WO2021013127A1 - 通信方法和通信装置 - Google Patents
通信方法和通信装置 Download PDFInfo
- Publication number
- WO2021013127A1 WO2021013127A1 PCT/CN2020/103034 CN2020103034W WO2021013127A1 WO 2021013127 A1 WO2021013127 A1 WO 2021013127A1 CN 2020103034 W CN2020103034 W CN 2020103034W WO 2021013127 A1 WO2021013127 A1 WO 2021013127A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rlc entity
- transmission mode
- rnti
- indication information
- entity
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/12—Setup of transport tunnels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0007—Control or signalling for completing the hand-off for multicast or broadcast services, e.g. MBMS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0011—Control or signalling for completing the hand-off for data sessions of end-to-end connection
- H04W36/0027—Control or signalling for completing the hand-off for data sessions of end-to-end connection for a plurality of data sessions of end-to-end connections, e.g. multi-call or multi-bearer end-to-end data connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/40—Connection management for selective distribution or broadcast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/26—Network addressing or numbering for mobility support
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/02—Data link layer protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
Definitions
- This application relates to the field of communication, and more specifically, to a communication method and communication device.
- Multicast transmission technology refers to a technology in which a network device sends the same data to multiple terminal devices at the same time, that is, point-to-multipoint transmission.
- the unicast transmission technology (or called the unicast transmission mode) refers to a technology in which a network device only sends to one terminal device at the same time for the same data, that is, point-to-point transmission.
- the network equipment and terminal equipment that communicate with each other have a certain protocol layer structure.
- the protocol layer structure can include the radio resource control (RRC) layer, the packet data convergence protocol (PDCP) layer, the radio link control (RLC) layer, and the media access control ( Protocol layers such as media access control (MAC) layer and physical layer (physics, PHY).
- RRC radio resource control
- PDCP packet data convergence protocol
- RLC radio link control
- Protocol layers such as media access control (MAC) layer and physical layer (physics, PHY).
- MAC media access control
- physics, PHY physical layer
- Each layer has corresponding functional entities to perform corresponding functions, for example, the PDCP layer corresponds to the PDCP entity, and the RLC layer corresponds to the RLC entity.
- a PDCP is configured to associate multiple RLC entities, and the multiple RLC entities include RLC entities corresponding to unicast transmission and RLC entities in multicast transmission.
- the data is transmitted through the RLC entity in the unicast transmission mode and/or the RLC entity in the multicast transmission mode.
- Flexible switching can be performed between the unicast transmission mode and the multicast transmission mode, which reduces the signaling overhead and time delay of the transmission mode switching, and can also improve the reliability of data transmission.
- a communication method is provided, and the execution subject of the method may be a first device or a chip applied to the first device.
- the first device may be a network device, or, in a scenario where a centralized unit (CU) and a distributed unit (DU) are separately provided, the first device may be a CU.
- the execution subject as the first device includes: the first device establishes a first RLC entity and a second RLC entity, the first RLC entity and the second RLC entity are associated with the first PDCP entity; the first device passes The first RLC entity and/or the second RLC entity sends first data.
- the first RLC entity corresponds to a unicast transmission mode
- the second RLC entity corresponds to a multicast transmission mode.
- the first device when the first device needs to switch the transmission mode, it does not need to release the original unicast transmission mode or multicast transmission mode configuration, and only needs to stop using the unicast transmission mode or multicast transmission. In this way, the flexible switching of different transmission modes can be completed, and no reconfiguration process is required, which reduces the signaling overhead and time delay of the transmission mode switching.
- different transmission methods can be used to repeatedly send and receive the same data, thereby improving the reliability of data transmission.
- the method further includes: the first device sends first indication information to the second device, where the first indication information is used to indicate that the third RLC entity of the second device corresponds to The unicast transmission mode and the fourth RLC entity of the second device correspond to the multicast transmission mode, wherein the third RLC entity and the fourth RLC entity are associated with a second PDCP entity.
- the first device notifies the second device of the type of each RLC entity among the multiple RLC entities, so that the second device establishes the third RLC entity and the fourth RLC entity, which can improve the second device establishment Accuracy and efficiency of the third RLC entity and the fourth RLC entity. Easy to implement and low complexity.
- the first indication information is used to indicate the type of the third RLC entity and the type of the fourth RLC entity; or, the first indication information includes the third RLC entity The corresponding radio network temporary identifier RNTI type information and the RNTI type information corresponding to the fourth RLC entity. In this implementation manner, the efficiency and accuracy of determining the third RLC entity and the fourth RLC entity by the second device can be improved, which is convenient for implementation.
- the RNTI type corresponding to the third RLC entity is a cell radio network temporary identifier C-RNTI
- the RNTI type corresponding to the fourth RLC entity is a group radio network temporary identifier G-RNTI .
- the method further includes: the first device sends second indication information to the second device, the second indication information being used to indicate the first radio bearer and the first radio bearer
- the first radio bearer includes the first PDCP entity
- the first transmission mode is: a unicast transmission mode, a multicast transmission mode, or a unicast and multicast transmission mode.
- the switching of the transmission mode between the first device and the second device can be quickly and flexibly realized, and the signaling overhead for indicating the switching of the transmission mode can be reduced.
- the second device can adjust the way of receiving data according to the instruction information, which can make the second device receive data more accurately, improve the reliability of data transmission, and reduce the waste of resources of the second device.
- the first device receives third indication information from a third device, where the third indication information is used to indicate that the first RLC entity corresponds to a unicast transmission mode and the first RLC entity.
- the second RLC entity corresponds to a multicast transmission mode, where the first device is a DU and the third device is a CU.
- flexible switching of the transmission mode of the first device can be realized.
- the third indication information is used to indicate the type of the first RLC entity and the type of the second RLC entity; or, the third indication information includes the first RLC entity The corresponding RNTI type information and the RNTI type information corresponding to the second RLC entity.
- the RNTI type corresponding to the first RLC entity is a cell radio network temporary identifier C-RNTI
- the RNTI type corresponding to the second RLC entity is a group radio network temporary identifier G-RNTI .
- the method further includes: the first device scrambles the data from the first RLC entity using the cell radio network temporary identification C-RNTI, and/or The transmission block TB of the data from the second RLC entity is scrambled with the group radio network temporary identification G-RNTI.
- the reliability and security of data transmission can be improved.
- a communication method is provided, and the execution subject of the method may be a second device or a chip applied to the second device.
- the second device may be a terminal device.
- the method includes: the second device establishes a third RLC entity and a fourth RLC entity, the third RLC entity and the fourth RLC entity are associated with the second PDCP entity; the second device passes The third RLC entity and/or the fourth RLC entity receive the first data; wherein, the third RLC entity corresponds to a unicast transmission mode, and the fourth RLC entity corresponds to a multicast transmission mode.
- the transmission mode when the transmission mode needs to be switched, it is only necessary to stop using the unicast transmission mode or the multicast transmission mode to complete the flexible switching of different transmission modes without the need for reconfiguration process, which reduces The signaling overhead and delay of the transmission mode switching.
- different transmission methods can be used to repeatedly receive the same data, thereby improving the reliability of data reception.
- the method further includes: the second device receives first indication information, where the first indication information is used to indicate that the third RLC entity corresponds to a unicast transmission mode and the fourth The RLC entity corresponds to the multicast transmission mode.
- the second device establishing a third RLC entity and a fourth RLC entity includes: the second device establishes the third RLC entity and the fourth RLC entity according to the first indication information.
- the first device notifies the second device of the type of each RLC entity among the multiple RLC entities, so that the second device establishes the third RLC entity and the fourth RLC entity, which can improve the second device establishment Accuracy and efficiency of the third RLC entity and the fourth RLC entity. Easy to implement and low complexity.
- the first indication information is used to indicate the type of the third RLC entity and the type of the fourth RLC entity; or, the first indication information includes the third RLC entity The corresponding radio network temporary identifier RNTI type information and the RNTI type information corresponding to the fourth RLC entity.
- the efficiency and accuracy of determining the third RLC entity and the fourth RLC entity by the second device can be improved, which is convenient for implementation.
- the RNTI type corresponding to the third RLC entity is a cell radio network temporary identifier C-RNTI
- the RNTI type corresponding to the fourth RLC entity is a group radio network temporary identifier G-RNTI .
- the method further includes: the second device receiving second indication information, where the second indication information is used to indicate the first radio bearer and the first radio bearer corresponding to the first radio bearer.
- Transmission mode the first radio bearer includes the second PDCP entity; the first transmission mode is: unicast transmission mode, multicast transmission mode, or unicast and multicast transmission mode.
- the switching of the transmission mode between the first device and the second device can be quickly and flexibly realized, and the signaling overhead for indicating the switching of the transmission mode can be reduced.
- the second device can adjust the way of receiving data according to the instruction information, which can make the second device receive data more accurately, improve the reliability of data transmission, and reduce the waste of resources of the second device.
- the method further includes: the second device stops listening to the first RNTI, and the first RNTI The RNTI is used to receive data transmitted in the first radio bearer using the multicast transmission mode, and the first radio bearer includes the second PDCP entity.
- the resource consumption of the second device can be saved.
- the second device can be made more power-saving and the use time of the second device can be extended.
- the method further includes: the second device submits the received first data scrambled with the cell radio network temporary identification C-RNTI to the third RLC entity, And/or, submit the received first data scrambled by using the group cell radio network temporary identifier G-RNTI to the fourth RLC entity.
- the reliability and security of data transmission can be improved.
- a communication device which includes a unit for executing the steps in the above first aspect or any possible implementation of the first aspect.
- a communication device in a fourth aspect, includes a unit for executing the steps in the above second aspect or any possible implementation of the second aspect.
- the communication device is a communication chip
- the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
- the communication device is a communication device (for example, a terminal device or an access network device or a core network device), and the communication chip may include a transmitter for sending information or data, and for receiving information or data Receiver.
- a communication device in a fifth aspect, includes at least one processor and a memory, the at least one processor acquires a program or instruction in the memory, and the at least one processor is used to execute the program or instruction to enable the communication device Perform the method in the above first aspect or any possible implementation of the first aspect.
- a communication device in a sixth aspect, includes at least one processor and a memory, the at least one processor acquires a program or instruction in the memory, and the at least one processor is used to execute the program or instruction to enable the communication device Perform the above second aspect or any possible implementation of the second aspect.
- a communication device in a seventh aspect, includes at least one processor and an interface circuit.
- the interface circuit is used by the at least one processor to obtain a program or instruction in at least one memory, and the at least one processor is used to execute the Programs or instructions to make the communication device execute the above first aspect or any possible implementation method of the first aspect.
- a communication device in an eighth aspect, includes at least one processor and an interface circuit.
- the interface circuit is used for the at least one processor to obtain a program or instruction in at least one memory, and the at least one processor is used for executing the Programs or instructions to make the communication device execute the above second aspect or the method in any possible implementation of the second aspect.
- a processor including: an input circuit, an output circuit, and a processing circuit.
- the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the first aspect to the second aspect, or the implementation of any one of the first aspect to the second aspect The method in the way.
- the foregoing processor may be a chip
- the input circuit may be an input pin
- the output circuit may be an output pin
- the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
- the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
- the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter
- the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
- the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
- a network device in a tenth aspect, includes the communication device provided in the third aspect, or the network device includes the communication device provided in the fifth aspect, or the network device includes the communication device provided in the seventh aspect. Communication device.
- a terminal device in an eleventh aspect, includes the communication device provided in the foregoing fourth aspect, or the terminal includes the communication device provided in the foregoing sixth aspect, or the terminal includes the foregoing eighth aspect. Communication device.
- a computer program product includes a computer program.
- the computer program product includes a computer program.
- the computer program is executed by a processor, it is used to execute the method in the first aspect or any possible implementation of the first aspect , Or execute the method in the second aspect or any possible implementation of the second aspect.
- a computer-readable storage medium stores a computer program, and when the computer program is executed, it is used to execute the first aspect or any possible implementation manner of the first aspect Or implement the second aspect or any possible implementation of the second aspect.
- one PDCP is configured to associate multiple RLC entities, and the multiple RLC entities include RLC entities corresponding to unicast transmission and RLC entities in multicast transmission.
- the data is transmitted through the RLC entity in the unicast transmission mode and/or the RLC entity in the multicast transmission mode.
- Flexible switching between unicast transmission mode and multicast transmission mode is possible without the need to switch transmission modes through RRC signaling reconfiguration, which reduces the signaling overhead and delay of transmission mode switching, and can also improve data transmission reliability.
- Figure 1 is a schematic diagram of data transmission in each layer of the protocol stack.
- Fig. 2 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application.
- Fig. 3 is a schematic interaction diagram of a communication method provided by an embodiment of the present application.
- FIG. 4 is a schematic diagram of an example of the protocol stack architecture of the first device and the second device according to an embodiment of the present application.
- Fig. 5 is a schematic interaction diagram of another example of a communication method provided by an embodiment of the present application.
- FIG. 6 is a schematic interaction diagram of another example of a communication method provided by an embodiment of the present application.
- FIG. 7 is a schematic interaction diagram of another example of a communication method provided by an embodiment of the present application.
- Fig. 8 is a schematic diagram of a communication device provided by an embodiment of the present application.
- FIG. 9 is a schematic diagram of another example of a communication device provided by an embodiment of the present application.
- Fig. 10 is a schematic diagram of a communication device provided by an embodiment of the present application.
- Fig. 11 is a schematic diagram of another example of a communication device provided by an embodiment of the present application.
- FIG. 12 is a schematic diagram of a terminal device provided by an embodiment of the present application.
- Fig. 13 is a schematic diagram of a network device provided by an embodiment of the present application.
- GSM Global System of Mobile Communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GSM Global System of Mobile Communication
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- UMTS Universal Mobile Telecommunication System
- WiMAX Worldwide Interoperability for Microwave Access
- 5G 5th Generation
- 5NR New Radio
- the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
- the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
- SIP Session Initiation Protocol
- WLL Wireless Local Loop
- PDA Personal Digital Assistant
- the network device in the embodiment of the application may be a device used to communicate with a terminal device.
- the network device may be a Global System of Mobile Communication (GSM) system or Code Division Multiple Access (CDMA)
- GSM Global System of Mobile Communication
- CDMA Code Division Multiple Access
- BTS Base Transceiver Station
- BTS base station
- NodeB, NB base station
- WCDMA Wideband Code Division Multiple Access
- Evolutional Base Station Evolution
- NodeB eNB, or eNodeB
- it can also be a wireless controller in Cloud Radio Access Network (CRAN) scenarios, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future
- CRAN Cloud Radio Access Network
- the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
- computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
- magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
- optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
- smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
- various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
- the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
- Network equipment a device capable of providing random access for terminal equipment or a chip that can be installed in the device, including but not limited to: evolved Node B (eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), access point (AP) in wireless fidelity (WIFI) system, wireless relay node, wireless backhaul node, transmission point ( transmission and reception point, TRP or transmission point, TP), etc., it can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations in the 5G system (including (Multiple Antenna Panels) Antenna panels may also be network nodes that constitute a gNB or transmission point, such as a baseband unit (BBU), or a distributed network
- Terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
- terminal devices include handheld devices and vehicle-mounted devices with wireless connection functions.
- terminal devices can be: mobile phones (mobile phones), tablets, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality (AR) equipment, industrial control (industrial control) wireless terminals, unmanned driving (self-driving) wireless terminals, remote medical surgery (remote medical surgery) wireless terminals, smart grid (smart grid) Wireless terminal, wireless terminal in transportation safety, wireless terminal in smart city, or wireless terminal in smart home, etc.
- MID mobile internet devices
- VR virtual reality
- AR augmented reality
- industrial control industrial control
- unmanned driving self-driving
- remote medical surgery remote medical surgery
- smart grid smart grid
- Multicast transmission technology or it can also be called multimedia broadcast multicast service (MBMS) technology, or it can also be called multicast transmission mode, which means that a certain service is sent to multiple The technology for sending data from a terminal device.
- MBMS multimedia broadcast multicast service
- multicast transmission modes which means that a certain service is sent to multiple The technology for sending data from a terminal device.
- MBSFN multimedia broadcast multicast service single frequency network
- SC-PTM single cell point to multipoint service
- the MBSFN mode means that multiple cells (such as multiple base stations) that are synchronized with each other in the MBSFN area transmit the same information to multiple terminal devices at the same time. From the perspective of the terminal device, the received data is a single superimposed data. It can improve the strength of the received signal and eliminate the interference between cells.
- the SC-PTM mode means that the MBMS service is only transmitted through one cell (for example, a base station), and a network device performs group scheduling on multiple terminal devices at the same time.
- the use of multicast transmission means that when a device sends the transport block (TB) corresponding to the protocol data unit (protocol data unit, PDU), it uses the packet radio network temporary identification (group radio) network temporary identifier, G-RNTI) scrambles the PDU, or scrambles the downlink control information (DCI) corresponding to the PDU, and at the same time, one or more devices perform scrambling on the same PDU according to the same G-RNTI Receiving; or using multicast to transmit PDUs can mean telling multiple devices the location of the same PDU in a semi-static manner, and multiple devices can receive the PDU at the same time; or using multicast to transmit PDUs can mean that the PDU is Transmission is carried out in the radio bearer established by multicast transmission or in a channel specially designed for multicast.
- group radio packet radio network temporary identification
- DCI downlink control information
- Receiving in a multicast transmission mode means that when sending in a multicast mode, one of the multiple receiving devices receives the PDU according to the G-RNTI; or one of the multiple receiving devices passes the multicast
- the radio bearer established by the transmission receives or receives PDUs on the channel used for multicast transmission.
- multicast is a specific method of multicast, therefore, multicast may also be referred to as multicast.
- Sending by unicast transmission means: when a device sends the TB corresponding to the PDU, it uses the cell network temporary identifier (C-RNTI) to scramble the PDU, or to The DCI corresponding to the PDU is scrambled, and only one device receives the same PDU according to the C-RNTI; or the unicast transmission of the PDU can mean that the PDU is transmitted in the radio bearer established for unicast transmission or in a dedicated unicast transmission.
- the channel is designed for transmission.
- Reception by unicast transmission means that when unicast transmission is used, the one receiving device receives PDUs according to C-RNTI; or the one device receives the PDU through the radio bearer established for unicast transmission or is used for unicast transmission. Broadcast transmission channel to receive.
- the network equipment and terminal equipment that communicate with each other have a certain protocol layer structure.
- the control plane protocol layer structure may include the functions of the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the physical layer.
- the user plane protocol layer structure may include the functions of the PDCP layer, the RLC layer, the MAC layer, and the physical layer.
- the physical layer is located at the lowest layer (layer one)
- the MAC layer, RLC, and PDCP belong to the second layer (layer two)
- the RRC belongs to the third layer (layer three).
- the PDCP layer may further include a service data adaptation protocol (SDAP) layer.
- SDAP service data adaptation protocol
- the radio access network device can include a centralized unit (CU) and a distributed unit (CU).
- CU distributed unit
- multiple DUs can be centrally controlled by one CU.
- CU and DU can be divided according to the protocol layers of the wireless network. For example, the functions of the PDCP layer and above are set in the CU, the protocol layers below the PDCP, and the functions of the RLC layer and MAC layer are set in the DU.
- this protocol layer is just an example, and it can also be divided in other protocol layers, for example, in the RLC layer.
- the functions of the RLC layer and above protocol layers are set in the CU, and the protocol layers below the RLC layer
- the functions are set in the DU; or, divided in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer Set in DU.
- it can also be divided in other ways, for example, by time delay, and functions that need to meet the delay requirement for processing time are set in the DU, and functions that do not need to meet the delay requirement are set in the CU.
- the upstream data transmission is taken as an example, as shown in Figure 1, which is a schematic diagram of data transmission in each layer of the protocol stack.
- the data first goes to the PDCP layer of the terminal device, is processed by the PDCP layer and then transmitted to the RLC layer and the MAC layer. After the MAC layer is processed, it is sent to the network device through the physical layer.
- the protocol layers that it passes through in turn are the physical layer, the MAC layer, the RLC layer, and the PDCP layer.
- the data in each radio bearer needs to be processed by various layers.
- Each layer has corresponding functional entities to perform corresponding functions, for example, the PDCP layer corresponds to the PDCP entity, the RLC layer corresponds to the RLC entity, and the MAC layer corresponds to the MAC entity.
- each radio bearer includes one PDCP entity and one or more RLC entities, and each RLC entity corresponds to a logical channel.
- One MAC entity corresponds to multiple logical channels, and the data in the logical channels can be multiplexed at the MAC layer, for example, multiplexed into the same data block at the MAC layer, and finally sent out through the physical layer.
- the transmission process of downlink data is similar.
- the data in a PDCP entity is only sent through one RLC entity.
- the data in this RLC entity is transmitted to the MAC entity for packetization, and then the physical layer
- the data packet is sent out, and multiple terminal devices receive the data packet. Assuming that some terminal devices do not receive data packets, packet loss will occur.
- Some services have higher requirements for data reliability. For example, in industrial scenarios or batch terminal equipment software update services, loss of data packets will cause software update failures, requiring re-update, which seriously affects the reliability of service transmission.
- the network device when the network device needs to switch between the multicast transmission mode and the unicast transmission mode, it needs to release the configuration of the original transmission mode through radio resource control (radio resource control, RRC) signaling, and then establish it through RRC signaling
- RRC radio resource control
- the present application provides a communication method that associates multiple RLC entities with one PDCP.
- the multiple RLC entities include RLC entities corresponding to unicast transmission and RLC entities in multicast transmission.
- the data is transmitted through the RLC entity in the unicast transmission mode and/or the RLC entity in the multicast transmission mode.
- Flexible switching between unicast transmission mode and multicast transmission mode is possible without the need to switch transmission modes through RRC signaling reconfiguration, which reduces the signaling overhead and delay of transmission mode switching, and can also improve data transmission reliability.
- Fig. 2 is a schematic diagram of a communication system suitable for an embodiment of the present application.
- the mobile communication system may include at least one wireless access network device 110 and at least one terminal device (the terminal devices 120, 130, 140, 150, 160 shown in FIG. 2).
- the terminal device is connected to the wireless access network device in a wireless manner, and the wireless access network device may be the aforementioned network device.
- At least one terminal device may send uplink data or information to the wireless access network device, and the wireless access network device 110 may also send downlink data or information to at least one terminal device.
- multiple terminal devices can also form a communication system.
- the terminal devices 140, 150, and 160 can form a communication system.
- the terminal device 140 can also send downlink data or information to the terminal devices 150 and 160. 160 may also send uplink data or information to the terminal device 140.
- the uplink and downlink data and information related to the URLLC service can be transmitted between the terminal equipment and the wireless access network equipment.
- Fig. 2 is only a schematic diagram, and the communication system may also include other network equipment and/or terminal equipment, which are not shown in Fig. 2.
- the embodiment of the present application does not limit the number of radio access network devices and terminals included in the mobile communication system.
- the wireless access network device 110 may be the aforementioned network device.
- the communication between network equipment and terminal equipment follows a certain protocol layer structure.
- Network equipment can include CU and DU, CU and DU can be set separately or centrally.
- the embodiments of the application are not limited here.
- FIG. 3 is a schematic flowchart of a communication method 200 according to an embodiment of the present application.
- the method 200 can be applied in the scenario shown in FIG. 2, for example, using multicast transmission. Mode transmission and/or use unicast transmission mode.
- the embodiments of the application are not limited here.
- the first device and the second device are used as an example to execute the method of each embodiment to describe the method of each embodiment.
- the first device may be the aforementioned access network device, and the second device may be the aforementioned terminal device. If the access network device adopts the CU and DU separate setting mode, the aforementioned first device may be the DU.
- the execution subject of the execution method may also be a chip applied in the first device and the second device.
- the method 200 shown in FIG. 3 may include step S210 to step S240.
- the steps in the method 200 are described in detail below with reference to FIG. 3.
- the method 200 includes:
- the first device establishes a first RLC entity and a second RLC entity, and the first RLC entity and the second RLC entity are associated with the first PDCP entity.
- the first RLC entity corresponds to a unicast transmission mode
- the second RLC entity corresponds to a multicast transmission mode.
- the second device establishes a third RLC entity and a fourth RLC entity, and the third RLC entity and the fourth RLC entity are associated with the second PDCP entity.
- the third RLC entity corresponds to a unicast transmission mode
- the fourth RLC entity corresponds to a multicast transmission mode.
- the first device sends the first data to the second device through the first RLC entity and/or the second RLC entity.
- S240 The second device receives the first data sent by the first device through the third RLC entity and/or the fourth RLC entity.
- the first device when it needs to send data (first data) to the second device, it will first establish multiple RLC entities in the protocol stack of the first device. These multiple RLC entities and one PDCP entity (First PDCP entity) association.
- the association of multiple RLC entities with the first PDCP entity can be understood as that the first PDCP entity and the multiple RLC entities belong to the same radio bearer, or the configuration of the first PDCP entity and the identity contained in the configuration of the multiple RLC entities (identify , ID) is the same, the identifier can be a radio bearer identifier.
- one RLC entity corresponds to one logical channel.
- RLC entity and "logical channel” can be regarded as equivalent concepts, and can be replaced with each other.
- it can also be described as a PDCP entity associated with multiple logical channels, or the first PDCP entity
- the configuration is the same as the ID contained in the configuration of the multiple logical channels.
- Other descriptions used for RLC entities are also applicable to the concept of logical channels; in addition, the concept of logical channels can also be considered as including the concept of RLC entities, or logical channels can be considered as interfaces or channels connecting RLC entities to MAC entities.
- the first device may establish multiple RLC entities associated with the first PDCP, and the multiple RLC entities include a first RLC entity and a second RLC entity.
- the first RLC entity corresponds to a unicast transmission mode
- the second RLC entity corresponds to a multicast transmission mode.
- the unicast transmission mode corresponding to the first RLC entity can be understood as the data in the first RLC entity will be sent using the unicast transmission mode.
- the second RLC entity corresponding to the multicast transmission mode can be understood as the data in the second RLC entity will be sent using the multicast transmission mode.
- the unicast transmission mode corresponding to the first RLC entity may also be referred to as the type of the first RLC entity being the unicast type, or the type of the logical channel corresponding to the first RLC entity being the unicast logical channel type.
- the unicast type RLC entity can be understood as the data in the first RLC entity is sent in unicast mode
- the unicast logical channel type can be understood as the data in the logical channel corresponding to the first RLC entity is sent in unicast mode.
- the second device will also establish multiple RLC entities in the protocol stack of the second device. Multiple RLC entities are associated with one PDCP entity (second PDCP entity) of the second device.
- the multiple RLC entities include a third RLC entity and a fourth RLC entity. Among them, the third RLC entity corresponds to a unicast transmission mode, and the fourth RLC entity corresponds to a multicast transmission mode.
- the unicast transmission mode corresponding to the third RLC entity can be understood as the data received in the third RLC entity is received in unicast mode, or the data received in the logical channel corresponding to the third RLC entity is received in unicast mode That is, the physical layer entity and the MAC layer entity in the second device need to submit the data received in the unicast transmission mode to the third RLC entity.
- the unicast transmission mode corresponding to the fourth RLC entity can be understood as the data received in the fourth RLC entity is received in multicast mode, or the data received in the logical channel corresponding to the fourth RLC entity is received in multicast mode That is, the physical layer entity and the MAC layer entity in the second device need to deliver the data received in the multicast transmission mode to the fourth RLC entity.
- first RLC entity there may be only one first RLC entity, or there may be multiple first RLC entities. Similarly, the number of the second RLC entity, the third RLC entity, and the fourth RLC entity may also be one or more.
- the first device sends the first data to the second device through the first RLC entity and/or the second RLC entity.
- the first device may only use the first RLC entity to send the first data to the second device (unicast transmission mode).
- the first device may only use the second RLC entity to send the first data to the second device (multicast transmission mode).
- the first device may use the first RLC entity and the second RLC entity to send the first data to the second device (unicast transmission mode and multicast transmission mode).
- the second device receives the first data sent by the first device through the third RLC entity and/or the fourth RLC entity.
- the second device when the first device only uses the first RLC entity to send the first data to the second device, the second device only uses the third RLC entity to receive the first data.
- the second device when the first device only uses the second RLC entity to send the first data to the second device, the second device only uses the fourth RLC entity to receive the first data.
- the second device receives the first data via the third RLC entity and the fourth RLC entity, that is, the second device can use unicast The transmission mode and the multicast transmission mode repeatedly receive the first data.
- the first device when the first device needs to switch the transmission mode, it does not need to release the original unicast transmission mode or the multicast transmission mode configuration, but only needs to stop using the unicast transmission mode or the multicast transmission mode. That is, flexible switching of different transmission modes can be completed, without the need to perform a reconfiguration process, and the signaling overhead and time delay of transmission mode switching can be reduced.
- different transmission methods can be used to repeatedly send and receive the same data, thereby improving the reliability of data transmission.
- FIG. 4 is a schematic diagram of an example of the protocol stack architecture of the first device and the second device according to an embodiment of the present application.
- the first PDCP entity of the first device network equipment
- the second PDCP entity of the second device is also associated with three RLC entities, where the first RLC entity and the third RLC entity are of unicast type, and the second RLC entity is of multicast type.
- the first device sends data to the second device, there can be three data transmission modes as follows:
- the first type only use unicast transmission (only use the first RLC entity). That is, the data of the first PDCP entity is submitted to the first RLC entity (the first RLC entity is: the first RLC entity of the network device, or the third RLC entity of the network device, or the first RLC entity and the first RLC entity of the network device) Three RLC entities).
- the data in the logical channel corresponding to the first RLC entity is sent to the terminal device for reception in a unicast manner. Specifically, after the data is packaged at the MAC layer, it is delivered to the physical layer, and the physical layer is scrambled by the radio network temporary identity (RNTI) corresponding to the first RLC entity and sent to the terminal device.
- RNTI radio network temporary identity
- the terminal device receives according to the assigned or predefined RNTI corresponding to the first RLC entity, and delivers the received unicast transmission data to the third RLC entity (the third RLC entity is: the first RLC of the terminal device Entity, or the third RLC entity of the terminal device, or the first RLC entity and the third RLC entity of the terminal device).
- the second type only use the multicast transmission mode (only use the second RLC entity), that is, the data of the first PDCP entity is delivered to the second RLC entity (the second RLC entity is: the second RLC entity of the network device), and the first 2.
- the data in the logical channel corresponding to the RLC entity is sent to a plurality of devices in a multicast manner for reception, and the plurality of devices include the terminal device.
- the data is packaged at the MAC layer, it is delivered to the physical layer, where it is scrambled by the RNTI corresponding to the second RLC entity and sent to multiple devices for reception.
- the terminal device receives according to the assigned or predefined RNTI corresponding to the second RLC entity, and delivers the received multicast transmission data to the fourth RLC entity (the fourth RLC entity is: the second RLC of the terminal device entity).
- the third type using unicast and multicast transmission methods (using the first RLC entity and the second RLC entity). That is, the data of the first PDCP entity is delivered to the first RLC entity and the second RLC entity (the first to third RLC entities of the network device). The data in the logical channel corresponding to the first RLC entity is sent to the terminal device in a unicast mode for reception, and the data in the logical channel corresponding to the second RLC entity is sent in a multicast mode to multiple devices for reception, and the multiple devices include the Terminal Equipment.
- the terminal device may receive according to the allocated or predefined RNTI corresponding to the first RLC entity and the second RLC entity respectively.
- FIG. 4 is only exemplary, and should not limit the number of multicast RLC entities and the number of unicast RLC entities in the embodiments of the present application, nor should it impose restrictions on the protocol stacks of the first device and the second device.
- the structure creates any restrictions.
- FIG. 5 is a schematic flowchart of a communication method in some embodiments of the present application, based on the method steps shown in FIG. 3 ,
- the method 200 further includes: S211.
- the first device sends first indication information to the second device, where the first indication information is used to indicate that the third RLC entity of the second device corresponds to a unicast transmission mode and the fourth RLC entity of the second device corresponds to a multicast transmission mode. .
- the second device establishing the third RLC entity and the fourth RLC entity includes:
- S221 The second device establishes the third RLC entity and the fourth RLC entity according to the first indication information.
- steps S210, S230, and S240 shown in FIG. 5 reference may be made to the above-mentioned related descriptions of S210, S230, and S240. For brevity, details are not repeated here.
- the first device may configure multiple RLC entity types for the second device.
- the first device may send first indication information to the second device.
- the first indication information is used to indicate that the third RLC entity of the second device corresponds to the unicast transmission mode and the fourth RLC entity of the second device corresponds to the multicast transmission mode. . That is, the first device indicates the type of each RLC entity among the multiple RLC entities of the second device to the second device through the first indication information.
- the type of the RLC entity in the RLC entity (or the type of the logical channel corresponding to the RLC entity) may be a unicast type or a multicast type.
- the data received in the unicast type RLC entity is received in unicast mode, and the data received in the multicast type RLC entity is received in multicast mode.
- the second device can determine which or which RLC entity is a multicast type RLC entity among the multiple RLC entities of the second device according to the first indication information (fourth RLC entities), which or which RLC entities are unicast-type RLC entities (third RLC entities), and further establish a third RLC entity and a fourth RLC entity.
- the first device notifies the second device of the type of each RLC entity among the multiple RLC entities, so that the second device establishes the third RLC entity and the fourth RLC entity, which can improve the establishment of the third RLC entity and the fourth RLC entity by the second device.
- RLC entity accuracy and efficiency Easy to implement and low complexity.
- the first indication information is used to indicate the type of the third RLC entity and the type of the fourth RLC entity.
- the type of the RLC entity may also be referred to as the type of the logical channel corresponding to the RLC entity. For example, if it is indicated that the type of a certain RLC is a unicast type of RLC entity, the RLC entity corresponds to the unicast transmission mode and is the third RLC entity. If it is indicated that the type of a certain RLC is an RLC entity of a multicast type, the RLC entity corresponds to the multicast transmission mode and is the fourth RLC entity.
- the second device determines that the third RLC entity (corresponding to the unicast transmission mode) and the fourth RLC entity (corresponding to the multicast transmission mode) correspond to the multicast transmission mode.
- the efficiency and accuracy of determining the third RLC entity and the fourth RLC entity by the second device can be improved, which is convenient for implementation.
- the first indication information includes the RNTI type information of the radio network temporary identifier corresponding to the third RLC entity and the RNTI type information corresponding to the fourth RLC entity.
- the RNTI type information corresponding to the third RLC entity and the RNTI type information corresponding to the fourth RLC entity may also be indicated.
- Different types of RNTI pairs use different types of RNTI entities. For example, if the (bound) RNTI corresponding to a certain RLC entity is the first RNTI, and the first RNTI corresponds to the unicast transmission mode, then the RLC entity corresponds to the unicast transmission mode and is the third RLC entity.
- the second device receives the data scrambled by the first RNTI and delivers it to the third RLC entity.
- the RLC entity corresponds to the multicast transmission mode and is the fourth RLC entity.
- the second device receives the data scrambled by the second RNTI and delivers it to the fourth RLC entity. If the third RLC entity and the fourth RLC entity respectively contain multiple RLC entities, the second device may first select the RLC entity type according to the bound RNTI type, and then select and submit to the RLC entity according to the logical channel number carried in the received data A specific RLC entity among the third RLC entity or the fourth RLC entity.
- each RLC entity may correspond to a logical channel number (or may also be referred to as a logical channel number).
- the corresponding transmission mode is determined according to the RNTI type, which is convenient for implementation.
- the RNTI corresponding to the first RLC entity may also be used to scramble data.
- the data transmitted through the first RLC entity is scrambled by the first RNTI at the physical layer and sent to the second device.
- the data transmitted through the second RLC entity is scrambled by the second RNTI at the physical layer and sent to the second device.
- the RNTI type corresponding to the first RLC entity and the third RLC entity may be a cell radio network tempory identity (C-RNTI), which is similar to the second RLC entity and the fourth RLC entity.
- C-RNTI cell radio network tempory identity
- the RNTI type corresponding to the entity may be a group radio network temporary identity (group Radio Network Temporary Identity, G-RNTI).
- G-RNTI group Radio Network Temporary Identity
- the data from the first RLC entity is first submitted to the MAC layer to form a media access control protocol data unit (MAC PDU), and then submitted to the physical layer for processing, and becomes a transport block (transport). block, TB), and then the first device sends the transport block (transport block, TB) containing the data in the first RLC entity to the second device after being scrambled by the C-RNTI.
- the first device may also use C-RNTI to scramble the downlink control information (downlink control information, DCI) corresponding to the transport block and send it to the second device.
- DCI downlink control information
- the data from the second RLC entity is first submitted to the MAC layer to form a MAC PDU, and then submitted to the physical layer for processing, and then becomes a transport block (TB). Then the first device will include the data in the second RLC entity
- the transport block (TB) of the data is sent to the second device after being scrambled by G-RNTI.
- the first device may also use G-RNTI to scramble the downlink control information (DCI) corresponding to the transport block and send it to the second device;
- DCI downlink control information
- the RNTI corresponding to the first RLC entity and the third RLC entity may be other types of RNTI, and this type of RNTI is used to scramble data in a unicast transmission mode.
- the RNTI corresponding to the second RLC entity and the fourth RLC entity may also be other types of RNTIs, and the RNTIs of this type are used to scramble data in a multicast transmission manner. This application is not restricted here.
- FIG. 3 is a schematic flowchart of a communication method in some embodiments of the present application, based on the method steps shown in FIG. 3. , The method 200 further includes: S231.
- the first device sends second indication information to the second device, where the second indication information is used to indicate the first radio bearer and the first transmission mode corresponding to the first radio bearer, and the first radio bearer includes the first PDCP entity;
- the first transmission mode is: a unicast transmission mode, a multicast transmission mode, or a unicast and multicast transmission mode.
- steps S210, S220, S230, and S240 shown in FIG. 6 reference may be made to the above-mentioned related descriptions of S210, S220, S230, and S240. For the sake of brevity, details are not repeated here.
- the first device can send second indication information to the second device.
- the second indication information is used to indicate the first radio bearer and the The first transmission mode corresponding to the first radio bearer. That is, instruct the second device which transmission mode to use to send data.
- the first radio bearer may include a first PDCP entity, an RLC entity associated with the first PDCP entity (a first RLC entity and a second RLC entity), and a second PDCP entity, an RLC entity associated with the second PDCP entity ( The third RLC entity and the fourth RLC entity).
- the configuration information of the first radio bearer is associated with the configuration information of the second PDCP entity and the configuration information of the RLC entity associated with the second PDCP entity.
- the association may include the same identifier in the configuration information, and the identifier may be a radio bearer identifier. Since there may be multiple radio bearers between the first device and the second device, the transmission mode corresponding to each radio bearer may be different. For example, radio bearer 1 adopts unicast transmission, and radio bearer 2 adopts multicast transmission. Therefore, the second indication information first needs to indicate which radio bearer or several radio bearers are targeted. Assuming that it is for the first radio bearer, the data transmission mode between the corresponding first device and the second device in the first radio bearer is indicated, that is, the data transmission mode (first transmission mode) corresponding to the first bearer is determined.
- the second indication information may include a radio bearer identifier, which is used to indicate the first radio bearer.
- the second indication information includes a bitmap (bitmap), and the radio bearer is implicitly indicated by using the correspondence between the position of each bit included in the bitmap and the radio bearer.
- bitmap bitmap
- the radio bearer is implicitly indicated by using the correspondence between the position of each bit included in the bitmap and the radio bearer.
- the value of the bit position is 0 or 1 representing different transmission modes.
- the first transmission mode includes: unicast transmission mode, multicast transmission mode, or unicast and multicast transmission mode.
- the unicast transmission mode can be understood as that the first device only uses the first RLC entity to send data, and the second device only uses the third RLC entity to receive data.
- the multicast transmission mode can be understood as that the first device only uses the second RLC entity to send data, and the second device only uses the fourth RLC entity to receive data.
- the unicast and multicast transmission modes can be understood as that the first device uses the first RLC entity and the second RLC entity to send data, and the second device uses the third RLC entity and the fourth RLC entity to receive data.
- the switching of the transmission mode between the first device and the second device can be realized quickly and flexibly, and the information used to indicate the switching of the transmission mode can be reduced. Order overhead.
- the second device can adjust the way of receiving data according to the instruction information, which can make the second device receive data more accurately, improve the reliability of data transmission, and reduce the waste of resources of the second device.
- the second indication information may also indicate the second radio bearer and the second transmission mode used for all the second radio bearers.
- the second transmission mode includes: unicast transmission mode, multicast transmission mode, or unicast and multicast transmission mode. That is, the second indication information may indicate multiple radio bearers and the transmission mode respectively used for each bearer. The embodiments of the application are not limited here.
- the method shown in FIG. 6 may also include S211 and S221.
- S231 may also be included in the method shown in FIG. 5.
- the foregoing first indication information or second indication information may be carried in media access control element (MAC Control Element, MAC CE) signaling, radio resource control (radio resource control, RRC), RLC signaling, or downlink control Information (downlink control information, DCI).
- MAC Control Element media access control element
- RRC radio resource control
- RLC radio link control
- DCI downlink control Information
- the first indication information and the second indication information may also be carried in the signaling sent by other first devices to the second device.
- the specific transmission methods of the first indication information and the second indication information are different. Do restrictions.
- the second device when the first device only uses unicast transmission to transmit the first data, the second device stops monitoring the first RNTI, and the first RNTI is used to receive the multicast data in the first radio bearer. Data transmitted by the transmission method.
- the first device Taking the first RNTI as G-RNTI and the unicast transmission mode corresponding to C-RNTI as an example for description. If only the first data is transmitted by unicast transmission, that is, the first device only uses the first RLC entity to send the first data to the second device, and does not use the second RLC entity to send the first data to the second device, then the second device When only the third RLC entity receives the first data sent by the first device, and the second device does not receive the first data sent by the first device through the fourth RLC entity.
- the data sent by the first device through the first RLC entity is sent to the second device after being scrambled by the C-RNTI at the physical layer. The second device only needs to monitor the C-RNTI for data descrambling.
- the second device may not monitor (or stop monitoring) the G-RNTI. This can save the resource consumption of the second device. For example, the second device can be made more power-saving and the use time of the second device can be extended.
- the access network device has a CU-DU separated architecture.
- the first device may be a DU
- the third device may be a DU.
- the PDCP layer entity and the protocol layer entity above the PDCP layer entity may be set in the CU
- the RLC layer entity and the protocol layer entity below the RLC layer entity may be set in the DU.
- FIG. 7 is a schematic flowchart of a communication method in some embodiments of the present application. Based on the method steps shown in FIG. 3, the method 200 further includes: S209.
- the third device sends third indication information to the first device, where the third indication information is used to indicate the unicast transmission mode corresponding to the first RLC entity and the multicast transmission mode corresponding to the second RLC entity.
- the functions of the PDCP layer and the above protocol layers are set in the CU, and the protocol layers below the PDCP, that is, the functions of the RLC layer and the MAC layer are set in the DU.
- the CU needs to indicate the type of each RLC entity of the multiple RLC entities of the DU (the type of the logical channel corresponding to the RLC entity).
- the type of the RLC entity in the RLC entity may be a unicast type or a multicast type.
- the data in the unicast type RLC entity (first RLC entity) is sent in unicast mode
- the data in the multicast type RLC entity (second RLC entity) is sent in multicast mode.
- the third device (CU) notifies the type of each RLC entity of the multiple RLC entities of the first device (DU), so that the first device establishes the first RLC entity and the second RLC entity, which can improve the first device to establish the first RLC entity.
- the accuracy and efficiency of the first RLC entity and the second RLC entity are easy to implement and have low complexity.
- the third indication information is used to indicate the type of the first RLC entity and the type of the second RLC entity.
- the third indication information includes RNTI type information corresponding to the first RLC entity and RNTI type information corresponding to the second RLC entity.
- the RNTI type corresponding to the first RLC entity is C-RNTI
- the RNTI type corresponding to the second RLC entity is G-RNTI.
- the description of the third indication information can refer to the above description of the second indication information. For brevity, I won't repeat them here.
- the first device may be a DU
- the third device may be a DU.
- the third device may also send instruction information to the first device for notifying the first radio bearer and the first transmission corresponding to the first radio bearer the way.
- the first transmission mode is: unicast transmission mode, multicast transmission mode, or unicast and multicast transmission mode. That is, it indicates which transmission mode the first device uses when sending data to the second device.
- the unicast transmission mode can be understood as the first device using only the first RLC entity to send data
- the multicast transmission mode can be understood as the first device using only the second RLC entity to send data
- the unicast and multicast transmission modes can be understood as The first device uses the first RLC entity and the second RLC entity to send data.
- the third device may also notify by an implicit method. For example, the third device only delivers the data packet to the unicast logical channel in the first device, that is, it indicates the unicast transmission mode, and the unicast and multicast logical channels that are delivered to the first device at the same time are unicast and multicast. In the broadcast transmission mode, only the data packet is delivered to the multicast logical channel in the first device, that is, the multicast transmission mode is indicated.
- FIG. 5 or FIG. 6 may also include S209.
- one PDCP is configured to associate multiple RLC entities, and the multiple RLC entities include RLC entities corresponding to unicast transmission and RLC entities in multicast transmission.
- the data is transmitted through the RLC entity in the unicast transmission mode and/or the RLC entity in the multicast transmission mode.
- Flexible switching can be performed between unicast transmission mode and multicast transmission mode, and no reconfiguration process is required. Reduce the signaling overhead and delay of transmission mode switching. The reliability of data transmission can also be improved.
- first, the second, etc. are only for ease of description.
- first RLC entity and the second RLC entity are only used to indicate different RLC entities.
- the RLC entity itself and the number should not have any influence, and the above-mentioned first, second, etc. should not cause any limitation to the embodiments of the present application.
- pre-set and pre-defined can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including terminals and network devices). To achieve, this application does not limit its specific implementation.
- FIG. 8 shows a schematic block diagram of a communication device 300 according to an embodiment of the present application.
- the communication device 300 may correspond to the first device described in the above method 200, or may be a chip or component applied to the first device, and Each module or unit in the communication device 300 is respectively used to execute each action or processing procedure performed by the first device in the above method 200.
- the communication device 300 may include: a processing unit 310 and a communication unit 320.
- the processing unit 310 is configured to establish a first RLC entity and a second RLC entity, and the first RLC entity and the second RLC entity are associated with the first PDCP entity.
- the communication unit 320 is configured to send first data through the first RLC entity and/or the second RLC entity.
- the first RLC entity corresponds to a unicast transmission mode
- the second RLC entity corresponds to a multicast transmission mode
- the communication device when the communication device needs to switch the transmission mode, it does not need to release the original unicast transmission mode or the multicast transmission mode configuration, but only needs to stop using the unicast transmission mode or the multicast transmission mode. That is, flexible switching of different transmission modes can be completed, without the need to perform a reconfiguration process, and the signaling overhead and time delay of transmission mode switching can be reduced.
- different transmission methods can be used to repeatedly send the same data, thereby improving the reliability of data transmission.
- the communication unit 320 is further configured to: send first indication information to the second device, where the first indication information is used to indicate that the third RLC entity of the second device corresponds to unicast The transmission mode and the fourth RLC entity of the second device correspond to the multicast transmission mode, wherein the third RLC entity and the fourth RLC entity are associated with a second PDCP entity.
- the first indication information is used to indicate the type of the third RLC entity and the type of the fourth RLC entity; or, the first indication information includes the third RLC entity The corresponding radio network temporary identifier RNTI type information and the RNTI type information corresponding to the fourth RLC entity.
- the RNTI type corresponding to the third RLC entity is a cell radio network temporary identity C-RNTI
- the RNTI type corresponding to the fourth RLC entity is a group radio network temporary identity G-RNTI .
- the communication unit 320 is further configured to: send second indication information to the second device, where the second indication information is used to indicate the first radio bearer and the corresponding first radio bearer
- the first radio bearer includes the first PDCP entity; the first transmission mode is: a unicast transmission mode, a multicast transmission mode, or a unicast and multicast transmission mode.
- the communication unit 320 is further configured to: receive third indication information from a third device, where the third indication information is used to indicate that the first RLC entity corresponds to a unicast transmission mode Corresponding to the second RLC entity in a multicast transmission mode.
- the third indication information is used to indicate the type of the first RLC entity and the type of the second RLC entity; or, the third indication information includes the first RLC entity The corresponding RNTI type information and the RNTI type information corresponding to the second RLC entity.
- the RNTI type corresponding to the first RLC entity is the cell radio network temporary identifier C-RNTI
- the RNTI type corresponding to the second RLC entity is the group radio network temporary identifier G-RNTI .
- the processing unit 310 is further configured to: scramble the data from the first RLC entity by using the cell radio network temporary identification C-RNTI, and/or send it from The transmission block TB of the data in the second RLC entity is scrambled using the group radio network temporary identification G-RNTI.
- the communication unit 320 may include a receiving unit (module) and a sending unit (module), which are used to execute each embodiment of the aforementioned method 200 and the first embodiment shown in FIG. 3, FIG. 5, FIG. 6 and FIG. The steps of a device receiving information and sending information.
- the communication device 300 may further include a storage unit 330 for storing instructions executed by the processing unit 310 and the communication unit 320.
- the processing unit 310, the communication unit 320, and the storage unit 330 are in communication connection.
- the storage unit 330 stores instructions.
- the processing unit 310 is used to execute the instructions stored in the storage unit 330.
- the communication unit 320 is used to perform specific signal transceiving under the driving of the processing unit 310. .
- the communication unit 320 may be a transceiver, an input/output interface, or an interface circuit.
- the storage unit 330 may be a memory.
- the processing unit 310 may be implemented by a processor. As shown in FIG. 9, the communication device 400 may include a processor 410, a memory 420, and a transceiver 430.
- the communication device 300 shown in FIG. 8 or the communication device 400 shown in FIG. 9 can implement various embodiments of the aforementioned method 200 and the steps performed by the first device in the embodiments shown in FIG. 3, FIG. 5, FIG. 6 and FIG. 7 .
- the communication device 300 shown in FIG. 8 or the communication device 400 shown in FIG. 9 may be a network device, or in a scenario where the CU-DU is separated, it may be a DU, and the aforementioned third device is a CU.
- FIG. 10 shows a schematic block diagram of a communication device 500 according to an embodiment of the present application.
- the communication device 500 may correspond to the method 200 and the second device described above, or may be a chip or component applied to the second device, and Each module or unit in the communication device 500 is respectively used to execute each action or processing procedure performed by the second device of the method 200.
- the communication device 500 may include: a processing unit 510 and a communication unit 520.
- the processing unit 510 is configured to establish a third RLC entity and a fourth RLC entity, and the third RLC entity and the fourth RLC entity are associated with the second PDCP entity;
- the communication unit 520 is configured to receive first data through the third RLC entity and/or the fourth RLC entity;
- the third RLC entity corresponds to a unicast transmission mode
- the fourth RLC entity corresponds to a multicast transmission mode
- the communication device provided in this application needs to switch the transmission mode, it only needs to stop using the unicast transmission mode or the multicast transmission mode in it to complete the flexible switching of different transmission modes, without the need to perform the reconfiguration process, and reduce the transmission.
- the signaling overhead and delay of mode switching When using unicast transmission and multicast transmission at the same time, different transmission methods can be used to repeatedly receive the same data, thereby improving the reliability of data reception.
- the communication unit 520 is further configured to receive first indication information, where the first indication information is used to indicate that the third RLC entity corresponds to a unicast transmission mode and the fourth RLC entity Corresponding to the multicast transmission mode, the processing unit 510 is configured to establish the third RLC entity and the fourth RLC entity according to the first indication information.
- the first indication information is used to indicate the type of the third RLC entity and the type of the fourth RLC entity; or, the first indication information includes the third RLC entity The corresponding radio network temporary identifier RNTI type information and the RNTI type information corresponding to the fourth RLC entity.
- the RNTI type corresponding to the third RLC entity is a cell radio network temporary identity C-RNTI
- the RNTI type corresponding to the fourth RLC entity is a group radio network temporary identity G-RNTI .
- the communication unit 520 is further configured to receive second indication information, where the second indication information is used to indicate the first radio bearer and the first transmission mode corresponding to the first radio bearer ,
- the first radio bearer includes the second PDCP entity; the first transmission mode is: a unicast transmission mode, a multicast transmission mode, or a unicast and multicast transmission mode.
- the processing unit 510 when the communication unit 520 receives the first data only through the third RLC entity, the processing unit 510 is further configured to stop monitoring the first RNTI, and the first RNTI is used for Receiving data transmitted by the multicast transmission method in a first radio bearer, where the first radio bearer includes the second PDCP entity.
- the processing unit 510 is further configured to submit the received first data scrambled with the cell radio network temporary identifier C-RNTI to the third RLC entity, and/ Or, submit the received first data scrambled with the G-RNTI of the group cell radio network temporary identifier to the fourth RLC entity.
- the communication unit 520 may include a receiving unit (module) and a sending unit (module), which are used to execute the various embodiments of the aforementioned method 200 and the first embodiment shown in FIG. 3, FIG. 5, FIG. 6 and FIG. Steps of two devices receiving information and sending information.
- the communication device 500 may further include a storage unit 530 for storing instructions executed by the processing unit 510 and the communication unit 520.
- the processing unit 510, the communication unit 520, and the storage unit 530 are in communication connection.
- the storage unit 530 stores instructions.
- the processing unit 510 is used to execute the instructions stored in the storage unit 530.
- the communication unit 520 is used to perform specific signal transceiving under the driving of the processing unit 510. .
- the communication unit 520 may be a transceiver, an input/output interface, or an interface circuit.
- the storage unit 530 may be a memory.
- the processing unit 510 may be implemented by a processor. As shown in FIG. 11, the communication device 600 may include a processor 610, a memory 620, and a transceiver 630.
- the communication device 500 shown in FIG. 10 or the communication device 600 shown in FIG. 11 can implement the various embodiments of the aforementioned method 200 and the steps performed by the second device in the embodiments shown in FIGS. 3, 5, 6 and 7 .
- the communication device 500 shown in FIG. 10 or the communication device 600 shown in FIG. 11 may be a terminal device.
- each unit in the above device can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the units can be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
- each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
- it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
- the processing element may also be called a processor, and may be an integrated circuit with signal processing capability.
- each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
- the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple digital signal processors (digital signal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuits.
- ASIC application specific integrated circuits
- DSP digital signal processors
- FPGA field programmable gate arrays
- the unit in the device can be implemented in the form of a processing element scheduler
- the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
- CPU central processing unit
- these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
- FIG. 12 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application. It may be the second device in the above embodiment, and is used to implement the operation of the second device in the above embodiment.
- the terminal equipment includes: an antenna 710, a radio frequency device 720, and a baseband device 730.
- the antenna 710 is connected to the radio frequency device 720.
- the radio frequency device 720 receives information sent by the network device through the antenna 710, and sends the information sent by the network device to the baseband device 730 for processing.
- the baseband device 730 processes the information of the terminal device and sends it to the radio frequency device 720
- the radio frequency device 720 processes the information of the terminal device and sends it to the network device via the antenna 710.
- the baseband device 730 may include a modem subsystem, which is used to process the various communication protocol layers of data; it may also include a central processing subsystem, which is used to process the terminal operating system and application layer; in addition, it may also include other Subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
- the modem subsystem can be an independent chip.
- the above apparatus for the terminal may be located in the modem subsystem.
- the modem subsystem may include one or more processing elements 731, for example, including a main control CPU and other integrated circuits.
- the modem subsystem may also include a storage element 732 and an interface circuit 733.
- the storage element 732 is used to store data and programs, but the program used to execute the method executed by the terminal device in the above method may not be stored in the storage element 732, but is stored in a memory outside the modem subsystem.
- the interface circuit 733 is used to communicate with other subsystems.
- the above apparatus for terminal equipment may be located in a modem subsystem, which may be implemented by a chip.
- the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform any of the above terminal equipment executions.
- the interface circuit is used to communicate with other devices.
- the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
- the device for the terminal device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method executed by the terminal in the above method embodiment.
- the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
- the program for executing the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
- the processing element calls or loads the program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal in the above method embodiment.
- the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
- the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
- SOC system-on-a-chip
- FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application. It is used to realize the operation of the second device in the above embodiment.
- the network equipment includes an antenna 801, a radio frequency device 802, and a baseband device 803.
- the antenna 801 is connected to the radio frequency device 802.
- the radio frequency device 802 receives the information sent by the terminal through the antenna 801, and sends the information sent by the terminal device to the baseband device 803 for processing.
- the baseband device 803 processes the information of the terminal and sends it to the radio frequency device 802, and the radio frequency device 802 processes the information of the terminal device and sends it to the terminal via the antenna 801.
- the baseband device 803 may include one or more processing elements 8031, for example, a main control CPU and other integrated circuits.
- the baseband device 803 may also include a storage element 8032 and an interface 8033.
- the storage element 8032 is used to store programs and data; the interface 8033 is used to exchange information with the radio frequency device 802.
- the interface is, for example, a common public radio interface. , CPRI).
- the above apparatus for network equipment may be located in the baseband apparatus 803.
- the above apparatus for network equipment may be a chip on the baseband apparatus 803.
- the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
- the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
- the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
- the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
- the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device.
- the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
- the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-chip.
- the baseband device includes the SOC chip for implementing the above method.
- the terminal equipment and network equipment in each of the above device embodiments can completely correspond to the first device or the second device in the method embodiment, and the corresponding modules or units execute the corresponding steps.
- the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
- the above sending unit is an interface circuit of the device for sending signals to other devices.
- the sending unit is the chip for sending signals to other chips or devices.
- the interface circuit is an interface circuit of the device for sending signals to other devices.
- An embodiment of the present application also provides a communication system, which includes: the first device and the second device, or the first device, the second device, and the third device.
- the embodiment of the present application also provides a computer-readable medium for storing computer program code, and the computer program includes instructions for executing the communication method of the foregoing method 200 in the embodiment of the present application.
- the readable medium may be read-only memory (ROM) or random access memory (RAM), which is not limited in the embodiment of the present application.
- the present application also provides a computer program product, the computer program product includes instructions, when the instructions are executed, so that the first device and the second device perform operations corresponding to the above method of the first device and the second device .
- the embodiment of the present application also provides a chip located in a communication device.
- the chip includes a processing unit and a communication unit.
- the processing unit may be a processor, for example, and the communication unit may be an input/output interface, a pin, or Circuit etc.
- the processing unit can execute computer instructions to make the communication device execute any of the communication methods provided in the foregoing embodiments of the present application.
- the computer instructions are stored in a storage unit.
- the storage unit is a storage unit in the chip, such as a register, a cache, etc.
- the storage unit may also be a storage unit in the terminal located outside the chip, such as a read-only memory (ROM).
- ROM read-only memory
- RAM random access memory
- the processor mentioned in any one of the above may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the program of the above feedback information transmission method.
- the processing unit and the storage unit can be decoupled, respectively set on different physical devices, and connected in a wired or wireless manner to realize the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above-mentioned embodiments Various functions in.
- the processing unit and the memory may also be coupled to the same device.
- the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory may be ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM) , EEPROM) or flash memory.
- Volatile memory can be RAM, which acts as an external cache.
- RAM static RAM
- dynamic RAM dynamic RAM
- synchronous dynamic random access memory synchronous DRAM, SDRAM
- double data rate Synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
- enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
- synchronous link dynamic random access memory direct memory bus random access Access memory
- direct rambus RAM direct rambus RAM
- system and “network” in this article are often used interchangeably in this article.
- and/or in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
- the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
- uplink and downlink appearing in this application are used to describe the direction of data/information transmission in a specific scenario.
- the "uplink” direction generally refers to the direction or distribution of data/information from the terminal to the network side.
- the “downlink” direction generally refers to the direction in which data/information is transmitted from the network side to the terminal, or the direction from the centralized unit to the distributed unit.
- uplink and downlink “It is only used to describe the direction of data/information transmission.
- the specific start and end equipment of the data/information transmission is not limited.
- the methods in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
- the computer program product includes one or more computer programs or instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
- the computer program or instruction may be stored in a computer-readable storage medium, or transmitted through the computer-readable storage medium.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
- the disclosed system, device, and method may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种通信方法和通信装置,该方法包括:第一装置建立第一无线链路控制RLC实体和第二RLC实体,第一RLC实体和第二RLC实体关联第一分组数据汇聚协议PDCP实体;第一装置通过第一RLC实体和/或第二RLC实体发送第一数据。第一RLC实体对应单播传输方式,第二RLC实体对应多播传输方式。本申请提供的通信方法,通过配置一个PDCP关联对应单播传输方式的RLC实体和多播传输方式的RLC实体。通过单播传输方式的RLC实体和/或多播传输方式的RLC实体传输数据,在单播传输方式和多播传输方式之间可以进行灵活的切换,降低传输方式切换的信令开销和时延,提高数据传输的可靠性。
Description
本申请要求于2019年07月22日提交中国专利局、申请号为201910662838.X、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信领域,更为具体的,涉及一种通信方法和通信装置。
多播传输技术,是指网络设备同时向多个终端设备发送相同数据的技术,即点对多点传输。在采用多播技术传输时,针对同一数据,网络设备(例如基站)发送的过程中有多个终端设备同时进行接收。单播传输技术(或者称为单播传输方式),是指针对同一数据,一个网络设备同时只向一个终端设备发送的技术,即点对点传输。
相互通信的网络设备和终端设备具有一定的协议层结构。该协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层(physics,PHY)等协议层。每个层都有相应的功能实体来执行相应的功能,例如,PDCP层对应PDCP实体,RLC层对应RLC实体等。在网络设备和终端设备进行数据传输时,数据需要依次经过网络设备和终端设备上的各个层并在各个层进行相应的处理。
目前,网络设备和终端设备之间利用多播传输方式传输数据时,由于可能会发生传输失败,从而导致数据传输的可靠性比较低。另外,当网络设备需要在多播传输方式与单播传输方式之间切换的时候,需要通过RRC信令释放原有传输方式的配置,再通过RRC信令建立新的传输方式的配置,导致切换过程中信令的开销和时延都比较大,严重降低了通信效率。
发明内容
本申请提供了一种通信方法和通信装置,通过配置一个PDCP关联多个RLC实体,多个RLC实体包括对应单播传输方式的RLC实体和多播传输方式的RLC实体。在进行数据传输的时,通过单播传输方式的RLC实体和/或多播传输方式的RLC实体传输数据。在单播传输方式和多播传输方式之间可以进行灵活的切换,降低传输方式切换的信令开销和时延,还可以提高数据传输的可靠性。
第一方面,提供了一种通信方法,该方法的执行主体既可以是第一装置也可以是应用于第一装置的芯片。示例性的,第一装置可以为网络设备,或者,在集中单元(centralized unit,CU)和分布单元(distributed unit,DU)分离设置的场景中,第一装置可以为CU。 以执行主体为第一装置为例,该方法包括:第一装置建立第一RLC实体和第二RLC实体,该第一RLC实体和该第二RLC实体关联第一PDCP实体;该第一装置通过该第一RLC实体和/或第二RLC实体发送第一数据。其中,该第一RLC实体对应单播传输方式,该第二RLC实体对应多播传输方式。
第一方面提供的通信方法,在第一装置需要进行传输方式切换时,不需要释放掉原来单播传输方式或者多播传输方式的配置,只需要停止利用其中的单播传输方式或者多播传输方式即可以完成不同的传输方式的灵活切换,不需要进行重配置过程,降低传输方式切换的信令开销和时延。并且,在同时利用单播传输和多播传输方式时,可以利用不同的传输方式重复发送和接收同一数据,从而可以提高数据的传输的可靠性。
在第一方面的一种可能的实现方式中,该方法还包括:该第一装置向第二装置发送第一指示信息,该第一指示信息用于指示该第二装置的第三RLC实体对应单播传输方式以及该第二装置的第四RLC实体对应多播传输方式,其中,该第三RLC实体和该第四RLC实体关联第二PDCP实体。在该实现方式中,通过第一装置通知第二装置的多个RLC实体中每一个RLC实体的类型,从而使得第二装置建立第三RLC实体和第四RLC实体,可以提高第二装置建立第三RLC实体和第四RLC实体准确性以及效率。便于实现,复杂度低。
在第一方面的一种可能的实现方式中,该第一指示信息用于指示该第三RLC实体的类型以及该第四RLC实体的类型;或者,该第一指示信息包括该第三RLC实体对应的无线网络临时标识RNTI类型信息以及该第四RLC实体对应的RNTI类型信息。在该实现方式中,可以提高第二装置确定第三RLC实体和第四RLC实体的效率和准确性,便于实现。
在第一方面的一种可能的实现方式中,该第三RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,该第四RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
在第一方面的一种可能的实现方式中,该方法还包括:该第一装置向第二装置发送第二指示信息,该第二指示信息用于指示第一无线承载以及该第一无线承载对应的第一传输方式,该第一无线承载包含该第一PDCP实体;该第一传输方式为:单播传输方式、多播传输方式、或者单播和多播传输方式。在该实现方式中,可以快速灵活的实现第一装置和第二装置之间的传输方式的切换,降低用于指示传输方式的切换的信令开销。并且,第二装置可以根据指示信息调整接收数据的方式,可以使得第二装置更加准确的接收数据,提高数据传输的可靠性,降低了第二装置的资源浪费。
在第一方面的一种可能的实现方式中,该第一装置接收来自于第三装置的第三指示信息,该第三指示信息用于指示该第一RLC实体对应单播传输方式和该第二RLC实体对应多播传输方式,其中,第一装置为DU,第三装置为CU。在该实现方式中,可以实现第一装置传输方式的灵活切换。
在第一方面的一种可能的实现方式中,该第三指示信息用于指示该第一RLC实体的类型以及该第二RLC实体的类型;或者,该第三指示信息包括该第一RLC实体对应的RNTI类型信息以及该第二RLC实体对应的RNTI类型信息。
在第一方面的一种可能的实现方式中,该第一RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,该第二RLC实体对应的RNTI类型为组无线网络临时标识 G-RNTI。
在第一方面的一种可能的实现方式中,该方法还包括:该第一装置将来自于该第一RLC实体中的数据利用小区无线网络临时标识C-RNTI加扰,和/或,将来自于该第二RLC实体中的数据的传输块TB利用组无线网络临时标识G-RNTI加扰。在该实现方式中,可以提高数据传输的可靠性和安全性。
第二方面,提供了一种通信方法,该方法的执行主体既可以是第二装置也可以是应用于第二装置的芯片。示例性的,第二装置可以为终端设备。以执行主体为第二装置为例,该方法包括:第二装置建立第三RLC实体和第四RLC实体,该第三RLC实体和该第四RLC实体关联第二PDCP实体;该第二装置通过该第三RLC实体和/或第四RLC实体接收第一数据;其中,该第三RLC实体对应单播传输方式,该第四RLC实体对应多播传输方式。
第二方面提供的通信方法,在需要进行传输方式切换时,只需要停止利用其中的单播传输方式或者多播传输方式即可以完成不同的传输方式的灵活切换,不需要进行重配置过程,降低传输方式切换的信令开销和时延。在同时利用单播传输和多播传输方式时,可以利用不同的传输方式重复接收同一数据,从而可以提高数据接收的可靠性。
在第二方面的一种可能的实现方式中,该方法还包括:该第二装置接收第一指示信息,该第一指示信息用于指示该第三RLC实体对应单播传输方式以及该第四RLC实体对应多播传输方式,该第二装置建立第三RLC实体和第四RLC实体,包括:该第二装置根据第一指示信息,建立该第三RLC实体和该第四RLC实体。在该实现方式中,通过第一装置通知第二装置的多个RLC实体中每一个RLC实体的类型,从而使得第二装置建立第三RLC实体和第四RLC实体,可以提高第二装置建立第三RLC实体和第四RLC实体准确性以及效率。便于实现,复杂度低。
在第二方面的一种可能的实现方式中,该第一指示信息用于指示该第三RLC实体的类型以及该第四RLC实体的类型;或者,该第一指示信息包括该第三RLC实体对应的无线网络临时标识RNTI类型信息以及该第四RLC实体对应的RNTI类型信息。在该实现方式中,可以提高第二装置确定第三RLC实体和第四RLC实体的效率和准确性,便于实现。
在第二方面的一种可能的实现方式中,该第三RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,该第四RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
在第二方面的一种可能的实现方式中,该方法还包括:该第二装置接收第二指示信息,该第二指示信息用于指示第一无线承载以及该第一无线承载对应的第一传输方式,该第一无线承载包含该第二PDCP实体;该第一传输方式为:单播传输方式、多播传输方式、或者单播和多播传输方式。在该实现方式中,可以快速灵活的实现第一装置和第二装置之间的传输方式的切换,降低用于指示传输方式的切换的信令开销。并且,第二装置可以根据指示信息调整接收数据的方式,可以使得第二装置更加准确的接收数据,提高数据传输的可靠性,降低了第二装置的资源浪费。
在第二方面的一种可能的实现方式中,其特征在于,在仅通过该第三RLC实体接收该第一数据时,该方法还包括:该第二装置停止监听第一RNTI,该第一RNTI用于接收第一无线承载中利用该多播传输方式传输的数据,该第一无线承载包含该第二PDCP实 体。在该实现方式中,可以节省第二装置资源的消耗。例如,可以使得第二装置更加省电,延长第二装置的使用时间。
在第二方面的一种可能的实现方式中,该方法还包括:该第二装置将接收到的利用小区无线网络临时标识C-RNTI加扰的该第一数据递交给该第三RLC实体,和/或,将接收到的利用组小区无线网络临时标识G-RNTI加扰的该第一数据递交给该第四RLC实体。在该实现方式中,可以提高数据传输的可靠性和安全性。
第三方面,提供了一种通信装置,该装置包括用于执行以上第一方面或第一方面的任意可能的实现方式中各个步骤的单元。
第四方面,提供了一种通信装置,该装置包括用于执行以上第二方面或第二方面的任意可能的实现方式中各个步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,该通信装置为通信设备(例如,终端设备或接入网设备或者核心网设备),通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第五方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,该至少一个处理器获取存储器中的程序或指令,该至少一个处理器用于执行该程序或指令以使该通信装置执行以上第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,该至少一个处理器获取存储器中的程序或指令,该至少一个处理器用于执行该程序或指令以使该通信装置执行以上第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种通信装置,该装置包括至少一个处理器和接口电路,该接口电路用于该至少一个处理器获取至少一个存储器中的程序或指令,该至少一个处理器用于执行该程序或指令以使该通信装置执行以上第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信装置,该装置包括至少一个处理器和接口电路,该接口电路用于该至少一个处理器获取至少一个存储器中的程序或指令,该至少一个处理器用于执行该程序或指令以使该通信装置执行以上第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面至第二方面,或第一方面至第二方面中的任一方面中的各实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十方面,提供了一种网络设备,该网络设备包括上述第三方面提供的通信装置,或 者,该网络设备包括上述第五方面提供的通信装置,或者,该网络设备包括上述第七方面提供的通信装置。
第十一方面,提供了一种终端设备,该终端设备包括上述第四方面提供的通信装置,或者,该终端包括上述第六方面提供的通信装置,或者,该终端包括上述第八方面提供的通信装置。
第十二方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
第十三方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
根据本申请提供的方案,通过配置一个PDCP关联多个RLC实体,多个RLC实体包括对应单播传输方式的RLC实体和多播传输方式的RLC实体。在进行数据传输的时,通过单播传输方式的RLC实体和/或多播传输方式的RLC实体传输数据。在单播传输方式和多播传输方式之间可以进行灵活的切换,不需要通过RRC信令重配置进行传输模式的切换,降低传输方式切换的信令开销和时延,还可以提高数据传输的可靠性。
图1是数据传输在协议栈的各层传输的示意图。
图2是适用于本申请实施例的移动通信系统的架构示意图。
图3是本申请实施例提供的通信的方法的示意性交互图。
图4是本申请实施例提供的一例第一装置和第二装置的协议栈架构的示意图。
图5是本申请实施例提供的另一例通信方法的示意性交互图。
图6是本申请实施例提供的另一例通信方法的示意性交互图。
图7是本申请实施例提供的又一例通信方法的示意性交互图。
图8是本申请实施例提供的通信装置的示意图。
图9是本申请实施例提供的又一例通信装置的示意图。
图10是本申请实施例提供的通信装置的示意图。
图11是本申请实施例提供的又一例通信装置的示意图。
图12是本申请实施例提供的终端设备的示意图。
图13是本申请实施例提供的网络设备的示意图。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)、网络设备,具有能够为终端设备提供随机接入功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等。
2)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。
3)、多播传输技术,或者也可以称为多媒体广播多播业务(multimedia broadcast multicast service,MBMS)技术,或者也可以称为多播传输方式,是指某种业务通过网络设备同时向多个终端设备发送数据的技术。在采用多播技术传输时,针对同一数据,网络设备(例如基站)发送的过程中有多个终端设备同时进行接收。目前多播传输技术主要分为两种:多媒体广播多播单频网络业务(multimedia broadcast multicast service single frequency network,MBSFN)和单小区点到多点业务(single cell point to multipoint,SC-PTM)。其中,MBSFN方式是指在MBSFN区域内多个互相同步的小区(例如多个基站)同时向多个终端设备传输相同的信息,在终端设备看来接收到的是单一的叠加后的数据,这样可以提高接收信号的强度,同时消除了小区间的干扰。SC-PTM方式是指MBMS业务只通过一个小区(例如一个基站)传输,一个网络设备同时对多个终端设备进行组调度。
4)、采用多播(multicast)传输方式发送是指:某一装置发送协议数据单元(protocol data unit,PDU)对应的传输块(transport block,TB)时,采用分组无线网络临时标识(group radio network temporary identifier,G-RNTI)对PDU进行加扰,或对PDU对应的下行控制信息(downlink control information,DCI)进行加扰,同时有一个或者多个装置根据相同的G-RNTI对同一PDU进行接收;或者采用多播的方式传输PDU可以指通过半静态方式告诉多个装置同一PDU的位置,多个装置可以同时对该PDU进行接收;或者采用多播的方式传输PDU可以指该PDU在为多播传输建立的无线承载中传输或者在专门为多播设计的信道中进行传输。
采用多播传输方式接收是指采用多播方式发送的时候,所述多个接收装置中的一个装置根据G-RNTI对PDU进行接收;或者所述多个接收装置中的一个装置通过为多播传输建立的无线承载接收或者在用于多播传输的信道上进行接收PDU。
在本申请中,组播为多播的一种具体方式,因此,多播也可以称为组播。
5)、采用单播(unicast)传输的方式发送是指:某一装置发送PDU对应的TB时,采用小区无线网络临时标识(cell network temporary identifier,C-RNTI)对PDU进行加扰,或对PDU对应的DCI进行加扰,同时只有一个装置根据C-RNTI对同一PDU进行接收;或者采用单播的方式传输PDU可以指该PDU在为单播传输建立的无线承载中传输或者在专门为单播设计的信道中进行传输。
采用单播传输方式接收是指采用单播方式发送的时候,所述一个接收装置根据C-RNTI对PDU进行接收;或者所述一个装置通过为单播传输建立的无线承载接收或者在 用于单播传输的信道上进行接收。
6)、采用广播(broadcast)传输的方式发送和接收是指:某一装置在广播信道上发送PDU对应的TB,所有接收装置都可以在广播信道上对PDU进行接收。
相互通信的网络设备和终端设备具有一定的协议层结构。例如控制面协议层结构可以包括RRC层、PDCP层、RLC层、MAC层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能。其中,物理层位于最低层(层一),MAC层、RLC以及PDCP属于第二层(层二),RRC属于第三层(层三)。在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
这些协议层的功能可以由一个节点实现,或者可以由多个节点实现;例如,在一种演进结构中,无线接入网设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据无线网络的协议层划分,例如,PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,RLC层和MAC层等的功能设置在DU等。
应该理解的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
在网络设备和终端设备进行数据传输时,以上行数据传输为例,如图1所示的,图1为数据传输在协议栈的各层传输的示意图。数据首先到终端设备的PDCP层,经过PDCP层的处理以后传输到RLC层和MAC层,在MAC层经过处理之后,通过物理层发送给网络设备。网络设备接收数据时,依次经过的协议层为物理层、MAC层、RLC层和PDCP层。对于每个无线承载中的数据,都需要经过各个层的处理。每个层都有相应的功能实体来执行相应的功能,例如,PDCP层对应PDCP实体,RLC层对应RLC实体,MAC层对应MAC实体等。其中,每个无线承载包含一个PDCP实体以及一个或者多个RLC实体,每个RLC实体对应一个逻辑信道。一个MAC实体对应多个逻辑信道,逻辑信道中的数据在MAC层可以进行复用,例如在MAC层复用到同一个数据块中,最后通过物理层发送出去。对于下行数据的传输过程也是类似的。
目前,网络设备和终端设备之间利用多播传输方式传输数据时,一个PDCP实体中的数据只通过一个RLC实体发送,这个RLC实体中的数据传输到MAC实体进行组包,然后通过物理层将数据包发送出去,多个终端设备对此数据包进行接收。假设某些终端设备没有接收到数据包,就会产生丢包的情况。有的业务对数据的可靠性要求较高,例如,工业场景中的业务或者批量终端设备软件更新业务,有数据包丢失会导致软件更新失败,从而需要重新更新,严重影响业务传输的可靠性。另外,当网络设备需要在多播传输方式与单播传输方式之间切换的时候,需要通过无线资源控制(radio resource control,RRC)信令释放原有传输方式的配置,再通过RRC信令建立新的传输方式的配置,导致切换过程中信令的开销和时延都比较大,严重降低了通信效率。
有鉴于此,本申请提供了一种通信方法,通过配置一个PDCP关联多个RLC实体,多个RLC实体包括对应单播传输方式的RLC实体和多播传输方式的RLC实体。在进行数据传输的时,通过单播传输方式的RLC实体和/或多播传输方式的RLC实体传输数据。在单播传输方式和多播传输方式之间可以进行灵活的切换,不需要通过RRC信令重配置进行传输模式的切换,降低传输方式切换的信令开销和时延,还可以提高数据传输的可靠性。
为便于理解本申请实施例,首先结合图2简单介绍适用于本申请实施例的通信系统。
图2是适用于本申请实施例的通信系统的示意图。如图2所示,该移动通信系统可以包括至少一个无线接入网设备110和至少一个终端设备(如图2中所示的终端设备120、130、140、150,160)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备可以是上述的网络设备。至少一个终端设备可以发送上行数据或者信息给无线接入网设备,无线接入网设备110也可以将下行数据或者信息发送给至少一个终端设备。并且,多个终端设备也可以组成一个通信系统,例如,终端设备140、150,160可以组成一个通信系统,终端设备140也可以将下行数据或者信息发送给终端设备150和160,终端设备150和160也可以将上行数据或者信息发送给终端设备140。终端设备和无线接入网设备之间可以传输于URLLC业务相关的上行和下行数据以及信息等。
应理解。图2只是示意图,该通信系统中还可以包括其它网络设备和/或终端设备,在图2中未画出。本申请的实施例对该移动通信系统中包括的无线接入网设备和终端的数量不做限定。在移动通信系统中,无线接入网设备110可以是上述的网络设备。并且,网络设备和终端设备之间的通信遵循一定的协议层结构。例如,如图1所示的协议层架构。网络设备可以包括CU和DU,CU和DU可以分离设置,也可以集中设置。本申请实施例在此不作限制。
下面结合图3详细说明本申请提供通信方法,图3是本申请一个实施例的通信方法200的示意性流程图,该方法200可以应用在图2所示的场景中,例如,利用多播传输方式传输和/或利用单播传输方式传输的场景中。本申请实施例在此不作限制。
应理解,下文的描述中,以第一装置和第二装置作为各个实施例的执行方法的执行主体为例,对各个实施例的方法进行说明。第一装置可以为上述的接入网设备,第二装置可以为上述的终端设备,如果接入网设备采用的是CU和DU分离设置模式,上述的第一装置可以为DU。作为示例而非限定,执行方法的执行主体也可以是应用于第一装置、第二装置中的芯片。
如图3所示,图3中示出的方法200可以包括步骤S210至步骤S240。下面结合图3详细说明方法200中的各个步骤。该方法200包括:
S210,第一装置建立第一RLC实体和第二RLC实体,该第一RLC实体和该第二RLC实体关联第一PDCP实体。其中,该第一RLC实体对应单播传输方式,该第二RLC实体对应多播传输方式。
S220,第二装置建立第三RLC实体和第四RLC实体,该第三RLC实体和该第四RLC实体关联第二PDCP实体。其中,该第三RLC实体对应单播传输方式,该第四RLC实体对应多播传输方式。
S230,第一装置通过该第一RLC实体和/或第二RLC实体向第二装置发送第一数据。
S240,第二装置通过该第三RLC实体和/或第四RLC实体接收第一装置发送的第一数据。
具体而言,在S210中,第一装置需要向第二装置发送数据(第一数据)时,首先会在第一装置的协议栈中建立多个RLC实体,这多个RLC实体与一个PDCP实体(第一PDCP实体)关联。多个RLC实体与第一PDCP实体关联可以理解为第一PDCP实体和该多个RLC实体属于同一个无线承载,或者第一PDCP实体的配置和该多个RLC实体的配置里面包含的标识(identify,ID)相同,该标识可以是无线承载标识。其中,一个RLC实体对应一个逻辑信道。在本申请实施例的描述中,“RLC实体”和“逻辑信道”可以视为等同的概念,可以相互替换,例如,也可以描述成一个PDCP实体关联多个逻辑信道,或者第一PDCP实体的配置和该多个逻辑信道的配置里面包含的ID相同。其他用于RLC实体的描述也适用于逻辑信道概念;另外也可以认为逻辑信道概念包含RLC实体的概念,或者逻辑信道可以认为是连接RLC实体到MAC实体的接口或者通道。第一装置可以建立与第一PDCP关联的多个RLC实体,多个RLC实体包括第一RLC实体和第二RLC实体。其中,第一RLC实体对应单播传输方式,第二RLC实体对应多播传输方式。第一RLC实体对应单播传输方式可以理解为第一RLC实体中的数据会利用单播发送方式发送。第二RLC实体对应多播传输方式可以理解为第二RLC实体中的数据会利用多播发送方式发送。第一RLC实体对应单播传输方式也可以称为第一RLC实体的类型为单播类型,或者第一RLC实体对应的逻辑信道的类型为单播逻辑信道类型。其中,单播类型的RLC实体可以理解为第一RLC实体中的数据采用单播方式发送,单播逻辑信道类型可以理解为与第一RLC实体对应的逻辑信道中的数据采用单播方式发送。与第一装置类似的,在S220中,第二装置也会在第二装置的协议栈中建立多个RLC实体。多个RLC实体与第二装置的一个PDCP实体(第二PDCP实体)关联。多个RLC实体包括第三RLC实体和第四RLC实体。其中,第三RLC实体对应单播传输方式,第四RLC实体对应多播传输方式。第三RLC实体对应单播传输方式可以理解为第三RLC实体中接收的数据是利用单播方式接收的,或者,第三RLC实体对应的逻辑信道中接收的数据是利用采用单播方式接收的,即第二装置中的物理层实体和MAC层实体需要将采用单播传输方式接收到的数据递交给第三RLC实体。第四RLC实体对应单播传输方式可以理解为第四RLC实体中接收的数据是利用多播方式接收的,或者,第四RLC实体对应的逻辑信道中接收的数据是利用采用多播方式接收的,即第二装置中的物理层实体和MAC层实体需要将采用多播传输方式接收到的数据递交给第四RLC实体。
应理解,第一RLC实体的个数可以只有一个,或者可以有多个第一RLC实体。类似的,对于第二RLC实体、第三RLC实体以及第四RLC实体的个数也可是一个或者多个。
在S230中,第一装置通过第一RLC实体和/或第二RLC实体向第二装置发送第一数据。具体的,第一装置可以只利用第一RLC实体向第二装置发送第一数据(单播传输方式)。或者,第一装置可以只利用第二RLC实体向第二装置发送第一数据(多播传输方式)。或者,第一装置可以利用第一RLC实体和第二RLC实体向第二装置发送第一数据(单播传输方式和多播传输方式)。对应的,在S240中,第二装置通过第三RLC实体和/或第四RLC实体接收第一装置发送的第一数据。具体的,当第一装置只利用第一RLC实 体向第二装置发送第一数据时,第二装置只通过第三RLC实体接收第一数据。当第一装置只利用第二RLC实体向第二装置发送第一数据时,第二装置只通过第四RLC实体接收第一数据。当第一装置利用第一RLC实体和第二RLC实体向第二装置发送第一数据时,第二装置通过第三RLC实体和第四RLC实体接收第一数据,即第二装置可以利用单播传输方式和多播传输方式重复接收第一数据。
本申请提供的通信方法,在第一装置需要进行传输方式切换时,不需要释放掉原来单播传输方式或者多播传输方式的配置,只需要停止利用其中的单播传输方式或者多播传输方式即可以完成不同的传输方式的灵活切换,不需要进行重配置过程,降低传输方式切换的信令开销和时延。并且,在同时利用单播传输和多播传输方式时,可以利用不同的传输方式重复发送和接收同一数据,从而可以提高数据的传输的可靠性。
图4是本申请实施例提供的一例第一装置和第二装置的协议栈架构的示意图。如图4所示的,第一装置(网络设备)的第一PDCP实体关联3个RLC实体,其中第一个RLC实体和第三个RLC实体为单播类型,第二个RLC实体为多播类型。对于第二装置(终端设备)的第二PDCP实体也关联3个RLC实体,其中第一个RLC实体和第三个RLC实体为单播类型,第二个RLC实体为多播类型。在第一装置向第二装置发送数据时,可以有如下三种数据传输模式:
第一种:只利用单播传输方式(只利用第一RLC实体)。即第一PDCP实体的数据递交给第一RLC实体(第一RLC实体为:网络设备的第一个RLC实体,或者网络设备的第三个RLC实体,或者网络设备的第一个RLC实体和第三个RLC实体)。第一RLC实体对应的逻辑信道中的数据通过单播方式发送给终端设备接收。具体的,该数据在MAC层组包以后,递交到物理层,在物理层通过与第一个RLC实体对应的无线网络临时标识(radio network temporary identity,RNTI)加扰并发送给终端设备。终端设备根据分配的或者预定义的与第一RLC实体对应的RNTI进行接收,将接收到的单播传输方式的数据递交给第三RLC实体(第三RLC实体为:终端设备的第一个RLC实体,或者终端设备的第三个RLC实体,或者终端设备的第一个RLC实体和第三个RLC实体)。
第二种:只利用多播传输方式(只利用第二RLC实体),即第一PDCP实体的数据递交给第二RLC实体(第二RLC实体为:网络设备的第二个RLC实体),第二RLC实体对应的逻辑信道中的数据通过多播方式发送给多个装置接收,该多个装置包括该终端设备。具体的,数据在MAC层组包以后,递交到物理层,在物理层通过与第二RLC实体对应的RNTI加扰并发送给多个装置接收。终端设备根据分配的或者预定义的与第二RLC实体对应的RNTI进行接收,将接收到的多播传输方式的数据递交给第四RLC实体(第四RLC实体为:终端设备的第二个RLC实体)。
第三种:利用单播和多播传输方式(利用第一RLC实体和第二RLC实体)。即第一个PDCP实体的数据递交给第一RLC实体和第二RLC实体(网络设备的第一个至第三个RLC实体)。其中第一RLC实体对应的逻辑信道中的数据通过单播方式发送给终端设备接收,第二RLC实体对应的逻辑信道中的数据通过多播方式发送给多个装置接收,该多个装置包括该终端设备。具体的,第一RLC实体和第二个RLC实体对应的逻辑信道中数据在MAC层组包的时候,不会复用到同一个数据包中,因为后续需要做不同的处理。单播逻辑信道中的数据经过MAC层处理并递交到物理层以后,在物理层通过与第一RLC 实体对应的RNTI加扰并发送出去。多播逻辑信道中的数据经过MAC层处理并递交到物理层以后,在物理层通过与第二RLC实体对应的RNTI加扰并发送出去。终端设备可以分别根据分配的或者预定义的与第一RLC实体和第二个RLC实体对应的RNTI进行接收。
应理解,图4只是示例性的,不应该对本申请实施例中的多播RLC实体的个数和单播RLC实体的个数产生限制,也不应该对第一装置和第二装置的协议栈结构产生任何限制。
可选的,在本申请的一些可能的实现方式中,如图5所示,图5是本申请一些实施例中的通信方法的示意性流程图,在图3所示的方法步骤的基础上,该方法200还包括:S211。
S211,第一装置向第二装置发送第一指示信息,第一指示信息用于指示第二装置的第三RLC实体对应单播传输方式以及该第二装置的第四RLC实体对应多播传输方式。
上述的S220,第二装置建立第三RLC实体和第四RLC实体,包括:
S221,该第二装置根据第一指示信息,建立该第三RLC实体和该第四RLC实体。
图5所示的步骤S210、S230和S240可以参考上述对于S210、S230和S240的相关描述,为了简洁,这里不再赘述。
在S211中,第一装置可以为第二装置配置多个RLC实体的类型。例如,第一装置可以向第二装置发送第一指示信息,第一指示信息用于指示第二装置的第三RLC实体对应单播传输方式以及第二装置的第四RLC实体对应多播传输方式。即第一装置通过第一指示信息,向第二装置指示第二装置的多个RLC实体中每一个RLC实体的类型。RLC实体中RLC实体的类型(或者RLC实体对应的逻辑信道的类型)可以为单播类型或者多播类型。单播类型的RLC实体中接收的数据是利用单播方式接收的,多播类型的RLC实体中接收的数据是利用多播方式接收的。在S221中,第二装置接收到该第一指示信息后,便可以根据第一指示信息,在第二装置的多个RLC实体中确定哪些或者那个RLC实体为多播类型的RLC实体(第四RLC实体),哪些或者那个RLC实体为单播类型的RLC实体(第三RLC实体),进一步的建立第三RLC实体和第四RLC实体。
通过第一装置通知第二装置的多个RLC实体中每一个RLC实体的类型,从而使得第二装置建立第三RLC实体和第四RLC实体,可以提高第二装置建立第三RLC实体和第四RLC实体准确性以及效率。便于实现,复杂度低。
对于上述的第一指示信息,一种可能的实现方式为:第一指示信息用于指示该第三RLC实体的类型以及该第四RLC实体的类型。
具体的,可以通过指示第二装置的多个RLC实体中每一个RLC实体的类型来指示一个RLC实体对应单播传输方式还是对应多播传输方式。RLC实体的类型也可以称为RLC实体对应的逻辑信道的类型。例如,如果指示某一个RLC的类型为单播类型的RLC实体,则该RLC实体对应单播传输方式,为第三RLC实体。如果指示某一个RLC的类型为多播类型的RLC实体,则该RLC实体对应多播传输方式,为第四RLC实体。通过向第二装置指示每个RLC实体的类型,使得第二装置确定第三RLC实体(对应单播传输方式)以及第四RLC实体(对应多播传输方式)对应多播传输方式。可以提高第二装置确定第三RLC实体和第四RLC实体的效率和准确性,便于实现。
对于上述的第一指示信息,另一种可能的实现方式为:第一指示信息包括该第三RLC实体对应的无线网络临时标识RNTI类型信息以及该第四RLC实体对应的RNTI类型信 息。
具体而言,除了上述的直接指示每一个RLC实体的类型之外,还可以指示第三RLC实体对应的RNTI类型信息以及所第四RLC实体对应的RNTI类型信息。具体的,对于每一个RLC实体,可以与一种RNTI之间存在绑定或者对应关系。不同类型的RNTI对用不同类型的RNTI实体。例如,如果某一个RLC实体对应的(绑定的)RNTI为第一RNTI,而第一RNTI对应单播传输方式,则该RLC实体对应单播传输方式,为第三RLC实体。第二装置接收到利用第一RNTI加扰的数据,递交给第三RLC实体。如果某一个RLC实体对应的(绑定的)RNTI为第二RNTI,而第二RNTI对应多播传输方式,则该RLC实体对应多播传输方式,为第四RLC实体。第二装置接收到利用第二RNTI加扰的数据,递交给第四RLC实体。如果第三RLC实体和第四RLC实体中分别包含多个RLC实体,则第二装置可以先根据绑定的RNTI类型选择RLC实体类型,再根据接收到的数据中携带的逻辑信道号选择递交给第三RLC实体中或者第四RLC实体中的具体的某一个RLC实体。其中,每一个RLC实体可以对应一个逻辑信道号(或者也可以称为逻辑信道编号)。通过向第二装置指示每个RLC实体对应的RNTI类型,根据RNTI类型确定对应的传输方式,便于实现。
应理解,对于第一装置,也可以利用与第一RLC实体对应的RNTI加扰数据。例如,通过第一RLC实体传输的数据在物理层通过第一RNTI加扰后并发送给第二装置。通过第二RLC实体传输的数据在物理层通过第二RNTI加扰后并发送给第二装置。
作为一种可能的实现方式,与第一RLC实体和第三RLC实体对应的RNTI类型可以为小区无线网络临时标识(cell radio network tempory identity,C-RNTI),与第二RLC实体和第四RLC实体对应的RNTI类型可以为组无线网络临时标识(group Radio Network Temporary Identity,G-RNTI)。第一装置可以利用C-RNTI在物理层加扰来自于第一RLC实体的数据并发送给第二装置,利用G-RNTI在物理层加扰来自于第二RLC实体的数据并发送给第二装置。具体的,来自于第一RLC实体的数据首先递交给MAC层组成媒体接入控制协议数据单元(media access control protocol data unit,MAC PDU),然后递交给物理层处理后,变成传输块(transport block,TB),然后第一装置将包含第一RLC实体中的数据的传输块(transport block,TB)利用C-RNTI加扰后发送给第二装置。另外,第一装置还可能使用C-RNTI对所述传输块对应的下行控制信息(downlink control information,DCI)进行加扰后发送给第二装置。类似的,来自第二RLC实体的数据首先递交给MAC层组成MAC PDU,然后递交给物理层处理后,变成传输块(transport block,TB),然后第一装置将包含第二RLC实体中的数据的传输块(transport block,TB)利用G-RNTI加扰后发送给第二装置。另外,第一装置还可能使用G-RNTI对所述传输块对应的下行控制信息(downlink control information,DCI)进行加扰后发送给第二装置;
应理解,在本申请实施例中,与第一RLC实体和第三RLC实体对应的RNTI可以是其他类型的RNTI,该类型的RNTI用于加扰采用单播传输方式的数据。与第二RLC实体和第四RLC实体对应的RNTI也可以是其他类型的RNTI,该类型的RNTI用于加扰采用多播传输方式的数据。本申请在此不做限制。
可选的,在本申请的一些可能的实现方式中,如图6所示,图3是本申请一些实施例中的通信方法的示意性流程图,在图3所示的方法步骤的基础上,该方法200还包括:S231。
S231,第一装置向第二装置发送第二指示信息,该第二指示信息用于指示第一无线承载以及该第一无线承载对应的第一传输方式,该第一无线承载包含该第一PDCP实体;
该第一传输方式为:单播传输方式、多播传输方式、或者单播和多播传输方式。
图6所示的步骤S210、S220、S230和S240可以参考上述对于S210、S220、S230和S240的相关描述,为了简洁,这里不再赘述。
在S231中,由于第一装置在发送数据时可以利用不用的数据传输方式,因此,第一装置可以向第二装置发送第二指示信息,该第二指示信息用于指示第一无线承载以及该第一无线承载对应的第一传输方式。即向第二装置指示自己利用哪一种传输方式发送数据。其中,第一无线承载可以包括第一PDCP实体、与第一PDCP实体关联的RLC实体(第一RLC实体和第二RLC实体),以及第二PDCP实体、与第二PDCP实体关联的RLC实体(第三RLC实体和第四RLC实体)。或者第一无线承载的配置信息与第二PDCP实体的配置信息以及与第二PDCP实体关联的RLC实体的配置信息关联,关联可以是配置信息中包含相同的标识,该标识可以是无线承载标识。由于第一装置和第二装置之间可以存在多个无线承载,每个无线承载对应的传输方式可能是不一样的。例如,无线承载1采用单播传输方式,无线承载2采用多播传输方式。因此,第二指示信息首先需要指示针对的是哪一个或者哪几个无线承载。假设针对的是第一无线承载,则指示该第一无线承载中对应的第一装置和第二装置之间的数据传输方式,即确定第一承载对应的数据传输方式(第一传输方式)。例如,第二指示信息可以包括无线承载标识,用于指示第一无线承载。或者,第二指示信息包括一个比特位图(bitmap),利用比特位图包括的各个比特位的位置与无线承载的对应关系隐式指示无线承载。针对各个无线承载对应的数据传输方式,比如比特位的值为0或者1代表不同的传输方式。第二装置接收到该第二指示信息后,便可以根据传输方式,利用对应的RLC实体接收数据。
其中,第一传输方式包括:单播传输方式、多播传输方式、或者单播和多播传输方式。其中,单播传输方式可以理解为第一装置只利用第一RLC实体发送数据,第二装置只通过第三RLC实体接收数据。多播传输方式可以理解为第一装置只利用第二RLC实体发送数据,第二装置只通过第四RLC实体接收数据。单播和多播传输方式可以理解为第一装置利用第一RLC实体和第二RLC实体发送数据,第二装置通过第三RLC实体和第四RLC实体接收数据。
通过第一装置向第二装置发送用于指示传输方式的第二指示信息,可以快速灵活的实现第一装置和第二装置之间的传输方式的切换,降低用于指示传输方式的切换的信令开销。并且,第二装置可以根据指示信息调整接收数据的方式,可以使得第二装置更加准确的接收数据,提高数据传输的可靠性,降低了第二装置的资源浪费。
应理解,第二指示信息还可以指示第二无线承载以及用于所第二无线承载的第二传输方式。其中,第二传输方式包括:单播传输方式、多播传输方式、或者单播和多播传输方式。即第二指示信息可以指示多个无线承载以及分别用于每个承载的传输的方式。本申请实施例在此不作限制。
还应理解,图6所示的方法中也可以包括S211和S221。
还应理解,图5所示的方法中也可以包括S231。
上述的第一指示信息或者第二指示信息可以承载在媒体接入控制元素(MAC Control Element,MAC CE)信令、无线资源控制信令(radio resource control,RRC)、RLC信令、或者下行控制信息(downlink control information,DCI)中。应该理解,第一指示信息和第二指示信息还可以承载在其它第一装置向第二装置发送的信令中,本申请实施例中对于第一指示信息和第二指示信息的具体传输方式不做限制。
在本申请的一些实施例中,在第一装置只利用单播传输方式传输第一数据时,第二装置停止监听第一RNTI,该第一RNTI用于接收第一无线承载中利用该多播传输方式传输的数据。
以第一RNTI为G-RNTI、单播传输方式对应C-RNTI为例进行说明。如果只利用单播传输方式传输第一数据,即第一装置只利用第一RLC实体向第二装置发送第一数据,不利用第二RLC实体向第二装置发送第一数据,则第二装置只通过第三RLC实体接收第一装置发送的第一数据,第二装置不通过第四RLC实体接收第一装置发送的第一数据的情况下。第一装置通过第一RLC实体发送的数据在物理层通过C-RNTI加扰后发送给第二装置。第二装置只需要监听C-RNTI进行数据的解扰,由于没有利用G-RNTI加扰的数据,第二装置可以不监听(或者停止监听)G-RNTI。这样可以节省第二装置资源的消耗。例如,可以使得第二装置更加省电,延长第二装置的使用时间。
在本申请的一些实施例中,如果接入网设备为CU-DU分离的架构。第一装置可以为DU,第三装置可以为DU。例如,PDCP层实体以及PDCP层实体以上的协议层实体可以设置在CU中,RLC层实体以及RLC层实体以下的协议层实体可以设置在DU中。如图7所示,图7是本申请一些实施例中的通信方法的示意性流程图,在图3所示的方法步骤的基础上,该方法200还包括:S209。
S209,第三装置向第一装置发送第三指示信息,第三指示信息用于指示该第一RLC实体对应单播传输方式和该第二RLC实体对应多播传输方式。
具体而言,在CU-DU分离的场景中,例如,PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,即RLC层和MAC层等的功能设置在DU。CU需要指示DU的多个RLC实体中每一个RLC实体的类型(RLC实体对应的逻辑信道的类型)。RLC实体中RLC实体的类型可以为单播类型或者多播类型。单播类型的RLC实体(第一RLC实体)中的数据采用单播方式发送,多播类型的RLC实体(第二RLC实体)中的数据采用多播方式发送。通过第三装置(CU)通知第一装置(DU)的多个RLC实体中每一个RLC实体的类型,从而使得第一装置建立第一RLC实体和第二RLC实体,可以提高第一装置建立第一RLC实体和第二RLC实体准确性以及效率,便于实现,复杂度低。
对于上述的第三指示信息,一种可能的实现方式为:该第三指示信息用于指示该第一RLC实体的类型以及该第二RLC实体的类型。另一种可能的实现方式为:该第三指示信息包括该第一RLC实体对应的RNTI类型信息以及该第二RLC实体对应的RNTI类型信息。例如。第一RLC实体对应的RNTI类型为C-RNTI,第二RLC实体对应的RNTI类型为G-RNTI。与第二指示信息类似,对于第三指示信息的说明可以参考上述对于第二指示信息的说明。为了简洁,这里不再赘述。
应理解,在CU-DU分离的架构。第一装置可以为DU,第三装置可以为DU,在这种情况下,第三装置还可以向第一装置发送指示信息,用于通知第一无线承载以及第一无线承载对应的第一传输方式。第一传输方式为:单播传输方式、多播传输方式、或者单播和 多播传输方式。即指示第一装置在向第二装置发送数据时采用哪种传输方式。其中,单播传输方式可以理解为第一装置只利用第一RLC实体发送数据,多播传输方式可以理解为第一装置只利用第二RLC实体发送数据,单播和多播传输方式可以理解为第一装置利用第一RLC实体和第二RLC实体发送数据。从而可以实现第一装置传输方式的灵活切换。
还应理解,第三装置除了利用指示信息通知第二装置的第一无线承载以及第一无线承载对应的第一传输方式之外,还可以通过隐式的方法通知。例如,第三装置只将数据包递交给第一装置中的单播逻辑信道,即指示为单播传输方式,同时递交给第一装置中的单播和多播逻辑信道即是单播和多播传输方式,只将数据包递交给第一装置中的多播逻辑信道,即指示为多播传输方式。
应理解,图5或者图6所示的方法中也可以包括S209。
本申请提供的通信方法,通过配置一个PDCP关联多个RLC实体,多个RLC实体包括对应单播传输方式的RLC实体和多播传输方式的RLC实体。在进行数据传输的时,通过该单播传输方式的RLC实体和/或多播传输方式的RLC实体传输数据。在单播传输方式和多播传输方式之间可以进行灵活的切换,不需要进行重配置过程。降低传输方式切换的信令开销和时延。还可以提高数据的传输的可靠性。
应理解,在本申请的各个实施例中,第一、第二等只是为了便于描述。例如第一RLC实体和第二RLC实体只是为了表示出不同的RLC实体。而不应该RLC实体的本身和个数产生任何影响,上述的第一、第二等不应该对本申请的实施例造成任何限制。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化,例如,上述方法的各个实施例中某些步骤可以是不必须的,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本申请实施例中,“预先设定”、“预先定义”可以通过在设备(例如,包括终端和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
以上结合图1至图7对本申请实施例的通信方法做了详细说明。以下,结合图8至图13对本申请实施例通信装置进行详细说明。
图8示出了本申请实施例的通信装置300的示意性框图,该通信装置300可以对应上 述方法200中描述的第一装置,也可以是应用于第一装置的芯片或组件,并且,该通信装置300中各模块或单元分别用于执行上述方法200中第一装置所执行的各动作或处理过程,如图8所示,该通信装置300可以包括:处理单元310和通信单元320。
处理单元310用于:建立第一RLC实体和第二RLC实体,该第一RLC实体和该第二RLC实体关联第一PDCP实体。
通信单元320用于:通过该第一RLC实体和/或第二RLC实体发送第一数据。
其中,该第一RLC实体对应单播传输方式,该第二RLC实体对应多播传输方式。
本申请提供的通信装置,在该通信装置需要进行传输方式切换时,不需要释放掉原来单播传输方式或者多播传输方式的配置,只需要停止利用其中的单播传输方式或者多播传输方式即可以完成不同的传输方式的灵活切换,不需要进行重配置过程,降低传输方式切换的信令开销和时延。并且,在同时利用单播传输和多播传输方式时,可以利用不同的传输方式重复发送同一数据,从而可以提高数据的传输的可靠性。
可选的,在本申请的一些实施例中,通信单元320还用于:向第二装置发送第一指示信息,该第一指示信息用于指示该第二装置的第三RLC实体对应单播传输方式以及该第二装置的第四RLC实体对应多播传输方式,其中,该第三RLC实体和该第四RLC实体关联第二PDCP实体。
可选的,在本申请的一些实施例中,该第一指示信息用于指示该第三RLC实体的类型以及该第四RLC实体的类型;或者,该第一指示信息包括该第三RLC实体对应的无线网络临时标识RNTI类型信息以及该第四RLC实体对应的RNTI类型信息。
可选的,在本申请的一些实施例中,该第三RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,该第四RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
可选的,在本申请的一些实施例中,通信单元320还用于:向第二装置发送第二指示信息,该第二指示信息用于指示第一无线承载以及该第一无线承载对应的第一传输方式,该第一无线承载包含该第一PDCP实体;该第一传输方式为:单播传输方式、多播传输方式、或者单播和多播传输方式。
可选的,在本申请的一些实施例中,通信单元320还用于:接收来自于第三装置的第三指示信息,该第三指示信息用于指示该第一RLC实体对应单播传输方式和该第二RLC实体对应多播传输方式。
可选的,在本申请的一些实施例中,该第三指示信息用于指示该第一RLC实体的类型以及该第二RLC实体的类型;或者,该第三指示信息包括该第一RLC实体对应的RNTI类型信息以及该第二RLC实体对应的RNTI类型信息。
可选的,在本申请的一些实施例中,该第一RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,该第二RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
可选的,在本申请的一些实施例中,处理单元还310用于:将来自于该第一RLC实体中的数据利用小区无线网络临时标识C-RNTI加扰,和/或,将来自于该第二RLC实体中的数据的传输块TB利用组无线网络临时标识G-RNTI加扰。
应理解,通信装置300中各单元执行上述相应步骤的具体过程请参照前文中结合图3、 图5、图6和图7所示的实施例以及方法200中的相关实施例的第一装置相关的描述,为了简洁,这里不加赘述。
可选的,通信单元320可以包括接收单元(模块)和发送单元(模块),用于执行前述方法200的各个实施例以及图3、图5、图6和图7所示的实施例中第一装置接收信息和发送信息的步骤。可选的,通信装置300还可以包括存储单元330,用于存储处理单元310和通信单元320执行的指令。处理单元310、通信单元320和存储单元330通信连接,存储单元330存储指令,处理单元310用于执行存储单元330存储的指令,通信单元320用于在处理单元310的驱动下执行具体的信号收发。
应理解,通信单元320可以是收发器、输入/输出接口或接口电路。存储单元330可以是存储器。处理单元310可由处理器实现。如图9所示,通信装置400可以包括处理器410、存储器420和收发器430。
图8所示的通信装置300或图9所示的通信装置400能够实现前述方法200的各个实施例以及图3、图5、图6和图7所示的实施例中第一装置执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
图8所示的通信装置300或图9所示的通信装置400可以为网络设备,或者在CU-DU分离的场景中,可以为DU,上述的第三装置为CU。
图10示出了本申请实施例的通信装置500的示意性框图,该通信装置500可以对应上述方法200和描述的第二装置,也可以是应用于第二装置的芯片或组件,并且,该通信装置500中各模块或单元分别用于执行上述方法200第二装置所执行的各动作或处理过程,如图10所示,该通信装置500可以包括:处理单元510和通信单元520。
处理单元510,用于建立第三RLC实体和第四RLC实体,该第三RLC实体和该第四RLC实体关联第二PDCP实体;
通信单元520用于,通过该第三RLC实体和/或第四RLC实体接收第一数据;
其中,该第三RLC实体对应单播传输方式,该第四RLC实体对应多播传输方式。
本申请提供的通信装置,在需要进行传输方式切换时,只需要停止利用其中的单播传输方式或者多播传输方式即可以完成不同的传输方式的灵活切换,不需要进行重配置过程,降低传输方式切换的信令开销和时延。在同时利用单播传输和多播传输方式时,可以利用不同的传输方式重复接收同一数据,从而可以提高数据接收的可靠性。
可选的,在本申请的一些实施例中,通信单元520还用于,接收第一指示信息,该第一指示信息用于指示该第三RLC实体对应单播传输方式以及该第四RLC实体对应多播传输方式,处理单元510用于,根据第一指示信息,建立该第三RLC实体和该第四RLC实体。
可选的,在本申请的一些实施例中,该第一指示信息用于指示该第三RLC实体的类型以及该第四RLC实体的类型;或者,该第一指示信息包括该第三RLC实体对应的无线网络临时标识RNTI类型信息以及该第四RLC实体对应的RNTI类型信息。
可选的,在本申请的一些实施例中,该第三RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,该第四RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
可选的,在本申请的一些实施例中,通信单元520还用于,接收第二指示信息,该第 二指示信息用于指示第一无线承载以及该第一无线承载对应的第一传输方式,该第一无线承载包含该第二PDCP实体;该第一传输方式为:单播传输方式、多播传输方式、或者单播和多播传输方式。
可选的,在本申请的一些实施例中,在通信单元520只通过该第三RLC实体接收该第一数据时,处理单元510还用于,停止监听第一RNTI,该第一RNTI用于接收第一无线承载中利用该多播传输方式传输的数据,该第一无线承载包含该第二PDCP实体。
可选的,在本申请的一些实施例中,处理单元510还用于,将接收到的利用小区无线网络临时标识C-RNTI加扰的该第一数据递交给该第三RLC实体,和/或,将接收到的利用组小区无线网络临时标识G-RNTI加扰的该第一数据递交给该第四RLC实体。
应理解,通信装置500中各单元执行上述相应步骤的具体过程请参照前文中结合图3、图5、图6和图7所示的实施例以及方法200中的相关实施例的第二装置相关的描述,为了简洁,这里不加赘述。
可选的,通信单元520可以包括接收单元(模块)和发送单元(模块),用于执行前述方法200的各个实施例以及图3、图5、图6和图7所示的实施例中第二装置接收信息和发送信息的步骤。可选的,通信装置500还可以包括存储单元530,用于存储处理单元510和通信单元520执行的指令。处理单元510、通信单元520和存储单元530通信连接,存储单元530存储指令,处理单元510用于执行存储单元530存储的指令,通信单元520用于在处理单元510的驱动下执行具体的信号收发。
应理解,通信单元520可以是收发器、输入/输出接口或接口电路。存储单元530可以是存储器。处理单元510可由处理器实现。如图11所示,通信装置600可以包括处理器610、存储器620和收发器630。
图10所示的通信装置500或图11所示的通信装置600能够实现前述方法200的各个实施例以及图3、图5、图6和图7所示的实施例中第二装置执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
图10所示的通信装置500或图11所示的通信装置600可以为终端设备。
还应理解,以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。这里该处理元件又可以称为处理器,可以是一种具有信号处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可 以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图12示出了本申请实施例提供的一种终端设备的结构示意图。其可以为以上实施例中的第二装置,用于实现以上实施例中第二装置的操作。如图12所示,该终端设备包括:天线710、射频装置720、基带装置730。天线710与射频装置720连接。在下行方向上,射频装置720通过天线710接收网络设备发送的信息,将网络设备发送的信息发送给基带装置730进行处理。在上行方向上,基带装置730对终端设备的信息进行处理,并发送给射频装置720,射频装置720对终端设备的信息进行处理后经过天线710发送给网络设备。
基带装置730可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为一个独立的芯片。可选的,以上用于终端的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件731,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件732和接口电路733。存储元件732用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件732中,而是存储于调制解调子系统之外的存储器中。接口电路733用于与其它子系统通信。以上用于终端设备的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。
图13是本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中第二装置的操作。如图13所示,该网络设备包括:天线801、射频装置802、基带装置803。天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收终端发送的信息,将终端设备发送的信息发送给基带装置803进行处理。在下行方向上,基带装置803对终端的信息进行处理,并发送给射频装置802,射频装置802对终端设备的信息进 行处理后经过天线801发送给终端。
基带装置803可以包括一个或多个处理元件8031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置803还可以包括存储元件8032和接口8033,存储元件8032用于存储程序和数据;接口8033用于与射频装置802交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置803,例如,以上用于网络设备的装置可以为基带装置803上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的第一装置或者第二装置完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
本申请实施例还提供了一种通信系统,该通信系统包括:上述第一装置和上述第二装置,或者,第一装置、上述第二装置以及上述的第三装置。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法200本申请实施例的通信方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该第一装置和第二装置执行对应于上述方法的第一装置和第二装置的操作。
本申请实施例还提供了一种位于通信装置中的芯片,该芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使所述通信装置执行上述本申请实施例提供的任一种通信方法。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的反馈信息的传输方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该系统芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是RAM,其用作外部高速缓存。RAM有多种不同的类型,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端向网络侧传输的方向,或者分布式单元向集中式单元传输的方向,“下行”方向一般是指数据/信息从网络侧向终端传输的方向,或者集中式单元向分布式单元传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请的实施例中的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (39)
- 一种通信方法,其特征在于,包括:第一装置建立第一无线链路控制RLC实体和第二RLC实体,所述第一RLC实体和所述第二RLC实体关联第一分组数据汇聚协议PDCP实体;所述第一装置通过所述第一RLC实体和/或第二RLC实体发送第一数据;其中,所述第一RLC实体对应单播传输方式,所述第二RLC实体对应多播传输方式。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述第一装置向第二装置发送第一指示信息,所述第一指示信息用于指示所述第二装置的第三RLC实体对应单播传输方式以及所述第二装置的第四RLC实体对应多播传输方式,其中,所述第三RLC实体和所述第四RLC实体关联第二PDCP实体。
- 根据权利要求2的方法,其特征在于:所述第一指示信息用于指示所述第三RLC实体的类型以及所述第四RLC实体的类型;或者,所述第一指示信息包括所述第三RLC实体对应的无线网络临时标识RNTI类型信息以及所述第四RLC实体对应的RNTI类型信息。
- 根据权利要求3所述的方法,其特征在于,所述第三RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,所述第四RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
- 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:所述第一装置向第二装置发送第二指示信息,所述第二指示信息用于指示第一无线承载以及所述第一无线承载对应的第一传输方式,所述第一无线承载包含所述第一PDCP实体;所述第一传输方式为:单播传输方式、多播传输方式、或者单播和多播传输方式。
- 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:所述第一装置接收来自于第三装置的第三指示信息,所述第三指示信息用于指示所述第一RLC实体对应单播传输方式和所述第二RLC实体对应多播传输方式。
- 根据权利要求6所述的方法,其特征在于,所述第三指示信息用于指示所述第一RLC实体的类型以及所述第二RLC实体的类型;或者,所述第三指示信息包括所述第一RLC实体对应的RNTI类型信息以及所述第二RLC实体对应的RNTI类型信息。
- 根据权利要求7所述的方法,其特征在于,所述第一RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,所述第二RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:所述第一装置将来自于所述第一RLC实体中的数据利用小区无线网络临时标识C-RNTI加扰,和/或,将来自于所述第二RLC实体中的数据的传输块TB利用组无线网络临时标识G-RNTI加扰。
- 一种通信方法,其特征在于,包括:第二装置建立第三RLC实体和第四RLC实体,所述第三RLC实体和所述第四RLC实体关联第二PDCP实体;所述第二装置通过所述第三RLC实体和/或第四RLC实体接收第一数据;其中,所述第三RLC实体对应单播传输方式,所述第四RLC实体对应多播传输方式。
- 根据权利要求10所述的方法,其特征在于,所述方法还包括:所述第二装置接收第一指示信息,所述第一指示信息用于指示所述第三RLC实体对应单播传输方式以及所述第四RLC实体对应多播传输方式,所述第二装置建立第三RLC实体和第四RLC实体,包括:所述第二装置根据所述第一指示信息,建立所述第三RLC实体和所述第四RLC实体。
- 根据权利要求11的方法,其特征在于:所述第一指示信息用于指示所述第三RLC实体的类型以及所述第四RLC实体的类型;或者,所述第一指示信息包括所述第三RLC实体对应的无线网络临时标识RNTI类型信息以及所述第四RLC实体对应的RNTI类型信息。
- 根据权利要求12所述的方法,其特征在于,所述第三RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,所述第四RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
- 根据权利要求10至13中任一项所述的方法,其特征在于,所述方法还包括:所述第二装置接收第二指示信息,所述第二指示信息用于指示第一无线承载以及所述第一无线承载对应的第一传输方式,所述第一无线承载包含所述第二PDCP实体;所述第一传输方式为:单播传输方式、多播传输方式、或者单播和多播传输方式。
- 根据权利要求10至14中任一项所述的方法,其特征在于,在仅通过所述第三RLC实体接收所述第一数据时,所述方法还包括:所述第二装置停止监听第一RNTI,所述第一RNTI用于接收第一无线承载中利用所述多播传输方式传输的数据,所述第一无线承载包含所述第二PDCP实体。
- 根据权利要求10至15中任一项所述的方法,其特征在于,所述方法还包括:所述第二装置将接收到的利用小区无线网络临时标识C-RNTI加扰的所述第一数据递交给所述第三RLC实体,和/或,将接收到的利用组小区无线网络临时标识G-RNTI加扰的所述第一数据递交给所述第四RLC实体。
- 一种通信装置,其特征在于,包括:处理单元,用于建立第一无线链路控制RLC实体和第二RLC实体,所述第一RLC实体和所述第二RLC实体关联第一分组数据汇聚协议PDCP实体;通信单元,用于通过所述第一RLC实体和/或第二RLC实体发送第一数据;其中,所述第一RLC实体对应单播传输方式,所述第二RLC实体对应多播传输方式。
- 根据权利要求17所述的通信装置,其特征在于,所述通信单元还用于向第二装置发送第一指示信息,所述第一指示信息用于指示所述第二装置的第三RLC实体对应单播传输方式以及所述第二装置的第四RLC实体对应多播传输方式,其中,所述第三RLC实体和所述第四RLC实体关联第二PDCP实体。
- 根据权利要求18所述的通信装置,其特征在于,所述第一指示信息用于指示所述第三RLC实体的类型以及所述第四RLC实体的类型;或者,所述第一指示信息包括所述第三RLC实体对应的无线网络临时标识RNTI类型信息以及所述第四RLC实体对应的RNTI类型信息。
- 根据权利要求19所述的通信装置,其特征在于,所述第三RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,所述第四RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
- 根据权利要求17至20中任一项所述的通信装置,其特征在于,所述通信单元还用于向第二装置发送第二指示信息,所述第二指示信息用于指示第一无线承载以及所述第一无线承载对应的第一传输方式,所述第一无线承载包含所述第一PDCP实体;所述第一传输方式为:单播传输方式、多播传输方式、或者单播和多播传输方式。
- 根据权利要求17至21中任一项所述的通信装置,其特征在于,所述通信单元还用于接收来自于第三装置的第三指示信息,所述第三指示信息用于指示所述第一RLC实体对应单播传输方式和所述第二RLC实体对应多播传输方式。
- 根据权利要求22所述的通信装置,其特征在于,所述第三指示信息用于指示所述第一RLC实体的类型以及所述第二RLC实体的类型;或者,所述第三指示信息包括所述第一RLC实体对应的RNTI类型信息以及所述第二RLC实体对应的RNTI类型信息。
- 根据权利要求23所述的通信装置,其特征在于,所述第一RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,所述第二RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
- 根据权利要求17至24中任一项所述的通信装置,其特征在于,所述处理单元还用于将来自于所述第一RLC实体中的数据利用小区无线网络临时标识C-RNTI加扰,和/或,将来自于所述第二RLC实体中的数据的传输块TB利用组无线网络临时标识G-RNTI加扰。
- 一种通信装置,其特征在于,包括:处理单元,用于建立第三RLC实体和第四RLC实体,所述第三RLC实体和所述第四RLC实体关联第二PDCP实体;通信单元,用于通过所述第三RLC实体和/或第四RLC实体接收第一数据;其中,所述第三RLC实体对应单播传输方式,所述第四RLC实体对应多播传输方式。
- 根据权利要求26所述的通信装置,其特征在于,所述通信单元还用于接收第一指示信息,所述第一指示信息用于指示所述第三RLC实体对应单播传输方式以及所述第四RLC实体对应多播传输方式,所述处理单元具体用于根据所述第一指示信息,建立所述第三RLC实体和所述第四RLC实体。
- 根据权利要求27的通信装置,其特征在于:所述第一指示信息用于指示所述第三RLC实体的类型以及所述第四RLC实体的类型;或者,所述第一指示信息包括所述第三RLC实体对应的无线网络临时标识RNTI类型信息以及所述第四RLC实体对应的RNTI类型信息。
- 根据权利要求28所述的通信装置,其特征在于,所述第三RLC实体对应的RNTI类型为小区无线网络临时标识C-RNTI,所述第四RLC实体对应的RNTI类型为组无线网络临时标识G-RNTI。
- 根据权利要求26至29中任一项所述的通信装置,其特征在于,所述通信单元还用于接收第二指示信息,所述第二指示信息用于指示第一无线承载以及所述第一无线承载对应的第一传输方式,所述第一无线承载包含所述第二PDCP实体;所述第一传输方式为:单播传输方式、多播传输方式、或者单播和多播传输方式。
- 根据权利要求26至30中任一项所述的通信装置,其特征在于,在所述通信单元仅通过所述第三RLC实体接收所述第一数据时,所述处理单元还用于停止监听第一RNTI,所述第一RNTI用于接收第一无线承载中利用所述多播传输方式传输的数据,所述第一无线承载包含所述第二PDCP实体。
- 根据权利要求26至31中任一项所述的通信装置,其特征在于,所述处理单元还用于将接收到的利用小区无线网络临时标识C-RNTI加扰的所述第一数据递交给所述第三RLC实体,和/或,将接收到的利用组小区无线网络临时标识G-RNTI加扰的所述第一数据递交给所述第四RLC实体。
- 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述接口电路用于所述至少一个处理器获取至少一个存储器中的程序或指令,所述至少一个处理器用于执行所述程序或指令以使所述通信装置执行如权利要求1至9中任一项所述的方法。
- 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述接口电路用于所述至少一个处理器获取至少一个存储器中的程序或指令,所述至少一个处理器用于执行所述程序或指令以使所述通信装置执行如权利要求10至16中任一项所述的方法。
- 一种网络设备,其特征在于,包括如权利要求17至25、33中任一项所述的通信装置。
- 一种终端设备,其特征在于,包括如权利要求26至32、34中任一项所述的通信装置。
- 一种存储介质,其特征在于,所述存储介质中存储有程序,当所述程序被至少一个处理器运行时,如权利要求1至16中任一项所述的方法被执行。
- 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行如权利要求1至9中任意一项所述的方法,或者执行如权利要求10至16中任意一项所述的方法。
- 一种通信系统,包括权利要求17至25中任意一项所述的通信装置、以及包括权利要求26至32中任意一项所述的通信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20844847.2A EP3993456A4 (en) | 2019-07-22 | 2020-07-20 | COMMUNICATION METHOD AND COMMUNICATION APPARATUS |
US17/648,620 US20220150997A1 (en) | 2019-07-22 | 2022-01-21 | Communication Method and Communication Apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910662838.XA CN112261671B (zh) | 2019-07-22 | 2019-07-22 | 通信方法和通信装置 |
CN201910662838.X | 2019-07-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/648,620 Continuation US20220150997A1 (en) | 2019-07-22 | 2022-01-21 | Communication Method and Communication Apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021013127A1 true WO2021013127A1 (zh) | 2021-01-28 |
Family
ID=74193190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/103034 WO2021013127A1 (zh) | 2019-07-22 | 2020-07-20 | 通信方法和通信装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220150997A1 (zh) |
EP (1) | EP3993456A4 (zh) |
CN (2) | CN115442822A (zh) |
WO (1) | WO2021013127A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115442822A (zh) * | 2019-07-22 | 2022-12-06 | 华为技术有限公司 | 通信方法和通信装置 |
WO2023060512A1 (en) * | 2021-10-14 | 2023-04-20 | Mediatek Singapore Pte. Ltd. | Methods and apparatus to set initial pdcp state variables for multicast services |
EP4167604A1 (en) * | 2021-10-14 | 2023-04-19 | MediaTek Singapore Pte. Ltd. | Methods and apparatus to set initial pdcp state variables for multicast |
WO2023065093A1 (zh) * | 2021-10-18 | 2023-04-27 | Oppo广东移动通信有限公司 | 中继通信的方法及设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104619008A (zh) * | 2013-11-01 | 2015-05-13 | 中兴通讯股份有限公司 | 设备到设备组播/广播通信处理方法、装置及用户设备 |
CN105025593A (zh) * | 2014-04-23 | 2015-11-04 | 电信科学技术研究院 | 一种释放实体的方法及设备 |
US20180199365A1 (en) * | 2015-07-06 | 2018-07-12 | Lg Electronics Inc. | Method for triggering buffer status report in dual connectivity and a device therefor |
CN110505160A (zh) * | 2018-05-17 | 2019-11-26 | 华为技术有限公司 | 一种通信方法及装置 |
CN110769377A (zh) * | 2018-07-25 | 2020-02-07 | 华为技术有限公司 | 一种通信方法及装置 |
WO2020035795A1 (en) * | 2018-08-14 | 2020-02-20 | Nokia Technologies Oy | Method of multicast data delivery in 5g supporting cloud architecture |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120053608A (ko) * | 2010-11-18 | 2012-05-29 | 삼성전자주식회사 | 광대역 무선 접속 시스템에서 동적 멀티캐스트 경로 할당 장치 및 방법 |
CN102695130B (zh) * | 2011-03-21 | 2016-12-21 | 中兴通讯股份有限公司 | Mbms业务发送方式切换方法、装置和用户设备 |
US9445243B2 (en) * | 2013-03-22 | 2016-09-13 | Mediatek Inc. | Service continuity for group communication over LTE eMBMS |
WO2015133767A1 (en) * | 2014-03-02 | 2015-09-11 | Lg Electronics Inc. | Method for reordering a packet data convergence protocol packet data unit at a user equipment in a dual connectivity system and device therefor |
US10027729B2 (en) * | 2015-05-22 | 2018-07-17 | Qualcomm Incorporated | Unicast support in prose direct device-to-device communication |
US10251155B2 (en) * | 2016-01-08 | 2019-04-02 | Qualcomm, Incorporated | Techniques for multicast wireless communications |
CN109792587B (zh) * | 2016-09-29 | 2021-02-12 | 华为技术有限公司 | 一种多播业务的发送方法和设备 |
CN113411755B (zh) * | 2017-12-28 | 2022-10-04 | 华为技术有限公司 | 一种通信方法、及相关产品 |
US11224007B2 (en) * | 2018-11-19 | 2022-01-11 | Huawei Technologies Co., Ltd. | System and method for supporting sidelink radio bearers |
CN115442822A (zh) * | 2019-07-22 | 2022-12-06 | 华为技术有限公司 | 通信方法和通信装置 |
-
2019
- 2019-07-22 CN CN202210864581.8A patent/CN115442822A/zh active Pending
- 2019-07-22 CN CN201910662838.XA patent/CN112261671B/zh active Active
-
2020
- 2020-07-20 EP EP20844847.2A patent/EP3993456A4/en active Pending
- 2020-07-20 WO PCT/CN2020/103034 patent/WO2021013127A1/zh unknown
-
2022
- 2022-01-21 US US17/648,620 patent/US20220150997A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104619008A (zh) * | 2013-11-01 | 2015-05-13 | 中兴通讯股份有限公司 | 设备到设备组播/广播通信处理方法、装置及用户设备 |
CN105025593A (zh) * | 2014-04-23 | 2015-11-04 | 电信科学技术研究院 | 一种释放实体的方法及设备 |
US20180199365A1 (en) * | 2015-07-06 | 2018-07-12 | Lg Electronics Inc. | Method for triggering buffer status report in dual connectivity and a device therefor |
CN110505160A (zh) * | 2018-05-17 | 2019-11-26 | 华为技术有限公司 | 一种通信方法及装置 |
CN110769377A (zh) * | 2018-07-25 | 2020-02-07 | 华为技术有限公司 | 一种通信方法及装置 |
WO2020035795A1 (en) * | 2018-08-14 | 2020-02-20 | Nokia Technologies Oy | Method of multicast data delivery in 5g supporting cloud architecture |
Non-Patent Citations (3)
Title |
---|
5G PPP: "View on 5G Architecture Version 3.0", 5G PPP ARCHITECTURE WORKING GROUP, 19 June 2019 (2019-06-19), XP055736939, DOI: 20200825125712X * |
BBC ET AL.: "RAN Logical Architecture and Interfaces for 5G-Xcast", 5G PPP ARCHITECTURE WORKING GROUP BROADCAST AND MULTICAST COMMUNICATION ENABLERS FOR THE FIFTH-GENERATION OF WIRELESS SYSTEMS D3.3, 28 February 2019 (2019-02-28), XP055646813, DOI: 20200825125341X * |
See also references of EP3993456A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3993456A4 (en) | 2022-08-17 |
EP3993456A1 (en) | 2022-05-04 |
CN112261671B (zh) | 2022-07-29 |
CN112261671A (zh) | 2021-01-22 |
US20220150997A1 (en) | 2022-05-12 |
CN115442822A (zh) | 2022-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021013127A1 (zh) | 通信方法和通信装置 | |
US20210274467A1 (en) | Paging method and paging apparatus | |
JP2021513294A (ja) | 通信方法および無線通信装置 | |
EP4033799B1 (en) | Relay transmission method, relay terminal and remote terminal | |
EP4167623A1 (en) | Communication method and related device | |
EP3972360B1 (en) | Wireless communication method, terminal device and network device | |
WO2022012506A1 (zh) | 通信方法和通信装置 | |
US11800328B2 (en) | Point to point and point to multipoint switching with service continuity for broadcast and multicast service | |
US20230224936A1 (en) | Communication method and apparatus | |
RU2732488C1 (ru) | Устройство связи, способ связи и компьютерная программа | |
WO2021056464A1 (zh) | 数据安全处理的方法和通信装置 | |
US20240179679A1 (en) | Paging method and apparatus, and storage medium | |
EP4149158A1 (en) | Communication method and communication apparatus | |
US20220264404A1 (en) | Secondary Cell Activation and Change Procedures | |
WO2022104689A1 (zh) | 一种小区频域带宽切换的方法、相关装置以及设备 | |
WO2021226851A1 (zh) | Harq-ack码本的反馈方法、终端设备和网络设备 | |
JP2023500145A (ja) | 接続再開方法及び装置 | |
WO2023185585A1 (zh) | 一种速率匹配方法及速率匹配装置 | |
EP4418786A1 (en) | Data transmission method and communication device | |
WO2023143252A1 (zh) | 授时的方法及通信装置 | |
US20240057196A1 (en) | Broadcast-multicast service session transmission control method and device | |
WO2023125107A1 (zh) | 一种信息处理方法、装置及可读存储介质 | |
WO2024067270A1 (zh) | 一种切换方法及通信装置 | |
US20230421999A1 (en) | Point to Point and Point to Multipoint Switching with Service Continuity for Broadcast and Multicast Service | |
WO2022222885A1 (zh) | 资源释放方法、装置、网络节点及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20844847 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020844847 Country of ref document: EP Effective date: 20220127 |