WO2021014566A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2021014566A1
WO2021014566A1 PCT/JP2019/028841 JP2019028841W WO2021014566A1 WO 2021014566 A1 WO2021014566 A1 WO 2021014566A1 JP 2019028841 W JP2019028841 W JP 2019028841W WO 2021014566 A1 WO2021014566 A1 WO 2021014566A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
refrigerant
heat exchange
pipe
piping
Prior art date
Application number
PCT/JP2019/028841
Other languages
English (en)
French (fr)
Inventor
瑞朗 酒井
野花 坂邊
哲矢 山下
耕一 下川
嘉一 村上
優也 秦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/028841 priority Critical patent/WO2021014566A1/ja
Priority to JP2021534455A priority patent/JP7191230B2/ja
Publication of WO2021014566A1 publication Critical patent/WO2021014566A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present invention relates to an air conditioner including a receiver.
  • an air conditioner provided with a receiver for storing excess refrigerant
  • a receiver is provided between the condenser and the evaporator, and stores the refrigerant flowing in from the condenser to reduce the amount of refrigerant flowing through the evaporator according to the load fluctuation of the air conditioner. It is something to adjust. Further, some of the receivers of these air conditioners operate as a gas-liquid separation device by forming a swirling flow in the refrigerant flowing from the condenser.
  • Patent Document 1 is provided so that an opening of a pipe connected from a condenser is located in a liquid phase refrigerant inside a receiver that operates as a gas-liquid separator by forming a swirling flow in the refrigerant.
  • the air conditioner is disclosed.
  • the refrigerant flowing from the condenser is released into the liquid phase refrigerant, so that vaporization is suppressed.
  • the air conditioner of Patent Document 1 is intended to send more liquid phase refrigerant to the evaporator to improve heat exchange efficiency.
  • the receiver of the air conditioner disclosed in Patent Document 1 is provided with a heat exchange tube in which the refrigerant sucked into the compressor flows and heat is exchanged between the internal refrigerant and the refrigerant stored in the receiver. Not done. Therefore, even if the refrigerant inside the receiver swirls and flows, the medium-temperature and medium-pressure refrigerant flowing from the receiver to the evaporator side does not exchange heat with the low-temperature and low-pressure refrigerant flowing through the heat exchange tube, and the dryness is high. Is high. Therefore, the air conditioner of Patent Document 1 cannot increase the amount of heat exchange in the condenser, and cannot improve the efficiency of the refrigeration cycle.
  • the present invention has been made to solve the above problems, and provides an air conditioner that improves the efficiency of the refrigeration cycle by increasing the amount of heat exchange in the condenser.
  • the air conditioner according to the present invention includes a refrigerant circuit in which a compressor, a condenser, an expansion unit, a receiver and an evaporator are connected by a pipe and a refrigerant flows, and the pipe is provided in the center inside the receiver and is a compressor. It has a heat exchange tube in which the refrigerant sucked into the refrigerator flows inside and exchanges heat between the internal refrigerant and the refrigerant stored in the receiver, and a receiver pipe inserted inside the receiver.
  • the inflow pipe for flowing the refrigerant into the receiver is inserted inside the receiver and extends along the circumference centered on the heat exchange pipe. Therefore, inside the receiver, the refrigerant flowing in from the inflow pipe swirls around the heat exchange pipe provided in the center. At this time, the refrigerant separates into a gas phase and a liquid phase, and the liquid phase refrigerant forms a vortex with a recessed center and a raised outer circumference. That is, the area where the medium-temperature and medium-pressure vapor-phase refrigerant comes into contact with the heat exchange pipe increases.
  • FIG. 1 It is a circuit diagram which shows the air conditioner 100 which concerns on Embodiment 1.
  • FIG. It is a front view which shows the receiver 16 which concerns on Embodiment 1.
  • FIG. It is a top view which shows the receiver 16 which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the receiver 16 which concerns on Embodiment 1.
  • FIG. It is a front view which shows the receiver 16 which concerns on Embodiment 1.
  • FIG. It is a front view which shows the receiver 216 which concerns on the comparative example of Embodiment 1.
  • FIG. It is an upper view which shows the receiver 216 which concerns on the comparative example of Embodiment 1.
  • FIG. It is a circuit diagram which shows the air conditioner 200 which concerns on Embodiment 2.
  • It is a front view which shows the receiver 116 which concerns on Embodiment 2.
  • FIG. 1 is a circuit diagram showing an air conditioner 100 according to the first embodiment.
  • the air conditioner 100 includes an outdoor unit 1, an indoor unit 2, and a refrigerant pipe 3. Although one indoor unit 2 is illustrated in FIG. 1, the number of indoor units 2 may be two or more.
  • the outdoor unit 1 includes a compressor 11, a flow path switching device 12, an outdoor heat exchanger 13, an outdoor blower 14, an expansion unit 15, and a receiver 16.
  • the indoor unit 2 has an indoor heat exchanger 21 and an indoor blower 22.
  • the refrigerant pipe 3 connects the compressor 11, the flow path switching device 12, the outdoor heat exchanger 13, the expansion unit 15, the receiver 16, and the indoor heat exchanger 21, and the refrigerant flows inside to form the refrigerant circuit 4. Is what you do.
  • the refrigerant pipe 3 has a heat exchange pipe 31 and a receiver pipe 32.
  • the compressor 11 sucks in the refrigerant in the low temperature and low pressure state, compresses the sucked refrigerant into the refrigerant in the high temperature and high pressure state, and discharges the refrigerant.
  • the compressor 11 is, for example, an inverter compressor driven by a motor (not shown) whose frequency is controlled by an inverter (not shown).
  • the flow path switching device 12 switches the flow direction of the refrigerant in the refrigerant circuit 4, and is, for example, a four-way valve.
  • the flow path switching device 12 connects the discharge side of the compressor 11 and the outdoor heat exchanger 13 during the cooling operation, and also connects the suction side of the compressor 11 and the indoor heat exchanger 21. Further, the flow path switching device 12 connects the discharge side of the compressor 11 and the indoor heat exchanger 21 during the heating operation, and also connects the suction side of the compressor 11 and the outdoor heat exchanger 13. .
  • the flow path switching device 12 may have the same function as the four-way valve by combining a plurality of two-way valves instead of the four-way valve.
  • the outdoor heat exchanger 13 exchanges heat between the refrigerant and the outdoor air, and is, for example, a fin-and-tube heat exchanger.
  • the outdoor heat exchanger 13 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
  • the outdoor blower 14 is a device that sends outdoor air to the outdoor heat exchanger 13.
  • the expansion unit 15 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant.
  • the expansion portion 15 has a first expansion portion 41 and a second expansion portion 42.
  • One of the first expansion portions 41 is connected to the outdoor heat exchanger 13, and the other is connected to the receiver 16.
  • One of the second expansion portions 42 is connected to the receiver 16 and the other is connected to the indoor heat exchanger 21.
  • the receiver 16 has a substantially cylindrical shape, and is composed of a bottom surface portion 51, a side surface portion 52, and an upper surface portion 53.
  • the bottom surface portion 51 is a substantially circular plate-shaped member that constitutes the bottom surface of the receiver 16.
  • the side surface portion 52 is a member that extends upward from the circumference of the bottom surface portion 51 and constitutes the side surface of the receiver 16.
  • the upper surface portion 53 is a substantially circular plate-shaped member connected to the upper end of the side surface portion 52 and covering the upper surface of the receiver 16.
  • the receiver 16 is a container for storing excess refrigerant in the refrigerant circuit 4 that increases or decreases according to the load fluctuation of the air conditioner 100. As described above, the receiver 16 is provided between the first expansion portion 41 and the second expansion portion 42.
  • the receiver 16 may be provided not in the outdoor unit 1 but in the indoor unit 2, or may be provided in a device different from the outdoor unit 1 and the indoor unit 2.
  • the indoor heat exchanger 21 exchanges heat between the indoor air and the refrigerant.
  • the outdoor heat exchanger 13 acts as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the indoor blower 22 is a device that sends indoor air to the indoor heat exchanger 21, for example, a cross flow fan.
  • FIG. 2 is a front view showing the receiver 16 according to the first embodiment.
  • FIG. 3 is an upper view showing the receiver 16 according to the first embodiment.
  • the heat exchange pipe 31 is a suction pipe in which one end is connected to an evaporator, the other end is connected to the suction side of the compressor 11, and the refrigerant sucked into the compressor 11 flows inside.
  • the heat exchange tube 31 is drawn into the receiver 16 through the upper surface 53 of the receiver 16 so that a part of the heat exchange tube 31 is located at the center of the inside of the receiver 16.
  • the refrigerant sucked into the compressor 11 flows inside the heat exchange tube 31 drawn into the receiver 16, and the heat exchange tube 31 heats between the refrigerant flowing inside and the refrigerant stored in the receiver 16. Make a replacement.
  • the liquid-state refrigerant flows into the first expansion unit 41 and is depressurized and expanded to become a medium-temperature and medium-pressure gas-liquid two-phase state refrigerant.
  • the medium-temperature and medium-pressure refrigerant flows into and is stored in the receiver 16.
  • the stored refrigerant exchanges heat with the low-temperature refrigerant flowing through the heat exchange pipe 31 to reduce the dryness and flow out from the receiver 16.
  • the refrigerant having a low degree of dryness flows into the second expansion portion 42 and is depressurized.
  • the decompressed refrigerant flows into the indoor heat exchanger 21 that acts as an evaporator.
  • the refrigerant flowing into the indoor heat exchanger 21 exchanges heat with the indoor air sent by the indoor blower 22, evaporates and gasifies. At that time, the indoor air is cooled and the indoor cooling is performed. After that, the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 12 and flows through the heat exchange pipe 31.
  • the low-temperature and low-pressure refrigerant flowing through the heat exchange tube 31 exchanges heat with the medium-temperature and medium-pressure refrigerant stored in the receiver 16, and the degree of superheat increases.
  • the refrigerant whose superheat degree has increased is sucked into the compressor 11.
  • Heating operation Next, the heating operation will be described.
  • the refrigerant sucked into the compressor 11 is compressed by the compressor 11 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 11 passes through the flow path switching device 12 and flows into the indoor heat exchanger 21 that acts as a condenser.
  • the refrigerant flowing into the indoor heat exchanger 21 exchanges heat with the indoor air sent by the indoor blower 22, condenses and liquefies. At that time, the indoor air is warmed and the indoor heating is performed.
  • the liquid-state refrigerant flows into the second expansion unit 42, is depressurized and expanded, and becomes a medium-pressure and medium-temperature gas-liquid two-phase state refrigerant.
  • the medium-pressure and medium-temperature refrigerant flows into the receiver 16 and is stored.
  • the stored refrigerant exchanges heat with the low-temperature refrigerant flowing through the heat exchange tube 31 inside the receiver 16, so that the degree of dryness becomes low and the stored refrigerant flows out from the receiver 16.
  • the refrigerant having a low degree of dryness flows into the first expansion portion 41 and is depressurized.
  • the decompressed refrigerant flows into the outdoor heat exchanger 13 that acts as an evaporator.
  • the refrigerant flowing into the outdoor heat exchanger 13 exchanges heat with the outdoor air sent by the outdoor blower 14, evaporates and gasifies. After that, the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 12 and flows through the heat exchange pipe 31.
  • the low-temperature and low-pressure refrigerant flowing through the heat exchange tube 31 exchanges heat with the medium-temperature and medium-pressure refrigerant stored in the receiver 16, and the degree of superheat increases.
  • the refrigerant whose superheat degree has increased is sucked into the compressor 11.
  • the receiver pipe 32 is a pipe connected to the receiver 16 and has an inflow pipe 43 and an outflow pipe 44.
  • the inflow pipe 43 is a pipe in which one end 43a is connected to the condenser and the other end 43b is inserted into the receiver 16 through the upper surface portion 53 to allow the refrigerant to flow into the receiver 16.
  • the other end 43b of the inflow pipe 43 is located on the outer peripheral side of the heat exchange pipe 31 and near the bottom surface portion 51, and is bent along the circumference C centered on the heat exchange pipe 31. Therefore, the refrigerant flowing in from the inflow pipe 43 flows in the direction of arrow D in FIG.
  • the other end 43b of the inflow pipe 43 may extend along the circumference C, and may be inserted from the side surface portion 52 and extend without bending, for example.
  • FIG. 4 is a perspective view showing the receiver 16 according to the first embodiment.
  • the other end 43b of the inflow pipe 43 is formed obliquely so that the side surface portion 52 side of the receiver 16 is long. If the shape of the other end 43b of the inflow pipe 43 is formed so that the refrigerant flowing in the direction in which the inflow pipe 43 extends is guided, the side wall side of the receiver 16 may not be formed diagonally so as to be long. Good. Further, the other end 43b of the inflow pipe 43 does not have to be formed diagonally. In this case, the formability is improved in manufacturing the inflow pipe 43.
  • One end 44a of the outflow pipe 44 is inserted into the receiver 16 through the upper surface portion 53 of the receiver 16, and the other end 44b is connected to the evaporator, so that the refrigerant flows out from the receiver 16.
  • One end 44a of the outflow pipe 44 is located on the outer peripheral side and near the bottom of the heat exchange pipe 31 and is in the same circumferential direction as the other end 44b of the inflow pipe 43 so as to be along the circumference C centered on the heat exchange pipe 31. It is bent.
  • the other end 44b of the outflow pipe 44 may extend along the circumference C, and may be inserted from the side surface portion 52 and extend without bending.
  • one end 44a of the outflow pipe 44 may not be inserted so as to be located on the outer peripheral side of the heat exchange pipe 31 inside the receiver 16, for example, the receiver may be located directly below the heat exchange pipe 31. It may be inserted in the bottom surface of 16.
  • the other end 44b of the outflow pipe 44 may not extend in the same circumferential direction as the other end 43b of the inflow pipe 43, and may extend in the circumferential direction facing the inflow pipe 43, for example. In these cases, the refrigerant stored in the receiver 16 flows out more smoothly.
  • one end 44a of the outflow pipe 44 is formed diagonally.
  • the shape of one end 44a of the outflow pipe 44 does not have to be formed diagonally.
  • the formability is improved in manufacturing the inflow pipe 43.
  • the inflow pipe 43 and the outflow pipe 44 are named based on the flow of the refrigerant during the cooling operation. However, during the heating operation, the refrigerant flows in from the outflow pipe 44 and is the inflow pipe. Outflow from 43.
  • FIG. 5 is a front view showing the receiver 16 according to the first embodiment.
  • the refrigerant flowing in from the inflow pipe 43 swirls in the V direction around the heat exchange pipe 31 provided in the center inside the receiver 16.
  • the refrigerant is separated into a gas phase and a liquid phase, and the liquid phase refrigerant forms, for example, a parabolic P-shaped vortex in which the center is recessed and the outer circumference is raised. That is, the inside of the receiver 16 has an appearance in which the gas phase refrigerant occupies the central portion O and the liquid phase refrigerant occupies the lower and outer peripheral sides thereof.
  • the inflow pipe 43 for flowing the refrigerant into the receiver 16 is inserted inside the receiver 16 and extends along the circumference C centered on the heat exchange pipe 31. Therefore, inside the receiver 16, the refrigerant flowing in from the inflow pipe 43 swirls around the heat exchange pipe 31 provided in the center. At this time, the refrigerant separates into a gas phase and a liquid phase, and the liquid phase refrigerant forms a vortex with a recessed center and a raised outer circumference. That is, the area where the medium-temperature and medium-pressure vapor-phase refrigerant comes into contact with the heat exchange pipe 31 increases.
  • the liquid phase refrigerant forms a vortex with a concave center and a raised outer circumference. That is, the height of the refrigerant inside the receiver 16 is higher on the side surface portion 52 side. Therefore, even when the amount of the liquid phase refrigerant stored inside the receiver 16 is small, one end 44a of the outflow pipe 44 is located in the liquid phase refrigerant. Therefore, the outflow pipe 44 can surely allow the liquid phase refrigerant to flow out from the receiver 16.
  • one end 44a of the outflow pipe 44 is inserted inside the receiver 16 so as to be located on the outer peripheral side of the heat exchange pipe 31, and is a circumference centered on the heat exchange pipe 31. It extends along C. Therefore, even if each of the outdoor heat exchanger 13 and the indoor heat exchanger 21 connected to the inflow pipe 43 and the outflow pipe 44 functions as a condenser or an evaporator, the refrigerant flowing into the receiver 16 Swirls around the heat exchange pipe 31 provided in the center. Therefore, the receiver 16 can be used for both the cooling operation and the heating operation.
  • the other end 43b of the inflow pipe 43 is formed diagonally so that the side wall side of the receiver 16 becomes long.
  • the refrigerant flowing from the inflow pipe 43 swirls around the heat exchange pipe 31 more vigorously. Therefore, the vortex formed by the liquid-phase refrigerant forms a vortex having a larger central recess and a raised outer circumference. That is, the area where the medium-pressure gas phase refrigerant comes into contact with the heat exchange pipe 31 is further increased.
  • one end 44a of the outflow pipe 44 is formed diagonally. Therefore, the opening formed at one end 44a of the outflow pipe 44 has a large cross-sectional area. Therefore, the liquid phase refrigerant easily flows into one end 44a of the outflow pipe 44, and the outflow pipe 44 can surely let the liquid phase refrigerant flow out from the receiver 16.
  • FIG. 6 is a front view showing the receiver 216 according to the comparative example of the first embodiment.
  • FIG. 7 is an upper view showing the receiver 216 according to the comparative example of the first embodiment.
  • the receiver 16 of the first embodiment will be described in comparison with the receiver 216 of the comparative example.
  • the other end 243b of the inflow pipe 243 and the one end 244a of the outflow pipe 244 are inserted through the upper surface portion 53 of the receiver 216 and extend downward as they are. That is, the other end 243b of the inflow pipe 43 and the one end 244a of the outflow pipe 44 do not extend along the circumference C centered on the heat exchange pipe 31.
  • the refrigerant flowing in from the inflow pipe 243 flows in the direction of arrow E in FIG.
  • the liquid phase refrigerant stays at the liquid level L and does not swirl around the heat exchange pipe 31. That is, the area where the medium-pressure gas phase refrigerant contacts the heat exchange pipe 31 does not increase. Therefore, the heat exchange between the refrigerant flowing inside the heat exchange and the refrigerant stored in the receiver 216 is not promoted.
  • the inflow pipe 43 for flowing the refrigerant into the receiver 16 is inserted inside the receiver 16 and extends along the circumference C centered on the heat exchange pipe 31. There is. Therefore, inside the receiver 16, the refrigerant flowing in from the inflow pipe 43 swirls around the heat exchange pipe 31 provided in the center. At this time, the refrigerant separates into a gas phase and a liquid phase, and the liquid phase refrigerant forms a vortex with a recessed center and a raised outer circumference. That is, the area where the medium-pressure gas phase refrigerant comes into contact with the heat exchange pipe 31 increases.
  • FIG. 8 is a circuit diagram showing the air conditioner 200 according to the second embodiment.
  • FIG. 9 is a front view showing the receiver 116 according to the second embodiment.
  • the heat exchange pipe 131 is different from the first embodiment in that it is a bypass pipe that communicates the inside of the receiver 116 with the suction pipe 181.
  • the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
  • the suction pipe 181 is not drawn into the receiver 116.
  • the heat exchange pipe 131 is a bypass pipe that communicates the inside of the receiver 116 with the suction pipe 181 and allows the refrigerant to flow inside.
  • a refrigerant sucked into the compressor 11 flows inside the heat exchange pipe 131, and the heat exchange pipe 131 exchanges heat between the refrigerant flowing inside and the refrigerant stored in the receiver 116.
  • a pressure reducing portion 182 for reducing the pressure of the refrigerant is provided below the heat exchange pipe 131.
  • the pressure reducing unit 182 is, for example, an orifice or a pressure reducing valve.
  • the flow rate of the liquid pumped up to the heat exchange tube 131 decreases, and the remaining refrigerant flows out from the receiver 116.
  • the degree of superheat of the refrigerant flowing through the heat exchange pipe 131 increases and joins the suction pipe 181.
  • the refrigerant that has joined the suction pipe 181 is sucked into the compressor 11.
  • the refrigerant flowing in from the inflow pipe 43 swirls around the bypass pipe functioning as the heat exchange pipe 131 provided in the center.
  • heat exchange between the low-temperature and low-pressure refrigerant flowing inside the heat exchange tube 131 and the medium-temperature and medium-pressure refrigerant stored in the receiver 116 is promoted, and the refrigerant flowing from the receiver 116 to the evaporator side has a dryness. Will be low. Therefore, the amount of heat exchange in the condenser increases. Therefore, the efficiency of the refrigeration cycle can be improved.
  • the air conditioner 200 can increase the suction pressure of the compressor 11 by reducing the pressure loss in the condenser, and further improve the efficiency of the refrigeration cycle.

Abstract

空気調和機は、圧縮機、凝縮器、膨張部、レシーバ及び蒸発器が配管により接続され、冷媒が流れる冷媒回路を備え、配管は、レシーバの内部の中央に設けられ、圧縮機に吸入される冷媒が内部に流れ、内部の冷媒とレシーバに貯められた冷媒との間で熱交換を行う熱交換管と、レシーバの内部に挿入されるレシーバ配管と、を有し、レシーバ配管は、一端が凝縮器に接続されると共に、他端がレシーバの内部において熱交換管の外周側に挿入され、レシーバに冷媒を流入する流入配管を有し、流入配管の他端は、熱交換管を中心とした円周に沿うように延びている。

Description

空気調和機
 本発明は、レシーバを備える空気調和機に関する。
 従来、余剰冷媒が蓄えられるレシーバが設けられた空気調和機が知られている。このような空気調和機において、レシーバは、凝縮器と蒸発器との間に設けられ、凝縮器から流入した冷媒を蓄えることで、空気調和機の負荷変動に応じて蒸発器を流れる冷媒量を調整するものである。また、これらの空気調和機のレシーバには、凝縮器から流入した冷媒に旋回流を形成させることで、気液分離装置として動作するものが存在する。
 特許文献1には、冷媒に旋回流を形成させることで気液分離装置として動作するレシーバの内部において、凝縮器から接続される配管の開口が液相の冷媒中に位置するように設けられている空気調和機が開示されている。特許文献1の空気調和機において、凝縮器から流れる冷媒は、液相の冷媒中に放出されることで、気化することが抑制される。特許文献1の空気調和機は、これにより、より多くの液相の冷媒を蒸発器に送り、熱交換効率を高めるようとするものである。
特開2017-20660号公報
 しかしながら、特許文献1に開示された空気調和機のレシーバには、圧縮機に吸入される冷媒が流れ、内部の冷媒とレシーバに溜められた冷媒との間で熱交換を行う熱交換管が設けられていない。このため、レシーバ内部の冷媒が旋回して流れていても、レシーバから蒸発器側に流れる中温且つ中圧の冷媒は、熱交換管を流れる低温且つ低圧の冷媒と熱交換を行なわれず、乾き度が高い。したがって、特許文献1の空気調和機は、凝縮器における熱交換量を増加させることができず、冷凍サイクルの効率を向上させることができない。
 本発明は、上記のような課題を解決するためになされたもので、凝縮器における熱交換量を増加させることで、冷凍サイクルの効率を向上させる空気調和機を提供するものである。
 本発明に係る空気調和機は、圧縮機、凝縮器、膨張部、レシーバ及び蒸発器が配管により接続され、冷媒が流れる冷媒回路を備え、配管は、レシーバの内部の中央に設けられ、圧縮機に吸入される冷媒が内部に流れ、内部の冷媒とレシーバに貯められた冷媒との間で熱交換を行う熱交換管と、レシーバの内部に挿入されるレシーバ配管と、を有し、レシーバ配管は、一端が凝縮器に接続されると共に、他端がレシーバの内部において熱交換管の外周側に挿入され、レシーバに冷媒を流入する流入配管を有し、流入配管の他端は、熱交換管を中心とした円周に沿うように延びている。
 本発明によれば、レシーバに冷媒を流入する流入配管は、レシーバ内部に挿入され、熱交換管を中心とした円周に沿うように延びている。このため、レシーバの内部において、流入配管から流入する冷媒は、中央に設けられた熱交換管の周囲を旋回する。この際、冷媒が気相と液相とに分離し、液相の冷媒は、中央が凹んで外周が盛り上がった渦をなす。即ち、中温且つ中圧の気相冷媒が熱交換管に接触する面積が増大する。これにより、熱交換管の内部を流れる低温且つ低圧の冷媒とレシーバに貯蔵された中温且つ中圧の冷媒との熱交換が促進され、レシーバから蒸発器側に流れる冷媒は、乾き度が低くなる。このため、凝縮器における熱交換量が増加する。したがって、冷凍サイクルの効率を向上させることができる。
実施の形態1に係る空気調和機100を示す回路図である。 実施の形態1に係るレシーバ16を示す正面図である。 実施の形態1に係るレシーバ16を示す上視図である。 実施の形態1に係るレシーバ16を示す斜視図である。 実施の形態1に係るレシーバ16を示す正面図である。 実施の形態1の比較例に係るレシーバ216を示す正面図である。 実施の形態1の比較例に係るレシーバ216を示す上視図である。 実施の形態2に係る空気調和機200を示す回路図である。 実施の形態2に係るレシーバ116を示す正面図である。
実施の形態1.
 以下、実施の形態1に係る空気調和機100について、図面を参照しながら説明する。図1は、実施の形態1に係る空気調和機100を示す回路図である。図1に示すように、空気調和機100は、室外機1、室内機2及び冷媒配管3を有している。なお、図1では、1台の室内機2を例示しているが、室内機2の台数は、2台以上でもよい。
 (室外機1、室内機2、冷媒配管3)
 室外機1は、圧縮機11、流路切替装置12、室外熱交換器13、室外送風機14、膨張部15及びレシーバ16を有している。室内機2は、室内熱交換器21及び室内送風機22を有している。冷媒配管3は、圧縮機11、流路切替装置12、室外熱交換器13、膨張部15、レシーバ16及び室内熱交換器21を接続すると共に、内部に冷媒が流れることで冷媒回路4を構成するものである。冷媒配管3は、熱交換管31及びレシーバ配管32を有する。
 (圧縮機11)
 圧縮機11は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。圧縮機11は、例えば、インバータ(図示せず)により周波数が制御されるモータ(図示せず)によって駆動されるインバータ圧縮機である。
 (流路切替装置12)
 流路切替装置12は、冷媒回路4において、冷媒の流通方向を切り替えるものであり、例えば四方弁である。流路切替装置12は、冷房運転時には、圧縮機11の吐出側と室外熱交換器13とを接続すると共に、圧縮機11の吸入側と室内熱交換器21とを接続するものである。また、流路切替装置12は、暖房運転時には、圧縮機11の吐出側と室内熱交換器21とを接続すると共に、圧縮機11の吸入側と室外熱交換器13とを接続するものである。なお、流路切替装置12は、四方弁ではなく、複数の二方弁などを組み合わせることで、四方弁と同様の機能を持たせたものであってもよい。
(室外熱交換器13、室外送風機14)
 室外熱交換器13は、冷媒と室外空気との間で熱交換を行うものであり、例えばフィンアンドチューブ型熱交換器である。室外熱交換器13は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外送風機14は、室外熱交換器13に室外空気を送る機器である。
 (膨張部15)
 膨張部15は、冷媒を減圧して膨張させる減圧弁又は膨張弁である。本実施の形態1では、膨張部15は、第一の膨張部41及び第二の膨張部42を有する。第一の膨張部41は、一方が室外熱交換器13に接続され、他方がレシーバ16に接続されている。第二の膨張部42は、一方がレシーバ16に接続され、他方が室内熱交換器21に接続されている。
 (レシーバ16)
 レシーバ16は、略円筒形をなしており、底面部51、側面部52及び上面部53から構成される。底面部51は、レシーバ16の底面を構成する略円形の板状の部材である。側面部52は、底面部51の円周上から上方に延び、レシーバ16の側面を構成する部材である。上面部53は、側面部52の上端に接続され、レシーバ16の上面を覆う略円形の板状の部材である。レシーバ16は、空気調和機100の負荷変動に応じて増減する冷媒回路4中の余剰冷媒を蓄える容器である。レシーバ16は、前述のとおり、第一の膨張部41と第二の膨張部42との間に設けられている。なお、レシーバ16は、室外機1ではなく、室内機2に設けられたり、室外機1及び室内機2とは別の機器に設けられたりしてもよい。
 (室内熱交換器21、室内送風機22)
 室内熱交換器21は、室内空気と冷媒との間で熱交換を行うものである。室外熱交換器13は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機22は、室内熱交換器21に室内空気を送る機器であり、例えば、クロスフローファンである。
 (熱交換管31)
 図2は、実施の形態1に係るレシーバ16を示す正面図である。図3は、実施の形態1に係るレシーバ16を示す上視図である。熱交換管31は、一端が蒸発器に接続され、他端が圧縮機11の吸入側に接続されると共に、圧縮機11に吸入される冷媒が内部に流れる吸入配管である。図2及び図3に示すように、熱交換管31は、一部がレシーバ16の内部の中央に位置するようにレシーバ16の上面部53を通してレシーバ16の内部に引き込まれている。レシーバ16内部に引き込まれた熱交換管31の内部には、圧縮機11に吸入される冷媒が流れ、熱交換管31は、内部を流れる冷媒とレシーバ16に貯められた冷媒との間で熱交換を行う。
 (冷房運転)
 ここで、空気調和機100の動作について説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機11に吸入された冷媒は、圧縮機11によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機11から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置12を通過して、凝縮器として作用する室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外送風機14によって送られる室外空気と熱交換されて凝縮し、液化する。液状態の冷媒は、第一の膨張部41に流入し、減圧及び膨張されて、中温且つ中圧の気液二相状態の冷媒となる。中温且つ中圧の冷媒は、レシーバ16に流入して貯留される。
 貯留された冷媒は、熱交換管31を流れる低温の冷媒と熱交換することで乾き度が低くなり、レシーバ16から流出する。乾き度が低くなった冷媒は、第二の膨張部42に流入し、減圧される。減圧された冷媒は、蒸発器として作用する室内熱交換器21に流入する。室内熱交換器21に流入した冷媒は、室内送風機22によって送られる室内空気と熱交換されて蒸発し、ガス化する。その際、室内空気が冷却されて室内における冷房が実施される。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置12を通過して、熱交換管31を流れる。熱交換管31を流れる低温且つ低圧の冷媒は、レシーバ16に貯留された中温且つ中圧の冷媒と熱交換され、過熱度が上昇する。過熱度が上昇した冷媒は、圧縮機11に吸入される。
 (暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機11に吸入された冷媒は、圧縮機11によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機11から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置12を通過して、凝縮器として作用する室内熱交換器21に流入する。室内熱交換器21に流入した冷媒は、室内送風機22によって送られる室内空気と熱交換されて凝縮し、液化する。その際、室内空気が温められて、室内における暖房が実施される。液状態の冷媒は、第二の膨張部42に流入し、減圧及び膨張されて、中圧且つ中温の気液二相状態の冷媒となる。中圧且つ中温の冷媒は、レシーバ16に流入して貯留される。
 貯留された冷媒は、レシーバ16の内部において、熱交換管31を流れる低温の冷媒と熱交換することで乾き度が低くなり、レシーバ16から流出する。乾き度が低くなった冷媒は、第一の膨張部41に流入し、減圧される。減圧された冷媒は、蒸発器として作用する室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外送風機14によって送られる室外空気と熱交換されて蒸発し、ガス化する。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置12を通過して、熱交換管31を流れる。熱交換管31を流れる低温且つ低圧の冷媒は、レシーバ16に貯留された中温且つ中圧の冷媒と熱交換され、過熱度が上昇する。過熱度が上昇した冷媒は、圧縮機11に吸入される。
 (レシーバ配管32)
 レシーバ配管32は、レシーバ16に接続される管であり、流入配管43及び流出配管44を有する。流入配管43は、一端43aが凝縮器に接続されると共に、他端43bが上面部53を通してレシーバ16の内部に挿入され、レシーバ16に冷媒を流入する管である。流入配管43の他端43bは、熱交換管31の外周側且つ底面部51付近に位置し、熱交換管31を中心とした円周Cに沿うように屈曲している。このため、流入配管43から流入した冷媒は、図3の矢印D方向に流れる。なお、流入配管43の他端43bは、円周Cに沿うように延びていればよく、例えば、側面部52から挿入され、屈曲せずに延びていてもよい。
 図4は、実施の形態1に係るレシーバ16を示す斜視図である。図4で示すように、流入配管43の他端43bは、レシーバ16の側面部52側が長くなるように斜めに形成されている。なお、流入配管43の他端43bの形状は、流入配管43が延びる方向に流れる冷媒が導かれるように形成されていれば、レシーバ16の側壁側が長くなるように斜めに形成されていなくてもよい。更に、流入配管43の他端43bは、斜めに形成されてなくてもよい。この場合は、流入配管43の製造にあたり、形成性が向上する。
 流出配管44は、一端44aがレシーバ16の上面部53を通してレシーバ16の内部に挿入されると共に、他端44bが蒸発器に接続され、レシーバ16から冷媒を流出する。流出配管44の一端44aは、熱交換管31の外周側且つ底付近に位置し、熱交換管31を中心とした円周Cに沿うように、流入配管43の他端44bと同一周方向に屈曲している。なお、流出配管44の他端44bは、円周Cに沿うように延びていればよく、例えば、側面部52から挿入され、屈曲せずに延びていてもよい。
 また、流出配管44の一端44aは、レシーバ16の内部において熱交換管31の外周側に位置するように挿入されていなくてもよく、例えば、熱交換管31の直下に位置するように、レシーバ16の底面に挿入されていてもよい。また、更に、流出配管44の他端44bは、流入配管43の他端43bと同一周方向に延びていなくてもよく、例えば、流入配管43と対向する周方向に延びていてもよい。これらの場合、レシーバ16に貯留された冷媒は、より円滑に流出する。
 また、図4に示すように、流出配管44の一端44aは、斜めに形成されている。なお、流出配管44の一端44aの形状は、斜めに形成されてなくてもよい。この場合は、流入配管43の製造にあたり、形成性が向上する。なお、本実施の形態1では、冷房運転時における冷媒の流れを基準として、流入配管43及び流出配管44を命名しているが、暖房運転時には、冷媒は、流出配管44から流入し、流入配管43から流出する。
 図5は、実施の形態1に係るレシーバ16を示す正面図である。ここで、レシーバ16の内部における冷媒の動きについて、図5を用いて説明する。流入配管43から流入する冷媒は、レシーバ16の内部において、中央に設けられた熱交換管31の周囲をV方向に旋回する。この際、冷媒が気相と液相とに分離し、液相の冷媒は、中央が凹んで外周が盛り上がった、例えば、放物線P状の渦をなす。即ち、レシーバ16の内部は、中心部Oを気相の冷媒が占め、その下方且つ外周側を液相の冷媒が占めるような様相を呈する。
 本実施の形態1によれば、レシーバ16に冷媒を流入する流入配管43は、レシーバ16の内部に挿入され、熱交換管31を中心とした円周Cに沿うように延びている。このため、レシーバ16の内部において、流入配管43から流入する冷媒は、中央に設けられた熱交換管31の周囲を旋回する。この際、冷媒が気相と液相とに分離し、液相の冷媒は、中央が凹んで外周が盛り上がった渦をなす。即ち、中温且つ中圧の気相冷媒が熱交換管31に接触する面積が増大する。これにより、熱交換管31の内部を流れる低温且つ低圧の冷媒とレシーバ16に貯蔵された中温且つ中圧の冷媒との熱交換が促進され、レシーバ16から蒸発器側に流れる冷媒は、乾き度が低くなる。このため、凝縮器における熱交換量が増加する。したがって、冷凍サイクルの効率を向上させることができる。なお、この際に、レシーバ16から蒸発器側に流れる冷媒が失ったエンタルピは、熱交換管31の内部を流れる冷媒に移動するため、冷凍サイクル全体では熱量が維持されている。
 更に、液相の冷媒は、中央が凹んで外周が盛り上がった渦をなす。即ち、レシーバ16の内部の冷媒の高さは、側面部52側が高くなる。このため、レシーバ16の内部に貯留された液相の冷媒が少ない場合においても、流出配管44の一端44aは、液相の冷媒中に位置している。したがって、流出配管44は、液相の冷媒を確実にレシーバ16から流出させることができる。
 また、本実施の形態1によれば、流出配管44の一端44aは、レシーバ16の内部において、熱交換管31の外周側に位置するように挿入され、熱交換管31を中心とした円周Cに沿うように延びている。このため、流入配管43及び流出配管44に接続された室外熱交換器13及び室内熱交換器21のそれぞれが凝縮器又は蒸発器のいずれとして機能する場合であっても、レシーバ16に流入する冷媒は、中央に設けられた熱交換管31の周囲を旋回する。したがって、レシーバ16は、冷房運転及び暖房運転に兼用することができる。
 また、本実施の形態1によれば、流入配管43の他端43bは、レシーバ16の側壁側が長くなるように斜めに形成されている。これにより、レシーバ16の内部において、流入配管43から流れる冷媒は、より勢いよく熱交換管31の周囲を旋回する。このため、液相の冷媒が形成する渦は、より大きく中央が凹んで外周が盛り上がった渦をなす。即ち、中圧の気相の冷媒が熱交換管31に接触する面積は、更に増大する。これにより、熱交換管31の内部を流れる低温且つ低圧の冷媒とレシーバ16に貯蔵された中温且つ中圧の冷媒との熱交換がより促進され、レシーバ16から蒸発器側に流れる冷媒は、更に乾き度が低くなる。このため、凝縮器における熱交換量がより増加する。したがって、冷凍サイクルの効率を更に向上させることができる。
 更に、流出配管44の一端44aは、斜めに形成されている。このため、流出配管44の一端44aに形成されている開口は、断面積が大きくなる。したがって、流出配管44の一端44aには、液相の冷媒が流れ込み易く、流出配管44は、液相の冷媒を確実にレシーバ16から流出させることができる。
 図6は、実施の形態1の比較例に係るレシーバ216を示す正面図である。図7は、実施の形態1の比較例に係るレシーバ216を示す上視図である。ここで、本実施の形態1のレシーバ16を比較例のレシーバ216と比較して説明する。図6及び図7に示すように、流入配管243の他端243b及び流出配管244の一端244aは、レシーバ216の上面部53を通して挿入され、そのまま下方に延びている。即ち、流入配管43の他端243b及び流出配管44の一端244aは、熱交換管31を中心とした円周Cに沿うように延びていない。このため、流入配管243から流入した冷媒は、図7の矢印E方向に流れる。その際に、冷媒は、レシーバ216の内部において自然対流となるため、液相の冷媒が液面Lに留まり、熱交換管31の周囲を旋回しない。即ち、中圧の気相の冷媒が熱交換管31に接触する面積は、増大しない。したがって、熱交換の内部を流れる冷媒とレシーバ216に溜められた冷媒との間での熱交換は促進されない。
 これに対し、本実施の形態1によれば、レシーバ16に冷媒を流入する流入配管43は、レシーバ16の内部に挿入され、熱交換管31を中心とした円周Cに沿うように延びている。このため、レシーバ16の内部において、流入配管43から流入する冷媒は、中央に設けられた熱交換管31の周囲を旋回する。この際、冷媒が気相と液相とに分離し、液相の冷媒は、中央が凹んで外周が盛り上がった渦をなす。即ち、中圧の気相の冷媒が熱交換管31に接触する面積が増大する。これにより、熱交換管31の内部を流れる低温且つ低圧の冷媒とレシーバ16に貯蔵された中温且つ中圧の冷媒との熱交換が促進され、レシーバ16から蒸発器側に流れる冷媒は、乾き度が低くなる。このため、凝縮器における熱交換量が増加する。したがって、冷凍サイクルの効率を向上させることができる。
実施の形態2.
 図8は、実施の形態2に係る空気調和機200を示す回路図である。図9は、実施の形態2に係るレシーバ116を示す正面図である。図8及び図9に示すように、本実施の形態2において、熱交換管131は、レシーバ116の内部と吸入配管181を連通させるバイパス配管である点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
 (吸入配管181、熱交換管131)
 吸入配管181は、実施の形態1と異なり、レシーバ116の内部に引き込まれていない。熱交換管131は、レシーバ116の内部と吸入配管181を連通させ、内部を冷媒が流れるバイパス配管である。熱交換管131の内部には、圧縮機11に吸入される冷媒が流れ、熱交換管131は、内部を流れる冷媒とレシーバ116に貯められた冷媒との間で熱交換を行う。熱交換管131の下部には、冷媒を減圧する減圧部182が設けられている。減圧部182は、例えば、オリフィス又は減圧弁等である。
 (冷房運転、暖房運転)
 ここで、空気調和機200の動作について、実施の形態1と異なる点を中心に説明する。冷房運転時及び暖房運転時のいずれの際においても、レシーバ116に貯留された液相の冷媒の一部は、熱交換管131の減圧部182を通って、減圧されつつ、図9の矢印F方向に汲み上げられる。この際に、熱交換管131を流れる低温且つ低圧の冷媒は、レシーバ116の内部において、熱交換管131の外側の中温且つ中圧の気相の冷媒と熱交換する。液相の冷媒は、乾き度が低くなると共に、熱交換管131に汲み上げられた分の流量が減少し、残りの冷媒がレシーバ116から流出する。熱交換管131を流れる冷媒は、過熱度が上昇し、吸入配管181に合流する。吸入配管181に合流した冷媒は、圧縮機11に吸入される。
 本実施の形態2によれば、レシーバ116の内部において、流入配管43から流入する冷媒は、中央に設けられた熱交換管131として機能するバイパス配管の周囲を旋回する。これにより、熱交換管131の内部を流れる低温且つ低圧の冷媒とレシーバ116に貯蔵された中温且つ中圧の冷媒との熱交換が促進され、レシーバ116から蒸発器側に流れる冷媒は、乾き度が低くなる。このため、凝縮器における熱交換量が増加する。したがって、冷凍サイクルの効率を向上させることができる。なお、この際に、レシーバ116から蒸発器側に流れる冷媒が失ったエンタルピは、熱交換管131の内部を流れる冷媒に移動されるため、冷凍サイクル全体として、熱量が維持されている。更に、レシーバ116から蒸発器側に流れる冷媒は、流量が減少している。したがって、空気調和機200は、凝縮器における圧力損失を軽減することで、圧縮機11の吸入圧力を上昇させ、冷凍サイクルの効率を更に向上させることができる。
 1 室外機、2 室内機、3 冷媒配管、4 冷媒回路、11 圧縮機、12 流路切替装置、13 室外熱交換器、14 室外送風機、15 膨張部、16 レシーバ、21 室内熱交換器、22 室内送風機、31 熱交換管、32 レシーバ配管、41 第一の膨張部、42 第二の膨張部、43 流入配管、43a 一端、43b 他端、44 流出配管、44a 一端、44b 他端、100 空気調和機、116 レシーバ、131 熱交換管、181 吸入配管、182 減圧部、200 空気調和機、216 レシーバ、243 流入配管、243a 一端、243b 他端、244 流出配管、244a 一端、244b 他端。

Claims (5)

  1.  圧縮機、凝縮器、膨張部、レシーバ及び蒸発器が配管により接続され、冷媒が流れる冷媒回路を備え、
     前記配管は、
     前記レシーバの内部の中央に設けられ、前記圧縮機に吸入される冷媒が内部に流れ、内部の冷媒と前記レシーバに貯められた冷媒との間で熱交換を行う熱交換管と、
     前記レシーバの内部に挿入されるレシーバ配管と、を有し、
     前記レシーバ配管は、
     一端が前記凝縮器に接続されると共に、他端が前記レシーバの内部において前記熱交換管の外周側に挿入され、前記レシーバに冷媒を流入する流入配管を有し、
     前記流入配管の他端は、
     前記熱交換管を中心とした円周に沿うように延びている
     空気調和機。
  2.  前記レシーバ配管は、
     一端が前記レシーバの内部において前記熱交換の外周側に挿入されると共に、他端が前記蒸発器に接続され、前記レシーバから冷媒を流出する流出配管を更に有し、
     前記流出配管の一端は、
     前記熱交換管を中心とした円周に沿うように延びている
     請求項1に記載の空気調和機。
  3.  前記レシーバ配管において、前記レシーバの内部に挿入された端部は、
     斜めに形成されている
     請求項1又は請求項2に記載の空気調和機。
  4.  前記熱交換管は、
     一端が前記蒸発器に接続され、他端が前記圧縮機に接続される吸入配管である
     請求項1~請求項3のいずれか1項に記載の空気調和機。
  5.  前記熱交換管は、
     前記レシーバの内部と前記圧縮機の吸入側に接続される吸入配管とを連通させ、内部を冷媒が流れると共に、下部に冷媒を減圧する減圧部が設けられたバイパス配管である
     請求項1~請求項3のいずれか1項に記載の空気調和機。
PCT/JP2019/028841 2019-07-23 2019-07-23 空気調和機 WO2021014566A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/028841 WO2021014566A1 (ja) 2019-07-23 2019-07-23 空気調和機
JP2021534455A JP7191230B2 (ja) 2019-07-23 2019-07-23 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028841 WO2021014566A1 (ja) 2019-07-23 2019-07-23 空気調和機

Publications (1)

Publication Number Publication Date
WO2021014566A1 true WO2021014566A1 (ja) 2021-01-28

Family

ID=74193286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028841 WO2021014566A1 (ja) 2019-07-23 2019-07-23 空気調和機

Country Status (2)

Country Link
JP (1) JP7191230B2 (ja)
WO (1) WO2021014566A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181090A (ja) * 2009-02-05 2010-08-19 Mitsubishi Electric Corp 気液分離器及びこの気液分離器を搭載した冷凍サイクル装置
JP2015078800A (ja) * 2013-10-17 2015-04-23 三菱電機株式会社 空気調和装置
JP2016114308A (ja) * 2014-12-16 2016-06-23 東芝キヤリア株式会社 中間圧レシーバおよび冷凍サイクル装置
WO2018173255A1 (ja) * 2017-03-24 2018-09-27 三菱電機株式会社 冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181090A (ja) * 2009-02-05 2010-08-19 Mitsubishi Electric Corp 気液分離器及びこの気液分離器を搭載した冷凍サイクル装置
JP2015078800A (ja) * 2013-10-17 2015-04-23 三菱電機株式会社 空気調和装置
JP2016114308A (ja) * 2014-12-16 2016-06-23 東芝キヤリア株式会社 中間圧レシーバおよび冷凍サイクル装置
WO2018173255A1 (ja) * 2017-03-24 2018-09-27 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JP7191230B2 (ja) 2022-12-16
JPWO2021014566A1 (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
EP2455689B1 (en) Air conditioner
US20050050910A1 (en) Air conditioner comprising heat exchanger and means for switching cooling cycle
KR102198311B1 (ko) 공기조화시스템
US9879921B2 (en) Heat exchanger and refrigeration cycle device including the heat exchanger
US20080092572A1 (en) Simultaneous cooling-heating multiple type air conditioner
WO2007102463A1 (ja) 冷凍装置
JP4118254B2 (ja) 冷凍装置
US20130055754A1 (en) Air conditioner
WO2000049346A1 (fr) Circuit de refroidissement a refrigerant
KR20100096857A (ko) 공기 조화기
JP2001349623A (ja) 冷凍装置
JPH07120076A (ja) 空気調和機
JP7113974B2 (ja) 空気調和機
WO2021014566A1 (ja) 空気調和機
JP2011202913A (ja) マルチ形空気調和装置
JP2010078165A (ja) 冷凍空調装置
US20160313036A1 (en) Subcooler and air conditioner including the same
JP5163161B2 (ja) 暖房用補助ユニットおよび空気調和装置
KR100803145B1 (ko) 공기조화기
JP2007093167A (ja) 空気調和機用液ガス熱交換器
JP2006029714A (ja) エジェクタサイクル
JP2006138612A (ja) ヒートポンプシステム
KR100770594B1 (ko) 냉난방 겸용 공기조화기
US20220404076A1 (en) Device having refrigerant cycle
EP4321820A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938584

Country of ref document: EP

Kind code of ref document: A1