WO2021015270A1 - Heat management apparatus - Google Patents

Heat management apparatus Download PDF

Info

Publication number
WO2021015270A1
WO2021015270A1 PCT/JP2020/028550 JP2020028550W WO2021015270A1 WO 2021015270 A1 WO2021015270 A1 WO 2021015270A1 JP 2020028550 W JP2020028550 W JP 2020028550W WO 2021015270 A1 WO2021015270 A1 WO 2021015270A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
radiator
cooling water
air
Prior art date
Application number
PCT/JP2020/028550
Other languages
French (fr)
Japanese (ja)
Inventor
三枝 弘
稲葉 淳
和弘 多田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080052658.0A priority Critical patent/CN114174736B/en
Publication of WO2021015270A1 publication Critical patent/WO2021015270A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting

Definitions

  • This disclosure relates to a heat management device.
  • a heat pump system includes a compressor, an indoor condenser, a first expansion valve, a second expansion valve, an outdoor unit, an indoor evaporator, and a switching valve (see, for example, Patent Document 1).
  • the refrigerant discharged from the compressor flows in the order of the indoor condenser ⁇ the first expansion valve ⁇ the outdoor unit ⁇ the compressor.
  • the refrigerant discharged from the compressor flows in the order of the outdoor unit ⁇ the second expansion valve ⁇ the indoor evaporator ⁇ the compressor.
  • the switching valve switches between the refrigerant circuit in the heating mode and the refrigerant circuit in the cooling mode.
  • the outdoor unit functions as an evaporator in which the refrigerant absorbs heat from the outside air and evaporates the refrigerant.
  • the outdoor unit functions as a radiator that dissipates heat from the refrigerant to the outside air and condenses the refrigerant.
  • the outdoor unit has a condensing part that dissipates heat from the refrigerant to the outside air to condense the refrigerant, and the gas-liquid two-phase refrigerant that has passed through the condensing part is separated into a liquid-phase refrigerant and a gas-phase refrigerant, and the liquid phase is stored while storing the gas-phase refrigerant. It is provided with a gas-liquid separation unit that discharges the refrigerant.
  • the outdoor unit is provided with a supercooling unit that dissipates heat from the liquid phase refrigerant discharged from the gas-liquid separation unit to the outside air to supercool the liquid phase refrigerant.
  • a supercooling unit that dissipates heat from the liquid phase refrigerant discharged from the gas-liquid separation unit to the outside air to supercool the liquid phase refrigerant.
  • the cross-sectional area of the refrigerant flow path of the supercooling part is set rather than the cross-sectional area of the refrigerant flow path of the condensing part. It is desirable to make it smaller.
  • the present disclosure aims to provide a heat management device that improves heat exchange efficiency.
  • the heat management device includes a compressor that sucks in and compresses and discharges the refrigerant.
  • the first radiator that dissipates heat from the refrigerant discharged from the compressor
  • a second radiator that dissipates heat from the refrigerant that has passed through the first radiator to the air flow
  • a first pressure reducing valve and a second pressure reducing valve for reducing the pressure of the refrigerant that has passed through the first radiator
  • An evaporator that evaporates the refrigerant that has passed through the first pressure reducing valve
  • a chiller that evaporates the refrigerant that has passed through the second pressure reducing valve by absorbing heat from the heat medium.
  • a bypass refrigerant passage that allows the refrigerant that has passed through the first radiator to bypass the second radiator and flow to the first pressure reducing valve and the second pressure reducing valve. Between the first state in which the refrigerant outlet of the first radiator and the refrigerant inlet of the second radiator are opened and the bypass refrigerant passage is closed, and the refrigerant outlet of the first radiator and the refrigerant inlet of the second radiator.
  • a switching valve that is set to one of the second states in which the bypass refrigerant passage is opened and the bypass refrigerant passage is opened.
  • a radiator that exchanges heat between the heat medium and the air flow, A heat carrier circuit for circulating the heat medium between the chiller and the radiator.
  • the refrigerant in the second radiator dissipates heat to the air flow via the radiator.
  • the heat medium in the radiator absorbs heat from the air flow via the second radiator.
  • the refrigerant in the second radiator dissipates heat to the air via the connection portion and the radiator. Therefore, the refrigerant can dissipate heat to the air from the second radiator and the radiator. Therefore, the heat exchange efficiency between the refrigerant and the air flow can be improved by using only the second radiator of the radiator and the second radiator as compared with the case where the refrigerant dissipates heat to the air.
  • the radiator absorbs heat from the air through the second radiator. Therefore, the heat medium can absorb heat from the air via the radiator and the second radiator. Therefore, the radiator alone of the radiator and the second radiator can improve the heat exchange efficiency between the heat medium and the air flow as compared with the case where the heat medium absorbs heat from the air flow.
  • FIG. 1 is a partially enlarged view for showing the arrangement relationship of a secondary battery, a cooler, and an electric heater in the battery unit in FIG. It is a figure which shows the arrangement relation of the heat exchange core and each tank of the air / refrigerant heat exchanger of the outdoor unit in FIG. 1, and the flow direction of a refrigerant. It is a figure which shows the arrangement relation of the heat exchange core and each tank of the air / cooling water heat exchanger of the outdoor unit in FIG. 1, and the flow direction of a refrigerant.
  • FIG. 1 shows the configuration of the vehicle-mounted heat management device 1 of the first embodiment.
  • the vehicle-mounted heat management device 1 of the present embodiment includes a compressor 10, an indoor condenser 12, a three-way valve 14, an outdoor unit 16, a bypass refrigerant passage 18, expansion valves 20a and 20b, an evaporator 20, and a chiller 24. , The accumulator 26, and the pressure regulating valve 28.
  • the vehicle-mounted heat management device 1 of the present embodiment includes pumps 36a, 36b, on-off valves 38a, 38b, 38c, 38d, a three-way valve 40, an electric heater 42, a battery unit 44, a motor generator 46, and an inverter 48.
  • the compressor 10 sucks in the refrigerant, compresses it, and discharges it.
  • the compressor 10 of the present embodiment is an electric compressor including a compression mechanism and an electric motor for driving the compression mechanism.
  • the indoor condenser 12 is a first radiator that dissipates heat from the high-pressure refrigerant to the air flow by heat exchange between the high-pressure refrigerant discharged from the compressor 10 and the air flow.
  • the indoor condenser 12 is arranged in the indoor air conditioning casing 2.
  • the indoor air conditioner casing 2 constitutes an indoor air conditioner that air-conditions the vehicle interior together with an indoor condenser 12, an evaporator 20, an air mix door 5, a blower 4, and the like.
  • an axial fan is shown as the blower 4 in FIG. 1 and the like, in reality, for example, a centrifugal fan is used.
  • the indoor air-conditioning casing 2 is arranged inside the instrument panel on the front side in the vehicle traveling direction in the vehicle interior.
  • the blower 4 generates an air flow toward the vehicle interior in the indoor air-conditioning casing 2.
  • the air mix door 5 adjusts the ratio of the amount of cold air blown from the evaporator 20 in the indoor air conditioning casing 2 to the amount of air passing through the indoor condenser 12 and the amount of air passing through the bypass passage 3.
  • FIG. 1 and the like show a film door as the air mix door 5.
  • the bypass passage 3 is a bypass passage in which the cold air from the evaporator 20 of the indoor air-conditioning casing 2 bypasses the indoor condenser 12 and flows toward the vehicle interior.
  • the three-way valve 14 connects the refrigerant inlets of the expansion valves 20a and 20b and the refrigerant inlet of the air / refrigerant heat exchanger 16A to the refrigerant outlet of the indoor condenser 12, and the other refrigerant.
  • a valve body that closes between the inlet and the refrigerant outlet of the indoor condenser 12 is provided.
  • the three-way valve 14 of the present embodiment is a switching valve that is set to either the first state or the second state as described later.
  • the first state is a state in which the refrigerant outlet of the indoor condenser 12 and the refrigerant inlet of the air / refrigerant heat exchanger 16A are opened and the bypass passage 3 is opened.
  • the three-way valve 14 has a refrigerant inlet connected to the refrigerant outlet of the indoor condenser 12, a first refrigerant outlet connected to the refrigerant inlet of the air / refrigerant heat exchanger 16A, and the refrigerants of the expansion valves 20a and 20b, respectively. It is provided with a second refrigerant outlet connected to the inlet.
  • the outdoor unit 16 is a first radiator arranged in the engine room of the vehicle.
  • the engine room is a storage room that is arranged on the front side in the vehicle traveling direction with respect to the vehicle room and stores a traveling drive source such as an electric motor and an engine.
  • the outdoor unit 16 includes an air / refrigerant heat exchanger 16A and an air / cooling water heat exchanger 16B.
  • the air / refrigerant heat exchanger 16A is a second radiator that dissipates heat from the refrigerant to the air flow by heat exchange between the refrigerant flowing from the indoor condenser 12 through the three-way valve 14 and the air flow blown by the blower 16C. ..
  • the air / cooling water heat exchanger 16B is a radiator that exchanges heat between the cooling water and the air flow blown by the blower 16C, as will be described later. Cooling water is a heat medium used to transfer heat as described below.
  • the air / cooling water heat exchanger 16B includes cooling water inlets and outlets 160 and 161 for entering or discharging cooling water.
  • the flow direction of the cooling water flowing through the air / cooling water heat exchanger 16B changes depending on the air conditioning mode.
  • the air / cooling water heat exchanger 16B is arranged on the front side in the vehicle traveling direction with respect to the air / refrigerant heat exchanger 16A.
  • the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B are thermally connected to each other.
  • the specific structure of the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B will be described later.
  • the blower 16C is arranged in the engine room on the rear side in the vehicle traveling direction with respect to the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
  • the blower 16C is an electric fan for generating an air flow (that is, an outside air flow) passing through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
  • the air / cooling water heat exchanger 16B is arranged on the upstream side in the air flow direction with respect to the air / refrigerant heat exchanger 16A.
  • the blower 16C is controlled by the electronic control device 32.
  • the bypass refrigerant passage 18 is connected between the second refrigerant outlet of the three-way valve 14 and the respective refrigerant inlets of the expansion valves 20a and 20b.
  • the second refrigerant outlet is the refrigerant outlet connected to the respective refrigerant inlets of the expansion valves 20a and 20b in the three-way valve 14.
  • the bypass refrigerant passage 18 is a refrigerant passage that allows the refrigerant flowing from the indoor condenser 12 through the three-way valve 14 to bypass the air / refrigerant heat exchanger 16A of the outdoor unit 16 and flow to the respective refrigerant inlets of the expansion valves 20a and 20b.
  • the expansion valve 20a is the flow path cross-sectional area (that is, the throttle opening) of the refrigerant passage between the bypass refrigerant passage 18 and the common connection portion 19 of the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant inlet of the evaporator 20.
  • a valve body for adjusting the valve body and an electric actuator for driving the valve body are provided. The valve body is controlled by the electronic control device 32 via an electric actuator.
  • the expansion valve 20a is a first pressure reducing valve for reducing the pressure of the refrigerant flowing from the bypass refrigerant passage 18 or the air / refrigerant heat exchanger 16A to the refrigerant inlet of the evaporator 20.
  • the evaporator 20 is an evaporator arranged on the upstream side in the air flow direction with respect to the indoor condenser 12 in the indoor air conditioning casing 2.
  • the evaporator 20 is a heat exchanger that exchanges heat between the refrigerant passing through the expansion valve 20a and the air flow, absorbs heat from the air flow, and evaporates the refrigerant.
  • the expansion valve 20b is the flow path cross-sectional area (that is, throttle opening) of the refrigerant passage between the bypass refrigerant passage 18 and the common connection portion 19 of the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant inlet of the chiller 24.
  • a valve body for adjusting the valve body and an electric actuator for driving the valve body are provided.
  • the valve body is controlled by the electronic control device 32 via an electric actuator.
  • the expansion valve 20b is a second pressure reducing valve for reducing the pressure of the refrigerant flowing from the bypass refrigerant passage 18 or the air / refrigerant heat exchanger 16A to the refrigerant inlet of the chiller 24.
  • the expansion valves 20a and 20b are arranged in parallel with respect to the refrigerant flow direction between the bypass refrigerant passage 18 and the common connection portion 19 of the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant inlet of the compressor 10.
  • the chiller 24 is a water / refrigerant heat exchanger that exchanges heat between the refrigerant that has passed through the expansion valve 20b and the cooling water, and the refrigerant absorbs heat from the cooling water.
  • the accumulator 26 separates the gas-liquid two-phase refrigerant that has passed through the chiller 24 or the evaporator 20 into a liquid phase refrigerant and a gas phase refrigerant, stores the liquid phase refrigerant, and guides the gas phase refrigerant to the refrigerant inlet of the compressor 10. It is a gas-liquid separator.
  • the pressure regulating valve 28 plays a role of bringing the refrigerant pressure in the evaporator 20 closer to a predetermined pressure in order to bring the refrigerant temperature in the evaporator 20 closer to a predetermined temperature.
  • the electronic control device 32 controls the compressor 10, expansion valves 20a, 20b, etc. using the output signals of the pressure sensors 30a, 30b, etc.
  • the pressure sensor 30a is a pressure sensor that detects the pressure of the high-pressure refrigerant that has passed through the indoor condenser 12.
  • the pressure sensor 30b is a pressure sensor that detects the pressure of the low-pressure refrigerant that has passed through the chiller 24.
  • the pump 36a is a second pump that circulates the cooling water in the cooling water circuit 50.
  • the cooling water circuit 50 is a cooling water circuit for circulating the cooling water from the pump 36a in the order of the chiller 24 ⁇ the battery unit 44 ⁇ the pump 36a.
  • the cooling water circuit 50 is a third heat medium circuit for circulating cooling water between the chiller 24 and the electric heater 42.
  • the pump 36a is an electric pump controlled by the electronic control device 32.
  • the battery unit 44 includes a secondary battery 44a and a heat exchanger 44b.
  • the secondary battery 44a stores DC power for supplying power to the motor generator 46.
  • the secondary battery 44a also functions as a heat receiving unit that receives heat from the cooling water.
  • the battery unit 44 is referred to as “Batt”.
  • the heat exchanger 44b is a heat exchanger that exchanges heat between the secondary battery 44a and the cooling water.
  • the heat exchanger 44b is provided with cooling water inlets and outlets 70 and 71 for entering or discharging the cooling water.
  • the direction of flow through the heat exchanger 44b changes depending on the operation, as will be described later.
  • the electric heater 42 is arranged in the heat exchanger 44b.
  • the electric heater 42 is a second heating element that heats the cooling water flowing through the heat exchanger 44b.
  • the electric heater 42 is controlled by the electronic control device 32.
  • the electric heater 42 is referred to as "EHTR".
  • the on-off valve 38b includes a valve body that opens and closes between the cooling water outlet of the chiller 24 and the cooling water inlet / outlet 71 of the heat exchanger 44b of the battery unit 44, and an electric actuator that drives the valve body.
  • the valve body is controlled by the electronic control device 32 via an electric actuator.
  • the on-off valve 38d includes a valve body that opens and closes between the cooling water inlet of the pump 36a and the cooling water inlet / outlet 70 of the heat exchanger 44b of the battery unit 44, and an electric actuator that drives the valve body.
  • the pump 36b is the first pump that constitutes the cooling water circuit 51 together with the battery unit 44, the motor generator 46, and the inverter 48.
  • the pump 36b circulates the cooling water in the cooling water circuit 51.
  • the cooling water circuit 51 is a second heat medium circuit for circulating the cooling water from the pump 36b in the order of the heat exchanger 44b of the battery unit 44 ⁇ the cooler 48a of the inverter 48 ⁇ the cooler 46a of the motor generator 46 ⁇ the pump 36b. Is.
  • the inverter 48 is a first heating element including a cooler 48a as a heat exchanger that dissipates heat from a plurality of semiconductor elements constituting the inverter 48 to cooling water.
  • the inverter 48 is referred to as “INV”.
  • the motor generator 46 is a first heating element including a traveling electric motor for driving the driving wheels of the vehicle and a cooler 46a.
  • the traveling electric motor also functions as a generator that generates electricity by rotating the drive wheels of the vehicle.
  • the cooler 46a is a heat exchanger that dissipates heat from the traveling electric motor to the cooling water.
  • the pump 36b is controlled by the electronic control device 32.
  • the chiller 24 constitutes a cooling water circuit 53 together with the pump 36a and the air / cooling water heat exchanger 16B.
  • the pump 36a circulates the cooling water in the cooling water circuit 53.
  • the cooling water circuit 53 is a first heat medium circuit for circulating the cooling water from the pump 36a in the order of the chiller 24 ⁇ on-off valve 38a ⁇ air / cooling water heat exchanger 16B ⁇ on-off valve 38c ⁇ pump 36a.
  • the three-way valve 40 opens between one of the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B and the cooling water inlet / outlet 70 of the heat exchanger 44b of the battery unit 44 and the cooling water outlet of the pump 36b.
  • the three-way valve 40 closes between the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B and the cooling water inlet / outlet 70 of the heat exchanger 44b of the battery unit 44, and the other and the cooling water outlet of the pump 36b.
  • the three-way valve 40 is controlled by the electronic control device 32.
  • the on-off valve 38a includes a valve body that opens and closes between the cooling water outlet of the chiller 24 and the cooling water inlet / outlet 161 of the air / cooling water heat exchanger 16B, and an electric actuator for driving the valve body.
  • the on-off valve 38c includes a valve body that opens and closes between the cooling water inlet of the pump 36a and the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B, and an electric actuator that drives the valve body.
  • the on-off valves 38a and 38c are controlled by the electronic control device 32.
  • the cooling water circuits 50, 51, and 52 configured in this way are provided with cooling water temperature sensors 50a, 50b, and 50c.
  • the cooling water temperature sensor 50a is a temperature sensor that detects the temperature of the cooling water flowing out of the chiller 24.
  • the cooling water temperature sensor 50b is a temperature sensor that detects the temperature of the cooling water flowing into the cooler 48a of the inverter 48.
  • the cooling water temperature sensor 50c is a temperature sensor that detects the temperature of the cooling water flowing out from the heat exchanger 44b of the battery unit 44.
  • the detection signals of the cooling water temperature sensors 50a, 50b, 50c are used when the electronic control device 32 controls the on-off valves 38a, 38b, 38c, 38d and the like.
  • FIGS. 3, 4 and 5 show an example in which XYZ coordinates are set for convenience of explanation.
  • the X, Y, and Z directions in the XYZ coordinates are directions orthogonal to each other.
  • the tanks 101a and 101b are arranged on one side in the X direction with respect to the heat exchange path portions 102a, 102b and 102c.
  • the tanks 101c and 101d are arranged on the opposite side in the X direction with respect to the heat exchange path portions 102a, 102b and 102c.
  • the heat exchange path portion 102a includes a plurality of refrigerant tubes 130a extending in the X direction.
  • the heat exchange path portion 102b includes a plurality of refrigerant tubes 130a extending in the X direction.
  • the heat exchange path portion 102c includes a plurality of refrigerant tubes 130a extending in the X direction.
  • the plurality of refrigerant tubes 130a in the heat exchange path portions 102a, 102b, 102c are arranged in the Z direction.
  • the heat exchange path portion 102a is arranged on one side in the Z direction with respect to the heat exchange path portion 102b.
  • the heat exchange path portion 102b is arranged on one side in the Z direction with respect to the heat exchange path portion 102c.
  • the tank 101a distributes the refrigerant to the plurality of refrigerant tubes 130a of the heat exchange path portion 102a.
  • the tank 101c collects the refrigerant that has passed through the plurality of refrigerant tubes 130a of the heat exchange path portion 102a and distributes the refrigerant to the plurality of refrigerant tubes 130a of the heat exchange path portion 102b.
  • the tank 101b collects the refrigerant that has passed through the plurality of refrigerant tubes 130a of the heat exchange path portion 102b and distributes the refrigerant to the plurality of refrigerant tubes 130a of the heat exchange path portion 102c.
  • the tank 101d collects the refrigerant that has passed through the plurality of refrigerant tubes 130a of the heat exchange path portion 102c and guides the refrigerant to the gas-liquid separation portion 120.
  • the gas-liquid separation unit 120 plays a role of separating the refrigerant from the tank 101d into a gas phase refrigerant and a liquid phase refrigerant, storing the vapor phase refrigerant, and guiding the liquid phase refrigerant to the tank 111b of the supercooling unit 110.
  • the supercooling unit 110 is arranged on the opposite side in the Z direction with respect to the condensing unit 100.
  • the supercooling unit 110 includes tanks 111a and 111b and a heat exchange path unit 111c.
  • the tank 111a is arranged on the other side in the Z direction with respect to the tank 101b.
  • the tank 111b is arranged on the opposite side of the tank 101d in the Z direction.
  • the tank 111b distributes the liquid phase refrigerant from the gas-liquid separation unit 120 to the plurality of refrigerant tubes 130a of the heat exchange path unit 111c.
  • the tank 111a plays a role of recovering the liquid phase refrigerant that has passed through the plurality of refrigerant tubes 130a of the heat exchange path portion 111c and guiding them to the expansion valves 20a and 20b.
  • the flow path cross-sectional area of the plurality of refrigerant tubes 130a of the supercooling section 110 of the present embodiment is smaller than the flow path cross-sectional area of the plurality of refrigerant tubes 130a of the condensing section 100.
  • the air / cooling water heat exchanger 16B includes tanks 120a and 120b, and a heat exchange core 120c.
  • the heat exchange core 120c includes a plurality of cooling water tubes 130b extending in the X direction and a plurality of heat exchange fins 135b.
  • the plurality of cooling water tubes 130b are arranged in the Z direction.
  • the plurality of heat exchange fins 135b form a plurality of air flow paths through which an air flow flows in the Y direction.
  • the tank 120a is arranged on one side in the X direction with respect to the heat exchange core 120c.
  • the tank 120a distributes the cooling water to the plurality of cooling water tubes 130b of the heat exchange core 120c.
  • the tank 120b is arranged on one side in the X direction with respect to the heat exchange core 120c.
  • the tank 120b collects the cooling water that has passed through the plurality of cooling water tubes 130b of the heat exchange core 120c.
  • FIG. 5 shows the arrangement relationship of the refrigerant tube 130a, the cooling water tube 130b, and the heat exchange fins 135a and 135b of the present embodiment.
  • Heat exchange fins 135a are arranged between two adjacent refrigerant tubes 130a among the plurality of refrigerant tubes 130a.
  • Heat exchange fins 135b are arranged between two adjacent cooling water tubes 130b among the plurality of cooling water tubes 130b.
  • Each of the plurality of refrigerant tubes 130a is arranged on one side in the Y direction with respect to one of the plurality of cooling water tubes 130b corresponding to the cooling water tube 130b.
  • Each of the heat exchange fins 135a is arranged on one side in the Y direction with respect to one of the plurality of heat exchange fins 135b corresponding to the heat exchange fin 135b.
  • Each of the heat exchange fins 135a of the present embodiment is connected to one of the plurality of heat exchange fins 135b corresponding to the heat exchange fin 135b via a connecting portion 135c. That is, the heat exchange fins 135a and the heat exchange fins 135b are connected by the connecting portion 135c.
  • the connection portion 135c forms an air flow path between the heat exchange fins 135a and the heat exchange fins 135b through which the air flow generated by the blower 16C passes.
  • the heat exchange fins 135a and 135b, the cooling water tube 130b, the plurality of connecting portions 135c, and the plurality of refrigerant tubes 130a are made of a metal material such as aluminum.
  • each air conditioning mode a cooling mode, a heating mode, a heater mode, and a defrosting mode are used.
  • the cooling mode First, the cooling mode will be described with reference to FIG.
  • the electronic control device 32 closes the on-off valves 38a and 38c, respectively, and opens the on-off valves 38b and 38d, respectively.
  • the electronic control device 32 controls the expansion valve 20a to adjust the flow path cross-sectional area of the refrigerant passage between the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant inlet of the evaporator 20.
  • the electronic control device 32 controls the expansion valve 20b to adjust the flow path cross-sectional area of the refrigerant passage between the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant inlet of the chiller 24.
  • the electronic control device 32 controls the three-way valve 14 to open the space between the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12, and close the bypass refrigerant passage 18.
  • the electronic control device 32 controls the blower 16C to generate an air flow passing through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
  • the electronic control device 32 controls the compressor 10 to start compression of the refrigerant by the compressor 10. Along with this, the high-pressure refrigerant discharged from the compressor 10 passes through the indoor condenser 12.
  • the air mix door 5 closes the air inlet of the indoor condenser 12 and opens the bypass passage 3. Therefore, the cold air from the evaporator 20 passes through the bypass passage 3 and is blown into the vehicle interior.
  • the high-pressure refrigerant that has passed through the indoor condenser 12 flows to the air / refrigerant heat exchanger 16A through the three-way valve 14. At this time, in the air / refrigerant heat exchanger 16A, the high-pressure refrigerant dissipates heat to the air flow blown by the blower 16C.
  • the pressure of this evaporated refrigerant is adjusted by the pressure regulating valve 28.
  • the pressure-adjusted refrigerant flows through the accumulator 26.
  • the remaining refrigerant other than the refrigerant that flows through the expansion valve 20a flows through the expansion valve 20b.
  • the flowing refrigerant is depressurized by the expansion valve 20b.
  • the refrigerant decompressed by the expansion valve 20b flows to the chiller 24.
  • the refrigerant is sucked from the cooling water and evaporated.
  • This evaporated refrigerant flows to the accumulator 26.
  • the refrigerant flowing through the accumulator 26 is separated into a liquid phase refrigerant and a gas phase refrigerant, and the vapor phase refrigerant flows into the refrigerant inlet of the compressor 10.
  • the refrigerant flows in the order of compressor 10 ⁇ indoor condenser 12 ⁇ three-way valve 14 ⁇ air / refrigerant heat exchanger 16A ⁇ expansion valve 20a ⁇ evaporator 20 ⁇ pressure regulating valve 28 ⁇ accumulator 26 ⁇ compressor 10.
  • the refrigerant from the air / refrigerant heat exchanger 16A flows in the order of expansion valve 20b ⁇ chiller 24 ⁇ accumulator 26.
  • the cooling water flowing from the pump 36a flows to the chiller 24.
  • the refrigerant absorbs heat from the cooling water. After the absorbed cooling water passes through the on-off valve 38b, it flows to the cooling water inlet / outlet 71 of the heat exchanger 44b of the battery unit 44.
  • the electronic control device 32 stops the electric heater 42.
  • the cooling water receives the heat released from the secondary battery 44a.
  • the cooling water radiated from the secondary battery 44a flows into the pump 36a through the on-off valve 38d.
  • the electronic control device 32 controls the three-way valve 40 to open a space between the cooling water outlet of the pump 36b and the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B, and opens the cooling water outlet of the pump 36b and the battery unit. Close the space between the heat exchanger 44b 44 and the cooling water inlet / outlet 70.
  • the cooling water flowing from the pump 36b flows through the three-way valve 40 to the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B.
  • the cooling water in the plurality of cooling water tubes 130b is blown by the blower 16C through the heat exchange fins 135b. Dissipate heat to.
  • the cooling water that has passed through the cooler 48a flows into the cooler 46a of the motor generator 46. In the cooler 46a, the cooling water receives heat from the traveling electric motor. The cooling water that has passed through the cooler 46a flows to the pump 36b.
  • the cooling water from the pump 36b flows in the order of air / cooling water heat exchanger 16B ⁇ cooler 48a ⁇ cooler 46a ⁇ pump 36b, so that the heat generated by the inverter 48 and the motor generator 46 is air / cooling water. It will be discharged from the heat exchanger 16B into the air stream.
  • the air / refrigerant heat exchanger 16A when the high-pressure refrigerant flows through the plurality of refrigerant tubes 130a, the high-pressure refrigerant in the plurality of refrigerant tubes 130a dissipates heat to the air flow through the plurality of heat exchange fins 135a.
  • the amount of heat to be dissipated from the high-pressure refrigerant to the air flow (that is, the cooling load) is large in the air / refrigerant heat exchanger 16A, and the cooling water is cooled in the air / cooling water heat exchanger 16B.
  • the result is as follows. That is, in the air / refrigerant heat exchanger 16A, heat from the high-pressure refrigerant is released from the refrigerant tube 130a to the air stream through the plurality of heat exchange fins 135a.
  • the high-pressure refrigerant radiates heat to the air flow through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
  • the heat generated from the secondary battery 44a is released to the refrigerant. Therefore, the heat generated from the secondary battery 44a is released to the air flow through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
  • the heating mode Next, the heating mode will be described with reference to FIG.
  • the electronic control device 32 opens the on-off valves 38a and 38c, respectively, as shown in FIG.
  • the electronic control device 32 controls the throttle opening degrees of the expansion valves 20a and 20b, respectively.
  • the electronic control device 32 controls the compressor 10 to start compression of the refrigerant by the compressor 10. Along with this, the high-pressure refrigerant discharged from the compressor 10 passes through the indoor condenser 12.
  • the air mix door 5 opens the air inlet of the indoor condenser 12 to close the bypass passage 3. Therefore, the cold air from the evaporator 20 flows to the chamber condenser 12.
  • the high-pressure refrigerant dissipates heat to the air flow. As a result, warm air is blown from the indoor condenser 12 toward the vehicle interior.
  • the refrigerant that has passed through the indoor condenser 12 flows to the expansion valves 20a and 20b through the three-way valve 14 and the bypass refrigerant passage 18. That is, the refrigerant that has passed through the indoor condenser 12 does not flow into the air / refrigerant heat exchanger 16A.
  • the refrigerant flowing from the indoor condenser 12 to the expansion valve 20a through the three-way valve 14 and the bypass refrigerant passage 18 is depressurized by the expansion valve 20a.
  • the refrigerant decompressed by the expansion valve 20a flows to the evaporator 20.
  • the refrigerant is sucked from the air flow blown from the blower 4 and evaporated.
  • the pressure of this evaporated refrigerant is adjusted by the pressure regulating valve 28.
  • the pressure-adjusted refrigerant flows through the accumulator 26.
  • the remaining refrigerant other than the refrigerant that flows through the expansion valve 20a flows through the expansion valve 20b.
  • the flowing refrigerant is depressurized by the expansion valve 20b.
  • the refrigerant decompressed by the expansion valve 20b flows to the chiller 24.
  • the refrigerant absorbs heat from the cooling water and evaporates.
  • This evaporated refrigerant flows to the accumulator 26.
  • the refrigerant flowing through the accumulator 26 is separated into a liquid phase refrigerant and a gas phase refrigerant, and the liquid phase refrigerant flows into the refrigerant inlet of the compressor 10.
  • the refrigerant flows in the order of compressor 10 ⁇ indoor condenser 12 ⁇ three-way valve 14 ⁇ bypass refrigerant passage 18 ⁇ expansion valve 20a ⁇ evaporator 20 ⁇ pressure regulating valve 28 ⁇ accumulator 26 ⁇ compressor 10.
  • the refrigerant from the air / refrigerant heat exchanger 16A flows in the order of expansion valve 20b ⁇ chiller 24 ⁇ accumulator 26.
  • the cooling water flowing from the pump 36b flows in the order of the three-way valve 40 ⁇ the heat exchanger 44b of the battery unit 44 ⁇ the cooler 48a of the inverter 48 ⁇ the cooler 46a of the motor generator 46 ⁇ the pump 36b.
  • the secondary battery 44a is heated by the heat generated by the traveling electric motor and the plurality of semiconductor elements. Therefore, the output voltage of the secondary battery 44a can be increased in extremely cold weather.
  • the electronic control device 32 stops the electric heater 42.
  • the cooling water flowing from the pump 36a flows to the chiller 24.
  • the refrigerant absorbs heat from the cooling water.
  • the cooling water inlet / outlet 161 of the air / cooling water heat exchanger 16B flows to the cooling water inlet / outlet 161 of the air / cooling water heat exchanger 16B.
  • the cooling water absorbs heat from the air flow blown by the blower 16C.
  • the cooling water absorbed from this air flow flows into the pump 36a through the on-off valve 38c. Therefore, the cooling water flows in the order of pump 36a ⁇ chiller 24 ⁇ on-off valve 38a ⁇ air / cooling water heat exchanger 16B ⁇ on-off valve 38c ⁇ pump 36a.
  • the cooling water dissipates the heat absorbed from the air flow from the chiller 24 to the refrigerant.
  • the cooling water absorbs heat from the air flow through the plurality of heat exchange fins 135b and the cooling water tube 130b.
  • the three-way valve 14 closes the refrigerant inlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12. Therefore, no refrigerant is circulated in the refrigerant tube 130a of the air / refrigerant heat exchanger 16A.
  • the cooling water absorbs heat from the air flow through the plurality of heat exchange fins 135a, the connection portion 135c, the plurality of heat exchange fins 135b, and the cooling water tube 130b. That is, the cooling water absorbs heat from the air flow through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
  • the electronic control device 32 determines whether or not the cooling water temperature is equal to or higher than the threshold value based on the detection signals of the cooling water temperature sensors 50b and 50c. The electronic control device 32 closes the on-off valves 38b and 38d when the cooling water temperature is below the threshold value.
  • the electronic control device 32 opens the on-off valves 38b and 38d when the cooling water temperature is equal to or higher than the threshold value.
  • the remaining cooling water other than the cooling water flowing to the heat exchanger 44b of the battery unit 44 is the on-off valve 38d ⁇ pump 36a ⁇ chiller 24 ⁇ on-off valve 38b ⁇ cooling of the inverter 48. It flows in the order of the vessel 48a.
  • the electronic control device 32 intermittently opens the on-off valves 38b and 38d in accordance with the determination of whether or not the cooling water temperature is equal to or higher than the threshold value. Therefore, the heat generated from the motor generator 46 and the inverter 48 is intermittently transferred to the refrigerant through the chiller 24. As a result, the temperature of the cooling water flowing through the cooling water circuit 51 can be kept below the threshold value.
  • the electronic control device 32 closes the on-off valves 38a and 38c, respectively. In addition to this, the electronic control device 32 closes the refrigerant passage between the bypass refrigerant passage 18 and the refrigerant inlet of the evaporator 20 by the expansion valve 20a. The electronic control device 32 controls the expansion valve 20b to adjust the flow path cross-sectional area of the refrigerant passage between the bypass refrigerant passage 18 and the chiller 24.
  • the electronic control device 32 closes the expansion valve 20a and opens the expansion valve 20b.
  • the electronic control device 32 controls the three-way valve 14 to close the refrigerant inlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12 to open the bypass refrigerant passage 18.
  • the electronic control device 32 stops the blower 16C.
  • the electronic control device 32 operates the electric heater 42.
  • the electronic control device 32 controls the compressor 10 to start compression of the refrigerant by the compressor 10. Along with this, the high-pressure refrigerant discharged from the compressor 10 passes through the indoor condenser 12.
  • the air mix door 5 opens the air inlet of the indoor condenser 12 to close the bypass passage 3. Therefore, the cold air from the evaporator 20 flows to the chamber condenser 12.
  • the air flow receives heat from the high-pressure refrigerant. As a result, warm air is blown from the indoor condenser 12 toward the vehicle interior.
  • the refrigerant that has passed through the indoor condenser 12 flows to the expansion valve 20b through the three-way valve 14 and the bypass refrigerant passage 18.
  • the refrigerant flowing through the expansion valve 20b is depressurized by the expansion valve 20b.
  • the refrigerant decompressed by the expansion valve 20b flows to the chiller 24.
  • the refrigerant absorbs heat from the cooling water and evaporates.
  • This evaporated refrigerant flows to the accumulator 26.
  • the refrigerant flowing through the accumulator 26 is separated into a liquid phase refrigerant and a gas phase refrigerant, and the liquid phase refrigerant flows into the refrigerant inlet of the compressor 10.
  • the refrigerant flows in the order of compressor 10 ⁇ indoor condenser 12 ⁇ three-way valve 14 ⁇ expansion valve 20b ⁇ chiller 24 ⁇ accumulator 26. No refrigerant flows from the chamber condenser 12 to the evaporator 20 through the expansion valve 20b.
  • the electronic control device 32 controls the three-way valve 40 to close between the cooling water outlet of the pump 36b and the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B, and closes the cooling water outlet of the pump 36b and the battery unit.
  • the space between the heat exchanger 44b of 44 and the cooling water inlet / outlet 70 of 44b is opened.
  • some of the cooling water flowing out of the pump 36b flows in the order of the three-way valve 40 ⁇ the heat exchanger 44b ⁇ the cooler 48a ⁇ the cooler 46a ⁇ the pump 36b.
  • the cooling water is heated from the electric heater 42.
  • the remaining cooling water other than the cooling water flowing to the heat exchanger 44b is pump 36b ⁇ three-way valve 40 ⁇ on-off valve 30d ⁇ pump 36a ⁇ chiller 24 ⁇ on-off valve 38b ⁇ cooling. It flows in the order of the vessel 48a.
  • the heat absorbed by the refrigerant from the cooling water and the heat given to the refrigerant by the compressor 10 are used to heat the air in the vehicle interior.
  • the defrosting mode (Defrost mode) Next, the defrosting mode will be described with reference to FIG.
  • the electronic control device 32 closes the on-off valves 38a and 38c, respectively, and opens the on-off valves 38b and 38d, respectively.
  • the electronic control device 32 closes the refrigerant passage between the bypass refrigerant passage 18 and the refrigerant inlet of the evaporator 20 by the expansion valve 20a.
  • the electronic control device 32 controls the expansion valve 20b to adjust the flow path cross-sectional area of the refrigerant passage between the bypass refrigerant passage 18 and the chiller 24. That is, the electronic control device 32 closes the expansion valve 20a and opens the expansion valve 20b.
  • the electronic control device 32 controls the three-way valve 14 to open the refrigerant inlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12, and close the bypass refrigerant passage 18.
  • the electronic control device 32 stops the blower 16C.
  • the electronic control device 32 controls the compressor 10 to start compression of the refrigerant by the compressor 10. Along with this, the high-pressure refrigerant discharged from the compressor 10 passes through the indoor condenser 12.
  • the high-pressure refrigerant that has passed through the indoor condenser 12 flows through the three-way valve 14 to the air / refrigerant heat exchanger 16A.
  • the refrigerant that has passed through the air / refrigerant heat exchanger 16A flows to the expansion valve 20b.
  • the refrigerant flowing through the expansion valve 20b is depressurized by the expansion valve 20b.
  • the refrigerant decompressed by the expansion valve 20b flows to the chiller 24.
  • the refrigerant absorbs heat from the cooling water and evaporates.
  • This evaporated refrigerant flows to the accumulator 26.
  • the refrigerant flowing through the accumulator 26 is separated into a liquid phase refrigerant and a gas phase refrigerant, and the vapor phase refrigerant flows into the refrigerant inlet of the compressor 10.
  • the refrigerant flows in the order of compressor 10 ⁇ indoor condenser 12 ⁇ three-way valve 14 ⁇ air / refrigerant heat exchanger 16A ⁇ expansion valve 20b ⁇ chiller 24 ⁇ accumulator 26 ⁇ compressor 10.
  • the cooling water flowing out from the pump 36a flows into the chiller 24.
  • the cooling water is endothermic from the refrigerant.
  • the endothermic cooling water flows in the order of on-off valve 38b ⁇ heat exchanger 44b ⁇ on-off valve 38d ⁇ pump 36a.
  • the cooling water receives the heat generated from the electric heater 42. Therefore, the cooling water received from the electric heater 42 dissipates heat to the refrigerant in the chiller 24. That is, the heat given to the cooling water from the electric heater 42 is transferred to the refrigerant via the chiller 24.
  • the heat absorbed by the refrigerant from the cooling water in the chiller 24 and the heat as the amount of work given to the refrigerant by the compressor 10 are transferred to the air / refrigerant heat exchanger 16A.
  • heat from the high-pressure refrigerant in the air / refrigerant heat exchanger 16A passes through the plurality of heat exchange fins 135a and the connection portion 135c from the plurality of refrigerant tubes 130a, and the plurality of heat exchange fins of the air / cooling water heat exchanger 16B. It is transmitted to 135a. Therefore, the heat from the high-pressure refrigerant melts the frost adhering to the heat exchange core 120c of the air / cooling water heat exchanger 16B.
  • the heat given to the cooling water from the electric heater 42 and the heat given to the refrigerant from the compressor 10 function to defrost the air / cooling water heat exchanger 16B.
  • the electronic control device 32 stops the pump 36b and the blower 16C.
  • the heat exchange fins 135a of the air / refrigerant heat exchanger 16A and the heat exchange fins 135b of the air / cooling water heat exchanger 16B are connected by the connecting portion 135c.
  • the refrigerant dissipates heat to the air flow through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B. Therefore, it is possible to improve the heat dissipation efficiency of radiating heat from the refrigerant to the air flow.
  • the cooling water in the air / cooling water heat exchanger 16B absorbs heat from the air flow via the connection portion 135c and the air / refrigerant heat exchanger 16A. That is, the cooling water absorbs heat from the air flow via the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B. Therefore, the endothermic efficiency at which the cooling water absorbs heat from the air flow can be improved.
  • the condensing portion is formed by a plurality of refrigerant tubes for passing refrigerant, a distribution tank for distributing the refrigerant to the plurality of refrigerant tubes, and a recovery tank for recovering the refrigerant passing through the plurality of refrigerant tubes.
  • a distribution tank for distributing the refrigerant to the plurality of refrigerant tubes
  • a recovery tank for recovering the refrigerant passing through the plurality of refrigerant tubes.
  • gas-liquid two-phase refrigerant flows from the distribution tank to each of the plurality of refrigerant tubes.
  • the gas-phase refrigerant hinders the liquid-phase refrigerant from being evenly distributed from the distribution tank to the plurality of refrigerant tubes.
  • the refrigerant tube having a small liquid phase refrigerant flow rate cannot sufficiently absorb heat from the outside air as the refrigerant evaporates.
  • the refrigerant from the compressor 10 does not flow to the air / refrigerant heat exchanger 16A during heating. Therefore, in the air / refrigerant heat exchanger 16A as an outdoor unit, the above-mentioned problem that the heat exchange efficiency is lowered does not occur in the first place.
  • the heat from the electric heater 42 and the heat given to the refrigerant from the compressor 10 are transferred from the refrigerant in the air / refrigerant heat exchanger 16A through the connection portion 135c to the air / cooling water heat exchanger 16B. Is given to the heat exchange core 120c of.
  • the vehicle-mounted heat management device 1 includes an on-off valve 38d that opens and closes between the refrigerant outlet of the pump 36b and the refrigerant inlet of the pump 36a.
  • the vehicle-mounted heat management device 1 includes a second embodiment including a regulating valve 38e that continuously adjusts the cross-sectional area of the refrigerant flow path between the refrigerant outlet of the pump 36b and the refrigerant inlet of the pump 36a. Will be described with reference to FIG.
  • the vehicle-mounted heat management device 1 of the present embodiment uses a regulating valve 38e instead of the on-off valve 38d of FIG.
  • the adjusting valve 38e includes a valve body that continuously adjusts the cross-sectional area of the refrigerant flow path between the refrigerant outlet of the pump 36b and the refrigerant inlet of the pump 36a, and an electric actuator that drives the valve body.
  • the valve body is controlled by the electronic control device 32 via an electric actuator.
  • the electronic control device 32 controls the adjusting valve 38e so that the cross-sectional area of the refrigerant flow path becomes smaller as the cooling water temperature becomes lower based on the detection signals of the cooling water temperature sensors 50b and 50c. Therefore, in the heating mode, the higher the cooling water temperature, the more the amount of cooling water flowing from the pump 36b to the chiller 24 through the pump 36a can be increased. The lower the cooling water temperature, the smaller the amount of cooling water flowing from the pump 36b to the chiller 24 through the pump 36a.
  • the vehicle-mounted heat management device 1 passes through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B from the refrigerant in the cooling mode as in the first embodiment. Dissipate heat to the air flow.
  • the cooling water is endothermic from the air stream via the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
  • the air / cooling water heat exchanger 16B is arranged on the upstream side in the air flow direction with respect to the air / refrigerant heat exchanger 16A. As described above, instead of this, the following may be used.
  • the air / cooling water heat exchanger 16B is arranged on the downstream side in the air flow direction with respect to the air / refrigerant heat exchanger 16A.
  • the connection portion 135c is configured on the windward side of the air / cooling water heat exchanger 16B.
  • frost is formed so as to spread from the heat exchange fin 135b side of the air / cooling water heat exchanger 16B to the connection portion 135c side. ..
  • frost is formed thinner on the heat exchange fins 135b than when the connection portion 135c is formed on the leeward side of the air / cooling water heat exchanger 16B.
  • the air flow path formed by the heat exchange fins 135b is suppressed from being blocked by frost. Therefore, the heat exchange between the air and the cooling water via the heat exchange fins 135b is maintained, so that the heating performance can be maintained for a long time.
  • the vehicle-mounted heat management device 1 of the present embodiment includes a hot water circuit 60 including a heater core 61.
  • the vehicle-mounted heat management device 1 of the present embodiment includes a hot water circuit 60 instead of the indoor condenser 12 of FIG.
  • the configuration of the vehicle-mounted heat management device 1 of the present embodiment other than the hot water circuit 60 is the same as that of the vehicle-mounted heat management device 1 of the first embodiment.
  • the same reference numerals as those in FIG. 1 indicate the same reference numerals, and the description thereof will be omitted.
  • the hot water circuit 60 of the in-vehicle heat management device 1 of the present embodiment will be mainly described.
  • the hot water circuit 60 includes a water / refrigerant heat exchanger 62 and a pump 63 together with a heater core 61.
  • the heater core 61, the water / refrigerant heat exchanger 62, and the pump 63 are connected by a hot water pipe to form a closed circuit for circulating hot water.
  • the heater core 61 is arranged in the indoor air conditioning casing 2.
  • the pump 63 circulates hot water in the order of pump 63 ⁇ heater core 61 ⁇ water / refrigerant heat exchanger 62 ⁇ pump 63.
  • the heater core 61 dissipates hot water to the cold air that has passed through the evaporator 20.
  • the hot water that has passed through the heater core 61 is the first radiator that absorbs heat from the refrigerant.
  • the endothermic hot water is sucked into the pump 63.
  • the pump 63 allows hot water to flow toward the water / refrigerant heat exchanger 62.
  • the water / refrigerant heat exchanger 62 is arranged between the refrigerant outlet of the compressor 10 and the refrigerant inlet of the three-way valve 14.
  • the water / refrigerant heat exchanger 62 is a heat exchanger that dissipates heat from the high-pressure refrigerant from the compressor 10 to hot water.
  • the heater core 61 heats the cold air blown from the evaporator 20 with hot water. As a result, the warm air heated by the heater core 61 is blown into the vehicle interior.
  • the refrigerant passes through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B in the cooling mode as in the first embodiment. Dissipate heat to the air flow.
  • the cooling water is endothermic from the air stream via the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
  • the vehicle-mounted heat management device 1 is provided so as to improve the heat exchange efficiency of the outdoor unit 16 as in the first embodiment. be able to.
  • the vehicle-mounted heat management device 1 of the present embodiment has the same configuration as the vehicle-mounted heat management device 1 of the first embodiment.
  • the vehicle-mounted heat management device 1 of the present embodiment and the vehicle-mounted heat management device 1 of the first embodiment differ only in the operation of the defrost mode, and the other operations are the same as each other. Therefore, the defrosting mode in the vehicle-mounted heat management device 1 of the present embodiment will be described.
  • the electronic control device 32 closes the on-off valves 38a and 38c, respectively, and opens the on-off valves 38b and 38d, respectively.
  • the electronic control device 32 closes the refrigerant passage between the bypass refrigerant passage 18 and the refrigerant inlet of the evaporator 20 by the expansion valve 20a.
  • the electronic control device 32 controls the expansion valve 20b to adjust the flow path cross-sectional area of the refrigerant passage between the bypass refrigerant passage 18 and the chiller 24. That is, the electronic control device 32 closes the expansion valve 20a and opens the expansion valve 20b.
  • the electronic control device 32 controls the three-way valve 14 to close the refrigerant inlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12 to open the bypass refrigerant passage 18.
  • the electronic control device 32 stops the blower 16C.
  • the electronic control device 32 operates the pumps 36a and 36b.
  • the electronic control device 32 controls the three-way valve 40 to open a space between the cooling water outlet of the pump 36b and the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B, and opens the cooling water outlet of the pump 36b and the battery unit. Close the space between the heat exchanger 44b 44 and the cooling water inlet / outlet 70.
  • the electronic control device 32 controls the compressor 10 to start compression of the refrigerant by the compressor 10.
  • the high-pressure refrigerant discharged from the compressor 10 flows in the order of the indoor condenser 12 ⁇ the three-way valve 14 ⁇ the bypass refrigerant passage 18 ⁇ the expansion valve 20b ⁇ the chiller 24 ⁇ the accumulator 26 ⁇ the compressor 10.
  • the cooling water flowing out from the pump 36a flows in the cooling water circuit 50 in the order of the chiller 24 ⁇ on-off valve 38b ⁇ cooler 42a ⁇ on-off valve 38d ⁇ pump 36a. Therefore, the heat generated from the electric heater 42 is dissipated from the chiller 24 to the refrigerant. The heat radiated to this refrigerant is given to the air flow in the indoor air conditioning casing 2 from the indoor condenser 12.
  • the cooling water flowing out from the pump 36b flows in the cooling water circuit 52 in the order of the three-way valve 40 ⁇ air / cooling water heat exchanger 16B ⁇ cooler 48a ⁇ cooler 46a ⁇ pump 36b.
  • the cooling water absorbs heat from a plurality of semiconductor elements.
  • the cooling water absorbs heat from the traveling electric motor. Therefore, the heat generated from the inverter 48 and the motor generator 46 is transferred to the air / cooling water heat exchanger 16B by the cooling water.
  • the heat generated from the inverter 48 and the motor generator 46 is given to the air / cooling water heat exchanger 16B via the cooling water. Therefore, the heat from the cooling water can melt the frost adhering to the air / cooling water heat exchanger 16B.
  • the air / refrigerant heat exchanger 16A dissipates heat from the refrigerant through the air / cooling water heat exchanger 16B.
  • the cooling water in the air / cooling water heat exchanger 16B absorbs heat via the air / refrigerant heat exchanger 16A.
  • the heat generated from the inverter 48 and the motor generator 46 is given to the air / cooling water heat exchanger 16B via the cooling water. Therefore, in the present embodiment, the frost adhering to the heat exchange core 120c of the air / refrigerant heat exchanger 16A can be satisfactorily melted.
  • the vehicle-mounted heat management device 1 in which the heat management device according to the present disclosure is applied to an automobile has been described, but instead, the heat management device according to the present disclosure is used as an automobile. It may be applied to moving objects such as trains and airplanes other than the above. Alternatively, the heat management device according to the present disclosure may be applied to an installation type air conditioner such as a house or a building.
  • a defrosting mode in combination with the defrosting mode of the first embodiment and the defrosting mode of the fifth embodiment may be carried out. That is, a defrosting mode may be performed in which defrosting is performed by the heat of the refrigerant and defrosting is performed by the heat of the cooling water.
  • cooling water is used as a heat medium
  • something other than cooling water may be used as a heat medium.
  • the air / refrigerant heat exchanger 16A is arranged on the upstream side of the air flow with respect to the air / cooling water heat exchanger 16B, and the refrigerant flowing through the air / refrigerant heat exchanger 16A is arranged.
  • An example of defrosting the air / cooling water heat exchanger 16B by heat has been described.
  • an air / refrigerant heat exchanger 16A is arranged on the upstream side of the air flow with respect to the air / cooling water heat exchanger 16B, and cooling is performed as a defrosting mode as in the fifth embodiment. It may be defrosted by the heat of water.
  • cooling water circuit 52 for dissipating heat generated by the motor generator 46 and the inverter 48 from the air / cooling water heat exchanger 16B to the air flow will be described. did. However, instead of this, the cooling water circuit 52 may be deleted.
  • the present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. No. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done.
  • the heat management device includes a blower that generates an air flow that passes through the radiator and the second radiator.
  • the second radiator dissipates heat from the refrigerant to the air flow via the radiator while the blower is generating the air flow.
  • the radiator absorbs heat from the air flow through the second radiator while the blower is generating the air flow.
  • the second radiator dissipates heat from the refrigerant to the radiator with the blower stopping the generation of airflow.
  • the heat management device includes an on-off valve that opens and closes between the chiller and the radiator in the first heat medium circuit.
  • the second radiator dissipates heat from the refrigerant to the air flow via the radiator with the on-off valve closed between the chiller and the radiator.
  • the second radiator dissipates heat from the refrigerant to the radiator with the on-off valve open between the chiller and the radiator.
  • the heat management device is a compressor that sucks in and compresses and discharges the refrigerant, and the compressor. It includes a first radiator that dissipates heat from the discharged refrigerant.
  • the heat management device includes a second radiator that dissipates heat from the refrigerant that has passed through the first radiator to the air flow, a first pressure reducing valve and a second pressure reducing valve that reduce the pressure of the refrigerant that has passed through the first radiator, and a first pressure reducing device. It is provided with an evaporator that evaporates the refrigerant that has passed through the valve.
  • the heat management device includes a chiller that evaporates the refrigerant that has passed through the second pressure reducing valve by absorbing heat from the heat medium, and the first pressure reducing valve and the second pressure reducing valve that bypasses the second radiator for the refrigerant that has passed through the first radiator. It is provided with a bypass refrigerant passage that flows through the pressure reducing valve.
  • the heat management device includes a switching valve that sets one of the first state and the second state.
  • the first state is a state in which the refrigerant outlet of the first radiator and the refrigerant inlet of the second radiator are opened and the bypass refrigerant passage is closed.
  • the second state is a state in which the space between the refrigerant outlet of the first radiator and the refrigerant inlet of the second radiator is closed and the bypass refrigerant passage is opened.
  • the heat management device includes a radiator for exchanging heat between the heat medium and the air flow, and a heat medium circuit for circulating the heat medium between the chiller and the radiator.
  • the refrigerant in the second radiator dissipates heat to the air flow via the radiator.
  • the heat medium in the radiator absorbs heat from the air flow via the second radiator.
  • the refrigerant in the second radiator dissipates heat to the air flow via the connection portion and the radiator.
  • the heat medium in the radiator absorbs heat from the air flow via the connection portion and the second radiator.
  • the heat management device is a first for circulating the heat medium between the heating element and the radiator when the heating element that dissipates heat to the heat medium and the heat medium circuit are the first heat medium circuit. It is provided with a two heat medium circuit.
  • the radiator dissipates heat to the air flow while the heat medium is circulating in the second heat medium circuit.
  • the heat generated by the second heating element can be transferred to the refrigerant via the chiller.
  • the heat medium In the third mode in which the heat medium circulates in the third heat medium circuit with the switching valve set to the first state and the second heating element dissipates heat to the heat medium, the heat medium is supplied from the second heating element to the heat medium. The heat generated is transferred to the refrigerant through the chiller. The refrigerant in the second radiator dissipates heat to the radiator through the connection and melts the frost adhering to the radiator.
  • the heat generated by the second heating element can be used for defrosting the radiator.
  • the second radiator is arranged on the upstream side of the air flow with respect to the radiator.
  • the second radiator separates the condensing part that dissipates heat from the refrigerant to the heat medium to condense the refrigerant and the refrigerant that has passed through the condensing part into the liquid phase refrigerant and the gas phase refrigerant and liquid. It includes a gas-liquid separation unit that discharges the phase refrigerant and a supercooling unit that supercools the liquid-phase refrigerant discharged from the gas-liquid separation unit.
  • the first radiator dissipates heat from the refrigerant
  • the second radiator dissipates heat from the refrigerant to the air flow.

Abstract

This heat management apparatus comprises: a first heat dissipation unit (12) that dissipates heat from the refrigerant discharged from a compressor; a second heat dissipation unit (16A) that dissipates heat from the refrigerant discharged from the first heat dissipation unit into an air flow; an evaporator (20) that evaporates the refrigerant; a chiller (24) that evaporates the refrigerant by causing the refrigerant to absorb heat from a heat medium; a bypass refrigerant passage (18) that allows the refrigerant discharged from the first heat dissipation unit to flow through the evaporator and chiller, bypassing the second heat dissipation unit; a switching valve (14) that sets the bypass refrigerant passage to a first state in which the bypass refrigerant passage is closed or a second state in which the bypass refrigerant passage is open; a radiator (16B) that performs heat exchange between the heat medium and the air flow; and a heat medium circuit (53) that circulates the heat medium between the chiller and the radiator. In a first mode in the first state, the refrigerant in the second heat dissipation unit dissipates heat into the air flow through the radiator. In a second mode in which the heat medium in the heat medium circuit is circulating in the second state, the heat medium in the radiator absorbs heat from the air flow through the second heat dissipation unit.

Description

熱管理装置Thermal management device 関連出願への相互参照Cross-reference to related applications
 本出願は、2019年7月24日に出願された日本特許出願番号2019-136355号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-136355 filed on July 24, 2019, the contents of which are incorporated herein by reference.
 本開示は、熱管理装置に関するものである。 This disclosure relates to a heat management device.
 従来、ヒートポンプシステムにおいて、コンプレッサ、室内コンデンサ、第1膨張弁、第2膨張弁、室外器、室内蒸発器、および切換弁を備える(例えば、特許文献1参照)。暖房時には、コンプレッサから吐出される冷媒を室内コンデンサ→第1膨張弁→室外器→コンプレッサの順に流す。冷房時では、コンプレッサから吐出される冷媒を室外器→第2膨張弁→室内蒸発器→コンプレッサの順に流す。切換弁は、暖房モード時の冷媒回路と冷房モード時の冷媒回路とを切り替える。このようなヒートポンプシステムでは、暖房時には、室外器は、冷媒が外気から吸熱して冷媒を蒸発させる蒸発器として機能する。冷房時には、室外器は、冷媒から外気に放熱して冷媒を凝縮させる放熱器として機能する。 Conventionally, a heat pump system includes a compressor, an indoor condenser, a first expansion valve, a second expansion valve, an outdoor unit, an indoor evaporator, and a switching valve (see, for example, Patent Document 1). At the time of heating, the refrigerant discharged from the compressor flows in the order of the indoor condenser → the first expansion valve → the outdoor unit → the compressor. At the time of cooling, the refrigerant discharged from the compressor flows in the order of the outdoor unit → the second expansion valve → the indoor evaporator → the compressor. The switching valve switches between the refrigerant circuit in the heating mode and the refrigerant circuit in the cooling mode. In such a heat pump system, during heating, the outdoor unit functions as an evaporator in which the refrigerant absorbs heat from the outside air and evaporates the refrigerant. During cooling, the outdoor unit functions as a radiator that dissipates heat from the refrigerant to the outside air and condenses the refrigerant.
 室外器は、冷媒から外気に放熱して冷媒を凝縮させる凝縮部と、凝縮部を通過した気液二相冷媒を液相冷媒と気相冷媒とに分離して気相冷媒を貯めつつ液相冷媒を排出する気液分離部とを備える。 The outdoor unit has a condensing part that dissipates heat from the refrigerant to the outside air to condense the refrigerant, and the gas-liquid two-phase refrigerant that has passed through the condensing part is separated into a liquid-phase refrigerant and a gas-phase refrigerant, and the liquid phase is stored while storing the gas-phase refrigerant. It is provided with a gas-liquid separation unit that discharges the refrigerant.
 室外器は、気液分離部から排出される液相冷媒から外気に放熱して液相冷媒を過冷却させる過冷却部を備える。このことにより、冷凍サイクルにおいて適度な過冷却度を設定することにより、冷房時の熱交換効率を上げることができる。 The outdoor unit is provided with a supercooling unit that dissipates heat from the liquid phase refrigerant discharged from the gas-liquid separation unit to the outside air to supercool the liquid phase refrigerant. As a result, the heat exchange efficiency during cooling can be improved by setting an appropriate degree of supercooling in the refrigeration cycle.
特開2014-113975号公報Japanese Unexamined Patent Publication No. 2014-113975
 本発明者の検討によれば、上記ヒートポンプシステムにおいて、冷房時の熱交換効率を向上するためには、凝縮部の冷媒流路の断面積よりも、過冷却部の冷媒流路の断面積を小さくすることが望ましい。 According to the study of the present inventor, in the above heat pump system, in order to improve the heat exchange efficiency during cooling, the cross-sectional area of the refrigerant flow path of the supercooling part is set rather than the cross-sectional area of the refrigerant flow path of the condensing part. It is desirable to make it smaller.
 しかし、暖房時には、過冷却部における断面積が小さい冷媒流路を、乾き度が100パーセントに近い気液二相冷媒が流れる。このため、過冷却部を冷媒が通過する際に生じる圧力損失が著しく大きくなる虞がある。したがって、暖房時に室外器を蒸発器として機能させる場合には、過冷却部において外気および冷媒の間の熱交換効率が低下する。 However, during heating, a gas-liquid two-phase refrigerant with a dryness close to 100% flows through the refrigerant flow path having a small cross-sectional area in the supercooled portion. Therefore, there is a possibility that the pressure loss generated when the refrigerant passes through the supercooled portion becomes significantly large. Therefore, when the outdoor unit functions as an evaporator during heating, the heat exchange efficiency between the outside air and the refrigerant in the supercooling unit decreases.
 本開示は、上記点に鑑みて、熱交換効率を向上するようにした熱管理装置を提供することを目的とする。 In view of the above points, the present disclosure aims to provide a heat management device that improves heat exchange efficiency.
 本開示の1つの観点によれば、熱管理装置は、冷媒を吸入して圧縮して吐出するコンプレッサと、
 コンプレッサから吐出される冷媒から放熱させる第1放熱器と、
 第1放熱器を通過した冷媒から空気流に放熱させる第2放熱器と、
 第1放熱器を通過した冷媒を減圧する第1減圧弁および第2減圧弁と、
 第1減圧弁を通過した冷媒を蒸発させる蒸発器と、
 第2減圧弁を通過した冷媒を熱媒体から吸熱させることにより蒸発させるチラーと、
 第1放熱器を通過した冷媒を第2放熱器を迂回して第1減圧弁および第2減圧弁に流すバイパス冷媒通路と、
 第1放熱器の冷媒出口および第2放熱器の冷媒入口の間を開けて、かつバイパス冷媒通路を閉じた第1状態と、第1放熱器の冷媒出口および第2放熱器の冷媒入口の間を閉じて、かつバイパス冷媒通路を開けた第2状態とのうちいずれか一方の状態に設定する切換弁と、
 熱媒体と空気流との間で熱交換させるラジエータと、
 チラーおよびラジエータの間で熱媒体を循環させるための熱媒体回路と、を備え、
 切換弁が第1状態に設定した第1モードでは、第2放熱器内の冷媒がラジエータを介して空気流に放熱し、
 切換弁が第2状態に設定した状態で熱媒体回路内の熱媒体が循環している第2モードでは、ラジエータ内の熱媒体が第2放熱器を介して空気流から吸熱する。
According to one aspect of the present disclosure, the heat management device includes a compressor that sucks in and compresses and discharges the refrigerant.
The first radiator that dissipates heat from the refrigerant discharged from the compressor,
A second radiator that dissipates heat from the refrigerant that has passed through the first radiator to the air flow,
A first pressure reducing valve and a second pressure reducing valve for reducing the pressure of the refrigerant that has passed through the first radiator,
An evaporator that evaporates the refrigerant that has passed through the first pressure reducing valve,
A chiller that evaporates the refrigerant that has passed through the second pressure reducing valve by absorbing heat from the heat medium.
A bypass refrigerant passage that allows the refrigerant that has passed through the first radiator to bypass the second radiator and flow to the first pressure reducing valve and the second pressure reducing valve.
Between the first state in which the refrigerant outlet of the first radiator and the refrigerant inlet of the second radiator are opened and the bypass refrigerant passage is closed, and the refrigerant outlet of the first radiator and the refrigerant inlet of the second radiator. A switching valve that is set to one of the second states in which the bypass refrigerant passage is opened and the bypass refrigerant passage is opened.
A radiator that exchanges heat between the heat medium and the air flow,
A heat carrier circuit for circulating the heat medium between the chiller and the radiator.
In the first mode in which the switching valve is set to the first state, the refrigerant in the second radiator dissipates heat to the air flow via the radiator.
In the second mode in which the heat medium in the heat medium circuit circulates with the switching valve set to the second state, the heat medium in the radiator absorbs heat from the air flow via the second radiator.
 これにより、第1モードでは、第2放熱器内の冷媒が接続部およびラジエータを介して空気に放熱する。このため、冷媒が第2放熱器およびラジエータから空気に放熱することができる。したがって、ラジエータおよび第2放熱器のうち第2放熱器だけで、冷媒が空気に放熱する場合に比べて、冷媒および空気流の間の熱交換効率を向上することができる。 As a result, in the first mode, the refrigerant in the second radiator dissipates heat to the air via the connection portion and the radiator. Therefore, the refrigerant can dissipate heat to the air from the second radiator and the radiator. Therefore, the heat exchange efficiency between the refrigerant and the air flow can be improved by using only the second radiator of the radiator and the second radiator as compared with the case where the refrigerant dissipates heat to the air.
 第2モードでは、ラジエータは、熱媒体が第2放熱器を介して空気から吸熱する。このため、熱媒体がラジエータおよび第2放熱器を介して空気から吸熱することができる。したがって、ラジエータおよび第2放熱器のうちラジエータだけで、熱媒体が空気流から吸熱する場合に比べて、熱媒体および空気流の間の熱交換効率を向上することができる。 In the second mode, the radiator absorbs heat from the air through the second radiator. Therefore, the heat medium can absorb heat from the air via the radiator and the second radiator. Therefore, the radiator alone of the radiator and the second radiator can improve the heat exchange efficiency between the heat medium and the air flow as compared with the case where the heat medium absorbs heat from the air flow.
 以上により、熱交換効率を向上するようにした熱管理装置を提供することができる。なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 From the above, it is possible to provide a heat management device that improves heat exchange efficiency. The reference numerals in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
第1実施形態における車載用熱管理装置の冷凍サイクルおよび冷却水回路の全体構成を示す図である。It is a figure which shows the whole structure of the refrigerating cycle and the cooling water circuit of the vehicle-mounted heat management apparatus in 1st Embodiment. 図1中バッテリユニットにおいる二次電池、冷却器、および電気ヒータの配置関係を示すための部分拡大図である。FIG. 1 is a partially enlarged view for showing the arrangement relationship of a secondary battery, a cooler, and an electric heater in the battery unit in FIG. 図1中の室外器の空気/冷媒熱交換器のうち熱交換コアおよび各タンクの配置関係、および冷媒の流れ方向を示す図である。It is a figure which shows the arrangement relation of the heat exchange core and each tank of the air / refrigerant heat exchanger of the outdoor unit in FIG. 1, and the flow direction of a refrigerant. 図1中の室外器の空気/冷却水熱交換器のうち熱交換コアおよび各タンクの配置関係、および冷媒の流れ方向を示す図である。It is a figure which shows the arrangement relation of the heat exchange core and each tank of the air / cooling water heat exchanger of the outdoor unit in FIG. 1, and the flow direction of a refrigerant. 図1中の空気/冷却水熱交換器および空気/冷媒熱交換器を構成する複数の冷媒チューブ、および複数の熱交換フィンを示す斜視図である。It is a perspective view which shows the plurality of refrigerant tubes and a plurality of heat exchange fins constituting the air / cooling water heat exchanger and the air / refrigerant heat exchanger in FIG. 1. 第1実施形態の冷房モードにおける冷凍サイクルの冷媒流れ、および冷却水回路の冷却水の流れを示す図である。It is a figure which shows the refrigerant flow of the refrigerating cycle in the cooling mode of 1st Embodiment, and the flow of cooling water of a cooling water circuit. 第1実施形態の暖房モードにおける冷凍サイクルの冷媒流れ、および冷却水回路の冷却水の流れを示す図である。It is a figure which shows the refrigerant flow of the refrigerating cycle in the heating mode of 1st Embodiment, and the flow of cooling water of a cooling water circuit. 第1実施形態のヒータモードにおける冷凍サイクルの冷媒流れ、および冷却水回路の冷却水の流れを示す図である。It is a figure which shows the refrigerant flow of the refrigerating cycle in the heater mode of 1st Embodiment, and the flow of cooling water of a cooling water circuit. 第1実施形態の除霜モードにおける冷凍サイクルの冷媒流れ、および冷却水回路の冷却水の流れを示す図である。It is a figure which shows the refrigerant flow of the refrigerating cycle in the defrosting mode of 1st Embodiment, and the flow of cooling water of a cooling water circuit. 第2実施形態における車載用熱管理装置の冷凍サイクルおよび冷却水回路の全体構成を示す図である。It is a figure which shows the whole structure of the refrigerating cycle and the cooling water circuit of the vehicle-mounted heat management apparatus in 2nd Embodiment. 第3実施形態における車載用熱管理装置の冷凍サイクルおよび冷却水回路の全体構成を示す図である。It is a figure which shows the whole structure of the refrigerating cycle and the cooling water circuit of the vehicle-mounted heat management apparatus in 3rd Embodiment. 第4実施形態における車載用熱管理装置の冷凍サイクルおよび冷却水回路の全体構成を示す図である。It is a figure which shows the whole structure of the refrigerating cycle and the cooling water circuit of the vehicle-mounted heat management apparatus in 4th Embodiment. 第5実施形態における車載用熱管理装置の冷凍サイクルおよび冷却水回路の全体構成を示す図であり、除霜モードにおける冷凍サイクルの冷媒流れ、および冷却水回路の冷却水の流れを示す図である。It is a figure which shows the whole structure of the refrigerating cycle and the cooling water circuit of the vehicle-mounted heat management apparatus in 5th Embodiment, and is the figure which shows the refrigerant flow of the refrigerating cycle in the defrosting mode, and the cooling water flow of a cooling water circuit. ..
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態の相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the figures. In the following embodiments, the parts that are the same or equal to each other are designated by the same reference numerals in the drawings in order to simplify the description.
 (第1実施形態)
 図1は、本第1実施形態の車載用熱管理装置1の構成を示す。
(First Embodiment)
FIG. 1 shows the configuration of the vehicle-mounted heat management device 1 of the first embodiment.
 本実施形態の車載用熱管理装置1は、図1に示すように、コンプレッサ10、室内コンデンサ12、三方弁14、室外器16、バイパス冷媒通路18、膨張弁20a、20b、エバポレータ20、チラー24、アキュムレータ26、および圧力調整弁28を備える。 As shown in FIG. 1, the vehicle-mounted heat management device 1 of the present embodiment includes a compressor 10, an indoor condenser 12, a three-way valve 14, an outdoor unit 16, a bypass refrigerant passage 18, expansion valves 20a and 20b, an evaporator 20, and a chiller 24. , The accumulator 26, and the pressure regulating valve 28.
 本実施形態の車載用熱管理装置1は、ポンプ36a、36b、開閉弁38a、38b、38c、38d、三方弁40、電気ヒータ42、バッテリユニット44、モータジェネレータ46、およびインバータ48を備える。 The vehicle-mounted heat management device 1 of the present embodiment includes pumps 36a, 36b, on-off valves 38a, 38b, 38c, 38d, a three-way valve 40, an electric heater 42, a battery unit 44, a motor generator 46, and an inverter 48.
 コンプレッサ10は、冷媒を吸入して圧縮して吐出する。本実施形態のコンプレッサ10は、圧縮機構と、この圧縮機構を駆動する電動機とを備える電動コンプレッサである。 The compressor 10 sucks in the refrigerant, compresses it, and discharges it. The compressor 10 of the present embodiment is an electric compressor including a compression mechanism and an electric motor for driving the compression mechanism.
 室内コンデンサ12は、コンプレッサ10から吐出される高圧冷媒と空気流との間の熱交換によって高圧冷媒から空気流に放熱する第1放熱器である。室内コンデンサ12は、室内空調ケーシング2内に配置されている。 The indoor condenser 12 is a first radiator that dissipates heat from the high-pressure refrigerant to the air flow by heat exchange between the high-pressure refrigerant discharged from the compressor 10 and the air flow. The indoor condenser 12 is arranged in the indoor air conditioning casing 2.
 室内空調ケーシング2は、室内コンデンサ12、エバポレータ20、エアミックスドア5、送風機4等とともに、車室内を空調する室内空調装置を構成する。なお、図1等には、送風機4として、軸流ファンが図示されているが、実際には、例えば、遠心ファンが用いられる。 The indoor air conditioner casing 2 constitutes an indoor air conditioner that air-conditions the vehicle interior together with an indoor condenser 12, an evaporator 20, an air mix door 5, a blower 4, and the like. Although an axial fan is shown as the blower 4 in FIG. 1 and the like, in reality, for example, a centrifugal fan is used.
 室内空調ケーシング2は、車室内の車両進行方向前側のインストルメントパネルの内側に配置されている。送風機4は、室内空調ケーシング2内にて車室内に向けて空気流を発生させる。 The indoor air-conditioning casing 2 is arranged inside the instrument panel on the front side in the vehicle traveling direction in the vehicle interior. The blower 4 generates an air flow toward the vehicle interior in the indoor air-conditioning casing 2.
 エアミックスドア5は、室内空調ケーシング2のうちエバポレータ20から送風される冷風のうち室内コンデンサ12を通過する空気量とバイパス通路3を通過する空気量との比率を調整する。 The air mix door 5 adjusts the ratio of the amount of cold air blown from the evaporator 20 in the indoor air conditioning casing 2 to the amount of air passing through the indoor condenser 12 and the amount of air passing through the bypass passage 3.
 エアミックスドア5として、フィルムドア、スライドドア、板ドア、ロータリドア等の各種のドアを用いることができる。図1等には、エアミックスドア5としてのフィルムドアが図示されている。 As the air mix door 5, various doors such as a film door, a sliding door, a plate door, and a rotary door can be used. FIG. 1 and the like show a film door as the air mix door 5.
 バイパス通路3は、室内空調ケーシング2のうちエバポレータ20からの冷風を室内コンデンサ12をバイパスして車室内に向けて流すバイパス通路である。 The bypass passage 3 is a bypass passage in which the cold air from the evaporator 20 of the indoor air-conditioning casing 2 bypasses the indoor condenser 12 and flows toward the vehicle interior.
 三方弁14は、膨張弁20a、20bのそれぞれの冷媒入口、および空気/冷媒熱交換器16Aの冷媒入口のうちいずれか一方の冷媒入口と室内コンデンサ12の冷媒出口とを接続し、他方の冷媒入口と室内コンデンサ12の冷媒出口との間を閉じる弁体を備える。 The three-way valve 14 connects the refrigerant inlets of the expansion valves 20a and 20b and the refrigerant inlet of the air / refrigerant heat exchanger 16A to the refrigerant outlet of the indoor condenser 12, and the other refrigerant. A valve body that closes between the inlet and the refrigerant outlet of the indoor condenser 12 is provided.
 ここで、他方の冷媒入口とは、膨張弁20a、20bのそれぞれの冷媒入口、および室外器16の空気/冷媒熱交換器16Aの冷媒入口のうち一方の冷媒入口以外の残りの冷媒入口のことである。 Here, the other refrigerant inlet refers to the respective refrigerant inlets of the expansion valves 20a and 20b, and the remaining refrigerant inlets other than one of the refrigerant inlets of the air / refrigerant heat exchanger 16A of the outdoor unit 16. Is.
 本実施形態の三方弁14は、後述するように第1状態と第2状態のうちいずれか一方に設定する切換弁である。第1状態は、室内コンデンサ12の冷媒出口と空気/冷媒熱交換器16Aの冷媒入口との間が開けられ、かつバイパス通路3を開けた状態である。 The three-way valve 14 of the present embodiment is a switching valve that is set to either the first state or the second state as described later. The first state is a state in which the refrigerant outlet of the indoor condenser 12 and the refrigerant inlet of the air / refrigerant heat exchanger 16A are opened and the bypass passage 3 is opened.
 第2状態は、室内コンデンサ12の冷媒出口と空気/冷媒熱交換器16Aの冷媒入口との間を閉じ、かつバイパス通路3を閉じた状態である。三方弁14の弁体は、電動アクチュエータによって駆動される。電動アクチュエータは、電子制御装置32によって制御される。なお、図1において、電子制御装置32をECUと記す。 The second state is a state in which the space between the refrigerant outlet of the indoor condenser 12 and the refrigerant inlet of the air / refrigerant heat exchanger 16A is closed, and the bypass passage 3 is closed. The valve body of the three-way valve 14 is driven by an electric actuator. The electric actuator is controlled by the electronic control device 32. In FIG. 1, the electronic control unit 32 is referred to as an ECU.
 三方弁14は、室内コンデンサ12の冷媒出口に接続されている冷媒入口と、空気/冷媒熱交換器16Aの冷媒入口に接続されている第1冷媒出口と、膨張弁20a、20bのそれぞれの冷媒入口に接続されている第2冷媒出口とを備える。 The three-way valve 14 has a refrigerant inlet connected to the refrigerant outlet of the indoor condenser 12, a first refrigerant outlet connected to the refrigerant inlet of the air / refrigerant heat exchanger 16A, and the refrigerants of the expansion valves 20a and 20b, respectively. It is provided with a second refrigerant outlet connected to the inlet.
 室外器16は、車両においてエンジンルーム内に配置されている第1放熱器である。エンジンルームは、車室よりも車両進行方向前側に配置されて、電動機やエンジン等の走行駆動源等を収納する収納室である。 The outdoor unit 16 is a first radiator arranged in the engine room of the vehicle. The engine room is a storage room that is arranged on the front side in the vehicle traveling direction with respect to the vehicle room and stores a traveling drive source such as an electric motor and an engine.
 このことにより、室外器16は、車両のうち車室外(すなわち、室外)に配置されていることになる。 As a result, the outdoor unit 16 is arranged outside the vehicle interior (that is, outdoors) of the vehicle.
 具体的には、室外器16は、空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを備える。空気/冷媒熱交換器16Aは、室内コンデンサ12から三方弁14を通して流入される冷媒と送風機16Cにより送風される空気流との間の熱交換によって冷媒から空気流に放熱する第2放熱器である。 Specifically, the outdoor unit 16 includes an air / refrigerant heat exchanger 16A and an air / cooling water heat exchanger 16B. The air / refrigerant heat exchanger 16A is a second radiator that dissipates heat from the refrigerant to the air flow by heat exchange between the refrigerant flowing from the indoor condenser 12 through the three-way valve 14 and the air flow blown by the blower 16C. ..
 空気/冷却水熱交換器16Bは、後述するように、冷却水と送風機16Cにより送風される空気流との間で熱交換するラジエータである。冷却水は、後述するように熱を移動させるために用いられる熱媒体である。空気/冷却水熱交換器16Bは、冷却水が入る、或いは冷却水を排出する冷却水出入口160、161を備える。 The air / cooling water heat exchanger 16B is a radiator that exchanges heat between the cooling water and the air flow blown by the blower 16C, as will be described later. Cooling water is a heat medium used to transfer heat as described below. The air / cooling water heat exchanger 16B includes cooling water inlets and outlets 160 and 161 for entering or discharging cooling water.
 本実施形態では、後述するように、空気/冷却水熱交換器16Bに流れる冷却水の流れ方向が空調モードによって変わる。空気/冷却水熱交換器16Bは、空気/冷媒熱交換器16Aに対して車両進行方向前側に配置されている。 In this embodiment, as will be described later, the flow direction of the cooling water flowing through the air / cooling water heat exchanger 16B changes depending on the air conditioning mode. The air / cooling water heat exchanger 16B is arranged on the front side in the vehicle traveling direction with respect to the air / refrigerant heat exchanger 16A.
 空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bは、互いに熱的に接続されている。空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bの具体的な構造の説明は後述する。 The air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B are thermally connected to each other. The specific structure of the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B will be described later.
 送風機16Cは、エンジンルーム内において、空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bに対して車両進行方向後側に配置されている。送風機16Cは、空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを通過する空気流(すなわち、外気流)を発生せるための電動ファンである。 The blower 16C is arranged in the engine room on the rear side in the vehicle traveling direction with respect to the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B. The blower 16C is an electric fan for generating an air flow (that is, an outside air flow) passing through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
 空気/冷却水熱交換器16Bは、空気/冷媒熱交換器16Aに対して空気流れ方向上流側に配置されている。送風機16Cは、電子制御装置32によって制御される。バイパス冷媒通路18は、三方弁14の第2冷媒出口と膨張弁20a、20bのそれぞれの冷媒入口との間に接続されている。第2冷媒出口は、上述したように、三方弁14において、膨張弁20a、20bのそれぞれの冷媒入口に接続されている冷媒出口である。 The air / cooling water heat exchanger 16B is arranged on the upstream side in the air flow direction with respect to the air / refrigerant heat exchanger 16A. The blower 16C is controlled by the electronic control device 32. The bypass refrigerant passage 18 is connected between the second refrigerant outlet of the three-way valve 14 and the respective refrigerant inlets of the expansion valves 20a and 20b. As described above, the second refrigerant outlet is the refrigerant outlet connected to the respective refrigerant inlets of the expansion valves 20a and 20b in the three-way valve 14.
 バイパス冷媒通路18は、室内コンデンサ12から三方弁14を通して流れる冷媒を室外器16の空気/冷媒熱交換器16Aをバイパスして膨張弁20a、20bのそれぞれの冷媒入口に流す冷媒通路である。 The bypass refrigerant passage 18 is a refrigerant passage that allows the refrigerant flowing from the indoor condenser 12 through the three-way valve 14 to bypass the air / refrigerant heat exchanger 16A of the outdoor unit 16 and flow to the respective refrigerant inlets of the expansion valves 20a and 20b.
 膨張弁20aは、バイパス冷媒通路18および空気/冷媒熱交換器16Aの冷媒出口の共通接続部19と、エバポレータ20の冷媒入口との間の冷媒通路の流路断面積(つまり、絞り開度)を調整する弁体と、この弁体を駆動する電動アクチュエータとを備える。弁体は、電動アクチュエータを介して電子制御装置32によって制御されている。膨張弁20aは、バイパス冷媒通路18、或いは空気/冷媒熱交換器16Aからエバポレータ20の冷媒入口に流れる冷媒を減圧するための第1減圧弁である。 The expansion valve 20a is the flow path cross-sectional area (that is, the throttle opening) of the refrigerant passage between the bypass refrigerant passage 18 and the common connection portion 19 of the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant inlet of the evaporator 20. A valve body for adjusting the valve body and an electric actuator for driving the valve body are provided. The valve body is controlled by the electronic control device 32 via an electric actuator. The expansion valve 20a is a first pressure reducing valve for reducing the pressure of the refrigerant flowing from the bypass refrigerant passage 18 or the air / refrigerant heat exchanger 16A to the refrigerant inlet of the evaporator 20.
 エバポレータ20は、室内空調ケーシング2のうち室内コンデンサ12に対して空気流れ方向の上流側に配置されている蒸発器である。エバポレータ20は、膨張弁20aを通過した冷媒と空気流との間で熱交換して空気流から吸熱して冷媒を蒸発させる熱交換器である。 The evaporator 20 is an evaporator arranged on the upstream side in the air flow direction with respect to the indoor condenser 12 in the indoor air conditioning casing 2. The evaporator 20 is a heat exchanger that exchanges heat between the refrigerant passing through the expansion valve 20a and the air flow, absorbs heat from the air flow, and evaporates the refrigerant.
 膨張弁20bは、バイパス冷媒通路18および空気/冷媒熱交換器16Aの冷媒出口の共通接続部19と、チラー24の冷媒入口との間の冷媒通路の流路断面積(つまり、絞り開度)を調整する弁体と、この弁体を駆動する電動アクチュエータとを備える。 The expansion valve 20b is the flow path cross-sectional area (that is, throttle opening) of the refrigerant passage between the bypass refrigerant passage 18 and the common connection portion 19 of the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant inlet of the chiller 24. A valve body for adjusting the valve body and an electric actuator for driving the valve body are provided.
 弁体は、電動アクチュエータを介して電子制御装置32によって制御されている。膨張弁20bは、バイパス冷媒通路18、或いは空気/冷媒熱交換器16Aからチラー24の冷媒入口に流れる冷媒を減圧するための第2減圧弁である。 The valve body is controlled by the electronic control device 32 via an electric actuator. The expansion valve 20b is a second pressure reducing valve for reducing the pressure of the refrigerant flowing from the bypass refrigerant passage 18 or the air / refrigerant heat exchanger 16A to the refrigerant inlet of the chiller 24.
 膨張弁20a、20bは、バイパス冷媒通路18および空気/冷媒熱交換器16Aの冷媒出口の共通接続部19とコンプレッサ10の冷媒入口との間において冷媒流れ方向に対して並列に配置されている。チラー24は、膨張弁20bを通過した冷媒と冷却水との間で熱交換して冷媒が冷却水から吸熱する水/冷媒熱交換器である。 The expansion valves 20a and 20b are arranged in parallel with respect to the refrigerant flow direction between the bypass refrigerant passage 18 and the common connection portion 19 of the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant inlet of the compressor 10. The chiller 24 is a water / refrigerant heat exchanger that exchanges heat between the refrigerant that has passed through the expansion valve 20b and the cooling water, and the refrigerant absorbs heat from the cooling water.
 アキュムレータ26は、チラー24、或いはエバポレータ20を通過した気液二相冷媒を液相冷媒と気相冷媒とに分離して液相冷媒を貯めつつ気相冷媒をコンプレッサ10の冷媒入口に導くための気液分離器である。圧力調整弁28は、エバポレータ20内の冷媒温度を所定温度に近づけるために、エバポレータ20内の冷媒圧力を所定圧力に近づける役割を果たす。 The accumulator 26 separates the gas-liquid two-phase refrigerant that has passed through the chiller 24 or the evaporator 20 into a liquid phase refrigerant and a gas phase refrigerant, stores the liquid phase refrigerant, and guides the gas phase refrigerant to the refrigerant inlet of the compressor 10. It is a gas-liquid separator. The pressure regulating valve 28 plays a role of bringing the refrigerant pressure in the evaporator 20 closer to a predetermined pressure in order to bring the refrigerant temperature in the evaporator 20 closer to a predetermined temperature.
 電子制御装置32は、圧力センサ30a、30bの出力信号等を用いてコンプレッサ10、膨張弁20a、20b等を制御する。圧力センサ30aは、室内コンデンサ12を通過した高圧冷媒の圧力を検出する圧力センサである。圧力センサ30bは、チラー24を通過した低圧冷媒の圧力を検出する圧力センサである。 The electronic control device 32 controls the compressor 10, expansion valves 20a, 20b, etc. using the output signals of the pressure sensors 30a, 30b, etc. The pressure sensor 30a is a pressure sensor that detects the pressure of the high-pressure refrigerant that has passed through the indoor condenser 12. The pressure sensor 30b is a pressure sensor that detects the pressure of the low-pressure refrigerant that has passed through the chiller 24.
 チラー24は、ポンプ36a、バッテリユニット44とともに、冷却水回路50、53等を構成する。ポンプ36aは、冷却水回路50内の冷却水を循環させる第2ポンプである。 The chiller 24, together with the pump 36a and the battery unit 44, constitutes cooling water circuits 50, 53, and the like. The pump 36a is a second pump that circulates the cooling water in the cooling water circuit 50.
 冷却水回路50は、ポンプ36aからの冷却水をチラー24→バッテリユニット44→ポンプ36aの順に循環させるための冷却水回路である。 The cooling water circuit 50 is a cooling water circuit for circulating the cooling water from the pump 36a in the order of the chiller 24 → the battery unit 44 → the pump 36a.
 すなわち、冷却水回路50は、チラー24および電気ヒータ42の間で冷却水を循環させるための第3熱媒体回路である。ポンプ36aは、電子制御装置32によって制御される電動ポンプである。 That is, the cooling water circuit 50 is a third heat medium circuit for circulating cooling water between the chiller 24 and the electric heater 42. The pump 36a is an electric pump controlled by the electronic control device 32.
 バッテリユニット44は、図2に示すように、二次電池44aおよび熱交換器44bを備える。二次電池44aは、モータジェネレータ46へ電力供給するための直流電力を蓄える。二次電池44aは、冷却水から熱を受ける受熱部としても機能する。なお、図1等において、バッテリユニット44を「Batt」と記す。 As shown in FIG. 2, the battery unit 44 includes a secondary battery 44a and a heat exchanger 44b. The secondary battery 44a stores DC power for supplying power to the motor generator 46. The secondary battery 44a also functions as a heat receiving unit that receives heat from the cooling water. In FIG. 1 and the like, the battery unit 44 is referred to as “Batt”.
 熱交換器44bは、二次電池44aと冷却水との間で熱交換する熱交換器である。熱交換器44bには、冷却水が入る、或いは冷却水を排出する冷却水出入口70、71が設けられている。なお、熱交換器44bに流れる方向は、後述するように、作動によって変わる。 The heat exchanger 44b is a heat exchanger that exchanges heat between the secondary battery 44a and the cooling water. The heat exchanger 44b is provided with cooling water inlets and outlets 70 and 71 for entering or discharging the cooling water. The direction of flow through the heat exchanger 44b changes depending on the operation, as will be described later.
 電気ヒータ42は、熱交換器44bに配置されている。電気ヒータ42は、熱交換器44bを流れる冷却水を加熱する第2発熱体である。電気ヒータ42は、電子制御装置32によって制御される。なお、図1等において、電気ヒータ42を「EHTR」と記す。 The electric heater 42 is arranged in the heat exchanger 44b. The electric heater 42 is a second heating element that heats the cooling water flowing through the heat exchanger 44b. The electric heater 42 is controlled by the electronic control device 32. In addition, in FIG. 1 and the like, the electric heater 42 is referred to as "EHTR".
 開閉弁38bは、チラー24の冷却水出口とバッテリユニット44の熱交換器44bの冷却水出入口71との間を開閉する弁体と、この弁体を駆動する電動アクチュエータとを備える。弁体は、電動アクチュエータを介して電子制御装置32によって制御される。 The on-off valve 38b includes a valve body that opens and closes between the cooling water outlet of the chiller 24 and the cooling water inlet / outlet 71 of the heat exchanger 44b of the battery unit 44, and an electric actuator that drives the valve body. The valve body is controlled by the electronic control device 32 via an electric actuator.
 開閉弁38dは、ポンプ36aの冷却水入口とバッテリユニット44の熱交換器44bの冷却水出入口70との間を開閉する弁体と、この弁体を駆動する電動アクチュエータとを備える。 The on-off valve 38d includes a valve body that opens and closes between the cooling water inlet of the pump 36a and the cooling water inlet / outlet 70 of the heat exchanger 44b of the battery unit 44, and an electric actuator that drives the valve body.
 ポンプ36bは、バッテリユニット44、モータジェネレータ46、およびインバータ48とともに冷却水回路51を構成する第1ポンプである。 The pump 36b is the first pump that constitutes the cooling water circuit 51 together with the battery unit 44, the motor generator 46, and the inverter 48.
 ポンプ36bは、冷却水回路51内の冷却水を循環させる。冷却水回路51は、ポンプ36bからの冷却水をバッテリユニット44の熱交換器44b→インバータ48の冷却器48a→モータジェネレータ46の冷却器46a→ポンプ36bの順に循環させるための第2熱媒体回路である。 The pump 36b circulates the cooling water in the cooling water circuit 51. The cooling water circuit 51 is a second heat medium circuit for circulating the cooling water from the pump 36b in the order of the heat exchanger 44b of the battery unit 44 → the cooler 48a of the inverter 48 → the cooler 46a of the motor generator 46 → the pump 36b. Is.
 インバータ48は、インバータ48を構成する複数の半導体素子から冷却水に放熱させる熱交換器としての冷却器48aを備える第1発熱体である。なお、図1等において、インバータ48を「INV」と記す。 The inverter 48 is a first heating element including a cooler 48a as a heat exchanger that dissipates heat from a plurality of semiconductor elements constituting the inverter 48 to cooling water. In addition, in FIG. 1 and the like, the inverter 48 is referred to as “INV”.
 モータジェネレータ46は、車両の駆動輪を駆動する走行用電動機と冷却器46aとを備える第1発熱体である。走行用電動機は、車両の駆動輪の回転によって発電する発電機としても機能する。冷却器46aは、走行用電動機から冷却水に放熱させる熱交換器である。ポンプ36bは、電子制御装置32によって制御される。 The motor generator 46 is a first heating element including a traveling electric motor for driving the driving wheels of the vehicle and a cooler 46a. The traveling electric motor also functions as a generator that generates electricity by rotating the drive wheels of the vehicle. The cooler 46a is a heat exchanger that dissipates heat from the traveling electric motor to the cooling water. The pump 36b is controlled by the electronic control device 32.
 チラー24は、ポンプ36a、および空気/冷却水熱交換器16Bとともに冷却水回路53を構成する。ポンプ36aは、冷却水回路53内の冷却水を循環させる。冷却水回路53は、ポンプ36aからの冷却水をチラー24→開閉弁38a→空気/冷却水熱交換器16B→開閉弁38c→ポンプ36aの順に循環させるための第1熱媒体回路である。 The chiller 24 constitutes a cooling water circuit 53 together with the pump 36a and the air / cooling water heat exchanger 16B. The pump 36a circulates the cooling water in the cooling water circuit 53. The cooling water circuit 53 is a first heat medium circuit for circulating the cooling water from the pump 36a in the order of the chiller 24 → on-off valve 38a → air / cooling water heat exchanger 16B → on-off valve 38c → pump 36a.
 三方弁40は、空気/冷却水熱交換器16Bの冷却水出入口160およびバッテリユニット44の熱交換器44bの冷却水出入口70のうち一方とポンプ36bの冷却水出口との間を開ける。 The three-way valve 40 opens between one of the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B and the cooling water inlet / outlet 70 of the heat exchanger 44b of the battery unit 44 and the cooling water outlet of the pump 36b.
 三方弁40は、空気/冷却水熱交換器16Bの冷却水出入口160およびバッテリユニット44の熱交換器44bの冷却水出入口70のうち一方以外他方とポンプ36bの冷却水出口との間を閉じる。三方弁40は、電子制御装置32によって制御される。 The three-way valve 40 closes between the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B and the cooling water inlet / outlet 70 of the heat exchanger 44b of the battery unit 44, and the other and the cooling water outlet of the pump 36b. The three-way valve 40 is controlled by the electronic control device 32.
 開閉弁38aは、チラー24の冷却水出口および空気/冷却水熱交換器16Bの冷却水出入口161の間を開閉する弁体と、この弁体を駆動するための電動アクチュエータとを備える。 The on-off valve 38a includes a valve body that opens and closes between the cooling water outlet of the chiller 24 and the cooling water inlet / outlet 161 of the air / cooling water heat exchanger 16B, and an electric actuator for driving the valve body.
 開閉弁38cは、ポンプ36aの冷却水入口および空気/冷却水熱交換器16Bの冷却水出入口160の間を開閉する弁体と、この弁体を駆動する電動アクチュエータとを備える。開閉弁38a、38cは、電子制御装置32によって制御される。 The on-off valve 38c includes a valve body that opens and closes between the cooling water inlet of the pump 36a and the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B, and an electric actuator that drives the valve body. The on-off valves 38a and 38c are controlled by the electronic control device 32.
 このように構成される冷却水回路50、51、52には、冷却水温度センサ50a、50b、50cが設けられている。 The cooling water circuits 50, 51, and 52 configured in this way are provided with cooling water temperature sensors 50a, 50b, and 50c.
 冷却水温度センサ50aは、チラー24から流れ出る冷却水温度を検出する温度センサである。冷却水温度センサ50bは、インバータ48の冷却器48aに流入する冷却水温度を検出する温度センサである。 The cooling water temperature sensor 50a is a temperature sensor that detects the temperature of the cooling water flowing out of the chiller 24. The cooling water temperature sensor 50b is a temperature sensor that detects the temperature of the cooling water flowing into the cooler 48a of the inverter 48.
 冷却水温度センサ50cは、バッテリユニット44の熱交換器44bから流れ出る冷却水温度を検出する温度センサである。冷却水温度センサ50a、50b、50cの検出信号は、電子制御装置32が開閉弁38a、38b、38c、38d等を制御する際に用いられる。 The cooling water temperature sensor 50c is a temperature sensor that detects the temperature of the cooling water flowing out from the heat exchanger 44b of the battery unit 44. The detection signals of the cooling water temperature sensors 50a, 50b, 50c are used when the electronic control device 32 controls the on-off valves 38a, 38b, 38c, 38d and the like.
 次に、本実施形態の空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bの具体的な構造について図3、図4、図5を参照して説明する。 Next, the specific structures of the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B of the present embodiment will be described with reference to FIGS. 3, 4, and 5.
 図3、図4、図5は、説明の便宜上、XYZ座標が設定されている例を示している。XYZ座標におけるX方向、Y方向、およびZ方向は、それぞれ互いに直交する方向である。 FIGS. 3, 4 and 5 show an example in which XYZ coordinates are set for convenience of explanation. The X, Y, and Z directions in the XYZ coordinates are directions orthogonal to each other.
 空気/冷媒熱交換器16Aは、図3に示すように、凝縮部100、過冷却部110、および気液分離部120を備える。凝縮部100は、タンク101a、101b、101c、101d、熱交換パス部102a、102b、102cを備える。 As shown in FIG. 3, the air / refrigerant heat exchanger 16A includes a condensing unit 100, a supercooling unit 110, and a gas-liquid separation unit 120. The condensing unit 100 includes tanks 101a, 101b, 101c, 101d, and heat exchange path units 102a, 102b, 102c.
 タンク101a、101bは、熱交換パス部102a、102b、102cに対してX方向一方側に配置されている。タンク101c、101dは、熱交換パス部102a、102b、102cに対してX方向他方側に配置されている。 The tanks 101a and 101b are arranged on one side in the X direction with respect to the heat exchange path portions 102a, 102b and 102c. The tanks 101c and 101d are arranged on the opposite side in the X direction with respect to the heat exchange path portions 102a, 102b and 102c.
 熱交換パス部102aは、X方向に延びる複数の冷媒チューブ130aを備える。熱交換パス部102bは、X方向に延びる複数の冷媒チューブ130aを備える。熱交換パス部102cは、X方向に延びる複数の冷媒チューブ130aを備える。 The heat exchange path portion 102a includes a plurality of refrigerant tubes 130a extending in the X direction. The heat exchange path portion 102b includes a plurality of refrigerant tubes 130a extending in the X direction. The heat exchange path portion 102c includes a plurality of refrigerant tubes 130a extending in the X direction.
 熱交換パス部102a、102b、102cにおける複数の冷媒チューブ130aは、Z方向に並べられている。熱交換パス部102aは、熱交換パス部102bに対してZ方向一方側に配置されている。熱交換パス部102bは、熱交換パス部102cに対してZ方向一方側に配置されている。 The plurality of refrigerant tubes 130a in the heat exchange path portions 102a, 102b, 102c are arranged in the Z direction. The heat exchange path portion 102a is arranged on one side in the Z direction with respect to the heat exchange path portion 102b. The heat exchange path portion 102b is arranged on one side in the Z direction with respect to the heat exchange path portion 102c.
 タンク101aは、冷媒を熱交換パス部102aの複数の冷媒チューブ130aに分配する。タンク101cは、熱交換パス部102aの複数の冷媒チューブ130aを通過した冷媒を回収して熱交換パス部102bの複数の冷媒チューブ130aに分配する。 The tank 101a distributes the refrigerant to the plurality of refrigerant tubes 130a of the heat exchange path portion 102a. The tank 101c collects the refrigerant that has passed through the plurality of refrigerant tubes 130a of the heat exchange path portion 102a and distributes the refrigerant to the plurality of refrigerant tubes 130a of the heat exchange path portion 102b.
 タンク101bは、熱交換パス部102bの複数の冷媒チューブ130aを通過した冷媒を回収して熱交換パス部102cの複数の冷媒チューブ130aに分配する。タンク101dは、熱交換パス部102cの複数の冷媒チューブ130aを通過した冷媒を回収して気液分離部120に導く。 The tank 101b collects the refrigerant that has passed through the plurality of refrigerant tubes 130a of the heat exchange path portion 102b and distributes the refrigerant to the plurality of refrigerant tubes 130a of the heat exchange path portion 102c. The tank 101d collects the refrigerant that has passed through the plurality of refrigerant tubes 130a of the heat exchange path portion 102c and guides the refrigerant to the gas-liquid separation portion 120.
 気液分離部120は、タンク101dからの冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を貯めつつ液相冷媒を過冷却部110のタンク111bに導く役割を果たす。過冷却部110は、凝縮部100に対してZ方向他方側に配置されている。過冷却部110は、タンク111a、111bおよび熱交換パス部111cを備える。 The gas-liquid separation unit 120 plays a role of separating the refrigerant from the tank 101d into a gas phase refrigerant and a liquid phase refrigerant, storing the vapor phase refrigerant, and guiding the liquid phase refrigerant to the tank 111b of the supercooling unit 110. The supercooling unit 110 is arranged on the opposite side in the Z direction with respect to the condensing unit 100. The supercooling unit 110 includes tanks 111a and 111b and a heat exchange path unit 111c.
 タンク111aは、タンク101bに対してZ方向他方側に配置されている。タンク111bは、タンク101dに対してZ方向他方側に配置されている。タンク111bは、気液分離部120からの液相冷媒を熱交換パス部111cの複数の冷媒チューブ130aに分配する。 The tank 111a is arranged on the other side in the Z direction with respect to the tank 101b. The tank 111b is arranged on the opposite side of the tank 101d in the Z direction. The tank 111b distributes the liquid phase refrigerant from the gas-liquid separation unit 120 to the plurality of refrigerant tubes 130a of the heat exchange path unit 111c.
 タンク111aは、熱交換パス部111cの複数の冷媒チューブ130aを通過した液相冷媒を回収して膨張弁20a、20bに導くための役割を果たす。本実施形態の過冷却部110の複数の冷媒チューブ130aの流路断面積は、凝縮部100の複数の冷媒チューブ130aの流路断面積よりも小さくなっている。 The tank 111a plays a role of recovering the liquid phase refrigerant that has passed through the plurality of refrigerant tubes 130a of the heat exchange path portion 111c and guiding them to the expansion valves 20a and 20b. The flow path cross-sectional area of the plurality of refrigerant tubes 130a of the supercooling section 110 of the present embodiment is smaller than the flow path cross-sectional area of the plurality of refrigerant tubes 130a of the condensing section 100.
 本実施形態の熱交換パス部102a、102b、102c、111cは、それぞれ、複数の熱交換フィン135aとともに、熱交換コア140を構成する。複数の熱交換フィン135aは、Y方向に空気流を流通させる複数の空気流路を形成する。 The heat exchange path portions 102a, 102b, 102c, and 111c of the present embodiment each form a heat exchange core 140 together with a plurality of heat exchange fins 135a. The plurality of heat exchange fins 135a form a plurality of air flow paths through which an air flow flows in the Y direction.
 空気/冷却水熱交換器16Bは、図4に示すように、タンク120a、120b、および熱交換コア120cを備える。 As shown in FIG. 4, the air / cooling water heat exchanger 16B includes tanks 120a and 120b, and a heat exchange core 120c.
 熱交換コア120cは、X方向に延びる複数の冷却水チューブ130b、および複数の熱交換フィン135bを備える。複数の冷却水チューブ130bは、Z方向に並べられている。複数の熱交換フィン135bは、Y方向に空気流を流通させる複数の空気流路を形成する。 The heat exchange core 120c includes a plurality of cooling water tubes 130b extending in the X direction and a plurality of heat exchange fins 135b. The plurality of cooling water tubes 130b are arranged in the Z direction. The plurality of heat exchange fins 135b form a plurality of air flow paths through which an air flow flows in the Y direction.
 タンク120aは、熱交換コア120cに対してX方向一方側に配置されている。タンク120aは、熱交換コア120cの複数の冷却水チューブ130bに冷却水を分配する。タンク120bは、熱交換コア120cに対してX方向一方側に配置されている。タンク120bは、熱交換コア120cの複数の冷却水チューブ130bを通過した冷却水を回収する。 The tank 120a is arranged on one side in the X direction with respect to the heat exchange core 120c. The tank 120a distributes the cooling water to the plurality of cooling water tubes 130b of the heat exchange core 120c. The tank 120b is arranged on one side in the X direction with respect to the heat exchange core 120c. The tank 120b collects the cooling water that has passed through the plurality of cooling water tubes 130b of the heat exchange core 120c.
 図5は、本実施形態の冷媒チューブ130a、冷却水チューブ130b、および熱交換フィン135a、135bの配置関係を示している。 FIG. 5 shows the arrangement relationship of the refrigerant tube 130a, the cooling water tube 130b, and the heat exchange fins 135a and 135b of the present embodiment.
 複数の冷媒チューブ130aのうち隣り合う2つの冷媒チューブ130aの間には、熱交換フィン135aが配置されている。複数の冷却水チューブ130bのうち隣り合う2つの冷却水チューブ130bの間には、熱交換フィン135bが配置されている。 Heat exchange fins 135a are arranged between two adjacent refrigerant tubes 130a among the plurality of refrigerant tubes 130a. Heat exchange fins 135b are arranged between two adjacent cooling water tubes 130b among the plurality of cooling water tubes 130b.
 複数の冷媒チューブ130aは、それぞれ、複数の冷却水チューブ130bのうち対応する1つの冷却水チューブ130bに対してY方向一方側に配置されている。熱交換フィン135aは、それぞれ、複数の熱交換フィン135bのうち対応する1つの熱交換フィン135bに対してY方向一方側に配置されている。 Each of the plurality of refrigerant tubes 130a is arranged on one side in the Y direction with respect to one of the plurality of cooling water tubes 130b corresponding to the cooling water tube 130b. Each of the heat exchange fins 135a is arranged on one side in the Y direction with respect to one of the plurality of heat exchange fins 135b corresponding to the heat exchange fin 135b.
 本実施形態の熱交換フィン135aは、それぞれ、複数の熱交換フィン135bのうち対応する1つの熱交換フィン135bに接続部135cを介して接続されている。すなわち、熱交換フィン135aと熱交換フィン135bとが接続部135cによって接続されている。接続部135cは、熱交換フィン135aと熱交換フィン135bとの間で送風機16Cによって生じる空気流を通過させる空気流路を形成する。 Each of the heat exchange fins 135a of the present embodiment is connected to one of the plurality of heat exchange fins 135b corresponding to the heat exchange fin 135b via a connecting portion 135c. That is, the heat exchange fins 135a and the heat exchange fins 135b are connected by the connecting portion 135c. The connection portion 135c forms an air flow path between the heat exchange fins 135a and the heat exchange fins 135b through which the air flow generated by the blower 16C passes.
 ここで、熱交換フィン135a、135b、冷却水チューブ130b、複数の接続部135c、および複数の冷媒チューブ130aは、アルミニウム等の金属材料によって構成されている。 Here, the heat exchange fins 135a and 135b, the cooling water tube 130b, the plurality of connecting portions 135c, and the plurality of refrigerant tubes 130a are made of a metal material such as aluminum.
 次に、本実施形態の車載用熱管理装置1において各空調モードの作動について別々に図6~図9を参照して説明する。各空調モードとしては、冷房モード、暖房モード、ヒータモード、および除霜モードが用いられる。 Next, in the in-vehicle heat management device 1 of the present embodiment, the operation of each air conditioning mode will be described separately with reference to FIGS. 6 to 9. As each air conditioning mode, a cooling mode, a heating mode, a heater mode, and a defrosting mode are used.
 (冷房モード)
 まず、冷房モードについて図6を参照して説明する。冷房モード(すなわち、第1モード)では、電子制御装置32は、開閉弁38a、38cをそれぞれ閉弁して、開閉弁38b、38dをそれぞれ開弁する。
(Cooling mode)
First, the cooling mode will be described with reference to FIG. In the cooling mode (that is, the first mode), the electronic control device 32 closes the on-off valves 38a and 38c, respectively, and opens the on-off valves 38b and 38d, respectively.
 これに加えて、電子制御装置32は、膨張弁20aを制御して、空気/冷媒熱交換器16Aの冷媒出口とエバポレータ20の冷媒入口の間の冷媒通路の流路断面積を調整する。電子制御装置32は、膨張弁20bを制御して、空気/冷媒熱交換器16Aの冷媒出口とチラー24の冷媒入口の間の冷媒通路の流路断面積を調整する。 In addition to this, the electronic control device 32 controls the expansion valve 20a to adjust the flow path cross-sectional area of the refrigerant passage between the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant inlet of the evaporator 20. The electronic control device 32 controls the expansion valve 20b to adjust the flow path cross-sectional area of the refrigerant passage between the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant inlet of the chiller 24.
 電子制御装置32は、三方弁14を制御して、空気/冷媒熱交換器16Aの冷媒出口と室内コンデンサ12の冷媒出口との間を開けて、バイパス冷媒通路18を閉じる。電子制御装置32は、送風機16Cを制御して空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを通過する空気流を発生させる。 The electronic control device 32 controls the three-way valve 14 to open the space between the refrigerant outlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12, and close the bypass refrigerant passage 18. The electronic control device 32 controls the blower 16C to generate an air flow passing through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
 さらに、電子制御装置32は、コンプレッサ10を制御してコンプレッサ10による冷媒の圧縮を開始する。これに伴い、コンプレッサ10から吐出される高圧冷媒は、室内コンデンサ12を通過する。 Further, the electronic control device 32 controls the compressor 10 to start compression of the refrigerant by the compressor 10. Along with this, the high-pressure refrigerant discharged from the compressor 10 passes through the indoor condenser 12.
 この場合、エアミックスドア5が室内コンデンサ12の空気入口を閉じて、バイパス通路3を開けた状態にする。このため、エバポレータ20からの冷風は、バイパス通路3を通過して車室内に吹き出される。 In this case, the air mix door 5 closes the air inlet of the indoor condenser 12 and opens the bypass passage 3. Therefore, the cold air from the evaporator 20 passes through the bypass passage 3 and is blown into the vehicle interior.
 室内コンデンサ12を通過した高圧冷媒は、三方弁14を通して空気/冷媒熱交換器16Aに流れる。この際に、空気/冷媒熱交換器16Aでは、高圧冷媒が送風機16Cによって送風される空気流に放熱する。 The high-pressure refrigerant that has passed through the indoor condenser 12 flows to the air / refrigerant heat exchanger 16A through the three-way valve 14. At this time, in the air / refrigerant heat exchanger 16A, the high-pressure refrigerant dissipates heat to the air flow blown by the blower 16C.
 空気/冷媒熱交換器16Aを通過した高圧冷媒の一部は、膨張弁20aによって減圧される。この膨張弁20aによって減圧された冷媒は、エバポレータ20に流れる。このエバポレータ20では、送風機4から送風される空気流から冷媒が吸入して蒸発する。 A part of the high-pressure refrigerant that has passed through the air / refrigerant heat exchanger 16A is depressurized by the expansion valve 20a. The refrigerant decompressed by the expansion valve 20a flows to the evaporator 20. In the evaporator 20, the refrigerant is sucked from the air flow blown from the blower 4 and evaporated.
 この蒸発した冷媒は、その圧力が圧力調整弁28によって調整される。この圧力が調整された冷媒は、アキュムレータ26に流れる。 The pressure of this evaporated refrigerant is adjusted by the pressure regulating valve 28. The pressure-adjusted refrigerant flows through the accumulator 26.
 一方、空気/冷媒熱交換器16Aを通過した高圧冷媒のうち膨張弁20aに流れる冷媒以外の残りの冷媒は、膨張弁20bに流れる。この流れた冷媒は、膨張弁20bによって減圧される。 On the other hand, of the high-pressure refrigerant that has passed through the air / refrigerant heat exchanger 16A, the remaining refrigerant other than the refrigerant that flows through the expansion valve 20a flows through the expansion valve 20b. The flowing refrigerant is depressurized by the expansion valve 20b.
 この膨張弁20bによって減圧された冷媒は、チラー24に流れる。このチラー24では、冷媒が冷却水から吸入して蒸発する。この蒸発した冷媒は、アキュムレータ26に流れる。このアキュムレータ26に流れる冷媒は、液相冷媒と気相冷媒とに分離されて気相冷媒がコンプレッサ10の冷媒入口に流入される。 The refrigerant decompressed by the expansion valve 20b flows to the chiller 24. In this chiller 24, the refrigerant is sucked from the cooling water and evaporated. This evaporated refrigerant flows to the accumulator 26. The refrigerant flowing through the accumulator 26 is separated into a liquid phase refrigerant and a gas phase refrigerant, and the vapor phase refrigerant flows into the refrigerant inlet of the compressor 10.
 このように冷媒がコンプレッサ10→室内コンデンサ12→三方弁14→空気/冷媒熱交換器16A→膨張弁20a→エバポレータ20→圧力調整弁28→アキュムレータ26→コンプレッサ10の順に流れる。 In this way, the refrigerant flows in the order of compressor 10 → indoor condenser 12 → three-way valve 14 → air / refrigerant heat exchanger 16A → expansion valve 20a → evaporator 20 → pressure regulating valve 28 → accumulator 26 → compressor 10.
 これに加えて、空気/冷媒熱交換器16Aからの冷媒が膨張弁20b→チラー24→アキュムレータ26の順に流れる。 In addition to this, the refrigerant from the air / refrigerant heat exchanger 16A flows in the order of expansion valve 20b → chiller 24 → accumulator 26.
 また、冷却水回路50では、ポンプ36aから流れる冷却水がチラー24に流れる。このチラー24では、冷媒が冷却水から吸熱する。この吸熱された冷却水が開閉弁38bを通過してからバッテリユニット44の熱交換器44bの冷却水出入口71に流れる。 Further, in the cooling water circuit 50, the cooling water flowing from the pump 36a flows to the chiller 24. In this chiller 24, the refrigerant absorbs heat from the cooling water. After the absorbed cooling water passes through the on-off valve 38b, it flows to the cooling water inlet / outlet 71 of the heat exchanger 44b of the battery unit 44.
 電子制御装置32は、電気ヒータ42を停止する。この場合、熱交換器44bでは、冷却水が二次電池44aから放出される熱を受ける。この二次電池44aから放熱された冷却水は、開閉弁38dを通してポンプ36aに流入される。 The electronic control device 32 stops the electric heater 42. In this case, in the heat exchanger 44b, the cooling water receives the heat released from the secondary battery 44a. The cooling water radiated from the secondary battery 44a flows into the pump 36a through the on-off valve 38d.
 このため、ポンプ36a→チラー24→開閉弁38b→熱交換器44b→開閉弁38d→ポンプ36aの順に冷却水が流れる。すなわち、チラー24および熱交換器44bの間で冷却水が循環される。このため、チラー24において、二次電池44aから発生した熱が冷媒に放出されることになる。 Therefore, the cooling water flows in the order of pump 36a → chiller 24 → on-off valve 38b → heat exchanger 44b → on-off valve 38d → pump 36a. That is, cooling water is circulated between the chiller 24 and the heat exchanger 44b. Therefore, in the chiller 24, the heat generated from the secondary battery 44a is released to the refrigerant.
 電子制御装置32は、三方弁40を制御して、ポンプ36bの冷却水出口と空気/冷却水熱交換器16Bの冷却水出入口160との間を開けて、ポンプ36bの冷却水出口とバッテリユニット44の熱交換器44bの冷却水出入口70との間を閉じる。 The electronic control device 32 controls the three-way valve 40 to open a space between the cooling water outlet of the pump 36b and the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B, and opens the cooling water outlet of the pump 36b and the battery unit. Close the space between the heat exchanger 44b 44 and the cooling water inlet / outlet 70.
 このため、冷却水回路52では、ポンプ36bから流れる冷却水が三方弁40を通して空気/冷却水熱交換器16Bの冷却水出入口160に流れる。この空気/冷却水熱交換器16Bでは、冷却水が複数の冷却水チューブ130bを流通する際に、複数の冷却水チューブ130b内の冷却水が熱交換フィン135bを通して送風機16Cによって送風される空気流に放熱する。 Therefore, in the cooling water circuit 52, the cooling water flowing from the pump 36b flows through the three-way valve 40 to the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B. In this air / cooling water heat exchanger 16B, when the cooling water flows through the plurality of cooling water tubes 130b, the cooling water in the plurality of cooling water tubes 130b is blown by the blower 16C through the heat exchange fins 135b. Dissipate heat to.
 この放熱した冷却水は、空気/冷却水熱交換器16Bの冷却水出入口161からインバータ48の冷却器48aに流れる。インバータ48の冷却器48aでは、冷却水は、複数の半導体素子から熱を受ける。 The radiated cooling water flows from the cooling water inlet / outlet 161 of the air / cooling water heat exchanger 16B to the cooler 48a of the inverter 48. In the cooler 48a of the inverter 48, the cooling water receives heat from a plurality of semiconductor elements.
 冷却器48aを通過した冷却水は、モータジェネレータ46の冷却器46aに流れる。この冷却器46aでは、冷却水は、走行用電動機から熱を受ける。この冷却器46aを通過した冷却水は、ポンプ36bに流れる。 The cooling water that has passed through the cooler 48a flows into the cooler 46a of the motor generator 46. In the cooler 46a, the cooling water receives heat from the traveling electric motor. The cooling water that has passed through the cooler 46a flows to the pump 36b.
 このようにポンプ36bからの冷却水が空気/冷却水熱交換器16B→冷却器48a→冷却器46a→ポンプ36bの順に流れることにより、インバータ48やモータジェネレータ46で発生した熱を空気/冷却水熱交換器16Bから空気流に放出することになる。
 一方、空気/冷媒熱交換器16Aでは、高圧冷媒が複数の冷媒チューブ130a内を流通する際に、複数の冷媒チューブ130a内の高圧冷媒が複数の熱交換フィン135aを通して空気流に放熱する。
In this way, the cooling water from the pump 36b flows in the order of air / cooling water heat exchanger 16B → cooler 48a → cooler 46a → pump 36b, so that the heat generated by the inverter 48 and the motor generator 46 is air / cooling water. It will be discharged from the heat exchanger 16B into the air stream.
On the other hand, in the air / refrigerant heat exchanger 16A, when the high-pressure refrigerant flows through the plurality of refrigerant tubes 130a, the high-pressure refrigerant in the plurality of refrigerant tubes 130a dissipates heat to the air flow through the plurality of heat exchange fins 135a.
 例えば、夏期のクールダウン時等において、空気/冷媒熱交換器16Aにて高圧冷媒から空気流に放熱すべき熱量(つまり、冷房負荷)が大きく、空気/冷却水熱交換器16Bにて冷却水から放熱すべき熱量(つまり、冷却負荷)が小さい場合には、次の通りになる。
 すなわち、空気/冷媒熱交換器16Aでは、高圧冷媒からの熱が冷媒チューブ130aから複数の熱交換フィン135aを通して空気流に放出される。
For example, during cooldown in summer, the amount of heat to be dissipated from the high-pressure refrigerant to the air flow (that is, the cooling load) is large in the air / refrigerant heat exchanger 16A, and the cooling water is cooled in the air / cooling water heat exchanger 16B. When the amount of heat to be dissipated from (that is, the cooling load) is small, the result is as follows.
That is, in the air / refrigerant heat exchanger 16A, heat from the high-pressure refrigerant is released from the refrigerant tube 130a to the air stream through the plurality of heat exchange fins 135a.
 これに加えて、高圧冷媒からの熱が空気/冷媒熱交換器16Aの冷媒チューブ130aから複数の熱交換フィン135a、接続部135cおよび空気/冷却水熱交換器16Bの熱交換フィン135bを通して空気流に放出される。 In addition, heat from the high pressure refrigerant flows from the refrigerant tube 130a of the air / refrigerant heat exchanger 16A through the plurality of heat exchange fins 135a, the connection 135c and the heat exchange fins 135b of the air / cooling water heat exchanger 16B. Is released to.
 以上により、高圧冷媒が、空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを通して空気流に放熱することになる。ここで、上述の如く、チラー24において、二次電池44aから発生した熱が冷媒に放出される。このため、二次電池44aから発生した熱が、空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを通して空気流に放出されることになる。 From the above, the high-pressure refrigerant radiates heat to the air flow through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B. Here, as described above, in the chiller 24, the heat generated from the secondary battery 44a is released to the refrigerant. Therefore, the heat generated from the secondary battery 44a is released to the air flow through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
 (暖房モード)
 次に、暖房モードについて図7を参照して説明する。暖房モード(すなわち、第2モード)では、電子制御装置32は、図7に示すように、開閉弁38a、38cをそれぞれ開弁する。これに加えて、電子制御装置32は、膨張弁20a、20bの絞り開度をそれぞれ制御する。
(Heating mode)
Next, the heating mode will be described with reference to FIG. In the heating mode (that is, the second mode), the electronic control device 32 opens the on-off valves 38a and 38c, respectively, as shown in FIG. In addition to this, the electronic control device 32 controls the throttle opening degrees of the expansion valves 20a and 20b, respectively.
 電子制御装置32は、三方弁14を制御して、空気/冷媒熱交換器16Aの冷媒入口と室内コンデンサ12の冷媒出口とを閉じて、バイパス冷媒通路18を開ける。電子制御装置32は、送風機16Cを制御して空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを通過する空気流を発生させる。 The electronic control device 32 controls the three-way valve 14 to close the refrigerant inlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12 to open the bypass refrigerant passage 18. The electronic control device 32 controls the blower 16C to generate an air flow passing through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
 さらに、電子制御装置32は、コンプレッサ10を制御してコンプレッサ10による冷媒の圧縮を開始する。これに伴い、コンプレッサ10から吐出される高圧冷媒は、室内コンデンサ12を通過する。 Further, the electronic control device 32 controls the compressor 10 to start compression of the refrigerant by the compressor 10. Along with this, the high-pressure refrigerant discharged from the compressor 10 passes through the indoor condenser 12.
 この場合、エアミックスドア5が室内コンデンサ12の空気入口を開けて、バイパス通路3を閉じた状態にする。このため、エバポレータ20からの冷風は、室内コンデンサ12に流れる。 In this case, the air mix door 5 opens the air inlet of the indoor condenser 12 to close the bypass passage 3. Therefore, the cold air from the evaporator 20 flows to the chamber condenser 12.
 このため、室内コンデンサ12では、高圧冷媒が空気流に放熱することになる。このことにより、室内コンデンサ12から温風が車室内に向けて送風されることなる。 Therefore, in the indoor condenser 12, the high-pressure refrigerant dissipates heat to the air flow. As a result, warm air is blown from the indoor condenser 12 toward the vehicle interior.
 一方、室内コンデンサ12を通過した冷媒が三方弁14、バイパス冷媒通路18を通して膨張弁20a、20bに流れる。つまり、室内コンデンサ12を通過した冷媒が空気/冷媒熱交換器16Aに流れない。 On the other hand, the refrigerant that has passed through the indoor condenser 12 flows to the expansion valves 20a and 20b through the three-way valve 14 and the bypass refrigerant passage 18. That is, the refrigerant that has passed through the indoor condenser 12 does not flow into the air / refrigerant heat exchanger 16A.
 室内コンデンサ12から三方弁14、バイパス冷媒通路18を通して膨張弁20aに流れる冷媒は、膨張弁20aによって減圧される。この膨張弁20aによって減圧された冷媒は、エバポレータ20に流れる。このエバポレータ20では、送風機4から送風される空気流から冷媒が吸入して蒸発する。 The refrigerant flowing from the indoor condenser 12 to the expansion valve 20a through the three-way valve 14 and the bypass refrigerant passage 18 is depressurized by the expansion valve 20a. The refrigerant decompressed by the expansion valve 20a flows to the evaporator 20. In the evaporator 20, the refrigerant is sucked from the air flow blown from the blower 4 and evaporated.
 この蒸発した冷媒は、その圧力が圧力調整弁28によって調整される。この圧力が調整された冷媒は、アキュムレータ26に流れる。 The pressure of this evaporated refrigerant is adjusted by the pressure regulating valve 28. The pressure-adjusted refrigerant flows through the accumulator 26.
 一方、三方弁14、バイパス冷媒通路18を通過した高圧冷媒のうち膨張弁20aに流れる冷媒以外の残りの冷媒は、膨張弁20bに流れる。この流れた冷媒は、膨張弁20bによって減圧される。 On the other hand, of the high-pressure refrigerant that has passed through the three-way valve 14 and the bypass refrigerant passage 18, the remaining refrigerant other than the refrigerant that flows through the expansion valve 20a flows through the expansion valve 20b. The flowing refrigerant is depressurized by the expansion valve 20b.
 この膨張弁20bによって減圧された冷媒は、チラー24に流れる。このチラー24では、冷媒が冷却水から吸熱して蒸発する。この蒸発した冷媒は、アキュムレータ26に流れる。このアキュムレータ26に流れる冷媒は、液相冷媒と気相冷媒とに分離されて液相冷媒がコンプレッサ10の冷媒入口に流入される。 The refrigerant decompressed by the expansion valve 20b flows to the chiller 24. In this chiller 24, the refrigerant absorbs heat from the cooling water and evaporates. This evaporated refrigerant flows to the accumulator 26. The refrigerant flowing through the accumulator 26 is separated into a liquid phase refrigerant and a gas phase refrigerant, and the liquid phase refrigerant flows into the refrigerant inlet of the compressor 10.
 このように冷媒がコンプレッサ10→室内コンデンサ12→三方弁14→バイパス冷媒通路18→膨張弁20a→エバポレータ20→圧力調整弁28→アキュムレータ26→コンプレッサ10の順に流れる。これに加えて、空気/冷媒熱交換器16Aからの冷媒が膨張弁20b→チラー24→アキュムレータ26の順に流れる。 In this way, the refrigerant flows in the order of compressor 10 → indoor condenser 12 → three-way valve 14 → bypass refrigerant passage 18 → expansion valve 20a → evaporator 20 → pressure regulating valve 28 → accumulator 26 → compressor 10. In addition to this, the refrigerant from the air / refrigerant heat exchanger 16A flows in the order of expansion valve 20b → chiller 24 → accumulator 26.
 電子制御装置32は、三方弁40を制御して、ポンプ36bの冷却水出口と空気/冷却水熱交換器16Bの冷却水出入口160との間を閉じて、ポンプ36bの冷却水出口とバッテリユニット44の熱交換器44bの冷却水出入口70との間を開ける。 The electronic control device 32 controls the three-way valve 40 to close between the cooling water outlet of the pump 36b and the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B, and closes the cooling water outlet of the pump 36b and the battery unit. The space between the heat exchanger 44b of 44 and the cooling water inlet / outlet 70 of 44b is opened.
 冷却水回路51では、ポンプ36bから流れる冷却水が三方弁40→バッテリユニット44の熱交換器44b→インバータ48の冷却器48a→モータジェネレータ46の冷却器46a→ポンプ36bの順に流れる。 In the cooling water circuit 51, the cooling water flowing from the pump 36b flows in the order of the three-way valve 40 → the heat exchanger 44b of the battery unit 44 → the cooler 48a of the inverter 48 → the cooler 46a of the motor generator 46 → the pump 36b.
 インバータ48の冷却器48aでは、冷却水は、複数の半導体素子から熱を受ける。モータジェネレータ46の冷却器46aでは、冷却水は、走行用電動機から熱を受ける。このため、冷却器48aにおいて複数の半導体素子から冷却水に受けた熱や冷却器46aにおいて走行用電動機から冷却水に受けた熱が熱交換器44bを介して二次電池44aに放出されることになる。 In the cooler 48a of the inverter 48, the cooling water receives heat from a plurality of semiconductor elements. In the cooler 46a of the motor generator 46, the cooling water receives heat from the traveling electric motor. Therefore, the heat received in the cooling water from the plurality of semiconductor elements in the cooler 48a and the heat received in the cooling water from the traveling electric motor in the cooler 46a are released to the secondary battery 44a via the heat exchanger 44b. become.
 以上により、二次電池44aは、走行用電動機や複数の半導体素子で発生した熱によって暖められることになる。このため、極寒時において、二次電池44aの出力電圧を上昇させることができる。なお、電子制御装置32は、電気ヒータ42を停止する。 From the above, the secondary battery 44a is heated by the heat generated by the traveling electric motor and the plurality of semiconductor elements. Therefore, the output voltage of the secondary battery 44a can be increased in extremely cold weather. The electronic control device 32 stops the electric heater 42.
 冷却水回路53では、ポンプ36aから流れる冷却水がチラー24に流れる。このチラー24では、冷媒が冷却水から吸熱する。この吸熱された冷却水が開閉弁38aを通過してから空気/冷却水熱交換器16Bの冷却水出入口161に流れる。この空気/冷却水熱交換器16Bでは、冷却水が送風機16Cによって送風される空気流から吸熱する。 In the cooling water circuit 53, the cooling water flowing from the pump 36a flows to the chiller 24. In this chiller 24, the refrigerant absorbs heat from the cooling water. After the absorbed cooling water passes through the on-off valve 38a, it flows to the cooling water inlet / outlet 161 of the air / cooling water heat exchanger 16B. In this air / cooling water heat exchanger 16B, the cooling water absorbs heat from the air flow blown by the blower 16C.
 この空気流から吸熱した冷却水は、開閉弁38cを通してポンプ36aに流入される。このため、ポンプ36a→チラー24→開閉弁38a→空気/冷却水熱交換器16B→開閉弁38c→ポンプ36aの順に冷却水が流れる。 The cooling water absorbed from this air flow flows into the pump 36a through the on-off valve 38c. Therefore, the cooling water flows in the order of pump 36a → chiller 24 → on-off valve 38a → air / cooling water heat exchanger 16B → on-off valve 38c → pump 36a.
 このことにより、空気/冷却水熱交換器16Bにおいて冷却水は、空気流から吸熱した熱をチラー24から冷媒に放熱することになる。 As a result, in the air / cooling water heat exchanger 16B, the cooling water dissipates the heat absorbed from the air flow from the chiller 24 to the refrigerant.
 この際、空気/冷却水熱交換器16Bでは、冷却水は、空気流から複数の熱交換フィン135bおよび冷却水チューブ130bを通して吸熱する。 At this time, in the air / cooling water heat exchanger 16B, the cooling water absorbs heat from the air flow through the plurality of heat exchange fins 135b and the cooling water tube 130b.
 さらに、三方弁14が、上述の如く、空気/冷媒熱交換器16Aの冷媒入口と室内コンデンサ12の冷媒出口とを閉じる。このため、空気/冷媒熱交換器16Aの冷媒チューブ130aには冷媒が流通していない。 Further, as described above, the three-way valve 14 closes the refrigerant inlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12. Therefore, no refrigerant is circulated in the refrigerant tube 130a of the air / refrigerant heat exchanger 16A.
 このため、冷却水が複数の熱交換フィン135a、接続部135c、複数の熱交換フィン135b、および冷却水チューブ130bを通して空気流から吸熱する。すなわち、冷却水は、空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを通して空気流から吸熱する。 Therefore, the cooling water absorbs heat from the air flow through the plurality of heat exchange fins 135a, the connection portion 135c, the plurality of heat exchange fins 135b, and the cooling water tube 130b. That is, the cooling water absorbs heat from the air flow through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
 ここで、電子制御装置32は、冷却水温度センサ50b、50cの検出信号に基づいて冷却水温度が閾値以上であるか否かを判定する。電子制御装置32は、冷却水温度が閾値未満であるとき、開閉弁38b、38dを閉じる。 Here, the electronic control device 32 determines whether or not the cooling water temperature is equal to or higher than the threshold value based on the detection signals of the cooling water temperature sensors 50b and 50c. The electronic control device 32 closes the on-off valves 38b and 38d when the cooling water temperature is below the threshold value.
 一方、電子制御装置32は、冷却水温度が閾値以上であるとき、開閉弁38b、38dを開ける。これに伴い、ポンプ36bからの冷却水のうちバッテリユニット44の熱交換器44bに流れる冷却水以外の残りの冷却水は、開閉弁38d→ポンプ36a→チラー24→開閉弁38b→インバータ48の冷却器48aの順に流れる。 On the other hand, the electronic control device 32 opens the on-off valves 38b and 38d when the cooling water temperature is equal to or higher than the threshold value. Along with this, of the cooling water from the pump 36b, the remaining cooling water other than the cooling water flowing to the heat exchanger 44b of the battery unit 44 is the on-off valve 38d → pump 36a → chiller 24 → on-off valve 38b → cooling of the inverter 48. It flows in the order of the vessel 48a.
 以上により、モータジェネレータ46やインバータ48で発生した熱の一部は、バッテリユニット44に放熱する。モータジェネレータ46やインバータ48から発生した熱のうちバッテリユニット44に放熱した熱以外の残りの熱は、チラー24から冷媒に放熱する。 As described above, a part of the heat generated by the motor generator 46 and the inverter 48 is dissipated to the battery unit 44. Of the heat generated from the motor generator 46 and the inverter 48, the remaining heat other than the heat radiated to the battery unit 44 is radiated from the chiller 24 to the refrigerant.
 このように、電子制御装置32は、冷却水温度が閾値以上であるか否かの判定に伴って、開閉弁38b、38dを間欠的に開ける。このため、モータジェネレータ46やインバータ48から発生した熱がチラー24を通して冷媒に移動することを間欠的に実施することになる。これにより、冷却水回路51を流れる冷却水温度が閾値以下に保持することができる。 In this way, the electronic control device 32 intermittently opens the on-off valves 38b and 38d in accordance with the determination of whether or not the cooling water temperature is equal to or higher than the threshold value. Therefore, the heat generated from the motor generator 46 and the inverter 48 is intermittently transferred to the refrigerant through the chiller 24. As a result, the temperature of the cooling water flowing through the cooling water circuit 51 can be kept below the threshold value.
 なお、本実施形態の暖房モードでは、開閉弁38b、38dが開弁されたとき、冷却水回路53内の冷却水の一部が点線の矢印の如く、冷却水回路51内のインバータ48の冷却器48aに流れる。 In the heating mode of the present embodiment, when the on-off valves 38b and 38d are opened, a part of the cooling water in the cooling water circuit 53 cools the inverter 48 in the cooling water circuit 51 as shown by the dotted arrow. It flows into the vessel 48a.
 (ヒータモード)
 次に、ヒータモードについて図8を参照して説明する。電子制御装置32は、開閉弁38a、38cをそれぞれ閉弁する。これに加えて、電子制御装置32は、膨張弁20aによってバイパス冷媒通路18とエバポレータ20の冷媒入口の間の冷媒通路を閉じる。電子制御装置32は、膨張弁20bを制御して、バイパス冷媒通路18とチラー24との間の冷媒通路の流路断面積を調整する。
(Heater mode)
Next, the heater mode will be described with reference to FIG. The electronic control device 32 closes the on-off valves 38a and 38c, respectively. In addition to this, the electronic control device 32 closes the refrigerant passage between the bypass refrigerant passage 18 and the refrigerant inlet of the evaporator 20 by the expansion valve 20a. The electronic control device 32 controls the expansion valve 20b to adjust the flow path cross-sectional area of the refrigerant passage between the bypass refrigerant passage 18 and the chiller 24.
 すなわち、電子制御装置32は、膨張弁20aを閉弁して膨張弁20bを開弁する。 That is, the electronic control device 32 closes the expansion valve 20a and opens the expansion valve 20b.
 電子制御装置32は、三方弁14を制御して、空気/冷媒熱交換器16Aの冷媒入口と室内コンデンサ12の冷媒出口とを閉じて、バイパス冷媒通路18を開ける。電子制御装置32は、送風機16Cを停止する。 The electronic control device 32 controls the three-way valve 14 to close the refrigerant inlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12 to open the bypass refrigerant passage 18. The electronic control device 32 stops the blower 16C.
 さらに、電子制御装置32は、電気ヒータ42を作動させる。電子制御装置32は、コンプレッサ10を制御してコンプレッサ10による冷媒の圧縮を開始する。これに伴い、コンプレッサ10から吐出される高圧冷媒は、室内コンデンサ12を通過する。 Further, the electronic control device 32 operates the electric heater 42. The electronic control device 32 controls the compressor 10 to start compression of the refrigerant by the compressor 10. Along with this, the high-pressure refrigerant discharged from the compressor 10 passes through the indoor condenser 12.
 この場合、エアミックスドア5が室内コンデンサ12の空気入口を開けて、バイパス通路3を閉じた状態にする。このため、エバポレータ20からの冷風は、室内コンデンサ12に流れる。 In this case, the air mix door 5 opens the air inlet of the indoor condenser 12 to close the bypass passage 3. Therefore, the cold air from the evaporator 20 flows to the chamber condenser 12.
 このため、室内コンデンサ12では、空気流が高圧冷媒から熱を受けることになる。このことにより、室内コンデンサ12から温風が車室内に向けて送風されることなる。 Therefore, in the indoor condenser 12, the air flow receives heat from the high-pressure refrigerant. As a result, warm air is blown from the indoor condenser 12 toward the vehicle interior.
 一方、室内コンデンサ12を通過した冷媒が三方弁14、バイパス冷媒通路18を通して膨張弁20bに流れる。この膨張弁20bに流れた冷媒は、膨張弁20bによって減圧される。 On the other hand, the refrigerant that has passed through the indoor condenser 12 flows to the expansion valve 20b through the three-way valve 14 and the bypass refrigerant passage 18. The refrigerant flowing through the expansion valve 20b is depressurized by the expansion valve 20b.
 この膨張弁20bによって減圧された冷媒は、チラー24に流れる。このチラー24では、冷媒が冷却水から吸熱して蒸発する。この蒸発した冷媒は、アキュムレータ26に流れる。このアキュムレータ26に流れる冷媒は、液相冷媒と気相冷媒とに分離されて液相冷媒がコンプレッサ10の冷媒入口に流入される。 The refrigerant decompressed by the expansion valve 20b flows to the chiller 24. In this chiller 24, the refrigerant absorbs heat from the cooling water and evaporates. This evaporated refrigerant flows to the accumulator 26. The refrigerant flowing through the accumulator 26 is separated into a liquid phase refrigerant and a gas phase refrigerant, and the liquid phase refrigerant flows into the refrigerant inlet of the compressor 10.
 このように冷媒がコンプレッサ10→室内コンデンサ12→三方弁14→膨張弁20b→チラー24→アキュムレータ26の順に流れる。なお、室内コンデンサ12から膨張弁20bを通してエバポレータ20には冷媒が流れない。 In this way, the refrigerant flows in the order of compressor 10 → indoor condenser 12 → three-way valve 14 → expansion valve 20b → chiller 24 → accumulator 26. No refrigerant flows from the chamber condenser 12 to the evaporator 20 through the expansion valve 20b.
 電子制御装置32は、三方弁40を制御して、ポンプ36bの冷却水出口と空気/冷却水熱交換器16Bの冷却水出入口160との間を閉じて、ポンプ36bの冷却水出口とバッテリユニット44の熱交換器44bの冷却水出入口70との間を開ける。 The electronic control device 32 controls the three-way valve 40 to close between the cooling water outlet of the pump 36b and the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B, and closes the cooling water outlet of the pump 36b and the battery unit. The space between the heat exchanger 44b of 44 and the cooling water inlet / outlet 70 of 44b is opened.
 ここで、ポンプ36bから流れ出る冷却水のうち一部の冷却水が三方弁40→熱交換器44b→冷却器48a→冷却器46a→ポンプ36bの順に流れる。熱交換器44bでは、冷却水は、電気ヒータ42から加熱される。 Here, some of the cooling water flowing out of the pump 36b flows in the order of the three-way valve 40 → the heat exchanger 44b → the cooler 48a → the cooler 46a → the pump 36b. In the heat exchanger 44b, the cooling water is heated from the electric heater 42.
 このことにより、インバータ48やモータジェネレータ46で発生した熱や電気ヒータ42から発生される熱がバッテリユニット44の二次電池44aに放出されることになる。 As a result, the heat generated by the inverter 48 and the motor generator 46 and the heat generated by the electric heater 42 are released to the secondary battery 44a of the battery unit 44.
 ポンプ36bから三方弁40に流れる冷却水のうち熱交換器44bに流れる冷却水以外の残りの冷却水は、ポンプ36b→三方弁40→開閉弁30d→ポンプ36a→チラー24→開閉弁38b→冷却器48aの順に流れる。 Of the cooling water flowing from the pump 36b to the three-way valve 40, the remaining cooling water other than the cooling water flowing to the heat exchanger 44b is pump 36b → three-way valve 40 → on-off valve 30d → pump 36a → chiller 24 → on-off valve 38b → cooling. It flows in the order of the vessel 48a.
 このことにより、インバータ48、モータジェネレータ46で発生した熱のうち、バッテリユニット44に放出される熱以外の残りの熱がチラー24から冷媒に放出されることになる。 As a result, of the heat generated by the inverter 48 and the motor generator 46, the remaining heat other than the heat released to the battery unit 44 is released from the chiller 24 to the refrigerant.
 つまり、インバータ48、モータジェネレータ46で発生した熱の一部がチラー24から冷媒に放出されることになる。 That is, a part of the heat generated by the inverter 48 and the motor generator 46 is released from the chiller 24 to the refrigerant.
 このようにチラー24において冷却水から冷媒に放出される熱とコンプレッサ10から冷媒に与えられる熱とが室内コンデンサ12から空気流に放熱されることになる。 In this way, the heat released from the cooling water to the refrigerant and the heat given to the refrigerant from the compressor 10 in the chiller 24 are radiated from the indoor condenser 12 to the air flow.
 すなわち、冷却水から冷媒が吸熱した熱とコンプレッサ10から冷媒に与えられた熱とが車室内の空気の加熱に用いられることになる。 That is, the heat absorbed by the refrigerant from the cooling water and the heat given to the refrigerant by the compressor 10 are used to heat the air in the vehicle interior.
 (除霜モード)
 次に、除霜モードについて図9を参照して説明する。除霜モード(すなわち、第3モード)では、電子制御装置32が、開閉弁38a、38cをそれぞれ閉弁し、かつ開閉弁38b、38dをそれぞれ開弁する。これに加えて、電子制御装置32は、膨張弁20aによってバイパス冷媒通路18とエバポレータ20の冷媒入口の間の冷媒通路を閉じる。
電子制御装置32は、膨張弁20bを制御して、バイパス冷媒通路18とチラー24との間の冷媒通路の流路断面積を調整する。すなわち、電子制御装置32は、膨張弁20aを閉弁して膨張弁20bを開弁する。
(Defrost mode)
Next, the defrosting mode will be described with reference to FIG. In the defrosting mode (that is, the third mode), the electronic control device 32 closes the on-off valves 38a and 38c, respectively, and opens the on-off valves 38b and 38d, respectively. In addition to this, the electronic control device 32 closes the refrigerant passage between the bypass refrigerant passage 18 and the refrigerant inlet of the evaporator 20 by the expansion valve 20a.
The electronic control device 32 controls the expansion valve 20b to adjust the flow path cross-sectional area of the refrigerant passage between the bypass refrigerant passage 18 and the chiller 24. That is, the electronic control device 32 closes the expansion valve 20a and opens the expansion valve 20b.
 電子制御装置32は、三方弁14を制御して、空気/冷媒熱交換器16Aの冷媒入口と室内コンデンサ12の冷媒出口とを開けて、バイパス冷媒通路18を閉じる。電子制御装置32は、送風機16Cを停止する。 The electronic control device 32 controls the three-way valve 14 to open the refrigerant inlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12, and close the bypass refrigerant passage 18. The electronic control device 32 stops the blower 16C.
 さらに、電子制御装置32は、コンプレッサ10を制御してコンプレッサ10による冷媒の圧縮を開始する。これに伴い、コンプレッサ10から吐出される高圧冷媒は、室内コンデンサ12を通過する。 Further, the electronic control device 32 controls the compressor 10 to start compression of the refrigerant by the compressor 10. Along with this, the high-pressure refrigerant discharged from the compressor 10 passes through the indoor condenser 12.
 このため、室内コンデンサ12を通過した高圧冷媒が三方弁14を通して空気/冷媒熱交換器16Aに流れる。この空気/冷媒熱交換器16Aを通過した冷媒は、膨張弁20bに流れる。 Therefore, the high-pressure refrigerant that has passed through the indoor condenser 12 flows through the three-way valve 14 to the air / refrigerant heat exchanger 16A. The refrigerant that has passed through the air / refrigerant heat exchanger 16A flows to the expansion valve 20b.
 この膨張弁20bに流れた冷媒は、膨張弁20bによって減圧される。この膨張弁20bによって減圧された冷媒は、チラー24に流れる。このチラー24では、冷媒が冷却水から吸熱して蒸発する。
この蒸発した冷媒は、アキュムレータ26に流れる。このアキュムレータ26に流れる冷媒は、液相冷媒と気相冷媒とに分離されて気相冷媒がコンプレッサ10の冷媒入口に流入される。
The refrigerant flowing through the expansion valve 20b is depressurized by the expansion valve 20b. The refrigerant decompressed by the expansion valve 20b flows to the chiller 24. In this chiller 24, the refrigerant absorbs heat from the cooling water and evaporates.
This evaporated refrigerant flows to the accumulator 26. The refrigerant flowing through the accumulator 26 is separated into a liquid phase refrigerant and a gas phase refrigerant, and the vapor phase refrigerant flows into the refrigerant inlet of the compressor 10.
 このように冷媒がコンプレッサ10→室内コンデンサ12→三方弁14→空気/冷媒熱交換器16A→膨張弁20b→チラー24→アキュムレータ26→コンプレッサ10の順に流れる。 In this way, the refrigerant flows in the order of compressor 10 → indoor condenser 12 → three-way valve 14 → air / refrigerant heat exchanger 16A → expansion valve 20b → chiller 24 → accumulator 26 → compressor 10.
 ここで、冷却水回路50において、ポンプ36aから流れ出る冷却水がチラー24に流れる。このチラー24では、冷却水は冷媒から吸熱される。この吸熱された冷却水は、開閉弁38b→熱交換器44b→開閉弁38d→ポンプ36aの順に流れる。 Here, in the cooling water circuit 50, the cooling water flowing out from the pump 36a flows into the chiller 24. In this chiller 24, the cooling water is endothermic from the refrigerant. The endothermic cooling water flows in the order of on-off valve 38b → heat exchanger 44b → on-off valve 38d → pump 36a.
 このため、熱交換器44bでは、冷却水は電気ヒータ42から発生される熱を受ける。したがって、電気ヒータ42から受熱した冷却水は、チラー24において冷媒に放熱する。すなわち、電気ヒータ42から冷却水に与えられた熱がチラー24を介して冷媒に移動される。 Therefore, in the heat exchanger 44b, the cooling water receives the heat generated from the electric heater 42. Therefore, the cooling water received from the electric heater 42 dissipates heat to the refrigerant in the chiller 24. That is, the heat given to the cooling water from the electric heater 42 is transferred to the refrigerant via the chiller 24.
 このため、チラー24にて冷却水から冷媒が吸熱した熱とコンプレッサ10から冷媒に与えられた仕事量としての熱とが空気/冷媒熱交換器16Aに伝えられる。 Therefore, the heat absorbed by the refrigerant from the cooling water in the chiller 24 and the heat as the amount of work given to the refrigerant by the compressor 10 are transferred to the air / refrigerant heat exchanger 16A.
 このとき、空気/冷媒熱交換器16A内の高圧冷媒からの熱が、複数の冷媒チューブ130aから複数の熱交換フィン135aおよび接続部135cを通して空気/冷却水熱交換器16Bの複数の熱交換フィン135aに伝わる。このため、高圧冷媒からの熱によって、空気/冷却水熱交換器16Bの熱交換コア120cに付着した霜が融ける。 At this time, heat from the high-pressure refrigerant in the air / refrigerant heat exchanger 16A passes through the plurality of heat exchange fins 135a and the connection portion 135c from the plurality of refrigerant tubes 130a, and the plurality of heat exchange fins of the air / cooling water heat exchanger 16B. It is transmitted to 135a. Therefore, the heat from the high-pressure refrigerant melts the frost adhering to the heat exchange core 120c of the air / cooling water heat exchanger 16B.
 このことにより、電気ヒータ42から冷却水に与えられた熱とコンプレッサ10から冷媒に与えられた熱とが空気/冷却水熱交換器16Bの除霜に機能することになる。なお、電子制御装置32は、ポンプ36bと送風機16Cとを停止する。 As a result, the heat given to the cooling water from the electric heater 42 and the heat given to the refrigerant from the compressor 10 function to defrost the air / cooling water heat exchanger 16B. The electronic control device 32 stops the pump 36b and the blower 16C.
 以上説明した本実施形態によれば、空気/冷媒熱交換器16Aの熱交換フィン135aと空気/冷却水熱交換器16Bの熱交換フィン135bとが接続部135cによって接続されている。 According to the present embodiment described above, the heat exchange fins 135a of the air / refrigerant heat exchanger 16A and the heat exchange fins 135b of the air / cooling water heat exchanger 16B are connected by the connecting portion 135c.
 冷房モードにおいて、空気/冷却水熱交換器16B内の冷却水が空気流に放熱する。空気/冷媒熱交換器16A内の冷媒が接続部135cおよび空気/冷却水熱交換器16Bを通して空気流に放熱する。 In the cooling mode, the cooling water in the air / cooling water heat exchanger 16B dissipates heat to the air flow. The refrigerant in the air / refrigerant heat exchanger 16A dissipates heat to the air flow through the connection portion 135c and the air / cooling water heat exchanger 16B.
 すなわち、冷媒は、空気/冷媒熱交換器16A、および空気/冷却水熱交換器16Bを通して空気流に放熱することになる。このため、冷媒から空気流に放熱する放熱効率を向上することができる。 That is, the refrigerant dissipates heat to the air flow through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B. Therefore, it is possible to improve the heat dissipation efficiency of radiating heat from the refrigerant to the air flow.
 暖房モードにおいて、空気/冷却水熱交換器16B内の冷却水が接続部135cおよび空気/冷媒熱交換器16Aを介して空気流から吸熱する。すなわち、冷却水は、空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを介して空気流から吸熱する。このため、冷却水が空気流から吸熱する吸熱効率を向上することができる。 In the heating mode, the cooling water in the air / cooling water heat exchanger 16B absorbs heat from the air flow via the connection portion 135c and the air / refrigerant heat exchanger 16A. That is, the cooling water absorbs heat from the air flow via the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B. Therefore, the endothermic efficiency at which the cooling water absorbs heat from the air flow can be improved.
 以上により、室外器16の熱交換効率を向上するようにした車載用熱管理装置1を提供することができる。 From the above, it is possible to provide the vehicle-mounted heat management device 1 in which the heat exchange efficiency of the outdoor unit 16 is improved.
 上記特許文献1のヒートポンプシステムでは、冷媒を通過させる複数の冷媒チューブと、複数の冷媒チューブに冷媒を分配する分配タンクと、複数の冷媒チューブを通過した冷媒を回収する回収タンクとによって凝縮部を構成する場合には、次の不具合が生じる。 In the heat pump system of Patent Document 1, the condensing portion is formed by a plurality of refrigerant tubes for passing refrigerant, a distribution tank for distributing the refrigerant to the plurality of refrigerant tubes, and a recovery tank for recovering the refrigerant passing through the plurality of refrigerant tubes. In the case of configuration, the following problems occur.
 すなわち、暖房時には、分配タンクから気液二相冷媒が複数の冷媒チューブのそれぞれに流れる。ここで、気液二相冷媒のうち液相冷媒が占める割合が極めて少ない場合には、液相冷媒が分配タンクから複数の冷媒チューブに均等に分配されることを気相冷媒が阻害する。 That is, during heating, gas-liquid two-phase refrigerant flows from the distribution tank to each of the plurality of refrigerant tubes. Here, when the ratio of the liquid-phase refrigerant to the gas-liquid two-phase refrigerant is extremely small, the gas-phase refrigerant hinders the liquid-phase refrigerant from being evenly distributed from the distribution tank to the plurality of refrigerant tubes.
 このため、複数の冷媒チューブのうち液相冷媒流量の少ない冷媒チューブは、冷媒の蒸発に伴って冷媒が外気から吸熱することを十分に行うことができない。 Therefore, of the plurality of refrigerant tubes, the refrigerant tube having a small liquid phase refrigerant flow rate cannot sufficiently absorb heat from the outside air as the refrigerant evaporates.
 以上により、暖房時に室外器を蒸発器として機能させる場合には、室外器において冷媒が外気から吸熱する際の熱交換効率が低下する。 From the above, when the outdoor unit functions as an evaporator during heating, the heat exchange efficiency when the refrigerant absorbs heat from the outside air in the outdoor unit decreases.
 これに対して、本実施形態では、暖房時には、コンプレッサ10からの冷媒が空気/冷媒熱交換器16Aに流れない。このため、室外器としての空気/冷媒熱交換器16Aにおいて、上述の熱交換効率が低下する問題はそもそも生じない。 On the other hand, in the present embodiment, the refrigerant from the compressor 10 does not flow to the air / refrigerant heat exchanger 16A during heating. Therefore, in the air / refrigerant heat exchanger 16A as an outdoor unit, the above-mentioned problem that the heat exchange efficiency is lowered does not occur in the first place.
 本実施形態のヒータモードでは、インバータ48、モータジェネレータ46、電気ヒータ42で発生される熱とコンプレッサ10から冷媒に与えられた熱とが室内コンデンサ12から空気流に放熱されることになる。
このため、コンプレッサ10から冷媒に与えられた熱だけが室内コンデンサ12から空気流に放熱される場合に比べて、室内コンデンサ12から空気流に多くの熱を放出することができる。
In the heater mode of the present embodiment, the heat generated by the inverter 48, the motor generator 46, and the electric heater 42 and the heat given to the refrigerant by the compressor 10 are radiated from the indoor capacitor 12 to the air flow.
Therefore, more heat can be released from the indoor condenser 12 to the air flow than when only the heat given to the refrigerant from the compressor 10 is dissipated from the indoor condenser 12 to the air flow.
 本実施形態の除霜モードでは、電気ヒータ42からの熱とコンプレッサ10から冷媒に与えられた熱とが空気/冷媒熱交換器16A内の冷媒から接続部135cを通して空気/冷却水熱交換器16Bの熱交換コア120cに与えられる。 In the defrosting mode of the present embodiment, the heat from the electric heater 42 and the heat given to the refrigerant from the compressor 10 are transferred from the refrigerant in the air / refrigerant heat exchanger 16A through the connection portion 135c to the air / cooling water heat exchanger 16B. Is given to the heat exchange core 120c of.
 このため、本実施形態では、コンプレッサ10から冷媒に与えられた熱だけを熱交換コア120cに与える場合に比べて、熱交換コア120cに多くの熱量を与えることができる。したがって、熱交換コア120cに付着した霜を良好に融かすことができる。 Therefore, in the present embodiment, a larger amount of heat can be given to the heat exchange core 120c as compared with the case where only the heat given to the refrigerant from the compressor 10 is given to the heat exchange core 120c. Therefore, the frost adhering to the heat exchange core 120c can be satisfactorily melted.
 (第2実施形態)
 上記第1実施形態では、車載用熱管理装置1は、ポンプ36bの冷媒出口およびポンプ36aの冷媒入口の間を開閉する開閉弁38dを備える例について説明した。
(Second Embodiment)
In the first embodiment, an example has been described in which the vehicle-mounted heat management device 1 includes an on-off valve 38d that opens and closes between the refrigerant outlet of the pump 36b and the refrigerant inlet of the pump 36a.
 しかし、これに代えて、車載用熱管理装置1は、ポンプ36bの冷媒出口およびポンプ36aの冷媒入口の間の冷媒流路の断面積を連続的に調整する調整弁38eを備える第2実施形態について図10を参照して説明する。 However, instead of this, the vehicle-mounted heat management device 1 includes a second embodiment including a regulating valve 38e that continuously adjusts the cross-sectional area of the refrigerant flow path between the refrigerant outlet of the pump 36b and the refrigerant inlet of the pump 36a. Will be described with reference to FIG.
 図10において、図1と同一符号は、同一のものを示し、その説明を省略する。 In FIG. 10, the same reference numerals as those in FIG. 1 indicate the same ones, and the description thereof will be omitted.
 本実施形態の車載用熱管理装置1は、図1の開閉弁38dに代えて、調整弁38eを用いる。 The vehicle-mounted heat management device 1 of the present embodiment uses a regulating valve 38e instead of the on-off valve 38d of FIG.
 調整弁38eは、ポンプ36bの冷媒出口およびポンプ36aの冷媒入口の間の冷媒流路の断面積を連続的に調整する弁体と、この弁体を駆動する電動アクチュエータとを備える。弁体は、電動アクチュエータを介して電子制御装置32によって制御される。 The adjusting valve 38e includes a valve body that continuously adjusts the cross-sectional area of the refrigerant flow path between the refrigerant outlet of the pump 36b and the refrigerant inlet of the pump 36a, and an electric actuator that drives the valve body. The valve body is controlled by the electronic control device 32 via an electric actuator.
 電子制御装置32は、冷却水温度センサ50b、50cの検出信号に基づいて冷却水温度が高くなるほど、冷媒流路の断面積を大きくするように調整弁38eを制御する。 The electronic control device 32 controls the adjusting valve 38e so that the higher the cooling water temperature, the larger the cross-sectional area of the refrigerant flow path, based on the detection signals of the cooling water temperature sensors 50b and 50c.
 一方、電子制御装置32は、冷却水温度センサ50b、50cの検出信号に基づいて冷却水温度が低くなるほど、冷媒流路の断面積を小さくするように調整弁38eを制御する。
 このため、暖房モードにおいて、冷却水温度が高くなるほど、ポンプ36bからポンプ36aを通してチラー24に流れる冷却水量を増やすことができる。冷却水温度が低くなるほど、ポンプ36bからポンプ36aを通してチラー24に流れる冷却水量を減らすことができる。
On the other hand, the electronic control device 32 controls the adjusting valve 38e so that the cross-sectional area of the refrigerant flow path becomes smaller as the cooling water temperature becomes lower based on the detection signals of the cooling water temperature sensors 50b and 50c.
Therefore, in the heating mode, the higher the cooling water temperature, the more the amount of cooling water flowing from the pump 36b to the chiller 24 through the pump 36a can be increased. The lower the cooling water temperature, the smaller the amount of cooling water flowing from the pump 36b to the chiller 24 through the pump 36a.
 以上により、冷却水温度が高くなるほど、チラー24から冷媒に放熱される熱量を増やすことができる。このため、バッテリユニット44の熱交換器44bを流れる冷却水の温度を精度良く所定範囲内に収めることができる。 From the above, the higher the cooling water temperature, the more heat is radiated from the chiller 24 to the refrigerant. Therefore, the temperature of the cooling water flowing through the heat exchanger 44b of the battery unit 44 can be accurately kept within a predetermined range.
 以上説明した本実施形態によれば、車載用熱管理装置1は、上記第1実施形態と同様に、冷房モードにおいて、冷媒から空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを通して空気流に放熱する。暖房モードにおいて、冷却水が空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを介して空気流から吸熱する。 According to the present embodiment described above, the vehicle-mounted heat management device 1 passes through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B from the refrigerant in the cooling mode as in the first embodiment. Dissipate heat to the air flow. In the heating mode, the cooling water is endothermic from the air stream via the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
 以上により、上記第1実施形態と同様に、室外器16の熱交換効率を向上するようにした車載用熱管理装置1を提供することができる。 From the above, it is possible to provide the vehicle-mounted heat management device 1 having improved heat exchange efficiency of the outdoor unit 16 as in the first embodiment.
 (第3実施形態)
 上記第1実施形態では、車載用熱管理装置1の室外器16では、空気/冷却水熱交換器16Bが空気/冷媒熱交換器16Aに対して空気流れ方向上流側に配置されている例について説明したが、これに代えて、次のようにしてもよい。
(Third Embodiment)
In the first embodiment, in the outdoor unit 16 of the in-vehicle heat management device 1, the air / cooling water heat exchanger 16B is arranged on the upstream side in the air flow direction with respect to the air / refrigerant heat exchanger 16A. As described above, instead of this, the following may be used.
 すなわち、本第3実施形態では、図11に示すように、空気/冷却水熱交換器16Bが空気/冷媒熱交換器16Aに対して空気流れ方向下流側に配置されている。この場合、接続部135cが、空気/冷却水熱交換器16Bの風上側に構成される。 That is, in the third embodiment, as shown in FIG. 11, the air / cooling water heat exchanger 16B is arranged on the downstream side in the air flow direction with respect to the air / refrigerant heat exchanger 16A. In this case, the connection portion 135c is configured on the windward side of the air / cooling water heat exchanger 16B.
 このため、暖房モードにおいて、空気/冷却水熱交換器16Bが外気から吸熱する際、霜が空気/冷却水熱交換器16Bの熱交換フィン135b側から接続部135c側に広がるように形成される。 Therefore, in the heating mode, when the air / cooling water heat exchanger 16B absorbs heat from the outside air, frost is formed so as to spread from the heat exchange fin 135b side of the air / cooling water heat exchanger 16B to the connection portion 135c side. ..
 これにより、接続部135cが、空気/冷却水熱交換器16Bの風下側に形成される場合比べて、熱交換フィン135bに薄く霜が形成されることになる。これに伴い、熱交換フィン135bによって形成される空気流路が霜によって閉塞されることが抑制される。したがって、熱交換フィン135bを介した空気および冷却水の間の熱交換が維持されるので、暖房性能を長時間維持することが可能となる。 As a result, frost is formed thinner on the heat exchange fins 135b than when the connection portion 135c is formed on the leeward side of the air / cooling water heat exchanger 16B. Along with this, the air flow path formed by the heat exchange fins 135b is suppressed from being blocked by frost. Therefore, the heat exchange between the air and the cooling water via the heat exchange fins 135b is maintained, so that the heating performance can be maintained for a long time.
 なお、本実施形態と上記第1実施形態とは、室外器16の構成が相違するだけで、その他の構成は同一である。図11において、図1と同一符号は、同一のものを示し、その説明を省略する。 Note that the present embodiment and the above-mentioned first embodiment differ only in the configuration of the outdoor unit 16, and the other configurations are the same. In FIG. 11, the same reference numerals as those in FIG. 1 indicate the same reference numerals, and the description thereof will be omitted.
 以上説明した本実施形態によれば、上記第1実施形態と同様に、冷房モードにおいて、冷媒が空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを通して空気流に放熱する。暖房モードにおいて、冷却水が空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを介して空気流から吸熱する。 According to the present embodiment described above, in the cooling mode, the refrigerant dissipates heat to the air flow through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B, as in the first embodiment. In the heating mode, the cooling water is endothermic from the air stream via the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
 以上により、上記第1実施形態と同様に、室外器16の熱交換効率を向上するようにした車載用熱管理装置1を提供することができる。 From the above, it is possible to provide the vehicle-mounted heat management device 1 having improved heat exchange efficiency of the outdoor unit 16 as in the first embodiment.
 (第4実施形態)
 上記第1実施形態では、車載用熱管理装置1において、室内空調ケーシング2内の加熱用熱交換器として、冷媒が空気流に放熱する室内コンデンサ12を用いた例について説明した。
(Fourth Embodiment)
In the first embodiment, an example in which the in-vehicle heat management device 1 uses the indoor condenser 12 in which the refrigerant dissipates heat to the air flow as the heat exchanger for heating in the indoor air-conditioning casing 2 has been described.
 しかし、これに代えて、車載用熱管理装置1おいて、温水が空気流に放熱するヒータコア61を用いる本第4実施形態について図12を参照して説明する。 However, instead of this, the fourth embodiment using the heater core 61 in which the hot water dissipates heat to the air flow in the in-vehicle heat management device 1 will be described with reference to FIG.
 本実施形態の車載用熱管理装置1は、図12に示すように、ヒータコア61を含む温水回路60を備える。 As shown in FIG. 12, the vehicle-mounted heat management device 1 of the present embodiment includes a hot water circuit 60 including a heater core 61.
 本実施形態の車載用熱管理装置1は、図1の室内コンデンサ12に代えて、温水回路60を備える。 The vehicle-mounted heat management device 1 of the present embodiment includes a hot water circuit 60 instead of the indoor condenser 12 of FIG.
 本実施形態の車載用熱管理装置1のうち温水回路60以外の他の構成は、上記第1実施形態の車載用熱管理装置1と同様である。図12において、図1と同一符号は、同一のものを示し、その説明を省略する。 The configuration of the vehicle-mounted heat management device 1 of the present embodiment other than the hot water circuit 60 is the same as that of the vehicle-mounted heat management device 1 of the first embodiment. In FIG. 12, the same reference numerals as those in FIG. 1 indicate the same reference numerals, and the description thereof will be omitted.
 そこで、本実施形態の車載用熱管理装置1のうち主に温水回路60について説明する。温水回路60は、ヒータコア61とともに、水/冷媒熱交換器62、およびポンプ63を備える。ヒータコア61、水/冷媒熱交換器62、およびポンプ63は、温水配管によって接続されて温水を循環させる閉回路を構成する。ヒータコア61は、室内空調ケーシング2内に配置されている。 Therefore, the hot water circuit 60 of the in-vehicle heat management device 1 of the present embodiment will be mainly described. The hot water circuit 60 includes a water / refrigerant heat exchanger 62 and a pump 63 together with a heater core 61. The heater core 61, the water / refrigerant heat exchanger 62, and the pump 63 are connected by a hot water pipe to form a closed circuit for circulating hot water. The heater core 61 is arranged in the indoor air conditioning casing 2.
 ポンプ63は、温水をポンプ63→ヒータコア61→水/冷媒熱交換器62→ポンプ63の順に循環させる。ヒータコア61は、温水をエバポレータ20を通過した冷風に放熱させる。 The pump 63 circulates hot water in the order of pump 63 → heater core 61 → water / refrigerant heat exchanger 62 → pump 63. The heater core 61 dissipates hot water to the cold air that has passed through the evaporator 20.
 水/冷媒熱交換器62では、ヒータコア61を通過した温水が冷媒から吸熱する第1放熱器である。この吸熱した温水がポンプ63に吸入される。このポンプ63は、温水を水/冷媒熱交換器62に向けて流す。 In the water / refrigerant heat exchanger 62, the hot water that has passed through the heater core 61 is the first radiator that absorbs heat from the refrigerant. The endothermic hot water is sucked into the pump 63. The pump 63 allows hot water to flow toward the water / refrigerant heat exchanger 62.
 水/冷媒熱交換器62は、コンプレッサ10の冷媒出口と三方弁14の冷媒入口との間に配置されている。水/冷媒熱交換器62は、コンプレッサ10からの高圧冷媒から温水に放熱させる熱交換器である。 The water / refrigerant heat exchanger 62 is arranged between the refrigerant outlet of the compressor 10 and the refrigerant inlet of the three-way valve 14. The water / refrigerant heat exchanger 62 is a heat exchanger that dissipates heat from the high-pressure refrigerant from the compressor 10 to hot water.
 このことにより、水/冷媒熱交換器62およびヒータコア61の間で温水が循環することにより、水/冷媒熱交換器62で高圧冷媒から吸熱した温水がヒータコア61から冷風に放熱することになる。 As a result, hot water circulates between the water / refrigerant heat exchanger 62 and the heater core 61, so that the hot water absorbed from the high-pressure refrigerant in the water / refrigerant heat exchanger 62 dissipates heat from the heater core 61 to cold air.
 このため、ヒータコア61は、エバポレータ20から吹き出される冷風を温水によって加熱する。これにより、ヒータコア61によって加熱された温風は、車室内に吹き出されることになる。 Therefore, the heater core 61 heats the cold air blown from the evaporator 20 with hot water. As a result, the warm air heated by the heater core 61 is blown into the vehicle interior.
 以上説明した本実施形態によれば、車載用熱管理装置1において、上記第1実施形態と同様に、冷房モードにおいて、冷媒が空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを通して空気流に放熱する。暖房モードにおいて、冷却水が空気/冷媒熱交換器16Aおよび空気/冷却水熱交換器16Bを介して空気流から吸熱する。 According to the present embodiment described above, in the vehicle-mounted heat management device 1, the refrigerant passes through the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B in the cooling mode as in the first embodiment. Dissipate heat to the air flow. In the heating mode, the cooling water is endothermic from the air stream via the air / refrigerant heat exchanger 16A and the air / cooling water heat exchanger 16B.
 以上により、室内コンデンサ12に代わる温水回路60を備える本実施形態においても、上記第1実施形態と同様に、室外器16の熱交換効率を向上するようにした車載用熱管理装置1を提供することができる。 As described above, also in the present embodiment including the hot water circuit 60 instead of the indoor condenser 12, the vehicle-mounted heat management device 1 is provided so as to improve the heat exchange efficiency of the outdoor unit 16 as in the first embodiment. be able to.
 (第5実施形態)
 上記第1実施形態では、車載用熱管理装置1が高圧冷媒を用いて空気/冷却水熱交換器16Bに着いた霜を融かす除霜モードについて説明した。
(Fifth Embodiment)
In the first embodiment, the defrosting mode in which the vehicle-mounted heat management device 1 melts the frost on the air / cooling water heat exchanger 16B using the high-pressure refrigerant has been described.
 これに加えて、冷却水が空気/冷却水熱交換器16Bに着いた霜を融かす除霜モードを実施する本第5実施形態について図13を参照して説明する。 In addition to this, the fifth embodiment for carrying out the defrosting mode in which the cooling water melts the frost that has reached the air / cooling water heat exchanger 16B will be described with reference to FIG.
 本実施形態の車載用熱管理装置1は、上記第1実施形態の車載用熱管理装置1と同様の構成を備える。本実施形態の車載用熱管理装置1と、上記第1実施形態の車載用熱管理装置1とは、除霜モードの作動が相違するだけで、その他の作動は互いに同一である。そこで、本実施形態の車載用熱管理装置1における除霜モードについて説明する。 The vehicle-mounted heat management device 1 of the present embodiment has the same configuration as the vehicle-mounted heat management device 1 of the first embodiment. The vehicle-mounted heat management device 1 of the present embodiment and the vehicle-mounted heat management device 1 of the first embodiment differ only in the operation of the defrost mode, and the other operations are the same as each other. Therefore, the defrosting mode in the vehicle-mounted heat management device 1 of the present embodiment will be described.
 まず、電子制御装置32は、開閉弁38a、38cをそれぞれ閉弁し、かつ開閉弁38b、38dをそれぞれ開弁する。これに加えて、電子制御装置32は、膨張弁20aによってバイパス冷媒通路18とエバポレータ20の冷媒入口の間の冷媒通路を閉じる。
電子制御装置32は、膨張弁20bを制御して、バイパス冷媒通路18とチラー24との間の冷媒通路の流路断面積を調整する。すなわち、電子制御装置32は、膨張弁20aを閉弁して膨張弁20bを開弁する。
First, the electronic control device 32 closes the on-off valves 38a and 38c, respectively, and opens the on-off valves 38b and 38d, respectively. In addition to this, the electronic control device 32 closes the refrigerant passage between the bypass refrigerant passage 18 and the refrigerant inlet of the evaporator 20 by the expansion valve 20a.
The electronic control device 32 controls the expansion valve 20b to adjust the flow path cross-sectional area of the refrigerant passage between the bypass refrigerant passage 18 and the chiller 24. That is, the electronic control device 32 closes the expansion valve 20a and opens the expansion valve 20b.
 電子制御装置32は、三方弁14を制御して、空気/冷媒熱交換器16Aの冷媒入口と室内コンデンサ12の冷媒出口とを閉じて、バイパス冷媒通路18を開ける。電子制御装置32は、送風機16Cを停止する。電子制御装置32は、ポンプ36a、36bを作動させる。 The electronic control device 32 controls the three-way valve 14 to close the refrigerant inlet of the air / refrigerant heat exchanger 16A and the refrigerant outlet of the indoor condenser 12 to open the bypass refrigerant passage 18. The electronic control device 32 stops the blower 16C. The electronic control device 32 operates the pumps 36a and 36b.
 電子制御装置32は、三方弁40を制御して、ポンプ36bの冷却水出口と空気/冷却水熱交換器16Bの冷却水出入口160との間を開けて、ポンプ36bの冷却水出口とバッテリユニット44の熱交換器44bの冷却水出入口70との間を閉じる。 The electronic control device 32 controls the three-way valve 40 to open a space between the cooling water outlet of the pump 36b and the cooling water inlet / outlet 160 of the air / cooling water heat exchanger 16B, and opens the cooling water outlet of the pump 36b and the battery unit. Close the space between the heat exchanger 44b 44 and the cooling water inlet / outlet 70.
 さらに、電子制御装置32は、コンプレッサ10を制御してコンプレッサ10による冷媒の圧縮を開始する。 Further, the electronic control device 32 controls the compressor 10 to start compression of the refrigerant by the compressor 10.
 これに伴い、コンプレッサ10から吐出される高圧冷媒が、室内コンデンサ12→三方弁14→バイパス冷媒通路18→膨張弁20b→チラー24→アキュムレータ26→コンプレッサ10の順に流れる。 Along with this, the high-pressure refrigerant discharged from the compressor 10 flows in the order of the indoor condenser 12 → the three-way valve 14 → the bypass refrigerant passage 18 → the expansion valve 20b → the chiller 24 → the accumulator 26 → the compressor 10.
 この際、ポンプ36aから流れ出る冷却水が、冷却水回路50において、チラー24→開閉弁38b→冷却器42a→開閉弁38d→ポンプ36aの順に流れる。このため、電気ヒータ42から発生される熱は、チラー24から冷媒に放熱される。この冷媒に放熱された熱は、室内コンデンサ12から室内空調ケーシング2内の空気流に与えられることになる。 At this time, the cooling water flowing out from the pump 36a flows in the cooling water circuit 50 in the order of the chiller 24 → on-off valve 38b → cooler 42a → on-off valve 38d → pump 36a. Therefore, the heat generated from the electric heater 42 is dissipated from the chiller 24 to the refrigerant. The heat radiated to this refrigerant is given to the air flow in the indoor air conditioning casing 2 from the indoor condenser 12.
 これに加えて、ポンプ36bから流れ出る冷却水は、冷却水回路52において、三方弁40→空気/冷却水熱交換器16B→冷却器48a→冷却器46a→ポンプ36bの順に流れる。 In addition to this, the cooling water flowing out from the pump 36b flows in the cooling water circuit 52 in the order of the three-way valve 40 → air / cooling water heat exchanger 16B → cooler 48a → cooler 46a → pump 36b.
 ここで、冷却器48aでは、冷却水が複数の半導体素子から吸熱する。冷却器46aでは、冷却水が走行用電動機から吸熱する。このため、インバータ48やモータジェネレータ46から発生した熱が、冷却水によって空気/冷却水熱交換器16Bに移動されることになる。 Here, in the cooler 48a, the cooling water absorbs heat from a plurality of semiconductor elements. In the cooler 46a, the cooling water absorbs heat from the traveling electric motor. Therefore, the heat generated from the inverter 48 and the motor generator 46 is transferred to the air / cooling water heat exchanger 16B by the cooling water.
 以上により、インバータ48やモータジェネレータ46から発生される熱が冷却水を介して空気/冷却水熱交換器16Bに与えられる。このため、冷却水からの熱によって、空気/冷却水熱交換器16Bに付着した霜を融かすことができる。 From the above, the heat generated from the inverter 48 and the motor generator 46 is given to the air / cooling water heat exchanger 16B via the cooling water. Therefore, the heat from the cooling water can melt the frost adhering to the air / cooling water heat exchanger 16B.
 以上説明した本実施形態によれば、冷房モードにおいて、空気/冷媒熱交換器16Aは、冷媒から空気/冷却水熱交換器16Bを通して放熱する。暖房モードにおいて、空気/冷却水熱交換器16B内の冷却水が空気/冷媒熱交換器16Aを介して吸熱する。 According to the present embodiment described above, in the cooling mode, the air / refrigerant heat exchanger 16A dissipates heat from the refrigerant through the air / cooling water heat exchanger 16B. In the heating mode, the cooling water in the air / cooling water heat exchanger 16B absorbs heat via the air / refrigerant heat exchanger 16A.
 本実施形態では、除霜モードにおいて、インバータ48やモータジェネレータ46から発生される熱が冷却水を介して空気/冷却水熱交換器16Bに与えられる。このため、本実施形態では、空気/冷媒熱交換器16Aの熱交換コア120cに付着した霜が良好に融かすことができる。 In the present embodiment, in the defrosting mode, the heat generated from the inverter 48 and the motor generator 46 is given to the air / cooling water heat exchanger 16B via the cooling water. Therefore, in the present embodiment, the frost adhering to the heat exchange core 120c of the air / refrigerant heat exchanger 16A can be satisfactorily melted.
 (他の実施形態)
 (1)上記第1~第5実施形態では、本開示に係る熱管理装置を自動車に適用した車載用熱管理装置1について説明したが、これに代えて、本開示に係る熱管理装置を自動車以外の列車、飛行機等の移動体に適用してもよい。或いは、住宅やビル等の設置型の空調装置に本開示に係る熱管理装置を適用してもよい。
(Other embodiments)
(1) In the first to fifth embodiments described above, the vehicle-mounted heat management device 1 in which the heat management device according to the present disclosure is applied to an automobile has been described, but instead, the heat management device according to the present disclosure is used as an automobile. It may be applied to moving objects such as trains and airplanes other than the above. Alternatively, the heat management device according to the present disclosure may be applied to an installation type air conditioner such as a house or a building.
 (2)上記第1実施形態では、除霜モードとして、空気/冷媒熱交換器16Aに流れる冷媒の熱によって除霜する例について説明した。上記第5実施形態では、除霜モードとして、冷却水の熱によって除霜する例について説明した。 (2) In the first embodiment described above, an example of defrosting by the heat of the refrigerant flowing through the air / refrigerant heat exchanger 16A has been described as the defrosting mode. In the fifth embodiment, an example of defrosting by the heat of the cooling water as the defrosting mode has been described.
 これに加えて、上記第1実施形態の除霜モードと上記第5実施形態の除霜モードと組み合わせた除霜モードを実施してもよい。すなわち、冷媒の熱によって除霜を実施し、かつ冷却水の熱によって除霜を実施する除霜モードを実施してもよい。 In addition to this, the defrosting mode in combination with the defrosting mode of the first embodiment and the defrosting mode of the fifth embodiment may be carried out. That is, a defrosting mode may be performed in which defrosting is performed by the heat of the refrigerant and defrosting is performed by the heat of the cooling water.
 (3)上記第1~第5実施形態では、熱媒体としての冷却水を用いた例について説明したが、これに代えて、冷却水以外のものを熱媒体として用いてもよい。 (3) In the first to fifth embodiments described above, an example in which cooling water is used as a heat medium has been described, but instead, something other than cooling water may be used as a heat medium.
 (4)上記第3実施形態では、空気/冷却水熱交換器16Bに対して空気流れ上流側に空気/冷媒熱交換器16Aを配置して、かつ空気/冷媒熱交換器16Aに流れる冷媒の熱によって空気/冷却水熱交換器16Bの除霜を実施する例について説明した。 (4) In the third embodiment, the air / refrigerant heat exchanger 16A is arranged on the upstream side of the air flow with respect to the air / cooling water heat exchanger 16B, and the refrigerant flowing through the air / refrigerant heat exchanger 16A is arranged. An example of defrosting the air / cooling water heat exchanger 16B by heat has been described.
 しかし、これに代えて、空気/冷却水熱交換器16Bに対して空気流れ上流側に空気/冷媒熱交換器16Aを配置して、上記第5実施形態と同様に、除霜モードとして、冷却水の熱によって除霜してもよい。 However, instead of this, an air / refrigerant heat exchanger 16A is arranged on the upstream side of the air flow with respect to the air / cooling water heat exchanger 16B, and cooling is performed as a defrosting mode as in the fifth embodiment. It may be defrosted by the heat of water.
 或いは、空気/冷却水熱交換器16Bに対して空気流れ上流側に空気/冷媒熱交換器16Aを配置した状態で、上記(2)と同様に、冷媒の熱と冷却水の熱とによって除霜を実施する除霜モードを実施してもよい。 Alternatively, in a state where the air / refrigerant heat exchanger 16A is arranged on the upstream side of the air flow with respect to the air / cooling water heat exchanger 16B, it is removed by the heat of the refrigerant and the heat of the cooling water in the same manner as in (2) above. A defrosting mode in which frost is carried out may be carried out.
 (5)上記第1~第5実施形態では、冷房モードにおいて、コンプレッサ10から吐出される高圧冷媒を室内コンデンサ12に流した例について説明した。しかし、これに代えて、コンプレッサ10から吐出される高圧冷媒を室内コンデンサ12を迂回して空気/冷媒熱交換器16Aに流してもよい。 (5) In the first to fifth embodiments described above, an example in which the high-pressure refrigerant discharged from the compressor 10 is passed through the indoor condenser 12 in the cooling mode has been described. However, instead of this, the high-pressure refrigerant discharged from the compressor 10 may bypass the indoor condenser 12 and flow to the air / refrigerant heat exchanger 16A.
 (6)上記第1~第5実施形態では、暖房モードにおいて、エバポレータ20に冷媒を流した例について説明したが、これに代えて、暖房モードにおいて、エバポレータ20に冷媒を流すことを止めてもよい。 (6) In the first to fifth embodiments described above, an example in which the refrigerant is passed through the evaporator 20 in the heating mode has been described, but instead, in the heating mode, the flow of the refrigerant through the evaporator 20 may be stopped. Good.
 (7)上記第1~第5実施形態では、モータジェネレータ46やインバータ48で発生した熱を空気/冷却水熱交換器16Bから空気流に放熱させるための冷却水回路52を用いた例について説明した。しかし、これに代えて、冷却水回路52を削除してもよい。 (7) In the first to fifth embodiments, an example using a cooling water circuit 52 for dissipating heat generated by the motor generator 46 and the inverter 48 from the air / cooling water heat exchanger 16B to the air flow will be described. did. However, instead of this, the cooling water circuit 52 may be deleted.
 (8)なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 (8) The present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when they are clearly considered to be essential in principle. No. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done. In addition, in each of the above embodiments, when referring to the shape, positional relationship, etc. of a component or the like, the shape, unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. It is not limited to the positional relationship.
 上記第1~第5実施形態、および他の実施形態において、熱管理装置は、ラジエータおよび第2放熱器を通過する空気流を発生させる送風機を備える。第1モードでは、送風機が空気流を発生させている状態で、第2放熱器が、冷媒からラジエータを介して空気流に放熱する。 In the first to fifth embodiments and other embodiments, the heat management device includes a blower that generates an air flow that passes through the radiator and the second radiator. In the first mode, the second radiator dissipates heat from the refrigerant to the air flow via the radiator while the blower is generating the air flow.
 第2モードでは、送風機が空気流を発生させている状態で、ラジエータが、熱媒体が第2放熱器を介して空気流から吸熱する。第3モードでは、送風機が空気流の発生を停止した状態で、第2放熱器が、冷媒からラジエータに放熱する。 In the second mode, the radiator absorbs heat from the air flow through the second radiator while the blower is generating the air flow. In the third mode, the second radiator dissipates heat from the refrigerant to the radiator with the blower stopping the generation of airflow.
 さらに、熱管理装置は、第1熱媒体回路のうちチラーおよびラジエータの間を開閉する開閉弁を備える。 Further, the heat management device includes an on-off valve that opens and closes between the chiller and the radiator in the first heat medium circuit.
 第1モードでは、開閉弁がチラーおよびラジエータの間を閉じた状態で、第2放熱器は、冷媒からラジエータを介して空気流に放熱する。第3モードでは、開閉弁がチラーおよびラジエータの間を開けた状態で、第2放熱器は、冷媒からラジエータに放熱する。 In the first mode, the second radiator dissipates heat from the refrigerant to the air flow via the radiator with the on-off valve closed between the chiller and the radiator. In the third mode, the second radiator dissipates heat from the refrigerant to the radiator with the on-off valve open between the chiller and the radiator.
 (まとめ)
 上記第1~5実施形態、および他の実施形態の一部または全部に記載された第1の観点によれば、熱管理装置は、冷媒を吸入して圧縮して吐出するコンプレッサと、コンプレッサから吐出される冷媒から放熱させる第1放熱器と、を備える。
(Summary)
According to the first aspect described in the first to fifth embodiments and a part or all of the other embodiments, the heat management device is a compressor that sucks in and compresses and discharges the refrigerant, and the compressor. It includes a first radiator that dissipates heat from the discharged refrigerant.
 熱管理装置は、第1放熱器を通過した冷媒から空気流に放熱させる第2放熱器と、第1放熱器を通過した冷媒を減圧する第1減圧弁および第2減圧弁と、第1減圧弁を通過した冷媒を蒸発させる蒸発器とを備える。 The heat management device includes a second radiator that dissipates heat from the refrigerant that has passed through the first radiator to the air flow, a first pressure reducing valve and a second pressure reducing valve that reduce the pressure of the refrigerant that has passed through the first radiator, and a first pressure reducing device. It is provided with an evaporator that evaporates the refrigerant that has passed through the valve.
 熱管理装置は、第2減圧弁を通過した冷媒を熱媒体から吸熱させることにより蒸発させるチラーと、第1放熱器を通過した冷媒を第2放熱器を迂回して第1減圧弁および第2減圧弁に流すバイパス冷媒通路とを備える。 The heat management device includes a chiller that evaporates the refrigerant that has passed through the second pressure reducing valve by absorbing heat from the heat medium, and the first pressure reducing valve and the second pressure reducing valve that bypasses the second radiator for the refrigerant that has passed through the first radiator. It is provided with a bypass refrigerant passage that flows through the pressure reducing valve.
 熱管理装置は、第1状態と第2状態とのうちいずれか一方の状態に設定する切換弁を備える。第1状態は、第1放熱器の冷媒出口および第2放熱器の冷媒入口の間を開けて、かつバイパス冷媒通路を閉じた様態である。第2状態は、第1放熱器の冷媒出口および第2放熱器の冷媒入口の間を閉じて、かつバイパス冷媒通路を開けた状態である。 The heat management device includes a switching valve that sets one of the first state and the second state. The first state is a state in which the refrigerant outlet of the first radiator and the refrigerant inlet of the second radiator are opened and the bypass refrigerant passage is closed. The second state is a state in which the space between the refrigerant outlet of the first radiator and the refrigerant inlet of the second radiator is closed and the bypass refrigerant passage is opened.
 熱管理装置は、熱媒体と空気流との間で熱交換させるラジエータと、チラーおよびラジエータの間で熱媒体を循環させるための熱媒体回路とを備える。 The heat management device includes a radiator for exchanging heat between the heat medium and the air flow, and a heat medium circuit for circulating the heat medium between the chiller and the radiator.
 切換弁が第1状態に設定した第1モードでは、第2放熱器内の冷媒がラジエータを介して空気流に放熱する。切換弁が第2状態に設定した状態で熱媒体回路内の熱媒体が循環している第2モードでは、ラジエータ内の熱媒体が第2放熱器を介して空気流から吸熱する。 In the first mode in which the switching valve is set to the first state, the refrigerant in the second radiator dissipates heat to the air flow via the radiator. In the second mode in which the heat medium in the heat medium circuit circulates with the switching valve set to the second state, the heat medium in the radiator absorbs heat from the air flow via the second radiator.
 第2の観点によれば、熱管理装置は、第2放熱器およびラジエータを接続するための接続部を備える。 According to the second viewpoint, the heat management device includes a connection portion for connecting the second radiator and the radiator.
 切換弁が第1状態に設定した第1モードでは、第2放熱器内の冷媒が接続部およびラジエータを介して空気流に放熱する。 In the first mode in which the switching valve is set to the first state, the refrigerant in the second radiator dissipates heat to the air flow via the connection portion and the radiator.
 切換弁が第2状態に設定した状態で熱媒体回路内の熱媒体が循環している第2モードでは、ラジエータ内の熱媒体が接続部および第2放熱器を介して空気流から吸熱する。 In the second mode in which the heat medium in the heat medium circuit circulates with the switching valve set to the second state, the heat medium in the radiator absorbs heat from the air flow via the connection portion and the second radiator.
 第3の観点によれば、熱管理装置は、熱媒体に放熱する発熱体と、熱媒体回路を第1熱媒体回路としたとき、発熱体およびラジエータの間で熱媒体を循環させるための第2熱媒体回路とを備える。 According to the third aspect, the heat management device is a first for circulating the heat medium between the heating element and the radiator when the heating element that dissipates heat to the heat medium and the heat medium circuit are the first heat medium circuit. It is provided with a two heat medium circuit.
 第1モードでは、第2熱媒体回路で熱媒体が循環している状態で、ラジエータが空気流に放熱する。 In the first mode, the radiator dissipates heat to the air flow while the heat medium is circulating in the second heat medium circuit.
 第4の観点によれば、熱管理装置は、発熱体を第1発熱体としたとき、熱媒体に放熱する第2発熱体と、第2発熱体およびチラーの間で熱媒体を循環させるための第3熱媒体回路とを備える。 According to the fourth aspect, when the heating element is the first heating element, the heat management device circulates the heat medium between the second heating element that dissipates heat to the heating medium, the second heating element, and the chiller. The third heat medium circuit of the above is provided.
 これにより、第2発熱体で発生した熱をチラーを介して冷媒を移動させることができる。 As a result, the heat generated by the second heating element can be transferred to the refrigerant via the chiller.
 第5の観点によれば、熱管理装置は、ラジエータは、室外に配置されている。 According to the fifth viewpoint, the heat management device and the radiator are arranged outdoors.
 切換弁が第1状態に設定して第2発熱体が熱媒体に放熱する状態で第3熱媒体回路内で熱媒体が循環している第3モードでは、第2発熱体から熱媒体に与えられた熱がチラーを介して冷媒に移動される。第2放熱器内の冷媒が接続部を通してラジエータに放熱してラジエータに付着した霜を融かす。 In the third mode in which the heat medium circulates in the third heat medium circuit with the switching valve set to the first state and the second heating element dissipates heat to the heat medium, the heat medium is supplied from the second heating element to the heat medium. The heat generated is transferred to the refrigerant through the chiller. The refrigerant in the second radiator dissipates heat to the radiator through the connection and melts the frost adhering to the radiator.
 これにより、第2発熱体で発生した熱をラジエータの除霜に用いることができる。 As a result, the heat generated by the second heating element can be used for defrosting the radiator.
 第6の観点によれば、第2放熱器は、ラジエータに対して空気流の上流側に配置されている。 According to the sixth viewpoint, the second radiator is arranged on the upstream side of the air flow with respect to the radiator.
 第7の観点によれば、第2放熱器は、冷媒から熱媒体に放熱させて冷媒を凝縮させる凝縮部と、凝縮部を通過した冷媒を液相冷媒と気相冷媒とに分離して液相冷媒を排出する気液分離部と、気液分離部から排出される液相冷媒を過冷却する過冷却部とを備える。 According to the seventh viewpoint, the second radiator separates the condensing part that dissipates heat from the refrigerant to the heat medium to condense the refrigerant and the refrigerant that has passed through the condensing part into the liquid phase refrigerant and the gas phase refrigerant and liquid. It includes a gas-liquid separation unit that discharges the phase refrigerant and a supercooling unit that supercools the liquid-phase refrigerant discharged from the gas-liquid separation unit.
 第8の観点によれば、第2モードでは、第1放熱器が冷媒から放熱させ、第1モードでは、第2放熱器が冷媒から空気流に放熱させる。 According to the eighth viewpoint, in the second mode, the first radiator dissipates heat from the refrigerant, and in the first mode, the second radiator dissipates heat from the refrigerant to the air flow.

Claims (8)

  1.  熱管理装置であって、
     冷媒を吸入して圧縮して吐出するコンプレッサ(10)と、
     前記コンプレッサから吐出される前記冷媒から放熱させる第1放熱器(12)と、
     前記第1放熱器を通過した前記冷媒から空気流に放熱させる第2放熱器(16A)と、 前記第1放熱器を通過した前記冷媒を減圧する第1減圧弁(20a)および第2減圧弁(20b)と、
     前記第1減圧弁を通過した前記冷媒を蒸発させる蒸発器(20)と、
     前記第2減圧弁を通過した前記冷媒を熱媒体から吸熱させることにより蒸発させるチラー(24)と、
     前記第1放熱器を通過した前記冷媒を前記第2放熱器を迂回して前記第1減圧弁および前記第2減圧弁に流すバイパス冷媒通路(18)と、
     前記第1放熱器の冷媒出口および前記第2放熱器の冷媒入口の間を開けて、かつ前記バイパス冷媒通路を閉じた第1状態と、前記第1放熱器の前記冷媒出口および前記第2放熱器の前記冷媒入口の間を閉じて、かつ前記バイパス冷媒通路を開けた第2状態とのうちいずれか一方の状態に設定する切換弁(14)と、
     前記熱媒体と前記空気流との間で熱交換させるラジエータ(16B)と、
     前記チラーおよび前記ラジエータの間で前記熱媒体を循環させるための熱媒体回路(53)と、を備え、
     前記切換弁が前記第1状態に設定した第1モードでは、前記第2放熱器内の前記冷媒が前記ラジエータを介して前記空気流に放熱し、
     前記切換弁が前記第2状態に設定した状態で前記熱媒体回路内の前記熱媒体が循環している第2モードでは、前記ラジエータ内の前記熱媒体が前記第2放熱器を介して前記空気流から吸熱する熱管理装置。
    It is a heat management device
    A compressor (10) that sucks in refrigerant, compresses it, and discharges it.
    A first radiator (12) that dissipates heat from the refrigerant discharged from the compressor, and
    A second radiator (16A) that dissipates heat from the refrigerant that has passed through the first radiator to an air flow, and a first pressure reducing valve (20a) and a second pressure reducing valve that reduce the pressure of the refrigerant that has passed through the first radiator. (20b) and
    An evaporator (20) that evaporates the refrigerant that has passed through the first pressure reducing valve, and
    A chiller (24) that evaporates the refrigerant that has passed through the second pressure reducing valve by absorbing heat from the heat medium.
    A bypass refrigerant passage (18) that allows the refrigerant that has passed through the first radiator to bypass the second radiator and flow through the first pressure reducing valve and the second pressure reducing valve.
    The first state in which the refrigerant outlet of the first radiator and the refrigerant inlet of the second radiator are opened and the bypass refrigerant passage is closed, and the refrigerant outlet of the first radiator and the second heat dissipation. A switching valve (14) that closes between the refrigerant inlets of the vessel and sets the bypass refrigerant passage to either one of the second states.
    A radiator (16B) that exchanges heat between the heat medium and the air flow,
    A heat medium circuit (53) for circulating the heat medium between the chiller and the radiator is provided.
    In the first mode in which the switching valve is set to the first state, the refrigerant in the second radiator dissipates heat to the air flow via the radiator.
    In the second mode in which the heat medium in the heat medium circuit circulates with the switching valve set to the second state, the heat medium in the radiator passes through the air through the second radiator. A heat management device that absorbs heat from the flow.
  2.  前記第2放熱器および前記ラジエータを接続するための接続部(135c)を備え、
     前記切換弁が前記第1状態に設定した第1モードでは、前記第2放熱器内の前記冷媒が前記接続部および前記ラジエータを介して前記空気流に放熱し、
     前記切換弁が前記第2状態に設定した状態で前記熱媒体回路内の前記熱媒体が循環している第2モードでは、前記ラジエータ内の前記熱媒体が前記接続部および前記第2放熱器を介して前記空気流から吸熱する請求項1に記載の熱管理装置。
    A connection portion (135c) for connecting the second radiator and the radiator is provided.
    In the first mode in which the switching valve is set to the first state, the refrigerant in the second radiator dissipates heat to the air flow via the connection portion and the radiator.
    In the second mode in which the heat medium in the heat medium circuit circulates with the switching valve set to the second state, the heat medium in the radiator connects the connection portion and the second radiator. The heat management device according to claim 1, wherein heat is absorbed from the air flow through the air stream.
  3.  前記熱媒体に放熱する発熱体(48、46)と、
     前記熱媒体回路を第1熱媒体回路としたとき、前記発熱体および前記ラジエータの間で前記熱媒体を循環させるための第2熱媒体回路(52)と、を備え、
     前記第1モードでは、前記第2熱媒体回路で前記熱媒体が循環している状態で、前記ラジエータが前記空気流に放熱する請求項1または2に記載の熱管理装置。
    Heating elements (48, 46) that dissipate heat to the heat medium,
    When the heat medium circuit is a first heat medium circuit, a second heat medium circuit (52) for circulating the heat medium between the heating element and the radiator is provided.
    The heat management device according to claim 1 or 2, wherein in the first mode, the radiator dissipates heat to the air flow in a state where the heat medium is circulated in the second heat medium circuit.
  4.  前記発熱体を第1発熱体としたとき、前記熱媒体に放熱する第2発熱体(42)と、
     前記第2発熱体および前記チラーの間で前記熱媒体を循環させるための第3熱媒体回路(50)と、を備える請求項3に記載の熱管理装置。
    When the heating element is a first heating element, a second heating element (42) that dissipates heat to the heating medium and
    The heat management device according to claim 3, further comprising a third heat medium circuit (50) for circulating the heat medium between the second heating element and the chiller.
  5.  前記ラジエータは、室外に配置されており、
     前記切換弁が前記第1状態に設定して前記第2発熱体が前記熱媒体に放熱する状態で前記第3熱媒体回路内で前記熱媒体が循環している第3モードでは、前記第2発熱体から前記熱媒体に与えられた前記熱が前記チラーを介して前記冷媒に移動され、
     前記第2放熱器内の前記冷媒が前記ラジエータに放熱して前記ラジエータに付着した霜を融かす請求項4に記載の熱管理装置。
    The radiator is arranged outdoors and
    In the third mode in which the switching valve is set to the first state and the heat medium circulates in the third heat medium circuit in a state where the second heating element dissipates heat to the heat medium, the second mode. The heat applied to the heat medium from the heating element is transferred to the refrigerant via the chiller.
    The heat management device according to claim 4, wherein the refrigerant in the second radiator dissipates heat to the radiator to melt the frost adhering to the radiator.
  6.  前記第2放熱器は、前記ラジエータに対して前記空気流の上流側に配置されている請求項4に記載の熱管理装置。 The heat management device according to claim 4, wherein the second radiator is arranged on the upstream side of the air flow with respect to the radiator.
  7.  前記第2放熱器は、
     前記冷媒から前記熱媒体に放熱させて前記冷媒を凝縮させる凝縮部(100)と、
     前記凝縮部を通過した前記冷媒を液相冷媒と気相冷媒とに分離して前記液相冷媒を排出する気液分離部(120)と、
     前記気液分離部から排出される前記液相冷媒を過冷却する過冷却部(110)と、
     を備える請求項1ないし5のいずれかに記載の熱管理装置。
    The second radiator
    A condensing unit (100) that dissipates heat from the refrigerant to the heat medium and condenses the refrigerant.
    A gas-liquid separation unit (120) that separates the refrigerant that has passed through the condensing unit into a liquid-phase refrigerant and a gas-phase refrigerant and discharges the liquid-phase refrigerant.
    A supercooling unit (110) that supercools the liquid phase refrigerant discharged from the gas-liquid separation unit, and
    The heat management device according to any one of claims 1 to 5.
  8.  前記第2モードでは、前記第1放熱器が前記冷媒から放熱させ、
     前記第1モードでは、前記第2放熱器が前記冷媒から前記空気流に放熱させる請求項1ないし7のいずれかに記載の熱管理装置。
    In the second mode, the first radiator dissipates heat from the refrigerant.
    The heat management device according to any one of claims 1 to 7, wherein in the first mode, the second radiator dissipates heat from the refrigerant to the air flow.
PCT/JP2020/028550 2019-07-24 2020-07-22 Heat management apparatus WO2021015270A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080052658.0A CN114174736B (en) 2019-07-24 2020-07-22 Thermal management device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019136355A JP7434744B2 (en) 2019-07-24 2019-07-24 thermal management device
JP2019-136355 2019-07-24

Publications (1)

Publication Number Publication Date
WO2021015270A1 true WO2021015270A1 (en) 2021-01-28

Family

ID=74194268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028550 WO2021015270A1 (en) 2019-07-24 2020-07-22 Heat management apparatus

Country Status (3)

Country Link
JP (1) JP7434744B2 (en)
CN (1) CN114174736B (en)
WO (1) WO2021015270A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7053906B1 (en) 2021-01-29 2022-04-12 マレリ株式会社 Temperature control system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022147311A (en) * 2021-03-23 2022-10-06 サンデン・アドバンストテクノロジー株式会社 Refrigerant circuit and vehicular heat pump device
JP2022180136A (en) * 2021-05-24 2022-12-06 サンデン株式会社 Vehicle heat management system
DE102021123257A1 (en) * 2021-09-08 2023-03-09 Denso Automotive Deutschland Gmbh Vehicle heating, ventilation and air conditioning system and method for dehumidifying and reheating cabin air using said system
JP2024001657A (en) * 2022-06-22 2024-01-10 サンデン株式会社 Vehicular air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544702A (en) * 2010-10-29 2013-12-19 ヴァレオ システム テルミク Thermal adjustment device for drivetrain and vehicle passenger compartment
JP2018043741A (en) * 2016-09-13 2018-03-22 現代自動車株式会社Hyundai Motor Company Vehicular heat pump system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729985A (en) * 1994-12-28 1998-03-24 Yamaha Hatsudoki Kabushiki Kaisha Air conditioning apparatus and method for air conditioning
JP5533207B2 (en) * 2010-05-06 2014-06-25 株式会社日本自動車部品総合研究所 Heat pump cycle
KR101758179B1 (en) * 2010-07-23 2017-07-14 엘지전자 주식회사 Heat pump type speed heating apparatus
JP5817660B2 (en) * 2012-07-03 2015-11-18 株式会社デンソー Refrigeration cycle equipment
US9316421B2 (en) * 2012-08-02 2016-04-19 Mitsubishi Electric Corporation Air-conditioning apparatus including unit for increasing heating capacity
JP5967022B2 (en) * 2012-11-16 2016-08-10 株式会社デンソー Refrigeration cycle equipment
JP6011375B2 (en) * 2013-02-01 2016-10-19 株式会社デンソー Refrigeration cycle equipment
JP6398764B2 (en) * 2015-02-06 2018-10-03 株式会社デンソー Thermal management system for vehicles
WO2017098795A1 (en) * 2015-12-10 2017-06-15 株式会社デンソー Refrigeration cycle device
CN107782020B (en) * 2016-08-30 2021-03-30 浙江盾安人工环境股份有限公司 Air conditioning system of pure electric vehicle
WO2018078810A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Air conditioner
JP6838518B2 (en) * 2017-07-31 2021-03-03 株式会社デンソー Refrigeration cycle equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544702A (en) * 2010-10-29 2013-12-19 ヴァレオ システム テルミク Thermal adjustment device for drivetrain and vehicle passenger compartment
JP2018043741A (en) * 2016-09-13 2018-03-22 現代自動車株式会社Hyundai Motor Company Vehicular heat pump system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7053906B1 (en) 2021-01-29 2022-04-12 マレリ株式会社 Temperature control system
WO2022163712A1 (en) * 2021-01-29 2022-08-04 マレリ株式会社 Temperature control system
JP2022117351A (en) * 2021-01-29 2022-08-10 マレリ株式会社 temperature control system

Also Published As

Publication number Publication date
JP2021020486A (en) 2021-02-18
CN114174736B (en) 2023-06-20
JP7434744B2 (en) 2024-02-21
CN114174736A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
US10744850B2 (en) Heat pump system for vehicle
WO2021015270A1 (en) Heat management apparatus
CN109501552B (en) Heat pump system for vehicle
JP6838535B2 (en) Refrigeration cycle equipment
JP5391379B2 (en) Refrigerant cycle of automobile air conditioner
US20220032732A1 (en) Battery heating device for vehicle
WO2013136693A1 (en) Refrigeration cycle device
CN111936329B (en) Thermal management system for vehicle
WO2015075872A1 (en) Heat pump system
WO2011155204A1 (en) Heat pump cycle
WO2020059417A1 (en) Vehicular air conditioning system
WO2019044353A1 (en) Refrigeration cycle
CN111278670B (en) Thermal management system for vehicle
US7155927B2 (en) Exhaust heat utilizing refrigeration system
JP7176405B2 (en) temperature controller
JP7215162B2 (en) vehicle air conditioner
JP2007192465A (en) Evaporator unit and ejector type refrigerating cycle
US10611212B2 (en) Air conditioner for vehicle
JP2020147153A (en) On-vehicle temperature control device
KR101903108B1 (en) Heat Pump For a Vehicle
JP2014126209A (en) Refrigeration cycle device
JP2021014201A (en) On-vehicle temperature control device
WO2019026481A1 (en) Combined heat exchanger
US11634004B2 (en) Integrated thermal management system for vehicles
WO2020246337A1 (en) Heat exchanger, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843557

Country of ref document: EP

Kind code of ref document: A1