JP4639708B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4639708B2
JP4639708B2 JP2004266790A JP2004266790A JP4639708B2 JP 4639708 B2 JP4639708 B2 JP 4639708B2 JP 2004266790 A JP2004266790 A JP 2004266790A JP 2004266790 A JP2004266790 A JP 2004266790A JP 4639708 B2 JP4639708 B2 JP 4639708B2
Authority
JP
Japan
Prior art keywords
heat exchanger
auxiliary heat
refrigerant
auxiliary
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004266790A
Other languages
Japanese (ja)
Other versions
JP2006084057A (en
Inventor
玄貴 安達
祐栄 辻川
和也 船田
俊二 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2004266790A priority Critical patent/JP4639708B2/en
Publication of JP2006084057A publication Critical patent/JP2006084057A/en
Application granted granted Critical
Publication of JP4639708B2 publication Critical patent/JP4639708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は空気調和機に関わり、より詳細には寒冷地においても暖房能力が低下しないようにした暖房強化型の構造に関する。 The present invention relates to an air conditioner, and more particularly to a heating-enhanced structure in which heating capacity is not lowered even in a cold region.

従来の空気調和機は、圧縮機、四方弁、室外熱交換器、膨張弁及び室内熱交換器を順次接続して冷媒回路を構成し、冷房運転時には、圧縮機から吐出された冷媒を、四方弁、室外熱交換器、膨張弁、室内熱交換器に順次循環させ、暖房運転時には、圧縮機から吐出された冷媒を、四方弁、室内熱交換器、膨張弁、室外熱交換器に順次循環させるようになっている。しかるに暖房運転開始時、室外熱交換器が冷却されるため同室外熱交換器に着霜が生じ、除霜運転が必要となるとともに、低外気温時においては暖房能力が低下するという問題があった。 A conventional air conditioner forms a refrigerant circuit by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger. During cooling operation, the refrigerant discharged from the compressor is Circulates through the valve, outdoor heat exchanger, expansion valve, and indoor heat exchanger in sequence, and during heating operation, the refrigerant discharged from the compressor is sequentially circulated through the four-way valve, indoor heat exchanger, expansion valve, and outdoor heat exchanger. It is supposed to let you. However, when the heating operation is started, the outdoor heat exchanger is cooled, so that the outdoor heat exchanger is frosted, so that the defrosting operation is required, and the heating capacity is lowered at a low outdoor temperature. It was.

これらの現象を防止するため、例えば図4で示すように、圧縮機40と第一四方弁41と室内熱交換器42と冷房用膨張弁43と第二四方弁44と第三四方弁45と暖房用膨張弁46と室外熱交換器47とアキュームレータ51とを順次接続するとともに、前記室外熱交換器47の一側から分岐し、開閉弁48と前記第三四方弁45と前記第二四方弁44とを経て前記室外熱交換器47内に補助熱交換器50を形成したバイパス路49を設けた事例がある(例えば、特許文献1参照。)。 In order to prevent these phenomena, for example, as shown in FIG. 4, the compressor 40, the first four-way valve 41, the indoor heat exchanger 42, the cooling expansion valve 43, the second four-way valve 44, and the third four-way The valve 45, the heating expansion valve 46, the outdoor heat exchanger 47, and the accumulator 51 are sequentially connected, and branch from one side of the outdoor heat exchanger 47, and the on-off valve 48, the third four-way valve 45, and the There is an example in which a bypass passage 49 in which an auxiliary heat exchanger 50 is formed in the outdoor heat exchanger 47 through the second four-way valve 44 is provided (for example, see Patent Document 1).

上記した構成は、冷房運転時、前記室外熱交換器47で凝縮した冷媒を前記バイパス路49により前記補助熱交換器50に導き、同室外熱交換器47を流れる冷媒を過冷却して前記室内熱交換器42での蒸発能力を高める一方、暖房運転時においては、前記補助熱交換器50により加熱して除霜を行なった後、蒸発器として作用し暖房能力を高めるようになっている。 In the above configuration, during the cooling operation, the refrigerant condensed in the outdoor heat exchanger 47 is guided to the auxiliary heat exchanger 50 through the bypass passage 49, and the refrigerant flowing through the outdoor heat exchanger 47 is supercooled to While evaporating capacity in the heat exchanger 42 is increased, during heating operation, the defrosting is performed by heating with the auxiliary heat exchanger 50 and then acts as an evaporator to increase heating capacity.

しかしながら、前記開閉弁48と前記第二四方弁44と前記第三四方弁45とを備えたバイパス路49を設けることにより冷媒回路の構成が複雑となる一方、冷媒回路を流れる冷媒の一部を前記補助熱交換器50に供給して加熱あるいは冷却を行うことにより、その能力に限界があり、例えば零度以下の低外気温時、あるいは寒冷地で暖房運転を行う際、前記室外熱交換器47での着霜発生を完全に防止できないばかりでなく、暖房運転そのものに支障を生じる虞があった。 However, the provision of the bypass passage 49 including the on-off valve 48, the second four-way valve 44, and the third four-way valve 45 complicates the configuration of the refrigerant circuit, while one of the refrigerant flowing through the refrigerant circuit. The capacity is limited by supplying the auxiliary heat exchanger 50 to the auxiliary heat exchanger 50 and performing heating or cooling. For example, when performing a heating operation in a low outdoor temperature of less than zero degrees or in a cold region, the outdoor heat exchange is performed. In addition to not being able to completely prevent frost formation in the vessel 47, there is a possibility that the heating operation itself may be hindered.

他の従来例として、例えば図5で示すように、圧縮機60と、四方弁61と、送風ファン63aを備えた室外熱交換器63と、膨張弁64と、送風ファン65aを備えた室内熱交換器65と、アキュームレータ66とを順次接続してメイン回路を構成する一方、放熱器68と開閉弁69と温水ポンプ70と、バーナー72を備えた補助熱交換器71とを順次接続して温水回路67を構成した例がある(例えば、特許文献2参照。)。 As another conventional example, as shown in FIG. 5, for example, an outdoor heat exchanger 63 provided with a compressor 60, a four-way valve 61, a blower fan 63a, an expansion valve 64, and an indoor heat provided with a blower fan 65a. The exchanger 65 and the accumulator 66 are sequentially connected to form a main circuit, while the radiator 68, the open / close valve 69, the hot water pump 70, and the auxiliary heat exchanger 71 including the burner 72 are sequentially connected to There is an example in which the circuit 67 is configured (see, for example, Patent Document 2).

前記メイン回路で暖房運転を行なうと、前記室外熱交換器63が冷却され同室外熱交換器63に着霜が発生する虞があるため、前記温水回路67に設けられた前記バーナー72を燃焼させ、前記補助熱交換器71を加熱させて温水を生成する。生成された温水は前記温水ポンプ70により前記放熱器38に供給され、同放熱器38は熱風を発生させて前記室外熱交換器63を加熱するようになっている。これにより前記室外熱交換器63での着霜が防止され、暖房運転が円滑に起動するようになっている。 When the heating operation is performed in the main circuit, the outdoor heat exchanger 63 is cooled and frost may be generated in the outdoor heat exchanger 63. Therefore, the burner 72 provided in the hot water circuit 67 is burned. The auxiliary heat exchanger 71 is heated to generate hot water. The generated hot water is supplied to the radiator 38 by the hot water pump 70, and the radiator 38 generates hot air to heat the outdoor heat exchanger 63. Thereby, frost formation in the outdoor heat exchanger 63 is prevented, and the heating operation is started smoothly.

しかしながら、前記バーナー72のような他の熱源を用い温水を生成することは、所謂エネルギ変換効率が低く、これにより冷媒回路全体での成績係数(COP)も低下することから、省エネルギの観点からみて改善が求められていた。 However, generating hot water using another heat source such as the burner 72 has a low so-called energy conversion efficiency, which also reduces the coefficient of performance (COP) in the entire refrigerant circuit, and therefore from the viewpoint of energy saving. There was a need for improvement.

特開昭59−229149号公報(2頁、図3)JP 59-229149 (2 pages, FIG. 3) 特開2001−12829号公報(3頁、図1)Japanese Patent Laid-Open No. 2001-12829 (page 3, FIG. 1)

本発明は、上記問題点に鑑み、零度以下の低外気温時、あるいは寒冷地で暖房運転において前記室外熱交換器での着霜を防止して除霜運転を不要にできるとともに、暖房運転の能力を向上させ、暖房運転の能力を向上させ、更に冷媒回路の成績係数所謂COPを向上させた暖房強化型の空気調和機を提供することを目的とする。 In view of the above-mentioned problems, the present invention can prevent frost formation in the outdoor heat exchanger at the time of low outside air temperature of 0 ° C. or less, or in a cold district, thereby eliminating the need for a defrosting operation. An object of the present invention is to provide a heating-enhanced air conditioner that improves the capacity, improves the capacity of heating operation, and further improves the coefficient of performance of the refrigerant circuit, so-called COP.

本発明は、室外熱交換器を第一熱交換部と第二熱交換部とで構成するとともに、第一圧縮機と、第一流路切換手段と、前記室外熱交換器の第一熱交換部と、第一減圧手段と、室内熱交換器とを順次接続してメインサイクルを構成し、
第二圧縮機と、前記メインサイクルの暖房運転時に前記第一熱交換部を加熱する第二熱交換部と、第一補助熱交換器および同第一補助熱交換器をバイパスする第一逆止弁を備えた第一バイパス路と、第二補助熱交換器および同第二補助熱交換器をバイパスする第二逆止弁を備えた第二バイパス路と、前記第一補助熱交換器と前記第二補助熱交換器の間に設けられた第二減圧手段と、前記第一補助熱交換器または前記第二補助熱交換器へ流路を切換える第二流路切換手段とを接続してサブサイクルを構成してなり、
前記第一補助熱交換器または前記第二補助熱交換器のどちらか一方を蒸発器として使用し、該蒸発器が着霜したと判断した時に前記第二流路切換手段により他方の補助熱交換器に切換えて蒸発器として使用する構成となっている。
また、前記第一補助熱交換器が着霜したと判断した時に、前記第一補助熱交換器と前記第一バイパス路の両方に冷媒を流すことで、着霜した前記第一補助熱交換器を除霜し、
前記第二補助熱交換器が着霜したと判断した時に、前記第二補助熱交換器と前記第二バイパス路の両方に冷媒を流すことで、着霜した前記第二補助熱交換器を除霜する構成となっている。
The present invention comprises an outdoor heat exchanger composed of a first heat exchange part and a second heat exchange part, a first compressor, a first flow path switching means, and a first heat exchange part of the outdoor heat exchanger. And the first pressure reducing means and the indoor heat exchanger are sequentially connected to form a main cycle,
A second compressor, a second heat exchange unit that heats the first heat exchange unit during heating operation of the main cycle, and a first check that bypasses the first auxiliary heat exchanger and the first auxiliary heat exchanger A first bypass passage having a valve, a second bypass passage having a second check valve for bypassing the second auxiliary heat exchanger and the second auxiliary heat exchanger, the first auxiliary heat exchanger, and the A second pressure reducing means provided between the second auxiliary heat exchanger and a second flow path switching means for switching the flow path to the first auxiliary heat exchanger or the second auxiliary heat exchanger; Composing a cycle,
Either the first auxiliary heat exchanger or the second auxiliary heat exchanger is used as an evaporator, and when it is determined that the evaporator has formed frost, the other auxiliary heat exchange is performed by the second flow path switching means. It is configured to be used as an evaporator by switching to an evaporator .
Further, when it is determined that the first auxiliary heat exchanger has formed frost, the first auxiliary heat exchanger that has formed frost by flowing a refrigerant through both the first auxiliary heat exchanger and the first bypass passage. Defrost
When it is determined that the second auxiliary heat exchanger has frosted, the frosted second auxiliary heat exchanger is removed by flowing a refrigerant through both the second auxiliary heat exchanger and the second bypass passage. It is configured to frost.

本発明によると、第一圧縮機と、第一流路切換手段としての第一四方弁と、室外熱交換器の第一熱交換部と、第一減圧手段としての第一膨張弁と、室内熱交換器とを順次接続してメインサイクルを構成し、第二圧縮機と、前記室外熱交換器の第二熱交換と、第二流路切換手段としての第二四方弁と、第一補助熱交換器と、第二流路切換手段としての第二膨張弁と第二補助熱交換器とを順次接続するとともに、前記第一補助熱交換器をバイパスする、第一逆止弁を備えた第一バイパス路を備え、前記第二補助熱交換器をバイパスする、第二逆止弁を備えた第二バイパス路を設けてサブサイクルを構成することにより、暖房運転時に、前記サブサイクルを循環する冷媒により前記室外熱交換器を加熱して、フィンあるいは伝熱管の表面に着霜が発生することを防止し、暖房運転を一時中断して行う除霜運転を不要とするとともに、加熱により同室外熱交換器での冷媒の蒸発量を増加させ、前記室内熱交換器での冷媒凝縮量と熱の放出量とを増大させて低外気温あるいは寒冷地でも能力の低下を招くことなく暖房運転を継続することができるようになっている。又、暖房運転を継続すると、低温低圧の冷媒により前記第二補助熱交換器に着霜が生じるが、前記サブサイクルに設けられた前記第二四方弁を切換えることにより、前記第二圧縮機からの高温高圧の冷媒が前記第二補助熱交換器に流入することとなり、付着した霜を除去するようになっている。これにより、極低温下の状態であっても、前記メインサイクルでの暖房運転を支障なく継続することができるようになっている。又、バーナーあるいはヒータ等の別熱源を用いることなく、温水を生成することによりエネルギ変換効率が高くなり、成績係数(COP)が上昇して、所謂省エネ運転を行うことのできる暖房強化型空気調和機となる。 According to the present invention, the first compressor, the first four-way valve as the first flow path switching means, the first heat exchange part of the outdoor heat exchanger, the first expansion valve as the first pressure reducing means, A main cycle is configured by sequentially connecting a heat exchanger, a second compressor, a second heat exchange of the outdoor heat exchanger, a second four-way valve as a second flow path switching means, a first An auxiliary heat exchanger, a second expansion valve as a second flow path switching means, and a second auxiliary heat exchanger are sequentially connected, and a first check valve is provided that bypasses the first auxiliary heat exchanger. Providing a second bypass path with a second check valve, which bypasses the second auxiliary heat exchanger, and constitutes a sub-cycle. The outdoor heat exchanger is heated by the circulating refrigerant, and frost forms on the surfaces of the fins or heat transfer tubes. The amount of refrigerant condensed in the indoor heat exchanger is increased by increasing the amount of refrigerant evaporated in the outdoor heat exchanger by heating. Thus, the heating operation can be continued without lowering the capacity even in a low outdoor temperature or in a cold region. Further, when the heating operation is continued, frost is generated in the second auxiliary heat exchanger by the low-temperature and low-pressure refrigerant, but the second compressor is switched by switching the second four-way valve provided in the subcycle. The high-temperature and high-pressure refrigerant from the refrigerant flows into the second auxiliary heat exchanger, and the attached frost is removed. Thereby, even in the state of extremely low temperature, the heating operation in the main cycle can be continued without any trouble. Also, heating-enhanced air-conditioning that can perform so-called energy-saving operation by increasing the energy conversion efficiency and generating a coefficient of performance (COP) by generating hot water without using a separate heat source such as a burner or a heater. It becomes a machine.

以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail as examples based on the attached drawings.

図1(A)は本発明による暖房強化型空気調和機の冷媒回路図であり、図1(B)は室外熱交換器の断面図である。図2は冷房運転時の冷媒の流れを示す冷媒回路図であり、図3(A)及び図3(B)は暖房運転時の冷媒の流れを示す冷媒回路図である。 FIG. 1 (A) is a refrigerant circuit diagram of a heating-enhanced air conditioner according to the present invention, and FIG. 1 (B) is a cross-sectional view of an outdoor heat exchanger. FIG. 2 is a refrigerant circuit diagram illustrating the refrigerant flow during the cooling operation, and FIGS. 3A and 3B are refrigerant circuit diagrams illustrating the refrigerant flow during the heating operation.

本発明による暖房強化型空気調和機は、図1(A)で示すように、第一圧縮機3と、第一流路切換手段としての第一四方弁4と、送風ファン6を備えた室外熱交換器5と、第一減圧手段としての第一膨張弁7と、送風ファン9を備えた室内熱交換器8とを順次接続してメインサイクル1を構成している。更に、第二圧縮機10と、前記室外熱交換器5と、第二流路切換手段としての第二四方弁11と、第一補助熱交換器12と第二膨張弁15と第二補助熱交換器16とを順次接続するとともに、前記第一補助熱交換器12をバイパスする、第一逆止弁14を備えた第一バイパス路13を設け、前記第二補助熱交換器16をバイパスする、第二逆止弁18を備えた第二バイパス路17を設けてサブサイクル2を構成している。尚、前記第一逆止弁14は前記第二四方弁11から前記第一補助熱交換器12を介して前記第二膨張弁15側に向かう流れを順方向として前記第一バイパス路13に接続され、前記第二逆止弁18は前記第二四方弁11から第二補助熱交換器16を介して前記第二膨張弁15側に向かう流れを順方向として前記第二バイパス路17に接続されている。 As shown in FIG. 1 (A), the heating-enhanced air conditioner according to the present invention is an outdoor unit provided with a first compressor 3, a first four-way valve 4 as first flow path switching means, and a blower fan 6. A main cycle 1 is configured by sequentially connecting a heat exchanger 5, a first expansion valve 7 as a first pressure reducing means, and an indoor heat exchanger 8 having a blower fan 9. Further, the second compressor 10, the outdoor heat exchanger 5, the second four-way valve 11 as the second flow path switching means, the first auxiliary heat exchanger 12, the second expansion valve 15, and the second auxiliary. A first bypass passage 13 having a first check valve 14 that bypasses the first auxiliary heat exchanger 12 and that sequentially connects the heat exchanger 16 is provided, and the second auxiliary heat exchanger 16 is bypassed. The second cycle 17 provided with the second check valve 18 is provided to constitute the sub-cycle 2. The first check valve 14 enters the first bypass passage 13 with the flow from the second four-way valve 11 through the first auxiliary heat exchanger 12 toward the second expansion valve 15 as a forward direction. The second check valve 18 is connected to the second bypass passage 17 with the flow from the second four-way valve 11 through the second auxiliary heat exchanger 16 toward the second expansion valve 15 as a forward direction. It is connected.

前記室外熱交換器5は、平行して並べられた多数のフィンと、同フィンに直交するように蛇行状に配設された伝熱管とからなり、図1(B)で示すように、一側を前記メインサイクル1に接続された伝熱管が配設される第一熱交換部5aとし、他側を前記サブサイクル2に接続された伝熱管が配設される第二熱交換部5bとしている。 The outdoor heat exchanger 5 includes a large number of fins arranged in parallel and heat transfer tubes arranged in a meandering manner so as to be orthogonal to the fins. As shown in FIG. The first heat exchange part 5a in which the heat transfer tube connected to the main cycle 1 is arranged on the side and the second heat exchange part 5b in which the heat transfer tube connected to the subcycle 2 is arranged on the other side. Yes.

又、前記メインサイクル1にはHFC系冷媒もしくはHCFC系冷媒が循環し、前記サブサイクル2には同様にHFC系冷媒もしくはHCFC系冷媒か、あるいは低温度状態での熱交換効率が高いHC系冷媒のプロパン等が循環するようになっている。 Also, HFC refrigerant or HCFC refrigerant circulates in the main cycle 1, and HFC refrigerant or HCFC refrigerant similarly in the subcycle 2 or HC refrigerant having high heat exchange efficiency in a low temperature state. Propane etc. are circulated.

次に、動作について説明する。冷房運転時、前記第二圧縮機10は停止状態となり、前記サブサイクル2には冷媒が循環しないようになっている。前記第一圧縮機3の吐出側から吐出された高温高圧の冷媒は、図2の矢印で示すように、前記第一四方弁4を介して前記室外熱交換器5の第一熱交換部5aに流入し、同第一熱交換部5aで熱を放出して凝縮する。凝縮した冷媒は続いて前記第一膨張弁7により断熱膨張して低温低圧となり、前記室内熱交換器9に流入して、同室内熱交換器8で熱を吸収して蒸発する。蒸発した冷媒は前記第一四方弁4を介して前記圧縮機3の吸込側に還流するようになっている。又、前記室内熱交換器8にて冷却された周囲を流れる空気は前記送風ファン9により室内に送出され、これを冷房するようになっている。 Next, the operation will be described. During the cooling operation, the second compressor 10 is stopped and the refrigerant does not circulate in the subcycle 2. The high-temperature and high-pressure refrigerant discharged from the discharge side of the first compressor 3 passes through the first four-way valve 4 and the first heat exchange part of the outdoor heat exchanger 5 as shown by the arrows in FIG. It flows into 5a, discharge | releases heat | fever in the said 1st heat exchange part 5a, and condenses. Subsequently, the condensed refrigerant is adiabatically expanded by the first expansion valve 7 to become a low temperature and low pressure, flows into the indoor heat exchanger 9, absorbs heat in the indoor heat exchanger 8, and evaporates. The evaporated refrigerant returns to the suction side of the compressor 3 through the first four-way valve 4. Further, the air flowing around the air cooled by the indoor heat exchanger 8 is sent into the room by the blower fan 9 and is cooled.

次に、暖房運転について説明する。暖房運転時、前記第二圧縮機10が駆動され、前記サブサイクル2を冷媒が循環するようになっている。又、前記第一四方弁4が切換えられるようになっている。前記メインサイクル1においては、前記第一圧縮機3の吐出側から吐出された高温高圧の冷媒は、図3(A)の矢印で示すように、前記四方弁4を介して前記室内熱交換器8に流入し、同室内熱交換器8で熱を放出して凝縮する。凝縮した冷媒は、続いて前記第一膨張弁7により断熱膨張して低温低圧となり、前記室外熱交換器5の第一熱交換部5aに流入し熱を吸収して蒸発する。蒸発した冷媒は前記第一四方弁4を介して前記第一圧縮機3の吸込側に還流するようになっている。又、前記室内熱交換器8から放出された熱により加熱された周囲を流れる空気は前記送風ファン9により室内に送出され、これを暖房するようになっている。 Next, the heating operation will be described. During the heating operation, the second compressor 10 is driven, and the refrigerant circulates through the subcycle 2. The first four-way valve 4 is switched. In the main cycle 1, the high-temperature and high-pressure refrigerant discharged from the discharge side of the first compressor 3 passes through the four-way valve 4 and the indoor heat exchanger as indicated by an arrow in FIG. 8 is discharged into the indoor heat exchanger 8 to condense. The condensed refrigerant is then adiabatically expanded by the first expansion valve 7 to become a low temperature and low pressure, flows into the first heat exchange part 5a of the outdoor heat exchanger 5, and absorbs heat to evaporate. The evaporated refrigerant returns to the suction side of the first compressor 3 through the first four-way valve 4. Further, the air flowing around the space heated by the heat released from the indoor heat exchanger 8 is sent out indoors by the blower fan 9 and is heated.

前記サブサイクル2の前記第二圧縮機10から吐出された高温高圧の冷媒は前記室外熱交換器5の第二熱交換部5bに流入し、同第二熱交換部5bで熱を放出して凝縮し、凝縮した冷媒は続いて前記第二四方弁11を介して、前記第一補助熱交換器12と前記第一バイパス路13に流入する。同第一補助熱交換器12に流入した冷媒は、同第一補助熱交換器12を加熱しながら、前記第一バイパス路13を通る冷媒と混合して、前記第二膨張弁15により断熱膨張して低温低圧となる。低温低圧となった冷媒は前記第二補助熱交換器16に流入し、同第二補助熱交換器16で熱を吸収して蒸発し、蒸発した冷媒は前記第二四方弁11を介して前記第二圧縮機10に還流するようになっている。 The high-temperature and high-pressure refrigerant discharged from the second compressor 10 in the sub-cycle 2 flows into the second heat exchange part 5b of the outdoor heat exchanger 5 and releases heat in the second heat exchange part 5b. Condensed and condensed refrigerant then flows into the first auxiliary heat exchanger 12 and the first bypass passage 13 via the second four-way valve 11. The refrigerant flowing into the first auxiliary heat exchanger 12 is mixed with the refrigerant passing through the first bypass passage 13 while heating the first auxiliary heat exchanger 12, and is adiabatically expanded by the second expansion valve 15. And low temperature and low pressure. The low-temperature and low-pressure refrigerant flows into the second auxiliary heat exchanger 16, absorbs heat in the second auxiliary heat exchanger 16 and evaporates, and the evaporated refrigerant passes through the second four-way valve 11. The second compressor 10 is refluxed.

湿度が高い低外気温時に暖房運転を開始すると、前記室外熱交換器5の第一熱交換部5aに流れ込んだ前記メインサイクル1の低温低圧の冷媒により同室外熱交換器5が冷却され、これを構成するフィンあるいは伝熱管の周囲に着霜が発生する虞がある。又、外気から充分に熱を吸収できず、低温低圧の液相冷媒が充分に蒸発できないため、前記室内熱交換器9での凝縮量も減少し、暖房能力が低下してしまう虞がある。 When the heating operation is started at a low outdoor temperature with high humidity, the outdoor heat exchanger 5 is cooled by the low-temperature and low-pressure refrigerant of the main cycle 1 flowing into the first heat exchange section 5a of the outdoor heat exchanger 5, There is a possibility that frost formation may occur around the fins or heat transfer tubes. Further, heat cannot be sufficiently absorbed from the outside air, and the low-temperature and low-pressure liquid phase refrigerant cannot sufficiently evaporate. Therefore, the amount of condensation in the indoor heat exchanger 9 is also reduced, and the heating capacity may be reduced.

しかしながら、暖房運転開始時に、前記サブサイクル2を循環する冷媒により前記室外熱交換器5を加熱して、フィンあるいは伝熱管の表面に着霜が発生することを防止することにより、暖房運転を一時中断して行う除霜運転を不要とするとともに、加熱により同室外熱交換器5での冷媒の蒸発量を増加させ、これにより前記室内熱交換器9での冷媒凝縮量と熱の放出量とを増大させることにより、低外気温あるいは寒冷地でも能力の低下を招くことなく暖房運転を継続することができるようになっている。 However, at the start of the heating operation, the outdoor heat exchanger 5 is heated by the refrigerant circulating in the subcycle 2 to prevent frost formation on the surfaces of the fins or the heat transfer tubes, thereby temporarily stopping the heating operation. The defrosting operation performed by interruption is unnecessary, and the amount of refrigerant evaporated in the outdoor heat exchanger 5 is increased by heating, whereby the refrigerant condensation amount and the heat release amount in the indoor heat exchanger 9 are increased. By increasing the temperature, the heating operation can be continued without lowering the capacity even in a low outside temperature or in a cold region.

又、前記室外熱交換器5を加熱する熱源としてヒータあるいはバーナーを用いた場合は、電気的エネルギあるいは燃焼のエネルギを、熱エネルギに変換することになるが、これらは変換の際、エネルギ損失が大きく、消費電力あるいは消費エネルギが増大してしまう。このため、冷房能力あるいは暖房能力と消費電力(消費エネルギ)との比率である成績係数(COP)が小さくなり、例えば成績係数が1以下の値となってしまう場合は、省エネルギの観点から見て好ましくないこととなる。本願においては、前記サブサイクル2に設けられた圧縮機13により高圧の冷媒を生成し、同冷媒が凝縮、蒸発の過程で空気と熱交換を行うことにより、冷媒能力あるいは暖房能力の指標であるエンタルピ差を、消費電力より大きく取ることができ、例えば成績係数(COP)を2.5〜3の範囲にすることができる。これによって所謂省エネルギ運転を行うことができるようになっている。 Further, when a heater or burner is used as a heat source for heating the outdoor heat exchanger 5, electric energy or combustion energy is converted into heat energy. This greatly increases power consumption or energy consumption. For this reason, if the coefficient of performance (COP), which is the ratio between the cooling capacity or heating capacity and the power consumption (energy consumption), decreases, for example, the coefficient of performance becomes a value of 1 or less, from the viewpoint of energy saving. This is undesirable. In the present application, a high-pressure refrigerant is generated by the compressor 13 provided in the sub-cycle 2, and the refrigerant performs heat exchange with air in the process of condensation and evaporation, and is an index of refrigerant capacity or heating capacity. The enthalpy difference can be made larger than the power consumption. For example, the coefficient of performance (COP) can be in the range of 2.5 to 3. Thus, so-called energy saving operation can be performed.

上記した状態で暖房運転を継続すると、前記第二膨張弁15を経て低温低圧の冷媒が前記第二補助熱交換器16に流入するため、同第二補助熱交換器16に着霜が生じ、熱交換効率が低下してくる。熱交換効率が低下すると前記室外熱交換器5の第二熱交換部5bでの加熱能力も低下してくるため、前記メインサイクル1での暖房能力もこれに併せて低下してしまう。これを防止するため、前記第二補助熱交換器16のフィンあるいは伝熱管の温度が所定値以下になると、前記サブサイクル2に設けられた前記第二四方弁11が切換えられるようになっている。尚、流入する冷媒温度を基にして切換えてもよい。 When the heating operation is continued in the above-described state, the low temperature and low pressure refrigerant flows into the second auxiliary heat exchanger 16 through the second expansion valve 15, so that the second auxiliary heat exchanger 16 is frosted, Heat exchange efficiency decreases. When the heat exchange efficiency is lowered, the heating capacity in the second heat exchange section 5b of the outdoor heat exchanger 5 is also lowered, so that the heating capacity in the main cycle 1 is also lowered. In order to prevent this, when the temperature of the fins or heat transfer tubes of the second auxiliary heat exchanger 16 falls below a predetermined value, the second four-way valve 11 provided in the sub-cycle 2 is switched. Yes. The switching may be performed based on the refrigerant temperature flowing in.

前記第二四方弁11が切換えられると、前記第二圧縮機10から吐出された高温高圧の冷媒は、図3(B)の矢印で示すように、前記室外熱交換器5の第二熱交換部5bに流入し、同第二熱交換部5bで熱を放出して凝縮し、凝縮した冷媒は続いて前記第二四方弁11を介して、前記第二補助熱交換器16と前記第二バイパス路17に流入する。同第二補助熱交換器16に流入した冷媒は、同第二補助熱交換器16を加熱しながら前記第二バイパス路17を通る冷媒と混合して、前記第二膨張弁15により断熱膨張して低温低圧となる。この際、放出した熱により前記第二補助熱交換器16に付着した霜を除去するようになっている。低温低圧となった冷媒は前記第一補助熱交換器12に流入し、同第一補助熱交換器12で熱を吸収して蒸発し、蒸発した冷媒は前記第二四方弁11を介して前記第二圧縮機10に還流するようになっている。この状態で運転が継続されると再度前記第二四方弁11が切換えられるようになっている。これにより、極低温下の状態であっても、前記メインサイクル1での暖房運転を支障なく継続することができるようになっている。 When the second four-way valve 11 is switched, the high-temperature and high-pressure refrigerant discharged from the second compressor 10 is changed to the second heat of the outdoor heat exchanger 5 as shown by the arrow in FIG. The refrigerant flows into the exchange section 5b and releases and condenses heat in the second heat exchange section 5b, and the condensed refrigerant subsequently passes through the second four-way valve 11 and the second auxiliary heat exchanger 16 and the It flows into the second bypass 17. The refrigerant flowing into the second auxiliary heat exchanger 16 is mixed with the refrigerant passing through the second bypass passage 17 while heating the second auxiliary heat exchanger 16, and is adiabatically expanded by the second expansion valve 15. Low temperature and low pressure. At this time, frost adhering to the second auxiliary heat exchanger 16 is removed by the released heat. The low-temperature and low-pressure refrigerant flows into the first auxiliary heat exchanger 12, absorbs heat in the first auxiliary heat exchanger 12, and evaporates. The evaporated refrigerant passes through the second four-way valve 11. The second compressor 10 is refluxed. When the operation is continued in this state, the second four-way valve 11 is switched again. Thereby, even in the state of extremely low temperature, the heating operation in the main cycle 1 can be continued without any trouble.

(A)は本発明の冷媒回路図である。(B)は室外熱交換器の断面図である。(A) is a refrigerant circuit diagram of the present invention. (B) is sectional drawing of an outdoor heat exchanger. 冷房運転時の冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation. (A)は暖房運転時の冷媒の流れを示す冷媒回路図である。(B)は第二四方弁を切換えた状態での暖房運転時の冷媒の流れを示す冷媒回路図である。(A) is a refrigerant circuit diagram which shows the flow of the refrigerant | coolant at the time of heating operation. (B) is a refrigerant circuit diagram showing the flow of refrigerant during heating operation with the second four-way valve switched. 従来例での一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example in a prior art example. 従来での他の例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the other example in the past.

1 メインサイクル
2 サブサイクル
3 第一圧縮機
第一四方弁
5 室外熱交換器
5a 第一熱交換部
5b 第二熱交換部
6 送風ファン
7 第一膨張弁
8 室内熱交換器
9 送風ファン
10 第二圧縮機
11 第二四方弁
12 第一補助熱交換器
13 第一バイパス路
14 第一逆止弁
15 第二膨張弁
16 第二補助熱交換器
17 第二バイパス路
18 第二逆止弁
DESCRIPTION OF SYMBOLS 1 Main cycle 2 Sub cycle 3 1st compressor 4 1st four-way valve 5 Outdoor heat exchanger 5a 1st heat exchange part 5b 2nd heat exchange part 6 Blower fan 7 First expansion valve 8 Indoor heat exchanger 9 Blower fan 10 Second compressor 11 Second four-way valve 12 First auxiliary heat exchanger 13 First bypass passage 14 First check valve 15 Second expansion valve 16 Second auxiliary heat exchanger 17 Second bypass passage 18 Second check valve

Claims (2)

室外熱交換器を第一熱交換部と第二熱交換部とで構成するとともに、第一圧縮機と、第一流路切換手段と、前記室外熱交換器の第一熱交換部と、第一減圧手段と、室内熱交換器とを順次接続してメインサイクルを構成し、
第二圧縮機と、前記メインサイクルの暖房運転時に前記第一熱交換部を加熱する第二熱交換部と、第一補助熱交換器および同第一補助熱交換器をバイパスする第一逆止弁を備えた第一バイパス路と、第二補助熱交換器および同第二補助熱交換器をバイパスする第二逆止弁を備えた第二バイパス路と、前記第一補助熱交換器と前記第二補助熱交換器の間に設けられた第二減圧手段と、前記第一補助熱交換器または前記第二補助熱交換器へ流路を切換える第二流路切換手段とを接続してサブサイクルを構成してなり、
前記第一補助熱交換器または前記第二補助熱交換器のどちらか一方を蒸発器として使用し、該蒸発器が着霜したと判断した時に前記第二流路切換手段により他方の補助熱交換器に切換えて蒸発器として使用することを特徴とする空気調和機。
The outdoor heat exchanger includes a first heat exchange unit and a second heat exchange unit, a first compressor, a first flow path switching unit, a first heat exchange unit of the outdoor heat exchanger, and a first The main cycle is configured by sequentially connecting the decompression means and the indoor heat exchanger,
A second compressor, a second heat exchange unit that heats the first heat exchange unit during heating operation of the main cycle, and a first check that bypasses the first auxiliary heat exchanger and the first auxiliary heat exchanger A first bypass passage having a valve, a second bypass passage having a second check valve for bypassing the second auxiliary heat exchanger and the second auxiliary heat exchanger, the first auxiliary heat exchanger, and the A second pressure reducing means provided between the second auxiliary heat exchanger and a second flow path switching means for switching the flow path to the first auxiliary heat exchanger or the second auxiliary heat exchanger; Composing a cycle,
Either the first auxiliary heat exchanger or the second auxiliary heat exchanger is used as an evaporator, and when it is determined that the evaporator has formed frost, the other auxiliary heat exchange is performed by the second flow path switching means. An air conditioner that is used as an evaporator by switching to a vacuum vessel.
前記第一補助熱交換器が着霜したと判断した時に、前記第一補助熱交換器と前記第一バイパス路の両方に冷媒を流すことで、着霜した前記第一補助熱交換器を除霜し、
前記第二補助熱交換器が着霜したと判断した時に、前記第二補助熱交換器と前記第二バイパス路の両方に冷媒を流すことで、着霜した前記第二補助熱交換器を除霜することを特徴とした請求項1に記載の空気調和機。
When it is determined that the first auxiliary heat exchanger has formed frost, the frosted first auxiliary heat exchanger is removed by flowing a refrigerant through both the first auxiliary heat exchanger and the first bypass passage. Frost,
When it is determined that the second auxiliary heat exchanger has formed frost, the frosted second auxiliary heat exchanger is removed by flowing a refrigerant through both the second auxiliary heat exchanger and the second bypass passage. The air conditioner according to claim 1, wherein the air conditioner is frosted .
JP2004266790A 2004-09-14 2004-09-14 Air conditioner Active JP4639708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266790A JP4639708B2 (en) 2004-09-14 2004-09-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266790A JP4639708B2 (en) 2004-09-14 2004-09-14 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006084057A JP2006084057A (en) 2006-03-30
JP4639708B2 true JP4639708B2 (en) 2011-02-23

Family

ID=36162704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266790A Active JP4639708B2 (en) 2004-09-14 2004-09-14 Air conditioner

Country Status (1)

Country Link
JP (1) JP4639708B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104990321B (en) * 2015-06-30 2017-07-07 广东美的制冷设备有限公司 A kind of air-conditioner and its defrosting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111640A (en) * 1974-07-19 1976-01-29 Sharp Kk SEPAREETOGATAKUKI CHOWAKI
JPS63294464A (en) * 1987-05-25 1988-12-01 株式会社東芝 Air conditioner
JPH03134466A (en) * 1989-10-18 1991-06-07 Sanyo Electric Co Ltd Low temperature showcase
JP2004232981A (en) * 2003-01-31 2004-08-19 Mitsubishi Heavy Ind Ltd Air conditioner and defrosting control method for the air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111640A (en) * 1974-07-19 1976-01-29 Sharp Kk SEPAREETOGATAKUKI CHOWAKI
JPS63294464A (en) * 1987-05-25 1988-12-01 株式会社東芝 Air conditioner
JPH03134466A (en) * 1989-10-18 1991-06-07 Sanyo Electric Co Ltd Low temperature showcase
JP2004232981A (en) * 2003-01-31 2004-08-19 Mitsubishi Heavy Ind Ltd Air conditioner and defrosting control method for the air conditioner

Also Published As

Publication number Publication date
JP2006084057A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP2006258343A (en) Air conditioning system
JP3615475B2 (en) Heat pump water heater
US8850837B2 (en) Heat pump type speed heating apparatus
JP2009228979A (en) Air conditioner
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2018132269A (en) Heat pump system
JP2005257231A (en) Heat pump hot water supply air conditioner
KR100426640B1 (en) Refrigeration cycle
CN101319832A (en) High-efficiency air source heat pump suitable for cold surroundings
JP4639708B2 (en) Air conditioner
JP2006084107A (en) Air conditioner
JP2008102941A (en) Vending machine
JP4075633B2 (en) Heat pump water heater
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
KR100419480B1 (en) Multi heat pump system with advanced heating and cooling performance
KR101507448B1 (en) Co-generation system
JP4429960B2 (en) Vending machine with cooling and heating system
JP2002333242A (en) Vapor compression heat pump
JP3502155B2 (en) Thermal storage type air conditioner
KR20140063930A (en) An engine-driven heat pump system
WO2022202840A1 (en) Refrigerant circuit and vehicle heat pump device
KR100486096B1 (en) Heat pump system
KR100419479B1 (en) Auxiliary refrigerator mounted heat pump system
JP4767207B2 (en) Water heater
JP2004116930A (en) Gas heat pump type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4639708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350