JP3615475B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3615475B2
JP3615475B2 JP2000296338A JP2000296338A JP3615475B2 JP 3615475 B2 JP3615475 B2 JP 3615475B2 JP 2000296338 A JP2000296338 A JP 2000296338A JP 2000296338 A JP2000296338 A JP 2000296338A JP 3615475 B2 JP3615475 B2 JP 3615475B2
Authority
JP
Japan
Prior art keywords
refrigerant
radiator
heat
compression element
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000296338A
Other languages
Japanese (ja)
Other versions
JP2002106988A (en
Inventor
修 桑原
洋 向山
寿和 石原
俊行 江原
博和 井崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000296338A priority Critical patent/JP3615475B2/en
Publication of JP2002106988A publication Critical patent/JP2002106988A/en
Application granted granted Critical
Publication of JP3615475B2 publication Critical patent/JP3615475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化炭素冷媒を動作冷媒として用いたヒートポンプ給湯機に関する。
【0002】
【従来の技術】
従来、給湯機としてはガスや電気ヒータを熱源とするものが大勢的であるが、近年におけるエネルギ−利用の効率化の要望やガスや電気ヒータによる火災等の防止の観点からヒートポンプ給湯機が提案されている。
【0003】
このようなヒートポンプ給湯機は図3に示すように、冷媒を圧縮する圧縮機111、該圧縮機111からの冷媒と給湯用の水とを熱交換させる凝縮器112、冷媒を膨張させる膨張弁113、冷媒と機外空気とを熱交換させる蒸発器114、該蒸発器114からの冷媒の気液分離を行ってガス冷媒が圧縮機111に戻るようにするアキュムレータ115等を有している。以下、この凝縮器112を放熱器112という。
【0004】
そして、冷媒は圧縮機111で圧縮されて高温高圧になって放熱器112に供給される。放熱器112には給湯用の水が循環しているので、冷媒の熱はこの水を加熱するために用いられる。
【0005】
水を加熱した冷媒は膨張弁113で絞られ、蒸発器114で機外空気と熱交換して圧縮機111に戻る。
【0006】
このとき冷媒は機外空気から熱を汲上げて蒸発するので、電気ヒータ等による給湯機に比べエネルギー効率が高くなっている。
【0007】
このような冷媒回路には従来R−22等の冷媒が用いられてきたが、かかる冷媒には塩素が含まれオゾン層を破壊する原因となることが判明し規制対象となり、これに代わる冷媒が望まれている。
【0008】
そこで、自然冷媒であるため環境破壊等の恐れが無い二酸化炭素冷媒の利用が検討されている。
【0009】
しかし、二酸化炭素冷媒は従来用いられていたR−22等の冷媒に比べ動作圧力及び温度が高くなるため、従来構成の圧縮機111等をそのまま用いるとサイクル効率が低下すると共に、圧縮器の容器内圧力が高くなりすぎて耐圧特性が不足したり、圧縮機に用いられている潤滑油の劣化やモータの巻線の絶縁劣化が起る問題が生じる。
【0010】
かかる問題に対処すべく、図4に示すような2つの圧縮要素を備える圧縮機111を用いたヒートポンプ給湯機が提案されている。
【0011】
図4において、圧縮機111は、前段圧縮要素111a及び後段圧縮要素111bから構成され、その間に中間熱交換器116が設けられている。
【0012】
このように圧縮機111を2段構成にすることにより、各圧縮要素における吸気側と吐出側との差圧が小さくでき、圧縮効率が向上し、また中間熱交換器116により前段圧縮要素111aからの冷媒の熱を機外空気や他の冷却材に熱放出することにより、圧縮機111の容器内に吐出される冷媒の温度が下げることができて潤滑油等の劣化を防止することが可能になる。
【0013】
【発明が解決しようとする課題】
しかしながら、このような構成の場合には、中間熱交換器116で外気等に冷媒の熱が放熱されるので、その分だけ熱の無駄が発生する問題がある。
【0014】
また、中間熱交換器116で一律な放熱を行う場合、給湯機では少なくとも給湯温度より高い温度(例えば、〜10℃)の冷媒が後段圧縮要素111bから吐出される必要があるので、圧縮比が低く吸込み過熱度も小さい夏季に中間熱交換器116で放出される熱が多過ぎると吐出温度が低下してしまい、所望温度の湯を給湯できない場合が生じる問題がある。
【0015】
この場合、無理に圧縮比を上げて圧縮機からの吐出温度を高くしようとするとサイクル効率が低下してしまう。
【0016】
一方、冬季には逆に圧縮比が高く吸込み過熱度も大きいので、上述したように中間冷却を行わないと後段圧縮要素111bからの吐出温度が高すぎて、熱力学的な損失が増大するばかりではなく潤滑油の劣化等の問題が生じる。
【0017】
そこで、本発明は、蒸発器における冷媒の蒸発温度や前段圧縮要素に吸気される冷媒の過熱度等を考慮して中間熱交換器での放熱量を調整可能にすると共に、当該中間熱交換器での廃熱を回収できるようにしてサイクル効率を向上させたヒートポンプ給湯機を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記課題を解決するため、請求項1にかかる発明は、冷媒を圧縮する前段圧縮要素及び後段圧縮要素を備えた圧縮機と、給湯用の水が給水されて冷媒と熱交換させる第3放熱器と、該第3放熱器からの水を流量の大きい主流とその残りの副流とに所定流量比で分流させる分流量制御弁と、主流をなす水と後段圧縮要素からの冷媒とを熱交換させ、当該熱交換した冷媒が第3放熱器に流入するように接続された第2放熱器と、副流をなす水と前段圧縮要素からの冷媒とを熱交換させ、当該水が第2放熱器からの水と合流して給湯され、熱交換した冷媒は後段圧縮要素に流入するように接続された第1放熱器と、第3放熱器からの冷媒を膨張させる膨張弁と、該膨張弁で膨張した冷媒を機外空気と熱交換させる蒸発器とを有して、圧縮機に供給される冷媒の状態に応じて第1放熱器での放熱量を調整可能にして後段圧縮機から吐出される冷媒の温度が常に所望の温度範囲になるようにすると共に当該第1放熱器での廃熱を回収できるようにして、サイクル効率の向上維持を図るようにしたことを特徴とする。
【0019】
請求項2にかかる発明は、第3放熱器から膨張弁に供給される冷媒と、蒸発器から前段圧縮要素に戻る冷媒とを熱交換させる内部熱交換器を設けて、蒸発器で外気から汲上げる熱量を増大させると共に、圧縮機に戻る冷媒を加熱することにより熱回収が行えるようにしたことを特徴とする。
【0020】
請求項3にかかる発明は、分流制御弁の開弁度を蒸発器における冷媒の蒸発温度や前段圧縮要素に吸気される冷媒の過熱度等に応じて制御するようにして、後段圧縮要素から吐出される冷媒の温度が常に最適な温度になるようにしたことを特徴とする。
【0021】
請求項4にかかる発明は、冷媒として二酸化炭素冷媒を用いて、自然環境に優しい装置にすると共に、高温給湯が可能にしたことを特徴とする。
【0022】
【発明の実施の形態】
本発明の第1の実施の形態を図を参照して説明する。図1は、本発明にかかるヒートポンプ給湯機の冷媒回路図である。
【0023】
なお、本発明にかかるヒートポンプ給湯機では、冷媒として自然冷媒である二酸化炭素冷媒を用いる場合について説明する。
【0024】
ヒートポンプ給湯機は、冷媒を圧縮する圧縮機11、冷媒と水と熱交換させる放熱器12、冷媒を膨張させる膨張弁14、冷媒と外気等とを熱交換させる蒸発器15、冷媒の気液分離を行うアキュムレータ16、放熱器12から膨張弁14に向う冷媒により圧縮機11に戻る冷媒を加熱する内部熱交換器13等を有している。
【0025】
圧縮機11は前段圧縮要素11a及び後段圧縮要素11bから構成され、また放熱器12は第1放熱器12a、第2放熱器12b及び第3放熱器12cにより構成されて、各放熱器12には冷媒と給湯用の水が循環してこれらの間で熱交換するようになっている。
【0026】
即ち、冷媒は前段圧縮要素11a、第1放熱器12a、後段圧縮要素11b、第2放熱器12b、第3放熱器12cを順次流動し、給湯用の水は第3放熱器12cに供給され、そこから第2放熱器12bと第1放熱器12aとに所定の流量比で分流し、第2放熱器12bと第1放熱器12aとで加熱された後は合流して給湯用に取出されるようになっている。
【0027】
このように第3放熱器12cからの水を第1放熱器12aと第2放熱器12bとに所定の流量比で分流させるために、第3放熱器12cと第1放熱器12aとを接続する水配管には分流量制御弁17が設けられている。
【0028】
この分流量制御弁17の開弁度は、第1放熱器12aに流入する水量(副流と記載する)は第2放熱器12bに流入する水量(主流と記載する)より少なくし、サイクル効率を勘案すると副流は全水量の半分以下に設定することが好ましい。
【0029】
なお、これまでの説明から解るように、冷媒と水とは各放熱器12で対向流をなすように構成されている。このように対向流で循環させることにより、放熱器12での循環方向に沿った冷媒の温度勾配と給湯用の水の温度勾配とが逆の温度勾配になって効率的に熱交換ができるようになっている。
【0030】
このような構成のヒートポンプ給湯機は、図2に示すような温度(T)−エンタルピー(h)線図に従い動作する。
【0031】
前段圧縮要素11aで圧縮された冷媒(a→b)は、第1放熱器12aに供給されて、当該第1放熱器12aで給湯用の水に放熱し(b→c)、水は冷媒からの熱により加熱されて温度上昇する(A→B)。
【0032】
第1放熱器12aに循環する水の量は、分流量制御弁17の開弁度を設定することにより調整され、当該分流量制御弁17の開弁度は、蒸発器15における冷媒の蒸発温度や前段圧縮要素11aに吸気される冷媒の過熱度等に応じて設定される。
【0033】
従って、外気温等の運転条件に依存することなく常に最適な吐出温度で運転することが可能になってサイクル効率が向上する。
【0034】
また、前段圧縮要素11aからの冷媒は第1放熱器12aで放熱するが、その熱は給湯用の水の加熱に用いられるので(熱回収される)、従来のように外気等への廃熱と言った無駄が省けて、この意味からもサイクル効率の向上が図られている。
【0035】
後段圧縮要素11bから吐出される冷媒の温度は、例えば夏季のように過熱度が小さい場合等には開弁度を絞り、当該第1放熱器12aに供給される水量を少なくして前段圧縮要素11aからの冷媒が失う熱量を押えることにより所望値に調整する。また、過熱度が大きくなった場合等には、上記手順と逆の手順が行われる。
【0036】
このようにして、第1放熱器12aからの冷媒は後段圧縮要素11bで更に圧縮されて(c→d)、第2放熱器12bに供給され、当該第2放熱器12bで分流された給湯用の水を加熱し(D→E)、第3放熱器12cへと循環する。そして、第3放熱器12cで水を加熱し(C→D)て内部熱交換器に循環する。
【0037】
この内部熱交換器には、アキュムレータから圧縮機11に戻る冷媒が流動しているので、第3放熱器12cからの冷媒は当該圧縮機11に戻る冷媒を加熱して温度が下がる(e)。
【0038】
そして、膨張弁14で膨張し(e→f→g)、蒸発器で機外空気と熱交換して蒸発(h→i)した後、アキュムレータで気液分離が行われてガス冷媒が前段圧縮要素11aに戻る。
【0039】
内部熱交換器で第3放熱器12cからの冷媒が熱を失うことにより、蒸発器15で効率的に熱の汲上を行うことが可能になると共に、蒸発器から圧縮機11に戻る冷媒が加熱される(熱回収される)ので圧縮機11に戻る冷媒の温度が上昇して(j→a)、サイクル効率を高めることができるようになっている。
【0040】
【発明の効果】
以上説明したように請求項1にかかる発明によれば、冷媒を圧縮する前段圧縮要素及び後段圧縮要素を備えた圧縮機と、給湯用の水が給水されて冷媒と熱交換させる第3放熱器と、該第3放熱器からの水を流量の大きい主流とその残りの副流とに所定流量比で分流させる分流量制御弁と、主流をなす水と後段圧縮要素からの冷媒とを熱交換させ、当該熱交換した冷媒が第3放熱器に流入するように接続された第2放熱器と、副流をなす水と前段圧縮要素からの冷媒とを熱交換させ、当該水が第2放熱器からの水と合流して給湯され、熱交換した冷媒は後段圧縮要素に流入するように接続された第1放熱器と、第3放熱器からの冷媒を膨張させる膨張弁と、該膨張弁で膨張した冷媒を機外空気と熱交換させる蒸発器とを設けて圧縮機に供給される冷媒の状態に応じて第1放熱器での放熱量を調整可能にしたので、後段圧縮機から吐出される冷媒の温度が常に所望の温度範囲になるようにできると共に当該第1放熱器での廃熱を回収できるようになり、サイクル効率の向上維持が図れる。
【0041】
請求項2にかかる発明によれば、第3放熱器から膨張弁に供給される冷媒と、蒸発器から前段圧縮要素に戻る冷媒とを熱交換させる内部熱交換器を設けて、蒸発器で外気から汲上げる熱量を増大させると共に、圧縮機に戻る冷媒を加熱することにより熱回収が行えるようになり、サイクル効率の向上が図れる。
【0042】
請求項3にかかる発明によれば、分流制御弁の開弁度を蒸発器における冷媒の蒸発温度や前段圧縮要素に吸気される冷媒の過熱度等に応じて制御するようにしたので、後段圧縮要素から吐出される冷媒の温度が常に最適な温度になる。
【0043】
請求項4にかかる発明によれば、冷媒として二酸化炭素冷媒を用いたので自然環境に優しい装置にすると共に、高温給湯が可能になる。
【図面の簡単な説明】
【図1】本発明の実施の形態の説明に適用されるヒートポンプ給湯機の概略構成図である。
【図2】図1のヒートポンプ給湯機の温度−エンタルピー線図である。
【図3】従来の技術の説明に適用される1つの圧縮要素を持つ圧縮機を備えたヒートポンプ給湯機の概略構成図である。
【図4】従来の技術の説明に適用される2つの圧縮要素を持つ圧縮機を備えたヒートポンプ給湯機の概略構成図である。
【符号の説明】
11 圧縮機
11a 前段圧縮要素
11b 後段圧縮要素
12 放熱器
12a 第1放熱器
12b 第2放熱器
12c 第3放熱器
13 内部熱交換器
14 膨張弁
15 蒸発器
16 アキュムレータ
17 分流量制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump water heater using carbon dioxide refrigerant as an operating refrigerant.
[0002]
[Prior art]
Conventionally, there are many hot water heaters that use gas or electric heaters as heat sources, but in recent years heat pump water heaters have been proposed from the standpoint of increasing the efficiency of energy use and preventing fires caused by gas and electric heaters. Has been.
[0003]
As shown in FIG. 3, such a heat pump water heater includes a compressor 111 that compresses the refrigerant, a condenser 112 that exchanges heat between the refrigerant from the compressor 111 and water for hot water supply, and an expansion valve 113 that expands the refrigerant. An evaporator 114 that exchanges heat between the refrigerant and outside air, and an accumulator 115 that performs gas-liquid separation of the refrigerant from the evaporator 114 so that the gas refrigerant returns to the compressor 111. Hereinafter, the condenser 112 is referred to as a radiator 112.
[0004]
Then, the refrigerant is compressed by the compressor 111, becomes high temperature and high pressure, and is supplied to the radiator 112. Since water for hot water supply circulates in the radiator 112, the heat of the refrigerant is used to heat the water.
[0005]
The refrigerant that has heated the water is throttled by the expansion valve 113, exchanges heat with the outside air by the evaporator 114, and returns to the compressor 111.
[0006]
At this time, the refrigerant pumps heat from the outside air and evaporates, so that the energy efficiency is higher than that of a water heater using an electric heater or the like.
[0007]
Conventionally, a refrigerant such as R-22 has been used in such a refrigerant circuit. However, it has been found that such a refrigerant contains chlorine and causes the destruction of the ozone layer. It is desired.
[0008]
Therefore, the use of carbon dioxide refrigerant, which is a natural refrigerant and has no fear of environmental destruction, has been studied.
[0009]
However, since the operating pressure and temperature of carbon dioxide refrigerant are higher than those of conventionally used refrigerants such as R-22, if the conventional compressor 111 or the like is used as it is, the cycle efficiency is lowered and the compressor container is used. There are problems that the internal pressure becomes too high and the pressure resistance is insufficient, or the lubricating oil used in the compressor is deteriorated and the insulation of the motor winding is deteriorated.
[0010]
In order to cope with such a problem, a heat pump water heater using a compressor 111 having two compression elements as shown in FIG. 4 has been proposed.
[0011]
In FIG. 4, the compressor 111 is comprised from the front | former stage compression element 111a and the back | latter stage compression element 111b, and the intermediate heat exchanger 116 is provided among them.
[0012]
By thus configuring the compressor 111 in a two-stage configuration, the differential pressure between the intake side and the discharge side in each compression element can be reduced, compression efficiency can be improved, and the intermediate heat exchanger 116 can reduce the pressure from the previous stage compression element 111a. By releasing the heat of the refrigerant to the outside air or other coolant, the temperature of the refrigerant discharged into the container of the compressor 111 can be lowered and deterioration of the lubricating oil or the like can be prevented. become.
[0013]
[Problems to be solved by the invention]
However, in the case of such a configuration, since the heat of the refrigerant is radiated to the outside air or the like by the intermediate heat exchanger 116, there is a problem that waste of heat is generated accordingly.
[0014]
In addition, when uniform heat dissipation is performed by the intermediate heat exchanger 116, the water heater needs to discharge a refrigerant having a temperature (for example, 10 ° C.) higher than the hot water supply temperature from the rear-stage compression element 111b. There is a problem that the discharge temperature may be lowered and hot water at a desired temperature may not be supplied if too much heat is released by the intermediate heat exchanger 116 in the summer when the suction is low and the degree of superheat is low.
[0015]
In this case, if the compression ratio is forcibly increased to increase the discharge temperature from the compressor, the cycle efficiency is lowered.
[0016]
On the other hand, on the other hand, since the compression ratio is high and the suction superheat degree is large in winter, the discharge temperature from the subsequent compression element 111b is too high unless the intermediate cooling is performed as described above, and the thermodynamic loss increases. Instead, problems such as deterioration of the lubricating oil occur.
[0017]
Therefore, the present invention makes it possible to adjust the heat radiation amount in the intermediate heat exchanger in consideration of the evaporation temperature of the refrigerant in the evaporator, the degree of superheat of the refrigerant sucked into the upstream compression element, and the like, and the intermediate heat exchanger An object of the present invention is to provide a heat pump water heater capable of recovering the waste heat in the factory and improving the cycle efficiency.
[0018]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 includes a compressor provided with a front-stage compression element and a rear-stage compression element for compressing a refrigerant, and a third radiator that is supplied with hot water and exchanges heat with the refrigerant. A flow control valve for diverting the water from the third radiator to a main flow having a large flow rate and the remaining sub flow at a predetermined flow rate ratio, and heat exchange between the main flow water and the refrigerant from the subsequent compression element Heat exchange is performed between the second radiator connected so that the heat-exchanged refrigerant flows into the third radiator, the water forming the secondary flow, and the refrigerant from the previous compression element. A first radiator that is joined to the water from the radiator to supply hot water and exchanges heat and flows into the subsequent compression element; an expansion valve that expands the refrigerant from the third radiator; and the expansion valve And an evaporator that exchanges heat between the refrigerant expanded in the machine and outside air and is supplied to the compressor. The amount of heat released from the first radiator can be adjusted according to the state of the refrigerant to be discharged so that the temperature of the refrigerant discharged from the rear stage compressor is always within a desired temperature range, and the waste from the first radiator is discarded. It is characterized in that heat can be recovered to improve and maintain cycle efficiency.
[0019]
The invention according to claim 2 is provided with an internal heat exchanger for exchanging heat between the refrigerant supplied from the third radiator to the expansion valve and the refrigerant returning from the evaporator to the preceding compression element. The amount of heat to be increased is increased, and heat recovery can be performed by heating the refrigerant returning to the compressor.
[0020]
In the invention according to claim 3, the degree of opening of the flow dividing control valve is controlled from the evaporation temperature of the refrigerant in the evaporator, the degree of superheat of the refrigerant sucked into the upstream compression element, etc., and discharged from the downstream compression element. It is characterized in that the temperature of the refrigerant used is always the optimum temperature.
[0021]
The invention according to claim 4 is characterized in that a carbon dioxide refrigerant is used as the refrigerant to make the apparatus friendly to the natural environment and high-temperature hot water supply is possible.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a heat pump water heater according to the present invention.
[0023]
In addition, in the heat pump water heater concerning this invention, the case where the carbon dioxide refrigerant which is a natural refrigerant | coolant is used as a refrigerant | coolant is demonstrated.
[0024]
The heat pump water heater includes a compressor 11 that compresses refrigerant, a radiator 12 that exchanges heat between the refrigerant and water, an expansion valve 14 that expands the refrigerant, an evaporator 15 that exchanges heat between the refrigerant and outside air, and gas-liquid separation of the refrigerant. An accumulator 16 that performs the above operation, an internal heat exchanger 13 that heats the refrigerant returning to the compressor 11 by the refrigerant from the radiator 12 toward the expansion valve 14, and the like.
[0025]
The compressor 11 includes a front-stage compression element 11a and a rear-stage compression element 11b, and the radiator 12 includes a first radiator 12a, a second radiator 12b, and a third radiator 12c. The refrigerant and hot water supply water circulate and exchange heat between them.
[0026]
That is, the refrigerant sequentially flows through the front-stage compression element 11a, the first radiator 12a, the rear-stage compression element 11b, the second radiator 12b, and the third radiator 12c, and water for hot water supply is supplied to the third radiator 12c. From there, it is diverted to the second radiator 12b and the first radiator 12a at a predetermined flow rate ratio, and after being heated by the second radiator 12b and the first radiator 12a, they are merged and taken out for hot water supply. It is like that.
[0027]
In this way, the third radiator 12c and the first radiator 12a are connected in order to divert the water from the third radiator 12c to the first radiator 12a and the second radiator 12b at a predetermined flow rate ratio. A water flow control valve 17 is provided in the water pipe.
[0028]
The degree of opening of the flow control valve 17 is such that the amount of water flowing into the first radiator 12a (described as a secondary flow) is less than the amount of water flowing into the second radiator 12b (described as main flow), and the cycle efficiency In consideration of the above, it is preferable to set the side flow to half or less of the total water amount.
[0029]
In addition, as understood from the description so far, the refrigerant and water are configured so as to counterflow with each radiator 12. By circulating in the counterflow in this manner, the temperature gradient of the refrigerant along the circulation direction in the radiator 12 and the temperature gradient of the hot water supply water become opposite temperature gradients so that heat can be exchanged efficiently. It has become.
[0030]
The heat pump water heater having such a configuration operates according to a temperature (T) -enthalpy (h) diagram as shown in FIG.
[0031]
The refrigerant (a → b) compressed by the pre-stage compression element 11a is supplied to the first radiator 12a and radiates heat to the hot water supply water (b → c), and the water is discharged from the refrigerant. The temperature rises by being heated by the heat of (A → B).
[0032]
The amount of water circulating in the first radiator 12a is adjusted by setting the opening degree of the divided flow control valve 17, and the opening degree of the divided flow control valve 17 is determined by the evaporation temperature of the refrigerant in the evaporator 15. Or is set according to the degree of superheat of the refrigerant sucked into the pre-stage compression element 11a.
[0033]
Therefore, it becomes possible to always operate at the optimum discharge temperature without depending on the operating conditions such as the outside air temperature, and the cycle efficiency is improved.
[0034]
Moreover, although the refrigerant | coolant from the front | former stage compression element 11a thermally radiates with the 1st heat radiator 12a, since the heat | fever is used for the heating of the water for hot water supply (heat is collect | recovered), waste heat to external air etc. conventionally In this sense, the cycle efficiency is improved.
[0035]
The temperature of the refrigerant discharged from the rear-stage compression element 11b is reduced, for example, when the degree of superheat is small, such as in summer, and the amount of water supplied to the first radiator 12a is reduced to reduce the amount of water supplied to the front-stage compression element. By adjusting the amount of heat lost by the refrigerant from 11a, it is adjusted to a desired value. Further, when the degree of superheat becomes large, the procedure opposite to the above procedure is performed.
[0036]
In this way, the refrigerant from the first radiator 12a is further compressed by the rear-stage compression element 11b (c → d), supplied to the second radiator 12b, and divided into the second radiator 12b for hot water supply. The water is heated (D → E) and circulated to the third radiator 12c. And water is heated with the 3rd radiator 12c (C-> D), and it circulates to an internal heat exchanger.
[0037]
Since the refrigerant returning from the accumulator to the compressor 11 flows in the internal heat exchanger, the refrigerant from the third radiator 12c heats the refrigerant returning to the compressor 11 and the temperature decreases (e).
[0038]
Then, the gas is expanded by the expansion valve 14 (e → f → g), heat exchanged with the outside air by the evaporator and evaporated (h → i), and then gas-liquid separation is performed by the accumulator, and the gas refrigerant is compressed in the previous stage. Return to element 11a.
[0039]
When the refrigerant from the third radiator 12c loses heat in the internal heat exchanger, it becomes possible to efficiently pump the heat in the evaporator 15, and the refrigerant returning from the evaporator to the compressor 11 is heated. Thus, the temperature of the refrigerant returning to the compressor 11 rises (j → a), and the cycle efficiency can be increased.
[0040]
【The invention's effect】
As described above, according to the first aspect of the present invention, the compressor including the pre-stage compression element and the post-stage compression element for compressing the refrigerant, and the third radiator for supplying water to the hot water supply and exchanging heat with the refrigerant. A flow control valve for diverting the water from the third radiator to a main flow having a large flow rate and the remaining sub flow at a predetermined flow rate ratio, and heat exchange between the main flow water and the refrigerant from the subsequent compression element Heat exchange is performed between the second radiator connected so that the heat-exchanged refrigerant flows into the third radiator, the water forming the secondary flow, and the refrigerant from the previous compression element. A first radiator that is joined to the water from the radiator to supply hot water and exchanges heat and flows into the subsequent compression element; an expansion valve that expands the refrigerant from the third radiator; and the expansion valve An evaporator that exchanges heat between the refrigerant expanded in the machine and outside air is provided and supplied to the compressor. Since the amount of heat released by the first radiator can be adjusted according to the state of the refrigerant, the temperature of the refrigerant discharged from the rear stage compressor can always be in a desired temperature range, and the first radiator Waste heat can be recovered and cycle efficiency can be improved and maintained.
[0041]
According to the second aspect of the present invention, an internal heat exchanger is provided for exchanging heat between the refrigerant supplied from the third radiator to the expansion valve and the refrigerant returning from the evaporator to the preceding compression element. In addition to increasing the amount of heat pumped up, the heat recovery can be performed by heating the refrigerant returning to the compressor, thereby improving cycle efficiency.
[0042]
According to the invention of claim 3, since the degree of opening of the shunt control valve is controlled in accordance with the evaporation temperature of the refrigerant in the evaporator, the degree of superheat of the refrigerant sucked into the front stage compression element, etc. The temperature of the refrigerant discharged from the element is always the optimum temperature.
[0043]
According to the invention of claim 4, since carbon dioxide refrigerant is used as the refrigerant, the apparatus is friendly to the natural environment and high-temperature hot water supply is possible.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a heat pump water heater applied to the description of an embodiment of the present invention.
FIG. 2 is a temperature-enthalpy diagram of the heat pump water heater of FIG.
FIG. 3 is a schematic configuration diagram of a heat pump water heater provided with a compressor having one compression element applied to the description of the prior art.
FIG. 4 is a schematic configuration diagram of a heat pump water heater provided with a compressor having two compression elements applied to the description of the conventional technology.
[Explanation of symbols]
11 compressor 11a front stage compression element 11b rear stage compression element 12 radiator 12a first radiator 12b second radiator 12c third radiator 13 internal heat exchanger 14 expansion valve 15 evaporator 16 accumulator 17 minute flow control valve

Claims (4)

冷媒を圧縮する前段圧縮要素及び該前段圧縮要素からの冷媒を更に圧縮する後段圧縮要素を備えた圧縮機と、
給湯用の水が給水されて冷媒と熱交換させる第3放熱器と、
該第3放熱器からの水を流量の大きい主流とその残りの副流とに所定流量比で分流させる分流量制御弁と、
前記主流をなす水と後段圧縮要素からの冷媒とを熱交換させ、当該熱交換した冷媒が前記第3放熱器に流入するように接続された第2放熱器と、
前記副流をなす水と前段圧縮要素からの冷媒とを熱交換させ、当該水が前記第2放熱器からの水と合流して給湯され、熱交換した冷媒は後段圧縮要素に流入するように接続された第1放熱器と、
前記第3放熱器からの冷媒を膨張させる膨張弁と、
該膨張弁で膨張した冷媒を機外空気と熱交換させる蒸発器とを有することを特徴とするヒートポンプ給湯機。
A compressor including a first-stage compression element that compresses the refrigerant and a second-stage compression element that further compresses the refrigerant from the first-stage compression element;
A third radiator for supplying hot water and exchanging heat with the refrigerant;
A diversion flow control valve for diverting water from the third radiator to a main flow having a large flow rate and a remaining sub flow at a predetermined flow rate ratio;
Heat exchange between the mainstream water and the refrigerant from the subsequent compression element, and a second radiator connected so that the heat exchanged refrigerant flows into the third radiator;
Heat exchange is performed between the water that forms the side flow and the refrigerant from the front-stage compression element, and the water merges with water from the second radiator to supply hot water, so that the heat-exchanged refrigerant flows into the rear-stage compression element. A connected first radiator,
An expansion valve for expanding the refrigerant from the third radiator;
A heat pump water heater having an evaporator for exchanging heat between the refrigerant expanded by the expansion valve and outside air.
前記第3放熱器から膨張弁に供給される冷媒と、蒸発器から前段圧縮要素に戻る冷媒とを熱交換させる内部熱交換器を有することを特徴とする請求項1記載のヒートポンプ給湯機。The heat pump water heater according to claim 1, further comprising an internal heat exchanger for exchanging heat between the refrigerant supplied from the third radiator to the expansion valve and the refrigerant returning from the evaporator to the preceding compression element. 前記分流制御弁の開弁度が、前記蒸発器における蒸発温度及び前記前段圧縮要素に吸気される冷媒の過熱度に応じて制御するようにしたことを特徴とする請求項1又は2記載のヒートポンプ給湯機。The heat pump according to claim 1 or 2, wherein the degree of opening of the branch flow control valve is controlled in accordance with an evaporation temperature in the evaporator and a superheat degree of the refrigerant sucked into the upstream compression element. Water heater. 前記冷媒が二酸化炭素冷媒であることを特徴とする請求項1乃至3いずれか1記載のヒートポンプ給湯機。The heat pump water heater according to any one of claims 1 to 3, wherein the refrigerant is a carbon dioxide refrigerant.
JP2000296338A 2000-09-28 2000-09-28 Heat pump water heater Expired - Fee Related JP3615475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296338A JP3615475B2 (en) 2000-09-28 2000-09-28 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296338A JP3615475B2 (en) 2000-09-28 2000-09-28 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2002106988A JP2002106988A (en) 2002-04-10
JP3615475B2 true JP3615475B2 (en) 2005-02-02

Family

ID=18778630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296338A Expired - Fee Related JP3615475B2 (en) 2000-09-28 2000-09-28 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3615475B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004947A1 (en) * 2001-07-02 2003-01-16 Sanyo Electric Co., Ltd. Heat pump
TWI301188B (en) 2002-08-30 2008-09-21 Sanyo Electric Co Refrigeant cycling device and compressor using the same
US7690217B2 (en) 2002-10-24 2010-04-06 Showa Denko K.K. Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device
JP2006207835A (en) * 2002-10-24 2006-08-10 Showa Denko Kk Refrigerating system, compressing and heat-radiating apparatus and heat radiator
US7849700B2 (en) 2004-05-12 2010-12-14 Electro Industries, Inc. Heat pump with forced air heating regulated by withdrawal of heat to a radiant heating system
US7802441B2 (en) 2004-05-12 2010-09-28 Electro Industries, Inc. Heat pump with accumulator at boost compressor output
JP4853125B2 (en) * 2006-06-15 2012-01-11 東京電力株式会社 Steam generation system
JP4784263B2 (en) * 2005-10-31 2011-10-05 東京電力株式会社 Steam generation system
JP2008076005A (en) * 2006-09-25 2008-04-03 Fuji Electric Retail Systems Co Ltd Refrigerant circuit and drink supply device having this circuit
JP5056031B2 (en) * 2007-01-30 2012-10-24 東京電力株式会社 Steam generation system and steam generation method
JP5029039B2 (en) * 2007-01-30 2012-09-19 東京電力株式会社 Hot water system
JP5568838B2 (en) * 2008-03-25 2014-08-13 東京電力株式会社 Industrial drying system
JP5181813B2 (en) * 2008-05-02 2013-04-10 ダイキン工業株式会社 Refrigeration equipment
DE102008046620B4 (en) * 2008-09-10 2011-06-16 Thermea. Energiesysteme Gmbh High-temperature heat pump and method for its regulation
JP2010216685A (en) * 2009-03-13 2010-09-30 Daikin Ind Ltd Heat pump system
JP4941581B2 (en) * 2010-07-15 2012-05-30 ダイキン工業株式会社 Heat pump system
JP4947197B2 (en) * 2010-07-15 2012-06-06 ダイキン工業株式会社 Heat pump system
JP2011021882A (en) * 2010-11-01 2011-02-03 Daikin Industries Ltd Heat pump system
JP5223937B2 (en) * 2011-03-03 2013-06-26 東京電力株式会社 Steam generation system
US9719699B2 (en) 2011-04-28 2017-08-01 Panasonic Intellectual Property Management Co., Ltd. Refrigeration device
JP5474140B2 (en) * 2012-07-20 2014-04-16 三菱電機株式会社 Refrigeration equipment
DE102021002899A1 (en) 2021-06-08 2022-12-08 Gea Refrigeration Netherlands N.V. Heat exchanger arrangement for heat pump and heat pump with the same

Also Published As

Publication number Publication date
JP2002106988A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP3615475B2 (en) Heat pump water heater
US6931880B2 (en) Method and arrangement for defrosting a vapor compression system
JP5860700B2 (en) System for providing a vapor compression cycle and method for controlling a vapor compression cycle
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
EP2488804B1 (en) Heating device with irreversible thermodynamic cycle for heating installations having high delivery temperature
JP6231395B2 (en) Combined heat source heat pump device
JP2004218944A (en) Heat pump air conditioning and water heater
JP2005249319A (en) Heat pump hot water supply air-conditioner
JP2005257231A (en) Heat pump hot water supply air conditioner
JP2006017427A (en) Cooling system
JP5024198B2 (en) vending machine
JP6609198B2 (en) Combined heat source heat pump device
JPWO2006057056A1 (en) Air refrigerant type refrigeration heating equipment
KR101271355B1 (en) Heat pump system using two step heat pump unit
JP4062663B2 (en) Production system for supercooled water and hot water
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
CN203880998U (en) Heat pump system
KR20170000029U (en) cascade heat pump
KR101977884B1 (en) Heat pump system for recovery waste heat and coldness
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP3933076B2 (en) Air conditioner
JP7057129B2 (en) Vehicle waste heat recovery device
KR100461995B1 (en) Gas heat pump driven by refrigerant steam turbine
KR100613502B1 (en) Heat pump type air conditioner
JP2007155203A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

TRDD Decision of grant or rejection written
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees