WO2017098795A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2017098795A1
WO2017098795A1 PCT/JP2016/079722 JP2016079722W WO2017098795A1 WO 2017098795 A1 WO2017098795 A1 WO 2017098795A1 JP 2016079722 W JP2016079722 W JP 2016079722W WO 2017098795 A1 WO2017098795 A1 WO 2017098795A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat
pressure side
low
Prior art date
Application number
PCT/JP2016/079722
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 吉毅
橋村 信幸
功嗣 三浦
憲彦 榎本
賢吾 杉村
慧伍 佐藤
竹内 雅之
アリエル マラシガン
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016157692A external-priority patent/JP6481668B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680071762.8A priority Critical patent/CN108369042B/en
Priority to US16/060,036 priority patent/US10723203B2/en
Priority to DE112016005644.3T priority patent/DE112016005644B4/en
Publication of WO2017098795A1 publication Critical patent/WO2017098795A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Definitions

  • This disclosure relates to a refrigeration cycle apparatus including a heat exchanger that exchanges heat between refrigerant and outside air.
  • Patent Document 1 describes a vehicular refrigeration cycle apparatus including a compressor, an indoor condenser, a first expansion valve, a second expansion valve, an outdoor heat exchanger, an indoor evaporator, and an accumulator.
  • Compressor sucks in refrigerant, compresses it, and discharges it.
  • Refrigerating machine oil for lubricating the compressor is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the indoor condenser is a radiator that dissipates the high-pressure refrigerant discharged from the compressor and heats the air blown into the vehicle interior that has passed through the indoor evaporator.
  • the first expansion valve exerts a decompression action of the refrigerant in the heating mode and the dehumidifying heating mode.
  • the second expansion valve exerts a refrigerant decompression action in the cooling mode and the dehumidifying heating mode.
  • the outdoor heat exchanger exchanges heat between the refrigerant and the outside air.
  • the outdoor heat exchanger functions as an evaporator that evaporates the refrigerant and exerts an endothermic effect in the heating mode and the like, and functions as a radiator that radiates the refrigerant in the cooling mode and the like.
  • the indoor evaporator in the cooling mode and the dehumidifying and heating mode, evaporates the refrigerant flowing through the interior by exchanging heat with the air blown into the vehicle compartment before passing through the indoor condenser, thereby exhibiting an endothermic effect.
  • This is an evaporator for cooling the air blown into the vehicle interior.
  • the accumulator is a gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator and stores excess refrigerant in the cycle.
  • the suction port side of the compressor is connected to the gas phase refrigerant outlet of the accumulator. Accordingly, the accumulator functions to prevent liquid phase refrigerant from being sucked into the compressor and prevent liquid compression in the compressor.
  • the accumulator is disposed on the refrigerant outlet side of the indoor evaporator and on the refrigerant suction side of the compressor.
  • Patent Document 2 describes a refrigeration cycle device for a vehicle including a chiller, a cooler core, and a cooling water pump.
  • the chiller is a heat exchanger that cools the cooling water by exchanging heat between the low-pressure refrigerant in the refrigeration cycle and the cooling water.
  • the cooler core is a heat exchanger that heat-exchanges the cooling water cooled by the chiller and the air blown into the vehicle interior to cool and dehumidify the air blown into the vehicle interior.
  • the cooling water pump sucks and discharges the cooling water circulating between the chiller and the cooler core.
  • the vehicle refrigeration cycle apparatus of Patent Literature 2 includes a heater core and a radiator.
  • the heater core is a heat exchanger that heats air that is blown into the vehicle interior that has passed through the cooler core, using the high-pressure side refrigerant of the refrigeration cycle as a heat source.
  • the radiator is a heat exchanger that exchanges heat between the cooling water cooled by the chiller, the cooling water, and the outside air.
  • Cooling water cooled by the low-pressure side refrigerant of the refrigeration cycle absorbs heat from the outside air by the radiator and absorbs heat from the air blown into the passenger compartment by the cooler core, and the air absorbed by the cooler core is used as the high-pressure side refrigerant of the refrigeration cycle.
  • Dehumidification heating can be performed by heating with a heater core as a heat source.
  • JP 2012-225637 A Japanese Patent Laid-Open No. 2015-013639
  • the bypass flow path in which the refrigerant flows in parallel to the indoor evaporator, the state in which the refrigerant flows to the indoor evaporator side, and the state in which the refrigerant flows to the bypass flow path are alternately switched to adjust the evaporation pressure. It is conceivable to suppress the frost by suppressing the decrease in the evaporation pressure by providing a pressure regulating valve.
  • the present disclosure is directed to lowering the pressure of the refrigerant in the heat exchanger that exchanges heat between the refrigerant and the outside air to increase the amount of heat absorbed from the outside air, and the frost in the heat exchanger that cools the air.
  • a first object is to achieve both suppression of generation.
  • the accumulator also has a function of returning the refrigeration oil in the refrigerant to the compressor.
  • the accumulator is provided on the refrigerant outlet side of the indoor evaporator and on the refrigerant suction side of the compressor. Since it is arranged, the refrigerant and the refrigerating machine oil in the accumulator are likely to be low temperature and low pressure.
  • the viscosity of the refrigerant and refrigerating machine oil in the accumulator increases, and it becomes difficult to return the refrigerating machine oil to the compressor. Therefore, it is necessary to increase the amount of refrigerating machine oil in the refrigerant so that a desired amount of refrigerating machine oil can be returned. Therefore, in the refrigerant mode in which the low-pressure refrigerant pressure becomes high, the return amount of the refrigerating machine oil becomes excessive, and the cooling performance is deteriorated.
  • refrigerant pressure loss in the accumulator increases.
  • the refrigerant pressure loss increases during the heating mode in which the low-pressure refrigerant pressure is low. As a result, the heating performance is also reduced.
  • a second object of the present disclosure is to improve the discharge performance of the refrigeration oil in the refrigerant reservoir and to reduce the pressure loss of the refrigerant in the refrigerant reservoir.
  • the temperature of the cooling water is equal to or lower than the outside air temperature
  • the temperature of the cooling water is equal to the inside air temperature or the outside air temperature. That is, there is a temperature difference between the cooling water between the chiller and the cooler core. Therefore, even if the cooling water pump is stopped, the low-temperature cooling water of the chiller gradually moves to the cooler core due to convection, so unnecessary heat exchange may occur if the air blowing to the cooler core is continued. The occurrence of frost in the cooler core cannot be sufficiently prevented.
  • the present disclosure has a third object of suppressing movement of cooling water between the chiller and the cooler core when circulation of the heat medium between the chiller and the cooler core is stopped. To do.
  • the low pressure of the refrigeration cycle is lowered and the temperature of the cooling water cooled by the chiller is lowered, so that the temperature of the refrigerant flowing into the cooler core is also lowered.
  • the surface temperature of the cooler core becomes 0 ° C. or lower, moisture in the air freezes and adheres as ice on the surface of the cooler core, so that air circulation in the cooler core is hindered.
  • a fourth object of the present disclosure is to ensure both the temperature of the air blown into the passenger compartment and the suppression of frost generation in the cooler core.
  • the refrigeration cycle apparatus flows out of the compressor that sucks and discharges the refrigerant, the high-pressure side heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor, and the high-pressure side heat exchanger.
  • a first decompression unit for decompressing the refrigerant for decompressing the refrigerant, a refrigerant outside air heat exchanger for exchanging heat between the refrigerant flowing out from the first decompression unit and the outside air, a second decompression unit for decompressing the refrigerant flowing out from the refrigerant outside air heat exchanger,
  • a low pressure that is arranged in series with the refrigerant outside air heat exchanger in the flow of the refrigerant and cools the heat medium by exchanging heat between the low-pressure refrigerant and the heat medium decompressed at least one of the first decompression unit and the second decompression unit.
  • a side heat exchanger a cooler core that cools air by exchanging heat between the heat medium cooled by the low-pressure side heat exchanger and the air blown into the vehicle interior, and reduced pressure amounts of the first pressure reducing unit and the second pressure reducing unit Adjust the refrigerant outside air heat exchange And a controller that switches between an endothermic mode in which the refrigerant absorbs heat to the refrigerant and a heat radiation mode in which the refrigerant outside air heat exchanger radiates heat from the refrigerant.
  • control unit can switch between the heat absorption mode and the heat dissipation mode by adjusting the amount of pressure reduction of the first pressure reduction unit and the second pressure reduction unit, the heat absorption mode and the heat dissipation mode are switched with a simple configuration. Can do.
  • the temperature of the heat medium flowing into the cooler core is lower than the temperature of the air cooled by the cooler core, and flows into the cooler core.
  • the temperature of the refrigerant flowing into the low-pressure side heat exchanger becomes lower than the temperature of the heat medium that performs.
  • the refrigerant temperature in the low-pressure side heat exchanger can be lowered, and as a result, the refrigerant pressure in the low-pressure side heat exchanger can be lowered as compared with a configuration in which heat is directly exchanged between the refrigerant and air in the indoor evaporator.
  • the refrigerant pressure in the refrigerant outside air heat exchanger can be lowered to increase the amount of heat absorbed from the outside air of the refrigerant in the refrigerant outside air heat exchanger, and the generation of frost in the cooler core can be suppressed.
  • the refrigeration cycle apparatus flows out of the compressor that sucks and discharges the refrigerant, the high-pressure side heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor, and the high-pressure side heat exchanger.
  • the refrigerant outside air A controller that switches between an endothermic mode in which the heat exchanger absorbs heat into the refrigerant and a heat release mode in which the refrigerant outside air heat exchanger dissipates heat from the refrigerant, and in the endothermic mode, the heat exchanged by the high-pressure heat exchanger is stored and dissipated. Mode, refrigerant And a coolant
  • the refrigerant reservoir can be provided on the cycle high pressure side in both the heat absorption mode and the heat release mode.
  • the refrigeration cycle can be converted into a receiver cycle in both the heat absorption mode and the heat dissipation mode.
  • the viscosity of the refrigerant and the refrigeration oil in the refrigerant storage section is smaller than that of the accumulator cycle having the refrigerant storage section on the cycle low pressure side, the pressure loss of the refrigerant can be reduced and the discharge performance of the refrigeration oil can be improved.
  • the refrigeration cycle apparatus flows out of the compressor that sucks and discharges the refrigerant, the high-pressure side heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor, and the high-pressure side heat exchanger.
  • a decompression unit that decompresses the refrigerant, a low-pressure side heat exchanger that cools the heat medium by exchanging heat between the low-pressure refrigerant decompressed by the decompression unit and the heat medium, and a heat medium that is cooled by the low-pressure side heat exchanger
  • a cooler core having a heat exchanging section for exchanging heat with air to cool the air, a heat medium pump for sucking and discharging the heat medium, and circulating the heat medium between the low pressure side heat exchanger and the cooler core, and the cooler core
  • the low pressure side heat exchanger has an inlet and an outlet for the heat medium, and the heat exchanger is disposed at a position higher in the gravitational direction than at least one of the inlet and the outlet. Has been.
  • the low temperature heat medium in the low pressure side heat exchanger and the high temperature heat medium in the cooler core are It is possible to suppress switching by convection due to a temperature difference.
  • the refrigeration cycle apparatus flows out of the compressor that sucks and discharges the refrigerant, the high-pressure side heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor, and the high-pressure side heat exchanger.
  • a decompression unit that decompresses the refrigerant, a low-pressure side heat exchanger that cools the heat medium by exchanging heat between the low-pressure refrigerant decompressed by the decompression unit and the heat medium, and a heat medium that is cooled by the low-pressure side heat exchanger
  • a cooler core having a heat exchanging section for exchanging heat with air to cool the air, a heat medium pump for sucking and discharging the heat medium, and circulating the heat medium between the low pressure side heat exchanger and the cooler core, and the cooler core
  • a heat medium flow path section that forms a flow path of the heat medium between the low pressure side heat exchanger and the cooler core.
  • the low-pressure side heat exchanger has an inlet and an outlet for the heat medium, and at least a part of the heat medium flow path is disposed at a position lower in the direction of gravity than the heat exchanger.
  • a refrigeration cycle apparatus heats air by exchanging heat between a compressor that sucks and discharges refrigerant, and high-pressure refrigerant discharged from the compressor and air blown into the passenger compartment.
  • a high-pressure heat exchanger a high-pressure heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor, a decompression unit that decompresses the refrigerant flowing out of the high-pressure heat exchanger, and a refrigerant decompressed by the decompression unit; Cooling with a refrigerant outdoor air heat exchanger that exchanges heat with the outside air, a low pressure side heat exchanger that cools the heat medium by exchanging heat between the refrigerant and the heat medium that has flowed out of the refrigerant outside air heat exchanger, and a low pressure side heat exchanger A cooler core that cools the air by exchanging heat between the generated heat medium and the air blown into the vehicle interior, and an in-vehicle device
  • the occurrence of frost in the cooler core can be suppressed by performing the frost suppression control.
  • the frost suppression control is performed, the heat medium flows through the in-vehicle device, so that the heat can be absorbed from the in-vehicle device. Therefore, even if the amount of heat absorbed from the cooler core is reduced by performing the frost suppression control, the amount of heat absorbed from the in-vehicle device can be compensated, so that the temperature of air blown into the vehicle interior can be secured.
  • a refrigeration cycle apparatus 10 shown in FIG. 1 is a vehicular refrigeration cycle apparatus used for adjusting a vehicle interior space to an appropriate temperature.
  • the refrigeration cycle apparatus 10 is applied to a hybrid vehicle that obtains driving force for vehicle travel from an engine (in other words, an internal combustion engine) and a travel electric motor.
  • the hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle capable of charging power supplied from an external power source (in other words, commercial power source) when the vehicle is stopped to a battery (in other words, an in-vehicle battery) mounted on the vehicle.
  • a battery in other words, an in-vehicle battery mounted on the vehicle.
  • the battery for example, a lithium ion battery can be used.
  • the driving force output from the engine is used not only for driving the vehicle but also for operating the generator.
  • the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery constitutes the refrigeration cycle apparatus 10 as well as the electric motor for traveling. It is supplied to various in-vehicle devices such as electric components.
  • the refrigeration cycle apparatus 10 is a vapor compression refrigerator that includes a compressor 11, a high-pressure side heat exchanger 12, a first expansion valve 13, an outdoor heat exchanger 14, a second expansion valve 15, and a low-pressure side heat exchanger 16. .
  • a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure is configured.
  • the compressor 11 is an electric compressor driven by electric power supplied from a battery or a variable capacity compressor driven by a belt, and sucks, compresses and discharges the refrigerant of the refrigeration cycle apparatus 10.
  • the high-pressure side heat exchanger 12 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 21.
  • the cooling water of the high-temperature cooling water circuit 21 is a fluid as a heat medium.
  • the cooling water of the high temperature cooling water circuit 21 is a high temperature heat medium.
  • at least ethylene glycol, dimethylpolysiloxane, a liquid containing nanofluid, or an antifreeze liquid is used as the cooling water of the high-temperature cooling water circuit 21.
  • the 1st expansion valve 13 is the 1st decompression part which decompresses and expands the liquid phase refrigerant which flowed out from high pressure side heat exchanger 12.
  • the first expansion valve 13 is an electric variable throttle mechanism, and includes a valve body and an electric actuator.
  • the valve body is configured to be able to change the passage opening (in other words, the throttle opening) of the refrigerant passage.
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the first expansion valve 13 is composed of a variable throttle mechanism with a fully open function that fully opens the refrigerant passage when the throttle opening is fully opened. That is, the first expansion valve 13 can prevent the refrigerant from depressurizing by fully opening the refrigerant passage.
  • the operation of the first expansion valve 13 is controlled by a control signal output from the control device 30.
  • the outdoor heat exchanger 14 is a refrigerant outdoor air heat exchanger that exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the outside air. Outside air is blown to the outdoor heat exchanger 14 by an outdoor blower 17.
  • the outdoor blower 17 is a blower that blows outside air toward the outdoor heat exchanger 14.
  • the outdoor blower 17 is an electric blower that drives a fan with an electric motor.
  • the outdoor heat exchanger 14 and the outdoor blower 17 are disposed in the foremost part of the vehicle. Accordingly, the traveling wind can be applied to the outdoor heat exchanger 14 when the vehicle is traveling.
  • the outdoor heat exchanger 14 When the temperature of the refrigerant flowing through the outdoor heat exchanger 14 is lower than the temperature of the outside air, the outdoor heat exchanger 14 functions as a heat absorber that causes the refrigerant to absorb the heat of the outside air. When the temperature of the refrigerant flowing through the outdoor heat exchanger 14 is higher than the temperature of the outside air, the outdoor heat exchanger 14 functions as a radiator that radiates the heat of the refrigerant to the outside air.
  • the second expansion valve 15 is a second decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the outdoor heat exchanger 14.
  • the second expansion valve 15 is an electric variable throttle mechanism, and includes a valve body and an electric actuator.
  • the valve body is configured to be able to change the passage opening (in other words, the throttle opening) of the refrigerant passage.
  • the electric actuator has a stepping motor that changes the throttle opening of the valve body.
  • the second expansion valve 15 is composed of a variable throttle mechanism with a fully open function that fully opens the refrigerant passage when the throttle opening is fully opened. That is, the second expansion valve 15 can prevent the refrigerant from depressurizing by fully opening the refrigerant passage.
  • the operation of the second expansion valve 15 is controlled by a control signal output from the control device 30.
  • the heat absorption mode and the heat radiation mode are switched by changing the throttle opening of the first expansion valve 13 and the second expansion valve 15.
  • the endothermic mode is an operation mode in which the outdoor heat exchanger 14 causes the refrigerant to absorb heat.
  • the heat release mode is an operation mode in which the outdoor heat exchanger 14 releases heat from the refrigerant.
  • the low-pressure side heat exchanger 16 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing out of the second expansion valve 15 and the cooling water of the low-temperature cooling water circuit 22.
  • the gas-phase refrigerant evaporated in the low-pressure side heat exchanger 16 is sucked into the compressor 11 and compressed.
  • the cooling water in the low-temperature cooling water circuit 22 is a fluid as a heat medium.
  • the cooling water in the low-temperature cooling water circuit 22 is a low-temperature heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water of the low-temperature cooling water circuit 22.
  • the high-pressure side heat exchanger 12 has a heat exchange part 12a.
  • the heat exchanging unit 12 a of the high-pressure side heat exchanger 12 exchanges heat between the refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 21.
  • a modulator 12b and a supercooling unit 12c are integrated with the high pressure side heat exchanger 12.
  • the modulator 12b of the high-pressure side heat exchanger 12 is a first refrigerant storage unit that separates the gas-liquid refrigerant flowing out of the heat exchange unit 12a of the high-pressure side heat exchanger 12 and stores excess liquid-phase refrigerant.
  • the supercooling section 12c of the high-pressure side heat exchanger 12 exchanges heat between the liquid-phase refrigerant that has flowed out of the modulator 12b of the high-pressure-side heat exchanger 12 and the cooling water of the high-temperature cooling water circuit 21 in the endothermic mode. It is the supercooling part for the endothermic mode to supercool.
  • the outdoor heat exchanger 14 has a heat exchange part 14a.
  • the outdoor heat exchanger 14 is integrated with a modulator 14b and a supercooling unit 14c.
  • the heat exchanging unit 14a of the outdoor heat exchanger 14 exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the outside air.
  • the modulator 14b of the outdoor heat exchanger 14 is a second refrigerant storage unit that separates the gas-liquid refrigerant flowing out of the heat exchange unit 14a of the outdoor heat exchanger 14 and stores excess liquid-phase refrigerant.
  • the subcooling section 14c of the outdoor heat exchanger 14 performs heat exchange between the liquid refrigerant flowing out of the modulator 14b of the outdoor heat exchanger 14 and the outside air in the heat dissipation mode, and supercools the liquid refrigerant so that the liquid phase refrigerant is supercooled. It is.
  • a supercooling bypass flow path 18 is connected to the modulator 14b of the outdoor heat exchanger 14.
  • the supercooling bypass flow path 18 is a bypass part in which the refrigerant that has flowed through the modulator 14b of the outdoor heat exchanger 14 bypasses the supercooling part 14c and flows.
  • a supercooling bypass opening / closing valve 19 is disposed in the supercooling bypass flow path 18.
  • the supercooling bypass opening / closing valve 19 is a bypass opening degree adjusting unit that adjusts the opening degree of the supercooling bypass passage 18.
  • the supercooling bypass opening / closing valve 19 is an electromagnetic valve and is controlled by the control device 30.
  • a high-pressure side heat exchanger 12 In the high-temperature cooling water circuit 21, a high-pressure side heat exchanger 12, a high-temperature side pump 23, and a heater core 24 are arranged.
  • a low temperature cooling water circuit 22 In the low temperature cooling water circuit 22, a low pressure side heat exchanger 16, a low temperature side pump 25 and a cooler core 26 are arranged.
  • the high temperature side pump 23 and the low temperature side pump 25 are heat medium pumps that suck and discharge the cooling water.
  • the high temperature side pump 23 and the low temperature side pump 25 are electric pumps.
  • the high temperature side pump 23 is a high temperature side flow rate adjusting unit that adjusts the flow rate of the cooling water circulating in the high temperature cooling water circuit 21.
  • the low temperature side pump 25 is a low temperature side flow rate adjusting unit that adjusts the flow rate of the cooling water circulating in the low temperature cooling water circuit 22.
  • the heater core 24 is a high-temperature side heat medium heat exchanger that heats the air blown into the vehicle interior by exchanging heat between the cooling water of the high-temperature coolant circuit 21 and the air blown into the vehicle interior.
  • the cooling water radiates heat to the air blown into the vehicle interior due to the change in sensible heat. That is, in the heater core 24, even if the cooling water radiates heat to the air blown into the vehicle interior, the cooling water remains in a liquid phase and does not change phase.
  • the high-pressure side heat exchanger 12 and the heater core 24 heat the air blown into the vehicle interior by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the air blown into the vehicle compartment via the cooling water. It is a high-pressure side heat exchange part.
  • the high-pressure side heat exchanging unit heat-exchanges the high-pressure refrigerant discharged from the compressor 11 and the air blown into the passenger compartment without passing through the cooling water to heat the air blown into the passenger compartment. It may be.
  • the cooler core 26 is a low-temperature heat medium heat exchanger that cools the air blown into the vehicle interior by exchanging heat between the cooling water of the low-temperature coolant circuit 22 and the air blown into the vehicle interior.
  • the cooling water absorbs heat from the air blown into the vehicle interior due to the change in sensible heat. That is, in the cooler core 26, even if the cooling water absorbs heat from the air blown into the passenger compartment, the cooling water remains in a liquid phase and does not change phase.
  • the cooler core 26 and the heater core 24 are accommodated in an air conditioning casing (not shown).
  • the air conditioning casing is an air passage forming member that forms an air passage.
  • the heater core 24 is disposed on the air flow downstream side of the cooler core 26 in the air passage in the air conditioning casing.
  • the air conditioning casing is disposed in the vehicle interior space.
  • an inside / outside air switching box (not shown) and an indoor fan 27 are arranged.
  • the inside / outside air switching box is an inside / outside air switching unit that switches between introduction of inside air and outside air into an air passage in the air conditioning casing.
  • the indoor blower 27 sucks and blows the inside air and the outside air introduced into the air passage in the air conditioning casing through the inside / outside air switching box.
  • An air mix door (not shown) is arranged between the cooler core 26 and the heater core 24 in the air passage in the air conditioning casing.
  • the air mix door adjusts the air volume ratio between the cool air that flows into the heater core 24 out of the cool air that has passed through the cooler core 26 and the cool air that bypasses the heater core 24 and flows.
  • the air mix door is a rotary door having a rotary shaft that is rotatably supported with respect to the air conditioning casing, and a door base plate portion coupled to the rotary shaft.
  • the rotary shaft of the air mix door is driven by a servo motor.
  • the operation of the servo motor is controlled by the control device 30.
  • the cooler core 26 has a cooling water inlet 26a, a distribution tank 26b, a heat exchange part 26c, a collecting tank 26d, and a cooling water outlet 26e.
  • the cooling water inlet 26a allows the cooling water flowing out from the low pressure side heat exchanger 16 to flow into the distribution tank 26b.
  • the distribution tank 26b distributes the cooling water to the plurality of cooling water tubes of the heat exchange unit 26c.
  • the heat exchanging part 26c has a plurality of cooling water tubes, and exchanges heat between the cooling water and the air blown into the vehicle interior.
  • the collecting tank 26d collects the cooling water that has flowed through the plurality of cooling water tubes of the heat exchange unit 26c.
  • the cooling water outlet 26e allows the cooling water to flow from the collecting tank 26d to the cooling water suction side of the low temperature side pump 25.
  • the low-pressure side heat exchanger 16 has a cooling water inlet 16a and a cooling water outlet 16b.
  • the cooling water discharged from the low temperature side pump 25 flows into the low pressure side heat exchanger 16 through the cooling water inlet 16a.
  • the cooling water heat-exchanged by the low-pressure side heat exchanger 16 flows out to the cooling water inlet 26a side of the cooler core 26 through the cooling water outlet 16b.
  • the heat exchange part 26c of the cooler core 26 is disposed at a position higher in the gravitational direction than at least one of the cooling water inlet 16a and the cooling water outlet 16b of the low-pressure side heat exchanger 16.
  • At least a part of the low-temperature cooling water passage 22a through which the cooling water of the low-temperature cooling water circuit 22 flows is disposed at a position lower in the gravitational direction than the heat exchange part 26c of the cooler core 26.
  • the low-temperature cooling water flow path 22 a is a heat medium flow path portion through which cooling water flows between the low-pressure side heat exchanger 16 and the cooler core 26.
  • the outdoor heat exchanger 14 includes a refrigerant inlet 14d, a heat exchange part distribution tank 14e, a heat exchange part collection tank 14f, a bypass outlet 14g, a supercooling part distribution tank 14h, and a supercooling part collection tank 14i. And a refrigerant outlet 14k.
  • the refrigerant inlet 14d is provided in the heat exchange part distribution tank 14e.
  • the heat exchange unit distribution tank 14e distributes the refrigerant to the plurality of refrigerant tubes of the heat exchange unit 14a.
  • the heat exchange unit collecting tank 14f collects the refrigerant that has flowed through the plurality of refrigerant tubes of the heat exchange unit 14a.
  • the piping which forms the supercooling bypass flow path 18 is connected to the bypass outlet 14g.
  • the bypass outlet 14g is provided in the supercooling part distribution tank 14h.
  • the supercooling part distribution tank 14h distributes the refrigerant to the plurality of refrigerant tubes of the supercooling part 14c.
  • the supercooling part collection tank 14i collects the refrigerant that has flowed through the plurality of refrigerant tubes of the supercooling part 14c.
  • the refrigerant outlet 14k is provided in the supercooling unit collecting tank 14i.
  • a filter 14m is accommodated in the modulator 14b.
  • the refrigerant flowing from the refrigerant inlet 14d is the heat exchange part distribution tank 14e, the heat exchange part 14a, the heat exchange part collect tank 14f, the modulator 14b, the supercooling part distribution tank 14h, and the supercooling part 14c. After flowing in the order of the supercooling section collecting tank 14i, it flows out from the refrigerant outlet 14k.
  • the control device 30 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof.
  • the control device 30 performs various calculations and processes based on a control program stored in the ROM.
  • Various devices to be controlled are connected to the output side of the control device 30.
  • the control device 30 is a control unit that controls the operation of various devices to be controlled.
  • the control target devices controlled by the control device 30 include the compressor 11, the first expansion valve 13, the second expansion valve 15, the outdoor blower 17, the supercooling bypass opening / closing valve 19, the high temperature side pump 23, the low temperature side pump 25, and the like. is there.
  • Software and hardware for controlling the electric motor of the compressor 11 in the control device 30 is a refrigerant discharge capacity control unit.
  • Software and hardware for controlling the first expansion valve 13 in the control device 30 is a first throttle control unit.
  • Software and hardware for controlling the second expansion valve 15 in the control device 30 is a second throttle control unit.
  • Software and hardware for controlling the outdoor blower 17 in the control device 30 is an outside air blowing capacity control unit.
  • Software and hardware for controlling the supercooling bypass opening / closing valve 19 in the control device 30 is a bypass opening degree control unit.
  • Software and hardware for controlling the high temperature side pump 23 in the control device 30 is a high temperature side heat medium flow control unit.
  • Software and hardware for controlling the low temperature side pump 25 in the control device 30 is a low temperature side heat medium flow control unit.
  • various air conditioners such as an inside air temperature sensor 31, an outside air temperature sensor 32, a solar radiation amount sensor 33, an outdoor heat exchanger temperature sensor 34, a low pressure side heat exchanger temperature sensor 35, and a cooler core temperature sensor 36.
  • a sensor group for control is connected.
  • the inside air temperature sensor 31 detects the passenger compartment temperature Tr.
  • the outside air temperature sensor 32 detects the outside air temperature Tam.
  • the solar radiation amount sensor 33 detects the solar radiation amount Ts in the passenger compartment.
  • the outdoor heat exchanger temperature sensor 34 detects the temperature of the outdoor heat exchanger 14. For example, the outdoor heat exchanger temperature sensor 34 detects the temperature of the refrigerant flowing into the outdoor heat exchanger 14.
  • the low-pressure side heat exchanger temperature sensor 35 detects the temperature of the cooling water flowing out from the low-pressure side heat exchanger 16.
  • the cooler core temperature sensor 36 detects the temperature of the cooler core 26.
  • the low-pressure side heat exchanger temperature sensor 35 detects the temperature of the cooling water flowing out from the low-pressure side heat exchanger 16.
  • the cooler core temperature sensor 36 is a fin thermistor that detects the heat exchange fin temperature of the cooler core 26.
  • the cooler core temperature sensor 36 may be a temperature sensor that detects the temperature of the cooling water flowing into the cooler core 26.
  • An operation panel 39 is connected to the input side of the control device 30.
  • the operation panel 39 is disposed in the vicinity of the instrument panel in the front part of the vehicle interior and is operated by a passenger.
  • Various operation switches are provided on the operation panel 39. Operation signals from various operation switches are input to the control device 30.
  • the various operation switches on the operation panel 39 are an air conditioner switch, a temperature setting switch, and the like.
  • the air conditioner switch sets whether or not to cool the air blown into the vehicle interior by the indoor air conditioning unit.
  • the temperature setting switch sets a set temperature in the passenger compartment.
  • the control device 30 switches the air conditioning mode to any one of the heating mode, the cooling mode, the first dehumidifying heating mode, and the second dehumidifying heating mode based on the target blowing temperature TAO or the like.
  • the target air temperature TAO is the target temperature of the air that is blown out into the passenger compartment.
  • the control device 30 calculates the target blowing temperature TAO based on the following mathematical formula.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C
  • Tset is the vehicle interior set temperature set by the temperature setting switch of the operation panel 39
  • Tr is the inside air temperature detected by the inside air temperature sensor
  • Tam is the outside air temperature detected by the outside air temperature sensor 32
  • Ts is This is the amount of solar radiation detected by the solar radiation amount sensor 33.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • the heating mode and the second dehumidifying heating mode are endothermic modes in which the outdoor heat exchanger 14 absorbs heat from the refrigerant.
  • the cooling mode and the first dehumidifying and heating mode are heat dissipation modes in which the outdoor heat exchanger 14 dissipates the refrigerant.
  • Heating mode In the heating mode, the control device 30 brings the first expansion valve 13 into a throttled state and the second expansion valve 15 into a fully opened state. In the heating mode, the control device 30 drives the high temperature side pump 23 and stops the low temperature side pump 25.
  • the control device 30 determines the operating states of the various control devices connected to the control device 30 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • the control signal output to the first expansion valve 13 is determined so that the supercooling degree of the refrigerant flowing into the first expansion valve 13 approaches a predetermined target supercooling degree.
  • the target degree of supercooling is determined so that the coefficient of performance of the cycle (so-called COP) approaches the maximum value.
  • the air mix door fully opens the air passage of the heater core 24 so that the total flow rate of the blown air that has passed through the cooler core 26 passes through the air passage of the heater core 24. To be determined.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the high-pressure side heat exchanger 12 and exchanges heat with the cooling water in the high-temperature cooling water circuit 21. Dissipate heat. Thereby, the cooling water of the high temperature cooling water circuit 21 is heated.
  • the refrigerant that has flowed out of the high-pressure heat exchanger 12 flows into the first expansion valve 13 and is depressurized until it becomes a low-pressure refrigerant.
  • the low pressure refrigerant decompressed by the first expansion valve 13 flows into the outdoor heat exchanger 14 and absorbs heat from the outside air blown from the blower fan. Evaporate.
  • the refrigerant that has flowed out of the outdoor heat exchanger 14 flows into the second expansion valve 15. At this time, since the second expansion valve 15 is fully opened, the refrigerant flowing out of the outdoor heat exchanger 14 flows into the low-pressure side heat exchanger 16 without being depressurized by the second expansion valve 15.
  • the cooling water of the low temperature cooling water circuit 22 does not circulate in the low pressure side heat exchanger 16. Therefore, as indicated by a point a4 in FIG. 4, the low-pressure refrigerant flowing into the low-pressure side heat exchanger 16 hardly absorbs heat from the cooling water in the low-temperature cooling water circuit 22. Then, as indicated by points a4 and a1 in FIG. 4, the refrigerant that has flowed out of the low-pressure side heat exchanger 16 flows to the suction side of the compressor 11 and is compressed again by the compressor 11.
  • the refrigerant condensed in the heat exchanging portion 12a is gas-liquid separated by the modulator 12b and the excess refrigerant is stored.
  • the liquid-phase refrigerant that has flowed out of the modulator 12b flows through the supercooling section 12c and is supercooled.
  • the control device 30 opens the supercooling bypass opening / closing valve 19. Thereby, the refrigerant that has flowed out of the modulator 14b of the outdoor heat exchanger 14 flows through the supercooling portion 14c and the supercooling bypass channel 18 of the outdoor heat exchanger 14, so that the refrigerant in the supercooling portion 14c of the outdoor heat exchanger 14 is reduced. Pressure loss can be reduced.
  • the heat of the high-pressure refrigerant discharged from the compressor 11 by the high-pressure side heat exchanger 12 is radiated to the cooling water of the high-temperature cooling water circuit 21, and the high-temperature cooling water circuit 21 is heated by the heater core 24.
  • the heat of the cooling water can be dissipated to the air blown into the vehicle interior, and the heated air blown into the vehicle interior can be blown out. Thereby, heating of a vehicle interior is realizable.
  • the control device 30 sets the first expansion valve 13 to a fully open state and sets the second expansion valve 15 to a throttle state. In the cooling mode, the control device 30 stops the high temperature side pump 23 and drives the low temperature side pump 25.
  • the control device 30 determines the operating states of the various control devices connected to the control device 30 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • the control signal output to the second expansion valve 15 is determined such that the degree of supercooling of the refrigerant flowing into the second expansion valve 15 approaches a predetermined target degree of supercooling so that the COP approaches the maximum value. Is done.
  • the air mix door closes the air passage of the heater core 24 so that the entire flow rate of the blown air that has passed through the cooler core 26 flows bypassing the heater core 24. It is determined.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the high-pressure side heat exchanger 12 as indicated by a point b1 in FIG.
  • the cooling water of the high temperature cooling water circuit 21 does not circulate in the high pressure side heat exchanger 12. Therefore, the refrigerant that has flowed into the high-pressure side heat exchanger 12 flows out of the high-pressure side heat exchanger 12 with little heat exchange with the cooling water in the high-temperature cooling water circuit 21.
  • the refrigerant that has flowed out of the high-pressure side heat exchanger 12 flows into the first expansion valve 13. At this time, since the first expansion valve 13 fully opens the refrigerant passage, the refrigerant flowing out from the high pressure side heat exchanger 12 flows into the outdoor heat exchanger 14 without being depressurized by the first expansion valve 13. To do.
  • the refrigerant flowing into the outdoor heat exchanger 14 dissipates heat to the outside air blown from the blower fan in the outdoor heat exchanger 14.
  • the refrigerant flowing out of the outdoor heat exchanger 14 flows into the second expansion valve 15 and is decompressed and expanded at the second expansion valve 15 until it becomes a low-pressure refrigerant. .
  • the low-pressure refrigerant decompressed by the second expansion valve 15 flows into the low-pressure side heat exchanger 16, absorbs heat from the cooling water in the low-temperature cooling water circuit 22, and evaporates. To do. Thereby, since the cooling water of the low-temperature cooling water circuit 22 is cooled, the vehicle interior blown air is cooled by the cooler core 26.
  • the control device 30 closes the supercooling bypass opening / closing valve 19. As a result, the liquid-phase refrigerant that has flowed out of the modulator 14b flows through the supercooling portion 14c and is supercooled.
  • the vehicle interior air cooled by the cooler core 26 can be blown into the vehicle interior. Thereby, cooling of a vehicle interior is realizable.
  • first dehumidifying heating mode In the first dehumidifying and heating mode, the control device 30 places the first expansion valve 13 and the second expansion valve 15 in the throttle state. In the first dehumidifying and heating mode, the control device 30 drives both the high temperature side pump 23 and the low temperature side pump 25.
  • the control device 30 determines the operating states of the various control devices connected to the control device 30 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • the air mix door As for the control signal output to the servo motor of the air mix door (not shown), the air mix door fully opens the air passage of the heater core 24 so that the total flow rate of the air passing through the cooler core 26 passes through the air passage of the heater core 24. It is determined.
  • the first expansion valve 13 and the second expansion valve 15 are in the throttle state. Therefore, in the first dehumidifying and heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the high-pressure side heat exchanger 12 and exchanges heat with the cooling water in the high-temperature cooling water circuit 21. Dissipate heat. Thereby, the cooling water of the high temperature cooling water circuit 21 is heated.
  • the refrigerant flowing out from the high pressure side heat exchanger 12 flows into the first expansion valve 13 and is depressurized until it becomes an intermediate pressure refrigerant. Then, as shown at points c3 and c4 in FIG. 6, the intermediate pressure refrigerant decompressed by the first expansion valve 13 flows into the outdoor heat exchanger 14 and dissipates heat to the outside air blown from the outdoor blower. .
  • the refrigerant flowing out of the outdoor heat exchanger 14 flows into the second expansion valve 15 and is decompressed and expanded until it becomes a low-pressure refrigerant at the second expansion valve 15. .
  • the low-pressure refrigerant decompressed by the second expansion valve 15 flows into the low-pressure side heat exchanger 16, absorbs heat from the cooling water in the low-temperature cooling water circuit 22, and evaporates. To do. Thereby, the cooling water of the low-temperature cooling water circuit 22 is cooled.
  • the refrigerant flowing out from the low-pressure side heat exchanger 16 flows to the suction side of the compressor 11 and is compressed again by the compressor 11.
  • the vehicle interior blown air cooled and dehumidified by the cooler core 26 can be heated by the heater core 24 and blown out into the vehicle interior. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the temperature of the refrigerant flowing into the outdoor heat exchanger 14 can be lowered compared to the cooling mode. Therefore, the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 14 can be reduced, and the heat radiation amount of the refrigerant in the outdoor heat exchanger 14 can be reduced.
  • the heat release amount of the refrigerant in the high-pressure side heat exchanger 12 can be increased without increasing the refrigerant circulation flow rate that circulates the cycle in the cooling mode, and the blowout blown from the heater core 24 in the cooling mode.
  • the temperature of the air can be raised.
  • the control device 30 closes the supercooling bypass opening / closing valve 19. Thereby, the liquid-phase refrigerant
  • the control device 30 places the first expansion valve 13 and the second expansion valve 15 in the throttle state. In the second dehumidifying and heating mode, the control device 30 drives both the high temperature side pump 23 and the low temperature side pump 25.
  • the control device 30 determines the operating states of the various control devices connected to the control device 30 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • the air mix door As for the control signal output to the servo motor of the air mix door (not shown), the air mix door fully opens the air passage of the heater core 24 so that the total flow rate of the air passing through the cooler core 26 passes through the air passage of the heater core 24. It is determined.
  • the throttle opening of the first expansion valve 13 is set to a throttled state that is smaller than that in the first dehumidifying and heating mode, and the throttle opening of the second expansion valve 15 is set to be smaller than that in the first dehumidifying and heating mode.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the high-pressure side heat exchanger 12 and exchanges heat with the cooling water in the high-temperature cooling water circuit 21. Dissipate heat. Thereby, the cooling water of the high temperature cooling water circuit 21 is heated.
  • the refrigerant that has flowed out of the high-pressure side heat exchanger 12 flows into the first expansion valve 13 and is depressurized until it becomes an intermediate-pressure refrigerant having a temperature lower than the outside air temperature.
  • the intermediate-pressure refrigerant decompressed by the first expansion valve 13 flows into the outdoor heat exchanger 14 and absorbs heat from the outside air blown from the outdoor blower. .
  • the refrigerant that has flowed out of the outdoor heat exchanger 14 flows into the second expansion valve 15 via the third refrigerant passage 18, and then enters the second expansion valve 15. It is expanded under reduced pressure until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 15 flows into the low-pressure side heat exchanger 16 and absorbs heat from the vehicle interior blown air blown from the blower 32. Evaporate. As a result, the air blown into the passenger compartment is cooled by the cooler core 26.
  • the refrigerant flowing out from the low-pressure side heat exchanger 16 flows to the suction side of the compressor 11 and is compressed again by the compressor 11.
  • the vehicle interior air cooled and dehumidified by the cooler core 26 can be heated by the heater core 24 and blown out into the vehicle interior. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the outdoor heat exchanger 14 functions as a heat absorber (in other words, an evaporator) by reducing the throttle opening of the first expansion valve 13, so the first dehumidifying temperature
  • the temperature blown out from the heater core 24 can be increased as compared with the heating mode.
  • the suction refrigerant density of the compressor 11 can be increased with respect to the first dehumidifying heating mode, and the high pressure side heat exchange can be performed without increasing the rotation speed (in other words, refrigerant discharge capacity) of the compressor 11.
  • the amount of heat released from the refrigerant in the vessel 12 can be increased, and the temperature of the blown air blown from the heater core 24 can be increased as compared with the first dehumidifying and heating mode.
  • the refrigerant condensed in the heat exchanging portion 12a is gas-liquid separated by the modulator 12b and the excess refrigerant is stored.
  • the liquid-phase refrigerant that has flowed out of the modulator 12b flows through the supercooling section 12c and is supercooled.
  • the control device 30 opens the supercooling bypass opening / closing valve 19. Thereby, since the refrigerant
  • the low-pressure side heat exchanger 16 is arranged in series with the outdoor heat exchanger 14 in the refrigerant flow, and the low-pressure refrigerant is decompressed by at least one of the first expansion valve 13 and the second expansion valve 15.
  • the heat medium is cooled by exchanging heat with the cooling water.
  • the cooler core 26 cools the air by exchanging heat between the cooling water cooled by the low-pressure side heat exchanger 16 and the air blown into the vehicle interior.
  • the outdoor heat exchanger 14 and the low pressure side heat exchanger 16 are arranged in series with each other in the refrigerant flow, the refrigerant pressure and the refrigerant temperature in the low pressure side heat exchanger 16 are low.
  • the heat exchange performance of the cooler core 26 can be controlled by adjusting the flow rate of the cooling water flowing through the cooler core 26, and as a result, the occurrence of frost in the cooler core 26 can be suppressed.
  • the temperature of the cooling water flowing into the cooler core 26 is lower than the temperature of the air cooled by the cooler core 26.
  • the temperature of the refrigerant flowing into the low pressure side heat exchanger 16 is lower than the temperature of the cooling water flowing into the cooler core 26.
  • the temperature of the refrigerant in the low-pressure side heat exchanger 16 can be lowered, and as a result, the low-pressure side heat The refrigerant pressure in the exchanger 16 can also be lowered.
  • the heat absorption mode and the heat radiation mode are switched by the control unit 30 adjusting the pressure reduction amount of the first expansion valve 13 and the second expansion valve 15.
  • the heat absorption mode is an operation mode in which the outdoor heat exchanger 14 absorbs heat from the refrigerant (that is, the heating mode and the second dehumidifying heating mode).
  • the heat release mode is an operation mode in which the outdoor heat exchanger 14 releases heat from the refrigerant (that is, the cooling mode and the first dehumidifying heating mode).
  • the modulator 12b on the high-pressure side heat exchanger 12 side separates the gas-liquid of the refrigerant heat-exchanged by the high-pressure side heat exchanger 12 in the endothermic mode and stores the refrigerant.
  • the modulator 14b on the outdoor heat exchanger 14 side separates the gas-liquid of the refrigerant heat-exchanged by the outdoor heat exchanger 14 in the heat dissipation mode and stores the refrigerant.
  • the modulator 12b on the high pressure side heat exchanger 12 side is disposed on the refrigerant flow downstream side of the high pressure side heat exchanger 12 and on the refrigerant flow upstream side of the first expansion valve 13.
  • the refrigerant is stored by separating the gas-liquid of the heat-exchanged refrigerant.
  • the modulator 14b on the outdoor heat exchanger 14 side is disposed on the downstream side of the refrigerant flow of the outdoor heat exchanger 14 and on the upstream side of the refrigerant flow of the second expansion valve 15, and is a gas-liquid refrigerant that has undergone heat exchange in the outdoor heat exchanger 14. To store refrigerant.
  • the refrigeration cycle can be converted into a receiver cycle in both the heat absorption mode and the heat dissipation mode.
  • the viscosity of the refrigerant and the refrigeration oil in the refrigerant reservoir is reduced, so that the pressure loss of the refrigerant can be reduced and the refrigeration oil can be easily discharged. Cycle performance can be improved. Further, since the refrigerating machine oil can be easily discharged, the amount of refrigerating machine oil enclosed can be reduced, and the refrigerant storage section can be downsized.
  • the refrigerant reservoir can be moved automatically in the endothermic mode and the heat release mode, and in both the endothermic mode and the heat release mode, the high pressure side enthalpy can be reduced to the liquid saturation line, so optimal control is possible. It becomes possible.
  • control unit 30 controls the operation of the low temperature side pump 25 to control the low pressure side heat exchanger when the temperature of the cooling water flowing out from the low pressure side heat exchanger 16 is 0 ° C. or less in the endothermic mode.
  • the flow rate of the cooling water in at least one of 16 and the cooler core 26 is adjusted.
  • control unit 30 controls the operation of the low temperature side pump 25 to control the low pressure side heat exchanger 16 and the cooler core when the temperature of the cooling water flowing out from the low pressure side heat exchanger 16 is 0 ° C. or less in the endothermic mode. The flow rate of the cooling water in both of them is adjusted.
  • control unit 30 causes the low-temperature side pump 25 to decrease the flow rate of the cooling water in at least one of the low-pressure side heat exchanger 16 and the cooler core 26 as the refrigerant pressure in the outdoor heat exchanger 14 decreases. Control the operation of
  • the heat exchange performance of the cooler core 26 can be controlled by adjusting the flow rate of the cooling water flowing through the cooler core 26, As a result, generation
  • the temperature difference between the refrigerant and the cooling water can be increased.
  • the flow rate of the cooling water flowing through the cooler core 26 the temperature difference between the air and the cooling water can be increased.
  • the refrigerant temperature (in other words, the refrigerant pressure) in the outdoor heat exchanger 14 is lowered in order to increase the heat absorption amount in the outdoor heat exchanger 14. Even so, it is possible to suppress the temperature of the cooling water flowing into the cooler core 26 from becoming 0 ° C. or lower, and thus it is possible to suppress the occurrence of frost in the cooler core 26.
  • the control unit 30 may adjust the flow rate of the cooling water by controlling the rotational speed of the low temperature side pump 25.
  • the control part 30 may adjust the flow volume (namely, time average flow volume) of cooling water by driving the low temperature side pump 25 intermittently.
  • a flow rate adjustment valve may be arranged in the low-temperature cooling water circuit 22. Thereby, the control part 30 can adjust the flow volume of a cooling water by adjusting the opening degree of a flow regulating valve.
  • the supercooling bypass opening / closing valve 19 reduces the opening degree of the supercooling bypass passage 18 in the heat dissipation mode compared to that in the heat absorption mode.
  • the cooling water flowing through the supercooling bypass channel 18 is less than in the heat absorption mode, and the cooling water flowing through the supercooling portion 14c on the outdoor heat exchanger 14 side is increased. Therefore, the refrigerant can be reliably supercooled by the supercooling bypass channel 18 in the heat dissipation mode in which the refrigerant needs to be supercooled by the supercooling bypass channel 18.
  • the amount of cooling water flowing through the supercooling bypass channel 18 increases, and the amount of cooling water flowing through the subcooling portion 14c on the outdoor heat exchanger 14 side decreases. Therefore, it is possible to suppress an increase in pressure loss in the supercooling portion 14c on the outdoor heat exchanger 14 side in the heat absorption mode in which it is not necessary to supercool the refrigerant in the supercooling bypass channel 18.
  • the supercooling bypass channel 18 extends from the supercooling part distribution tank part 14h of the outdoor heat exchanger 14 to the downstream side of the refrigerant flow of the supercooling part 14c on the outdoor heat exchanger 14 side.
  • the refrigerant that has passed through the modulator 14b on the outdoor heat exchanger 14 side flows into the supercooling bypass channel 18 in both the heat absorption mode and the heat dissipation mode. Therefore, a conventional modulator can be used as the modulator 14b on the outdoor heat exchanger 14 side without changing the design. For example, it is not necessary to change the position of the filter 14m inside the modulator 14b with respect to the conventional modulator.
  • the cooling water does not flow through the high pressure side heat exchanger 12. At this time, if the temperature of the refrigerant flowing through the high-pressure side heat exchanger 12 becomes high and the cooling water temperature in the high-pressure side heat exchanger 12 becomes high, the cooling water may boil inside the high-pressure side heat exchanger 12. .
  • the control unit 30 stops the high temperature side pump 23 during the cooling mode, and when the temperature of the high temperature side cooling water in the high pressure side heat exchanger 12 becomes equal to or higher than the predetermined temperature during the cooling mode, The operation of the high temperature side pump 23 is controlled so that the flow rate of the high temperature side cooling water flowing through the heat exchanger 12 increases. Thereby, it can suppress that a cooling water boils inside the high voltage
  • control unit 30 controls the operation of the low temperature side pump 25 and adjusts the flow rate of the cooling water in the low pressure side heat exchanger 16, whereby the refrigerant heat exchanged by the low pressure side heat exchanger 16 is adjusted. Control the degree of superheat. According to this, it is very easy to control the degree of superheat.
  • the heat exchanging portion 26c of the cooler core 26 is disposed at a position higher in the gravitational direction than the cooling water inlet 16a and the cooling water outlet 16b of the low pressure side heat exchanger 16, so that the low pressure side heat exchange is performed.
  • the low-temperature cooling water in the cooler 16 and the high-temperature cooling water in the cooler core 26 can be suppressed from being exchanged by convection, and as a result, frost formation occurs in the cooler core 26 or the heat absorption amount of the refrigerant in the low-pressure side heat exchanger 16 is reduced. Can be suppressed.
  • the refrigeration cycle apparatus 10 of the present embodiment includes a heat supply device 40.
  • the heat supply device 40 is a device that supplies heat to the cooling water. Cooling water flows through the heat supply device 40.
  • the heat supply device 40 is a heat generating device, a ventilation heat recovery heat exchanger, or the like.
  • Heat generating devices are engines, electric motors for traveling, batteries, inverters, DC-DC converters, turbochargers, intercoolers, EGR coolers, CVT coolers, and the like.
  • Ventilation heat recovery heat exchanger is a heat exchanger that recovers the heat discarded during ventilation.
  • the ventilation heat recovery heat exchanger is a heat exchanger that exchanges heat between air discharged from the passenger compartment to the outside of the passenger compartment for cooling and cooling water.
  • the heat supply device 40 is disposed in the low-temperature cooling water circuit 22. In the second embodiment shown in FIG. 9, the heat supply device 40 is arranged in the high temperature cooling water circuit 21.
  • a shutter 41 is disposed in the vicinity of the outdoor heat exchanger 14.
  • the shutter 41 is driven to open and close by an electric actuator (not shown).
  • the operation of the electric actuator is controlled by the control device 30.
  • the shutter 41 adjusts the opening degree of the passage of the outside air flowing through the outdoor heat exchanger 14. That is, the shutter 41 is a heat exchanger flow rate adjusting unit that adjusts the flow rate of the outside air flowing through the outdoor heat exchanger 14. For example, by reducing the opening degree of the shutter 41, the flow rate of the outside air flowing through the outdoor heat exchanger 14 can be reduced.
  • the refrigeration cycle apparatus 10 of the present embodiment includes a heat exchanger bypass channel 42 and a heat exchanger bypass opening / closing valve 43.
  • the heat exchanger bypass channel 42 is a heat exchanger bypass portion in which the refrigerant flows by bypassing the first expansion valve 13 and the outdoor heat exchanger 14.
  • the heat exchanger bypass passage 42 joins the supercooling bypass passage 18.
  • the heat exchanger bypass opening / closing valve 43 is a heat exchanger bypass opening degree adjusting unit that adjusts the opening degree of the heat exchanger bypass passage 42. That is, the heat exchanger bypass opening / closing valve 43 is a heat exchanger flow rate adjusting unit that adjusts the flow rate of the outside air flowing through the outdoor heat exchanger 14.
  • the heat exchanger bypass opening / closing valve 43 is an electromagnetic valve and is controlled by the control device 30. For example, the flow rate of the refrigerant flowing into the outdoor heat exchanger 14 can be reduced by increasing the opening degree of the heat exchanger bypass opening / closing valve 43.
  • the cycle performance can be improved by the heat supply device 40 supplying heat to the cooling water.
  • the frost of the outdoor heat exchanger 14 can be suppressed or the heating performance can be improved by introducing the heat supplied from the heat supply device 40 into the low-pressure side heat exchanger 16 in the heating mode. .
  • the control unit 30 controls the outside air and the refrigerant flowing into the outdoor heat exchanger 14.
  • the operation of at least one of the outdoor blower 17, the shutter 41, and the heat exchanger bypass opening / closing valve 43 is controlled so that at least one of the flow rates decreases. Thereby, it can suppress that a refrigerant
  • the control unit 30 reduces the rotation speed of the outdoor heat exchanger 14 to reduce the outdoor heat exchange. What is necessary is just to reduce the flow volume of the external air which flows into the vessel 14.
  • control unit 30 causes the outside air blowing direction to the outdoor heat exchanger 14 to be reversed.
  • the operation of the outside air blower 17 may be controlled.
  • the air blowing direction of the outside air to the outdoor heat exchanger 14 is reversed, so that high temperature outside air (that is, outside air warmed by the engine) in the engine room of the vehicle can flow into the outdoor heat exchanger 14. Therefore, it is possible to reliably prevent the refrigerant from radiating heat in the outdoor heat exchanger 14 and wasting heat.
  • control unit 30 reduces the opening of the passage of the outside air flowing through the outdoor heat exchanger 14.
  • the control unit 30 reduces the opening of the passage of the outside air flowing through the outdoor heat exchanger 14.
  • control unit 30 increases the opening of the heat exchanger bypass on / off valve 43 to increase the outdoor temperature.
  • the flow rate of the refrigerant flowing into the heat exchanger 14 may be reduced.
  • the refrigeration cycle apparatus 10 may include an internal heat exchanger 45.
  • the internal heat exchanger 45 has a high-pressure side refrigerant passage 45a and a low-pressure side refrigerant passage 45b.
  • the internal heat exchanger 45 is a heat exchanger that exchanges heat between the high-pressure refrigerant that flows through the high-pressure refrigerant passage 45a and the low-pressure refrigerant that flows through the low-pressure refrigerant passage 45b.
  • the high-pressure side refrigerant passage 45 a is arranged on the downstream side of the refrigerant flow of the outdoor heat exchanger 14 and on the upstream side of the refrigerant flow of the second expansion valve 15.
  • the low-pressure side refrigerant passage 45 b is disposed on the refrigerant flow downstream side of the low-pressure side heat exchanger 16 and on the refrigerant suction side of the compressor 11.
  • the ejector 46 is a decompression unit that decompresses the refrigerant, and also a refrigerant circulation unit for fluid transportation (in other words, a momentum transportation type) that circulates the refrigerant by suction action (in other words, entrainment action) of the refrigerant flow ejected at high speed. It is also a pump).
  • the ejector 46 includes a nozzle portion 46a and a refrigerant suction port 46b.
  • the nozzle part 46 a expands the refrigerant under reduced pressure by reducing the passage area of the refrigerant that has passed through the outdoor heat exchanger 14.
  • the refrigerant suction port 46b is disposed in the same space as the refrigerant outlet of the nozzle portion 46a, and sucks the gas phase refrigerant from the low-pressure side heat exchanger 16.
  • the diffuser part 46d is arrange
  • the diffuser portion 46d is a pressure increasing portion that increases the pressure by mixing the high-speed refrigerant flow from the nozzle portion 46a and the suction refrigerant in the refrigerant suction port 46b.
  • the diffuser portion 46d is formed in a shape that gradually increases the refrigerant passage area, and acts to decelerate the refrigerant flow to increase the refrigerant pressure, that is, to convert the velocity energy of the refrigerant into pressure energy.
  • the low pressure side heat exchanger 16 is connected to the outlet portion (the tip portion of the diffuser portion 46d) of the ejector 46.
  • an ejector bypass passage 47 is connected to the refrigerant inlet side of the nozzle portion 46a via a three-way valve 48.
  • the ejector bypass channel 47 is a channel through which the refrigerant bypasses the ejector 46.
  • the other end of the ejector bypass channel 47 is connected to the refrigerant inlet side of the low pressure side heat exchanger 16.
  • the three-way valve 48 switches between a state in which the refrigerant flows out to the ejector 46 side and a state in which the refrigerant flows out to the ejector bypass channel 47 side.
  • the operation of the three-way valve 48 is controlled by the control device 30.
  • the high-pressure side heat exchanger 12 exchanges heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 21, but the first embodiment of this embodiment shown in FIG.
  • the high pressure side heat exchanger 12 exchanges heat between the high pressure side refrigerant discharged from the compressor 11 and the air blown into the vehicle interior. May be. 14 and 15 is housed in an air conditioning casing (not shown) instead of the heater core 24 of the above embodiment.
  • the low-pressure heat exchanger 16 exchanges heat between the low-pressure refrigerant that has flowed out of the second expansion valve 15 and the cooling water of the low-temperature cooling water circuit 22, but the second embodiment of the present embodiment shown in FIG.
  • the low-pressure side heat exchanger 16 exchanges heat between the low-pressure refrigerant that has flowed out of the second expansion valve 15 and the air that is blown into the vehicle interior. May be.
  • the low pressure side heat exchanger 16 shown in FIGS. 15 and 16 is accommodated in an air conditioning casing (not shown) instead of the cooler core 26 of the above embodiment.
  • a receiver cycle including modulators 12b and 14b on the high-pressure side is configured, but the first example of this embodiment shown in FIG. 17 and the present embodiment shown in FIG.
  • an accumulator cycle including the accumulator 50 on the low pressure side may be configured.
  • the accumulator 50 separates the gas-liquid refrigerant flowing out from the low-pressure side heat exchanger 16, stores the separated liquid-phase refrigerant therein, and causes the separated gas-phase refrigerant to flow out to the suction port side of the compressor 11. It is a refrigerant
  • the high-pressure side heat exchanger 12 shown in FIG. 17 exchanges heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 21.
  • the high-pressure side heat exchanger 12 shown in FIG. 18 exchanges heat between the high-pressure side refrigerant discharged from the compressor 11 and the air blown into the vehicle interior.
  • an in-vehicle device 55 is disposed in the low temperature cooling water circuit 22.
  • the in-vehicle device 55 is arranged in parallel with the cooler core 26 in the flow of the cooling water in the low-temperature cooling water circuit 22.
  • the in-vehicle device 55 is a device that is mounted on a vehicle and that generates heat when activated.
  • the in-vehicle device 55 is a battery heat exchanger, an inverter, a transaxle, a motor generator, or the like.
  • a vehicle-mounted device temperature sensor (not shown) is connected to the input side of the control device 30.
  • the in-vehicle device temperature sensor is an in-vehicle temperature detection unit that detects the temperature of the in-vehicle device 55.
  • the in-vehicle device temperature sensor may be a sensor that detects the temperature of the cooling water flowing into the in-vehicle device 55.
  • the low-temperature cooling water circuit 22 has a branch portion 22b and a junction portion 22c.
  • the branch part 22b the flow of the cooling water flowing out from the low pressure side heat exchanger 16 is branched into the cooler core 26 side and the in-vehicle device 55 side.
  • the junction part 22c the flow of the cooling water that has flowed out of the cooler core 26 and the flow of the cooling water that has flowed out of the in-vehicle device 55 merge.
  • a first flow control valve 56 is disposed between the branch portion 22 b and the cooler core 26.
  • a second flow regulating valve 57 is disposed between the branch portion 22 b and the in-vehicle device 55.
  • the first flow control valve 56 and the second flow control valve 57 are valves that adjust the flow rate of the cooling water by changing the opening degree of the cooling water flow path.
  • the first flow regulating valve 56 and the second flow regulating valve 57 are valves that can fully open and fully close the cooling water flow path.
  • the first flow adjustment valve 56 and the second flow adjustment valve 57 are electromagnetic valves controlled by the control device 30.
  • the first flow control valve 56 and the second flow control valve 57 are flow rate adjusting units that adjust the flow rate of the cooling water flowing through the cooler core 26 and the flow rate of the cooling water flowing through the in-vehicle device 55.
  • control device 30 controls the first flow regulating valve 56 and the second flow regulating valve 57 so that the temperature adjustment of the cooler core 26 is prioritized over the temperature adjustment of the in-vehicle device 55.
  • the cooling water cooled by the low pressure side heat exchanger 16 flows into the cooler core 26 and the air blown into the vehicle interior is
  • the dehumidification is performed by being cooled by the cooler core 26, the cooling water heated by the high pressure side heat exchanger 12 flows into the heater core 24, and the air cooled by the cooler core 26 is heated by the heater core 24. Air-conditioned air having a target blowing temperature is generated.
  • the target blowing temperature of the heater core 24 (that is, the target blowing temperature TAO) varies depending on the inside air temperature and the outside air temperature.
  • FIG. 20 is a graph illustrating the relationship between the outside air temperature, the target outlet temperature of the heater core 24, and the target outlet temperature of the cooler core 26.
  • the outdoor heat exchanger 14 When the outdoor temperature is low (for example, 0 ° C. to 10 ° C.), by switching to the above-described second dehumidifying heating mode, the outdoor heat exchanger 14, the cooler core 26, and the vehicle-mounted device 55 absorb heat to generate a desired heater core blowing temperature. .
  • the cooler core frost prevention control is a control in which the flow rate of the cooling water flowing through the cooler core 26 is adjusted by the first flow control valve 56 so that frost is not generated in the cooler core 26.
  • the control device 30 determines that the surface temperature of the cooler core 26 or the temperature of the cooling water flowing into the cooler core 26 is equal to or lower than the frost limit temperature (for example, 0 ° C.), the surface temperature of the cooler core 26,
  • the frost limit temperature for example, 0 ° C.
  • the flow rate of the cooling water flowing into the cooler core 26 with the opening of the first flow regulating valve 56 reduced or fully closed. Is reduced or reduced to zero.
  • the heat amount for heating can be obtained by absorbing heat from the in-vehicle device 55. Therefore, the amount of heat necessary for heating can be ensured without increasing the rotational speed of the compressor 11 as much as possible.
  • control device 30 adjusts the flow rate of the cooling water flowing through the in-vehicle device 55 by the second flow control valve 57 so that the in-vehicle device 55 is not overcooled.
  • the control device 30 determines that the temperature of the in-vehicle device 55 or the temperature of the cooling water flowing into the in-vehicle device 55 has become lower than the lower limit temperature, or the temperature of the in-vehicle device 55 or the in-vehicle device 55
  • the opening degree of the second flow control valve 57 is reduced or fully closed to reduce or reduce the flow rate of the cooling water flowing to the in-vehicle device 55.
  • the control device 30 reduces or reduces the flow rate of the cooling water discharged from the low temperature side pump 25. To.
  • the low temperature side pump 25 is a flow rate adjusting unit that adjusts the flow rate of the cooling water flowing through the cooler core 26 and the flow rate of the cooling water flowing through the in-vehicle device 55.
  • the control device 30 performs the frost suppression control on the first flow control valve 56, and when performing the frost suppression control, the second flow control valve 57 so that the cooling water flows to the in-vehicle device 55.
  • the frost suppression control is a control for suppressing the frost of the cooler core 26 by controlling the first flow regulating valve 56 and the low temperature side pump 25 so that the flow rate of the cooling water flowing through the cooler core 26 is suppressed.
  • the occurrence of frost in the cooler core 26 can be suppressed by performing the frost suppression control.
  • the frost suppression control is performed, the cooling water flows through the in-vehicle device 55, so that heat can be absorbed from the in-vehicle device 55. Therefore, even if the heat absorption amount from the cooler core 26 is reduced by performing the frost suppression control, the heat absorption amount from the in-vehicle device 55 can be compensated, so that the temperature of the air blown into the vehicle interior can be secured.
  • the power of the compressor 11 consumed to secure the temperature of the air blown into the vehicle interior can be reduced.
  • the control device 30 controls the flow rate of the cooling water flowing through the in-vehicle device 55 so that the temperature of the in-vehicle device 55 does not fall below the lower limit temperature. Adjustment is performed by the side pump 25. Thereby, it can suppress that the vehicle equipment 55 is overcooled.
  • the control device 30 performs the frost suppression control
  • the temperature of the in-vehicle device 55 is lower than the lower limit temperature
  • the temperature of the in-vehicle device 55 is higher than the lower limit temperature.
  • the second flow control valve 57 and the low temperature side pump 25 are controlled so that the flow rate of the cooling water flowing to the in-vehicle device 55 is reduced. Thereby, it can suppress that the vehicle equipment 55 is overcooled.
  • the temperatures of the cooler core 26 and the in-vehicle device 55 are adjusted by the first flow regulating valve 56 and the second flow regulating valve 57.
  • the temperature of the cooler core 26 and the vehicle equipment 55 is adjusted.
  • the switching valve 58 is arranged in a branch portion of the low-temperature cooling water circuit 22 where the flow of the cooling water flowing out from the low-pressure side heat exchanger 16 is branched into the cooler core 26 side and the in-vehicle device 55 side.
  • the switching valve 58 can open and close the cooling water passage on the cooler core 26 side and the cooling water passage on the in-vehicle device 55 side independently.
  • the switching valve 58 can adjust independently the opening degree of the cooling water flow path on the cooler core 26 side and the opening degree of the cooling water flow path on the in-vehicle device 55 side.
  • the switching valve 58 is an electromagnetic valve controlled by the control device 30.
  • the switching valve 58 is a flow rate adjusting unit that adjusts the flow rate of the cooling water flowing through the cooler core 26 and the flow rate of the cooling water flowing through the in-vehicle device 55.
  • control device 30 controls the switching valve 58 so that the temperature adjustment of the cooler core 26 is prioritized over the temperature adjustment of the in-vehicle device 55.
  • the cooling water cooled by the low-pressure side heat exchanger 16 flows into the cooler core 26 and the air blown into the vehicle interior is The dehumidification is performed by being cooled by the cooler core 26, the cooling water heated by the high pressure side heat exchanger 12 flows into the heater core 24, and the air cooled by the cooler core 26 is heated by the heater core 24. Air-conditioned air having a target blowing temperature is generated.
  • the target air temperature of the heater core 24 (that is, the target air temperature TAO) varies depending on the inside air temperature and the outside air temperature.
  • the outdoor heat exchanger 14, the cooler core 26, and the in-vehicle device 55 perform heat absorption to obtain a desired heater core blowing temperature. Generate.
  • the control device 30 performs cooler core frost prevention control (in other words, frost suppression control). Specifically, the control device 30 determines that the surface temperature of the cooler core 26 or the temperature of the cooling water flowing into the cooler core 26 is equal to or lower than the frost limit temperature (for example, 0 ° C.), the surface temperature of the cooler core 26, When the temperature of the cooling water flowing into the cooler core 26 is predicted to be equal to or lower than the frost limit temperature (for example, 0 ° C.), the switching valve 58 reduces or completely closes the opening of the cooling water flow path on the cooler core 26 side to the cooler core 26. Decrease or reduce the flow rate of the flowing cooling water. Thereby, since the surface temperature of the cooler core 26 rises, generation
  • frost suppression control the control device 30 determines that the surface temperature of the cooler core 26 or the temperature of the cooling water flowing into the cooler core 26 is equal to or lower than the frost limit temperature (for example, 0 ° C
  • the control device 30 executes the control process shown in the flowchart of FIG. 22 during the cooler core frost prevention control.
  • step S100 it is determined whether or not the temperature Td of the in-vehicle device 55 is lower than the lower limit temperature Ti.
  • it determines with the temperature Td of the vehicle equipment 55 not being lower than the minimum temperature Ti, it progresses to step S110 and switches the switching valve 58 so that the vehicle equipment 55 may be connected to the low voltage
  • FIG. Thereby, it can absorb heat from the vehicle equipment 55 and can be used as a heating heat source.
  • step S100 determines whether the temperature Td of the in-vehicle device 55 is lower than the lower limit temperature Ti. If it is determined in step S100 that the temperature Td of the in-vehicle device 55 is lower than the lower limit temperature Ti, the process proceeds to step S120, and the switching valve 58 is switched so that the in-vehicle device 55 is not connected to the low-pressure side heat exchanger 16. At the same time, the flow rate of the cooling water discharged from the low temperature side pump 25 is reduced or made zero.
  • the low temperature side pump 25 is a flow rate adjusting unit that adjusts the flow rate of the cooling water flowing through the cooler core 26 and the flow rate of the cooling water flowing through the in-vehicle device 55.
  • the control device 30 performs the frost suppression control on the switching valve 58 and the low temperature side pump 25, and when performing the frost suppression control, the switching valve 58 and The low temperature side pump 25 is controlled.
  • the frost suppression control is a control for suppressing the frost of the cooler core 26 by controlling the switching valve 58 and the low temperature side pump 25 so that the flow rate of the cooling water flowing through the cooler core 26 is suppressed.
  • the seventh embodiment it is possible to achieve both ensuring the temperature of the air blown into the passenger compartment and suppressing the occurrence of frost in the cooler core. Moreover, compared with the case where it does not absorb heat from the vehicle equipment 55, the motive power of the compressor 11 consumed in order to ensure the blowing air temperature to a vehicle interior can be reduced.
  • the control device 30 controls the flow rate of the cooling water flowing to the in-vehicle device 55 so that the temperature of the in-vehicle device 55 does not fall below the lower limit temperature. Adjust by. Thereby, similarly to the said 7th Embodiment, it can suppress that the vehicle equipment 55 is overcooled.
  • the control device 30 performs the frost suppression control
  • the temperature of the in-vehicle device 55 is lower than the lower limit temperature
  • the temperature of the in-vehicle device 55 is higher than the lower limit temperature.
  • the switching valve 58 and the low temperature side pump 25 are controlled so that the flow rate of the cooling water flowing through the in-vehicle device 55 is reduced.
  • the modulator 12b and the supercooling unit 12c on the high-pressure side heat exchanger 12 side may be configured by the heat exchange unit 12a of the high-pressure side heat exchanger 12. That is, the liquid refrigerant may be stored inside the heat exchange part 12a of the high-pressure side heat exchanger 12.
  • the high-pressure side heat exchanger 12 is a refrigerant cooling water heat exchanger that exchanges heat between the refrigerant and the cooling water
  • the temperature difference between the refrigerant and the cooling water becomes very small in the high-pressure side heat exchanger 12. Therefore, compared with the case where the high-pressure side heat exchanger 12 is a refrigerant air heat exchanger that exchanges heat between the refrigerant and air, the volume of liquid refrigerant in the high-pressure side heat exchanger 12 with respect to the amount of subcooling acquired.
  • the percentage increase is very large. As a result, the liquid refrigerant storage amount can be increased.
  • the modulator 12b on the high-pressure side heat exchanger 12 side is integrated with the high-pressure side heat exchanger 12, so that the configuration can be simplified.
  • the modulator 12b and the supercooling unit 12c on the high-pressure side heat exchanger 12 side exchange heat between the refrigerant and the high-temperature side cooling water in the heat absorption mode. Can be cooled.
  • the refrigerant flowing out from the heat exchange part 12a of the high-pressure side heat exchanger 12 is stored in the modulator 12b of the high-pressure side heat exchanger 12, and the refrigerant is stored in the high-pressure side heat exchanger. You may make it store in the inside of the refrigerant
  • the refrigerant outlet side of the high-pressure side heat exchanger 12 and the refrigerant inlet of the first expansion valve 13 can be stored so that the refrigerant flowing out from the heat exchange unit 12a of the high-pressure side heat exchanger 12 can be stored in the heating mode.
  • a large volume of the refrigerant piping on the side may be ensured.
  • coolant storage part which stores the refrigerant
  • coolant storage part is The refrigerant piping on the refrigerant outlet side of the high-pressure side heat exchanger 12 and on the refrigerant inlet side of the first expansion valve 13 may be used.
  • cooling water is used as a heat medium for adjusting the temperature of the temperature adjustment target device, but various media such as oil may be used as the heat medium.
  • Nanofluid may be used as the heat medium.
  • a nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed.
  • the effect of improving the thermal conductivity in a specific temperature range the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature
  • liquidity of can be acquired.
  • Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
  • the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
  • the amount of cold storage heat due to the sensible heat of the heat medium itself can be increased.
  • the aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained.
  • the aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
  • Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT, graphene, graphite core-shell nanoparticle, Au nanoparticle-containing CNT, and the like can be used as the constituent atoms of the nanoparticle.
  • the CNT is a carbon nanotube.
  • the graphite core-shell nanoparticle is a particle body having a structure such as a carbon nanotube surrounding the atom.
  • a chlorofluorocarbon refrigerant is used as the refrigerant.
  • the type of the refrigerant is not limited to this, and natural refrigerants such as carbon dioxide, hydrocarbon refrigerants, etc. May be used.
  • the refrigeration cycle apparatus 10 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. You may comprise the cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This refrigeration cycle device is equipped with: a first expansion valve (13) which decompresses the refrigerant flowing out from a high-pressure-side heat exchanger (12); an outdoor heat exchanger (14) which heat exchanges the refrigerant flowing out from the first expansion valve (13) and outside air; a second expansion valve (15) which decompresses the refrigerant flowing out from the outdoor heat exchanger (14); a low-pressure-side heat exchanger (16) which is disposed in series with the outdoor heat exchanger (14) in the flow of the refrigerant so as to cool a heat carrier by heat exchanging the low-pressure refrigerant decompressed by the first decompression unit (13) and/or the second decompression unit (15) and the heat carrier; a cooler core (26) which cools air by heat exchanging the heat carrier cooled by the low-pressure-side heat exchanger (16) and the air sent to the interior of a vehicle; and a control unit (30) which switches between a heat absorption mode and a heat radiation mode by adjusting the decompression amounts of the first expansion valve (13) and the second expansion valve (15).

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年12月10日に出願された日本特許出願2015-240923号、及び2016年8月10日に出願された日本特許出願2016-157692号を基にしている。 This application includes Japanese Patent Application No. 2015-240923 filed on Dec. 10, 2015, and Japanese Patent Application No. 2016 filed on Aug. 10, 2016, the disclosures of which are incorporated herein by reference. Based on -157692.
 本開示は、冷媒と外気とを熱交換させる熱交換器を備える冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle apparatus including a heat exchanger that exchanges heat between refrigerant and outside air.
 従来、特許文献1には、圧縮機と室内凝縮器と第1膨張弁と第2膨張弁と室外熱交換器と室内蒸発器とアキュムレータとを備える車両用冷凍サイクル装置が記載されている。 Conventionally, Patent Document 1 describes a vehicular refrigeration cycle apparatus including a compressor, an indoor condenser, a first expansion valve, a second expansion valve, an outdoor heat exchanger, an indoor evaporator, and an accumulator.
 圧縮機は、冷媒を吸入し、圧縮して吐出する。冷媒には、圧縮機を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 Compressor sucks in refrigerant, compresses it, and discharges it. Refrigerating machine oil for lubricating the compressor is mixed in the refrigerant, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 室内凝縮器は、圧縮機から吐出された高圧冷媒を放熱させて、室内蒸発器を通過した車室内へ送風される空気を加熱する放熱器である。 The indoor condenser is a radiator that dissipates the high-pressure refrigerant discharged from the compressor and heats the air blown into the vehicle interior that has passed through the indoor evaporator.
 第1膨張弁は、暖房モード時および除湿暖房モード時等に冷媒の減圧作用を発揮する。第2膨張弁は、冷房モード時および除湿暖房モード時等に冷媒の減圧作用を発揮する。 The first expansion valve exerts a decompression action of the refrigerant in the heating mode and the dehumidifying heating mode. The second expansion valve exerts a refrigerant decompression action in the cooling mode and the dehumidifying heating mode.
 室外熱交換器は、冷媒と外気とを熱交換させる。室外熱交換器は、暖房モード時等には、冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、冷房モード時等には、冷媒を放熱させる放熱器として機能する。 The outdoor heat exchanger exchanges heat between the refrigerant and the outside air. The outdoor heat exchanger functions as an evaporator that evaporates the refrigerant and exerts an endothermic effect in the heating mode and the like, and functions as a radiator that radiates the refrigerant in the cooling mode and the like.
 室内蒸発器は、冷房モード時および除湿暖房モード時等に、その内部を流通する冷媒を、室内凝縮器通過前の車室内へ送風される空気と熱交換させて蒸発させ、吸熱作用を発揮させることにより車室内へ送風される空気を冷却する蒸発器である。 The indoor evaporator, in the cooling mode and the dehumidifying and heating mode, evaporates the refrigerant flowing through the interior by exchanging heat with the air blown into the vehicle compartment before passing through the indoor condenser, thereby exhibiting an endothermic effect. This is an evaporator for cooling the air blown into the vehicle interior.
 アキュムレータは、その内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。アキュムレータの気相冷媒出口には、圧縮機の吸入口側が接続されている。従って、アキュムレータは、圧縮機に液相冷媒が吸入されることを抑制し、圧縮機における液圧縮を防止する機能を果たす。 The accumulator is a gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator and stores excess refrigerant in the cycle. The suction port side of the compressor is connected to the gas phase refrigerant outlet of the accumulator. Accordingly, the accumulator functions to prevent liquid phase refrigerant from being sucked into the compressor and prevent liquid compression in the compressor.
 この従来技術では、アキュムレータは、室内蒸発器の冷媒出口側かつ圧縮機の冷媒吸入側に配置されている。 In this prior art, the accumulator is disposed on the refrigerant outlet side of the indoor evaporator and on the refrigerant suction side of the compressor.
 特許文献2には、チラーとクーラコアと冷却水ポンプとを備える車両用冷凍サイクル装置が記載されている。 Patent Document 2 describes a refrigeration cycle device for a vehicle including a chiller, a cooler core, and a cooling water pump.
 チラーは、冷凍サイクルの低圧側冷媒と冷却水とを熱交換させて冷却水を冷却する熱交換器である。クーラコアは、チラーで冷却された冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を冷却除湿する熱交換器である。冷却水ポンプは、チラーとクーラコアとの間を循環する冷却水を吸入して吐出する。 The chiller is a heat exchanger that cools the cooling water by exchanging heat between the low-pressure refrigerant in the refrigeration cycle and the cooling water. The cooler core is a heat exchanger that heat-exchanges the cooling water cooled by the chiller and the air blown into the vehicle interior to cool and dehumidify the air blown into the vehicle interior. The cooling water pump sucks and discharges the cooling water circulating between the chiller and the cooler core.
 特許文献2の車両用冷凍サイクル装置は、ヒータコアとラジエータとを備えている。ヒータコアは、冷凍サイクルの高圧側冷媒を熱源として、クーラコアを通過した車室内へ送風される空気を加熱する熱交換器である。ラジエータは、チラーで冷却された冷却水と冷却水と外気とを熱交換する熱交換器である。 The vehicle refrigeration cycle apparatus of Patent Literature 2 includes a heater core and a radiator. The heater core is a heat exchanger that heats air that is blown into the vehicle interior that has passed through the cooler core, using the high-pressure side refrigerant of the refrigeration cycle as a heat source. The radiator is a heat exchanger that exchanges heat between the cooling water cooled by the chiller, the cooling water, and the outside air.
 冷凍サイクルの低圧側冷媒で冷却された冷却水がラジエータにて外気から吸熱するとともにクーラコアにて車室内へ送風される空気から吸熱し、クーラコアで吸熱された空気を、冷凍サイクルの高圧側冷媒を熱源としてヒータコアにて加熱することによって、除湿暖房を行うことができる。 Cooling water cooled by the low-pressure side refrigerant of the refrigeration cycle absorbs heat from the outside air by the radiator and absorbs heat from the air blown into the passenger compartment by the cooler core, and the air absorbed by the cooler core is used as the high-pressure side refrigerant of the refrigeration cycle. Dehumidification heating can be performed by heating with a heater core as a heat source.
特開2012-225637号公報JP 2012-225637 A 特開2015-013639号公報Japanese Patent Laid-Open No. 2015-013639
 本願の発明者らの検討によると、上記特許文献1の従来技術では、暖房モード時等における室内凝縮器の加熱性能を十分に確保するために、室外熱交換器における冷媒の圧力をより低くして室外熱交換器における冷媒の外気からの吸熱量を大きくする必要がある。 According to the study of the inventors of the present application, in the prior art of Patent Document 1, the refrigerant pressure in the outdoor heat exchanger is lowered in order to ensure sufficient heating performance of the indoor condenser in the heating mode or the like. Therefore, it is necessary to increase the amount of heat absorbed from the outside air of the refrigerant in the outdoor heat exchanger.
 しかしながら、室外熱交換器における冷媒の圧力がある程度の圧力以下になってしまうと室内蒸発器の表面で発生した凝縮水が凍結してフロストが発生してしまう。そのため、室内蒸発器を通過する空気の風量が減少してしまうので、室内蒸発器で必要とされる熱交換能力を得ることができなくなってしまう。 However, if the refrigerant pressure in the outdoor heat exchanger falls below a certain level, the condensed water generated on the surface of the indoor evaporator freezes and frost is generated. Therefore, since the air volume passing through the indoor evaporator is reduced, it becomes impossible to obtain the heat exchange capability required for the indoor evaporator.
 この対策として、室内蒸発器に対して並列に冷媒が流れるバイパス流路と、冷媒が室内蒸発器側に流れる状態と冷媒がバイパス流路側に流れる状態とを交互に切り替えて蒸発圧力を調整する蒸発圧力調整弁とを設けることによって蒸発圧力の低下を抑制してフロストを抑制することが考えられる。 As a countermeasure against this, the bypass flow path in which the refrigerant flows in parallel to the indoor evaporator, the state in which the refrigerant flows to the indoor evaporator side, and the state in which the refrigerant flows to the bypass flow path are alternately switched to adjust the evaporation pressure. It is conceivable to suppress the frost by suppressing the decrease in the evaporation pressure by providing a pressure regulating valve.
 しかしながら、この対策によると、冷媒が室内蒸発器を流れているときは室内蒸発器を流れる冷媒の流量を減少させると室外熱交換器を流れる冷媒の流量も減少するので、室内凝縮器の加熱性能が低下されやすい。 However, according to this measure, when the refrigerant is flowing through the indoor evaporator, if the flow rate of the refrigerant flowing through the indoor evaporator is reduced, the flow rate of the refrigerant flowing through the outdoor heat exchanger is also reduced. Tends to be reduced.
 本開示は上記点に鑑みて、冷媒と外気とを熱交換させる熱交換器における冷媒の圧力をより低くして外気からの吸熱量を大きくすることと、空気を冷却する熱交換器におけるフロストの発生を抑制することとを両立することを第1の目的とする。 In view of the above points, the present disclosure is directed to lowering the pressure of the refrigerant in the heat exchanger that exchanges heat between the refrigerant and the outside air to increase the amount of heat absorbed from the outside air, and the frost in the heat exchanger that cools the air. A first object is to achieve both suppression of generation.
 また、上記特許文献1の従来技術では、アキュムレータは、冷媒中の冷凍機油を圧縮機に戻す機能も有しているが、アキュムレータは、室内蒸発器の冷媒出口側かつ圧縮機の冷媒吸入側に配置されているため、アキュムレータ中の冷媒および冷凍機油は低温低圧になりやすい。 In the prior art disclosed in Patent Document 1, the accumulator also has a function of returning the refrigeration oil in the refrigerant to the compressor. However, the accumulator is provided on the refrigerant outlet side of the indoor evaporator and on the refrigerant suction side of the compressor. Since it is arranged, the refrigerant and the refrigerating machine oil in the accumulator are likely to be low temperature and low pressure.
 そのため、アキュムレータ中の冷媒および冷凍機油の粘性が大きくなり、冷凍機油を圧縮機に戻しにくくなる。そのため、冷凍機油の戻り量が所望の量、得られるように冷媒中の冷凍機油の量を増加させる必要がある。そのため、低圧冷媒圧力が高くなる冷媒モード時には冷凍機油の戻り量が過剰になり、冷房性能が低下される。 Therefore, the viscosity of the refrigerant and refrigerating machine oil in the accumulator increases, and it becomes difficult to return the refrigerating machine oil to the compressor. Therefore, it is necessary to increase the amount of refrigerating machine oil in the refrigerant so that a desired amount of refrigerating machine oil can be returned. Therefore, in the refrigerant mode in which the low-pressure refrigerant pressure becomes high, the return amount of the refrigerating machine oil becomes excessive, and the cooling performance is deteriorated.
 また、アキュムレータ中の冷媒が低温低圧になるので、アキュムレータでの冷媒圧力損失が大きくなる。特に低圧冷媒圧力が低くなる暖房モード時に冷媒圧力損失が大きくなる。その結果、暖房性能低下にもつながる。 Also, since the refrigerant in the accumulator becomes low temperature and low pressure, refrigerant pressure loss in the accumulator increases. In particular, the refrigerant pressure loss increases during the heating mode in which the low-pressure refrigerant pressure is low. As a result, the heating performance is also reduced.
 本開示は上記点に鑑みて、冷媒貯留部における冷凍機油の排出性を向上させるとともに、冷媒貯留部における冷媒の圧力損失を低減することを第2の目的とする。 In view of the above points, a second object of the present disclosure is to improve the discharge performance of the refrigeration oil in the refrigerant reservoir and to reduce the pressure loss of the refrigerant in the refrigerant reservoir.
 上記特許文献2の従来技術では、クーラコアでフロストが発生するおそれがある場合、冷却水ポンプを停止させてクーラコアでの熱交換を停止させることによってフロストの発生を防止する。 In the prior art of Patent Document 2 described above, when there is a possibility that frost may be generated in the cooler core, generation of frost is prevented by stopping the cooling water pump and stopping heat exchange in the cooler core.
 このとき、チラーの冷却水出口部では冷却水の温度が外気温度以下となり、クーラコアの熱交換部では冷却水の温度が内気温度または外気温度と同等となる。すなわち、チラーとクーラコアとで冷却水の温度差がある。そのため、冷却水ポンプを停止させていてもチラーの低温の冷却水が対流によってクーラコアへ徐々に移動してしまうので、クーラコアへの送風が継続されていると不要な熱交換が行われてしまったり、クーラコアでのフロストの発生を十分に防止できなくなったりする。 At this time, at the cooling water outlet of the chiller, the temperature of the cooling water is equal to or lower than the outside air temperature, and at the heat exchanger of the cooler core, the temperature of the cooling water is equal to the inside air temperature or the outside air temperature. That is, there is a temperature difference between the cooling water between the chiller and the cooler core. Therefore, even if the cooling water pump is stopped, the low-temperature cooling water of the chiller gradually moves to the cooler core due to convection, so unnecessary heat exchange may occur if the air blowing to the cooler core is continued. The occurrence of frost in the cooler core cannot be sufficiently prevented.
 本開示は上記点に鑑みて、チラーとクーラコアとの間の熱媒体の循環が停止している場合にチラーとクーラコアとの間で冷却水が移動することを抑制することを第3の目的とする。 In view of the above points, the present disclosure has a third object of suppressing movement of cooling water between the chiller and the cooler core when circulation of the heat medium between the chiller and the cooler core is stopped. To do.
 上記特許文献2の従来技術では、除湿暖房を行う場合、圧縮機の回転数を上昇させてヒータコアからの吹出空気温度を上昇させる。しかしながら、圧縮機の回転数を上昇させるとクーラコアにてフロストが発生するおそれがある。 In the prior art of Patent Document 2, when performing dehumidifying heating, the rotation speed of the compressor is increased to increase the temperature of the air blown from the heater core. However, when the rotation speed of the compressor is increased, frost may occur in the cooler core.
 具体的には、圧縮機の回転数を上昇させると冷凍サイクルの低圧が下がりチラーで冷却された冷却水の温度が低下するので、クーラコアに流入する冷媒の温度も低下する。その結果、クーラコアの表面温度が0℃以下になるとクーラコアの表面で空気中の水分が凍結して氷となって付着するので、クーラコアにおける空気の流通が阻害される。 Specifically, when the rotation speed of the compressor is increased, the low pressure of the refrigeration cycle is lowered and the temperature of the cooling water cooled by the chiller is lowered, so that the temperature of the refrigerant flowing into the cooler core is also lowered. As a result, when the surface temperature of the cooler core becomes 0 ° C. or lower, moisture in the air freezes and adheres as ice on the surface of the cooler core, so that air circulation in the cooler core is hindered.
 本開示は上記点に鑑みて、車室内への吹出空気温度を確保することと、クーラコアにおけるフロスト発生を抑制することとを両立することを第4の目的とする。 In view of the above points, a fourth object of the present disclosure is to ensure both the temperature of the air blown into the passenger compartment and the suppression of frost generation in the cooler core.
 本開示の第1態様による冷凍サイクル装置は、冷媒を吸入して吐出する圧縮機と、圧縮機から吐出された高圧の冷媒を放熱させる高圧側熱交換器と、高圧側熱交換器から流出した冷媒を減圧させる第1減圧部と、第1減圧部から流出した冷媒と外気とを熱交換させる冷媒外気熱交換器と、冷媒外気熱交換器から流出した冷媒を減圧させる第2減圧部と、冷媒の流れにおいて冷媒外気熱交換器と直列に配置され、第1減圧部および第2減圧部のうち少なくとも一方で減圧された低圧の冷媒と熱媒体とを熱交換させて熱媒体を冷却させる低圧側熱交換器と、低圧側熱交換器で冷却された熱媒体と車室内へ送風される空気とを熱交換させて空気を冷却するクーラコアと、第1減圧部および第2減圧部の減圧量を調整することによって、冷媒外気熱交換器が冷媒に吸熱させる吸熱モードと、冷媒外気熱交換器が冷媒を放熱させる放熱モードとを切り替える制御部とを備える。 The refrigeration cycle apparatus according to the first aspect of the present disclosure flows out of the compressor that sucks and discharges the refrigerant, the high-pressure side heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor, and the high-pressure side heat exchanger. A first decompression unit for decompressing the refrigerant, a refrigerant outside air heat exchanger for exchanging heat between the refrigerant flowing out from the first decompression unit and the outside air, a second decompression unit for decompressing the refrigerant flowing out from the refrigerant outside air heat exchanger, A low pressure that is arranged in series with the refrigerant outside air heat exchanger in the flow of the refrigerant and cools the heat medium by exchanging heat between the low-pressure refrigerant and the heat medium decompressed at least one of the first decompression unit and the second decompression unit. A side heat exchanger, a cooler core that cools air by exchanging heat between the heat medium cooled by the low-pressure side heat exchanger and the air blown into the vehicle interior, and reduced pressure amounts of the first pressure reducing unit and the second pressure reducing unit Adjust the refrigerant outside air heat exchange And a controller that switches between an endothermic mode in which the refrigerant absorbs heat to the refrigerant and a heat radiation mode in which the refrigerant outside air heat exchanger radiates heat from the refrigerant.
 これによると、制御部が第1減圧部および第2減圧部の減圧量を調整することによって吸熱モードと放熱モードとを切り替えることができるので、簡素な構成によって吸熱モードと放熱モードとを切り替えることができる。 According to this, since the control unit can switch between the heat absorption mode and the heat dissipation mode by adjusting the amount of pressure reduction of the first pressure reduction unit and the second pressure reduction unit, the heat absorption mode and the heat dissipation mode are switched with a simple configuration. Can do.
 また、低圧側熱交換器とクーラコアとの間に熱媒体が介在しているので、クーラコアで冷却された空気の温度よりも、クーラコアに流入する熱媒体の温度の方が低くなり、クーラコアに流入する熱媒体の温度よりも低圧側熱交換器に流入する冷媒の温度の方が低くなる。 In addition, since the heat medium is interposed between the low pressure side heat exchanger and the cooler core, the temperature of the heat medium flowing into the cooler core is lower than the temperature of the air cooled by the cooler core, and flows into the cooler core. The temperature of the refrigerant flowing into the low-pressure side heat exchanger becomes lower than the temperature of the heat medium that performs.
 よって、室内蒸発器で冷媒と空気とを直接熱交換させる構成と比較して、低圧側熱交換器における冷媒の温度を低くでき、結果として低圧側熱交換器における冷媒圧力も低くできる。 Therefore, the refrigerant temperature in the low-pressure side heat exchanger can be lowered, and as a result, the refrigerant pressure in the low-pressure side heat exchanger can be lowered as compared with a configuration in which heat is directly exchanged between the refrigerant and air in the indoor evaporator.
 そのため、冷媒外気熱交換器における冷媒の圧力をより低くして冷媒外気熱交換器における冷媒の外気からの吸熱量を大きくすることと、クーラコアにおけるフロストの発生を抑制することとを両立できる。 Therefore, the refrigerant pressure in the refrigerant outside air heat exchanger can be lowered to increase the amount of heat absorbed from the outside air of the refrigerant in the refrigerant outside air heat exchanger, and the generation of frost in the cooler core can be suppressed.
 本開示の第2態様による冷凍サイクル装置は、冷媒を吸入して吐出する圧縮機と、圧縮機から吐出された高圧の冷媒を放熱させる高圧側熱交換器と、高圧側熱交換器から流出した冷媒を減圧させる第1減圧部と、第1減圧部から流出した冷媒と外気とを熱交換させる冷媒外気熱交換器と、冷媒外気熱交換器から流出した冷媒を減圧させる第2減圧部と、第1減圧部および第2減圧部のうち少なくとも一方で減圧された低圧の冷媒に吸熱させる低圧側熱交換器と、第1減圧部および第2減圧部の減圧量を調整することによって、冷媒外気熱交換器が冷媒に吸熱させる吸熱モードと、冷媒外気熱交換器が冷媒を放熱させる放熱モードとを切り替える制御部と、吸熱モードでは、高圧側熱交換器で熱交換された冷媒を貯え、放熱モードでは、冷媒外気熱交換器で熱交換された冷媒を貯える冷媒貯留部とを備える。 The refrigeration cycle apparatus according to the second aspect of the present disclosure flows out of the compressor that sucks and discharges the refrigerant, the high-pressure side heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor, and the high-pressure side heat exchanger. A first decompression unit for decompressing the refrigerant, a refrigerant outside air heat exchanger for exchanging heat between the refrigerant flowing out from the first decompression unit and the outside air, a second decompression unit for decompressing the refrigerant flowing out from the refrigerant outside air heat exchanger, By adjusting the pressure reduction amount of the low pressure side heat exchanger that absorbs heat to the low pressure refrigerant decompressed at least one of the first decompression unit and the second decompression unit, and the decompression amount of the first decompression unit and the second decompression unit, the refrigerant outside air A controller that switches between an endothermic mode in which the heat exchanger absorbs heat into the refrigerant and a heat release mode in which the refrigerant outside air heat exchanger dissipates heat from the refrigerant, and in the endothermic mode, the heat exchanged by the high-pressure heat exchanger is stored and dissipated. Mode, refrigerant And a coolant reservoir for storing a refrigerant heat exchange in a gas heat exchanger.
 これによると、吸熱モードおよび放熱モードのいずれにおいても、冷媒貯留部をサイクル高圧側に持つことができる。換言すれば、吸熱モードおよび放熱モードのいずれにおいても冷凍サイクルをレシーバサイクル化できる。 According to this, the refrigerant reservoir can be provided on the cycle high pressure side in both the heat absorption mode and the heat release mode. In other words, the refrigeration cycle can be converted into a receiver cycle in both the heat absorption mode and the heat dissipation mode.
 そのため、冷媒貯留部をサイクル低圧側に持つアキュムレータサイクルと比較して冷媒貯留部における冷媒および冷凍機油の粘性が小さくなるので、冷媒の圧力損失を低減できるとともに冷凍機油の排出性を向上できる。 Therefore, since the viscosity of the refrigerant and the refrigeration oil in the refrigerant storage section is smaller than that of the accumulator cycle having the refrigerant storage section on the cycle low pressure side, the pressure loss of the refrigerant can be reduced and the discharge performance of the refrigeration oil can be improved.
 本開示の第3態様による冷凍サイクル装置は、冷媒を吸入して吐出する圧縮機と、圧縮機から吐出された高圧の冷媒を放熱させる高圧側熱交換器と、高圧側熱交換器から流出した冷媒を減圧させる減圧部と、減圧部で減圧された低圧の冷媒と熱媒体とを熱交換させて熱媒体を冷却させる低圧側熱交換器と、低圧側熱交換器で冷却された熱媒体と空気とを熱交換させて空気を冷却する熱交換部を有するクーラコアと、熱媒体を吸引して吐出し、低圧側熱交換器とクーラコアとの間で熱媒体を循環させる熱媒体ポンプと、クーラコアに空気を送風する送風機とを備え、低圧側熱交換器は、熱媒体の入口および出口を有しており、熱交換部は、入口および出口のうち少なくとも一方よりも重力方向の高い位置に配置されている。 The refrigeration cycle apparatus according to the third aspect of the present disclosure flows out of the compressor that sucks and discharges the refrigerant, the high-pressure side heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor, and the high-pressure side heat exchanger. A decompression unit that decompresses the refrigerant, a low-pressure side heat exchanger that cools the heat medium by exchanging heat between the low-pressure refrigerant decompressed by the decompression unit and the heat medium, and a heat medium that is cooled by the low-pressure side heat exchanger A cooler core having a heat exchanging section for exchanging heat with air to cool the air, a heat medium pump for sucking and discharging the heat medium, and circulating the heat medium between the low pressure side heat exchanger and the cooler core, and the cooler core The low pressure side heat exchanger has an inlet and an outlet for the heat medium, and the heat exchanger is disposed at a position higher in the gravitational direction than at least one of the inlet and the outlet. Has been.
 これによると、低圧側熱交換器とクーラコアとの間の熱媒体の循環が停止している場合に低圧側熱交換器内の低温の熱媒体とクーラコア内の高温の熱媒体とが熱媒体の温度差による対流で入れ替わることを抑制できる。 According to this, when the circulation of the heat medium between the low pressure side heat exchanger and the cooler core is stopped, the low temperature heat medium in the low pressure side heat exchanger and the high temperature heat medium in the cooler core are It is possible to suppress switching by convection due to a temperature difference.
 本開示の第4態様による冷凍サイクル装置は、冷媒を吸入して吐出する圧縮機と、圧縮機から吐出された高圧の冷媒を放熱させる高圧側熱交換器と、高圧側熱交換器から流出した冷媒を減圧させる減圧部と、減圧部で減圧された低圧の冷媒と熱媒体とを熱交換させて熱媒体を冷却させる低圧側熱交換器と、低圧側熱交換器で冷却された熱媒体と空気とを熱交換させて空気を冷却する熱交換部を有するクーラコアと、熱媒体を吸引して吐出し、低圧側熱交換器とクーラコアとの間で熱媒体を循環させる熱媒体ポンプと、クーラコアに空気を送風する送風機と、低圧側熱交換器とクーラコアとの間の熱媒体の流路を形成する熱媒体流路部とを備える。また、低圧側熱交換器は、熱媒体の入口および出口を有しており、熱媒体流路部の少なくとも一部は、熱交換部よりも重力方向の低い位置に配置されている。 The refrigeration cycle apparatus according to the fourth aspect of the present disclosure flows out of the compressor that sucks and discharges the refrigerant, the high-pressure side heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor, and the high-pressure side heat exchanger. A decompression unit that decompresses the refrigerant, a low-pressure side heat exchanger that cools the heat medium by exchanging heat between the low-pressure refrigerant decompressed by the decompression unit and the heat medium, and a heat medium that is cooled by the low-pressure side heat exchanger A cooler core having a heat exchanging section for exchanging heat with air to cool the air, a heat medium pump for sucking and discharging the heat medium, and circulating the heat medium between the low pressure side heat exchanger and the cooler core, and the cooler core And a heat medium flow path section that forms a flow path of the heat medium between the low pressure side heat exchanger and the cooler core. Moreover, the low-pressure side heat exchanger has an inlet and an outlet for the heat medium, and at least a part of the heat medium flow path is disposed at a position lower in the direction of gravity than the heat exchanger.
 これによると、上記第3態様による冷凍サイクル装置と同様の作用効果を奏することができる。 According to this, the same effect as the refrigeration cycle apparatus according to the third aspect can be obtained.
 本開示の第5態様による冷凍サイクル装置は、冷媒を吸入して吐出する圧縮機と、圧縮機から吐出された高圧の冷媒と車室内へ送風される空気とを熱交換させて空気を加熱する高圧側熱交換部と、圧縮機から吐出された高圧の冷媒を放熱させる高圧側熱交換器と、高圧側熱交換器から流出した冷媒を減圧させる減圧部と、減圧部で減圧された冷媒と外気とを熱交換させる冷媒外気熱交換器と、冷媒外気熱交換器から流出した冷媒と熱媒体とを熱交換させて熱媒体を冷却させる低圧側熱交換器と、低圧側熱交換器で冷却された熱媒体と車室内へ送風される空気とを熱交換させて空気を冷却するクーラコアと、作動に伴って発熱し、低圧側熱交換器で冷却された熱媒体に吸熱される車載機器と、クーラコアに流れる熱媒体の流量および車載機器に流れる熱媒体の流量を調整する流量調整部と、クーラコアを流れる熱媒体の流量が抑制されるように流量調整部を制御することによってクーラコアのフロストを抑制するフロスト抑制制御を行い、フロスト抑制制御を行っている場合、車載機器に熱媒体が流れるように流量調整部を制御する制御部とを備える。 A refrigeration cycle apparatus according to a fifth aspect of the present disclosure heats air by exchanging heat between a compressor that sucks and discharges refrigerant, and high-pressure refrigerant discharged from the compressor and air blown into the passenger compartment. A high-pressure heat exchanger, a high-pressure heat exchanger that dissipates the high-pressure refrigerant discharged from the compressor, a decompression unit that decompresses the refrigerant flowing out of the high-pressure heat exchanger, and a refrigerant decompressed by the decompression unit; Cooling with a refrigerant outdoor air heat exchanger that exchanges heat with the outside air, a low pressure side heat exchanger that cools the heat medium by exchanging heat between the refrigerant and the heat medium that has flowed out of the refrigerant outside air heat exchanger, and a low pressure side heat exchanger A cooler core that cools the air by exchanging heat between the generated heat medium and the air blown into the vehicle interior, and an in-vehicle device that generates heat during operation and is absorbed by the heat medium cooled by the low-pressure side heat exchanger; , The flow rate of the heat medium flowing in the cooler core and on-vehicle equipment The flow rate adjusting unit for adjusting the flow rate of the flowing heat medium and the frost suppression control for suppressing the frost of the cooler core by controlling the flow rate adjusting unit so as to suppress the flow rate of the heat medium flowing through the cooler core are performed. When performing, it has a control part which controls a flow control part so that a heat carrier may flow into in-vehicle equipment.
 これによると、フロスト抑制制御を行うことによって、クーラコアにおけるフロスト発生を抑制できる。フロスト抑制制御を行っている場合、車載機器に熱媒体が流れるので車載機器から吸熱することができる。そのため、フロスト抑制制御を行うことによってクーラコアからの吸熱量が減少しても、車載機器からの吸熱量で補うことができるので、車室内への吹出空気温度を確保できる。 According to this, the occurrence of frost in the cooler core can be suppressed by performing the frost suppression control. When the frost suppression control is performed, the heat medium flows through the in-vehicle device, so that the heat can be absorbed from the in-vehicle device. Therefore, even if the amount of heat absorbed from the cooler core is reduced by performing the frost suppression control, the amount of heat absorbed from the in-vehicle device can be compensated, so that the temperature of air blown into the vehicle interior can be secured.
 したがって、車室内への吹出空気温度を確保することと、クーラコアにおけるフロスト発生を抑制することとを両立できる。 Therefore, it is possible to ensure both the temperature of the air blown into the passenger compartment and the suppression of frost generation in the cooler core.
第1実施形態における冷凍サイクル装置の全体構成図である。It is a whole lineblock diagram of the refrigerating cycle device in a 1st embodiment. 第1実施形態における室外熱交換器を示す模式図である。It is a schematic diagram which shows the outdoor heat exchanger in 1st Embodiment. 第1実施形態における冷凍サイクル装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the refrigeration cycle apparatus in 1st Embodiment. 第1実施形態における冷凍サイクル装置の暖房モード時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the heating mode of the refrigeration cycle apparatus in 1st Embodiment. 第1実施形態における冷凍サイクル装置の冷房モード時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the air_conditioning | cooling mode of the refrigerating-cycle apparatus in 1st Embodiment. 第1実施形態における冷凍サイクル装置の第1除湿暖房モード時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the 1st dehumidification heating mode of the refrigeration cycle apparatus in 1st Embodiment. 第1実施形態における冷凍サイクル装置の第2除湿暖房モード時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the 2nd dehumidification heating mode of the refrigeration cycle apparatus in 1st Embodiment. 第2実施形態の第1実施例における冷凍サイクル装置の一部を示す構成図である。It is a block diagram which shows a part of refrigeration cycle apparatus in the 1st Example of 2nd Embodiment. 第2実施形態の第2実施例における冷凍サイクル装置の一部を示す構成図である。It is a block diagram which shows a part of refrigeration cycle apparatus in 2nd Example of 2nd Embodiment. 第2実施形態における室外熱交換器およびシャッターを示す模式図である。It is a schematic diagram which shows the outdoor heat exchanger and shutter in 2nd Embodiment. 第2実施形態における冷凍サイクル装置の一部を示す構成図である。It is a block diagram which shows a part of refrigeration cycle apparatus in 2nd Embodiment. 第3実施形態における冷凍サイクル装置の一部を示す構成図である。It is a block diagram which shows a part of refrigeration cycle apparatus in 3rd Embodiment. 第4実施形態における冷凍サイクル装置の一部を示す構成図である。It is a block diagram which shows a part of refrigeration cycle apparatus in 4th Embodiment. 第5実施形態の第1実施例における冷凍サイクル装置の一部を示す構成図である。It is a block diagram which shows a part of refrigeration cycle apparatus in 1st Example of 5th Embodiment. 第5実施形態の第2実施例における冷凍サイクル装置の一部を示す構成図である。It is a block diagram which shows a part of refrigeration cycle apparatus in 2nd Example of 5th Embodiment. 第5実施形態の第3実施例における冷凍サイクル装置の一部を示す構成図である。It is a block diagram which shows a part of refrigeration cycle apparatus in 3rd Example of 5th Embodiment. 第6実施形態の第1実施例における冷凍サイクル装置の一部を示す構成図である。It is a block diagram which shows a part of refrigeration cycle apparatus in 1st Example of 6th Embodiment. 第6実施形態の第2実施例における冷凍サイクル装置の一部を示す構成図である。It is a block diagram which shows a part of refrigeration cycle apparatus in 2nd Example of 6th Embodiment. 第7実施形態における冷凍サイクル装置の全体構成図である。It is a whole block diagram of the refrigerating-cycle apparatus in 7th Embodiment. 第7実施形態における外気温とヒータコアの目標吹出温度およびクーラコアの目標吹出温度との関係を例示するグラフである。It is a graph which illustrates the relationship between the outside air temperature in 7th Embodiment, the target blowing temperature of a heater core, and the target blowing temperature of a cooler core. 第8実施形態における冷凍サイクル装置の全体構成図である。It is a whole block diagram of the refrigerating-cycle apparatus in 8th Embodiment. 第8実施形態の制御装置が実行する制御処理を示すフローチャートである。It is a flowchart which shows the control processing which the control apparatus of 8th Embodiment performs.
 以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 図1に示す冷凍サイクル装置10は、車室内空間を適切な温度に調整するために用いられる車両用冷凍サイクル装置である。本実施形態では、冷凍サイクル装置10を、エンジン(換言すれば内燃機関)および走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に適用している。
(First embodiment)
A refrigeration cycle apparatus 10 shown in FIG. 1 is a vehicular refrigeration cycle apparatus used for adjusting a vehicle interior space to an appropriate temperature. In the present embodiment, the refrigeration cycle apparatus 10 is applied to a hybrid vehicle that obtains driving force for vehicle travel from an engine (in other words, an internal combustion engine) and a travel electric motor.
 本実施形態のハイブリッド自動車は、車両停車時に外部電源(換言すれば商用電源)から供給された電力を、車両に搭載された電池(換言すれば車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。 The hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle capable of charging power supplied from an external power source (in other words, commercial power source) when the vehicle is stopped to a battery (in other words, an in-vehicle battery) mounted on the vehicle. Has been. As the battery, for example, a lithium ion battery can be used.
 エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができ、電池に蓄えられた電力は、走行用電動モータのみならず、冷凍サイクル装置10を構成する電動式構成機器をはじめとする各種車載機器に供給される。 The driving force output from the engine is used not only for driving the vehicle but also for operating the generator. And the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery constitutes the refrigeration cycle apparatus 10 as well as the electric motor for traveling. It is supplied to various in-vehicle devices such as electric components.
 冷凍サイクル装置10は、圧縮機11、高圧側熱交換器12、第1膨張弁13、室外熱交換器14、第2膨張弁15および低圧側熱交換器16を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。 The refrigeration cycle apparatus 10 is a vapor compression refrigerator that includes a compressor 11, a high-pressure side heat exchanger 12, a first expansion valve 13, an outdoor heat exchanger 14, a second expansion valve 15, and a low-pressure side heat exchanger 16. . In the refrigeration cycle apparatus 10 of the present embodiment, a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure is configured.
 圧縮機11は、電池から供給される電力によって駆動される電動圧縮機、またはベルトによって駆動される可変容量圧縮機であり、冷凍サイクル装置10の冷媒を吸入して圧縮して吐出する。 The compressor 11 is an electric compressor driven by electric power supplied from a battery or a variable capacity compressor driven by a belt, and sucks, compresses and discharges the refrigerant of the refrigeration cycle apparatus 10.
 高圧側熱交換器12は、圧縮機11から吐出された高圧側冷媒と高温冷却水回路21の冷却水とを熱交換させることによって高圧側冷媒を凝縮させる凝縮器である。 The high-pressure side heat exchanger 12 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 21.
 高温冷却水回路21の冷却水は、熱媒体としての流体である。高温冷却水回路21の冷却水は高温熱媒体である。本実施形態では、高温冷却水回路21の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。 The cooling water of the high-temperature cooling water circuit 21 is a fluid as a heat medium. The cooling water of the high temperature cooling water circuit 21 is a high temperature heat medium. In the present embodiment, at least ethylene glycol, dimethylpolysiloxane, a liquid containing nanofluid, or an antifreeze liquid is used as the cooling water of the high-temperature cooling water circuit 21.
 第1膨張弁13は、高圧側熱交換器12から流出した液相冷媒を減圧膨張させる第1減圧部である。第1膨張弁13は、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。弁体は、冷媒通路の通路開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。 1st expansion valve 13 is the 1st decompression part which decompresses and expands the liquid phase refrigerant which flowed out from high pressure side heat exchanger 12. The first expansion valve 13 is an electric variable throttle mechanism, and includes a valve body and an electric actuator. The valve body is configured to be able to change the passage opening (in other words, the throttle opening) of the refrigerant passage. The electric actuator has a stepping motor that changes the throttle opening of the valve body.
 第1膨張弁13は、絞り開度を全開した際に冷媒通路を全開する全開機能付きの可変絞り機構で構成されている。つまり、第1膨張弁13は、冷媒通路を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。第1膨張弁13は、制御装置30から出力される制御信号によって、その作動が制御される。 The first expansion valve 13 is composed of a variable throttle mechanism with a fully open function that fully opens the refrigerant passage when the throttle opening is fully opened. That is, the first expansion valve 13 can prevent the refrigerant from depressurizing by fully opening the refrigerant passage. The operation of the first expansion valve 13 is controlled by a control signal output from the control device 30.
 室外熱交換器14は、第1膨張弁13から流出した冷媒と外気とを熱交換させる冷媒外気熱交換器である。室外熱交換器14には、室外送風機17によって外気が送風される。 The outdoor heat exchanger 14 is a refrigerant outdoor air heat exchanger that exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the outside air. Outside air is blown to the outdoor heat exchanger 14 by an outdoor blower 17.
 室外送風機17は、室外熱交換器14へ向けて外気を送風する送風部である。室外送風機17は、ファンを電動モータにて駆動する電動送風機である。室外熱交換器14および室外送風機17は、車両の最前部に配置されている。従って、車両の走行時には室外熱交換器14に走行風を当てることができるようになっている。 The outdoor blower 17 is a blower that blows outside air toward the outdoor heat exchanger 14. The outdoor blower 17 is an electric blower that drives a fan with an electric motor. The outdoor heat exchanger 14 and the outdoor blower 17 are disposed in the foremost part of the vehicle. Accordingly, the traveling wind can be applied to the outdoor heat exchanger 14 when the vehicle is traveling.
 室外熱交換器14を流通する冷媒の温度が外気の温度よりも低い場合、室外熱交換器14は、外気の熱を冷媒に吸熱させる吸熱器として機能する。室外熱交換器14を流通する冷媒の温度が外気の温度よりも高い場合、室外熱交換器14は、冷媒の熱を外気に放熱させる放熱器として機能する。 When the temperature of the refrigerant flowing through the outdoor heat exchanger 14 is lower than the temperature of the outside air, the outdoor heat exchanger 14 functions as a heat absorber that causes the refrigerant to absorb the heat of the outside air. When the temperature of the refrigerant flowing through the outdoor heat exchanger 14 is higher than the temperature of the outside air, the outdoor heat exchanger 14 functions as a radiator that radiates the heat of the refrigerant to the outside air.
 第2膨張弁15は、室外熱交換器14から流出した液相冷媒を減圧膨張させる第2減圧部である。第2膨張弁15は、電気式の可変絞り機構であり、弁体と電動アクチュエータとを有している。弁体は、冷媒通路の通路開度(換言すれば絞り開度)を変更可能に構成されている。電動アクチュエータは、弁体の絞り開度を変化させるステッピングモータを有している。 The second expansion valve 15 is a second decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the outdoor heat exchanger 14. The second expansion valve 15 is an electric variable throttle mechanism, and includes a valve body and an electric actuator. The valve body is configured to be able to change the passage opening (in other words, the throttle opening) of the refrigerant passage. The electric actuator has a stepping motor that changes the throttle opening of the valve body.
 第2膨張弁15は、絞り開度を全開した際に冷媒通路を全開する全開機能付きの可変絞り機構で構成されている。つまり、第2膨張弁15は、冷媒通路を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。第2膨張弁15は、制御装置30から出力される制御信号によって、その作動が制御される。 The second expansion valve 15 is composed of a variable throttle mechanism with a fully open function that fully opens the refrigerant passage when the throttle opening is fully opened. That is, the second expansion valve 15 can prevent the refrigerant from depressurizing by fully opening the refrigerant passage. The operation of the second expansion valve 15 is controlled by a control signal output from the control device 30.
 第1膨張弁13および第2膨張弁15の絞り開度が変更されることによって、吸熱モードと放熱モードとが切り替えられる。吸熱モードは、室外熱交換器14が冷媒に吸熱させる作動モードである。放熱モードは、室外熱交換器14が冷媒を放熱させる作動モードである。 The heat absorption mode and the heat radiation mode are switched by changing the throttle opening of the first expansion valve 13 and the second expansion valve 15. The endothermic mode is an operation mode in which the outdoor heat exchanger 14 causes the refrigerant to absorb heat. The heat release mode is an operation mode in which the outdoor heat exchanger 14 releases heat from the refrigerant.
 低圧側熱交換器16は、第2膨張弁15を流出した低圧冷媒と低温冷却水回路22の冷却水とを熱交換させることによって低圧冷媒を蒸発させる蒸発器である。低圧側熱交換器16で蒸発した気相冷媒は圧縮機11に吸入されて圧縮される。 The low-pressure side heat exchanger 16 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing out of the second expansion valve 15 and the cooling water of the low-temperature cooling water circuit 22. The gas-phase refrigerant evaporated in the low-pressure side heat exchanger 16 is sucked into the compressor 11 and compressed.
 低温冷却水回路22の冷却水は、熱媒体としての流体である。低温冷却水回路22の冷却水は低温熱媒体である。本実施形態では、低温冷却水回路22の冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。 The cooling water in the low-temperature cooling water circuit 22 is a fluid as a heat medium. The cooling water in the low-temperature cooling water circuit 22 is a low-temperature heat medium. In the present embodiment, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water of the low-temperature cooling water circuit 22.
 高圧側熱交換器12は、熱交換部12aを有している。高圧側熱交換器12の熱交換部12aは、圧縮機11から吐出された冷媒と高温冷却水回路21の冷却水とを熱交換させる。高圧側熱交換器12には、モジュレータ12bおよび過冷却部12cが一体化されている。高圧側熱交換器12のモジュレータ12bは、高圧側熱交換器12の熱交換部12aから流出した冷媒の気液を分離するとともに余剰の液相冷媒を貯える第1冷媒貯留部である。高圧側熱交換器12の過冷却部12cは、吸熱モード時に高圧側熱交換器12のモジュレータ12bから流出した液相冷媒と高温冷却水回路21の冷却水とを熱交換させて液相冷媒を過冷却する吸熱モード用過冷却部である。 The high-pressure side heat exchanger 12 has a heat exchange part 12a. The heat exchanging unit 12 a of the high-pressure side heat exchanger 12 exchanges heat between the refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 21. A modulator 12b and a supercooling unit 12c are integrated with the high pressure side heat exchanger 12. The modulator 12b of the high-pressure side heat exchanger 12 is a first refrigerant storage unit that separates the gas-liquid refrigerant flowing out of the heat exchange unit 12a of the high-pressure side heat exchanger 12 and stores excess liquid-phase refrigerant. The supercooling section 12c of the high-pressure side heat exchanger 12 exchanges heat between the liquid-phase refrigerant that has flowed out of the modulator 12b of the high-pressure-side heat exchanger 12 and the cooling water of the high-temperature cooling water circuit 21 in the endothermic mode. It is the supercooling part for the endothermic mode to supercool.
 室外熱交換器14は、熱交換部14aを有している。室外熱交換器14には、モジュレータ14bおよび過冷却部14cが一体化されている。室外熱交換器14の熱交換部14aは、第1膨張弁13から流出した冷媒と外気とを熱交換させる。室外熱交換器14のモジュレータ14bは、室外熱交換器14の熱交換部14aから流出した冷媒の気液を分離するとともに余剰の液相冷媒を貯える第2冷媒貯留部である。室外熱交換器14の過冷却部14cは、放熱モード時に室外熱交換器14のモジュレータ14bから流出した液相冷媒と外気とを熱交換させて液相冷媒を過冷却する放熱モード用過冷却部である。 The outdoor heat exchanger 14 has a heat exchange part 14a. The outdoor heat exchanger 14 is integrated with a modulator 14b and a supercooling unit 14c. The heat exchanging unit 14a of the outdoor heat exchanger 14 exchanges heat between the refrigerant flowing out of the first expansion valve 13 and the outside air. The modulator 14b of the outdoor heat exchanger 14 is a second refrigerant storage unit that separates the gas-liquid refrigerant flowing out of the heat exchange unit 14a of the outdoor heat exchanger 14 and stores excess liquid-phase refrigerant. The subcooling section 14c of the outdoor heat exchanger 14 performs heat exchange between the liquid refrigerant flowing out of the modulator 14b of the outdoor heat exchanger 14 and the outside air in the heat dissipation mode, and supercools the liquid refrigerant so that the liquid phase refrigerant is supercooled. It is.
 室外熱交換器14のモジュレータ14bには過冷却バイパス流路18が接続されている。過冷却バイパス流路18は、室外熱交換器14のモジュレータ14bを流れた冷媒が過冷却部14cをバイパスして流れるバイパス部である。 A supercooling bypass flow path 18 is connected to the modulator 14b of the outdoor heat exchanger 14. The supercooling bypass flow path 18 is a bypass part in which the refrigerant that has flowed through the modulator 14b of the outdoor heat exchanger 14 bypasses the supercooling part 14c and flows.
 過冷却バイパス流路18には過冷却バイパス開閉弁19が配置されている。過冷却バイパス開閉弁19は、過冷却バイパス流路18の開度を調整するバイパス開度調整部である。過冷却バイパス開閉弁19は電磁弁であり、制御装置30によって制御される。 A supercooling bypass opening / closing valve 19 is disposed in the supercooling bypass flow path 18. The supercooling bypass opening / closing valve 19 is a bypass opening degree adjusting unit that adjusts the opening degree of the supercooling bypass passage 18. The supercooling bypass opening / closing valve 19 is an electromagnetic valve and is controlled by the control device 30.
 高温冷却水回路21には、高圧側熱交換器12、高温側ポンプ23およびヒータコア24が配置されている。低温冷却水回路22には、低圧側熱交換器16、低温側ポンプ25およびクーラコア26が配置されている。 In the high-temperature cooling water circuit 21, a high-pressure side heat exchanger 12, a high-temperature side pump 23, and a heater core 24 are arranged. In the low temperature cooling water circuit 22, a low pressure side heat exchanger 16, a low temperature side pump 25 and a cooler core 26 are arranged.
 高温側ポンプ23および低温側ポンプ25は、冷却水を吸入して吐出する熱媒体ポンプである。高温側ポンプ23および低温側ポンプ25は電動式のポンプである。高温側ポンプ23は、高温冷却水回路21を循環する冷却水の流量を調整する高温側流量調整部である。低温側ポンプ25は、低温冷却水回路22を循環する冷却水の流量を調整する低温側流量調整部である。 The high temperature side pump 23 and the low temperature side pump 25 are heat medium pumps that suck and discharge the cooling water. The high temperature side pump 23 and the low temperature side pump 25 are electric pumps. The high temperature side pump 23 is a high temperature side flow rate adjusting unit that adjusts the flow rate of the cooling water circulating in the high temperature cooling water circuit 21. The low temperature side pump 25 is a low temperature side flow rate adjusting unit that adjusts the flow rate of the cooling water circulating in the low temperature cooling water circuit 22.
 ヒータコア24は、高温冷却水回路21の冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を加熱する高温側熱媒体熱交換器である。ヒータコア24では、冷却水が顕熱変化にて車室内へ送風される空気に放熱する。すなわち、ヒータコア24では、冷却水が車室内へ送風される空気に放熱しても冷却水が液相のままで相変化しない。 The heater core 24 is a high-temperature side heat medium heat exchanger that heats the air blown into the vehicle interior by exchanging heat between the cooling water of the high-temperature coolant circuit 21 and the air blown into the vehicle interior. In the heater core 24, the cooling water radiates heat to the air blown into the vehicle interior due to the change in sensible heat. That is, in the heater core 24, even if the cooling water radiates heat to the air blown into the vehicle interior, the cooling water remains in a liquid phase and does not change phase.
 高圧側熱交換器12およびヒータコア24は、圧縮機11から吐出された高圧の冷媒と車室内へ送風される空気とを冷却水を介して熱交換させて車室内へ送風される空気を加熱する高圧側熱交換部である。高圧側熱交換部は、圧縮機11から吐出された高圧の冷媒と車室内へ送風される空気とを冷却水を介することなく熱交換させて車室内へ送風される空気を加熱する熱交換器であってもよい。 The high-pressure side heat exchanger 12 and the heater core 24 heat the air blown into the vehicle interior by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the air blown into the vehicle compartment via the cooling water. It is a high-pressure side heat exchange part. The high-pressure side heat exchanging unit heat-exchanges the high-pressure refrigerant discharged from the compressor 11 and the air blown into the passenger compartment without passing through the cooling water to heat the air blown into the passenger compartment. It may be.
 クーラコア26は、低温冷却水回路22の冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を冷却する低温側熱媒体熱交換器である。クーラコア26では、冷却水が顕熱変化にて車室内へ送風される空気から吸熱する。すなわち、クーラコア26では、冷却水が車室内へ送風される空気から吸熱しても冷却水が液相のままで相変化しない。 The cooler core 26 is a low-temperature heat medium heat exchanger that cools the air blown into the vehicle interior by exchanging heat between the cooling water of the low-temperature coolant circuit 22 and the air blown into the vehicle interior. In the cooler core 26, the cooling water absorbs heat from the air blown into the vehicle interior due to the change in sensible heat. That is, in the cooler core 26, even if the cooling water absorbs heat from the air blown into the passenger compartment, the cooling water remains in a liquid phase and does not change phase.
 クーラコア26およびヒータコア24は、図示しない空調ケーシングに収容されている。空調ケーシングは、空気通路を形成する空気通路形成部材である。 The cooler core 26 and the heater core 24 are accommodated in an air conditioning casing (not shown). The air conditioning casing is an air passage forming member that forms an air passage.
 ヒータコア24は、空調ケーシング内の空気通路において、クーラコア26の空気流れ下流側に配置されている。空調ケーシングは、車室内空間に配置されている。 The heater core 24 is disposed on the air flow downstream side of the cooler core 26 in the air passage in the air conditioning casing. The air conditioning casing is disposed in the vehicle interior space.
 空調ケーシングには、図示しない内外気切替箱と室内送風機27とが配置されている。内外気切替箱は、空調ケーシング内の空気通路に内気と外気とを切替導入する内外気切替部である。室内送風機27は、内外気切替箱を通して空調ケーシング内の空気通路に導入された内気および外気を吸入して送風する。 In the air conditioning casing, an inside / outside air switching box (not shown) and an indoor fan 27 are arranged. The inside / outside air switching box is an inside / outside air switching unit that switches between introduction of inside air and outside air into an air passage in the air conditioning casing. The indoor blower 27 sucks and blows the inside air and the outside air introduced into the air passage in the air conditioning casing through the inside / outside air switching box.
 空調ケーシング内の空気通路においてクーラコア26とヒータコア24との間には、図示しないエアミックスドアが配置されている。エアミックスドアは、クーラコア26を通過した冷風のうちヒータコア24に流入する冷風とヒータコア24をバイパスして流れる冷風との風量割合を調整する。 An air mix door (not shown) is arranged between the cooler core 26 and the heater core 24 in the air passage in the air conditioning casing. The air mix door adjusts the air volume ratio between the cool air that flows into the heater core 24 out of the cool air that has passed through the cooler core 26 and the cool air that bypasses the heater core 24 and flows.
 エアミックスドアは、空調ケーシングに対して回転可能に支持された回転軸と、回転軸に結合されたドア基板部とを有する回転式ドアである。エアミックスドアの開度位置を調整することによって、空調ケーシングから車室内に吹き出される空調風の温度を所望温度に調整できる。 The air mix door is a rotary door having a rotary shaft that is rotatably supported with respect to the air conditioning casing, and a door base plate portion coupled to the rotary shaft. By adjusting the opening position of the air mix door, the temperature of the conditioned air blown from the air conditioning casing into the vehicle compartment can be adjusted to a desired temperature.
 エアミックスドアの回転軸は、サーボモータによって駆動される。サーボモータの作動は、制御装置30によって制御される。 ¡The rotary shaft of the air mix door is driven by a servo motor. The operation of the servo motor is controlled by the control device 30.
 クーラコア26は、冷却水入口26a、分配タンク26b、熱交換部26c、集合タンク26dおよび冷却水出口26eを有している。 The cooler core 26 has a cooling water inlet 26a, a distribution tank 26b, a heat exchange part 26c, a collecting tank 26d, and a cooling water outlet 26e.
 冷却水入口26aは、低圧側熱交換器16から流出した冷却水を分配タンク26bに流入させる。分配タンク26bは、熱交換部26cの複数の冷却水チューブに冷却水を分配する。熱交換部26cは、複数の冷却水チューブを有しており、冷却水と車室内へ送風される空気とを熱交換させる。集合タンク26dは、熱交換部26cの複数の冷却水チューブを流れた冷却水を集合させる。冷却水出口26eは、集合タンク26dから冷却水を低温側ポンプ25の冷却水吸入側へ流出させる。 The cooling water inlet 26a allows the cooling water flowing out from the low pressure side heat exchanger 16 to flow into the distribution tank 26b. The distribution tank 26b distributes the cooling water to the plurality of cooling water tubes of the heat exchange unit 26c. The heat exchanging part 26c has a plurality of cooling water tubes, and exchanges heat between the cooling water and the air blown into the vehicle interior. The collecting tank 26d collects the cooling water that has flowed through the plurality of cooling water tubes of the heat exchange unit 26c. The cooling water outlet 26e allows the cooling water to flow from the collecting tank 26d to the cooling water suction side of the low temperature side pump 25.
 低圧側熱交換器16は、冷却水入口16aおよび冷却水出口16bを有している。低温側ポンプ25から吐出された冷却水は、冷却水入口16aを通じて低圧側熱交換器16に流入する。低圧側熱交換器16で熱交換された冷却水は冷却水出口16bを通じてクーラコア26の冷却水入口26a側へ流出する。 The low-pressure side heat exchanger 16 has a cooling water inlet 16a and a cooling water outlet 16b. The cooling water discharged from the low temperature side pump 25 flows into the low pressure side heat exchanger 16 through the cooling water inlet 16a. The cooling water heat-exchanged by the low-pressure side heat exchanger 16 flows out to the cooling water inlet 26a side of the cooler core 26 through the cooling water outlet 16b.
 クーラコア26の熱交換部26cは、低圧側熱交換器16の冷却水入口16aおよび冷却水出口16bのうち少なくとも一方よりも重力方向の高い位置に配置されている。 The heat exchange part 26c of the cooler core 26 is disposed at a position higher in the gravitational direction than at least one of the cooling water inlet 16a and the cooling water outlet 16b of the low-pressure side heat exchanger 16.
 低温冷却水回路22の冷却水が流れる低温冷却水流路22aの少なくとも一部は、クーラコア26の熱交換部26cよりも重力方向の低い位置に配置されている。低温冷却水流路22aは、低圧側熱交換器16とクーラコア26との間で冷却水が流れる熱媒体流路部である。 At least a part of the low-temperature cooling water passage 22a through which the cooling water of the low-temperature cooling water circuit 22 flows is disposed at a position lower in the gravitational direction than the heat exchange part 26c of the cooler core 26. The low-temperature cooling water flow path 22 a is a heat medium flow path portion through which cooling water flows between the low-pressure side heat exchanger 16 and the cooler core 26.
 図2に示すように、室外熱交換器14は、冷媒入口14d、熱交換部分配タンク14e、熱交換部集合タンク14f、バイパス取出口14g、過冷却部分配タンク14h、過冷却部集合タンク14iおよび冷媒出口14kを有している。 As shown in FIG. 2, the outdoor heat exchanger 14 includes a refrigerant inlet 14d, a heat exchange part distribution tank 14e, a heat exchange part collection tank 14f, a bypass outlet 14g, a supercooling part distribution tank 14h, and a supercooling part collection tank 14i. And a refrigerant outlet 14k.
 冷媒入口14dは、熱交換部分配タンク14eに設けられている。熱交換部分配タンク14eは、熱交換部14aの複数の冷媒チューブに冷媒を分配する。熱交換部集合タンク14fは、熱交換部14aの複数の冷媒チューブを流れた冷媒を集合させる。 The refrigerant inlet 14d is provided in the heat exchange part distribution tank 14e. The heat exchange unit distribution tank 14e distributes the refrigerant to the plurality of refrigerant tubes of the heat exchange unit 14a. The heat exchange unit collecting tank 14f collects the refrigerant that has flowed through the plurality of refrigerant tubes of the heat exchange unit 14a.
 バイパス取出口14gには、過冷却バイパス流路18を形成する配管が接続されている。バイパス取出口14gは、過冷却部分配タンク14hに設けられている。過冷却部分配タンク14hは、過冷却部14cの複数の冷媒チューブに冷媒を分配する。過冷却部集合タンク14iは、過冷却部14cの複数の冷媒チューブを流れた冷媒を集合させる。冷媒出口14kは、過冷却部集合タンク14iに設けられている。モジュレータ14bの内部には、フィルタ14mが収容されている。 The piping which forms the supercooling bypass flow path 18 is connected to the bypass outlet 14g. The bypass outlet 14g is provided in the supercooling part distribution tank 14h. The supercooling part distribution tank 14h distributes the refrigerant to the plurality of refrigerant tubes of the supercooling part 14c. The supercooling part collection tank 14i collects the refrigerant that has flowed through the plurality of refrigerant tubes of the supercooling part 14c. The refrigerant outlet 14k is provided in the supercooling unit collecting tank 14i. A filter 14m is accommodated in the modulator 14b.
 図2の矢印に示すように、冷媒入口14dから流入した冷媒は熱交換部分配タンク14e、熱交換部14a、熱交換部集合タンク14f、モジュレータ14b、過冷却部分配タンク14h、過冷却部14c、過冷却部集合タンク14iの順に流れた後、冷媒出口14kから流出する。 As shown by the arrows in FIG. 2, the refrigerant flowing from the refrigerant inlet 14d is the heat exchange part distribution tank 14e, the heat exchange part 14a, the heat exchange part collect tank 14f, the modulator 14b, the supercooling part distribution tank 14h, and the supercooling part 14c. After flowing in the order of the supercooling section collecting tank 14i, it flows out from the refrigerant outlet 14k.
 過冷却バイパス開閉弁19が過冷却バイパス流路18を開けている場合、過冷却部分配タンク14hに流入した冷媒は、バイパス取出口14gから過冷却バイパス流路18へ流出する。 When the supercooling bypass opening / closing valve 19 opens the supercooling bypass passage 18, the refrigerant flowing into the supercooling portion distribution tank 14h flows out from the bypass outlet 14g to the supercooling bypass passage 18.
 次に、冷凍サイクル装置10の電気制御部を図3に基づいて説明する。制御装置30は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置30は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。制御装置30の出力側には各種制御対象機器が接続されている。制御装置30は、各種制御対象機器の作動を制御する制御部である。 Next, the electric control unit of the refrigeration cycle apparatus 10 will be described with reference to FIG. The control device 30 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. The control device 30 performs various calculations and processes based on a control program stored in the ROM. Various devices to be controlled are connected to the output side of the control device 30. The control device 30 is a control unit that controls the operation of various devices to be controlled.
 制御装置30によって制御される制御対象機器は、圧縮機11、第1膨張弁13、第2膨張弁15、室外送風機17、過冷却バイパス開閉弁19、高温側ポンプ23および低温側ポンプ25等である。 The control target devices controlled by the control device 30 include the compressor 11, the first expansion valve 13, the second expansion valve 15, the outdoor blower 17, the supercooling bypass opening / closing valve 19, the high temperature side pump 23, the low temperature side pump 25, and the like. is there.
 制御装置30のうち圧縮機11の電動モータを制御するソフトウェアおよびハードウェアは、冷媒吐出能力制御部である。制御装置30のうち第1膨張弁13を制御するソフトウェアおよびハードウェアは、第1絞り制御部である。制御装置30のうち第2膨張弁15を制御するソフトウェアおよびハードウェアは、第2絞り制御部である。 Software and hardware for controlling the electric motor of the compressor 11 in the control device 30 is a refrigerant discharge capacity control unit. Software and hardware for controlling the first expansion valve 13 in the control device 30 is a first throttle control unit. Software and hardware for controlling the second expansion valve 15 in the control device 30 is a second throttle control unit.
 制御装置30のうち室外送風機17を制御するソフトウェアおよびハードウェアは、外気送風能力制御部である。制御装置30のうち過冷却バイパス開閉弁19を制御するソフトウェアおよびハードウェアは、バイパス開度制御部である。 Software and hardware for controlling the outdoor blower 17 in the control device 30 is an outside air blowing capacity control unit. Software and hardware for controlling the supercooling bypass opening / closing valve 19 in the control device 30 is a bypass opening degree control unit.
 制御装置30のうち高温側ポンプ23を制御するソフトウェアおよびハードウェアは、高温側熱媒体流量制御部である。制御装置30のうち低温側ポンプ25を制御するソフトウェアおよびハードウェアは、低温側熱媒体流量制御部である。 Software and hardware for controlling the high temperature side pump 23 in the control device 30 is a high temperature side heat medium flow control unit. Software and hardware for controlling the low temperature side pump 25 in the control device 30 is a low temperature side heat medium flow control unit.
 制御装置30の入力側には、内気温度センサ31、外気温度センサ32、日射量センサ33、室外熱交換器温度センサ34、低圧側熱交換器温度センサ35、クーラコア温度センサ36等の種々の空調制御用のセンサ群が接続されている。 On the input side of the control device 30, various air conditioners such as an inside air temperature sensor 31, an outside air temperature sensor 32, a solar radiation amount sensor 33, an outdoor heat exchanger temperature sensor 34, a low pressure side heat exchanger temperature sensor 35, and a cooler core temperature sensor 36. A sensor group for control is connected.
 内気温度センサ31は車室内温度Trを検出する。外気温度センサ32は外気温Tamを検出する。日射量センサ33は車室内の日射量Tsを検出する。室外熱交換器温度センサ34は、室外熱交換器14の温度を検出する。例えば、室外熱交換器温度センサ34は、室外熱交換器14に流入する冷媒の温度を検出する。低圧側熱交換器温度センサ35は、低圧側熱交換器16から流出した冷却水の温度を検出する。 The inside air temperature sensor 31 detects the passenger compartment temperature Tr. The outside air temperature sensor 32 detects the outside air temperature Tam. The solar radiation amount sensor 33 detects the solar radiation amount Ts in the passenger compartment. The outdoor heat exchanger temperature sensor 34 detects the temperature of the outdoor heat exchanger 14. For example, the outdoor heat exchanger temperature sensor 34 detects the temperature of the refrigerant flowing into the outdoor heat exchanger 14. The low-pressure side heat exchanger temperature sensor 35 detects the temperature of the cooling water flowing out from the low-pressure side heat exchanger 16.
 クーラコア温度センサ36は、クーラコア26の温度を検出する。例えば、低圧側熱交換器温度センサ35は、低圧側熱交換器16から流出した冷却水の温度を検出する。例えば、クーラコア温度センサ36は、クーラコア26の熱交換フィン温度を検出するフィンサーミスタである。クーラコア温度センサ36は、クーラコア26に流入する冷却水の温度を検出する温度センサであってもよい。 The cooler core temperature sensor 36 detects the temperature of the cooler core 26. For example, the low-pressure side heat exchanger temperature sensor 35 detects the temperature of the cooling water flowing out from the low-pressure side heat exchanger 16. For example, the cooler core temperature sensor 36 is a fin thermistor that detects the heat exchange fin temperature of the cooler core 26. The cooler core temperature sensor 36 may be a temperature sensor that detects the temperature of the cooling water flowing into the cooler core 26.
 制御装置30の入力側には、操作パネル39が接続されている。操作パネル39は、車室内前部の計器盤付近に配置されており、乗員によって操作される。操作パネル39には各種操作スイッチが設けられている。制御装置30には、各種操作スイッチからの操作信号が入力される。 An operation panel 39 is connected to the input side of the control device 30. The operation panel 39 is disposed in the vicinity of the instrument panel in the front part of the vehicle interior and is operated by a passenger. Various operation switches are provided on the operation panel 39. Operation signals from various operation switches are input to the control device 30.
 操作パネル39の各種操作スイッチは、エアコンスイッチ、温度設定スイッチ等である。エアコンスイッチは、室内空調ユニットにて車室内送風空気の冷却を行うか否かを設定する。温度設定スイッチは、車室内の設定温度を設定する。 The various operation switches on the operation panel 39 are an air conditioner switch, a temperature setting switch, and the like. The air conditioner switch sets whether or not to cool the air blown into the vehicle interior by the indoor air conditioning unit. The temperature setting switch sets a set temperature in the passenger compartment.
 次に、上記構成における作動を説明する。制御装置30は、目標吹出温度TAO等に基づいて空調モードを暖房モード、冷房モード、第1除湿暖房モードおよび第2除湿暖房モードのいずれかに切り替える。 Next, the operation in the above configuration will be described. The control device 30 switches the air conditioning mode to any one of the heating mode, the cooling mode, the first dehumidifying heating mode, and the second dehumidifying heating mode based on the target blowing temperature TAO or the like.
 目標吹出温度TAOは、車室内へ吹き出す吹出空気の目標温度である。制御装置30は、目標吹出温度TAOを以下の数式に基づいて算出する。 The target air temperature TAO is the target temperature of the air that is blown out into the passenger compartment. The control device 30 calculates the target blowing temperature TAO based on the following mathematical formula.
 TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C
 この数式において、Tsetは操作パネル39の温度設定スイッチによって設定された車室内設定温度、Trは内気温度センサ31によって検出された内気温、Tamは外気温度センサ32によって検出された外気温、Tsは日射量センサ33によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C
In this equation, Tset is the vehicle interior set temperature set by the temperature setting switch of the operation panel 39, Tr is the inside air temperature detected by the inside air temperature sensor 31, Tam is the outside air temperature detected by the outside air temperature sensor 32, and Ts is This is the amount of solar radiation detected by the solar radiation amount sensor 33. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
 次に、暖房モード、冷房モード、第1除湿暖房モードおよび第2除湿暖房モードにおける作動について説明する。暖房モードおよび第2除湿暖房モードは、室外熱交換器14が冷媒に吸熱させる吸熱モードである。冷房モードおよび第1除湿暖房モードは、室外熱交換器14が冷媒を放熱させる放熱モードである。 Next, operations in the heating mode, the cooling mode, the first dehumidifying heating mode, and the second dehumidifying heating mode will be described. The heating mode and the second dehumidifying heating mode are endothermic modes in which the outdoor heat exchanger 14 absorbs heat from the refrigerant. The cooling mode and the first dehumidifying and heating mode are heat dissipation modes in which the outdoor heat exchanger 14 dissipates the refrigerant.
 (暖房モード)
 暖房モードでは、制御装置30は、第1膨張弁13を絞り状態とし、第2膨張弁15を全開状態とする。暖房モードでは、制御装置30は、高温側ポンプ23を駆動させ、低温側ポンプ25を停止させる。
(Heating mode)
In the heating mode, the control device 30 brings the first expansion valve 13 into a throttled state and the second expansion valve 15 into a fully opened state. In the heating mode, the control device 30 drives the high temperature side pump 23 and stops the low temperature side pump 25.
 制御装置30は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置30に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 30 determines the operating states of the various control devices connected to the control device 30 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
 第1膨張弁13へ出力される制御信号については、第1膨張弁13へ流入する冷媒の過冷却度が、予め定められた目標過冷却度に近づくように決定される。目標過冷却度は、サイクルの成績係数(いわゆるCOP)を最大値に近づけるように定められている。 The control signal output to the first expansion valve 13 is determined so that the supercooling degree of the refrigerant flowing into the first expansion valve 13 approaches a predetermined target supercooling degree. The target degree of supercooling is determined so that the coefficient of performance of the cycle (so-called COP) approaches the maximum value.
 図示しないエアミックスドアのサーボモータへ出力される制御信号については、エアミックスドアがヒータコア24の空気通路を全開し、クーラコア26を通過した送風空気の全流量がヒータコア24の空気通路を通過するように決定される。 Regarding the control signal output to the servo motor of the air mix door (not shown), the air mix door fully opens the air passage of the heater core 24 so that the total flow rate of the blown air that has passed through the cooler core 26 passes through the air passage of the heater core 24. To be determined.
 暖房モードでは、サイクルを循環する冷媒の状態については、図4のモリエル線図に示すように変化する。 In the heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
 すなわち、図4の点a1および点a2に示すように、圧縮機11から吐出された高圧冷媒は、高圧側熱交換器12へ流入して、高温冷却水回路21の冷却水と熱交換して放熱する。これにより、高温冷却水回路21の冷却水が加熱される。 That is, as indicated by points a1 and a2 in FIG. 4, the high-pressure refrigerant discharged from the compressor 11 flows into the high-pressure side heat exchanger 12 and exchanges heat with the cooling water in the high-temperature cooling water circuit 21. Dissipate heat. Thereby, the cooling water of the high temperature cooling water circuit 21 is heated.
 図4の点a2および点a3に示すように、高圧側熱交換器12から流出した冷媒は、第1膨張弁13に流入し、低圧冷媒となるまで減圧される。そして、図4の点a3および点a4に示すように、第1膨張弁13にて減圧された低圧冷媒は、室外熱交換器14に流入して、送風ファンから送風された外気から吸熱して蒸発する。 As shown at points a2 and a3 in FIG. 4, the refrigerant that has flowed out of the high-pressure heat exchanger 12 flows into the first expansion valve 13 and is depressurized until it becomes a low-pressure refrigerant. And as shown to the point a3 and the point a4 of FIG. 4, the low pressure refrigerant decompressed by the first expansion valve 13 flows into the outdoor heat exchanger 14 and absorbs heat from the outside air blown from the blower fan. Evaporate.
 室外熱交換器14から流出した冷媒は、第2膨張弁15へ流入する。この際、第2膨張弁15を全開状態としているので、室外熱交換器14から流出した冷媒は、第2膨張弁15にて減圧されることなく、低圧側熱交換器16に流入する。 The refrigerant that has flowed out of the outdoor heat exchanger 14 flows into the second expansion valve 15. At this time, since the second expansion valve 15 is fully opened, the refrigerant flowing out of the outdoor heat exchanger 14 flows into the low-pressure side heat exchanger 16 without being depressurized by the second expansion valve 15.
 低温側ポンプ25が停止しているので、低圧側熱交換器16に低温冷却水回路22の冷却水が循環しない。そのため、図4の点a4に示すように、低圧側熱交換器16に流入した低圧冷媒は、低温冷却水回路22の冷却水から殆ど吸熱しない。そして、図4の点a4および点a1に示すように、低圧側熱交換器16から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Since the low temperature side pump 25 is stopped, the cooling water of the low temperature cooling water circuit 22 does not circulate in the low pressure side heat exchanger 16. Therefore, as indicated by a point a4 in FIG. 4, the low-pressure refrigerant flowing into the low-pressure side heat exchanger 16 hardly absorbs heat from the cooling water in the low-temperature cooling water circuit 22. Then, as indicated by points a4 and a1 in FIG. 4, the refrigerant that has flowed out of the low-pressure side heat exchanger 16 flows to the suction side of the compressor 11 and is compressed again by the compressor 11.
 高圧側熱交換器12では、熱交換部12aで凝縮された冷媒がモジュレータ12bで気液分離されるとともに余剰冷媒が貯えられる。モジュレータ12bから流出した液相冷媒は過冷却部12cを流れて過冷却される。 In the high-pressure side heat exchanger 12, the refrigerant condensed in the heat exchanging portion 12a is gas-liquid separated by the modulator 12b and the excess refrigerant is stored. The liquid-phase refrigerant that has flowed out of the modulator 12b flows through the supercooling section 12c and is supercooled.
 暖房モードでは、制御装置30は過冷却バイパス開閉弁19を開ける。これにより、室外熱交換器14のモジュレータ14bから流出した冷媒が室外熱交換器14の過冷却部14cおよび過冷却バイパス流路18を流れるので、室外熱交換器14の過冷却部14cにおける冷媒の圧力損失を低減できる。 In the heating mode, the control device 30 opens the supercooling bypass opening / closing valve 19. Thereby, the refrigerant that has flowed out of the modulator 14b of the outdoor heat exchanger 14 flows through the supercooling portion 14c and the supercooling bypass channel 18 of the outdoor heat exchanger 14, so that the refrigerant in the supercooling portion 14c of the outdoor heat exchanger 14 is reduced. Pressure loss can be reduced.
 以上の如く、暖房モードでは、高圧側熱交換器12にて圧縮機11から吐出された高圧冷媒の有する熱を高温冷却水回路21の冷却水に放熱させ、ヒータコア24にて高温冷却水回路21の冷却水が有する熱を車室内送風空気に放熱させて、加熱された車室内送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。 As described above, in the heating mode, the heat of the high-pressure refrigerant discharged from the compressor 11 by the high-pressure side heat exchanger 12 is radiated to the cooling water of the high-temperature cooling water circuit 21, and the high-temperature cooling water circuit 21 is heated by the heater core 24. The heat of the cooling water can be dissipated to the air blown into the vehicle interior, and the heated air blown into the vehicle interior can be blown out. Thereby, heating of a vehicle interior is realizable.
 (冷房モード)
 冷房モードでは、制御装置30が、第1膨張弁13を全開状態とし、第2膨張弁15を絞り状態とする。冷房モードでは、制御装置30は、高温側ポンプ23を停止させ、低温側ポンプ25を駆動させる。
(Cooling mode)
In the cooling mode, the control device 30 sets the first expansion valve 13 to a fully open state and sets the second expansion valve 15 to a throttle state. In the cooling mode, the control device 30 stops the high temperature side pump 23 and drives the low temperature side pump 25.
 制御装置30は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置30に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 30 determines the operating states of the various control devices connected to the control device 30 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
 第2膨張弁15へ出力される制御信号については、第2膨張弁15へ流入する冷媒の過冷却度が、COPを最大値に近づくように予め定められた目標過冷却度に近づくように決定される。 The control signal output to the second expansion valve 15 is determined such that the degree of supercooling of the refrigerant flowing into the second expansion valve 15 approaches a predetermined target degree of supercooling so that the COP approaches the maximum value. Is done.
 図示しないエアミックスドアのサーボモータへ出力される制御信号については、エアミックスドアがヒータコア24の空気通路を閉塞し、クーラコア26を通過した送風空気の全流量がヒータコア24をバイパスして流れるように決定される。 Regarding the control signal output to the servo motor of the air mix door (not shown), the air mix door closes the air passage of the heater core 24 so that the entire flow rate of the blown air that has passed through the cooler core 26 flows bypassing the heater core 24. It is determined.
 冷房モード時の冷凍サイクル装置10では、サイクルを循環する冷媒の状態については、図5のモリエル線図に示すように変化する。 In the refrigeration cycle apparatus 10 in the cooling mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
 すなわち、図5の点b1に示すように、圧縮機11から吐出された高圧冷媒が高圧側熱交換器12に流入する。この際、高温側ポンプ23が停止しているので、高圧側熱交換器12に高温冷却水回路21の冷却水が循環しない。そのため、高圧側熱交換器12に流入した冷媒は、高温冷却水回路21の冷却水と殆ど熱交換することなく、高圧側熱交換器12から流出する。 That is, the high-pressure refrigerant discharged from the compressor 11 flows into the high-pressure side heat exchanger 12 as indicated by a point b1 in FIG. At this time, since the high temperature side pump 23 is stopped, the cooling water of the high temperature cooling water circuit 21 does not circulate in the high pressure side heat exchanger 12. Therefore, the refrigerant that has flowed into the high-pressure side heat exchanger 12 flows out of the high-pressure side heat exchanger 12 with little heat exchange with the cooling water in the high-temperature cooling water circuit 21.
 高圧側熱交換器12から流出した冷媒は、第1膨張弁13に流入する。この際、第1膨張弁13が冷媒通路を全開状態としているので、高圧側熱交換器12から流出した冷媒は、第1膨張弁13にて減圧されることなく、室外熱交換器14に流入する。 The refrigerant that has flowed out of the high-pressure side heat exchanger 12 flows into the first expansion valve 13. At this time, since the first expansion valve 13 fully opens the refrigerant passage, the refrigerant flowing out from the high pressure side heat exchanger 12 flows into the outdoor heat exchanger 14 without being depressurized by the first expansion valve 13. To do.
 図5の点b1および点b2に示すように、室外熱交換器14に流入した冷媒は、室外熱交換器14にて送風ファンから送風された外気へ放熱する。 5, the refrigerant flowing into the outdoor heat exchanger 14 dissipates heat to the outside air blown from the blower fan in the outdoor heat exchanger 14.
 図5の点b2および点b3に示すように、室外熱交換器14から流出した冷媒は、第2膨張弁15へ流入して、第2膨張弁15にて低圧冷媒となるまで減圧膨張される。図5の点b3および点b4に示すように、第2膨張弁15にて減圧された低圧冷媒は、低圧側熱交換器16に流入し、低温冷却水回路22の冷却水から吸熱して蒸発する。これにより、低温冷却水回路22の冷却水が冷却されるので、クーラコア26で車室内送風空気が冷却される。 As shown at points b2 and b3 in FIG. 5, the refrigerant flowing out of the outdoor heat exchanger 14 flows into the second expansion valve 15 and is decompressed and expanded at the second expansion valve 15 until it becomes a low-pressure refrigerant. . As shown at points b3 and b4 in FIG. 5, the low-pressure refrigerant decompressed by the second expansion valve 15 flows into the low-pressure side heat exchanger 16, absorbs heat from the cooling water in the low-temperature cooling water circuit 22, and evaporates. To do. Thereby, since the cooling water of the low-temperature cooling water circuit 22 is cooled, the vehicle interior blown air is cooled by the cooler core 26.
 そして、図5の点b4および点b1に示すように、低圧側熱交換器16から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, as indicated by points b4 and b1 in FIG. 5, the refrigerant flowing out from the low-pressure side heat exchanger 16 flows to the suction side of the compressor 11 and is compressed again by the compressor 11.
 室外熱交換器14では、熱交換部14aで凝縮された冷媒がモジュレータ14bで気液分離されるとともに余剰冷媒が貯えられる。冷房モードでは、制御装置30は過冷却バイパス開閉弁19を閉じる。これにより、モジュレータ14bから流出した液相冷媒が過冷却部14cを流れて過冷却される。 In the outdoor heat exchanger 14, the refrigerant condensed in the heat exchange part 14a is separated into gas and liquid by the modulator 14b and the excess refrigerant is stored. In the cooling mode, the control device 30 closes the supercooling bypass opening / closing valve 19. As a result, the liquid-phase refrigerant that has flowed out of the modulator 14b flows through the supercooling portion 14c and is supercooled.
 以上の如く、冷房モードでは、クーラコア26にて冷却された車室内送風空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。 As described above, in the cooling mode, the vehicle interior air cooled by the cooler core 26 can be blown into the vehicle interior. Thereby, cooling of a vehicle interior is realizable.
 (第1除湿暖房モード)
 第1除湿暖房モードでは、制御装置30が第1膨張弁13および第2膨張弁15を絞り状態とする。第1除湿暖房モードでは、制御装置30は、高温側ポンプ23および低温側ポンプ25の両方を駆動させる。
(First dehumidifying heating mode)
In the first dehumidifying and heating mode, the control device 30 places the first expansion valve 13 and the second expansion valve 15 in the throttle state. In the first dehumidifying and heating mode, the control device 30 drives both the high temperature side pump 23 and the low temperature side pump 25.
 制御装置30は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置30に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 30 determines the operating states of the various control devices connected to the control device 30 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
 図示しないエアミックスドアのサーボモータへ出力される制御信号については、エアミックスドアがヒータコア24の空気通路を全開し、クーラコア26を通過した空気の全流量がヒータコア24の空気通路を通過するように決定される。 As for the control signal output to the servo motor of the air mix door (not shown), the air mix door fully opens the air passage of the heater core 24 so that the total flow rate of the air passing through the cooler core 26 passes through the air passage of the heater core 24. It is determined.
 第1除湿暖房モードでは、第1膨張弁13および第2膨張弁15を絞り状態とする。従って、第1除湿暖房モードでは、サイクルを循環する冷媒の状態については、図6のモリエル線図に示すように変化する。 In the first dehumidifying and heating mode, the first expansion valve 13 and the second expansion valve 15 are in the throttle state. Therefore, in the first dehumidifying and heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
 すなわち、図6の点c1および点c2に示すように、圧縮機11から吐出された高圧冷媒は、高圧側熱交換器12へ流入して、高温冷却水回路21の冷却水と熱交換して放熱する。これにより、高温冷却水回路21の冷却水が加熱される。 That is, as indicated by points c1 and c2 in FIG. 6, the high-pressure refrigerant discharged from the compressor 11 flows into the high-pressure side heat exchanger 12 and exchanges heat with the cooling water in the high-temperature cooling water circuit 21. Dissipate heat. Thereby, the cooling water of the high temperature cooling water circuit 21 is heated.
 図6の点c2および点c3に示すように、高圧側熱交換器12から流出した冷媒は、第1膨張弁13に流入し、中間圧冷媒となるまで減圧される。そして、図6の点c3および点c4に示すように、第1膨張弁13にて減圧された中間圧冷媒は、室外熱交換器14に流入して、室外送風機から送風された外気へ放熱する。 As shown at points c2 and c3 in FIG. 6, the refrigerant flowing out from the high pressure side heat exchanger 12 flows into the first expansion valve 13 and is depressurized until it becomes an intermediate pressure refrigerant. Then, as shown at points c3 and c4 in FIG. 6, the intermediate pressure refrigerant decompressed by the first expansion valve 13 flows into the outdoor heat exchanger 14 and dissipates heat to the outside air blown from the outdoor blower. .
 図6の点c4および点c5に示すように、室外熱交換器14から流出した冷媒は、第2膨張弁15へ流入して、第2膨張弁15にて低圧冷媒となるまで減圧膨張される。図6の点c5および点c6に示すように、第2膨張弁15にて減圧された低圧冷媒は、低圧側熱交換器16に流入し、低温冷却水回路22の冷却水から吸熱して蒸発する。これにより、低温冷却水回路22の冷却水が冷却される。そして、図6の点c6および点c1に示すように、低圧側熱交換器16から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 As shown at points c4 and c5 in FIG. 6, the refrigerant flowing out of the outdoor heat exchanger 14 flows into the second expansion valve 15 and is decompressed and expanded until it becomes a low-pressure refrigerant at the second expansion valve 15. . As shown at points c5 and c6 in FIG. 6, the low-pressure refrigerant decompressed by the second expansion valve 15 flows into the low-pressure side heat exchanger 16, absorbs heat from the cooling water in the low-temperature cooling water circuit 22, and evaporates. To do. Thereby, the cooling water of the low-temperature cooling water circuit 22 is cooled. Then, as indicated by points c6 and c1 in FIG. 6, the refrigerant flowing out from the low-pressure side heat exchanger 16 flows to the suction side of the compressor 11 and is compressed again by the compressor 11.
 以上の如く、第1除湿暖房モード時には、クーラコア26にて冷却され除湿された車室内送風空気を、ヒータコア24にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。 As described above, in the first dehumidifying and heating mode, the vehicle interior blown air cooled and dehumidified by the cooler core 26 can be heated by the heater core 24 and blown out into the vehicle interior. Thereby, dehumidification heating of a vehicle interior is realizable.
 この際、第1除湿暖房モードでは、第1膨張弁13を絞り状態としているので、冷房モードに対して、室外熱交換器14へ流入する冷媒の温度を低下させることができる。従って、室外熱交換器14における冷媒の温度と外気温との温度差を縮小して、室外熱交換器14における冷媒の放熱量を減少させることができる。 At this time, in the first dehumidifying and heating mode, since the first expansion valve 13 is in the throttle state, the temperature of the refrigerant flowing into the outdoor heat exchanger 14 can be lowered compared to the cooling mode. Therefore, the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 14 can be reduced, and the heat radiation amount of the refrigerant in the outdoor heat exchanger 14 can be reduced.
 この結果、冷房モード時に対してサイクルを循環する冷媒循環流量を増加させることなく、高圧側熱交換器12における冷媒の放熱量を増加させることができ、冷房モードよりもヒータコア24から吹き出される吹出空気の温度を上昇させることができる。 As a result, the heat release amount of the refrigerant in the high-pressure side heat exchanger 12 can be increased without increasing the refrigerant circulation flow rate that circulates the cycle in the cooling mode, and the blowout blown from the heater core 24 in the cooling mode. The temperature of the air can be raised.
 室外熱交換器14では、熱交換部14aで凝縮された冷媒がモジュレータ14bで気液分離されるとともに余剰冷媒が貯えられる。暖房モードでは、制御装置30は過冷却バイパス開閉弁19を閉じる。これにより、室外熱交換器14のモジュレータ14bから流出した液相冷媒が過冷却部14cを流れて過冷却される。 In the outdoor heat exchanger 14, the refrigerant condensed in the heat exchange part 14a is separated into gas and liquid by the modulator 14b and the excess refrigerant is stored. In the heating mode, the control device 30 closes the supercooling bypass opening / closing valve 19. Thereby, the liquid-phase refrigerant | coolant which flowed out from the modulator 14b of the outdoor heat exchanger 14 flows through the supercooling part 14c, and is supercooled.
 (第2除湿暖房モード)
 第2除湿暖房モードでは、制御装置30が第1膨張弁13および第2膨張弁15を絞り状態とする。第2除湿暖房モードでは、制御装置30は、高温側ポンプ23および低温側ポンプ25の両方を駆動させる。
(Second dehumidifying heating mode)
In the second dehumidifying and heating mode, the control device 30 places the first expansion valve 13 and the second expansion valve 15 in the throttle state. In the second dehumidifying and heating mode, the control device 30 drives both the high temperature side pump 23 and the low temperature side pump 25.
 制御装置30は、目標吹出温度TAO、センサ群の検出信号等に基づいて、制御装置30に接続された各種制御機器の作動状態(各種制御機器へ出力する制御信号)を決定する。 The control device 30 determines the operating states of the various control devices connected to the control device 30 (control signals output to the various control devices) based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
 図示しないエアミックスドアのサーボモータへ出力される制御信号については、エアミックスドアがヒータコア24の空気通路を全開し、クーラコア26を通過した空気の全流量がヒータコア24の空気通路を通過するように決定される。 As for the control signal output to the servo motor of the air mix door (not shown), the air mix door fully opens the air passage of the heater core 24 so that the total flow rate of the air passing through the cooler core 26 passes through the air passage of the heater core 24. It is determined.
 第2除湿暖房モードでは、第1膨張弁13の絞り開度を第1除湿暖房モード時よりも減少させた絞り状態とし、第2膨張弁15の絞り開度を第1除湿暖房モード時よりも増加させた絞り状態とする。従って、第2除湿暖房モードでは、サイクルを循環する冷媒の状態については、図7のモリエル線図に示すように変化する。 In the second dehumidifying and heating mode, the throttle opening of the first expansion valve 13 is set to a throttled state that is smaller than that in the first dehumidifying and heating mode, and the throttle opening of the second expansion valve 15 is set to be smaller than that in the first dehumidifying and heating mode. Set to an increased aperture state. Accordingly, in the second dehumidifying heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
 すなわち、図7の点d1および点d2に示すように、圧縮機11から吐出された高圧冷媒は、高圧側熱交換器12へ流入して、高温冷却水回路21の冷却水と熱交換して放熱する。これにより、高温冷却水回路21の冷却水が加熱される。 That is, as indicated by points d1 and d2 in FIG. 7, the high-pressure refrigerant discharged from the compressor 11 flows into the high-pressure side heat exchanger 12 and exchanges heat with the cooling water in the high-temperature cooling water circuit 21. Dissipate heat. Thereby, the cooling water of the high temperature cooling water circuit 21 is heated.
 図7の点d2および点d3に示すように、高圧側熱交換器12から流出した冷媒は、第1膨張弁13に流入し、外気温よりも温度の低い中間圧冷媒となるまで減圧される。そして、図7の点d3および点d4に示すように、第1膨張弁13にて減圧された中間圧冷媒は、室外熱交換器14に流入して、室外送風機から送風された外気から吸熱する。 As shown at points d2 and d3 in FIG. 7, the refrigerant that has flowed out of the high-pressure side heat exchanger 12 flows into the first expansion valve 13 and is depressurized until it becomes an intermediate-pressure refrigerant having a temperature lower than the outside air temperature. . As shown at points d3 and d4 in FIG. 7, the intermediate-pressure refrigerant decompressed by the first expansion valve 13 flows into the outdoor heat exchanger 14 and absorbs heat from the outside air blown from the outdoor blower. .
 図7の点d4および点d5に示すように、室外熱交換器14から流出した冷媒は、第3冷媒通路18を介して、第2膨張弁15へ流入して、第2膨張弁15にて低圧冷媒となるまで減圧膨張される。図7の点d5および点d6に示すように、第2膨張弁15にて減圧された低圧冷媒は、低圧側熱交換器16に流入し、送風機32から送風された車室内送風空気から吸熱して蒸発する。これにより、クーラコア26で車室内送風空気が冷却される。そして、図7の点d6および点d1に示すように、低圧側熱交換器16から流出した冷媒は、圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 As indicated by points d4 and d5 in FIG. 7, the refrigerant that has flowed out of the outdoor heat exchanger 14 flows into the second expansion valve 15 via the third refrigerant passage 18, and then enters the second expansion valve 15. It is expanded under reduced pressure until it becomes a low-pressure refrigerant. As shown at points d5 and d6 in FIG. 7, the low-pressure refrigerant decompressed by the second expansion valve 15 flows into the low-pressure side heat exchanger 16 and absorbs heat from the vehicle interior blown air blown from the blower 32. Evaporate. As a result, the air blown into the passenger compartment is cooled by the cooler core 26. Then, as indicated by points d6 and d1 in FIG. 7, the refrigerant flowing out from the low-pressure side heat exchanger 16 flows to the suction side of the compressor 11 and is compressed again by the compressor 11.
 以上の如く、第2除湿暖房モード時には、第1除湿暖房モードと同様に、クーラコア26にて冷却され除湿された車室内送風空気を、ヒータコア24にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。 As described above, in the second dehumidifying and heating mode, similarly to the first dehumidifying and heating mode, the vehicle interior air cooled and dehumidified by the cooler core 26 can be heated by the heater core 24 and blown out into the vehicle interior. Thereby, dehumidification heating of a vehicle interior is realizable.
 この際、第2除湿暖房モードでは、第1膨張弁13の絞り開度を減少させることによって、室外熱交換器14を吸熱器(換言すれば蒸発器)として機能させているので、第1除湿暖房モードよりもヒータコア24から吹き出される温度を上昇させることができる。 At this time, in the second dehumidifying heating mode, the outdoor heat exchanger 14 functions as a heat absorber (in other words, an evaporator) by reducing the throttle opening of the first expansion valve 13, so the first dehumidifying temperature The temperature blown out from the heater core 24 can be increased as compared with the heating mode.
 この結果、第1除湿暖房モードに対して、圧縮機11の吸入冷媒密度を上昇させることができ、圧縮機11の回転数(換言すれば冷媒吐出能力)を増加させることなく、高圧側熱交換器12における冷媒の放熱量を増加させることができ、第1除湿暖房モードよりもヒータコア24から吹き出される吹出空気の温度を上昇させることができる。 As a result, the suction refrigerant density of the compressor 11 can be increased with respect to the first dehumidifying heating mode, and the high pressure side heat exchange can be performed without increasing the rotation speed (in other words, refrigerant discharge capacity) of the compressor 11. The amount of heat released from the refrigerant in the vessel 12 can be increased, and the temperature of the blown air blown from the heater core 24 can be increased as compared with the first dehumidifying and heating mode.
 高圧側熱交換器12では、熱交換部12aで凝縮された冷媒がモジュレータ12bで気液分離されるとともに余剰冷媒が貯えられる。モジュレータ12bから流出した液相冷媒は過冷却部12cを流れて過冷却される。 In the high-pressure side heat exchanger 12, the refrigerant condensed in the heat exchanging portion 12a is gas-liquid separated by the modulator 12b and the excess refrigerant is stored. The liquid-phase refrigerant that has flowed out of the modulator 12b flows through the supercooling section 12c and is supercooled.
 暖房モードでは、制御装置30は過冷却バイパス開閉弁19を開ける。これにより、室外熱交換器14のモジュレータ14bから流出した冷媒が過冷却部14cおよび過冷却バイパス流路18を流れるので、過冷却部14cにおける冷媒の圧力損失を低減できる。 In the heating mode, the control device 30 opens the supercooling bypass opening / closing valve 19. Thereby, since the refrigerant | coolant which flowed out from the modulator 14b of the outdoor heat exchanger 14 flows through the supercooling part 14c and the supercooling bypass flow path 18, the pressure loss of the refrigerant | coolant in the supercooling part 14c can be reduced.
 以上説明した本実施形態の車両用空調装置1では、上記の如く、第1膨張弁13および第2膨張弁15の絞り開度を変化させることによって、車室内の適切な冷房、暖房および除湿暖房を実行することができ、ひいては車室内の快適な空調を実現することができる。 In the vehicle air conditioner 1 of the present embodiment described above, appropriate cooling, heating, and dehumidifying heating in the passenger compartment are achieved by changing the throttle opening of the first expansion valve 13 and the second expansion valve 15 as described above. Thus, comfortable air conditioning in the passenger compartment can be realized.
 本実施形態では、低圧側熱交換器16は、冷媒の流れにおいて室外熱交換器14と直列に配置され、第1膨張弁13および第2膨張弁15のうち少なくとも一方で減圧された低圧の冷媒と冷却水とを熱交換させて熱媒体を冷却させる。クーラコア26は、低圧側熱交換器16で冷却された冷却水と車室内へ送風される空気とを熱交換させて空気を冷却する。 In the present embodiment, the low-pressure side heat exchanger 16 is arranged in series with the outdoor heat exchanger 14 in the refrigerant flow, and the low-pressure refrigerant is decompressed by at least one of the first expansion valve 13 and the second expansion valve 15. The heat medium is cooled by exchanging heat with the cooling water. The cooler core 26 cools the air by exchanging heat between the cooling water cooled by the low-pressure side heat exchanger 16 and the air blown into the vehicle interior.
 これによると、室外熱交換器14と低圧側熱交換器16とが冷媒流れにおいて互いに直列に配置されているので、低圧側熱交換器16における冷媒圧力・冷媒温度が低くなっている場合であっても、クーラコア26を流れる冷却水の流量を調整することによってクーラコア26の熱交換性能を制御でき、ひいてはクーラコア26でフロストが発生することを抑制できる。 According to this, since the outdoor heat exchanger 14 and the low pressure side heat exchanger 16 are arranged in series with each other in the refrigerant flow, the refrigerant pressure and the refrigerant temperature in the low pressure side heat exchanger 16 are low. However, the heat exchange performance of the cooler core 26 can be controlled by adjusting the flow rate of the cooling water flowing through the cooler core 26, and as a result, the occurrence of frost in the cooler core 26 can be suppressed.
 その結果、室外熱交換器14における冷媒圧力も低くできるため、吸熱量を大きく保つことができ、所望の吹き出し温度を得ることもできる。 As a result, since the refrigerant pressure in the outdoor heat exchanger 14 can be lowered, the heat absorption amount can be kept large, and a desired blowing temperature can be obtained.
 また、低圧側熱交換器16とクーラコア26との間に冷却水が介在しているので、クーラコア26で冷却された空気の温度よりも、クーラコア26に流入する冷却水の温度の方が低くなり、クーラコア26に流入する冷却水の温度よりも低圧側熱交換器16に流入する冷媒の温度の方が低くなる。 Further, since the cooling water is interposed between the low-pressure side heat exchanger 16 and the cooler core 26, the temperature of the cooling water flowing into the cooler core 26 is lower than the temperature of the air cooled by the cooler core 26. The temperature of the refrigerant flowing into the low pressure side heat exchanger 16 is lower than the temperature of the cooling water flowing into the cooler core 26.
 よって、上記特許文献1の従来技術のように室内蒸発器で冷媒と空気とを直接熱交換させる構成と比較して、低圧側熱交換器16における冷媒の温度を低くでき、結果として低圧側熱交換器16における冷媒圧力も低くできる。 Therefore, compared with the configuration in which the refrigerant and air are directly heat-exchanged by the indoor evaporator as in the conventional technique of Patent Document 1, the temperature of the refrigerant in the low-pressure side heat exchanger 16 can be lowered, and as a result, the low-pressure side heat The refrigerant pressure in the exchanger 16 can also be lowered.
 また、本実施形態では、制御部30が第1膨張弁13および第2膨張弁15の減圧量を調整することによって吸熱モードと放熱モードとが切り替えられる。吸熱モードは、室外熱交換器14が冷媒に吸熱させる作動モード(すなわち暖房モードおよび第2除湿暖房モード)である。放熱モードは、室外熱交換器14が冷媒を放熱させる作動モード(すなわち冷房モードおよび第1除湿暖房モード)である。これにより、吸熱モードと放熱モードとを切り替え可能な冷凍サイクル装置を、簡素な構成によって実現できる。 Further, in the present embodiment, the heat absorption mode and the heat radiation mode are switched by the control unit 30 adjusting the pressure reduction amount of the first expansion valve 13 and the second expansion valve 15. The heat absorption mode is an operation mode in which the outdoor heat exchanger 14 absorbs heat from the refrigerant (that is, the heating mode and the second dehumidifying heating mode). The heat release mode is an operation mode in which the outdoor heat exchanger 14 releases heat from the refrigerant (that is, the cooling mode and the first dehumidifying heating mode). Thereby, the refrigerating-cycle apparatus which can switch heat absorption mode and heat radiation mode is realizable by simple structure.
 本実施形態では、高圧側熱交換器12側のモジュレータ12bは、吸熱モード時に高圧側熱交換器12で熱交換された冷媒の気液を分離して冷媒を貯える。室外熱交換器14側のモジュレータ14bは、放熱モード時に室外熱交換器14で熱交換された冷媒の気液を分離して冷媒を貯える。 In this embodiment, the modulator 12b on the high-pressure side heat exchanger 12 side separates the gas-liquid of the refrigerant heat-exchanged by the high-pressure side heat exchanger 12 in the endothermic mode and stores the refrigerant. The modulator 14b on the outdoor heat exchanger 14 side separates the gas-liquid of the refrigerant heat-exchanged by the outdoor heat exchanger 14 in the heat dissipation mode and stores the refrigerant.
 具体的には、高圧側熱交換器12側のモジュレータ12bは、高圧側熱交換器12の冷媒流れ下流側かつ第1膨張弁13の冷媒流れ上流側に配置され、高圧側熱交換器12で熱交換された冷媒の気液を分離して冷媒を貯える。室外熱交換器14側のモジュレータ14bは、室外熱交換器14の冷媒流れ下流側かつ第2膨張弁15の冷媒流れ上流側に配置され、室外熱交換器14で熱交換された冷媒の気液を分離して冷媒を貯える。 Specifically, the modulator 12b on the high pressure side heat exchanger 12 side is disposed on the refrigerant flow downstream side of the high pressure side heat exchanger 12 and on the refrigerant flow upstream side of the first expansion valve 13. The refrigerant is stored by separating the gas-liquid of the heat-exchanged refrigerant. The modulator 14b on the outdoor heat exchanger 14 side is disposed on the downstream side of the refrigerant flow of the outdoor heat exchanger 14 and on the upstream side of the refrigerant flow of the second expansion valve 15, and is a gas-liquid refrigerant that has undergone heat exchange in the outdoor heat exchanger 14. To store refrigerant.
 これによると、吸熱モードおよび放熱モードのいずれにおいてもサイクル高圧側に冷媒貯留部を持つことができる。換言すれば、吸熱モードおよび放熱モードのいずれにおいても冷凍サイクルをレシーバサイクル化できる。 According to this, it is possible to have a refrigerant reservoir on the cycle high pressure side in both the endothermic mode and the heat release mode. In other words, the refrigeration cycle can be converted into a receiver cycle in both the heat absorption mode and the heat dissipation mode.
 そのため、サイクル低圧側に冷媒貯留部を持つアキュムレータサイクルと比較して冷媒貯留部における冷媒および冷凍機油の粘性が小さくなるので、冷媒の圧力損失を低減できるとともに冷凍機油の排出が容易になり、ひいてはサイクル性能を向上できる。また、冷凍機油の排出が容易になるので、冷凍機油の封入量を少なくでき、ひいては冷媒貯留部を小型化できる。 Therefore, compared with an accumulator cycle having a refrigerant reservoir on the low pressure side of the cycle, the viscosity of the refrigerant and the refrigeration oil in the refrigerant reservoir is reduced, so that the pressure loss of the refrigerant can be reduced and the refrigeration oil can be easily discharged. Cycle performance can be improved. Further, since the refrigerating machine oil can be easily discharged, the amount of refrigerating machine oil enclosed can be reduced, and the refrigerant storage section can be downsized.
 さらに、吸熱モードと放熱モードとで冷媒貯留部を自動的に移動させることができ、かつ吸熱モードおよび放熱モードのいずれにおいても、高圧側エンタルピを液飽和線まで減少できる制御となるので最適制御が可能となる。 In addition, the refrigerant reservoir can be moved automatically in the endothermic mode and the heat release mode, and in both the endothermic mode and the heat release mode, the high pressure side enthalpy can be reduced to the liquid saturation line, so optimal control is possible. It becomes possible.
 本実施形態では、制御部30は、吸熱モード時において低圧側熱交換器16から流出した冷却水の温度が0℃以下である場合、低温側ポンプ25の作動を制御して低圧側熱交換器16およびクーラコア26のうち少なくとも一方における冷却水の流量を調整する。 In the present embodiment, the control unit 30 controls the operation of the low temperature side pump 25 to control the low pressure side heat exchanger when the temperature of the cooling water flowing out from the low pressure side heat exchanger 16 is 0 ° C. or less in the endothermic mode. The flow rate of the cooling water in at least one of 16 and the cooler core 26 is adjusted.
 例えば、制御部30は、吸熱モード時において低圧側熱交換器16から流出した冷却水の温度が0℃以下である場合、低温側ポンプ25の作動を制御して低圧側熱交換器16およびクーラコア26の両方における冷却水の流量を調整する。 For example, the control unit 30 controls the operation of the low temperature side pump 25 to control the low pressure side heat exchanger 16 and the cooler core when the temperature of the cooling water flowing out from the low pressure side heat exchanger 16 is 0 ° C. or less in the endothermic mode. The flow rate of the cooling water in both of them is adjusted.
 具体的には、制御部30は、室外熱交換器14における冷媒の圧力が低いほど、低圧側熱交換器16およびクーラコア26のうち少なくとも一方における冷却水の流量が減少するように低温側ポンプ25の作動を制御する。 Specifically, the control unit 30 causes the low-temperature side pump 25 to decrease the flow rate of the cooling water in at least one of the low-pressure side heat exchanger 16 and the cooler core 26 as the refrigerant pressure in the outdoor heat exchanger 14 decreases. Control the operation of
 これによると、低圧側熱交換器16における冷媒圧力・冷媒温度が低くなっている場合であっても、クーラコア26を流れる冷却水の流量を調整することによってクーラコア26の熱交換性能を制御でき、ひいてはクーラコア26でフロストが発生することを抑制できる。 According to this, even if the refrigerant pressure / refrigerant temperature in the low pressure side heat exchanger 16 is low, the heat exchange performance of the cooler core 26 can be controlled by adjusting the flow rate of the cooling water flowing through the cooler core 26, As a result, generation | occurrence | production of frost with the cooler core 26 can be suppressed.
 その結果、室外熱交換器14における冷媒圧力も低くできるため、吸熱量を大きく保つことができ、所望の吹き出し温度を得ることもできる。 As a result, since the refrigerant pressure in the outdoor heat exchanger 14 can be lowered, the heat absorption amount can be kept large, and a desired blowing temperature can be obtained.
 さらに、低圧側熱交換器16を流れる冷却水の流量を調整することによって、冷媒と冷却水の温度差を大きくすることができる。クーラコア26を流れる冷却水の流量を調整することによって、空気と冷却水の温度差を大きくすることができる。 Furthermore, by adjusting the flow rate of the cooling water flowing through the low pressure side heat exchanger 16, the temperature difference between the refrigerant and the cooling water can be increased. By adjusting the flow rate of the cooling water flowing through the cooler core 26, the temperature difference between the air and the cooling water can be increased.
 その結果、空気と冷却水との温度差を大きくすることができるので、室外熱交換器14での吸熱量を多くするために室外熱交換器14における冷媒温度(換言すれば冷媒圧力)を低くしても、クーラコア26に流入する冷却水の温度が0℃以下になることを抑制でき、ひいてはクーラコア26でフロストが発生することを抑制できる。 As a result, since the temperature difference between the air and the cooling water can be increased, the refrigerant temperature (in other words, the refrigerant pressure) in the outdoor heat exchanger 14 is lowered in order to increase the heat absorption amount in the outdoor heat exchanger 14. Even so, it is possible to suppress the temperature of the cooling water flowing into the cooler core 26 from becoming 0 ° C. or lower, and thus it is possible to suppress the occurrence of frost in the cooler core 26.
 制御部30は、低温側ポンプ25の回転数を制御することによって冷却水の流量を調整すればよい。制御部30は、低温側ポンプ25を間欠的に駆動することによって冷却水の流量(すなわち時間平均流量)を調整してもよい。 The control unit 30 may adjust the flow rate of the cooling water by controlling the rotational speed of the low temperature side pump 25. The control part 30 may adjust the flow volume (namely, time average flow volume) of cooling water by driving the low temperature side pump 25 intermittently.
 低温冷却水回路22に流量調整弁が配置されていてもよい。これにより、制御部30が流量調整弁の開度を調整することによって冷却水の流量を調整できる。 A flow rate adjustment valve may be arranged in the low-temperature cooling water circuit 22. Thereby, the control part 30 can adjust the flow volume of a cooling water by adjusting the opening degree of a flow regulating valve.
 本実施形態では、過冷却バイパス開閉弁19は、放熱モード時には、吸熱モード時と比較して、過冷却バイパス流路18の流路開度を小さくする。 In the present embodiment, the supercooling bypass opening / closing valve 19 reduces the opening degree of the supercooling bypass passage 18 in the heat dissipation mode compared to that in the heat absorption mode.
 これによると、放熱モード時には、吸熱モード時と比較して過冷却バイパス流路18を流れる冷却水が少なくなって室外熱交換器14側の過冷却部14cを流れる冷却水が多くなる。そのため、過冷却バイパス流路18で冷媒を過冷却する必要がある放熱モード時に、過冷却バイパス流路18で冷媒を確実に過冷却できる。 According to this, in the heat dissipation mode, the cooling water flowing through the supercooling bypass channel 18 is less than in the heat absorption mode, and the cooling water flowing through the supercooling portion 14c on the outdoor heat exchanger 14 side is increased. Therefore, the refrigerant can be reliably supercooled by the supercooling bypass channel 18 in the heat dissipation mode in which the refrigerant needs to be supercooled by the supercooling bypass channel 18.
 吸熱モード時には、過冷却バイパス流路18を流れる冷却水が多くなって室外熱交換器14側の過冷却部14cを流れる冷却水が少なくなる。そのため、過冷却バイパス流路18で冷媒を過冷却する必要がない吸熱モード時に、室外熱交換器14側の過冷却部14cで圧力損失が増加することを抑制できる。 In the heat absorption mode, the amount of cooling water flowing through the supercooling bypass channel 18 increases, and the amount of cooling water flowing through the subcooling portion 14c on the outdoor heat exchanger 14 side decreases. Therefore, it is possible to suppress an increase in pressure loss in the supercooling portion 14c on the outdoor heat exchanger 14 side in the heat absorption mode in which it is not necessary to supercool the refrigerant in the supercooling bypass channel 18.
 本実施形態では、過冷却バイパス流路18は、室外熱交換器14の過冷却部分配タンク部14hから室外熱交換器14側の過冷却部14cの冷媒流れ下流側に延びている。 In the present embodiment, the supercooling bypass channel 18 extends from the supercooling part distribution tank part 14h of the outdoor heat exchanger 14 to the downstream side of the refrigerant flow of the supercooling part 14c on the outdoor heat exchanger 14 side.
 これによると、吸熱モードおよび放熱モードのいずれにおいても、室外熱交換器14側のモジュレータ14bを通過した冷媒が過冷却バイパス流路18に流入する。そのため、室外熱交換器14側のモジュレータ14bとして、従来のモジュレータを設計変更することなく用いることができる。例えば、モジュレータ14bの内部のフィルタ14mの位置を、従来のモジュレータに対して変更する必要がない。 According to this, the refrigerant that has passed through the modulator 14b on the outdoor heat exchanger 14 side flows into the supercooling bypass channel 18 in both the heat absorption mode and the heat dissipation mode. Therefore, a conventional modulator can be used as the modulator 14b on the outdoor heat exchanger 14 side without changing the design. For example, it is not necessary to change the position of the filter 14m inside the modulator 14b with respect to the conventional modulator.
 上述のように、冷房モード時には高温側ポンプ23を停止させるので高圧側熱交換器12に冷却水が流通しない。このとき、高圧側熱交換器12を流れる冷媒の温度が高くなって高圧側熱交換器12における冷却水温度が高くなると高圧側熱交換器12の内部で冷却水が沸騰してしまうおそれがある。 As described above, since the high temperature side pump 23 is stopped in the cooling mode, the cooling water does not flow through the high pressure side heat exchanger 12. At this time, if the temperature of the refrigerant flowing through the high-pressure side heat exchanger 12 becomes high and the cooling water temperature in the high-pressure side heat exchanger 12 becomes high, the cooling water may boil inside the high-pressure side heat exchanger 12. .
 そこで、本実施形態では、制御部30は、冷房モード時に高温側ポンプ23を停止させ、冷房モード時に高圧側熱交換器12における高温側冷却水の温度が所定温度以上になった場合、高圧側熱交換器12を流れる高温側冷却水の流量が増加するように高温側ポンプ23の作動を制御する。これにより、冷房モード時に高圧側熱交換器12の内部で冷却水が沸騰してしまうことを抑制できる。 Therefore, in the present embodiment, the control unit 30 stops the high temperature side pump 23 during the cooling mode, and when the temperature of the high temperature side cooling water in the high pressure side heat exchanger 12 becomes equal to or higher than the predetermined temperature during the cooling mode, The operation of the high temperature side pump 23 is controlled so that the flow rate of the high temperature side cooling water flowing through the heat exchanger 12 increases. Thereby, it can suppress that a cooling water boils inside the high voltage | pressure side heat exchanger 12 at the time of air_conditioning | cooling mode.
 本実施形態では、制御部30は、低温側ポンプ25の作動を制御して低圧側熱交換器16における冷却水の流量を調整することによって、低圧側熱交換器16で熱交換された冷媒の過熱度を制御する。これによると、過熱度の制御が非常に容易である。 In the present embodiment, the control unit 30 controls the operation of the low temperature side pump 25 and adjusts the flow rate of the cooling water in the low pressure side heat exchanger 16, whereby the refrigerant heat exchanged by the low pressure side heat exchanger 16 is adjusted. Control the degree of superheat. According to this, it is very easy to control the degree of superheat.
 冷却水ポンプ25が停止していて低圧側熱交換器16とクーラコア26との間で冷却水が循環していない場合に送風機27が作動してクーラコア26に空気が送風されると、クーラコア26内の冷却水の温度は低圧側熱交換器16内の冷却水の温度よりも高くなる。この冷却水の温度差による対流で冷却水が移動して低圧側熱交換器16内の低温冷却水とクーラコア26内の高温冷却水とが入れ替わるとクーラコア26にフロストが生じたり低圧側熱交換器16での冷媒の吸熱量が少なくなったりしてしまう。 When the cooling water pump 25 is stopped and the cooling water is not circulated between the low pressure side heat exchanger 16 and the cooler core 26, when the blower 27 is activated and air is blown to the cooler core 26, The temperature of the cooling water becomes higher than the temperature of the cooling water in the low-pressure side heat exchanger 16. When the cooling water moves by convection due to the temperature difference of the cooling water and the low-temperature cooling water in the low-pressure side heat exchanger 16 and the high-temperature cooling water in the cooler core 26 are interchanged, frost is generated in the cooler core 26 or the low-pressure side heat exchanger. The amount of heat absorbed by the refrigerant at 16 will decrease.
 そこで、本実施形態では、クーラコア26の熱交換部26cは、低圧側熱交換器16の冷却水入口16aおよび冷却水出口16bよりも重力方向の高い位置に配置されているので、低圧側熱交換器16内の低温冷却水とクーラコア26内の高温冷却水とが対流によって入れ替わることを抑制でき、ひいてはクーラコア26に着霜が生じたり低圧側熱交換器16での冷媒の吸熱量が少なくなったりしてしまうことを抑制できる。 Therefore, in the present embodiment, the heat exchanging portion 26c of the cooler core 26 is disposed at a position higher in the gravitational direction than the cooling water inlet 16a and the cooling water outlet 16b of the low pressure side heat exchanger 16, so that the low pressure side heat exchange is performed. The low-temperature cooling water in the cooler 16 and the high-temperature cooling water in the cooler core 26 can be suppressed from being exchanged by convection, and as a result, frost formation occurs in the cooler core 26 or the heat absorption amount of the refrigerant in the low-pressure side heat exchanger 16 is reduced. Can be suppressed.
 同様の理由により、低温冷却水回路22を形成する低温冷却水流路22aの少なくとも一部がクーラコア26の熱交換部26cよりも重力方向の低い位置に配置されていても、クーラコア26にフロストが生じたり低圧側熱交換器16での冷媒の吸熱量が少なくなったりしてしまうことを抑制できる。 For the same reason, even if at least a part of the low-temperature cooling water flow path 22a forming the low-temperature cooling water circuit 22 is disposed at a position lower in the gravitational direction than the heat exchanging portion 26c of the cooler core 26, frost occurs in the cooler core 26. Or the amount of heat absorbed by the refrigerant in the low pressure side heat exchanger 16 can be reduced.
 (第2実施形態)
 図8、図9に示すように、本実施形態の冷凍サイクル装置10は、熱供給機器40を備える。熱供給機器40は、冷却水に熱を供給する機器である。熱供給機器40には冷却水が流通する。熱供給機器40は、発熱機器や換気熱回収熱交換器等である。
(Second Embodiment)
As shown in FIGS. 8 and 9, the refrigeration cycle apparatus 10 of the present embodiment includes a heat supply device 40. The heat supply device 40 is a device that supplies heat to the cooling water. Cooling water flows through the heat supply device 40. The heat supply device 40 is a heat generating device, a ventilation heat recovery heat exchanger, or the like.
 発熱機器は、エンジン、走行用電動モータ、電池、インバータ、DC-DCコンバータ、ターボチャージャ、インタークーラ、EGRクーラ、CVTクーラ等である。 Heat generating devices are engines, electric motors for traveling, batteries, inverters, DC-DC converters, turbochargers, intercoolers, EGR coolers, CVT coolers, and the like.
 換気熱回収熱交換器は、換気の際に捨てられる熱を回収する熱交換器である。換気熱回収熱交換器は、換気のために車室内から車室外に排出される空気と冷却水との間で熱交換させる熱交換器である。 換 気 Ventilation heat recovery heat exchanger is a heat exchanger that recovers the heat discarded during ventilation. The ventilation heat recovery heat exchanger is a heat exchanger that exchanges heat between air discharged from the passenger compartment to the outside of the passenger compartment for cooling and cooling water.
 図8に示す第1実施例では、熱供給機器40は低温冷却水回路22に配置されている。図9に示す第2実施例では、熱供給機器40は高温冷却水回路21に配置されている。 In the first embodiment shown in FIG. 8, the heat supply device 40 is disposed in the low-temperature cooling water circuit 22. In the second embodiment shown in FIG. 9, the heat supply device 40 is arranged in the high temperature cooling water circuit 21.
 図10に示すように、室外熱交換器14の近傍にはシャッター41が配置されている。シャッター41は、図示しない電動アクチュエータによって開閉駆動される。電動アクチュエータの作動は制御装置30によって制御される。 As shown in FIG. 10, a shutter 41 is disposed in the vicinity of the outdoor heat exchanger 14. The shutter 41 is driven to open and close by an electric actuator (not shown). The operation of the electric actuator is controlled by the control device 30.
 シャッター41は、室外熱交換器14を流れる外気の通路の開度を調整する。すなわち、シャッター41は、室外熱交換器14を流れる外気の流量を調整する熱交換器流量調整部である。例えば、シャッター41の開度を小さくすることによって、室外熱交換器14を流れる外気の流量を減少させることができる。 The shutter 41 adjusts the opening degree of the passage of the outside air flowing through the outdoor heat exchanger 14. That is, the shutter 41 is a heat exchanger flow rate adjusting unit that adjusts the flow rate of the outside air flowing through the outdoor heat exchanger 14. For example, by reducing the opening degree of the shutter 41, the flow rate of the outside air flowing through the outdoor heat exchanger 14 can be reduced.
 図11に示すように、本実施形態の冷凍サイクル装置10は、熱交換器バイパス流路42および熱交換器バイパス開閉弁43を備える。熱交換器バイパス流路42は、冷媒が第1膨張弁13および室外熱交換器14をバイパスして流れる熱交換器バイパス部である。図11の例では、熱交換器バイパス流路42は、過冷却バイパス流路18に合流している。 As shown in FIG. 11, the refrigeration cycle apparatus 10 of the present embodiment includes a heat exchanger bypass channel 42 and a heat exchanger bypass opening / closing valve 43. The heat exchanger bypass channel 42 is a heat exchanger bypass portion in which the refrigerant flows by bypassing the first expansion valve 13 and the outdoor heat exchanger 14. In the example of FIG. 11, the heat exchanger bypass passage 42 joins the supercooling bypass passage 18.
 熱交換器バイパス開閉弁43は、熱交換器バイパス流路42の開度を調整する熱交換器バイパス開度調整部である。すなわち、熱交換器バイパス開閉弁43は、室外熱交換器14を流れる外気の流量を調整する熱交換器流量調整部である。熱交換器バイパス開閉弁43は電磁弁であり、制御装置30によって制御される。例えば、熱交換器バイパス開閉弁43の開度を大きくすることによって、室外熱交換器14に流入する冷媒の流量を減少させることができる。 The heat exchanger bypass opening / closing valve 43 is a heat exchanger bypass opening degree adjusting unit that adjusts the opening degree of the heat exchanger bypass passage 42. That is, the heat exchanger bypass opening / closing valve 43 is a heat exchanger flow rate adjusting unit that adjusts the flow rate of the outside air flowing through the outdoor heat exchanger 14. The heat exchanger bypass opening / closing valve 43 is an electromagnetic valve and is controlled by the control device 30. For example, the flow rate of the refrigerant flowing into the outdoor heat exchanger 14 can be reduced by increasing the opening degree of the heat exchanger bypass opening / closing valve 43.
 本実施形態では、熱供給機器40が冷却水に熱を供給することによってサイクル性能を向上できる。特に、暖房モード時に、熱供給機器40から供給された熱を低圧側熱交換器16に導入することによって、室外熱交換器14のフロストを抑制したり、暖房性能を向上したりすることができる。 In this embodiment, the cycle performance can be improved by the heat supply device 40 supplying heat to the cooling water. In particular, the frost of the outdoor heat exchanger 14 can be suppressed or the heating performance can be improved by introducing the heat supplied from the heat supply device 40 into the low-pressure side heat exchanger 16 in the heating mode. .
 暖房モード時に熱供給機器40から低圧側熱交換器16に導入される熱量が多くなり過ぎると、室外熱交換器14に流入する冷媒の温度が高くなり過ぎると、冷凍サイクルの低圧が上昇し、室外熱交換器14に流入する冷媒の温度が外気温度以上になってしまい、室外熱交換器14で冷媒が放熱して熱量を無駄にしてしまうおそれがある。 If the amount of heat introduced from the heat supply device 40 to the low pressure side heat exchanger 16 is too large in the heating mode, if the temperature of the refrigerant flowing into the outdoor heat exchanger 14 becomes too high, the low pressure of the refrigeration cycle increases, There is a possibility that the temperature of the refrigerant flowing into the outdoor heat exchanger 14 becomes equal to or higher than the outside air temperature, and the refrigerant radiates heat in the outdoor heat exchanger 14 to waste heat.
 そこで、本実施形態では、制御部30は、室外熱交換器14に流入する冷媒の温度と外気との温度差が所定値以下になった場合、室外熱交換器14に流入する外気および冷媒のうち少なくとも一方の流量が減少するように、室外送風機17、シャッター41および熱交換器バイパス開閉弁43のうち少なくとも1つの作動を制御する。これにより、室外熱交換器14で冷媒が放熱することを抑制できる。 Therefore, in the present embodiment, when the temperature difference between the temperature of the refrigerant flowing into the outdoor heat exchanger 14 and the outside air becomes equal to or less than a predetermined value, the control unit 30 controls the outside air and the refrigerant flowing into the outdoor heat exchanger 14. The operation of at least one of the outdoor blower 17, the shutter 41, and the heat exchanger bypass opening / closing valve 43 is controlled so that at least one of the flow rates decreases. Thereby, it can suppress that a refrigerant | coolant thermally radiates with the outdoor heat exchanger 14. FIG.
 例えば、制御部30は、室外熱交換器14に流入する冷媒の温度と外気との温度差が所定値以下になった場合、室外熱交換器14の回転数を少なくすることによって、室外熱交換器14に流入する外気の流量を減少させればよい。 For example, when the temperature difference between the refrigerant flowing into the outdoor heat exchanger 14 and the outside air becomes a predetermined value or less, the control unit 30 reduces the rotation speed of the outdoor heat exchanger 14 to reduce the outdoor heat exchange. What is necessary is just to reduce the flow volume of the external air which flows into the vessel 14.
 例えば、制御部30は、室外熱交換器14に流入する冷媒の温度と外気との温度差が所定値以下になった場合、室外熱交換器14への外気の送風方向が逆になるように外気送風機17の作動を制御してもよい。 For example, when the temperature difference between the refrigerant flowing into the outdoor heat exchanger 14 and the outside air becomes a predetermined value or less, the control unit 30 causes the outside air blowing direction to the outdoor heat exchanger 14 to be reversed. The operation of the outside air blower 17 may be controlled.
 室外熱交換器14への外気の送風方向が逆になることによって、車両のエンジンルーム内の高温の外気(すなわち、エンジンで暖められた外気)を室外熱交換器14に流入させることができる。そのため、室外熱交換器14で冷媒が放熱して熱量を無駄にしてしまうことを確実に抑制できる。 The air blowing direction of the outside air to the outdoor heat exchanger 14 is reversed, so that high temperature outside air (that is, outside air warmed by the engine) in the engine room of the vehicle can flow into the outdoor heat exchanger 14. Therefore, it is possible to reliably prevent the refrigerant from radiating heat in the outdoor heat exchanger 14 and wasting heat.
 例えば、制御部30は、室外熱交換器14に流入する冷媒の温度と外気との温度差が所定値以下になった場合、室外熱交換器14を流れる外気の通路の開度が小さくなるようにシャッター41の作動を制御することによって、室外熱交換器14に流入する外気の流量を減少させてもよい。 For example, when the temperature difference between the refrigerant flowing into the outdoor heat exchanger 14 and the outside air becomes equal to or less than a predetermined value, the control unit 30 reduces the opening of the passage of the outside air flowing through the outdoor heat exchanger 14. By controlling the operation of the shutter 41, the flow rate of the outside air flowing into the outdoor heat exchanger 14 may be reduced.
 例えば、制御部30は、室外熱交換器14に流入する冷媒の温度と外気との温度差が所定値以下になった場合、熱交換器バイパス開閉弁43の開度を大きくすることによって、室外熱交換器14に流入する冷媒の流量を減少させてもよい。 For example, when the temperature difference between the refrigerant flowing into the outdoor heat exchanger 14 and the outside air becomes equal to or less than a predetermined value, the control unit 30 increases the opening of the heat exchanger bypass on / off valve 43 to increase the outdoor temperature. The flow rate of the refrigerant flowing into the heat exchanger 14 may be reduced.
 (第3実施形態)
 図12に示すように、冷凍サイクル装置10は、内部熱交換器45を備えていてもよい。内部熱交換器45は、高圧側冷媒通路45aと低圧側冷媒通路45bとを有している。
(Third embodiment)
As shown in FIG. 12, the refrigeration cycle apparatus 10 may include an internal heat exchanger 45. The internal heat exchanger 45 has a high-pressure side refrigerant passage 45a and a low-pressure side refrigerant passage 45b.
 内部熱交換器45は、高圧側冷媒通路45aを流通する高圧側冷媒と、低圧側冷媒通路45bを流通する低圧側冷媒とを熱交換させる熱交換器である。 The internal heat exchanger 45 is a heat exchanger that exchanges heat between the high-pressure refrigerant that flows through the high-pressure refrigerant passage 45a and the low-pressure refrigerant that flows through the low-pressure refrigerant passage 45b.
 高圧側冷媒通路45aは、室外熱交換器14の冷媒流れ下流側かつ第2膨張弁15の冷媒流れ上流側に配置されている。低圧側冷媒通路45bは、低圧側熱交換器16の冷媒流れ下流側かつ圧縮機11の冷媒吸入側に配置されている。 The high-pressure side refrigerant passage 45 a is arranged on the downstream side of the refrigerant flow of the outdoor heat exchanger 14 and on the upstream side of the refrigerant flow of the second expansion valve 15. The low-pressure side refrigerant passage 45 b is disposed on the refrigerant flow downstream side of the low-pressure side heat exchanger 16 and on the refrigerant suction side of the compressor 11.
 (第4実施形態)
 本実施形態では、図13に示すように、第2膨張弁15の代わりにエジェクタ46が配置されている。
(Fourth embodiment)
In the present embodiment, as shown in FIG. 13, an ejector 46 is disposed instead of the second expansion valve 15.
 エジェクタ46は、冷媒を減圧する減圧部であるとともに、高速で噴出する冷媒流の吸引作用(換言すれば巻き込み作用)によって冷媒の循環を行う流体輸送用の冷媒循環部(換言すれば運動量輸送式ポンプ)でもある。 The ejector 46 is a decompression unit that decompresses the refrigerant, and also a refrigerant circulation unit for fluid transportation (in other words, a momentum transportation type) that circulates the refrigerant by suction action (in other words, entrainment action) of the refrigerant flow ejected at high speed. It is also a pump).
 エジェクタ46は、ノズル部46aと冷媒吸引口46bとを備えている。ノズル部46aは、室外熱交換器14を通過した冷媒の通路面積を小さく絞って冷媒を減圧膨張させる。冷媒吸引口46bは、ノズル部46aの冷媒噴出口と同一空間に配置され、低圧側熱交換器16からの気相冷媒を吸引する。 The ejector 46 includes a nozzle portion 46a and a refrigerant suction port 46b. The nozzle part 46 a expands the refrigerant under reduced pressure by reducing the passage area of the refrigerant that has passed through the outdoor heat exchanger 14. The refrigerant suction port 46b is disposed in the same space as the refrigerant outlet of the nozzle portion 46a, and sucks the gas phase refrigerant from the low-pressure side heat exchanger 16.
 エジェクタ46のうちノズル部46aおよび冷媒吸引口46bの冷媒流れ下流側部位には、ディフューザ部46dが配置されている。ディフューザ部46dは、ノズル部46aからの高速度の冷媒流と冷媒吸引口46bの吸引冷媒とを混合して昇圧させる昇圧部である。 The diffuser part 46d is arrange | positioned in the refrigerant | coolant flow downstream site | part of the nozzle part 46a and the refrigerant | coolant suction port 46b among the ejectors 46. FIG. The diffuser portion 46d is a pressure increasing portion that increases the pressure by mixing the high-speed refrigerant flow from the nozzle portion 46a and the suction refrigerant in the refrigerant suction port 46b.
 ディフューザ部46dは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。 The diffuser portion 46d is formed in a shape that gradually increases the refrigerant passage area, and acts to decelerate the refrigerant flow to increase the refrigerant pressure, that is, to convert the velocity energy of the refrigerant into pressure energy.
 エジェクタ46の出口部(ディフューザ部46dの先端部)側には低圧側熱交換器16が接続されている。 The low pressure side heat exchanger 16 is connected to the outlet portion (the tip portion of the diffuser portion 46d) of the ejector 46.
 ノズル部46aの冷媒入口側には、エジェクタバイパス流路47の一端が三方弁48を介して接続されている。エジェクタバイパス流路47は、冷媒がエジェクタ46をバイパスして流れる流路である。エジェクタバイパス流路47の他端は低圧側熱交換器16の冷媒入口側に接続されている。三方弁48は、冷媒がエジェクタ46側に流出する状態と、冷媒がエジェクタバイパス流路47側に流出する状態とを切り替える。三方弁48の作動は制御装置30によって制御される。 One end of an ejector bypass passage 47 is connected to the refrigerant inlet side of the nozzle portion 46a via a three-way valve 48. The ejector bypass channel 47 is a channel through which the refrigerant bypasses the ejector 46. The other end of the ejector bypass channel 47 is connected to the refrigerant inlet side of the low pressure side heat exchanger 16. The three-way valve 48 switches between a state in which the refrigerant flows out to the ejector 46 side and a state in which the refrigerant flows out to the ejector bypass channel 47 side. The operation of the three-way valve 48 is controlled by the control device 30.
 (第5実施形態)
 上記実施形態では、高圧側熱交換器12は、圧縮機11から吐出された高圧側冷媒と高温冷却水回路21の冷却水とを熱交換させるが、図14に示す本実施形態の第1実施例、および図15に示す本実施形態の第2実施例のように、高圧側熱交換器12は、圧縮機11から吐出された高圧側冷媒と車室内へ送風される空気とを熱交換させてもよい。図14、図15に示す高圧側熱交換器12は、上記実施形態のヒータコア24の代わりに、図示しない空調ケーシングに収容されている。
(Fifth embodiment)
In the above embodiment, the high-pressure side heat exchanger 12 exchanges heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 21, but the first embodiment of this embodiment shown in FIG. As in the example and the second example of this embodiment shown in FIG. 15, the high pressure side heat exchanger 12 exchanges heat between the high pressure side refrigerant discharged from the compressor 11 and the air blown into the vehicle interior. May be. 14 and 15 is housed in an air conditioning casing (not shown) instead of the heater core 24 of the above embodiment.
 上記実施形態では、低圧側熱交換器16は、第2膨張弁15を流出した低圧冷媒と低温冷却水回路22の冷却水とを熱交換させるが、図15に示す本実施形態の第2実施例、および図16に示す本実施形態の第3実施例のように、低圧側熱交換器16は、第2膨張弁15を流出した低圧冷媒と車室内へ送風される空気とを熱交換させてもよい。図15、図16に示す低圧側熱交換器16は、上記実施形態のクーラコア26の代わりに、図示しない空調ケーシングに収容されている。 In the above embodiment, the low-pressure heat exchanger 16 exchanges heat between the low-pressure refrigerant that has flowed out of the second expansion valve 15 and the cooling water of the low-temperature cooling water circuit 22, but the second embodiment of the present embodiment shown in FIG. As in the example and the third example of the present embodiment shown in FIG. 16, the low-pressure side heat exchanger 16 exchanges heat between the low-pressure refrigerant that has flowed out of the second expansion valve 15 and the air that is blown into the vehicle interior. May be. The low pressure side heat exchanger 16 shown in FIGS. 15 and 16 is accommodated in an air conditioning casing (not shown) instead of the cooler core 26 of the above embodiment.
 (第6実施形態)
 上記実施形態の冷凍サイクル装置10では、高圧側にモジュレータ12b、14bを備えるレシーバサイクルを構成しているが、図17に示す本実施形態の第1実施例、および図18に示す本実施形態の第2実施例のように、低圧側にアキュムレータ50を備えるアキュムレータサイクルを構成していてもよい。
(Sixth embodiment)
In the refrigeration cycle apparatus 10 of the above-described embodiment, a receiver cycle including modulators 12b and 14b on the high-pressure side is configured, but the first example of this embodiment shown in FIG. 17 and the present embodiment shown in FIG. As in the second embodiment, an accumulator cycle including the accumulator 50 on the low pressure side may be configured.
 アキュムレータ50は、低圧側熱交換器16から流出した冷媒の気液を分離して、分離された液相冷媒を内部に貯え、分離された気相冷媒を圧縮機11の吸入口側へ流出させる冷媒貯留部である。 The accumulator 50 separates the gas-liquid refrigerant flowing out from the low-pressure side heat exchanger 16, stores the separated liquid-phase refrigerant therein, and causes the separated gas-phase refrigerant to flow out to the suction port side of the compressor 11. It is a refrigerant | coolant storage part.
 図17に示す高圧側熱交換器12は、圧縮機11から吐出された高圧側冷媒と高温冷却水回路21の冷却水とを熱交換させる。図18に示す高圧側熱交換器12は、圧縮機11から吐出された高圧側冷媒と車室内へ送風される空気とを熱交換させる。 The high-pressure side heat exchanger 12 shown in FIG. 17 exchanges heat between the high-pressure side refrigerant discharged from the compressor 11 and the cooling water of the high-temperature cooling water circuit 21. The high-pressure side heat exchanger 12 shown in FIG. 18 exchanges heat between the high-pressure side refrigerant discharged from the compressor 11 and the air blown into the vehicle interior.
 (第7実施形態)
 本実施形態では、図19に示すように、低温冷却水回路22に車載機器55が配置されている。車載機器55は、低温冷却水回路22の冷却水の流れにおいてクーラコア26と並列に配置されている。
(Seventh embodiment)
In the present embodiment, as shown in FIG. 19, an in-vehicle device 55 is disposed in the low temperature cooling water circuit 22. The in-vehicle device 55 is arranged in parallel with the cooler core 26 in the flow of the cooling water in the low-temperature cooling water circuit 22.
 車載機器55は、車両に搭載される機器であって、作動に伴って発熱する機器である。例えば、車載機器55は、電池用熱交換器、インバータ、トランスアクセル、モータジェネレータ等である。 The in-vehicle device 55 is a device that is mounted on a vehicle and that generates heat when activated. For example, the in-vehicle device 55 is a battery heat exchanger, an inverter, a transaxle, a motor generator, or the like.
 電池やトランスアクセルは、過冷却されると性能が悪化するため、ある程度の温度調整が必要となる。 ¡Batteries and transaxles deteriorate in performance when they are overcooled, so some temperature adjustment is required.
 制御装置30の入力側には、図示しない車載機器温度センサが接続されている。車載機器温度センサは、車載機器55の温度を検出する車載温度検出部である。車載機器温度センサは、車載機器55に流入する冷却水の温度を検出するセンサであってもよい。 A vehicle-mounted device temperature sensor (not shown) is connected to the input side of the control device 30. The in-vehicle device temperature sensor is an in-vehicle temperature detection unit that detects the temperature of the in-vehicle device 55. The in-vehicle device temperature sensor may be a sensor that detects the temperature of the cooling water flowing into the in-vehicle device 55.
 低温冷却水回路22は、分岐部22bおよび合流部22cを有している。分岐部22bでは、低圧側熱交換器16から流出した冷却水の流れがクーラコア26側と車載機器55側とに分岐される。合流部22cでは、クーラコア26から流出した冷却水の流れと車載機器55から流出した冷却水の流れとが合流する。 The low-temperature cooling water circuit 22 has a branch portion 22b and a junction portion 22c. In the branch part 22b, the flow of the cooling water flowing out from the low pressure side heat exchanger 16 is branched into the cooler core 26 side and the in-vehicle device 55 side. In the junction part 22c, the flow of the cooling water that has flowed out of the cooler core 26 and the flow of the cooling water that has flowed out of the in-vehicle device 55 merge.
 低温冷却水回路22において分岐部22bとクーラコア26との間には第1流調弁56が配置されている。低温冷却水回路22において分岐部22bと車載機器55との間には第2流調弁57が配置されている。 In the low-temperature cooling water circuit 22, a first flow control valve 56 is disposed between the branch portion 22 b and the cooler core 26. In the low-temperature cooling water circuit 22, a second flow regulating valve 57 is disposed between the branch portion 22 b and the in-vehicle device 55.
 第1流調弁56および第2流調弁57は、冷却水流路の開度を変化させて冷却水の流量を調整する弁である。第1流調弁56および第2流調弁57は、冷却水流路を全開および全閉可能な弁である。第1流調弁56および第2流調弁57は、制御装置30によって制御される電磁弁である。 The first flow control valve 56 and the second flow control valve 57 are valves that adjust the flow rate of the cooling water by changing the opening degree of the cooling water flow path. The first flow regulating valve 56 and the second flow regulating valve 57 are valves that can fully open and fully close the cooling water flow path. The first flow adjustment valve 56 and the second flow adjustment valve 57 are electromagnetic valves controlled by the control device 30.
 第1流調弁56および第2流調弁57は、クーラコア26に流れる冷却水の流量、および車載機器55に流れる冷却水の流量を調整する流量調整部である。 The first flow control valve 56 and the second flow control valve 57 are flow rate adjusting units that adjust the flow rate of the cooling water flowing through the cooler core 26 and the flow rate of the cooling water flowing through the in-vehicle device 55.
 本実施形態では、車載機器55の温度調整よりもクーラコア26の温度調整が優先されるように、制御装置30が第1流調弁56および第2流調弁57を制御する。 In the present embodiment, the control device 30 controls the first flow regulating valve 56 and the second flow regulating valve 57 so that the temperature adjustment of the cooler core 26 is prioritized over the temperature adjustment of the in-vehicle device 55.
 上記実施形態で説明したように、第1除湿暖房モードおよび第2除湿暖房モードでは、低圧側熱交換器16にて冷却された冷却水がクーラコア26に流入し、車室内へ送風される空気がクーラコア26で冷却されることによって除湿が行われ、高圧側熱交換器12にて加熱された冷却水がヒータコア24に流入し、クーラコア26で冷却された空気がヒータコア24で加熱されることによって、目標吹出温度の空調空気が生成される。 As described in the above embodiment, in the first dehumidifying and heating mode and the second dehumidifying and heating mode, the cooling water cooled by the low pressure side heat exchanger 16 flows into the cooler core 26 and the air blown into the vehicle interior is The dehumidification is performed by being cooled by the cooler core 26, the cooling water heated by the high pressure side heat exchanger 12 flows into the heater core 24, and the air cooled by the cooler core 26 is heated by the heater core 24. Air-conditioned air having a target blowing temperature is generated.
 このとき、内気温や外気温等によってヒータコア24の目標吹出温度(すなわち目標吹出温度TAO)が異なる。 At this time, the target blowing temperature of the heater core 24 (that is, the target blowing temperature TAO) varies depending on the inside air temperature and the outside air temperature.
 図20は、外気温とヒータコア24の目標吹出温度およびクーラコア26の目標吹出温度との関係を例示するグラフである。 FIG. 20 is a graph illustrating the relationship between the outside air temperature, the target outlet temperature of the heater core 24, and the target outlet temperature of the cooler core 26.
 低外気温時(例えば0℃~10℃)においては上述の第2除湿暖房モードに切り替えることによって、室外熱交換器14、クーラコア26および車載機器55で吸熱して所望のヒータコア吹出温度を生成する。 When the outdoor temperature is low (for example, 0 ° C. to 10 ° C.), by switching to the above-described second dehumidifying heating mode, the outdoor heat exchanger 14, the cooler core 26, and the vehicle-mounted device 55 absorb heat to generate a desired heater core blowing temperature. .
 このとき、制御装置30は、クーラコアフロスト防止制御(換言すれば、フロスト抑制制御)を行う。クーラコアフロスト防止制御は、クーラコア26にフロストが発生しないように、クーラコア26に流れる冷却水の流量を第1流調弁56で調整する制御である。 At this time, the control device 30 performs cooler core frost prevention control (in other words, frost suppression control). The cooler core frost prevention control is a control in which the flow rate of the cooling water flowing through the cooler core 26 is adjusted by the first flow control valve 56 so that frost is not generated in the cooler core 26.
 具体的には、制御装置30は、クーラコア26の表面温度やクーラコア26に流入する冷却水の温度がフロスト限界温度(例えば0℃)以下になったと判定された場合や、クーラコア26の表面温度やクーラコア26に流入する冷却水の温度がフロスト限界温度(例えば0℃)以下になると予測される場合、第1流調弁56の開度を減少または全閉にしてクーラコア26に流れる冷却水の流量を減少または0にする。これにより、クーラコア26の表面温度が上昇するので、クーラコア26にフロストが発生することを抑制できる。 Specifically, the control device 30 determines that the surface temperature of the cooler core 26 or the temperature of the cooling water flowing into the cooler core 26 is equal to or lower than the frost limit temperature (for example, 0 ° C.), the surface temperature of the cooler core 26, When the temperature of the cooling water flowing into the cooler core 26 is predicted to be equal to or lower than the frost limit temperature (for example, 0 ° C.), the flow rate of the cooling water flowing into the cooler core 26 with the opening of the first flow regulating valve 56 reduced or fully closed. Is reduced or reduced to zero. Thereby, since the surface temperature of the cooler core 26 rises, generation | occurrence | production of frost in the cooler core 26 can be suppressed.
 このとき、クーラコア26の吸熱量が減少するが、車載機器55から吸熱することによって暖房のための熱量を得ることができる。そのため、圧縮機11の回転数を極力増加させることなく暖房に必要な熱量を確保できる。 At this time, although the heat absorption amount of the cooler core 26 is reduced, the heat amount for heating can be obtained by absorbing heat from the in-vehicle device 55. Therefore, the amount of heat necessary for heating can be ensured without increasing the rotational speed of the compressor 11 as much as possible.
 また、制御装置30は、車載機器55が過冷却にならないように、車載機器55に流れる冷却水の流量を第2流調弁57で調整する。 Further, the control device 30 adjusts the flow rate of the cooling water flowing through the in-vehicle device 55 by the second flow control valve 57 so that the in-vehicle device 55 is not overcooled.
 具体的には、制御装置30は、車載機器55の温度や車載機器55に流入する冷却水の温度が下限温度以下になったと判定された場合や、車載機器55の温度や車載機器55に流入する冷却水の温度が下限温度以下になると予測される場合、第2流調弁57の開度を減少または全閉にして車載機器55に流れる冷却水の流量を減少または0にする。これにより、車載機器55の温度が上昇するので、車載機器55が過冷却になることを抑制できる。 Specifically, the control device 30 determines that the temperature of the in-vehicle device 55 or the temperature of the cooling water flowing into the in-vehicle device 55 has become lower than the lower limit temperature, or the temperature of the in-vehicle device 55 or the in-vehicle device 55 When it is predicted that the temperature of the cooling water to be reduced will be lower than the lower limit temperature, the opening degree of the second flow control valve 57 is reduced or fully closed to reduce or reduce the flow rate of the cooling water flowing to the in-vehicle device 55. Thereby, since the temperature of the vehicle equipment 55 rises, it can suppress that the vehicle equipment 55 becomes overcooling.
 制御装置30は、第1流調弁56および第2流調弁57の両方の開度を減少または全閉にする場合には、低温側ポンプ25から吐出される冷却水の流量を減少または0にする。 When the opening degree of both the first flow regulating valve 56 and the second flow regulating valve 57 is reduced or fully closed, the control device 30 reduces or reduces the flow rate of the cooling water discharged from the low temperature side pump 25. To.
 低温側ポンプ25は、クーラコア26に流れる冷却水の流量、および車載機器55に流れる冷却水の流量を調整する流量調整部である。 The low temperature side pump 25 is a flow rate adjusting unit that adjusts the flow rate of the cooling water flowing through the cooler core 26 and the flow rate of the cooling water flowing through the in-vehicle device 55.
 本実施形態では、制御装置30は、第1流調弁56に対してフロスト抑制制御を行い、フロスト抑制制御を行っている場合、車載機器55に冷却水が流れるように第2流調弁57を制御する。フロスト抑制制御は、クーラコア26を流れる冷却水の流量が抑制されるように第1流調弁56および低温側ポンプ25を制御することによってクーラコア26のフロストを抑制する制御である。 In the present embodiment, the control device 30 performs the frost suppression control on the first flow control valve 56, and when performing the frost suppression control, the second flow control valve 57 so that the cooling water flows to the in-vehicle device 55. To control. The frost suppression control is a control for suppressing the frost of the cooler core 26 by controlling the first flow regulating valve 56 and the low temperature side pump 25 so that the flow rate of the cooling water flowing through the cooler core 26 is suppressed.
 これによると、フロスト抑制制御を行うことによって、クーラコア26におけるフロスト発生を抑制できる。フロスト抑制制御を行っている場合、車載機器55に冷却水が流れるので車載機器55から吸熱することができる。そのため、フロスト抑制制御を行うことによってクーラコア26からの吸熱量が減少しても、車載機器55からの吸熱量で補うことができるので、車室内への吹出空気温度を確保できる。 According to this, the occurrence of frost in the cooler core 26 can be suppressed by performing the frost suppression control. When the frost suppression control is performed, the cooling water flows through the in-vehicle device 55, so that heat can be absorbed from the in-vehicle device 55. Therefore, even if the heat absorption amount from the cooler core 26 is reduced by performing the frost suppression control, the heat absorption amount from the in-vehicle device 55 can be compensated, so that the temperature of the air blown into the vehicle interior can be secured.
 したがって、車室内への吹出空気温度を確保することと、クーラコアにおけるフロスト発生を抑制することとを両立できる。 Therefore, it is possible to ensure both the temperature of the air blown into the passenger compartment and the suppression of frost generation in the cooler core.
 また、車載機器55から吸熱しない場合と比較して、車室内への吹出空気温度を確保するために消費される圧縮機11の動力を低減できる。 Moreover, compared with the case where heat is not absorbed from the in-vehicle device 55, the power of the compressor 11 consumed to secure the temperature of the air blown into the vehicle interior can be reduced.
 本実施形態では、制御装置30は、フロスト抑制制御を行っている場合、車載機器55の温度が下限温度を下回らないように車載機器55に流れる冷却水の流量を第2流調弁57および低温側ポンプ25によって調整する。これにより、車載機器55が過冷却されることを抑制できる。 In the present embodiment, when the frost suppression control is performed, the control device 30 controls the flow rate of the cooling water flowing through the in-vehicle device 55 so that the temperature of the in-vehicle device 55 does not fall below the lower limit temperature. Adjustment is performed by the side pump 25. Thereby, it can suppress that the vehicle equipment 55 is overcooled.
 具体的には、制御装置30は、フロスト抑制制御を行っている場合において、車載機器55の温度が下限温度を下回っている場合、車載機器55の温度が下限温度を上回っている場合と比較して、車載機器55に流れる冷却水の流量が少なくなるように第2流調弁57および低温側ポンプ25を制御する。これにより、車載機器55が過冷却されることを抑制できる。 Specifically, when the control device 30 performs the frost suppression control, the temperature of the in-vehicle device 55 is lower than the lower limit temperature, and the temperature of the in-vehicle device 55 is higher than the lower limit temperature. Thus, the second flow control valve 57 and the low temperature side pump 25 are controlled so that the flow rate of the cooling water flowing to the in-vehicle device 55 is reduced. Thereby, it can suppress that the vehicle equipment 55 is overcooled.
 (第8実施形態)
 上記第7実施形態では、第1流調弁56および第2流調弁57によってクーラコア26および車載機器55の温度を調整するが、本実施形態では、図21に示すように、切替弁58によってクーラコア26および車載機器55の温度を調整する。
(Eighth embodiment)
In the seventh embodiment, the temperatures of the cooler core 26 and the in-vehicle device 55 are adjusted by the first flow regulating valve 56 and the second flow regulating valve 57. In the present embodiment, as shown in FIG. The temperature of the cooler core 26 and the vehicle equipment 55 is adjusted.
 切替弁58は、低温冷却水回路22のうち、低圧側熱交換器16から流出した冷却水の流れがクーラコア26側と車載機器55側とに分岐される分岐部に配置されている。 The switching valve 58 is arranged in a branch portion of the low-temperature cooling water circuit 22 where the flow of the cooling water flowing out from the low-pressure side heat exchanger 16 is branched into the cooler core 26 side and the in-vehicle device 55 side.
 切替弁58は、クーラコア26側の冷却水流路と車載機器55側の冷却水流路とを独立して開閉可能になっている。切替弁58は、クーラコア26側の冷却水流路の開度と車載機器55側の冷却水流路の開度とを独立して調整可能になっている。切替弁58は、制御装置30によって制御される電磁弁である。 The switching valve 58 can open and close the cooling water passage on the cooler core 26 side and the cooling water passage on the in-vehicle device 55 side independently. The switching valve 58 can adjust independently the opening degree of the cooling water flow path on the cooler core 26 side and the opening degree of the cooling water flow path on the in-vehicle device 55 side. The switching valve 58 is an electromagnetic valve controlled by the control device 30.
 切替弁58は、クーラコア26に流れる冷却水の流量、および車載機器55に流れる冷却水の流量を調整する流量調整部である。 The switching valve 58 is a flow rate adjusting unit that adjusts the flow rate of the cooling water flowing through the cooler core 26 and the flow rate of the cooling water flowing through the in-vehicle device 55.
 本実施形態では、車載機器55の温度調整よりもクーラコア26の温度調整が優先されるように、制御装置30が切替弁58を制御する。 In the present embodiment, the control device 30 controls the switching valve 58 so that the temperature adjustment of the cooler core 26 is prioritized over the temperature adjustment of the in-vehicle device 55.
 上記第7実施形態と同様に、第1除湿暖房モードおよび第2除湿暖房モードでは、低圧側熱交換器16にて冷却された冷却水がクーラコア26に流入し、車室内へ送風される空気がクーラコア26で冷却されることによって除湿が行われ、高圧側熱交換器12にて加熱された冷却水がヒータコア24に流入し、クーラコア26で冷却された空気がヒータコア24で加熱されることによって、目標吹出温度の空調空気が生成される。 Similarly to the seventh embodiment, in the first dehumidifying and heating mode and the second dehumidifying and heating mode, the cooling water cooled by the low-pressure side heat exchanger 16 flows into the cooler core 26 and the air blown into the vehicle interior is The dehumidification is performed by being cooled by the cooler core 26, the cooling water heated by the high pressure side heat exchanger 12 flows into the heater core 24, and the air cooled by the cooler core 26 is heated by the heater core 24. Air-conditioned air having a target blowing temperature is generated.
 このとき、上記第7実施形態と同様に、内気温や外気温等によってヒータコア24の目標吹出温度(すなわち目標吹出温度TAO)が異なる。 At this time, similarly to the seventh embodiment, the target air temperature of the heater core 24 (that is, the target air temperature TAO) varies depending on the inside air temperature and the outside air temperature.
 低外気温時(例えば0℃~10℃)においては上述の第2除湿暖房モードに切り替えることによって、室外熱交換器14、クーラコア26および車載機器55で吸熱を行うことによって所望のヒータコア吹出温度を生成する。 At a low outside air temperature (for example, 0 ° C. to 10 ° C.), by switching to the above-described second dehumidifying heating mode, the outdoor heat exchanger 14, the cooler core 26, and the in-vehicle device 55 perform heat absorption to obtain a desired heater core blowing temperature. Generate.
 このとき、制御装置30は、クーラコアフロスト防止制御(換言すれば、フロスト抑制制御)を行う。具体的には、制御装置30は、クーラコア26の表面温度やクーラコア26に流入する冷却水の温度がフロスト限界温度(例えば0℃)以下になったと判定された場合や、クーラコア26の表面温度やクーラコア26に流入する冷却水の温度がフロスト限界温度(例えば0℃)以下になると予測される場合、切替弁58でクーラコア26側の冷却水流路の開度を減少または全閉にしてクーラコア26に流れる冷却水の流量を減少または0にする。これにより、クーラコア26の表面温度が上昇するので、クーラコア26にフロストが発生することを抑制できる。 At this time, the control device 30 performs cooler core frost prevention control (in other words, frost suppression control). Specifically, the control device 30 determines that the surface temperature of the cooler core 26 or the temperature of the cooling water flowing into the cooler core 26 is equal to or lower than the frost limit temperature (for example, 0 ° C.), the surface temperature of the cooler core 26, When the temperature of the cooling water flowing into the cooler core 26 is predicted to be equal to or lower than the frost limit temperature (for example, 0 ° C.), the switching valve 58 reduces or completely closes the opening of the cooling water flow path on the cooler core 26 side to the cooler core 26. Decrease or reduce the flow rate of the flowing cooling water. Thereby, since the surface temperature of the cooler core 26 rises, generation | occurrence | production of frost in the cooler core 26 can be suppressed.
 制御装置30は、クーラコアフロスト防止制御時に、図22のフローチャートに示す制御処理を実行する。 The control device 30 executes the control process shown in the flowchart of FIG. 22 during the cooler core frost prevention control.
 まずステップS100では、車載機器55の温度Tdが下限温度Tiを下回っているか否かを判定する。車載機器55の温度Tdが下限温度Tiを下回っていないと判定した場合、ステップS110へ進み、車載機器55が低圧側熱交換器16に接続されるように切替弁58を切り替える。これにより、車載機器55から吸熱して暖房熱源とすることができる。 First, in step S100, it is determined whether or not the temperature Td of the in-vehicle device 55 is lower than the lower limit temperature Ti. When it determines with the temperature Td of the vehicle equipment 55 not being lower than the minimum temperature Ti, it progresses to step S110 and switches the switching valve 58 so that the vehicle equipment 55 may be connected to the low voltage | pressure side heat exchanger 16. FIG. Thereby, it can absorb heat from the vehicle equipment 55 and can be used as a heating heat source.
 一方、ステップS100にて車載機器55の温度Tdが下限温度Tiを下回っていると判定した場合、ステップS120へ進み、車載機器55が低圧側熱交換器16に接続されないように切替弁58を切り替えるとともに、低温側ポンプ25から吐出される冷却水の流量を減少または0にする。 On the other hand, if it is determined in step S100 that the temperature Td of the in-vehicle device 55 is lower than the lower limit temperature Ti, the process proceeds to step S120, and the switching valve 58 is switched so that the in-vehicle device 55 is not connected to the low-pressure side heat exchanger 16. At the same time, the flow rate of the cooling water discharged from the low temperature side pump 25 is reduced or made zero.
 これにより、クーラコア26にフロストが発生することを抑制できるとともに、車載機器55の温度Tdが下限温度Tiを下回って過冷却されるのを抑制できる。 Thereby, it is possible to suppress the occurrence of frost in the cooler core 26 and to suppress the temperature Td of the in-vehicle device 55 from being lower than the lower limit temperature Ti and being supercooled.
 低温側ポンプ25は、クーラコア26に流れる冷却水の流量、および車載機器55に流れる冷却水の流量を調整する流量調整部である。 The low temperature side pump 25 is a flow rate adjusting unit that adjusts the flow rate of the cooling water flowing through the cooler core 26 and the flow rate of the cooling water flowing through the in-vehicle device 55.
 本実施形態では、制御装置30は、切替弁58および低温側ポンプ25に対してフロスト抑制制御を行い、フロスト抑制制御を行っている場合、車載機器55に冷却水が流れるように切替弁58および低温側ポンプ25を制御する。フロスト抑制制御は、クーラコア26を流れる冷却水の流量が抑制されるように切替弁58および低温側ポンプ25を制御することによってクーラコア26のフロストを抑制する制御である。 In the present embodiment, the control device 30 performs the frost suppression control on the switching valve 58 and the low temperature side pump 25, and when performing the frost suppression control, the switching valve 58 and The low temperature side pump 25 is controlled. The frost suppression control is a control for suppressing the frost of the cooler core 26 by controlling the switching valve 58 and the low temperature side pump 25 so that the flow rate of the cooling water flowing through the cooler core 26 is suppressed.
 これにより、上記第7実施形態と同様に、車室内への吹出空気温度を確保することと、クーラコアにおけるフロスト発生を抑制することとを両立できる。また、車載機器55から吸熱しない場合と比較して、車室内への吹出空気温度を確保するために消費される圧縮機11の動力を低減できる。 Thus, as in the seventh embodiment, it is possible to achieve both ensuring the temperature of the air blown into the passenger compartment and suppressing the occurrence of frost in the cooler core. Moreover, compared with the case where it does not absorb heat from the vehicle equipment 55, the motive power of the compressor 11 consumed in order to ensure the blowing air temperature to a vehicle interior can be reduced.
 本実施形態では、制御装置30は、フロスト抑制制御を行っている場合、車載機器55の温度が下限温度を下回らないように車載機器55に流れる冷却水の流量を切替弁58および低温側ポンプ25によって調整する。これにより、上記第7実施形態と同様に、車載機器55が過冷却されることを抑制できる。 In the present embodiment, when the frost suppression control is performed, the control device 30 controls the flow rate of the cooling water flowing to the in-vehicle device 55 so that the temperature of the in-vehicle device 55 does not fall below the lower limit temperature. Adjust by. Thereby, similarly to the said 7th Embodiment, it can suppress that the vehicle equipment 55 is overcooled.
 具体的には、制御装置30は、フロスト抑制制御を行っている場合において、車載機器55の温度が下限温度を下回っている場合、車載機器55の温度が下限温度を上回っている場合と比較して、車載機器55に流れる冷却水の流量が少なくなるように切替弁58および低温側ポンプ25を制御する。これにより、上記第7実施形態と同様に、車載機器55が過冷却されることを抑制できる。 Specifically, when the control device 30 performs the frost suppression control, the temperature of the in-vehicle device 55 is lower than the lower limit temperature, and the temperature of the in-vehicle device 55 is higher than the lower limit temperature. Thus, the switching valve 58 and the low temperature side pump 25 are controlled so that the flow rate of the cooling water flowing through the in-vehicle device 55 is reduced. Thereby, similarly to the said 7th Embodiment, it can suppress that the vehicle equipment 55 is overcooled.
 (他の実施形態)
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
(Other embodiments)
The above embodiments can be combined as appropriate. The above embodiment can be variously modified as follows, for example.
 (1)上記実施形態において、高圧側熱交換器12側のモジュレータ12bおよび過冷却部12cが、高圧側熱交換器12の熱交換部12aで構成されていてもよい。すなわち、高圧側熱交換器12の熱交換部12aの内部に液相冷媒を溜め込むようにしてもよい。 (1) In the above embodiment, the modulator 12b and the supercooling unit 12c on the high-pressure side heat exchanger 12 side may be configured by the heat exchange unit 12a of the high-pressure side heat exchanger 12. That is, the liquid refrigerant may be stored inside the heat exchange part 12a of the high-pressure side heat exchanger 12.
 高圧側熱交換器12が、冷媒と冷却水とを熱交換させる冷媒冷却水熱交換器である場合、高圧側熱交換器12では冷媒と冷却水との温度差が非常に小さくなる。そのため、高圧側熱交換器12が、冷媒と空気とを熱交換させる冷媒空気熱交換器である場合と比較して、過冷却度の取得量に対する、高圧側熱交換器12の液冷媒容積量割合の増加量が非常に大きくなる。その結果、液冷媒貯留量を大きくすることができる。 When the high-pressure side heat exchanger 12 is a refrigerant cooling water heat exchanger that exchanges heat between the refrigerant and the cooling water, the temperature difference between the refrigerant and the cooling water becomes very small in the high-pressure side heat exchanger 12. Therefore, compared with the case where the high-pressure side heat exchanger 12 is a refrigerant air heat exchanger that exchanges heat between the refrigerant and air, the volume of liquid refrigerant in the high-pressure side heat exchanger 12 with respect to the amount of subcooling acquired. The percentage increase is very large. As a result, the liquid refrigerant storage amount can be increased.
 すなわち、高圧側熱交換器12内の液冷媒量が増加し、冷媒凝縮領域が減り、冷凍サイクル高圧が上がり、過冷却度がわずかに増えた場合に高圧側熱交換器12内の液冷媒貯め込み量が大きくなるため、液冷媒貯留量と冷凍サイクル高圧とを良好な状態に保つことができる。 That is, when the amount of liquid refrigerant in the high-pressure side heat exchanger 12 increases, the refrigerant condensing area decreases, the refrigeration cycle high pressure increases, and the degree of supercooling slightly increases, the liquid refrigerant storage in the high-pressure side heat exchanger 12 increases. Therefore, the amount of liquid refrigerant stored and the high pressure of the refrigeration cycle can be maintained in a good state.
 この実施形態では、高圧側熱交換器12側のモジュレータ12bは、高圧側熱交換器12に一体化されているので、構成を簡素化できる。 In this embodiment, the modulator 12b on the high-pressure side heat exchanger 12 side is integrated with the high-pressure side heat exchanger 12, so that the configuration can be simplified.
 この実施形態では、高圧側熱交換器12側のモジュレータ12bおよび過冷却部12cは、吸熱モード時に冷媒と高温側冷却水とを熱交換させるようになっているので、液相冷媒を確実に過冷却できる。 In this embodiment, the modulator 12b and the supercooling unit 12c on the high-pressure side heat exchanger 12 side exchange heat between the refrigerant and the high-temperature side cooling water in the heat absorption mode. Can be cooled.
 (2)上記実施形態では、暖房モード時に、高圧側熱交換器12の熱交換部12aから流出した冷媒を高圧側熱交換器12のモジュレータ12bで貯えるが、当該冷媒を、高圧側熱交換器12と第1膨張弁13との間の冷媒配管の内部に貯えるようにしてもよい。 (2) In the above embodiment, during the heating mode, the refrigerant flowing out from the heat exchange part 12a of the high-pressure side heat exchanger 12 is stored in the modulator 12b of the high-pressure side heat exchanger 12, and the refrigerant is stored in the high-pressure side heat exchanger. You may make it store in the inside of the refrigerant | coolant piping between 12 and the 1st expansion valve 13. FIG.
 換言すれば、暖房モード時に、高圧側熱交換器12の熱交換部12aから流出した冷媒を貯えることができるように、高圧側熱交換器12の冷媒出口側かつ第1膨張弁13の冷媒入口側の冷媒配管の容積が大きく確保されていてもよい。 In other words, the refrigerant outlet side of the high-pressure side heat exchanger 12 and the refrigerant inlet of the first expansion valve 13 can be stored so that the refrigerant flowing out from the heat exchange unit 12a of the high-pressure side heat exchanger 12 can be stored in the heating mode. A large volume of the refrigerant piping on the side may be ensured.
 すなわち、上記実施形態では、高圧側熱交換器12の熱交換部12aから流出した冷媒を貯える第1冷媒貯留部は、高圧側熱交換器12のモジュレータ12bであるが、第1冷媒貯留部は、高圧側熱交換器12の冷媒出口側かつ第1膨張弁13の冷媒入口側の冷媒配管であってもよい。 That is, in the said embodiment, although the 1st refrigerant | coolant storage part which stores the refrigerant | coolant which flowed out from the heat exchange part 12a of the high voltage | pressure side heat exchanger 12 is the modulator 12b of the high voltage | pressure side heat exchanger 12, the 1st refrigerant | coolant storage part is The refrigerant piping on the refrigerant outlet side of the high-pressure side heat exchanger 12 and on the refrigerant inlet side of the first expansion valve 13 may be used.
 これによると、高圧側熱交換器12のモジュレータ12bおよび過冷却部12cが不要であるので、構成を簡素化できる。 According to this, since the modulator 12b and the supercooling part 12c of the high-pressure side heat exchanger 12 are not necessary, the configuration can be simplified.
 (3)上記各実施形態では、温度調節対象機器を温度調節するための熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。 (3) In each of the above embodiments, cooling water is used as a heat medium for adjusting the temperature of the temperature adjustment target device, but various media such as oil may be used as the heat medium.
 熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水のように凝固点を低下させて不凍液にする作用効果に加えて、次のような作用効果を得ることができる。 Nanofluid may be used as the heat medium. A nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed. By mixing the nanoparticles with the heat medium, the following effects can be obtained in addition to the effect of lowering the freezing point and making the antifreeze liquid like cooling water using ethylene glycol.
 すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。 That is, the effect of improving the thermal conductivity in a specific temperature range, the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature The effect which improves the fluidity | liquidity of can be acquired.
 このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。 Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
 これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。 According to this, since the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
 また、熱媒体の熱容量を増加させることができるので、熱媒体自体の顕熱による蓄冷熱量を増加させることができる。 Also, since the heat capacity of the heat medium can be increased, the amount of cold storage heat due to the sensible heat of the heat medium itself can be increased.
 蓄冷熱量を増加させることにより、圧縮機11を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用熱管理装置の省動力化が可能になる。 Even if the compressor 11 is not operated by increasing the amount of cold storage heat, it is possible to control the temperature and cooling of the equipment using the cold storage heat for a certain amount of time. Can be realized.
 ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。 The aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained. The aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
 ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT、グラフェン、グラファイトコアシェル型ナノ粒子、およびAuナノ粒子含有CNTなどを用いることができる。 Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT, graphene, graphite core-shell nanoparticle, Au nanoparticle-containing CNT, and the like can be used as the constituent atoms of the nanoparticle.
 CNTはカーボンナノチューブである。グラファイトコアシェル型ナノ粒子は、上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体である。 CNT is a carbon nanotube. The graphite core-shell nanoparticle is a particle body having a structure such as a carbon nanotube surrounding the atom.
 (4)上記各実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。 (4) In the refrigeration cycle apparatus 10 of each of the above embodiments, a chlorofluorocarbon refrigerant is used as the refrigerant. However, the type of the refrigerant is not limited to this, and natural refrigerants such as carbon dioxide, hydrocarbon refrigerants, etc. May be used.
 また、上記各実施形態の冷凍サイクル装置10は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。

 
The refrigeration cycle apparatus 10 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. You may comprise the cycle.

Claims (24)

  1.  冷媒を吸入して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された高圧の前記冷媒を放熱させる高圧側熱交換器(12)と、
     前記高圧側熱交換器(12)から流出した前記冷媒を減圧させる第1減圧部(13)と、
     前記第1減圧部(13)から流出した前記冷媒と外気とを熱交換させる冷媒外気熱交換器(14)と、
     前記冷媒外気熱交換器(14)から流出した前記冷媒を減圧させる第2減圧部(15)と、
     前記冷媒の流れにおいて前記冷媒外気熱交換器(14)と直列に配置され、前記第1減圧部(13)および前記第2減圧部(15)のうち少なくとも一方で減圧された低圧の前記冷媒と熱媒体とを熱交換させて前記熱媒体を冷却させる低圧側熱交換器(16)と、
     前記低圧側熱交換器(16)で冷却された前記熱媒体と車室内へ送風される空気とを熱交換させて前記空気を冷却するクーラコア(26)と、
     前記第1減圧部(13)および前記第2減圧部(15)の減圧量を調整することによって、前記冷媒外気熱交換器(14)が前記冷媒に吸熱させる吸熱モードと、前記冷媒外気熱交換器(14)が前記冷媒を放熱させる放熱モードとを切り替える制御部(30)とを備える冷凍サイクル装置。
    A compressor (11) for sucking and discharging refrigerant;
    A high-pressure side heat exchanger (12) for radiating heat from the high-pressure refrigerant discharged from the compressor (11);
    A first decompression section (13) for decompressing the refrigerant that has flowed out of the high-pressure side heat exchanger (12);
    A refrigerant outdoor air heat exchanger (14) for exchanging heat between the refrigerant flowing out of the first decompression section (13) and the outside air;
    A second decompression section (15) for decompressing the refrigerant that has flowed out of the refrigerant outside air heat exchanger (14);
    The low-pressure refrigerant disposed in series with the refrigerant outside air heat exchanger (14) in the refrigerant flow and depressurized at least one of the first decompression unit (13) and the second decompression unit (15); A low pressure side heat exchanger (16) for exchanging heat with the heat medium to cool the heat medium;
    A cooler core (26) that cools the air by exchanging heat between the heat medium cooled by the low-pressure side heat exchanger (16) and air blown into the vehicle interior;
    An endothermic mode in which the refrigerant outside heat exchanger (14) absorbs heat by the refrigerant by adjusting the amount of decompression of the first decompression section (13) and the second decompression section (15), and the refrigerant outside air heat exchange A refrigerating cycle device provided with a control part (30) which changes a heat dissipation mode in which a vessel (14) radiates the refrigerant.
  2.  前記吸熱モード時に前記高圧側熱交換器(12)で熱交換された前記冷媒を貯え、前記放熱モード時に前記冷媒外気熱交換器(14)で熱交換された前記冷媒を貯える冷媒貯留部(12b、14b)を備える請求項1に記載の冷凍サイクル装置。 A refrigerant storage unit (12b) that stores the refrigerant heat-exchanged by the high-pressure side heat exchanger (12) in the heat absorption mode and stores the refrigerant heat-exchanged by the refrigerant outside air heat exchanger (14) in the heat dissipation mode. 14b). The refrigeration cycle apparatus according to claim 1, further comprising:
  3.  冷媒を吸入して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された高圧の前記冷媒を放熱させる高圧側熱交換器(12)と、
     前記高圧側熱交換器(12)から流出した前記冷媒を減圧させる第1減圧部(13)と、
     前記第1減圧部(13)から流出した前記冷媒と外気とを熱交換させる冷媒外気熱交換器(14)と、
     前記冷媒外気熱交換器(14)から流出した前記冷媒を減圧させる第2減圧部(15)と、
     前記第1減圧部(13)および前記第2減圧部(15)のうち少なくとも一方で減圧された低圧の前記冷媒に吸熱させる低圧側熱交換器(16)と、
     前記第1減圧部(13)および前記第2減圧部(15)の減圧量を調整することによって、前記冷媒外気熱交換器(14)が前記冷媒に吸熱させる吸熱モードと、前記冷媒外気熱交換器(14)が前記冷媒を放熱させる放熱モードとを切り替える制御部(30)と、
     前記吸熱モードでは、前記高圧側熱交換器(12)で熱交換された前記冷媒を貯え、前記放熱モードでは、前記冷媒外気熱交換器(14)で熱交換された前記冷媒を貯える冷媒貯留部(12b、14b)とを備える冷凍サイクル装置。
    A compressor (11) for sucking and discharging refrigerant;
    A high-pressure side heat exchanger (12) for radiating heat from the high-pressure refrigerant discharged from the compressor (11);
    A first decompression section (13) for decompressing the refrigerant that has flowed out of the high-pressure side heat exchanger (12);
    A refrigerant outdoor air heat exchanger (14) for exchanging heat between the refrigerant flowing out of the first decompression section (13) and the outside air;
    A second decompression section (15) for decompressing the refrigerant that has flowed out of the refrigerant outside air heat exchanger (14);
    A low-pressure side heat exchanger (16) for absorbing heat to the low-pressure refrigerant decompressed at least one of the first decompression unit (13) and the second decompression unit (15);
    An endothermic mode in which the refrigerant outside heat exchanger (14) absorbs heat by the refrigerant by adjusting the amount of decompression of the first decompression section (13) and the second decompression section (15), and the refrigerant outside air heat exchange A controller (30) for switching between a heat release mode in which the vessel (14) dissipates the refrigerant;
    In the endothermic mode, the refrigerant that has been heat-exchanged by the high-pressure side heat exchanger (12) is stored, and in the heat dissipation mode, a refrigerant storage unit that stores the refrigerant that has been heat-exchanged by the refrigerant outside air heat exchanger (14). (12b, 14b).
  4.  前記低圧側熱交換器(16)および前記クーラコア(26)のうち少なくとも一方における前記熱媒体の流量を調整する流量調整部(25)を備え、
     前記制御部(30)は、前記吸熱モード時において前記低圧側熱交換器(16)から流出した前記熱媒体の温度が0℃以下である場合、前記流量調整部(25)の作動を制御する請求項1または2に記載の冷凍サイクル装置。
    A flow rate adjustment unit (25) for adjusting the flow rate of the heat medium in at least one of the low-pressure side heat exchanger (16) and the cooler core (26);
    The control unit (30) controls the operation of the flow rate adjustment unit (25) when the temperature of the heat medium flowing out from the low-pressure side heat exchanger (16) is 0 ° C. or less in the endothermic mode. The refrigeration cycle apparatus according to claim 1 or 2.
  5.  前記制御部(30)は、前記冷媒外気熱交換器(14)における前記冷媒の圧力が低いほど、前記低圧側熱交換器(16)および前記クーラコア(26)のうち少なくとも一方における前記熱媒体の流量が減少するように前記流量調整部(25)の作動を制御する請求項4に記載の冷凍サイクル装置。 The control unit (30) reduces the pressure of the heat medium in at least one of the low pressure side heat exchanger (16) and the cooler core (26) as the pressure of the refrigerant in the refrigerant outside air heat exchanger (14) is lower. The refrigeration cycle apparatus according to claim 4, wherein the operation of the flow rate adjusting unit (25) is controlled so that the flow rate is reduced.
  6.  前記流量調整部(25)は、前記低圧側熱交換器(16)および前記クーラコア(26)の両方における前記熱媒体の流量を調整する請求項5に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 5, wherein the flow rate adjusting unit (25) adjusts the flow rate of the heat medium in both the low pressure side heat exchanger (16) and the cooler core (26).
  7.  前記吸熱モードでは、前記高圧側熱交換器(12)および前記冷媒外気熱交換器(14)は、前記冷媒の流れにおいて互いに直列に配置されており、
     前記放熱モードでは、前記冷媒外気熱交換器(14)および前記低圧側熱交換器(16)は、前記冷媒の流れにおいて互いに直列に配置されており、
     前記冷媒貯留部は、前記高圧側熱交換器(12)の冷媒流れ下流側かつ前記第1減圧部(13)の冷媒流れ上流側に配置され、前記高圧側熱交換器(12)で熱交換された前記冷媒を貯える第1冷媒貯留部(12b)、および前記冷媒外気熱交換器(14)の冷媒流れ下流側かつ前記第2減圧部(15)の冷媒流れ上流側に配置され、前記冷媒外気熱交換器(14)で熱交換された前記冷媒を貯える第2冷媒貯留部(14b)である請求項2または3に記載の冷凍サイクル装置。
    In the endothermic mode, the high-pressure side heat exchanger (12) and the refrigerant outside air heat exchanger (14) are arranged in series with each other in the refrigerant flow,
    In the heat dissipation mode, the refrigerant outside air heat exchanger (14) and the low pressure side heat exchanger (16) are arranged in series with each other in the refrigerant flow,
    The refrigerant reservoir is disposed downstream of the refrigerant flow of the high-pressure side heat exchanger (12) and upstream of the refrigerant flow of the first decompression unit (13), and performs heat exchange with the high-pressure side heat exchanger (12). A first refrigerant storage section (12b) for storing the generated refrigerant, a refrigerant flow downstream side of the refrigerant outside air heat exchanger (14) and a refrigerant flow upstream side of the second decompression section (15), 4. The refrigeration cycle apparatus according to claim 2, wherein the refrigeration cycle apparatus is a second refrigerant storage section (14 b) that stores the refrigerant heat-exchanged by the outdoor air heat exchanger (14).
  8.  前記第1冷媒貯留部(12b)は、前記高圧側熱交換器(12)に一体化されており、
     前記高圧側熱交換器(12)は、前記冷媒と高温側熱媒体とを熱交換させて前記高温側熱媒体を加熱するようになっており、
     さらに、前記高圧側熱交換器(12)で加熱された前記高温側熱媒体と前記空気とを熱交換させるヒータコア(24)を備える請求項7に記載の冷凍サイクル装置。
    The first refrigerant reservoir (12b) is integrated with the high-pressure side heat exchanger (12),
    The high pressure side heat exchanger (12) heats the high temperature side heat medium by exchanging heat between the refrigerant and the high temperature side heat medium,
    Furthermore, the refrigerating-cycle apparatus of Claim 7 provided with the heater core (24) which heat-exchanges the said high temperature side heat medium heated with the said high voltage | pressure side heat exchanger (12) and the said air.
  9.  前記吸熱モード時に前記第1冷媒貯留部(12b)から流出した前記冷媒を過冷却する吸熱モード用過冷却部(12c)を備え、
     前記第1冷媒貯留部(12b)および前記吸熱モード用過冷却部(12c)は、前記吸熱モード時に前記冷媒と前記高温側熱媒体とを熱交換させるようになっている請求項7または8に記載の冷凍サイクル装置。
    A heat absorption mode subcooling section (12c) for supercooling the refrigerant flowing out of the first refrigerant storage section (12b) during the heat absorption mode;
    The said 1st refrigerant | coolant storage part (12b) and the said heat absorption mode subcooling part (12c) are heat-exchanged between the said refrigerant | coolant and the said high temperature side heat medium at the time of the said heat absorption mode. The refrigeration cycle apparatus described.
  10.  前記放熱モード時に前記第2冷媒貯留部(14b)から流出した前記冷媒を過冷却させる放熱モード用過冷却部(14c)と、
     前記冷媒外気熱交換器(14)から流出した前記冷媒が前記放熱モード用過冷却部(14c)をバイパスして流れるバイパス部(18)と、
     前記放熱モード時には、前記吸熱モード時と比較して、前記バイパス部(18)の流路開度を小さくするバイパス開度調整部(19)とを備える請求項7ないし9のいずれか1つに記載の冷凍サイクル装置。
    A subcooling section for heat dissipation mode (14c) that supercools the refrigerant that has flowed out of the second refrigerant storage section (14b) during the heat dissipation mode;
    A bypass unit (18) in which the refrigerant flowing out of the refrigerant outside air heat exchanger (14) flows bypassing the heat dissipation mode subcooling unit (14c);
    10. The apparatus according to claim 7, further comprising: a bypass opening adjustment unit (19) that reduces a flow path opening of the bypass unit (18) in the heat dissipation mode compared to the heat absorption mode. The refrigeration cycle apparatus described.
  11.  前記放熱モード用過冷却部(14c)は、前記冷媒が流れる複数の冷媒チューブを有しており、
     前記第2冷媒貯留部(14b)から流出した前記冷媒を前記複数の冷媒チューブに分配する分配タンク部(14h)を備え、
     前記バイパス部(18)は、前記分配タンク部(14h)から前記放熱モード用過冷却部(14c)の冷媒流れ下流側に延びている請求項10に記載の冷凍サイクル装置。
    The heat dissipation mode subcooling section (14c) has a plurality of refrigerant tubes through which the refrigerant flows,
    A distribution tank section (14h) for distributing the refrigerant flowing out of the second refrigerant storage section (14b) to the plurality of refrigerant tubes;
    The said bypass part (18) is a refrigerating-cycle apparatus of Claim 10 extended from the said distribution tank part (14h) to the refrigerant | coolant flow downstream of the said supercooling part for heat dissipation modes (14c).
  12.  前記高圧側熱交換器(12)は、前記冷媒と高温側熱媒体とを熱交換させて前記高温側熱媒体を加熱するようになっており、
     さらに、前記高圧側熱交換器(12)で加熱された前記高温側熱媒体を熱交換させる高温側熱媒体熱交換器(24)と、
     前記高圧側熱交換器(12)を流れる前記高温側熱媒体の流量を調整する高温側流量調整部(23)とを備え、
     前記制御部(30)は、前記放熱モード時に前記高温側流量調整部(23)を停止させ、前記放熱モード時に前記高圧側熱交換器(12)における前記高温側熱媒体の温度が所定温度以上になった場合、前記高圧側熱交換器(12)を流れる前記高温側熱媒体の流量が増加するように前記高温側流量調整部(23)の作動を制御する請求項1ないし7のいずれか1つに記載の冷凍サイクル装置。
    The high pressure side heat exchanger (12) heats the high temperature side heat medium by exchanging heat between the refrigerant and the high temperature side heat medium,
    Furthermore, a high temperature side heat medium heat exchanger (24) for exchanging heat of the high temperature side heat medium heated by the high pressure side heat exchanger (12),
    A high temperature side flow rate adjustment unit (23) for adjusting the flow rate of the high temperature side heat medium flowing through the high pressure side heat exchanger (12),
    The control unit (30) stops the high temperature side flow rate adjustment unit (23) during the heat dissipation mode, and the temperature of the high temperature side heat medium in the high pressure side heat exchanger (12) is equal to or higher than a predetermined temperature during the heat dissipation mode. 8. The operation of the high temperature side flow rate adjusting unit (23) is controlled so that the flow rate of the high temperature side heat medium flowing through the high pressure side heat exchanger (12) increases. The refrigeration cycle apparatus according to one.
  13.  前記熱媒体が流通し、前記熱媒体に熱を供給する熱供給機器(40)と、
     前記冷媒外気熱交換器(14)に流入する前記外気および前記冷媒のうち少なくとも一方の流量を調整する熱交換器流量調整部(17、41、43)とを備え、
     前記制御部(30)は、前記冷媒外気熱交換器(14)に流入する前記冷媒の温度と前記外気との温度差が所定値以下になった場合、前記冷媒外気熱交換器(14)に流入する前記外気および前記冷媒のうち少なくとも一方の流量が減少するように前記熱交換器流量調整部(17、41、43)の作動を制御する請求項1ないし12のいずれか1つに記載の冷凍サイクル装置。
    A heat supply device (40) through which the heat medium flows and supplies heat to the heat medium;
    A heat exchanger flow rate adjustment unit (17, 41, 43) for adjusting the flow rate of at least one of the outside air and the refrigerant flowing into the refrigerant outside air heat exchanger (14),
    When the temperature difference between the refrigerant flowing into the refrigerant outside air heat exchanger (14) and the outside air becomes a predetermined value or less, the control unit (30) causes the refrigerant outside air heat exchanger (14) to 13. The operation of the heat exchanger flow rate adjustment unit (17, 41, 43) is controlled so that a flow rate of at least one of the outside air and the refrigerant flowing in is reduced. Refrigeration cycle equipment.
  14.  前記熱交換器流量調整部は、前記冷媒外気熱交換器(14)に前記外気を送風する外気送風機(17)であり、
     前記制御部(30)は、前記冷媒外気熱交換器(14)に流入する前記冷媒の温度と前記外気との温度差が所定値以下になった場合、前記冷媒外気熱交換器(14)への前記外気の送風方向が逆になるように前記外気送風機(17)の作動を制御する請求項13に記載の冷凍サイクル装置。
    The heat exchanger flow rate adjustment unit is an outside air blower (17) for blowing the outside air to the refrigerant outside air heat exchanger (14),
    When the temperature difference between the refrigerant flowing into the refrigerant outside air heat exchanger (14) and the outside air becomes a predetermined value or less, the control unit (30) moves to the refrigerant outside air heat exchanger (14). The refrigeration cycle apparatus according to claim 13, wherein the operation of the outside air blower (17) is controlled so that the blowing direction of the outside air is reversed.
  15.  前記熱交換器流量調整部は、前記冷媒外気熱交換器(14)を流れる前記外気の通路の開度を調整するシャッター(41)であり、
     前記制御部(30)は、前記冷媒外気熱交換器(14)に流入する前記冷媒の温度と前記外気との温度差が所定値以下になった場合、前記開度が小さくなるように前記シャッター(41)の作動を制御する請求項13に記載の冷凍サイクル装置。
    The heat exchanger flow rate adjustment unit is a shutter (41) that adjusts the opening degree of the outside air passage that flows through the refrigerant outside air heat exchanger (14).
    When the temperature difference between the refrigerant flowing into the refrigerant outside air heat exchanger (14) and the outside air becomes equal to or less than a predetermined value, the control unit (30) is configured to reduce the opening degree. The refrigeration cycle apparatus according to claim 13, which controls the operation of (41).
  16.  前記低圧側熱交換器(16)における前記熱媒体の流量を調整する流量調整部(25)を備え、
     前記制御部(30)は、前記流量調整部(25)の作動を制御することによって、前記低圧側熱交換器(16)で熱交換された前記冷媒の過熱度を制御する請求項1または2に記載の冷凍サイクル装置。
    A flow rate adjusting unit (25) for adjusting the flow rate of the heat medium in the low pressure side heat exchanger (16);
    The said control part (30) controls the superheat degree of the said refrigerant | coolant heat-exchanged by the said low voltage | pressure side heat exchanger (16) by controlling the action | operation of the said flow volume adjustment part (25). The refrigeration cycle apparatus described in 1.
  17.  前記クーラコア(26)に前記空気を送風する送風機(27)を備え、
     前記低圧側熱交換器(16)は、前記熱媒体の入口(16a)および出口(16b)を有しており、
     前記クーラコア(26)は、前記低圧側熱交換器(16)で冷却された前記熱媒体と空気とを熱交換させて前記空気を冷却する熱交換部(26c)を有しており、
     前記熱交換部(26c)は、前記入口(16a)および前記出口(16b)よりも重力方向の高い位置に配置されている請求項1ないし16のいずれか1つに記載の冷凍サイクル装置。
    A fan (27) for blowing the air to the cooler core (26);
    The low-pressure side heat exchanger (16) has an inlet (16a) and an outlet (16b) for the heat medium,
    The cooler core (26) includes a heat exchanging part (26c) that cools the air by exchanging heat between the heat medium cooled by the low-pressure side heat exchanger (16) and air,
    The refrigeration cycle apparatus according to any one of claims 1 to 16, wherein the heat exchange part (26c) is disposed at a position higher in a gravitational direction than the inlet (16a) and the outlet (16b).
  18.  前記クーラコア(26)に前記空気を送風する送風機(27)と、
     前記低圧側熱交換器(16)と前記クーラコア(26)との間で前記熱媒体が流れる熱媒体流路部(22a)とを備え、
     前記低圧側熱交換器(16)は、前記熱媒体の入口(16a)および出口(16b)を有しており、
     前記熱媒体流路部(22a)の少なくとも一部は、前記熱交換部(26c)よりも重力方向の低い位置に配置されている請求項1ないし16のいずれか1つに記載の冷凍サイクル装置。
    A blower (27) for blowing the air to the cooler core (26);
    A heat medium flow path section (22a) through which the heat medium flows between the low pressure side heat exchanger (16) and the cooler core (26);
    The low-pressure side heat exchanger (16) has an inlet (16a) and an outlet (16b) for the heat medium,
    The refrigeration cycle apparatus according to any one of claims 1 to 16, wherein at least a part of the heat medium flow path part (22a) is arranged at a position lower in a gravitational direction than the heat exchange part (26c). .
  19.  冷媒を吸入して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された高圧の前記冷媒を放熱させる高圧側熱交換器(12)と、
     前記高圧側熱交換器(12)から流出した前記冷媒を減圧させる減圧部(13、15)と、
     前記減圧部(13、15)で減圧された低圧の冷媒と熱媒体とを熱交換させて前記熱媒体を冷却させる低圧側熱交換器(16)と、
     前記低圧側熱交換器(16)で冷却された前記熱媒体と空気とを熱交換させて前記空気を冷却する熱交換部(26c)を有するクーラコア(26)と、
     前記熱媒体を吸引して吐出し、前記低圧側熱交換器(16)と前記クーラコア(26)との間で前記熱媒体を循環させる熱媒体ポンプ(25)と、
     前記クーラコア(26)に前記空気を送風する送風機(27)とを備え、
     前記低圧側熱交換器(16)は、前記熱媒体の入口(16a)および出口(16b)を有しており、
     前記熱交換部(26c)は、前記入口(16a)および前記出口(16b)のうち少なくとも一方よりも重力方向の高い位置に配置されている冷凍サイクル装置。
    A compressor (11) for sucking and discharging refrigerant;
    A high-pressure side heat exchanger (12) for radiating heat from the high-pressure refrigerant discharged from the compressor (11);
    A decompression section (13, 15) for decompressing the refrigerant flowing out of the high pressure side heat exchanger (12);
    A low-pressure side heat exchanger (16) that cools the heat medium by exchanging heat between the low-pressure refrigerant decompressed by the decompression unit (13, 15) and the heat medium;
    A cooler core (26) having a heat exchanging portion (26c) for exchanging heat between the heat medium cooled by the low-pressure side heat exchanger (16) and air and cooling the air;
    A heat medium pump (25) that sucks and discharges the heat medium, and circulates the heat medium between the low pressure side heat exchanger (16) and the cooler core (26);
    A blower (27) for blowing the air to the cooler core (26),
    The low-pressure side heat exchanger (16) has an inlet (16a) and an outlet (16b) for the heat medium,
    The said heat exchange part (26c) is a refrigerating-cycle apparatus arrange | positioned in the position of a gravity direction higher than at least one among the said inlet (16a) and the said outlet (16b).
  20.  冷媒を吸入して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された高圧の前記冷媒を放熱させる高圧側熱交換器(12)と、
     前記高圧側熱交換器(12)から流出した前記冷媒を減圧させる減圧部(13、15)と、
     前記減圧部(13、15)で減圧された低圧の冷媒と熱媒体とを熱交換させて前記熱媒体を冷却させる低圧側熱交換器(16)と、
     前記低圧側熱交換器(16)で冷却された前記熱媒体と空気とを熱交換させて前記空気を冷却する熱交換部(26c)を有するクーラコア(26)と、
     前記熱媒体を吸引して吐出し、前記低圧側熱交換器(16)と前記クーラコア(26)との間で前記熱媒体を循環させる熱媒体ポンプ(25)と、
     前記クーラコア(26)に前記空気を送風する送風機(27)と、
     前記低圧側熱交換器(16)と前記クーラコア(26)との間の前記熱媒体の流路を形成する熱媒体流路部(22a)とを備え、
     前記低圧側熱交換器(16)は、前記熱媒体の入口(16a)および出口(16b)を有しており、
     前記熱媒体流路部(22a)の少なくとも一部は、前記熱交換部(26c)よりも重力方向の低い位置に配置されている冷凍サイクル装置。
    A compressor (11) for sucking and discharging refrigerant;
    A high-pressure side heat exchanger (12) for radiating heat from the high-pressure refrigerant discharged from the compressor (11);
    A decompression section (13, 15) for decompressing the refrigerant flowing out of the high pressure side heat exchanger (12);
    A low-pressure side heat exchanger (16) that cools the heat medium by exchanging heat between the low-pressure refrigerant decompressed by the decompression unit (13, 15) and the heat medium;
    A cooler core (26) having a heat exchanging portion (26c) for exchanging heat between the heat medium cooled by the low-pressure side heat exchanger (16) and air and cooling the air;
    A heat medium pump (25) that sucks and discharges the heat medium, and circulates the heat medium between the low pressure side heat exchanger (16) and the cooler core (26);
    A blower (27) for blowing the air to the cooler core (26);
    A heat medium flow path section (22a) that forms a flow path of the heat medium between the low pressure side heat exchanger (16) and the cooler core (26),
    The low-pressure side heat exchanger (16) has an inlet (16a) and an outlet (16b) for the heat medium,
    At least a part of the heat medium flow path part (22a) is a refrigeration cycle apparatus arranged at a position lower in the direction of gravity than the heat exchange part (26c).
  21.  前記冷媒外気熱交換器(14)および前記低圧側熱交換器(16)は、前記冷媒の流れにおいて互いに直列に配置されている請求項19または20に記載の冷凍サイクル装置。 21. The refrigeration cycle apparatus according to claim 19 or 20, wherein the refrigerant outside air heat exchanger (14) and the low pressure side heat exchanger (16) are arranged in series with each other in the flow of the refrigerant.
  22.  冷媒を吸入して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された高圧の前記冷媒と車室内へ送風される空気とを熱交換させて前記空気を加熱する高圧側熱交換部(12、24)と、
     前記圧縮機(11)から吐出された高圧の前記冷媒を放熱させる高圧側熱交換器(12)と、
     前記高圧側熱交換器(12)から流出した前記冷媒を減圧させる減圧部(13)と、
     前記減圧部(13)で減圧された前記冷媒と外気とを熱交換させる冷媒外気熱交換器(14)と、
     前記冷媒外気熱交換器(14)から流出した前記冷媒と熱媒体とを熱交換させて前記熱媒体を冷却させる低圧側熱交換器(16)と、
     前記低圧側熱交換器(16)で冷却された前記熱媒体と車室内へ送風される前記空気とを熱交換させて前記空気を冷却するクーラコア(26)と、
     作動に伴って発熱し、前記低圧側熱交換器(16)で冷却された前記熱媒体に吸熱される車載機器(55)と、
     前記クーラコア(26)に流れる前記熱媒体の流量および前記車載機器(55)に流れる前記熱媒体の流量を調整する流量調整部(56、57、58)と、
     前記クーラコア(26)を流れる前記熱媒体の流量が抑制されるように前記流量調整部(56、57、58)を制御することによって前記クーラコア(26)のフロストを抑制するフロスト抑制制御を行い、前記フロスト抑制制御を行っている場合、前記車載機器(55)に前記熱媒体が流れるように前記流量調整部(56、57、58、25)を制御する制御部(30)とを備える冷凍サイクル装置。
    A compressor (11) for sucking and discharging refrigerant;
    A high-pressure side heat exchanging section (12, 24) for heating the air by exchanging heat between the high-pressure refrigerant discharged from the compressor (11) and the air blown into the vehicle interior;
    A high-pressure side heat exchanger (12) for radiating heat from the high-pressure refrigerant discharged from the compressor (11);
    A decompression section (13) for decompressing the refrigerant flowing out of the high pressure side heat exchanger (12);
    A refrigerant outside air heat exchanger (14) for exchanging heat between the refrigerant decompressed by the decompression unit (13) and the outside air;
    A low pressure side heat exchanger (16) for cooling the heat medium by exchanging heat between the refrigerant and the heat medium flowing out from the refrigerant outside air heat exchanger (14);
    A cooler core (26) that cools the air by exchanging heat between the heat medium cooled by the low-pressure side heat exchanger (16) and the air blown into the vehicle interior;
    On-vehicle equipment (55) that generates heat during operation and is absorbed by the heat medium cooled by the low-pressure side heat exchanger (16),
    A flow rate adjusting unit (56, 57, 58) for adjusting the flow rate of the heat medium flowing through the cooler core (26) and the flow rate of the heat medium flowing through the in-vehicle device (55);
    Frost suppression control is performed to suppress the frost of the cooler core (26) by controlling the flow rate adjusting unit (56, 57, 58) so that the flow rate of the heat medium flowing through the cooler core (26) is suppressed. A refrigeration cycle comprising a control unit (30) for controlling the flow rate adjusting unit (56, 57, 58, 25) so that the heat medium flows to the in-vehicle device (55) when the frost suppression control is performed. apparatus.
  23.  前記制御部(30)は、前記フロスト抑制制御を行っている場合、前記車載機器(55)の温度が下限温度を下回らないように前記車載機器(55)に流れる前記熱媒体の流量を前記流量調整部(56、57、58、25)によって調整する請求項22に記載の冷凍サイクル装置。 When the control unit (30) performs the frost suppression control, the flow rate of the heat medium flowing through the in-vehicle device (55) is set so that the temperature of the in-vehicle device (55) does not fall below a lower limit temperature. The refrigeration cycle apparatus according to claim 22, wherein the refrigeration cycle apparatus is adjusted by an adjustment unit (56, 57, 58, 25).
  24.  前記制御部(30)は、前記フロスト抑制制御を行っている場合において、前記車載機器(55)の温度が下限温度を下回っている場合、前記車載機器(55)の温度が下限温度を上回っている場合と比較して、前記車載機器(55)に流れる前記熱媒体の流量が少なくなるように前記流量調整部(56、57、58、25)を制御する請求項23に記載の冷凍サイクル装置。

     
    When the control unit (30) performs the frost suppression control and the temperature of the in-vehicle device (55) is lower than the lower limit temperature, the temperature of the in-vehicle device (55) exceeds the lower limit temperature. 24. The refrigeration cycle apparatus according to claim 23, wherein the flow rate adjusting unit (56, 57, 58, 25) is controlled so that a flow rate of the heat medium flowing through the in-vehicle device (55) is reduced as compared with a case where the vehicle is installed. .

PCT/JP2016/079722 2015-12-10 2016-10-06 Refrigeration cycle device WO2017098795A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680071762.8A CN108369042B (en) 2015-12-10 2016-10-06 Refrigeration cycle device
US16/060,036 US10723203B2 (en) 2015-12-10 2016-10-06 Refrigeration cycle device
DE112016005644.3T DE112016005644B4 (en) 2015-12-10 2016-10-06 COOLING CIRCUIT DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015240923 2015-12-10
JP2015-240923 2015-12-10
JP2016157692A JP6481668B2 (en) 2015-12-10 2016-08-10 Refrigeration cycle equipment
JP2016-157692 2016-08-10

Publications (1)

Publication Number Publication Date
WO2017098795A1 true WO2017098795A1 (en) 2017-06-15

Family

ID=59013937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079722 WO2017098795A1 (en) 2015-12-10 2016-10-06 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2017098795A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065013A1 (en) * 2017-09-28 2019-04-04 株式会社デンソー Refrigeration cycle device
US10989447B2 (en) 2016-07-26 2021-04-27 Denso Corporation Refrigeration cycle device
CN113302437A (en) * 2019-01-31 2021-08-24 株式会社电装 Refrigeration cycle device
CN114174736A (en) * 2019-07-24 2022-03-11 株式会社电装 Thermal management device
CN114269574A (en) * 2019-08-26 2022-04-01 三电汽车空调系统株式会社 Battery cooling device for vehicle and vehicle air conditioner comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074383A (en) * 1999-09-06 2001-03-23 Calsonic Kansei Corp Heat accumulator for vehicle
JP2003028536A (en) * 2001-07-18 2003-01-29 Hitachi Ltd Air conditioner
JP2003254641A (en) * 2002-02-28 2003-09-10 Showa Denko Kk Refrigerating system, condenser for refrigerating cycle and refrigerant outlet structure thereof
JP2012225637A (en) * 2011-04-04 2012-11-15 Denso Corp Refrigeration cycle device
JP2013256230A (en) * 2012-06-13 2013-12-26 Sanden Corp Vehicular air conditioning apparatus
JP2015013639A (en) * 2013-06-06 2015-01-22 株式会社デンソー Vehicular air-conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074383A (en) * 1999-09-06 2001-03-23 Calsonic Kansei Corp Heat accumulator for vehicle
JP2003028536A (en) * 2001-07-18 2003-01-29 Hitachi Ltd Air conditioner
JP2003254641A (en) * 2002-02-28 2003-09-10 Showa Denko Kk Refrigerating system, condenser for refrigerating cycle and refrigerant outlet structure thereof
JP2012225637A (en) * 2011-04-04 2012-11-15 Denso Corp Refrigeration cycle device
JP2013256230A (en) * 2012-06-13 2013-12-26 Sanden Corp Vehicular air conditioning apparatus
JP2015013639A (en) * 2013-06-06 2015-01-22 株式会社デンソー Vehicular air-conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10989447B2 (en) 2016-07-26 2021-04-27 Denso Corporation Refrigeration cycle device
WO2019065013A1 (en) * 2017-09-28 2019-04-04 株式会社デンソー Refrigeration cycle device
CN113302437A (en) * 2019-01-31 2021-08-24 株式会社电装 Refrigeration cycle device
CN114174736A (en) * 2019-07-24 2022-03-11 株式会社电装 Thermal management device
CN114174736B (en) * 2019-07-24 2023-06-20 株式会社电装 Thermal management device
CN114269574A (en) * 2019-08-26 2022-04-01 三电汽车空调系统株式会社 Battery cooling device for vehicle and vehicle air conditioner comprising same
CN114269574B (en) * 2019-08-26 2023-11-17 三电汽车空调系统株式会社 Battery cooling device for vehicle and air conditioning device for vehicle comprising same

Similar Documents

Publication Publication Date Title
JP6481668B2 (en) Refrigeration cycle equipment
JP6838527B2 (en) Vehicle air conditioner
JP6838535B2 (en) Refrigeration cycle equipment
KR102279199B1 (en) air conditioning
JP6485390B2 (en) Refrigeration cycle equipment
JP6708099B2 (en) Refrigeration cycle equipment
JP6380455B2 (en) Refrigeration cycle equipment
WO2014203476A1 (en) Vehicular heat management system
WO2015194107A1 (en) Refrigeration cycle device
JP5949668B2 (en) Thermal management system for vehicles
WO2018042859A1 (en) Refrigeration cycle device
WO2017098795A1 (en) Refrigeration cycle device
JP2018058573A (en) Vehicular air conditioner
JP2019034587A (en) Air conditioner
WO2018021083A1 (en) Refrigeration cycle device
JP2014218211A (en) Vehicle heat management system
JP6060799B2 (en) Air conditioner for vehicles
WO2018066276A1 (en) Air-conditioning device for vehicle
WO2016067598A1 (en) Cooling system
JP6341118B2 (en) Refrigeration cycle equipment
WO2017010239A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005644

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872695

Country of ref document: EP

Kind code of ref document: A1