可以采用以下一种或多种模式:Bluetooth(蓝牙)、Wi-Fi、3G(the 3rd Generation,第三代移动通信技术)、4G(the 4th Generation,第三代移动通信技术)、5G(the 5th Generation,第三代移动通信技术)、近场通信、超声波通信、ZigBee(紫峰协议)、RFID(Radio Frequency Identification,射频识别)等。
控制器151可以通过蓝牙通信将存储器27中存储的吸烟信息发送至智能终端。智能终端的专用APP(Application,应用)根据接收到的吸烟信息,进行数据分析,以更好的指导用户控烟、替烟、戒烟等。无线通信电路25与智能终端进行交互而能得到一信息。控制器151通过无线通信电路25与智能终端进行交互。智能终端包括手机、计算机、智能可穿戴设备(比如,智能手表)、平板电脑等。
在某些实施例,存储器27储存的吸烟信息包括用户的抽烟习惯,并可储存用户使用的烟弹100A的口味、主体100B的型号、每次抽吸的时间及抽烟的时间或场景。抽烟的场景可包括用户的生理信息或环境信息。用户的生理信息包括用户当下的心跳数。环境信息包括用户的位置,例如室内或室外、用户所在处的温度、用户所在处的湿度。
智能终端接收上述信息,控制器151通过无线通信电路25接收的信息,决定时间Tm2。例如,用户在室内时,时间Tm2可与时间Tm1间隔2.0秒,亦即,控制器151 于时间Tm1控制电源组件20向加热组件5输出功率P1,2.0秒后,控制器151控制电源组件20向加热组件5输出功率P2。用户在室外时,时间Tm2可与时间Tm1间隔2.5秒,亦即,控制器151于时间Tm1控制电源组件20向加热组件5输出功率P1,2.5秒后,控制器151控制电源组件20向加热组件5输出功率P2。
此外,根据存储器27储存的用户的生理信息及/或用户的位置,无线通信电路25可立即与智能终端进行交互而能得到一信息。控制器151通过无线通信电路25接收的该信息,决定时间Tm2。
由于用户于不同场景有不同的抽吸习惯,因此于不同时间对应调整加热组件5的加热时间而客制化每一次的吸抽参数,可以使用户得到更佳的使用体验。
在某些实施例,可针对传感器13接收的传感讯号设定2或多个以上的阈值。例如,可针对传感讯号設定3个至5个阈值;可针对传感讯号設定5个至10个阈值;可针对传感讯号設定10个至100个阈值。上述阈值可对应至传感器13侦测到之气流之大小。上述阈值可对应至传感器13侦测到之气压之大小。上述阈值可对应至传感器13侦测到之声波之大小。
例如,可针对传感器13接收的传感讯号设定3个阈值,其分别为阈值TH1、大于阈值TH1的阈值TH2、及大于阈值TH2的阈值TH3。当气流的强度介于阈值TH2与阈值TH3之间时,控制器151于时间Tm1控制电源组件20向加热组件5输出功率P1。当传感器13在侦测到之气流于介于阈值TH1与阈值TH2之间时,控制器151于时间Tm1控制电源组件20向加热组件5输出功率P2。
当传感器13在侦测到之气流大于阈值TH3时,控制器151控制电源组件20向加热组件5输出功率P3。功率P3可以大于功率P1。功率P3可以大于功率P2。功率P3可以与功率P1及功率P2不同。
当传感器13在侦测到之气流小于阈值TH1时,控制器151不控制电源组件20向加热组件5输出功率(或输出功率为0)。
在某些实施例,当传感器13接收的传感讯号系一振福连续信号。在某些实施例,当传感器13接收的传感讯号系一模拟(analog)信号。在某些实施例,传感器13接收的传感讯号与传感器13侦测到之气压大小相关连。在某些实施例,传感器13接收的传感讯号与传感器13侦测到之气压大小正相关。在某些实施例,传感器13接收的传感讯号与传感器13侦测到之声波大小相关连。在某些实施例,传感器13接收的传感讯号与传感器13侦测到之声波大小正相关。
在某些实施例,电源组件20向加热组件5输出的功率可与传感器13接收的传感讯 号正相关。在某些实施例,电源组件20向加热组件5输出的功率系一连续值。在某些实施例,输出至加热组件5的功率与传感器13接收的振福连续信号相关连。举例言之,用户的吸气可使传感器13接收一模拟信号,控制器151可根据该模拟信号的振福变化,实时调整输出至加热组件5的功率。
图6为本申请的一些实施例的雾化装置100与智能终端201交互的原理示意图。智能终端201开启蓝牙并与雾化装置100匹配,在匹配成功后接收雾化装置100发送的数据信息。智能终端201将上述数据信息发送至服务器202,服务器202用于将分析和处理的关于该雾化装置100的信息发送至智能终端201,智能终端201通过专用APP展示烟弹100A的数据信息,包括烟弹口味、每日抽吸口数、每周抽吸口数、每月抽吸口数、累计抽吸口数、剩余烟油量等信息,并显示成曲线图表。其中,剩余烟油量可以根据对该烟弹100A的累计抽吸口数计算得到。
在某些实施例中,当雾化装置100与智能终端201处于蓝牙连接状态时,专用APP上的“停止加热”触摸控件被用户激活,智能终端201的获取“停止加热”指令,并将该“停止加热”指令通过蓝牙通信链路发送至控制器151,控制器151在接收到该“停止加热”指令后,断开电源组件20对加热组件5的供电,加热组件5停止加热。即便传感器13检测到气流而输出高电平,即用户进行抽吸,加热组件5也不被供电,即加热组件5无法对烟油加热。
图7为本申请的一些实施例的加热组件5之示意图。如图7所示,加热线路51以缠绕5圈的方式缠绕吸附组件52。加热线路51缠绕吸附组件52的圈数会影响加热线路51的电阻。加热线路51以缠绕5圈的方式缠绕吸附组件52,可以得到最小的电阻。在某些实施例中,加热线路51在常温下(例如25℃),电阻介于0.9Ω至1.0Ω的范围间。在某些实施例中,加热线路51在常温下,电阻介于1.0Ω至1.1Ω的范围间。
在某些实施例中,加热线路51缠绕吸附组件52的圈径T1介于1.9mm至2.1mm的范围间。在某些实施例中,加热线路51缠绕吸附组件52的圈径T1介于1.95mm至2.00mm的范围间。在某些实施例中,加热线路51缠绕吸附组件52的圈径T1介于2.00mm至2.05mm的范围间。在某些实施例中,加热线路51缠绕吸附组件52的圈径T1介于2.05mm至2.10mm的范围间。
在某些实施例中,加热线路51的线径T2介于0.16mm至0.18mm的范围间。在某些实施例中,加热线路51的线径T2介于0.18mm至0.20mm的范围间。在某些实施例中,加热线路51的线径T2介于0.20mm至0.22mm的范围间。在某些实施例中,加热线路51的线径T2介于0.22mm至0.24mm的范围间。
在某些实施例中,吸附组件52的长度介于14.98mm至15.00mm的范围间。在某些实施例中,吸附组件52的长度介于15.00mm至15.02mm的范围间。
在某些实施例中,加热线路51以右旋的方式缠绕吸附组件52。在某些实施例中,加热线路51以左旋的方式缠绕吸附组件52。
当加热线路51以缠绕5圈的方式缠绕吸附组件52、加热线路51缠绕吸附组件52的圈径、加热线路51的线径及/或吸附组件52的长度介于上述范围时,可提升用户每一口抽吸的烟雾量(TPM,total particulate matter)。相较于加热线路以缠绕4或6圈的方式缠绕吸附组件,且加热线路51的线径为0.25mm时,本公开的实施例可以提升30%的TPM。
举例言之,实验结果可得,使用0.2mm线径的加热线路51并缠绕6圈,加热组件5产生的TPM量为6.75mg(毫克)。使用0.2mm线径的加热线路51并缠绕4圈,加热组件5产生的TPM量为6.7mg。使用0.2mm线径的加热线路51并缠绕5圈,加热组件5产生的TPM量为6.84mg。使用0.25mm线径的加热线路51并缠绕5圈,加热组件5产生的TPM量为5.2mg。
由上述实验结果可知,当使用0.2mm线径的加热线路51时,缠绕5圈可产生显着较多的烟雾量。此外,在同样缠绕5圈的状况下,加热线路51使用0.2mm线径可比使用0.25mm线径提升超过30%的TPM。
在某些实施例,控制器151根据时间Tm1决定时间Tm2。在某些实施例,控制器151只根据时间Tm1决定时间Tm2。在某些实施例,控制器151并未根据传感器13的传感讯号而决定时间Tm2。在某些实施例,控制器151并未根据认证电路23的讯号而决定时间Tm2。在某些实施例,控制器151并未根据计时电路24的讯号而决定时间Tm2。在某些实施例,控制器151并未根据无线通信电路25接收的讯号而决定时间Tm2。
在某些实施例,控制器151根据时间Tm1,且根据传感器13的传感讯号、认证电路23的讯号、计时电路24的讯号及无线通信电路25接收的讯号的至少一者,决定时间Tm2。例如,控制器可根据时间Tm1、传感器13的传感讯号及认证电路23的讯号决定时间Tm2。控制器亦可根据时间Tm1、计时电路24的讯号及无线通信电路25接收的讯号决定时间Tm2。
在某些实施例,控制器151可依据预设的时间段对加热组件5加热。在某些实施例,时间Tm1及时间Tm2在雾化装置100生产时便为固定值。在某些实施例,控制器151控制电源组件20向加热组件5输出功率持续时间Tm1后,在时间Tm2改变输出功率。
如本文中所使用,术语“近似地”、“基本上”、“基本”及“约”用于描述并考虑小变化。 当与事件或情况结合使用时,所述术语可指事件或情况精确地发生的例子以及事件或情况极近似地发生的例子。如本文中相对于给定值或范围所使用,术语“约”大体上意味着在给定值或范围的±10%、±5%、±1%或±0.5%内。范围可在本文中表示为自一个端点至另一端点或在两个端点之间。除非另外规定,否则本文中所公开的所有范围包括端点。术语“基本上共面”可指沿同一平面定位的在数微米(μm)内的两个表面,例如,沿着同一平面定位的在10μm内、5μm内、1μm内或0.5μm内。当参考“基本上”相同的数值或特性时,术语可指处于所述值的平均值的±10%、±5%、±1%或±0.5%内的值。
如本文中所使用,术语“近似地”、“基本上”、“基本”和“约”用于描述和解释小的变化。当与事件或情况结合使用时,所述术语可指事件或情况精确地发生的例子以及事件或情况极近似地发生的例子。举例来说,当与数值结合使用时,术语可指小于或等于所述数值的±10%的变化范围,例如,小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%,或小于或等于±0.05%。举例来说,如果两个数值之间的差小于或等于所述值的平均值的±10%(例如,小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%,或小于或等于±0.05%),那么可认为所述两个数值“基本上”或“约”相同。举例来说,“基本上”平行可以指相对于0°的小于或等于±10°的角度变化范围,例如,小于或等于±5°、小于或等于±4°、小于或等于±3°、小于或等于±2°、小于或等于±1°、小于或等于±0.5°、小于或等于±0.1°,或小于或等于±0.05°。举例来说,“基本上”垂直可以指相对于90°的小于或等于±10°的角度变化范围,例如,小于或等于±5°、小于或等于±4°、小于或等于±3°、小于或等于±2°、小于或等于±1°、小于或等于±0.5°、小于或等于±0.1°,或小于或等于±0.05°。
举例来说,如果两个表面之间的位移等于或小于5μm、等于或小于2μm、等于或小于1μm或等于或小于0.5μm,那么两个表面可以被认为是共面的或基本上共面的。如果表面相对于平面在表面上的任何两个点之间的位移等于或小于5μm、等于或小于2μm、等于或小于1μm或等于或小于0.5μm,那么可以认为表面是平面的或基本上平面的。
如本文中所使用,术语“导电(conductive)”、“导电(electrically conductive)”和“电导率”是指转移电流的能力。导电材料通常指示对电流流动呈现极少或零对抗的那些材料。电导率的一个量度是西门子/米(S/m)。通常,导电材料是电导率大于近似地10 4S/m(例如,至少10 5S/m或至少10 6S/m)的一种材料。材料的电导率有时可以随温度而变化。除非另外规定,否则材料的电导率是在室温下测量的。
如本文中所使用,除非上下文另外明确规定,否则单数术语“一(a/an)”和“所述”可包含复数指示物。在一些实施例的描述中,提供于另一组件“上”或“上方”的组件可涵盖前一组件直接在后一组件上(例如,与后一组件物理接触)的情况,以及一或多个中间组件位于前一组件与后一组件之间的情况。
如本文中所使用,为易于描述可在本文中使用空间相对术语例如“下面”、“下方”、“下部”、“上方”、“上部”、“下部”、“左侧”、“右侧”等描述如图中所说明的一个组件或特征与另一组件或特征的关系。除图中所描绘的定向之外,空间相对术语意图涵盖在使用或操作中的装置的不同定向。设备可以其它方式定向(旋转90度或处于其它定向),且本文中所使用的空间相对描述词同样可相应地进行解释。应理解,当一组件被称为“连接到”或“耦合到”另一组件时,其可直接连接或耦合到所述另一组件,或可存在中间组件。
如本文中所使用,术语“大约”、“基本上”、“大体”以及“约”用以描述和考虑小的变化。当与事件或情形结合使用时,所述术语可以指其中事件或情形明确发生的情况以及其中事件或情形极接近于发生的情况。如在本文中相对于给定值或范围所使用,术语“约”通常意指在给定值或范围的±10%、±5%、±1%或±0.5%内。范围可在本文中表示为从一个端点到另一端点或在两个端点之间。除非另外指定,否则本文中所公开的所有范围包括端点。术语“基本上共面”可指在数微米(μm)内沿同一平面定位,例如在10μm内、5μm内、1μm内或0.5μm内沿着同一平面的的的两个表面。当参考“基本上”相同的数值或特征时,术语可指处于所述值的平均值的±10%、±5%、±1%或±0.5%内的值。
前文概述本公开的若干实施例和细节方面的特征。本公开中描述的实施例可容易地用作用于设计或修改其它过程的基础以及用于执行相同或相似目的和/或获得引入本文中的实施例的相同或相似优点的结构。这些等效构造不脱离本公开的精神和范围并且可在不脱离本公开的精神和范围的情况下作出不同变化、替代和改变。

Claims (20)

  1. 一种雾化装置,其包括:
    加热组件、电源组件、及与所述电源组件电连接的控制器,所述加热组件包括吸附组件及缠绕所述吸附组件的加热线路;
    所述控制器于第一时间控制所述电源组件向所述加热组件输出第一功率,且于第二时间控制所述电源组件向所述加热组件输出第二功率;
    其中所述加热线路以缠绕5圈的方式缠绕所述吸附组件,所述控制器根据所述第一时间决定所述第二时间,且所述第二功率与所述第一功率不同。
  2. 根据权利要求1所述的雾化装置,其中所述第二功率小於所述第一功率。
  3. 根据权利要求1所述的雾化装置,其中所述第二功率為零。
  4. 根据权利要求1所述的雾化装置,所述第二时间与所述第一时间之间相隔1.0秒至5.0秒。
  5. 根据权利要求1所述的雾化装置,其进一步包含与所述控制器电连接的传感器,所述传感器经组态以感测所述雾化装置内的第一气流,当所述第一气流的强度介于第一阈值与第二阈值之间时,所述控制器于所述第一时间控制所述电源组件向所述加热组件输出所述第二功率。
  6. 根据权利要求5所述的雾化装置,当所述第一气流的强度介于所述第二阈值与第三阈值之间时,所述控制器于所述第一时间控制所述电源组件向所述加热组件输出所述第一功率。
  7. 根据权利要求6所述的雾化装置,其中所述第一阈值小于所述第二阈值,且所述第二阈值小于所述第三阈值。
  8. 根据权利要求1所述的雾化装置,進一步包括:
    与所述控制器电连接的认证电路,其儲存第一信息,所述第一信息與所述霧化裝置 內儲存的煙油種類相關連,其中所述控制器根据所述第一时间及所述第一信息决定所述第二时间。
  9. 根据权利要求1所述的雾化装置,進一步包括:
    无线通信电路,与所述控制器电连接,其中所述控制器根据所述第一时间及所述无线通信电路接收的第一讯号,决定所述第二时间。
  10. 根据权利要求1所述的雾化装置,进一步包括:
    计时电路,与所述控制器电连接,其中所述计时电路用于提供时间信息,且所述控制器根据所述第一时间及所述时间信息,决定所述第二时间。
  11. 根据权利要求1所述的雾化装置,其进一步包括:
    传感器,其经组态以侦测吸气动作且将传感信号提供至所述控制器,且所述控制器根据所述第一时间及所述传感信号,决定所述第二时间。
  12. 根据权利要求10所述的雾化装置,其中所述加热线路的线径介于0.16mm至0.24mm的范围间。
  13. 根据权利要求10所述的雾化装置,其中所述加热线路包括银、铂、镍及镍铬合金中的一或多者。
  14. 一种雾化装置,其包括:
    加热组件,包括:
    吸附组件;及
    加热线路,缠绕所述吸附组件;
    电源组件;及
    与所述电源组件电连接的控制器;
    所述控制器经组态以控制所述电源组件向所述加热组件输出第一功率及第二功率;其中所述加热线路的线径介于0.16mm至0.24mm的范围间。
  15. 根据权利要求14所述的雾化装置,其进一步包括:
    传感器,其经组态以侦测吸气动作且将传感信号提供至所述控制器,且所述控制器 根据所述传感信号控制所述电源组件改变输出功率。
  16. 根据权利要求15所述的雾化装置,其中所述传感信号包含与所述吸气动作的強度相關連的第一值及第二值,所述控制器根据所述第一值控制所述电源组件向所述加热组件输出所述第一功率,且所述控制器根据所述第二值控制所述电源组件向所述加热组件输出所述第二功率。
  17. 根据权利要求16所述的雾化装置,其中所述传感信号包含与所述吸气动作的強度相關連的第三值,所述控制器根据所述第三值控制所述电源组件向所述加热组件输出第三功率,其中所述第三功率與所述第一功率及所述第二功率不同。
  18. 根据权利要求14所述的雾化装置,其中所述加热线路以缠绕5圈的方式缠绕所述吸附组件。
  19. 根据权利要求14所述的雾化装置,更包括:
    无线通信电路,与所述控制器电连接,其中所述控制器根据所述第一时间及所述无线通信电路接收的第一讯号,决定所述第二时间。
  20. 根据权利要求14所述的雾化装置,其中所述加热线路以圈径介于1.9mm至2.1mm的范围间之方式,缠绕所述吸附组件。
PCT/CN2019/129950 2019-12-30 2019-12-30 一种雾化装置 WO2021134224A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129950 WO2021134224A1 (zh) 2019-12-30 2019-12-30 一种雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129950 WO2021134224A1 (zh) 2019-12-30 2019-12-30 一种雾化装置

Publications (1)

Publication Number Publication Date
WO2021134224A1 true WO2021134224A1 (zh) 2021-07-08

Family

ID=76687470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129950 WO2021134224A1 (zh) 2019-12-30 2019-12-30 一种雾化装置

Country Status (1)

Country Link
WO (1) WO2021134224A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102894485A (zh) * 2012-10-23 2013-01-30 深圳市合元科技有限公司 电子烟用雾化装置、雾化器及电子烟
CN109907379A (zh) * 2019-04-10 2019-06-21 深圳市卓力能电子有限公司 一种雾化设备及其输出控制方法
CN109924548A (zh) * 2019-04-04 2019-06-25 惠州市新泓威科技有限公司 可控制摄入剂量的雾化装置及其控制方法
WO2019171017A1 (en) * 2018-03-07 2019-09-12 Nicoventures Trading Limited Electronic aerosol provision system
CN110226780A (zh) * 2019-06-27 2019-09-13 深圳雾芯科技有限公司 电子雾化器装置
CN110419780A (zh) * 2019-07-16 2019-11-08 深圳瀚星翔科技有限公司 一种电子烟

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102894485A (zh) * 2012-10-23 2013-01-30 深圳市合元科技有限公司 电子烟用雾化装置、雾化器及电子烟
WO2019171017A1 (en) * 2018-03-07 2019-09-12 Nicoventures Trading Limited Electronic aerosol provision system
CN109924548A (zh) * 2019-04-04 2019-06-25 惠州市新泓威科技有限公司 可控制摄入剂量的雾化装置及其控制方法
CN109907379A (zh) * 2019-04-10 2019-06-21 深圳市卓力能电子有限公司 一种雾化设备及其输出控制方法
CN110226780A (zh) * 2019-06-27 2019-09-13 深圳雾芯科技有限公司 电子雾化器装置
CN110419780A (zh) * 2019-07-16 2019-11-08 深圳瀚星翔科技有限公司 一种电子烟

Similar Documents

Publication Publication Date Title
ES2816649T3 (es) Dispositivo de inhalación electrónico
JP6916802B2 (ja) 液体エアロゾル形成基体の識別を備えたエアロゾル発生システム
US11083227B2 (en) Flavor inhaler
WO2020034774A1 (zh) 雾化装置及其方法
JP2020521438A (ja) シガレット挿入感知機能を有するエアロゾル生成装置及びその方法
WO2013110209A1 (zh) 一种电子仿真烟及其雾化器
US20220202102A1 (en) An aerosol-generating system and haptic output elements for an aerosol-generating system
US20230000172A1 (en) Inhaling device
WO2021000399A1 (zh) 一种雾化装置
WO2021134224A1 (zh) 一种雾化装置
CN111035064A (zh) 一种雾化装置
CN212368311U (zh) 一种雾化装置
KR20210150927A (ko) 기류패스 구조체 및 이를 포함하는 에어로졸 생성 장치
TW202112254A (zh) 電池單元、資訊處理方法及程式
US20240122262A1 (en) Aerosol provision system and method
JP2022549747A (ja) 超音波基盤エアゾール発生装置およびそのカートリッジ認識方法
KR20210151580A (ko) 카트리지 및 이를 포함하는 에어로졸 생성 장치
KR102660016B1 (ko) 에어로졸 발생 시스템 및 에어로졸 발생 장치
WO2022022037A1 (zh) 一种雾化装置及其校验方法
KR102648898B1 (ko) 에어로졸 발생 장치 및 에어로졸 발생 장치의 작동 방법
RU2805489C2 (ru) Устройство, генерирующее аэрозоль, система, генерирующая аэрозоль (варианты), и способ генерирования выходного сигнала в системе, генерирующей аэрозоль
TWI788632B (zh) 電池單元、霧氣生成裝置、資訊處理方法及資訊處理程式
CN112616309B (zh) 气溶胶生成装置和用于气溶胶生成装置的烟弹
KR102645174B1 (ko) 에어로졸 생성 장치 및 그 동작 방법
JP7393557B2 (ja) 振動子構造体、それを含むカートリッジ及びエアロゾル生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958646

Country of ref document: EP

Kind code of ref document: A1