JP2022147311A - Refrigerant circuit and vehicular heat pump device - Google Patents

Refrigerant circuit and vehicular heat pump device Download PDF

Info

Publication number
JP2022147311A
JP2022147311A JP2021048497A JP2021048497A JP2022147311A JP 2022147311 A JP2022147311 A JP 2022147311A JP 2021048497 A JP2021048497 A JP 2021048497A JP 2021048497 A JP2021048497 A JP 2021048497A JP 2022147311 A JP2022147311 A JP 2022147311A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat medium
heat exchange
exchange section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021048497A
Other languages
Japanese (ja)
Inventor
宣伯 清水
Yoshinobu Shimizu
修 高沢
Osamu Takazawa
竜 宮腰
Tatsu Miyakoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Advanced Technology Corp
Original Assignee
Sanden Advanced Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Advanced Technology Corp filed Critical Sanden Advanced Technology Corp
Priority to JP2021048497A priority Critical patent/JP2022147311A/en
Priority to PCT/JP2022/013275 priority patent/WO2022202840A1/en
Publication of JP2022147311A publication Critical patent/JP2022147311A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Abstract

To provide a refrigerant circuit enabling efficient use of heat by generating a heating medium directly exchanging heat with a refrigerant in an intended temperature zone.SOLUTION: A refrigerant circuit includes: a compressor compressing a refrigerant; and a refrigerant circulation flow passage for condensing, expanding and evaporating the refrigerant discharged from the compressor and then returning the refrigerant to the compressor. The refrigerant circuit also includes: a first refrigerant heating medium heat exchange part for exchanging heat between the refrigerant and a heating medium; a decompression part for decompressing the refrigerant; a second refrigerant heating medium heat exchange part for exchanging heat between the refrigerant and the heating medium; and a third refrigerant heating medium heat exchange part for exchanging heat between the refrigerant and the heating medium. The refrigerant circuit further includes bypass refrigerant piping capable of selectively bypassing any of the first refrigerant heating medium heat exchange part, the second refrigerant heating medium heat exchange part and the third refrigerant heating medium heat exchange part.SELECTED DRAWING: Figure 1

Description

本発明は、冷媒回路及び車両用ヒートポンプ装置に関するものである。 The present invention relates to a refrigerant circuit and a vehicle heat pump device.

冷媒回路は、循環する冷媒を圧縮、凝縮、膨張、蒸発させてヒートポンプとして機能するものがあり、このような冷媒回路は、エンジン発熱を期待できない車両(電動車両やハイブリッド車両、或いは発熱量の小さいエンジンを搭載した車両)の熱マネジメントにおける熱源として用いられている。特に、車両空調用の冷媒回路は、冷媒の吸熱と放熱を利用して、冷房、暖房、除湿、除霜、曇り止めの機能を果たしており、更に、バッテリーやモーターなどの電装機器に対する冷却や暖機を行っている。 Some refrigerant circuits function as heat pumps by compressing, condensing, expanding, and evaporating circulating refrigerant. It is used as a heat source in thermal management of a vehicle equipped with an engine. In particular, refrigerant circuits for vehicle air conditioning use the heat absorption and heat dissipation of refrigerants to perform cooling, heating, dehumidification, defrosting, and anti-fogging functions. machine.

従来、車両空調用の冷媒回路として、第1冷媒循環回路と第2冷媒循環回路が形成され、第1冷媒循環回路では、冷媒が圧縮機、凝縮器、第1膨張弁、空気側蒸発器、定圧弁、圧縮機の順に循環し、第2冷媒循環回路では、冷媒が圧縮機、凝縮器、第2膨張弁、冷却水側蒸発器の順に循環するものが知られている(下記特許文献1参照)。 Conventionally, as a refrigerant circuit for vehicle air conditioning, a first refrigerant circuit and a second refrigerant circuit are formed. It is known that the constant pressure valve and the compressor circulate in order, and in the second refrigerant circulation circuit, the refrigerant circulates in the order of the compressor, the condenser, the second expansion valve, and the cooling water side evaporator (Patent Document 1 below. reference).

この従来技術では、冷媒回路における凝縮器が、圧縮機から吐出された高圧側冷媒と高温熱媒体回路の熱媒体とを熱交換させる高圧側熱交換器になっており、冷媒回路における空気側蒸発器が、第1膨張弁から流出した冷媒と車室内へ送風される空気とを車室内空調装置にて熱交換させる低圧側熱交換器になっている。また、冷媒回路における冷却水側蒸発器が、第2膨張弁から流出した冷媒と冷温熱媒体回路(所謂チラー)の熱媒体とを熱交換させる低圧側熱交換器になっている。ここで、第2膨張弁は、第1冷媒循環回路のみに冷媒を流すか、第1冷媒循環回路及び第2冷媒循環回路に冷媒を流すかの切り替え弁(所謂チラー弁)になっている。 In this prior art, the condenser in the refrigerant circuit is a high-pressure side heat exchanger that exchanges heat between the high-pressure side refrigerant discharged from the compressor and the heat medium in the high-temperature heat medium circuit. A low-pressure side heat exchanger that exchanges heat between the refrigerant flowing out of the first expansion valve and the air blown into the vehicle interior by the vehicle interior air conditioner. Also, the cooling water side evaporator in the refrigerant circuit is a low-pressure side heat exchanger that exchanges heat between the refrigerant flowing out of the second expansion valve and the heat medium of the cold/heat medium circuit (so-called chiller). Here, the second expansion valve is a switching valve (a so-called chiller valve) for switching between flowing the refrigerant only through the first refrigerant circulation circuit and flowing the refrigerant through the first refrigerant circulation circuit and the second refrigerant circulation circuit.

特開2020-104841号公報JP 2020-104841 A

前述した従来の冷媒回路は、凝縮器による高圧側熱交換器により高温の熱媒体を生成し、冷却水側蒸発器による低圧側熱交換器で冷温の熱媒体を生成して、生成された高温熱媒体と低温熱媒体を互いに熱交換することで所望の温度帯の熱媒体を得ている。このような従来技術では、熱媒体同士の熱交換で熱損失が生じることになり、所望の温度帯の熱媒体を効率よく生成することができない。冷媒回路を熱マネジメントにおける熱源と考えた場合には、冷媒と直接熱交換する熱媒体を、用途に応じて様々な温度帯で生成することが望ましいが、従来技術ではこのような効率的な熱利用を行うことができない問題があった。 In the conventional refrigerant circuit described above, a high-temperature heat medium is generated by a high-pressure side heat exchanger using a condenser, and a cold heat medium is generated by a low-pressure side heat exchanger using a cooling water-side evaporator. A heat medium in a desired temperature range is obtained by exchanging heat between the hot heat medium and the low temperature heat medium. In such a conventional technique, heat loss occurs due to heat exchange between heat mediums, and heat medium in a desired temperature range cannot be efficiently generated. When considering the refrigerant circuit as a heat source in heat management, it is desirable to generate a heat medium that directly exchanges heat with the refrigerant in various temperature ranges depending on the application. There was a problem that I could not use it.

また、従来の冷媒回路は、車室内空調装置に設置される空気側蒸発器に冷媒を流すことを前提にしているので、冷媒の流路を、車室内を含めて複雑に配管する必要があり、冷媒配管のメンテナンスが煩雑にならざるを得ない問題があった。 In addition, since the conventional refrigerant circuit is based on the premise that the refrigerant flows through the air-side evaporator installed in the vehicle interior air conditioner, it is necessary to lay complicated piping for the refrigerant flow path, including the interior of the vehicle. , there is a problem that the maintenance of the refrigerant piping is inevitably complicated.

本発明は、このような問題に対処するために提案されたものであり、冷媒から直接熱交換する熱媒体を所望の温度帯で生成できるようにすることで、効率的な熱利用が可能な冷媒回路を提供すること、冷媒配管のメンテナンスが容易になる冷媒回路を提供すること、などが本発明の課題である。 The present invention has been proposed to address these problems, and enables efficient heat utilization by generating a heat medium that directly exchanges heat from a refrigerant in a desired temperature range. It is an object of the present invention to provide a refrigerant circuit, to provide a refrigerant circuit that facilitates maintenance of refrigerant pipes, and the like.

このような課題を解決するために、本発明は、以下の構成を具備するものである。
冷媒を圧縮する圧縮機と、前記圧縮機から吐出した冷媒を凝縮、膨張、蒸発させて前記圧縮機に戻す冷媒循環流路とを備えた冷媒回路において、冷媒と熱媒体とを熱交換させる第1冷媒熱媒体熱交換部と、冷媒を減圧する減圧部と、冷媒と熱媒体とを熱交換させる第2冷媒熱媒体熱交換部と、冷媒と熱媒体とを熱交換させる第3冷媒熱媒体熱交換部とを備え、前記第1冷媒熱媒体熱交換部と前記第2冷媒熱媒体熱交換部と前記第3冷媒熱媒体熱交換部のいずれかを選択的に迂回可能なバイパス冷媒配管を設けたことを特徴とする冷媒回路。
In order to solve such problems, the present invention has the following configurations.
In a refrigerant circuit comprising a compressor that compresses a refrigerant and a refrigerant circulation passage that condenses, expands, and evaporates the refrigerant discharged from the compressor and returns it to the compressor, the refrigerant and the heat medium are heat-exchanged. 1 refrigerant heat medium heat exchange part, a decompression part for decompressing the refrigerant, a second refrigerant heat medium heat exchange part for heat exchange between the refrigerant and the heat medium, and a third refrigerant heat medium for heat exchange between the refrigerant and the heat medium a bypass refrigerant pipe capable of selectively bypassing any one of the first refrigerant heat medium heat exchange unit, the second refrigerant heat medium heat exchange unit, and the third refrigerant heat medium heat exchange unit; Refrigerant circuit characterized by having provided.

このような特徴を備えた本発明の冷媒回路によると、第1冷媒熱媒体熱交換部と第2冷媒熱媒体熱交換部と第3冷媒熱媒体熱交換部のうち、バイパス冷媒配管によって選択される熱交換部によって冷媒回路を構成することで、冷媒から直接熱交換する熱媒体を様々な温度帯で生成することができ、効率的な熱利用が可能な冷媒回路を得ることができる。 According to the refrigerant circuit of the present invention having such features, one of the first refrigerant heat medium heat exchange section, the second refrigerant heat medium heat exchange section, and the third refrigerant heat medium heat exchange section is selected by the bypass refrigerant pipe. By constructing the refrigerant circuit with the heat exchanging portion, it is possible to generate a heat medium that directly exchanges heat from the refrigerant in various temperature ranges, thereby obtaining a refrigerant circuit capable of efficient heat utilization.

また、第1冷媒熱媒体熱交換部と第2冷媒熱媒体熱交換部と第3冷媒熱媒体熱交換部に対して熱媒体回路を接続することで、冷媒回路自体をコンパクトにユニット化することができる。これによって、冷媒配管のメンテナンスが容易な冷媒回路を提供することができる。 Further, by connecting the heat medium circuit to the first refrigerant heat medium heat exchange section, the second refrigerant heat medium heat exchange section, and the third refrigerant heat medium heat exchange section, the refrigerant circuit itself can be compactly unitized. can be done. Accordingly, it is possible to provide a refrigerant circuit in which maintenance of refrigerant pipes is easy.

本発明の実施形態に係る冷媒回路を示した説明図。1 is an explanatory diagram showing a refrigerant circuit according to an embodiment of the invention; FIG. バイパス冷媒配管に冷媒を流さない冷媒回路の動作例を示した説明図。Explanatory drawing which showed the operation example of the refrigerant circuit which does not flow a refrigerant|coolant to bypass refrigerant|coolant piping. 第1バイパス配管に冷媒を流す冷媒回路の動作例を示した説明図。Explanatory drawing which showed the operation example of the refrigerant circuit which makes a refrigerant|coolant flow through 1st bypass piping. 第2バイパス配管に冷媒を流す冷媒回路の動作例を示した説明図。Explanatory drawing which showed the operation example of the refrigerant circuit which makes a refrigerant|coolant flow through 2nd bypass piping. 第1バイパス配管と第2バイパス配管に冷媒を流す冷媒回路の動作例を示した説明図。Explanatory drawing which showed the operation example of the refrigerant|coolant circuit which makes a refrigerant|coolant flow through 1st bypass piping and 2nd bypass piping. 図2に示した冷媒回路における動作例毎のモリエル線図((A)が動作モードA、(B)が動作モードB、(C)が動作モードC、(D)が動作モードD)。Mollier diagrams for each operation example in the refrigerant circuit shown in FIG. 2 ((A) is operation mode A, (B) is operation mode B, (C) is operation mode C, and (D) is operation mode D). 図3、図4、図5の動作例毎のモリエル線図((E)が図3に示した動作モードE、(F)が図4に示した動作モードF、(G)が図5に示した動作モードG)。3, 4 and 5 (E) is the operation mode E shown in FIG. 3, (F) is the operation mode F shown in FIG. 4, and (G) is the operation mode shown in FIG. The illustrated operating mode G). 本発明の実施形態に係る冷媒回路を用いた車両用ヒートポンプ装置のシステム構成と活用例1(暖機及び暖房)を示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a system configuration of a vehicle heat pump device using a refrigerant circuit according to an embodiment of the present invention and a utilization example 1 (warming up and heating); 本発明の実施形態に係る冷媒回路を用いた車両用ヒートポンプ装置のシステム構成と活用例2(蓄熱及び暖房)を示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a system configuration of a vehicle heat pump device using a refrigerant circuit according to an embodiment of the present invention and a utilization example 2 (heat storage and heating); 本発明の実施形態に係る冷媒回路を用いた車両用ヒートポンプ装置のシステム構成と活用例3(蓄熱利用暖房)を示した説明図。1 is an explanatory diagram showing a system configuration of a vehicle heat pump device using a refrigerant circuit according to an embodiment of the present invention and a utilization example 3 (heating using heat storage); FIG. 本発明の実施形態に係る冷媒回路を用いた車両用ヒートポンプ装置のシステム構成と活用例4(蓄熱利用暖房)を示した説明図。1 is an explanatory diagram showing a system configuration of a vehicle heat pump device using a refrigerant circuit according to an embodiment of the present invention and a utilization example 4 (heating using heat storage); FIG.

以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。なお、本明細書で、冷媒とは、ヒートポンプ(圧縮・凝縮・膨張・蒸発)における状態変化を伴う冷媒回路の循環媒体であり、熱媒体とは、このような状態変化を伴わないで熱交換によって吸放熱を行う媒体(水、空気を含む)である。 Embodiments of the present invention will be described below with reference to the drawings. In the following description, the same reference numerals in different figures denote portions having the same function, and duplication of description in each figure will be omitted as appropriate. In this specification, the term “refrigerant” refers to a circulating medium in a refrigerant circuit that undergoes state changes in a heat pump (compression, condensation, expansion, evaporation), and the term “heat medium” refers to heat exchange without such state changes. It is a medium (including water and air) that absorbs and radiates heat by

図1に示すように、本発明の実施形態に係る冷媒回路1は、冷媒を圧縮する圧縮機10と、圧縮機10から吐出した冷媒を凝縮、膨張、蒸発させて圧縮機10に戻す冷媒循環流路2とを備えている。 As shown in FIG. 1, the refrigerant circuit 1 according to the embodiment of the present invention includes a compressor 10 that compresses refrigerant, and a refrigerant circuit that condenses, expands, and evaporates the refrigerant discharged from the compressor 10 and returns it to the compressor 10. and a flow path 2 .

冷媒循環流路2は、第1冷媒熱媒体熱交換部11と、減圧部14と、第2冷媒熱媒体熱交換部12と、第3冷媒熱媒体熱交換部13とを備えている。ここで、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13は、冷媒回路1において、熱媒体との熱交換がなされない場合には、冷媒を通過させる冷媒流路として機能し、熱媒体との熱交換がなされる場合には、ヒートポンプを構成する凝縮器又は蒸発器として機能する。 The refrigerant circulation flow path 2 includes a first refrigerant heat medium heat exchange section 11 , a pressure reducing section 14 , a second refrigerant heat medium heat exchange section 12 , and a third refrigerant heat medium heat exchange section 13 . Here, the first refrigerant heat medium heat exchange unit 11, the second refrigerant heat medium heat exchange unit 12, and the third refrigerant heat medium heat exchange unit 13 are arranged in the refrigerant circuit 1 when heat exchange with the heat medium is not performed. functions as a refrigerant channel through which the refrigerant passes, and functions as a condenser or evaporator that constitutes a heat pump when heat is exchanged with a heat medium.

図示の例では、冷媒循環流路2は、圧縮機10の出口に一端が接続され第1冷媒熱媒体熱交換部11の入口に他端が接続される冷媒配管20と、第1冷媒熱媒体熱交換部11の出口に一端が接続され第2冷媒熱媒体熱交換部12の入口に他端が接続される冷媒配管21と、第2冷媒熱媒体熱交換部12の出口に一端が接続され第3冷媒熱媒体熱交換部13の入口に他端が接続される冷媒配管22と、第3冷媒熱媒体熱交換部の出口に一端が接続され圧縮機10の入口に他端が接続される冷媒配管23とを備えている。 In the illustrated example, the refrigerant circulation flow path 2 includes a refrigerant pipe 20 having one end connected to the outlet of the compressor 10 and the other end connected to the inlet of the first refrigerant heat medium heat exchange section 11, and the first refrigerant heat medium. A refrigerant pipe 21, one end of which is connected to the outlet of the heat exchange unit 11 and the other end of which is connected to the inlet of the second refrigerant heat medium heat exchange unit 12, and one end of which is connected to the outlet of the second refrigerant heat medium heat exchange unit 12. A refrigerant pipe 22 whose other end is connected to the inlet of the third refrigerant heat medium heat exchange unit 13, and whose one end is connected to the outlet of the third refrigerant heat medium heat exchange unit and whose other end is connected to the inlet of the compressor 10. Refrigerant piping 23 is provided.

減圧部14は、圧縮機10で圧縮された高圧の冷媒を所定の圧力まで減圧させるものであり、図示の例では、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12の間の冷媒配管21に第1減圧部14Aが設けられ、第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13との間の冷媒配管22に第2減圧部14Bが設けられている。 The pressure reducing unit 14 reduces the pressure of the high-pressure refrigerant compressed by the compressor 10 to a predetermined pressure. A first pressure reducing section 14A is provided in the refrigerant pipe 21 between the It is

冷媒回路1は、冷媒循環流路2に、バイパス冷媒配管3を設けている。バイパス冷媒配管3は、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13のいずれかを選択的に迂回可能に設けられる。ここでのバイパス冷媒配管3の選択は、バイパス冷媒配管3を冷媒の流路として使用しない場合を含んでおり、この場合には、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13を冷媒が流れる冷媒回路1が構成される。 The refrigerant circuit 1 has a bypass refrigerant pipe 3 in a refrigerant circulation flow path 2 . The bypass refrigerant pipe 3 is provided so as to selectively bypass any one of the first refrigerant heat medium heat exchange section 11 , the second refrigerant heat medium heat exchange section 12 , and the third refrigerant heat medium heat exchange section 13 . The selection of the bypass refrigerant pipe 3 here includes the case where the bypass refrigerant pipe 3 is not used as a refrigerant flow path. A refrigerant circuit 1 is configured in which the refrigerant flows through the exchange portion 12 and the third refrigerant heat medium heat exchange portion 13 .

そして、バイバス冷媒配管3を冷媒の流路として使用する場合には、第3冷媒熱媒体熱交換部13を迂回して第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12を冷媒が流れる冷媒回路1、第1冷媒熱媒体熱交換部11を迂回して第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13を冷媒が流れる冷媒回路1、第2冷媒熱媒体熱交換部12を迂回して第1冷媒熱媒体熱交換部11と第3冷媒熱媒体熱交換部13を冷媒が流れる冷媒回路1がそれぞれ構成される。ここで選択されるバイパス冷媒配管3自体は、熱交換部が設けられていない。 When the bypass refrigerant pipe 3 is used as a refrigerant flow path, the first refrigerant heat medium heat exchange unit 11 and the second refrigerant heat medium heat exchange unit 12 bypass the third refrigerant heat medium heat exchange unit 13. the refrigerant circuit 1 through which the refrigerant flows, the refrigerant circuit 1 through which the refrigerant bypasses the first refrigerant heat medium heat exchange unit 11 and flows through the second refrigerant heat medium heat exchange unit 12 and the third refrigerant heat medium heat exchange unit 13, the second Refrigerant circuits 1 are configured in which the refrigerant flows through the first refrigerant heat medium heat exchange unit 11 and the third refrigerant heat medium heat exchange unit 13 while bypassing the refrigerant heat medium heat exchange unit 12 . The bypass refrigerant pipe 3 itself selected here is not provided with a heat exchange portion.

図示の例は、バイパス冷媒配管3は、第2冷媒熱媒体熱交換部12を迂回可能な第1バイパス配管31と、第3冷媒熱媒体熱交換部13を迂回可能な第2バイパス配管32を備えている。 In the illustrated example, the bypass refrigerant pipe 3 includes a first bypass pipe 31 that can bypass the second refrigerant heat medium heat exchange unit 12 and a second bypass pipe 32 that can bypass the third refrigerant heat medium heat exchange unit 13. I have.

第1バイパス配管31は、分岐部31Aが冷媒配管21に設けられ、合流部31Bが冷媒配管22に設けられており、分岐部31Aは、第1減圧部14Aの上流側に設けられ、合流部31Bは第2減圧部14Bの上流側に設けられている。 The first bypass pipe 31 has a branch portion 31A provided in the refrigerant pipe 21, a junction portion 31B provided in the refrigerant pipe 22, and the branch portion 31A is provided upstream of the first pressure reducing portion 14A. 31B is provided on the upstream side of the second pressure reducing section 14B.

第2バイパス配管32は、分岐部32Aが冷媒配管22に設けられ、合流部32Bが冷媒配管23に設けられており、分岐部32Aは、第1バイパス配管31の合流部31Bの上流側に設けられている。これにより、第1バイパス配管31の合流部31Bは、第2バイパス配管32の分岐部32Aと第3冷媒熱媒体熱交換部13との間に設けられている。 The second bypass pipe 32 has a branch portion 32A provided in the refrigerant pipe 22 and a junction portion 32B provided in the refrigerant pipe 23. The branch portion 32A is provided upstream of the junction portion 31B of the first bypass pipe 31. It is Thereby, the confluence portion 31B of the first bypass pipe 31 is provided between the branch portion 32A of the second bypass pipe 32 and the third refrigerant heat medium heat exchange portion 13 .

また、第2バイパス配管32の分岐部32Aは、第2減圧部14Bと第1バイパス配管31の合流部31Bより上流側に設けられ、第2バイパス配管32の分岐部32Aと第1バイパス配管31の合流部31Bとの間には、逆流防止手段(例えば逆止弁)15が設けられている。 In addition, the branching portion 32A of the second bypass pipe 32 is provided upstream from the confluence portion 31B of the second pressure reducing portion 14B and the first bypass pipe 31, and the branching portion 32A of the second bypass pipe 32 and the first bypass pipe 31 A backflow preventing means (for example, a check valve) 15 is provided between the merging portion 31B.

このような冷媒回路1は、例えば、車両用熱マネジメントシステムの熱源として用いることができ、バイパス冷媒配管3の選択や減圧部14の制御により、第1冷媒熱媒体熱交換部11、第2冷媒熱媒体熱交換部12、第3冷媒熱媒体熱交換部13のそれぞれから所定温度帯の熱媒体を生成することができる。 Such a refrigerant circuit 1 can be used, for example, as a heat source for a vehicle heat management system. A heat medium having a predetermined temperature range can be generated from each of the heat medium heat exchange section 12 and the third refrigerant heat medium heat exchange section 13 .

また、冷媒回路1は、バイパス冷媒配管3を含めた冷媒循環流路2を図示一点破線で示したユニットU内に収めることができるので、コンパクトにユニット化した冷媒回路1により、冷媒配管20~23やバイパス冷媒配管3のメンテナンスが容易になる。更に、冷媒循環流路2とバイパス冷媒配管3を車室外のユニットU内に収めた場合には、冷媒を車室内に入れない車両用熱マネジメントシステムを構築することができる。 In addition, in the refrigerant circuit 1, the refrigerant circulation flow path 2 including the bypass refrigerant pipe 3 can be housed in the unit U indicated by the dashed line in the drawing. 23 and the bypass refrigerant pipe 3 can be easily maintained. Furthermore, when the refrigerant circulation flow path 2 and the bypass refrigerant pipe 3 are housed in the unit U outside the vehicle, it is possible to construct a vehicle heat management system in which the refrigerant does not enter the vehicle.

以下、冷媒回路1の動作例を説明する。バイパス冷媒配管3の選択は、バイパス選択バルブ31V,32Vの開閉によってなされる。冷媒回路1は、制御部Cによって、バイパス選択バルブ31V,32Vの開閉、減圧部14(第1減圧部14Aと第2減圧部14B)及び圧縮機10の制御がなされ、それによって冷媒回路1の動作モードが切り替えられる。 An operation example of the refrigerant circuit 1 will be described below. Selection of the bypass refrigerant pipe 3 is performed by opening and closing bypass selection valves 31V and 32V. In the refrigerant circuit 1, the control unit C controls the opening and closing of the bypass selection valves 31V and 32V, the pressure reducing unit 14 (the first pressure reducing unit 14A and the second pressure reducing unit 14B), and the compressor 10. Operation mode can be switched.

図2~図5には、冷媒回路1における動作例を示しており、バイパス冷媒配管3の選択による冷媒の流れを示している。図2~図5において、太線で示した配管が、冷媒が流れている配管を示しており、太線の矢印が冷媒の流れの向きを示している。 FIGS. 2 to 5 show an example of operation in the refrigerant circuit 1, showing the flow of refrigerant by selection of the bypass refrigerant pipe 3. FIG. In FIGS. 2 to 5, thick lines indicate pipes through which the coolant flows, and thick line arrows indicate the direction of flow of the coolant.

図2に示した動作例は、バイパス選択バルブ31V,32Vの両方を閉にして第1バイパス配管31と第2バイパス配管32に冷媒を流さない動作例であり、この場合の冷媒回路1の冷媒は、圧縮機10を出て、第1冷媒熱媒体熱交換部11、第1減圧部14A、第2冷媒熱媒体熱交換部12、第2減圧部14B、第3冷媒熱媒体熱交換部13を順次経由しながら、冷媒循環流路2を流れ、圧縮機10に戻る。 The operation example shown in FIG. 2 is an operation example in which both the bypass selection valves 31V and 32V are closed to prevent the refrigerant from flowing through the first bypass pipe 31 and the second bypass pipe 32. In this case, the refrigerant in the refrigerant circuit 1 exits the compressor 10, the first refrigerant heat medium heat exchange section 11, the first pressure reducing section 14A, the second refrigerant heat medium heat exchange section 12, the second pressure reducing section 14B, the third refrigerant heat medium heat exchange section 13 while sequentially passing through the refrigerant circulation flow path 2 and returns to the compressor 10 .

図2に示した動作例では、第1減圧部14Aと第2減圧部14Bの制御によって、図6のモリエル線図で示す4つの動作モード(動作モードA~D)を実行することができる。 In the operation example shown in FIG. 2, four operation modes (operation modes A to D) shown in the Mollier diagram of FIG. 6 can be executed by the control of the first pressure reducing section 14A and the second pressure reducing section 14B.

図6(A)に示した動作モードAは、第1減圧部14Aを全開にした例であり、減圧は第2減圧部14Bのみで行う。この動作モードAの冷媒は、圧縮機10によって圧縮され、第1冷媒熱媒体熱交換部11及び第2冷媒熱媒体熱交換部12にて熱媒体へ放熱し、第2減圧部14Bで減圧され、第3冷媒熱媒体熱交換部13にて熱媒体から吸熱する。この際、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12が凝縮器として機能し、第3冷媒熱媒体熱交換部13が蒸発器として機能する。なお、ここで第1冷媒熱媒体熱交換部11にて熱交換される熱媒体回路と第2冷媒熱媒体熱交換部12にて熱交換される熱媒体回路は、独立した回路であってもよいし互いに接続された回路であってもよい。 Operation mode A shown in FIG. 6A is an example in which the first pressure reducing section 14A is fully opened, and pressure reduction is performed only by the second pressure reducing section 14B. The refrigerant in this operation mode A is compressed by the compressor 10, radiates heat to the heat medium in the first refrigerant heat medium heat exchange section 11 and the second refrigerant heat medium heat exchange section 12, and is decompressed in the second pressure reducing section 14B. , absorbs heat from the heat medium in the third refrigerant heat medium heat exchange section 13 . At this time, the first refrigerant heat medium heat exchange unit 11 and the second refrigerant heat medium heat exchange unit 12 function as condensers, and the third refrigerant heat medium heat exchange unit 13 functions as an evaporator. Here, the heat medium circuit heat-exchanged in the first refrigerant heat medium heat exchange unit 11 and the heat medium circuit heat-exchanged in the second refrigerant heat medium heat exchange unit 12 may be independent circuits. Alternatively, they may be circuits connected to each other.

この動作モードAでは、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12にそれぞれ接続される2つの熱媒体回路に、高圧の冷媒と直接熱交換することで得られる高温の熱媒体を流すことができ、第3冷媒熱媒体熱交換部13に接続された1つの熱媒体回路に、低圧の冷媒と直接熱交換することで得られる低温の熱媒体を流すことができる。 In this operation mode A, the two heat medium circuits connected to the first refrigerant heat medium heat exchange section 11 and the second refrigerant heat medium heat exchange section 12, respectively, are supplied with a high-temperature refrigerant obtained by directly exchanging heat with a high-pressure refrigerant. can flow, and a low-temperature heat medium obtained by directly exchanging heat with a low-pressure refrigerant can flow in one heat medium circuit connected to the third refrigerant heat medium heat exchange unit 13. .

図6(B)に示した動作モードBは、第1減圧部14Aと第2減圧部14Bで2段階に分けた減圧を行い、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12で2段階に分けた放熱を行う。この動作モードBの冷媒は、圧縮機10によって圧縮され、第1冷媒熱媒体熱交換部11にて一つの熱媒体へ第1段階の放熱を行い、第1減圧部14Aで第1段階の減圧がなされ、第2冷媒熱媒体熱交換部12にて別の熱媒体へ第2段階の放熱を行い、第2減圧部14Bで第2段階の減圧がなされ、第3冷媒熱媒体熱交換部13にて他の熱媒体から吸熱する。この際、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12が凝縮器として機能し、第3冷媒熱媒体熱交換部13が蒸発器として機能する。 In the operation mode B shown in FIG. 6B, the pressure is reduced in two stages by the first pressure reducing unit 14A and the second pressure reducing unit 14B, and the first refrigerant heat medium heat exchange unit 11 and the second refrigerant heat medium heat The exchanging part 12 performs heat dissipation in two steps. The refrigerant in this operation mode B is compressed by the compressor 10, performs the first stage of heat dissipation to one heat medium in the first refrigerant heat medium heat exchange section 11, and undergoes the first stage of pressure reduction in the first pressure reducing section 14A. is performed, heat is released to another heat medium in the second stage in the second refrigerant heat medium heat exchange section 12, the pressure is reduced in the second stage in the second pressure reducing section 14B, and the third refrigerant heat medium heat exchange section 13 absorbs heat from another heat medium at At this time, the first refrigerant heat medium heat exchange unit 11 and the second refrigerant heat medium heat exchange unit 12 function as condensers, and the third refrigerant heat medium heat exchange unit 13 functions as an evaporator.

この動作モードBでは、第1冷媒熱媒体熱交換部11に接続される1つの熱媒体回路には、高圧の冷媒と直接熱交換することで得られる高温の熱媒体を流すことができ、第2冷媒熱媒体熱交換部12に接続される別の熱媒体回路には、中圧の冷媒と直接熱交換することで得られる高温の熱媒体よりも比較的低い温度に加熱された熱媒体を流すことができ、第3冷媒熱媒体熱交換部13に接続された他の熱媒体回路には、低圧冷媒と直接熱交換することで得られる低温熱媒体を流すことができる。 In this operation mode B, one heat medium circuit connected to the first refrigerant heat medium heat exchange unit 11 can flow a high-temperature heat medium obtained by directly exchanging heat with a high-pressure refrigerant. Another heat medium circuit connected to the two-refrigerant heat medium heat exchange section 12 contains a heat medium heated to a relatively lower temperature than the high-temperature heat medium obtained by direct heat exchange with the medium-pressure refrigerant. A low-temperature heat medium obtained by directly exchanging heat with the low-pressure refrigerant can be flowed to another heat medium circuit connected to the third refrigerant heat medium heat exchange unit 13 .

すなわち、この動作モードBによると、冷媒との直接的な熱交換で、温度帯の異なる高温熱媒体を生成し、それぞれ別の熱媒体回路に流すことができる。この際の温度帯の調整は、第1減圧部14Aの減圧程度によって調整される。 That is, according to this operation mode B, by direct heat exchange with the refrigerant, high-temperature heat medium having different temperature ranges can be generated and flowed through separate heat medium circuits. The adjustment of the temperature zone at this time is adjusted by the degree of pressure reduction of the first pressure reducing section 14A.

図6(C)に示した動作モードCは、第1減圧部14Aと第2減圧部14Bで2段階に分けた減圧を行い、第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13で2段階に分けた吸熱を行う。この動作モードCの冷媒は、圧縮機10によって圧縮され、第1冷媒熱媒体熱交換部11にて一つの熱媒体へ放熱し、第1減圧部14Aで第1段階の減圧がなされ、第2冷媒熱媒体熱交換部12にて別の熱媒体から第1段階の吸熱を行い、第2減圧部14Bで第2段階の減圧がなされ、第3冷媒熱媒体熱交換部13にて他の熱媒体から第2段階の吸熱を行う。この際、第1冷媒熱媒体熱交換部11が凝縮器として機能し、第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13が蒸発器として機能する。 In the operation mode C shown in FIG. 6C, the pressure is reduced in two steps by the first pressure reducing unit 14A and the second pressure reducing unit 14B, and the second refrigerant heat medium heat exchange unit 12 and the third refrigerant heat medium heat Exothermic absorption is performed in two stages in the exchanging part 13 . The refrigerant in this operation mode C is compressed by the compressor 10, radiates heat to one heat medium in the first refrigerant heat medium heat exchange section 11, is decompressed in the first stage in the first decompression section 14A, and is decompressed in the second stage. The refrigerant heat medium heat exchange unit 12 absorbs heat from another heat medium in the first stage, the second pressure reduction unit 14B performs the second stage pressure reduction, and the third refrigerant heat medium heat exchange unit 13 absorbs other heat. A second stage endotherm is carried out from the medium. At this time, the first refrigerant heat medium heat exchange section 11 functions as a condenser, and the second refrigerant heat medium heat exchange section 12 and the third refrigerant heat medium heat exchange section 13 function as evaporators.

この動作モードCでは、第1冷媒熱媒体熱交換部11に接続される1つの熱媒体回路には、高圧の冷媒と直接熱交換することで得られる高温の熱媒体を流すことができ、第2冷媒熱媒体熱交換部12に接続される熱媒体回路と第3冷媒熱媒体熱交換部13に接続される熱媒体回路には、冷媒と直接熱交換することで得られる異なる温度帯の低温熱媒体をそれぞれ流すことができる。 In this operation mode C, one heat medium circuit connected to the first refrigerant heat medium heat exchange unit 11 can flow a high-temperature heat medium obtained by directly exchanging heat with a high-pressure refrigerant. In the heat medium circuit connected to the second refrigerant heat medium heat exchange unit 12 and the heat medium circuit connected to the third refrigerant heat medium heat exchange unit 13, low temperatures in different temperature zones obtained by direct heat exchange with the refrigerant A heat medium can be flowed respectively.

図6(D)に示した動作モードDは、第2減圧部14Bを全開にした例であり、減圧は第1減圧部14Aのみで行う。この動作モードDの冷媒は、圧縮機10によって圧縮され、第1冷媒熱媒体熱交換部11にて熱媒体へ放熱し、第1減圧部14Aで減圧され、第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13にてそれぞれ熱媒体から吸熱する。この際、第1冷媒熱媒体熱交換部11が凝縮器として機能し、第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13が蒸発器として機能する。なお、ここで第2冷媒熱媒体熱交換部12にて熱交換される熱媒体回路と第3冷媒熱媒体熱交換部13にて熱交換される熱媒体回路は、独立した回路であってもよいし互いに接続された回路であってもよい。 Operation mode D shown in FIG. 6D is an example in which the second pressure reducing section 14B is fully opened, and pressure reduction is performed only by the first pressure reducing section 14A. The refrigerant in this operation mode D is compressed by the compressor 10, radiates heat to the heat medium in the first refrigerant heat medium heat exchange section 11, is decompressed in the first pressure reducing section 14A, and is depressurized in the second refrigerant heat medium heat exchange section 12. and the third refrigerant heat medium heat exchange unit 13 absorb heat from the heat medium. At this time, the first refrigerant heat medium heat exchange section 11 functions as a condenser, and the second refrigerant heat medium heat exchange section 12 and the third refrigerant heat medium heat exchange section 13 function as evaporators. Here, the heat medium circuit heat-exchanged in the second refrigerant heat medium heat exchange unit 12 and the heat medium circuit heat-exchanged in the third refrigerant heat medium heat exchange unit 13 may be independent circuits. Alternatively, they may be circuits connected to each other.

この動作モードDでは、第1冷媒熱媒体熱交換部11に接続される熱媒体回路に、高圧の冷媒と直接熱交換することで得られる高温の熱媒体を流すことができ、第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13にそれぞれ接続される2つの熱媒体回路に、低圧の冷媒と直接熱交換することで得られる低温の熱媒体を流すことができる。 In this operation mode D, the high-temperature heat medium obtained by directly exchanging heat with the high-pressure refrigerant can flow through the heat medium circuit connected to the first refrigerant heat medium heat exchange unit 11, and the second refrigerant heat A low-temperature heat medium obtained by directly exchanging heat with a low-pressure refrigerant can flow through the two heat medium circuits connected to the medium heat exchange unit 12 and the third refrigerant heat medium heat exchange unit 13, respectively.

図3に示した動作例は、バイパス選択バルブ31Vを開にし、バイパス選択バルブ32Vを閉にして、第2冷媒熱媒体熱交換部12を迂回する冷媒循環流路を形成している。この場合の冷媒回路1の冷媒は、圧縮機10を出て、第1冷媒熱媒体熱交換部11、分岐部31A、第1バイパス配管31、合流部31B、第2減圧部14B、第3冷媒熱媒体熱交換部13を順次経由して圧縮機10に戻る。 In the operation example shown in FIG. 3 , the bypass selection valve 31V is opened and the bypass selection valve 32V is closed to form a refrigerant circulation flow path that bypasses the second refrigerant heat medium heat exchange section 12 . In this case, the refrigerant in the refrigerant circuit 1 exits the compressor 10, the first refrigerant heat medium heat exchange portion 11, the branch portion 31A, the first bypass pipe 31, the junction portion 31B, the second pressure reducing portion 14B, the third refrigerant It returns to the compressor 10 through the heat-medium heat exchange part 13 one by one.

図3に示した動作例は、図7(E)のモリエル線図で示す動作モードEを実行することができ、この動作モードEの冷媒は、圧縮機10で圧縮され、凝縮器として機能する第1冷媒熱媒体熱交換部11で熱媒体に放熱し、第2減圧部14Bにて減圧され、蒸発器として機能する第3冷媒熱媒体熱交換部13にて熱媒体から吸熱する。 The operation example shown in FIG. 3 can execute operation mode E shown in the Mollier diagram of FIG. Heat is radiated to the heat medium in the first refrigerant heat medium heat exchange section 11, pressure is reduced in the second pressure reducing section 14B, and heat is absorbed from the heat medium in the third refrigerant heat medium heat exchange section 13 functioning as an evaporator.

図4に示した動作例は、バイパス選択バルブ32Vを開にし、バイパス選択バルブ31Vを閉にして、第3冷媒熱媒体熱交換部13を迂回する冷媒循環流路を形成している。この場合の冷媒回路1の冷媒は、圧縮機10を出て、第1冷媒熱媒体熱交換部11、第1減圧部14A、第2冷媒熱媒体熱交換部12、分岐部32A、第2バイパス配管32、合流部32Bを順次経由して圧縮機10に戻る。 In the operation example shown in FIG. 4, the bypass selection valve 32V is opened, the bypass selection valve 31V is closed, and a refrigerant circulation flow path bypassing the third refrigerant heat medium heat exchange section 13 is formed. The refrigerant in the refrigerant circuit 1 in this case exits the compressor 10 and passes through the first refrigerant heat medium heat exchange section 11, the first pressure reducing section 14A, the second refrigerant heat medium heat exchange section 12, the branch section 32A, and the second bypass. It returns to the compressor 10 sequentially via the pipe 32 and the junction 32B.

図4に示した動作例は、図7(F)のモリエル線図で示す動作モードFを実行することができ、この動作モードFの冷媒は、圧縮機10で圧縮され、凝縮器として機能する第1冷媒熱媒体熱交換部11で熱媒体に放熱し、第1減圧部14Aにて減圧され、蒸発器として機能する第2冷媒熱媒体熱交換部12にて熱媒体から吸熱する。 The operation example shown in FIG. 4 can execute operation mode F shown in the Mollier diagram of FIG. Heat is radiated to the heat medium in the first refrigerant heat medium heat exchange section 11, pressure is reduced in the first pressure reducing section 14A, and heat is absorbed from the heat medium in the second refrigerant heat medium heat exchange section 12 functioning as an evaporator.

なお、動作モードEにおける第3冷媒熱媒体熱交換部13の吸熱量は、第2減圧部14Bの開度によって制御され、動作モードFにおける第2冷媒熱媒体熱交換部12の吸熱量は、第1減圧部14Aの開度によって制御される。 The heat absorption amount of the third refrigerant heat medium heat exchange section 13 in the operation mode E is controlled by the opening degree of the second pressure reducing section 14B, and the heat absorption amount of the second refrigerant heat medium heat exchange section 12 in the operation mode F is It is controlled by the degree of opening of the first pressure reducing section 14A.

図5に示した動作例は、バイパス選択バルブ31V,32Vの両方を開にし、2系統の冷媒循環流路を形成している。この場合の冷媒回路1の冷媒は、第1系統の冷媒循環流路では、圧縮機10を出て、第1冷媒熱媒体熱交換部11、分岐部31A、第1バイパス配管31、合流部31B、第2減圧部14B、第3冷媒熱媒体熱交換部13を順次経由して圧縮機10に戻り、第2系統の冷媒循環流路では、圧縮機10を出て、第1冷媒熱媒体熱交換部11、第1減圧部14A、第2冷媒熱媒体熱交換部12、分岐部32A、第2バイパス配管32、合流部32Bを順次経由して圧縮機10に戻る。 In the operation example shown in FIG. 5, both the bypass selection valves 31V and 32V are opened to form two refrigerant circulation flow paths. In this case, the refrigerant in the refrigerant circuit 1 exits the compressor 10 in the refrigerant circulation flow path of the first system, and flows through the first refrigerant heat medium heat exchange portion 11, the branch portion 31A, the first bypass pipe 31, and the confluence portion 31B. , the second pressure reducing unit 14B, and the third refrigerant heat medium heat exchange unit 13, and then return to the compressor 10. In the refrigerant circulation flow path of the second system, the first refrigerant heat medium heat It returns to the compressor 10 via the exchanging part 11, the first pressure reducing part 14A, the second refrigerant heat medium heat exchanging part 12, the branching part 32A, the second bypass pipe 32, and the joining part 32B in order.

冷媒回路1では、前述した2系統の冷媒循環流路が形成されるように、第1バイパス配管31の分岐部31Aを、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12の間であり且つ第1減圧部14Aの上流側に設け、第1バイパス配管31の合流部31Bを、第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13の間であって、第2バイパス配管32の分岐部32Aの下流側であり且つ第2減圧部14Bの上流側に設けている。そして、第2バイパス配管32の分岐部32Aと第1バイパス配管31の合流部31Bの間の冷媒配管には、逆流防止手段15を設けている。 In the refrigerant circuit 1, the branch portion 31A of the first bypass pipe 31 is divided into the first refrigerant heat medium heat exchange portion 11 and the second refrigerant heat medium heat exchange portion so that the two refrigerant circulation flow paths described above are formed. 12 and on the upstream side of the first pressure reducing section 14A, and a confluence section 31B of the first bypass pipe 31 is provided between the second refrigerant heat medium heat exchange section 12 and the third refrigerant heat medium heat exchange section 13. It is provided on the downstream side of the branch portion 32A of the second bypass pipe 32 and on the upstream side of the second pressure reducing portion 14B. A backflow preventing means 15 is provided in the refrigerant pipe between the branch portion 32A of the second bypass pipe 32 and the junction portion 31B of the first bypass pipe 31 .

図5に示した動作例は、図7(G)のモリエル線図で示す動作モードGを実行することができ、この動作モードGでは、前述した2系統の冷媒循環流路で放熱と吸熱のサイクルが形成され、吸熱用の2つの第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13が、放熱用の1つの第1冷媒熱媒体熱交換部11に対して並列接続されている。 The operation example shown in FIG. 5 can execute an operation mode G shown in the Mollier diagram of FIG. A cycle is formed, and two second refrigerant heat medium heat exchange sections 12 and a third refrigerant heat medium heat exchange section 13 for heat absorption are connected in parallel to one first refrigerant heat medium heat exchange section 11 for heat dissipation. It is

これによると、第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13をそれぞれ介して熱媒体回路から必要な吸熱量を得ることができる。この際、第2冷媒熱媒体熱交換部12と熱交換する熱媒体回路と第3冷媒熱媒体熱交換部13と熱交換する熱媒体回路は、独立した回路であっても良いし互いに接続された回路であっても良い。 According to this, the required amount of heat absorption can be obtained from the heat medium circuit via the second refrigerant heat medium heat exchange section 12 and the third refrigerant heat medium heat exchange section 13, respectively. At this time, the heat medium circuit that exchanges heat with the second refrigerant heat medium heat exchange section 12 and the heat medium circuit that exchanges heat with the third refrigerant heat medium heat exchange section 13 may be independent circuits or may be connected to each other. circuit may be used.

この動作モードGにおいては、第2冷媒熱媒体熱交換部12の吸熱量は第1減圧部14Aの開度によって制御することができ、第3冷媒熱媒体熱交換部13の吸熱量は第2減圧部14Bの開度によって制御することができるので、それぞれ独立した制御が可能になる。これにより、この動作モードGでは、第2冷媒熱媒体熱交換部12に接続された熱媒体回路と第3冷媒熱媒体熱交換部13に接続された熱媒体回路でそれぞれ異なる温度帯の熱媒体を生成することができる。 In this operation mode G, the heat absorption amount of the second refrigerant heat medium heat exchange section 12 can be controlled by the opening degree of the first pressure reducing section 14A, and the heat absorption amount of the third refrigerant heat medium heat exchange section 13 is the second Since it can be controlled by the opening degree of the decompression part 14B, independent control is possible. As a result, in this operation mode G, the heat medium circuit connected to the second refrigerant heat medium heat exchange unit 12 and the heat medium circuit connected to the third refrigerant heat medium heat exchange unit 13 have different temperature zones. can be generated.

ここで、吸熱器として機能する第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13が直列接続されている動作モードDと並列接続されている動作モードGを比較する。例えば、第1冷媒熱媒体熱交換部11に求められる放熱量が大きく、また、冷媒回路1の流量が大きい運転状況では、吸熱側の2つの熱交換部(第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13)を直列接続した動作モードDでは、2つの熱交換部での圧力損失が大きくなってしまうが、吸熱側の2つの熱交換部を並列接続した動作モードGは、それぞれの熱交換部に流入する冷媒流量を分散させることができるので、吸熱側の2つの熱交換部で圧力損失を低く抑えることができる。このため、圧縮機10の制御で冷媒回路1の冷媒流量を大きくする際には、動作モードGを選択することで、圧力損失を抑えた冷媒回路1の動作が可能になる。 Here, the operation mode D in which the second refrigerant heat medium heat exchange section 12 and the third refrigerant heat medium heat exchange section 13 functioning as heat absorbers are connected in series and the operation mode G in which they are connected in parallel will be compared. For example, in an operating condition in which the amount of heat dissipation required for the first refrigerant heat medium heat exchange unit 11 is large and the flow rate of the refrigerant circuit 1 is large, the two heat exchange units on the heat absorption side (second refrigerant heat medium heat exchange unit 12 and the third refrigerant heat medium heat exchange unit 13) are connected in series, the pressure loss in the two heat exchange units increases, but the operation mode in which the two heat exchange units on the heat absorption side are connected in parallel Since G can disperse the flow rate of the refrigerant flowing into each heat exchange section, the pressure loss can be kept low in the two heat exchange sections on the heat absorption side. Therefore, when the refrigerant flow rate of the refrigerant circuit 1 is increased by controlling the compressor 10, by selecting the operation mode G, the refrigerant circuit 1 can be operated with reduced pressure loss.

図8~図11は、前述した冷媒回路1を用いた車両用ヒートポンプ装置のシステム構成及び活用例を示している。ここでも冷媒回路1における太線は冷媒が流れている配管を示しており、太線の矢印が冷媒の流れの向きを示している。また、熱媒体回路における二重線は熱媒体が流れている配管を示しており、二重線の矢印が熱媒体の流れの向きを示している。 8 to 11 show system configurations and application examples of a vehicle heat pump device using the refrigerant circuit 1 described above. Again, the thick lines in the refrigerant circuit 1 indicate pipes through which the refrigerant flows, and the thick arrows indicate the direction of flow of the refrigerant. Double lines in the heat medium circuit indicate piping through which the heat medium flows, and double line arrows indicate the direction of flow of the heat medium.

図示の車両用ヒートポンプ装置のシステム構成は、ユニットU内に収められた冷媒回路1を熱源としており、室内空調装置40の室内熱交換器41、電装機器収納部50に設置された各電装機器(バッテリー51、パワーコントロールユニット52、インバーター53、モーター54)、エンジンルームなどに設置された室外熱交換器60に対する熱マネジメントを行っている。 The illustrated system configuration of the vehicle heat pump device uses the refrigerant circuit 1 housed in the unit U as a heat source, and includes the indoor heat exchanger 41 of the indoor air conditioner 40 and the electrical equipment installed in the electrical equipment storage section 50 ( It performs heat management for the battery 51, power control unit 52, inverter 53, motor 54), and an outdoor heat exchanger 60 installed in an engine room or the like.

図示のシステムでは、冷媒回路1における第1冷媒熱媒体熱交換部11に熱媒体回路4が接続され、第2冷媒熱媒体熱交換部12に熱媒体回路5が接続され、第3冷媒熱媒体熱交換部13に熱媒体回路6が接続されている。システム構成上は、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12と第3冷媒熱交換部13の少なくとも一つで熱交換した熱媒体が循環する熱媒体回路を備え、また、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12と第3冷媒熱交換部13のそれぞれで熱交換した熱媒体が循環する複数の熱媒体回路を備える。 In the illustrated system, the heat medium circuit 4 is connected to the first refrigerant heat medium heat exchange section 11 in the refrigerant circuit 1, the heat medium circuit 5 is connected to the second refrigerant heat medium heat exchange section 12, and the third refrigerant heat medium A heat medium circuit 6 is connected to the heat exchange portion 13 . In terms of system configuration, a heat medium circuit is provided in which the heat medium heat-exchanged in at least one of the first refrigerant heat medium heat exchange section 11, the second refrigerant heat medium heat exchange section 12, and the third refrigerant heat exchange section 13 circulates. Also, a plurality of heat medium circuits are provided in which the heat medium heat-exchanged in each of the first refrigerant heat medium heat exchange section 11, the second refrigerant heat medium heat exchange section 12, and the third refrigerant heat exchange section 13 circulates.

熱媒体回路4は、循環ポンプ4Aによって、第1冷媒熱媒体熱交換部11と室内熱交換器41を経由して熱媒体を循環させる循環流路である。熱媒体回路5は、循環ポンプ5Aによって、第2冷媒熱媒体熱交換部12と電装機器収納部50の各電装機器(バッテリー51、パワーコントロールユニット52、インバーター53、モーター54)に設けた熱交換部を経由して熱媒体を循環させる循環流路である。また、熱媒体回路5は、三方弁5Bを備え、バッテリー51の熱交換部を単体で経由する循環流路と、全ての電装機器の熱交換部を順次経由する循環流路が切り替え可能になっている。熱媒体回路6は、循環ポンプ6Aによって、第3冷媒熱媒体熱交換部13と室外熱交換器60を経由して熱媒体を循環させる循環流路である。 The heat medium circuit 4 is a circulation flow path through which the heat medium is circulated via the first refrigerant heat medium heat exchange section 11 and the indoor heat exchanger 41 by the circulation pump 4A. The heat medium circuit 5 is provided in the second refrigerant heat medium heat exchange section 12 and each electrical device (battery 51, power control unit 52, inverter 53, motor 54) of the electrical device housing portion 50 by the circulation pump 5A. It is a circulation flow path for circulating the heat medium through the part. In addition, the heat medium circuit 5 is provided with a three-way valve 5B, so that it is possible to switch between a circulation flow path that passes through the heat exchange part of the battery 51 alone and a circulation flow path that sequentially passes through the heat exchange parts of all the electrical equipment. ing. The heat medium circuit 6 is a circulation flow path through which the heat medium is circulated via the third refrigerant heat medium heat exchange section 13 and the outdoor heat exchanger 60 by the circulation pump 6A.

このような車両用ヒートポンプ装置は、図8に示す活用例1では、低温外気環境(例えば、-5℃)下での車両始動時を想定し、冷媒回路1を前述した動作モードBで動作させて、熱媒体回路5によるバッテリー51の暖機と熱媒体回路4による室内暖房を同時に行っている。 In the application example 1 shown in FIG. 8, such a vehicle heat pump device operates the refrigerant circuit 1 in the above-described operation mode B on the assumption that the vehicle is started in a low-temperature outside air environment (eg, −5° C.). Thus, the warm-up of the battery 51 by the heat medium circuit 5 and the room heating by the heat medium circuit 4 are simultaneously performed.

この際、冷媒回路1は、第1減圧部14Aと第2減圧部14Bを段階的に減圧させることで、第1冷媒熱媒体熱交換部11を高圧の凝縮器として機能させ、第2冷媒熱媒体熱交換部12を中圧の凝縮器として機能させて、熱媒体回路4を循環する熱媒体の温度帯と熱媒体回路5を循環する熱媒体の温度帯を異なる温度帯にしている。この活用例1では、低温外気環境下での車両始動時に、熱媒体回路4によって、暖房吹き出し温度60℃程度で室内暖房を行うことができ、同時に熱媒体回路5によって、バッテリー許容上限温度の35℃以下でバッテリー51の暖機を行うことができる。 At this time, the refrigerant circuit 1 causes the first refrigerant heat medium heat exchange unit 11 to function as a high-pressure condenser by reducing the pressure in the first decompression unit 14A and the second decompression unit 14B in stages, and heats the second refrigerant. The medium heat exchange section 12 is made to function as a medium-pressure condenser, and the temperature range of the heat medium circulating in the heat medium circuit 4 and the temperature range of the heat medium circulating in the heat medium circuit 5 are set to different temperature ranges. In this application example 1, when the vehicle is started in a low-temperature outside air environment, the heat medium circuit 4 can heat the room at a heating outlet temperature of about 60°C. The battery 51 can be warmed up at a temperature of 10°C or less.

次に図9に示す活用例2は、車両始動後の走行中を想定し、冷媒回路1を前述した動作モードEで動作させて、熱媒体回路5の熱媒体への蓄熱と熱媒体回路4による室内暖房を同時に行っている。 Next, in a utilization example 2 shown in FIG. 9, assuming that the vehicle is running after starting, the refrigerant circuit 1 is operated in the operation mode E described above, and heat is stored in the heat medium in the heat medium circuit 5 and the heat is stored in the heat medium circuit 4. At the same time, the room is heated by

この際、冷媒回路1は、第1バイパス配管31によって第2冷媒熱媒体熱交換部12が迂回され、第1冷媒熱媒体熱交換部11が凝縮器として機能し、第3冷媒熱媒体熱交換部13が蒸発器として機能している。第2冷媒熱媒体熱交換部12は、熱交換部として機能しておらず、熱媒体回路5においては単なる熱媒体流路になっている。 At this time, in the refrigerant circuit 1, the second refrigerant heat medium heat exchange section 12 is bypassed by the first bypass pipe 31, the first refrigerant heat medium heat exchange section 11 functions as a condenser, and the third refrigerant heat medium heat exchange is performed. Part 13 functions as an evaporator. The second refrigerant heat medium heat exchange section 12 does not function as a heat exchange section, and serves as a simple heat medium flow path in the heat medium circuit 5 .

この活用例2では、熱媒体回路5は、三方弁5Bの切り替えで全ての電装機器を順次経由する循環流路が形成されており、車両始動後の走行中に、熱媒体回路5によって、モーター54などで発生した熱を熱媒体回路5の熱媒体に蓄熱しており、熱媒体回路4によって、活用例1と同様に、暖房に必要な温度(例えば暖房吹き出し温度50℃)の熱媒体を室内熱交換器41に送って室内暖房を行っている。 In this application example 2, the heat medium circuit 5 is formed with a circulation flow path that sequentially passes through all the electrical equipment by switching the three-way valve 5B. The heat generated by 54 is stored in the heat medium of the heat medium circuit 5, and the heat medium of the temperature required for heating (for example, the heating blowing temperature of 50 ° C.) is supplied by the heat medium circuit 4 as in the first application example. The air is sent to the indoor heat exchanger 41 to heat the room.

次に図10に示す活用例3は、車両走行中に前述した蓄熱が所定量溜まったことで蓄熱利用への切り替えを行っている。この際の冷媒回路1は、前述した動作モードFで動作され、熱媒体回路5の熱媒体に蓄熱された熱を蒸発器として機能する第2冷媒熱媒体熱交換部12にて吸熱し、凝縮器として機能する第1冷媒熱媒体熱交換部11にて室内暖房中の熱媒体回路4に放熱している。 Next, in utilization example 3 shown in FIG. 10, switching to heat storage utilization is performed when a predetermined amount of stored heat is accumulated while the vehicle is running. At this time, the refrigerant circuit 1 is operated in the operation mode F described above, and the heat stored in the heat medium of the heat medium circuit 5 is absorbed by the second refrigerant heat medium heat exchange section 12 functioning as an evaporator, and condensed. Heat is radiated to the heat medium circuit 4 during room heating in the first refrigerant heat medium heat exchange section 11 functioning as a vessel.

この活用例3では、室外熱交換器60に接続されている第3冷媒熱媒体熱交換部13は、第2バイパス配管32によって迂回され、冷媒回路1から切り離されている。これによって、第3冷媒熱媒体熱交換部13を介した無駄な放熱が抑制され、熱媒体回路5における蓄熱を有効に利用して室内暖房を行うことができる。 In this utilization example 3, the third refrigerant heat medium heat exchange unit 13 connected to the outdoor heat exchanger 60 is detoured by the second bypass pipe 32 and separated from the refrigerant circuit 1 . As a result, wasteful heat radiation through the third refrigerant heat medium heat exchange portion 13 is suppressed, and the heat stored in the heat medium circuit 5 can be effectively used to heat the room.

図11に示す活用例4は、活用例3による蓄熱利用を続けた際に、蓄熱量が減少しバッテリー51の温度が下限値に近づいた状況を想定し、蓄熱利用と外気吸熱の併用を行っている。この際の冷媒回路1は、前述した動作モードGで動作され、第1冷媒熱媒体熱交換部11に並列接続される第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13のうち、第2冷媒熱媒体熱交換部12は熱媒体回路5の蓄熱を吸熱し、第3冷媒熱媒体熱交換部13は室外熱交換器60で回収した外気熱を吸熱する。 Utilization example 4 shown in FIG. 11 assumes a situation where the heat storage amount decreases and the temperature of the battery 51 approaches the lower limit when the heat storage utilization of utilization example 3 is continued, and heat storage utilization and outside air heat absorption are performed together. ing. At this time, the refrigerant circuit 1 is operated in the operation mode G described above, and the second refrigerant heat medium heat exchange section 12 and the third refrigerant heat medium heat exchange section 13 are connected in parallel to the first refrigerant heat medium heat exchange section 11. Of these, the second refrigerant heat medium heat exchange section 12 absorbs heat stored in the heat medium circuit 5 , and the third refrigerant heat medium heat exchange section 13 absorbs outside air heat recovered by the outdoor heat exchanger 60 .

この活用例4は、前述したように、活用例3にて蓄熱量が減少した場合に切り替えて実行できるが、活用例2から活用例3に切り替える際にも適用できる。すなわち、活用例2における蓄熱と暖房である程度蓄熱が溜まってきたときに、活用例4に切り替えて、外気吸熱を行いながら蓄熱の利用を行う。そして、十分に蓄熱が溜まった段階で、活用例3の蓄熱利用を行う。その後、蓄熱量が減少した場合には、再度活用例4に切り替えて外気吸熱と蓄熱利用の併用を行う。 This utilization example 4 can be executed by switching when the heat storage amount decreases in utilization example 3 as described above, but it can also be applied when switching from utilization example 2 to utilization example 3. That is, when a certain amount of stored heat accumulates between the heat storage and heating in Application Example 2, the application is switched to Application Example 4, and the stored heat is used while absorbing heat from the outside air. Then, at the stage when the stored heat is sufficiently accumulated, the heat storage utilization of utilization example 3 is performed. After that, when the amount of stored heat decreases, the system is switched again to Utilization Example 4, and both the external air heat absorption and the stored heat utilization are performed.

以上説明した本発明の実施形態に係る冷媒回路1とそれを用いた車両用ヒートポンプ装置によると、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13のうち、バイパス冷媒配管3によって選択される熱交換部によって異なる動作モードの冷媒回路1を構成することができる。これによって、冷媒から直接熱交換する熱媒体を様々な温度帯で生成することができ、効率的な熱利用が可能な熱源を冷媒回路1によって得ることができる。 According to the refrigerant circuit 1 and the vehicle heat pump device using the refrigerant circuit 1 according to the embodiment of the present invention described above, the first refrigerant heat medium heat exchange portion 11, the second refrigerant heat medium heat exchange portion 12, and the third refrigerant heat medium heat exchange portion Refrigerant circuits 1 with different operation modes can be configured depending on the heat exchange section selected by the bypass refrigerant pipe 3 among the heat exchange sections 13 . As a result, a heat medium that directly exchanges heat from the refrigerant can be generated in various temperature ranges, and the refrigerant circuit 1 can provide a heat source capable of efficient heat utilization.

より具体的には、本発明の実施形態に係る冷媒回路1は、バイパス冷媒配管3として第1バイパス配管31と第2バイパス配管(2つのバイパス冷媒配管)を備えている。これにより、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13の全で熱交換すると放熱量や吸熱量が多くなりすぎて、熱媒体を過剰に加熱したり冷却してしまう場合に、一部の熱交換部を迂回させることで、放熱量や吸熱量を適正範囲にし、熱媒体を過剰に加熱したり冷却したりしない効率的な運転を行うことができる。 More specifically, the refrigerant circuit 1 according to the embodiment of the present invention includes a first bypass pipe 31 and a second bypass pipe (two bypass refrigerant pipes) as the bypass refrigerant pipes 3 . As a result, when heat is exchanged in all of the first refrigerant heat medium heat exchange unit 11, the second refrigerant heat medium heat exchange unit 12, and the third refrigerant heat medium heat exchange unit 13, the amount of heat released or absorbed becomes too large, and the heat is When the medium is excessively heated or cooled, bypassing part of the heat exchange section keeps the amount of heat released and absorbed in the appropriate range, and efficiently prevents the medium from being excessively heated or cooled. You can drive safely.

また2つのバイパス冷媒配管を備えることで、冷媒回路1の第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13の接続関係を、直列接続と並列接続に切り替えることができる。これにより、直列接続時に、2つの減圧部14(第1減圧部14Aと第2減圧部14B)の開度制御で複数の温度帯の熱媒体を生成したり、並列接続時に、並列関係にある熱交換部で同じ温度帯や異なる温度帯の熱媒体を生成したりすることができ、冷媒流路に様々なバリエーションを持たせることができる。これによって、様々な状況に適した動作モードで冷媒回路を運転することができる。 In addition, by providing two bypass refrigerant pipes, the connection relationship among the first refrigerant heat medium heat exchange section 11, the second refrigerant heat medium heat exchange section 12, and the third refrigerant heat medium heat exchange section 13 of the refrigerant circuit 1 can be connected in series. You can switch between connection and parallel connection. As a result, when connected in series, the heat medium in a plurality of temperature zones is generated by controlling the opening degrees of the two decompression units 14 (the first decompression unit 14A and the second decompression unit 14B), and when connected in parallel, the heat transfer medium is in a parallel relationship. It is possible to generate heat medium in the same temperature zone or different temperature zones in the heat exchange part, and various variations can be provided to the refrigerant flow path. This allows the refrigerant circuit to be operated in operating modes suitable for different situations.

また、冷媒回路1は、第1冷媒熱媒体熱交換部11と第2冷媒熱媒体熱交換部12と第3冷媒熱媒体熱交換部13のそれぞれに熱媒体回路を接続することで、冷媒の流路をユニットU内に制限した状態で、熱マネジメントシステムの熱源として用いることができる。これにより、冷媒回路1をコンパクトにユニット化することができると共に、ユニットU内で冷媒配管を容易にメンテナンスすることができる。 In addition, the refrigerant circuit 1 connects the heat medium circuit to each of the first refrigerant heat medium heat exchange unit 11, the second refrigerant heat medium heat exchange unit 12, and the third refrigerant heat medium heat exchange unit 13, so that the refrigerant It can be used as a heat source for a heat management system in a state where the flow path is restricted within the unit U. As a result, the refrigerant circuit 1 can be compactly unitized, and the refrigerant pipes within the unit U can be easily maintained.

以上、本発明の実施の形態について詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 Although the embodiments of the present invention have been described in detail above, the specific configuration is not limited to these embodiments, and the present invention may be modified without departing from the gist of the present invention. Included in the invention. In addition, each of the above-described embodiments can be combined by utilizing each other's techniques unless there is a particular contradiction or problem in the purpose, configuration, or the like.

1:冷媒回路,2:冷媒循環流路,3:バイパス冷媒配管,
4,5,6:熱媒体回路,4A,5A,6A:循環ポンプ,5B:三方弁,
10:圧縮機,11:第1冷媒熱媒体熱交換部,
12:第2冷媒熱媒体熱交換部,13:第3冷媒熱媒体熱交換部,
14:減圧部,14A:第1減圧部,14B:第2減圧部,
15:逆流防止手段,20~23:冷媒配管,
31:第1バイパス配管,32:第2バイパス配管,
31A,32A:分岐部,31B,32B:合流部,
31V,32V:バイパス選択バルブ,
40:室内空調装置,41:室内熱交換器,
50:電装機器収納部,51:バッテリー,
52:パワーコントロールユニット,53:インバーター,54:モーター,
60:室外熱交換器,
U:ユニット,C:制御部
1: refrigerant circuit, 2: refrigerant circulation channel, 3: bypass refrigerant pipe,
4, 5, 6: heat medium circuit, 4A, 5A, 6A: circulation pump, 5B: three-way valve,
10: compressor, 11: first refrigerant heat medium heat exchange unit,
12: second refrigerant heat medium heat exchange unit, 13: third refrigerant heat medium heat exchange unit,
14: decompression section, 14A: first decompression section, 14B: second decompression section,
15: backflow prevention means, 20 to 23: refrigerant pipes,
31: first bypass pipe, 32: second bypass pipe,
31A, 32A: branching portion, 31B, 32B: merging portion,
31V, 32V: Bypass selection valve,
40: indoor air conditioner, 41: indoor heat exchanger,
50: electrical equipment housing, 51: battery,
52: power control unit, 53: inverter, 54: motor,
60: outdoor heat exchanger,
U: unit, C: control unit

Claims (9)

冷媒を圧縮する圧縮機と、前記圧縮機から吐出した冷媒を凝縮、膨張、蒸発させて前記圧縮機に戻す冷媒循環流路とを備えた冷媒回路において、
冷媒と熱媒体とを熱交換させる第1冷媒熱媒体熱交換部と、
冷媒を減圧する減圧部と、
冷媒と熱媒体とを熱交換させる第2冷媒熱媒体熱交換部と、
冷媒と熱媒体とを熱交換させる第3冷媒熱媒体熱交換部とを備え、
前記第1冷媒熱媒体熱交換部と前記第2冷媒熱媒体熱交換部と前記第3冷媒熱媒体熱交換部のいずれかを選択的に迂回可能なバイパス冷媒配管を設けたことを特徴とする冷媒回路。
A refrigerant circuit comprising a compressor that compresses a refrigerant and a refrigerant circulation passage that condenses, expands, and evaporates the refrigerant discharged from the compressor and returns the refrigerant to the compressor,
a first refrigerant heat medium heat exchange unit that exchanges heat between the refrigerant and the heat medium;
a decompression unit that decompresses the refrigerant;
a second refrigerant heat medium heat exchange unit that exchanges heat between the refrigerant and the heat medium;
A third refrigerant heat medium heat exchange unit that exchanges heat between the refrigerant and the heat medium,
A bypass refrigerant pipe capable of selectively bypassing any one of the first refrigerant heat medium heat exchange section, the second refrigerant heat medium heat exchange section, and the third refrigerant heat medium heat exchange section is provided. refrigerant circuit.
前記バイパス冷媒配管は、
前記第1冷媒熱媒体熱交換部の下流側に設けられる前記第2冷媒熱媒体熱交換部を迂回可能な第1バイパス配管と、
前記第2冷媒熱媒体熱交換部の下流側に設けられる第3冷媒熱媒体熱交換部を迂回可能な第2バイパス配管を備えることを特徴とする請求項1記載の冷媒回路。
The bypass refrigerant pipe is
a first bypass pipe capable of bypassing the second refrigerant heat medium heat exchange section provided downstream of the first refrigerant heat medium heat exchange section;
2. The refrigerant circuit according to claim 1, further comprising a second bypass pipe capable of bypassing a third refrigerant heat medium heat exchange section provided downstream of the second refrigerant heat medium heat exchange section.
前記第1バイパス配管の合流部は、前記第2バイパス配管の分岐部と前記第3冷媒熱媒体熱交換部との間に設けられていることを特徴とする請求項2記載の冷媒回路。 3. The refrigerant circuit according to claim 2, wherein the confluence portion of the first bypass pipe is provided between the branch portion of the second bypass pipe and the third refrigerant heat medium heat exchange portion. 前記減圧部は、
前記第1冷媒熱媒体熱交換部と前記第2冷媒熱媒体熱交換部の間に設けられる第1減圧部と、
前記第2冷媒熱媒体熱交換部と第3冷媒熱媒体熱交換部の間に設けられた第2減圧部とを備え、
前記第1バイパス配管の分岐部が前記第1減圧部の上流側に設けられ、前記第1バイパス配管の合流部が前記第2減圧部の上流側に設けられることを特徴とする請求項3記載の冷媒回路。
The decompression unit is
a first pressure reducing section provided between the first refrigerant heat medium heat exchange section and the second refrigerant heat medium heat exchange section;
a second pressure reducing section provided between the second refrigerant heat medium heat exchange section and the third refrigerant heat medium heat exchange section,
4. The branching portion of the first bypass pipe is provided upstream of the first pressure reducing portion, and the confluence portion of the first bypass pipe is provided upstream of the second pressure reducing portion. refrigerant circuit.
前記第2バイパス配管の分岐部は、前記第2減圧部と前記第1バイパス配管の合流部より上流側に設けられることを特徴とする請求項4記載の冷媒回路。 5. The refrigerant circuit according to claim 4, wherein the branching portion of the second bypass pipe is provided upstream from a confluence portion of the second pressure reducing portion and the first bypass pipe. 前記第2バイパス配管の分岐部と前記第1バイパス配管の合流部との間に逆流防止手段が設けられることを特徴とする請求項5記載の冷媒回路。 6. The refrigerant circuit according to claim 5, wherein backflow prevention means is provided between the branch portion of the second bypass pipe and the confluence portion of the first bypass pipe. 前記第1冷媒熱媒体熱交換部と前記第2冷媒熱媒体熱交換部と前記第3冷媒熱交換部の少なくとも一つで熱交換した熱媒体が循環する熱媒体回路を備えることを特徴とする請求項1~6のいずれか1項記載の冷媒回路。 A heat medium circuit is provided in which a heat medium heat-exchanged in at least one of the first refrigerant heat medium heat exchange section, the second refrigerant heat medium heat exchange section, and the third refrigerant heat exchange section circulates. The refrigerant circuit according to any one of claims 1 to 6. 前記第1冷媒熱媒体熱交換部と前記第2冷媒熱媒体熱交換部と前記第3冷媒熱交換部のそれぞれで熱交換した熱媒体が循環する複数の熱媒体回路を備えることを特徴とする請求項1~7のいずれか1項記載の冷媒回路。 It is characterized by comprising a plurality of heat medium circuits in which the heat medium heat-exchanged in each of the first refrigerant heat medium heat exchange section, the second refrigerant heat medium heat exchange section, and the third refrigerant heat exchange section circulates. The refrigerant circuit according to any one of claims 1-7. 請求項1~8のいずれか1項記載の冷媒回路を備えた車両用ヒートポンプ装置。 A vehicle heat pump device comprising the refrigerant circuit according to any one of claims 1 to 8.
JP2021048497A 2021-03-23 2021-03-23 Refrigerant circuit and vehicular heat pump device Pending JP2022147311A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021048497A JP2022147311A (en) 2021-03-23 2021-03-23 Refrigerant circuit and vehicular heat pump device
PCT/JP2022/013275 WO2022202840A1 (en) 2021-03-23 2022-03-22 Refrigerant circuit and vehicle heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021048497A JP2022147311A (en) 2021-03-23 2021-03-23 Refrigerant circuit and vehicular heat pump device

Publications (1)

Publication Number Publication Date
JP2022147311A true JP2022147311A (en) 2022-10-06

Family

ID=83395606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021048497A Pending JP2022147311A (en) 2021-03-23 2021-03-23 Refrigerant circuit and vehicular heat pump device

Country Status (2)

Country Link
JP (1) JP2022147311A (en)
WO (1) WO2022202840A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011002544U1 (en) * 2010-02-10 2011-06-01 Band, Horst Peter, 09496 Heat pump arrangement with several different heat sources and energy-efficient use of smaller energy sources
CN104515335B (en) * 2013-10-08 2017-09-26 翰昂汽车零部件有限公司 Vehicle heat pump
JP6838527B2 (en) * 2017-08-31 2021-03-03 株式会社デンソー Vehicle air conditioner
DE102018122675A1 (en) * 2017-10-20 2019-04-25 Hanon Systems Thermal system of a motor vehicle and method of operating the thermal system
JP7434744B2 (en) * 2019-07-24 2024-02-21 株式会社デンソー thermal management device
JP2021030825A (en) * 2019-08-21 2021-03-01 株式会社ヴァレオジャパン Vehicle air conditioner
JP7298580B2 (en) * 2019-11-22 2023-06-27 株式会社デンソー refrigeration cycle equipment

Also Published As

Publication number Publication date
WO2022202840A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
CA2420968C (en) Method and arrangement for defrosting a vapor compression system
JP4771721B2 (en) Air conditioner
JP5183804B2 (en) Refrigeration cycle equipment, air conditioning equipment
JP6019837B2 (en) Heat pump system
JP2009228979A (en) Air conditioner
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2018124046A (en) Air conditioner
JP2007051841A (en) Refrigeration cycle device
JP2004156806A (en) Warm/cold thermal system
JP2018159507A (en) GHP Chiller
EP2159511B1 (en) Air conditioning system
WO2022202840A1 (en) Refrigerant circuit and vehicle heat pump device
JP3952284B2 (en) Air conditioner
JPH03294754A (en) Air conditioner
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
WO2022250020A1 (en) Vehicle heat management system
JP2020192965A (en) Heat exchange system
WO2024043317A1 (en) Refrigeration device
JP2019014471A (en) Vehicular air conditioner
KR101266045B1 (en) Heat pump system for vehicle
KR101945464B1 (en) Hybrid heat pump providing both hot and cool water
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JP4639708B2 (en) Air conditioner
JPH10306954A (en) Engine driven refrigerant compression circulation type heat transfer device
KR20240016469A (en) Thermal management system for vehicle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220810