WO2021012286A1 - 一种随机接入方法及装置、终端 - Google Patents

一种随机接入方法及装置、终端 Download PDF

Info

Publication number
WO2021012286A1
WO2021012286A1 PCT/CN2019/097792 CN2019097792W WO2021012286A1 WO 2021012286 A1 WO2021012286 A1 WO 2021012286A1 CN 2019097792 W CN2019097792 W CN 2019097792W WO 2021012286 A1 WO2021012286 A1 WO 2021012286A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
data channel
message
time interval
terminal
Prior art date
Application number
PCT/CN2019/097792
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19938471.0A priority Critical patent/EP3993546B1/en
Priority to PCT/CN2019/097792 priority patent/WO2021012286A1/zh
Priority to CN202111647799.XA priority patent/CN114222373A/zh
Priority to CN201980094201.3A priority patent/CN113574956A/zh
Publication of WO2021012286A1 publication Critical patent/WO2021012286A1/zh
Priority to US17/578,261 priority patent/US20220141888A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • the embodiments of the application relate to the field of mobile communication technology, and in particular to a random access method, device, and terminal.
  • the random access process uses a four-step random access process.
  • the four-step random access process in the LTE system is still used.
  • MSG1 and MSG3 in the four-step random access process are transmitted through MSGA in the two-step random access process
  • MSG2 and MSG4 in the four-step random access process are transmitted through MSGB in the two-step random access process.
  • the time associated with MSGA retransmission is not yet clear, which affects the efficiency of random access.
  • the embodiments of the present application provide a random access method, device, and terminal.
  • the terminal determines to retransmit the first message, it is ready to retransmit the first message within the first time window or the first time interval after the first downlink data channel, and the first message includes the first random access Incoming channel and the first uplink data channel;
  • the first time window is used to receive first downlink control information (Downlink Control Information, DCI) corresponding to the first message, and the first DCI is used to schedule the first downlink data channel.
  • DCI Downlink Control Information
  • the terminal determines to retransmit the first uplink data channel in the first message, it is ready to retransmit the first uplink data channel within a third time interval after the first downlink data channel, and the first message includes A first random access channel and a first uplink data channel;
  • the first downlink data channel is used to carry a second message
  • the second message is a response message of the first message
  • a processing unit configured to prepare to retransmit the first message within a first time window or a first time interval after the first downlink data channel in the case of determining to retransmit the first message, and the first message includes A first random access channel and a first uplink data channel;
  • the first time window is used to receive the first DCI corresponding to the first message, and the first DCI is used to schedule the first downlink data channel.
  • a processing unit configured to prepare to retransmit the first uplink data channel in a third time interval after the first downlink data channel in the case of determining to retransmit the first uplink data channel in the first message,
  • the first message includes the first random access channel and the first uplink data channel;
  • the first downlink data channel is used to carry a second message
  • the second message is a response message of the first message
  • the terminal provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the aforementioned random access method.
  • the chip provided in the embodiment of the present application is used to implement the aforementioned random access method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the random access method described above.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the random access method described above.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, which cause the computer to execute the random access method described above.
  • the computer program provided in the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned random access method.
  • the terminal has enough time to prepare the retransmission of the first message (such as MSGA); by clarifying the third time interval, it is ensured that the terminal has enough time to prepare the first message (such as MSGA) retransmission of the first uplink data channel.
  • the first time interval or the first time interval of retransmission is optimally set, which improves the system performance. Random access performance.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2 is a flowchart of a four-step random access process provided by an embodiment of the present application
  • Figure 3-1 is a first schematic diagram of a delay provided by an embodiment of the present application.
  • Figure 3-2 is a second schematic diagram of a delay provided by an embodiment of the present application.
  • Figure 3-3 is a third schematic diagram of the delay provided by an embodiment of the present application.
  • Figure 4 is a flow chart of a two-step random access process provided by an embodiment of the present application.
  • Figure 5-1 is a schematic diagram of MSGA provided by an embodiment of the present application.
  • Figure 5-2 is a second schematic diagram of MSGA provided by an embodiment of the present application.
  • FIG. 6 is a first schematic flowchart of a random access method provided by an embodiment of the present application.
  • Figure 7-1 is a fourth schematic diagram of a delay provided by an embodiment of the present application.
  • Figure 7-2 is a fifth schematic diagram of a delay provided by an embodiment of the present application.
  • FIG. 8 is a second schematic diagram of the flow of the random access method provided by an embodiment of the present application.
  • FIG. 9 is a sixth schematic diagram of a delay provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram 1 of the structural composition of a random access device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram 2 of the structural composition of a random access device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a chip of an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX worldwide Interoperability for microwave access
  • WiMAX fifth generation
  • 5G Fifth Generation
  • the communication system 100 applied in the embodiment of this application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via wired lines, such as public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminals 120 may perform device-to-device (D2D) communication.
  • D2D device-to-device
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the random access process uses a four-step random access process similar to LTE.
  • the four-step random access process includes the following steps:
  • the first step the terminal sends a physical random access channel (Physical Random Access Channel, PRACH) to the base station, and the PRACH includes a preamble, that is, message 1 (message 1, MSG1).
  • PRACH Physical Random Access Channel
  • Step 2 After the base station detects that a terminal has sent a preamble, it sends a random access response (Random Access Response, RAR), that is, message 2 (MSG2), and informs the terminal to send message 3 (message 3) through RAR.
  • RAR Random Access Response
  • MSG3 can use uplink resource information, assign a temporary radio network temporary identifier (RNTI) to the terminal, and provide a timing advance command (Time Advance Command, TAC) to the terminal.
  • RNTI temporary radio network temporary identifier
  • TAC Tim Advance Command
  • Step 3 After the terminal receives the RAR, it sends the Physical Uplink Shared Channel (PUSCH) on the uplink resources specified by the RAR.
  • the PUSCH is used to carry MSG3, where MSG3 carries a terminal-specific temporary identification information .
  • Step 4 The base station sends a message 4 (message 4, MSG4) to the terminal, where MSG4 includes a contention resolution message, and in addition, the terminal is allocated uplink transmission resources through MSG4.
  • MSG4 includes a contention resolution message
  • the terminal is allocated uplink transmission resources through MSG4.
  • MSG4 includes a contention resolution message
  • the terminal will detect whether the terminal-specific temporary identification carried in the MSG3 is included in the contention resolution message sent by the base station. If it is included, it indicates that the random access process of the terminal is successful. , It indicates that the random process has failed, and the terminal needs to initiate the random access process again from the first step.
  • the network instructs the configuration information (ie ra-SearchSpace) of the physical downlink control channel (Physical Downlink Control Channel, PDCCH) of the scheduling RAR through a system message, and the terminal passes the search space in a RAR window Detecting the PDCCH corresponding to MSG1, thereby receiving the RAR corresponding to MSG1 (ie MSG2).
  • the configuration information ie ra-SearchSpace
  • PDCCH Physical Downlink Control Channel
  • the terminal does not detect the DCI format 1_0 corresponding to MSG1 in the RAR window, it does not detect the DCI format 1_0 scrambled by Random Access RNTI (Random Access RNTI, RA-RNTI), or the terminal is in the RAR window If the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) carrying the RAR is not correctly received, the terminal will retransmit the PRACH and perform a corresponding power increase. After the last symbol of the RAR window, or after the last symbol of the PDSCH, the terminal is ready to send PRACH (ie MSG1) no later than NT , 1 +0.75 ms. Among them , the duration of NT, 1 is N 1 symbols, and N 1 is related to the terminal's processing capability for PDSCH reception time. The retransmission delay of MSG1 is shown in Figure 3-1.
  • the time-frequency resources of the PUSCH carrying MSG3 are carried by the RAR.
  • the minimum time between the first symbol and the last symbol of a PUSCH carrier carrying PDSCH RAR MSG3 the interval of N T, 1 + N T, 2 + 0.5ms, wherein, N T, is the time length of 2 N 2 A symbol, N 2 is related to the processing capability of the terminal related to the PUSCH preparation time.
  • Figure 3-2 shows the minimum time delay between the PUSCH carrying MSG3 and the PDSCH carrying RAR.
  • the terminal After receiving the PDSCH carrying MSG4, the terminal feeds back hybrid automatic repeat request-acknowledgement (Hybrid Automatic Repeat request-, Acknowledgement, HARQ-ACK) information through the Physical Uplink Control Channel (PUCCH) to carry the PDSCH of MSG4
  • hybrid automatic repeat request-acknowledgement Hybrid Automatic Repeat request-, Acknowledgement, HARQ-ACK
  • PUCCH Physical Uplink Control Channel
  • the minimum time interval between the last symbol and the first symbol of the PUCCH carrying HARQ-ACK information is NT ,1 +0.5 ms.
  • the minimum time delay between the PDSCH carrying MSG4 and the PUCCH corresponding to the PDSCH is shown in Figure 3-3.
  • the terminal's processing time for PDSCH and PUSCH preparation time are specified, as shown in Table 1 to Table 4.
  • Table 1 and Table 2 are the PDSCH processing time (or decoding time or receiving time) Definition
  • Table 3 and Table 3 are the definition of PUSCH preparation time.
  • Table 1 PDSCH processing time (PDSCH processing capability 1)
  • Table 2 PDSCH processing time (PDSCH processing capability 2)
  • Table 3 PUSCH preparation time (PUSCH timing capability 1)
  • Table 4 PUSCH preparation time (PUSCH timing capability 2)
  • the delay overhead of the four-step random access process is relatively large, which is inappropriate for the low-latency and high-reliability scenarios in 5G.
  • a two-step random access process was proposed. Compared with the four-step random access process, the access delay can be reduced. Referring to Figure 4, the two-step random access process includes the following steps:
  • the first step the terminal equipment sends the preamble and PUSCH (ie MSGA) to the base station.
  • PUSCH ie MSGA
  • the PUSCH carries uplink data, such as specific temporary identification information of the terminal.
  • Step 2 After the base station detects that a terminal sends a PUSCH, it sends a random access response and a contention resolution message (ie, MSGB) to the terminal.
  • a contention resolution message ie, MSGB
  • the two-step random access process it is equivalent to combining the first and third steps of the four-step random access process into the first step of the two-step random access process, and the second step of the four-step random access process The second step and the fourth step are combined into the second step in the two-step random access process.
  • MSGA includes preamble and PUSCH
  • MSGB includes PDCCH (bearer random access response) and PDSCH (bearer contention resolution message).
  • the terminal needs to send the preamble and PUSCH, as shown in Figure 5-1 and Figure 5-2, where there is a correspondence between the PRACH occasion where the preamble is located (PRACH occasion) and the PUSCH occasion where the PUSCH is located (PUSCH occasion) Relationship, the corresponding relationship can be predefined or indicated by the network.
  • the temporal relationship between the PRACH timing and the PUSCH timing may be that the RACH timing is first, or the PUSCH timing is first.
  • the terminal After the terminal sends MSGA, it needs to monitor MSGB within a time window. Similarly, MSGA may not be successfully received by the base station. If the terminal does not receive MSGB within this time window, it will retransmit MSGA. According to the detection of MSGA by the base station, the retransmission of MSGA is divided into the following situations:
  • MSGA can be retransmitted
  • MSG1 in the four-step random access process is transmitted.
  • the requirements for the processing capability of the terminal are different, and it is necessary to consider defining the corresponding minimum time interval requirements for each situation. For example, in the case of retransmitting MSGA, the preparation time of the terminal's PUSCH needs to be considered, while the four-step random access procedure only has the retransmission of PRACH and does not need to consider the preparation time of the PUSCH. If the processing time is not considered, the terminal will not be able to prepare for the retransmission of MSGA within the currently defined minimum time interval, resulting in the terminal's processing capability unable to meet the requirements defined by the standard. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • Fig. 6 is a schematic flow chart 1 of the random access method provided by an embodiment of the application. As shown in Fig. 6, the random access method includes the following steps:
  • Step 601 When the terminal determines to retransmit the first message, it is ready to retransmit the first message within the first time window or the first time interval after the first downlink data channel, and the first message includes the first message.
  • the first message is MSGA in a two-step random access process.
  • the first message includes a first random access channel and a first uplink data channel, where the first random access channel is, for example, PRACH, and the first uplink data channel is, for example, PUSCH.
  • the first downlink data channel is, for example, PDSCH
  • the first downlink data channel is used to carry a second message
  • the second message is a response to the first message
  • the message, for example, the second message is MSGB in a two-step random access process.
  • the first time window is used to receive the first DCI corresponding to the first message, and the first DCI is used to schedule the first downlink data channel.
  • the first time window is referred to as the MSGB receiving window
  • the MSGB receiving window is used to transmit the first DCI corresponding to MSGA
  • the first DCI is used to schedule PDSCH.
  • the terminal detects the first DCI corresponding to MSGA in the receiving window of MSGB, and if the first DCI corresponding to MSGA is detected, the terminal further receives MSGB on the PDSCH scheduled by the first DCI.
  • the terminal determines that the first message needs to be retransmitted in the following manner:
  • Manner 1 The terminal determines to retransmit the first message when the first DCI corresponding to the first message is not detected in the first time window; or,
  • Manner 2 The terminal detects the first DCI corresponding to the first message in the first time window, and does not receive the second message on the first downlink data channel scheduled by the first DCI, It is determined to retransmit the first message, and the second message is a response message to the first message.
  • the terminal does not detect the first DCI corresponding to MSGA in the MSGB receiving window, or detects the first DCI corresponding to MSGA in the MSGB receiving window, but does not receive it on the PDSCH scheduled by the first DCI For the corresponding MSGB, it is determined that MSGA needs to be retransmitted.
  • the terminal determines to retransmit the first message
  • the first time interval after the last symbol of the first time window or after the last symbol of the first downlink data channel Ready to retransmit the first message For example: if the terminal determines to retransmit MSGA, the terminal is ready to retransmit MSGA after the last symbol of the MSGB receiving window or in the first time interval after the last symbol of the PDSCH.
  • the terminal needs to retransmit the first message, more processing time is required to prepare the first message. news.
  • the first time interval will be clarified below in combination with different embodiments.
  • the first time interval includes a first time, and the first time is a preparation time of the terminal for the first uplink data channel.
  • a first time interval including the time to prepare a terminal PUSCH N T, 2, wherein N T, duration 2 symbols for N 2, N 2 associated with the preparation time for the associated PUSCH processing capability of the terminal.
  • the first time interval further includes a second time
  • the second time is a processing time of the terminal for the first downlink data channel.
  • the first time interval includes not only the preparation time NT ,2 of the terminal’s PUSCH, but also the processing time NT ,1 of the PDSCH.
  • the processing time of the PDSCH refers to the processing time for the terminal to receive the PDSCH within the MSGB receiving window, thus Determine if there is an MSGB sent to you.
  • the duration of NT, 1 is N 1 symbols, and N 1 is related to the processing capability of the UE related to the processing time of the PDSCH.
  • the first time interval further includes a first fixed time length.
  • the first fixed time length can be 0.75 ms.
  • the value of the first fixed time length is not limited to this, and other time lengths may also be used.
  • the first time interval includes the first time, the second time, and the first fixed time length.
  • the first time interval is NT ,1 +NT ,2 +0.75ms.
  • the base station there are many situations in which the base station detects MSGA. For example, the base station only detects PRACH, or detects PRACH and PUSCH, or even only detects PUSCH.
  • the base station can respond in the MSGB receiving window of the terminal, for example, for PRACH The response to MSGA, etc., where the response message is carried in the PDSCH.
  • the terminal is ready to retransmit MSGA in the first time interval after the last symbol of the PDSCH, where the PDSCH received by the terminal is the PDSCH carrying MSGB.
  • the terminal sends MSGA and detects the DCI for scheduling MSGB in the receiving window of MSGB; if the terminal does not detect the DCI for scheduling MSGB in the receiving window of MSGB, or detects the DCI for scheduling MSGB, but not If MSGB is successfully received, it is determined to retransmit MSGA; the terminal is ready to retransmit MSGA in the first time interval after the last symbol of the MSGB receiving window or after the last symbol of the PDSCH (the PDSCH carries MSGB). As shown in Figure 7-1, the MSGA retransmission delay is the first time interval, and the first time interval needs to consider the terminal's preparation time for PUSCH.
  • the first time interval includes the preparation time of PUSCH in MSGA.
  • enough processing time is reserved for the terminal so that the terminal can complete the process within the first defined time interval Preparation for MSGA.
  • the first time interval is determined based on the corresponding relationship between the first transmission timing and the second transmission timing, the first transmission timing is used to transmit the first random access channel in the first message, and the second transmission timing The transmission opportunity is used to transmit the first uplink data channel in the first message.
  • the first random access channel and the first uplink data channel in the first message have a corresponding relationship. Therefore, the first transmission opportunity for transmitting the first random access channel and the first uplink data channel for transmitting There is a corresponding relationship between the second transmission opportunities. For example, there is a correspondence between the PRACH timing used to transmit the PRACH and the PUSCH timing used to transmit the PUSCH in MSGA.
  • the first time interval is related to the correspondence between the first transmission timing and the second transmission timing.
  • the second transmission timing Since there is a correspondence between the first transmission timing (such as PRACH timing) and the second transmission timing (such as PUSCH timing), there is usually a time interval between the first transmission timing and the second transmission timing, that is, the first transmission timing and There is a second time interval between the second transmission opportunities, and the second time interval is, for example, Guard Time (GT), or Cyclic Prefix (CP), etc., and even the first transmission opportunity and The second transmission opportunity is located in a different time slot. Since different correspondences between the first transmission timing and the second transmission timing can be configured, the second time interval between them may be different.
  • GT Guard Time
  • CP Cyclic Prefix
  • the difference between the first time interval and the first transmission opportunity and the second transmission opportunity defined in this embodiment is The corresponding relationship is related, and the first time interval may be determined according to a certain preset rule. The following describes the first time interval in combination with different situations of the second time interval:
  • the first time interval includes a first time, and the first time is the preparation time of the terminal for the first uplink data channel .
  • the second time interval between PRACH timing and PUSCH timing is less than or less than or equal to the first threshold, the second time interval between them cannot be used for the terminal's preparation time for PUSCH.
  • the first time interval needs Including terminal preparation time NT ,2 for PUSCH.
  • the first time interval further includes a second time
  • the second time is a reception processing time of the terminal for the first downlink data channel.
  • the first time interval includes not only the preparation time NT ,2 of the terminal’s PUSCH, but also the processing time NT ,1 of the PDSCH.
  • the processing time of the PDSCH refers to the processing time for the terminal to receive the PDSCH within the MSGB receiving window, thus Determine if there is an MSGB sent to you.
  • the duration of NT, 1 is N 1 symbols, and N 1 is related to the processing capability of the UE related to the processing time of the PDSCH.
  • the first time interval further includes a first fixed time length.
  • the first fixed time length can be 0.75 ms.
  • the value of the first fixed time length is not limited to this, and other time lengths may also be used.
  • the first time interval includes the first time, the second time, and the first fixed time length.
  • the first time interval is NT ,1 +NT ,2 +0.75ms.
  • the first time interval includes a second time
  • the second time is the terminal's reception of the first downlink data channel time
  • the second time interval between PRACH timing and PUSCH timing can be used for the terminal's preparation time for PUSCH.
  • the first time interval can be The preparation time NT ,2 of the terminal for PUSCH is not included.
  • the first time interval includes the processing time NT ,1 of the PDSCH, and the processing time of the PDSCH refers to the processing time of the terminal receiving the PDSCH within the receiving window of the MSGB, so as to determine whether there is an MSGB sent to itself.
  • the duration of N T,1 is N 1 symbols
  • N 1 is related to the UE's processing capacity for PDSCH processing time
  • the first time interval further includes a first fixed time length.
  • the first fixed time length can be 0.75 ms.
  • the value of the first fixed time length is not limited to this, and other time lengths may also be used.
  • the first time interval includes the second time and the first fixed time length.
  • the first time interval is NT ,1 +0.75ms.
  • the above-mentioned first threshold may be predefined or indicated through the network, for example, the network may indicate through system messages or configuration information.
  • the value of the first threshold is equal to the preparation time NT ,2 of the terminal for the PUSCH.
  • the sum of the first time interval and the second time interval is greater than or equal to the sum of the first time, the second time, and the first fixed time length; wherein, the first time is for the terminal The preparation time of the first uplink data channel, and the second time is the processing time of the terminal for the first downlink data channel.
  • the first time interval is greater than or greater than or equal to the sum of the second time and the first fixed time length.
  • the terminal may be ready for PRACH transmission, and may partially prepare for PUSCH transmission.
  • the PUSCH transmission continues to be prepared. Therefore, the terminal jointly completes the preparation for PRACH and PUSCH transmission in the above two time intervals.
  • the terminal sends MSGA and detects the DCI for scheduling MSGB in the receiving window of MSGB; if the terminal does not detect the DCI for scheduling MSGB in the receiving window of MSGB, or detects the DCI for scheduling MSGB, but not If MSGB is successfully received, MSGA is determined to be retransmitted; the terminal determines the correspondence between PRACH timing and PUSCH timing, and determines the first time interval according to the correspondence; the terminal is after the last symbol of the MSGB receiving window or at the end of PDSCH MSGA is ready to be retransmitted in the first time interval after one symbol. As shown in Figure 7-2, the first time interval is associated with the second time interval between the PRACH timing and the PUSCH timing.
  • the first time interval does not include the entire preparation time of MSGA, and may only include part of it.
  • the second time interval between the PRACH timing and the PUSCH timing can be used as part of the MSGA preparation time. Therefore, the first time interval is related to the second time interval between the PRACH timing and the PUSCH timing.
  • the foregoing first time interval in the embodiment of the present application may be defined.
  • the foregoing first time interval in the embodiment of the present application may be indicated to the terminal by a network device, or part of the time information in the first time interval may be indicated to the terminal by the network device.
  • the network device may be a base station.
  • the base station can flexibly configure and indicate the first time interval according to specific conditions, so that the base station can flexibly control the delay of random access, and according to specific terminal processing capabilities and retransmission conditions, the first time interval is optimally configured to improve Random access performance of the system.
  • the first time interval includes the reception time NT ,1 of the PDSCH and the target time interval indicated by the network device. Since the network device configures the RACH timing and PUSCH timing and the corresponding relationship between them, the network device is clear about the second time interval between the RACH timing and the PUSCH timing and the processing time required by the terminal, so the network device can be based on This information indicates the target time interval used to determine the first time interval. Optionally, the network device may also directly indicate the first time interval.
  • Fig. 8 is a second schematic diagram of the flow of the random access method provided by an embodiment of the application. As shown in Fig. 8, the random access method includes the following steps:
  • Step 801 In the case that the terminal determines to retransmit the first uplink data channel in the first message, it is ready to retransmit the first uplink data channel within a third time interval after the first downlink data channel,
  • a message includes a first random access channel and a first uplink data channel; wherein, the first downlink data channel is used to carry a second message, and the second message is a response message of the first message.
  • the first message is MSGA in a two-step random access process.
  • the first message includes a first random access channel and a first uplink data channel, where the first random access channel is, for example, PRACH, and the first uplink data channel is, for example, PUSCH.
  • the first downlink data channel is, for example, PDSCH
  • the first downlink data channel is used to carry a second message
  • the second message is a response to the first message
  • the message, for example, the second message is MSGB in a two-step random access process.
  • the terminal determines that the first message needs to be retransmitted in the following manner:
  • the terminal detects the first DCI within a first time window, the first DCI is used to schedule the first downlink data channel, the first downlink data channel includes first indication information, and the first The indication information is used to indicate that the base station has successfully received the first random access channel and has not successfully received the first uplink data channel; the terminal determines to retransmit the first message based on the first indication information The first uplink data channel in. Further, the unsuccessful reception of the first uplink data channel includes: the terminal does not detect the first uplink data channel; or, the terminal detects the first uplink data channel and responds to the The decoding of the first uplink data channel failed.
  • the first time window is referred to as the MSGB receiving window
  • the MSGB receiving window is used to transmit the first DCI corresponding to MSGA
  • the first DCI is used to schedule PDSCH.
  • the terminal detects the first DCI corresponding to MSGA in the receiving window of MSGB. If the first DCI corresponding to MSGA is detected, the terminal further receives first indication information on the PDSCH scheduled by the first DCI. An indication information to determine to retransmit the PUSCH in MSGA.
  • the first indication information is used to indicate that the PRACH in MSGA is detected by the base station, but the PUSCH in MSGA is not detected or the decoding fails.
  • the terminal determines to retransmit the first uplink data channel in the first message, it is ready within a third time interval after the last symbol of the first downlink data channel Retransmit the first uplink data channel.
  • a third time interval needs to be defined to meet the corresponding processing time requirements of the terminal.
  • the specific implementation of the third time interval will be described below.
  • the third time interval includes a first time, and the first time is a preparation time of the terminal for the first uplink data channel.
  • the third time interval comprises a terminal PUSCH preparation time N T, 2, wherein N T, duration 2 symbols for N 2, N 2 and the preparation time for the associated PUSCH processing capacity of the terminal concerned.
  • the third time interval further includes a second time, and the second time is a processing time of the terminal for the first downlink data channel.
  • the third time interval includes not only the preparation time NT ,2 of the terminal’s PUSCH, but also the processing time NT ,1 of the PDSCH.
  • the processing time of the PDSCH refers to the processing time of the terminal receiving the PDSCH within the MSGB receiving window, so Determine if there is an MSGB sent to you.
  • the duration of NT, 1 is N 1 symbols, and N 1 is related to the processing capability of the UE related to the processing time of the PDSCH.
  • the third time interval further includes a second fixed time length.
  • the corresponding second fixed time length can be appropriately reduced compared to the first fixed time length in the foregoing solution.
  • the second fixed time length can be 0.5ms.
  • the value of the second fixed time length is not limited to this, and other time lengths may also be used.
  • the third time interval includes the first time, the second time, and the second fixed time length.
  • the third time interval is N T,1 +N T,2 +0.5ms.
  • the base station there are many situations in which the base station detects MSGA. For example, the base station only detects PRACH, or detects PRACH and PUSCH, or even only detects PUSCH.
  • the base station can respond in the MSGB receiving window of the terminal, for example, for PRACH The response to MSGA, etc., where the response message is carried in the PDSCH.
  • the terminal is ready to retransmit the PUSCH of MSGA in the third time interval after the last symbol of the PDSCH, where the PDSCH received by the terminal is the PDSCH carrying MSGB.
  • first indication information is carried in the PDSCH, and the technical solution of this embodiment is not limited to this.
  • the first indication information may also be carried in the first DCI for scheduling the PDSCH.
  • the terminal sends MSGA and detects the DCI for scheduling MSGB in the MSGB receiving window; if the terminal receives the first indication information in the MSGB receiving window, it determines to retransmit the PUSCH in MSGA;
  • the PUSCH in the MSGA is ready to be retransmitted in the third time interval after the last symbol of the PDSCH (the PDSCH carries the first indication information and/or MSGB).
  • the delay of the MSGA PUSCH retransmission is the third time interval, and the third time interval needs to consider the preparation time of the terminal for the PUSCH.
  • the foregoing third time interval in the embodiment of the present application may be defined.
  • the foregoing third time interval in the embodiment of the present application may be indicated to the terminal by a network device, or part of the time information in the third time interval may be indicated to the terminal by the network device.
  • the base station can flexibly configure and indicate the third time interval according to the specific situation, so that the base station can flexibly control the delay of random access, and according to the specific terminal processing capacity and retransmission situation, the third time interval is optimally configured to improve Random access performance of the system.
  • FIG. 10 is a schematic diagram 1 of the structural composition of a random access device provided by an embodiment of the application. As shown in FIG. 10, the random access device includes:
  • the processing unit 1001 is configured to prepare to retransmit the first message within a first time window or a first time interval after the first downlink data channel in the case of determining to retransmit the first message, and the first message Including a first random access channel and a first uplink data channel;
  • the first time window is used to receive the first DCI corresponding to the first message, and the first DCI is used to schedule the first downlink data channel.
  • the first time interval includes a first time
  • the first time is a preparation time of the terminal for the first uplink data channel.
  • the first time interval further includes a second time
  • the second time is a processing time of the terminal for the first downlink data channel.
  • the first time interval further includes a first fixed time length.
  • the first time interval is determined based on the correspondence between the first transmission timing and the second transmission timing, and the first transmission timing is used to transmit the first random transmission timing in the first message.
  • Access channel, and the second transmission opportunity is used to transmit the first uplink data channel in the first message.
  • the first time interval includes a first time, and the first time is a preparation time of the terminal for the first uplink data channel.
  • the first time interval further includes a second time
  • the second time is a processing time of the terminal for the first downlink data channel.
  • the first time interval further includes a first fixed time length.
  • the first time interval includes a second time
  • the second time is the receiving time of the terminal for the first downlink data channel.
  • the first time interval further includes a first fixed time length.
  • the sum of the first time interval and the second time interval is greater than or equal to the sum of the first time, the second time, and the first fixed time length;
  • the first time is a preparation time of the terminal for the first uplink data channel
  • the second time is a processing time of the terminal for the first downlink data channel.
  • the first time interval is greater than or greater than or equal to the sum of the second time and the first fixed time length.
  • the first time interval is indicated to the terminal by a network device; or,
  • Part of the time information in the first time interval is indicated to the terminal by the network device.
  • the processing unit 1001 is configured to prepare to retransmit the retransmission within a first time interval after the last symbol of the first time window or after the last symbol of the first downlink data channel The first news.
  • the device further includes:
  • the determining unit 1002 is configured to determine to retransmit the first message when the first DCI corresponding to the first message is not detected in the first time window; or, if the first DCI is detected in the first time window and If the first DCI corresponds to the first message, and the second message is not received on the first downlink data channel scheduled by the first DCI, it is determined to retransmit the first message, and the second message is the The response message for the first message.
  • the first downlink data channel is used to carry a second message, and the second message is a response message of the first message.
  • FIG. 11 is a schematic diagram 2 of the structural composition of a random access device provided by an embodiment of the application. As shown in FIG. 11, the random access device includes:
  • the processing unit 1101 is configured to, in the case of determining to retransmit the first uplink data channel in the first message, prepare to retransmit the first uplink data channel in a third time interval after the first downlink data channel, so
  • the first message includes a first random access channel and a first uplink data channel;
  • the first downlink data channel is used to carry a second message
  • the second message is a response message of the first message
  • the third time interval includes a first time
  • the first time is a preparation time of the terminal for the first uplink data channel.
  • the third time interval further includes a second time, and the second time is a processing time of the terminal for the first downlink data channel.
  • the third time interval further includes a second fixed time length.
  • the processing unit is configured to prepare to retransmit the first uplink data channel in a third time interval after the last symbol of the first downlink data channel.
  • the third time interval is indicated to the terminal by a network device; or,
  • Part of the time information in the third time interval is indicated to the terminal by the network device.
  • the device further includes:
  • the detecting unit 1102 is configured to detect the first DCI within a first time window, the first DCI is used to schedule the first downlink data channel, and the first downlink data channel includes first indication information, so The first indication information is used to indicate that the base station has successfully received the first random access channel, but has not successfully received the first uplink data channel;
  • the determining unit 1103 is configured to determine the first uplink data channel in the first message to be retransmitted based on the first indication information.
  • the unsuccessful reception of the first uplink data channel includes:
  • the first uplink data channel is not detected; or,
  • the first uplink data channel is detected and the decoding of the first uplink data channel fails.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 according to an embodiment of the present application.
  • the communication device may be a terminal or a network device.
  • the communication device 1200 shown in FIG. 12 includes a processor 1210.
  • the processor 1210 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1200 may further include a memory 1220.
  • the processor 1210 can call and run a computer program from the memory 1220 to implement the method in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or it may be integrated in the processor 1210.
  • the communication device 1200 may further include a transceiver 1230, and the processor 1210 may control the transceiver 1230 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1230 may include a transmitter and a receiver.
  • the transceiver 1230 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1200 may specifically be a network device of an embodiment of the application, and the communication device 1200 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For brevity, details are not repeated here .
  • the communication device 1200 may specifically be a mobile terminal/terminal according to an embodiment of the application, and the communication device 1200 may implement the corresponding procedures implemented by the mobile terminal/terminal in each method of the embodiments of the application. For the sake of brevity, This will not be repeated here.
  • FIG. 13 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1300 shown in FIG. 13 includes a processor 1310, and the processor 1310 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1300 may further include a memory 1320.
  • the processor 1310 may call and run a computer program from the memory 1320 to implement the method in the embodiment of the present application.
  • the memory 1320 may be a separate device independent of the processor 1310, or it may be integrated in the processor 1310.
  • the chip 1300 may further include an input interface 1330.
  • the processor 1310 can control the input interface 1330 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1300 may further include an output interface 1340.
  • the processor 1310 can control the output interface 1340 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • it will not be omitted here. Repeat.
  • the chip mentioned in the embodiment of the present application may also be called a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 14 is a schematic block diagram of a communication system 1400 according to an embodiment of the present application. As shown in FIG. 14, the communication system 1400 includes a terminal 1410 and a network device 1420.
  • the terminal 1410 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 1420 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for It's concise, so I won't repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding procedures implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present application.
  • the computer program runs on the computer, the computer can execute the corresponding methods implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种随机接入方法及装置、终端,该方法包括:终端确定重传第一消息的情况下,在第一时间窗口或第一下行数据信道之后的第一时间间隔内准备好重传所述第一消息,所述第一消息包括第一随机接入信道和第一上行数据信道;其中,所述第一时间窗口用于传输所述第一消息对应的第一下行控制信息DCI,所述第一DCI用于调度所述第一下行数据信道。

Description

一种随机接入方法及装置、终端 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种随机接入方法及装置、终端。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,随机接入过程采用的是四步随机接入过程。在新无线(New Radio,NR)系统中仍然沿用LTE系统中的四步随机接入过程。随着标准化的讨论,认为四步随机接入过程较为繁琐,会给终端的接入带来较大的延时,因此提出了两步随机接入过程。通过两步随机接入过程中的MSGA传输四步随机接入过程中的MSG1和MSG3,通过两步随机接入过程中的MSGB传输四步随机接入过程中的MSG2和MSG4。在两步随机接入过程中,MSGA重传相关的时间尚未明确,影响了随机接入效率。
发明内容
本申请实施例提供一种随机接入方法及装置、终端。
本申请实施例提供的随机接入方法,包括:
终端确定重传第一消息的情况下,在第一时间窗口或第一下行数据信道之后的第一时间间隔内准备好重传所述第一消息,所述第一消息包括第一随机接入信道和第一上行数据信道;
其中,所述第一时间窗口用于接收所述第一消息对应的第一下行控制信息(Downlink Control Information,DCI),所述第一DCI用于调度所述第一下行数据信道。
本申请实施例提供的随机接入方法,包括:
终端确定重传第一消息中的第一上行数据信道的情况下,在第一下行数据信道之后的第三时间间隔内准备好重传所述第一上行数据信道,所述第一消息包括第一随机接入信道和第一上行数据信道;
其中,所述第一下行数据信道用于承载第二消息,所述第二消息为所述第一消息的响应消息。
本申请实施例提供的随机接入装置,包括:
处理单元,用于确定重传第一消息的情况下,在第一时间窗口或第一下行数据信道之后的第一时间间隔内准备好重传所述第一消息,所述 第一消息包括第一随机接入信道和第一上行数据信道;
其中,所述第一时间窗口用于接收所述第一消息对应的第一DCI,所述第一DCI用于调度所述第一下行数据信道。
本申请实施例提供的随机接入装置,包括:
处理单元,用于确定重传第一消息中的第一上行数据信道的情况下,在第一下行数据信道之后的第三时间间隔内准备好重传所述第一上行数据信道,所述第一消息包括第一随机接入信道和第一上行数据信道;
其中,所述第一下行数据信道用于承载第二消息,所述第二消息为所述第一消息的响应消息。
本申请实施例提供的终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的随机接入方法。
本申请实施例提供的芯片,用于实现上述的随机接入方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的随机接入方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的随机接入方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的随机接入方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的随机接入方法。
通过上述技术方案,通过明确第一时间间隔,确保了终端有足够的时间准备第一消息(如MSGA)的重传;通过明确第三时间间隔,确保了终端有足够的时间准备第一消息(如MSGA)中第一上行数据信道的重传。另一方面,结合重传的不同情况,以及第一随机接入信道和第一上行数据信道之间的对应关系,最优设置重传的第一时间间隔或第一时间间隔,提高了系统的随机接入性能。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的四步随机接入过程流程图;
图3-1是本申请实施例提供的延时示意图一;
图3-2是本申请实施例提供的延时示意图二;
图3-3是本申请实施例提供的延时示意图三;
图4是本申请实施例提供的两步随机接入过程流程图;
图5-1是本申请实施例提供的MSGA的示意图一;
图5-2是本申请实施例提供的MSGA的示意图二;
图6是本申请实施例提供的随机接入方法的流程示意图一;
图7-1是本申请实施例提供的延时示意图四;
图7-2是本申请实施例提供的延时示意图五;
图8是本申请实施例提供的随机接入方法的流程示意图二;
图9是本申请实施例提供的延时示意图六;
图10是本申请实施例提供的随机接入装置的结构组成示意图一;
图11是本申请实施例提供的随机接入装置的结构组成示意图二;
图12是本申请实施例提供的一种通信设备示意性结构图;
图13是本申请实施例的芯片的示意性结构图;
图14是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或第五代(5 th Generation,5G)移动通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的 公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例涉及到的相关技术进行说明。
在5G系统中,随机接入过程采用了类似LTE的四步随机接入过程,参照图2,四步随机接入过程包括以下步骤:
第一步:终端向基站发送物理随机接入信道(Physical Random Access Channel,PRACH),该PRACH包含前导码(preamble),也即消息1(message 1,MSG1)。
第二步:基站检测到有终端发送前导码之后,向终端发送随机接入响应(Random Access Response,RAR),也即消息2(message 2,MSG2),通过RAR告知终端发送消息3(message 3,MSG3)可以使用的上行资源信息,为终端分配临时无线网络临时标识(Radio Network Temporary Identifier,RNTI),给终端提供定时提前命令(Time Advance Command,TAC)等。
第三步:终端接收到RAR之后,在RAR所指定的上行资源上发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH),该PUSCH用于承载MSG3,其中,MSG3携带一个终端特定的临时标识信息。
第四步:基站向终端发送消息4(message 4,MSG4),其中,MSG4包括竞争解决消息,此外,通过MSG4为终端分配上行传输资源。终端接收到基站发送的竞争解决消息时,会检测终端在MSG3中携带的终端特定的临时标识是否包含在基站发送的竞争解决消息中,若包含,则表明终端随机接入过程成功,若未包含,则表明随机过程失败,终端需要再次从第一步开始发起随机接入过程。
终端在发送PRACH之后,网络通过系统消息指示调度RAR的物理下行控制信道(Physical Downlink Control Channel,PDCCH)的搜索空间的配置信息(即ra-SearchSpace),终端通过在一个RAR窗口内的该搜索空间中检测对应MSG1的PDCCH,从而接收MSG1对应的RAR(即MSG2)。但是,如果终端在RAR窗口内没有检测到与MSG1对应的DCI format 1_0,即没有检测到通过随机接入RNTI(Random Access RNTI,RA-RNTI)加扰的DCI format 1_0,或者终端在RAR窗口内没有正确接收到承载RAR的物理下行共享信道(Physical Downlink Shared Channel,PDSCH),终端将重传PRACH,并进行相应的功率攀升。终端在RAR窗口的最后一个符号之后,或者PDSCH的最后一个符号之后,不晚于N T,1+0.75ms准备好发送PRACH(即MSG1)。其中N T,1的时长为N 1个符号,N 1与终端的针对PDSCH接收时 间相关的处理能力有关,MSG1的重传延时如图3-1所示。
在四步随机接入过程中,承载MSG3的PUSCH的时频资源是由RAR携带的。其中,承载RAR的PDSCH的最后一个符号和承载MSG3的PUSCH的第一符号之间的最小时间间隔为N T,1+N T,2+0.5ms,其中,N T,2的时长为N 2个符号,N 2与终端的针对PUSCH准备时间相关的处理能力有关。承载MSG3的PUSCH与承载RAR的PDSCH的最小时间延时如图3-2所示。
终端在接收承载MSG4的PDSCH之后,通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)反馈混合自动重传请求-确认(Hybrid Automatic Repeat request-,Acknowledgement,HARQ-ACK)信息,承载MSG4的PDSCH的最后一个符号和承载HARQ-ACK信息的PUCCH的第一符号之间的最小时间间隔为N T,1+0.5ms。承载MSG4的PDSCH与该PDSCH对应的PUCCH之间的最小时间延时如图3-3所示。
在NR中,规定了终端对PDSCH的处理时间和PUSCH的准备时间,入表1至表4所示,其中,表1和表2为PDSCH的处理时间(或者说解码时间,或者接收时间)的定义,表3和表3为PUSCH的准备时间的定义。其中,μ=0,1,2,3分别表示PDSCH或PUSCH的子载波间隔为15KHz,30KHz,60KHz,120KHz。
Figure PCTCN2019097792-appb-000001
表1:PDSCH处理时间(PDSCH处理能力1)
Figure PCTCN2019097792-appb-000002
表2:PDSCH处理时间(PDSCH处理能力2)
μ PUSCH准备时间N 2[符号]
0 10
1 12
2 23
3 36
表3:PUSCH准备时间(PUSCH定时能力1)
μ PUSCH准备时间N 2[符号]
0 5
1 5.5
2 11(针对FR1)
表4:PUSCH准备时间(PUSCH定时能力2)
四步随机接入过程的延时开销比较大,对于5G中的低延时高可靠场景是不合适的。在NR的标准化过程中,考虑到低延时高可靠相关业务的特点,提出了两步随机接入过程的方案,相比四步随机接入过程,可以减少接入延时。参照图4,两步随机接入过程包括以下步骤:
第一步:终端设备向基站发送前导码和PUSCH(即MSGA)。
这里,PUSCH携带上行数据,例如终端的特定的临时标识信息。
第二步:基站检测到有终端发送PUSCH之后,向终端发送随机接入响应和竞争解决消息(即MSGB)。
在两步随机接入过程中,相当于将四步随机接入过程的第一步和第三步合并为两步随机接入过程中的第一步,将四步随机接入过程的第二步和第四步合并为两步随机接入过程中的第二步。对于两步随机接入过程中的第一步,MSGA包括前导码和PUSCH,MSGB包括PDCCH(承载随机接入响应)和PDSCH(承载竞争解决消息)。对于MSGA,终端需要发送前导码和PUSCH,如图5-1和图5-2所示,其中,前导码所在的PRACH时机(PRACH occasion)和PUSCH所在的PUSCH时机(PUSCH occasion)之间存在对应关系,该对应关系可以是预定义或者网络指示的。PRACH时机和PUSCH时机在时间上的先后关系,可以是RACH时机在先,或者PUSCH时机在先。
终端在发送MSGA之后,需要在一个时间窗口内监听MSGB。同样的,MSGA有可能没有被基站成功接收。终端如果在该时间窗口内没有收到MSGB,则会对MSGA进行重传。根据基站检测MSGA的情况的不同,MSGA的重传分以下情况:
-如果MSGA中的PRACH没有被检测到,则可以重传MSGA;
-如果MSGA中的PRACH被检测到,但是MSGA中的PUSCH没有被正确解码,则可以重传MSGA,或者MSGA中的PUSCH;
-如果MSGA的重传次数达到最大次数,则传输四步随机接入过程中的MSG1。
对于两步随机接入过程中的MSGA的重传,由于MSGA的重传包括各种情况,对终端的处理能力的要求不同,需要考虑针对每种情况定义相应的最小时间间隔要求。例如,在重传MSGA的情况下,需要考虑终端的PUSCH的准备时间,而四步随机接入过程只有PRACH的重传,不需要考虑PUSCH的准备时间。如果不考虑该处理时间,会造成终端无法在当前定义的最小时间间隔内准备好MSGA的重传,造成终端的处理能力无法满足标准定义的要求。为此,提出了本申请实施例的以下技术方案。
图6为本申请实施例提供的随机接入方法的流程示意图一,如图6所示,所述随机接入方法包括以下步骤:
步骤601:终端确定重传第一消息的情况下,在第一时间窗口或第一下行数据信道之后的第一时间间隔内准备好重传所述第一消息,所述第一消息包括第一随机接入信道和第一上行数据信道;其中,所述第一时间窗口用于接收所述第一消息对应的第一DCI,所述第一DCI用于调度所述第一下行数据信道。
在本申请一可选实施方式中,所述第一消息为两步随机接入过程中的MSGA。所述第一消息包括第一随机接入信道和第一上行数据信道,其中,所述第一随机接入信道例如为PRACH,所述第一上行数据信道例如为PUSCH。
在本申请一可选实施方式中,所述第一下行数据信道例如为PDSCH,所述第一下行数据信道用于承载第二消息,所述第二消息为所述第一消息的响应消息,例如所述第二消息为两步随机接入过程中的MSGB。
在本申请一可选实施方式中,所述第一时间窗口用于接收所述第一消息对应的第一DCI,所述第一DCI用于调度所述第一下行数据信道。在一个例子中,所述第一时间窗口称为MSGB的接收窗口,MSGB的接收窗口用于传输MSGA对应的第一DCI,所述第一DCI用于调度PDSCH。对于终端而言,终端在MSGB的接收窗口检测与MSGA对应的第一DCI,若检测到MSGA对应的第一DCI,则终端进一步在第一DCI调度的PDSCH上接收MSGB。
本申请实施例中,所述终端通过以下方式确定需要重传第一消息:
方式一:所述终端在所述第一时间窗口未检测到与所述第一消息对应的第一DCI的情况下,确定重传第一消息;或者,
方式二:所述终端在所述第一时间窗口检测到与所述第一消息对应的第一DCI,且在所述第一DCI调度的第一下行数据信道上未收到第二消息,则确定重传第一消息,所述第二消息为所述第一消息的响应消息。
举个例子:若终端在MSGB的接收窗口未检测到与MSGA对应的第一DCI,或者在MSGB的接收窗口检测到与MSGA对应的第一DCI,但是在第一DCI调度的PDSCH上没有收到对应的MSGB,则确定需要重传MSGA。
在本申请一可选实施方式中,所述终端确定重传第一消息的情况下,在第一时间窗口的最后一个符号之后或者第一下行数据信道的最后一个符号之后的第一时间间隔内准备好重传所述第一消息。举个例子:若终端确定重传MSGA,则终端在MSGB的接收窗口的最后一个符号之后或者在PDSCH的最后一个符号之后的第一时间间隔内准备好重传MSGA。
考虑到第一消息(如MSGA)包含第一随机接入信道(如PRACH)和第一上行数据信道(如PUSCH),如果终端需要重传第一消息,需要更多 的处理时间来准备第一消息。以下结合不同的实施方案来明确所述第一时间间隔。
Figure PCTCN2019097792-appb-000003
方案一
所述第一时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
例如:第一时间间隔包括终端的PUSCH的准备时间N T,2,其中N T,2的时长为N 2个符号,N 2与终端的针对PUSCH的准备时间相关的处理能力有关。
进一步,可选地,所述第一时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
例如:第一时间间隔除了包括终端的PUSCH的准备时间N T,2,还包括PDSCH的处理时间N T,1,PDSCH的处理时间是指终端在MSGB的接收窗口内接收PDSCH的处理时间,从而确定是否有发给自己的MSGB。其中N T,1的时长为N 1个符号,N 1与UE的针对PDSCH的处理时间相关的处理能力有关。
进一步,可选地,所述第一时间间隔还包括第一固定时间长度。
例如:参考四步随机接入过程中MSG1的重传,第一固定时间长度可以取0.75ms。当然,第一固定时间长度的取值不局限于此,还可以其他的时间长度。
基于此,优选地,第一时间间隔包括所述第一时间、所述第二时间和所述第一固定时间长度。例如:第一时间间隔为N T,1+N T,2+0.75ms。
对于基站而言,基站检测MSGA的结果有多种情况,例如基站只检测到了PRACH,或者检测到PRACH和PUSCH,甚至只检测到PUSCH,基站可以在终端的MSGB的接收窗口进行应答,例如针对PRACH的应答,针对MSGA的应答等,其中,应答消息承载在PDSCH中。这种情况下,终端在PDSCH的最后一个符号之后的第一时间间隔内准备好重传MSGA,其中,终端接收的PDSCH为承载MSGB的PDSCH。
具体到两步随机接入过程中,终端发送MSGA,在MSGB的接收窗口检测调度MSGB的DCI;若终端在MSGB的接收窗口未检测到调度MSGB的DCI,或者检测到调度MSGB的DCI,但未成功接收到MSGB,则确定重传MSGA;终端在MSGB的接收窗口的最后一个符号之后或者PDSCH(该PDSCH承载MSGB)的最后一个符号之后的第一时间间隔内准备好重传MSGA。如图7-1所示,MSGA重传的延时为第一时间间隔,该第一时间间隔需要考虑终端针对PUSCH的准备时间。
在方案一中,第一时间间隔包括了MSGA中的PUSCH的准备时间,在MSGA的重传准备中,为终端预留了足够的处理时间,使得终端在定义的第一时间间隔内,可以完成MSGA的准备。
Figure PCTCN2019097792-appb-000004
方案二
所述第一时间间隔基于第一传输时机和第二传输时机之间的对应关系确定,所述第一传输时机用于传输所述第一消息中的第一随机接入信道,所述第二传输时机用于传输所述第一消息中的第一上行数据信道。
这里,所述第一消息中的第一随机接入信道和第一上行数据信道具有对应关系,因而,用于传输第一随机接入信道的第一传输时机和用于传输第一上行数据信道的第二传输时机之间具有对应关系。例如:MSGA中用于发送PRACH的PRACH时机和用于发送PUSCH的PUSCH时机之间具有对应关系。所述第一时间间隔与第一传输时机和第二传输时机之间的对应关系有关。
由于第一传输时机(如PRACH时机)和第二传输时机(如PUSCH时机)之间有对应关系,通常第一传输时机和第二传输时机之间存在时间间隔,即所述第一传输时机和所述第二传输时机之间具有第二时间间隔,所述第二时间间隔例如是保护时间(Guard Time,GT),或循环前缀(Cyclic Prefix,CP)等,甚至所述第一传输时机和所述第二传输时机位于不同的时隙。由于可以配置所述第一传输时机和所述第二传输时机之间不同的对应关系,因而它们之间的第二时间间隔可以是不同的。
由于重传第一消息需要保证一定的时间间隔(即所述第一时间间隔)满足终端的处理时间,本实施例中定义的第一时间间隔与第一传输时机和第二传输时机之间的对应关系有关,可以根据一定的预设规则确定所述第一时间间隔。以下结合所述第二时间间隔的不同情况,分别明确所述第一时间间隔:
1)所述第二时间间隔小于或小于等于第一门限的情况下,所述第一时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
例如:若PRACH时机和PUSCH时机之间的第二时间间隔小于或小于等于第一门限,则它们之间的第二时间间隔无法用于终端针对PUSCH的准备时间,此时,第一时间间隔需要包括终端针对PUSCH的准备时间N T,2
进一步,可选地,所述第一时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的接收处理时间。
例如:第一时间间隔除了包括终端的PUSCH的准备时间N T,2,还包括PDSCH的处理时间N T,1,PDSCH的处理时间是指终端在MSGB的接收窗口内接收PDSCH的处理时间,从而确定是否有发给自己的MSGB。其中N T,1的时长为N 1个符号,N 1与UE的针对PDSCH的处理时间相关的处理能力有关。
进一步,可选地,所述第一时间间隔还包括第一固定时间长度。
例如:参考四步随机接入过程中MSG1的重传,第一固定时间长度可以取0.75ms。当然,第一固定时间长度的取值不局限于此,还可以其他的时间长度。
基于此,优选地,第一时间间隔包括所述第一时间、所述第二时间和所述第一固定时间长度。例如:第一时间间隔为N T,1+N T,2+0.75ms。
2)所述第二时间间隔大于或大于等于第一门限的情况下,所述第一时间间隔包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的接收时间。
例如:若PRACH时机和PUSCH时机之间的第二时间间隔大于或大于等于第一门限,则它们之间的第二时间间隔可以用于终端对PUSCH的准备时间,此时,第一时间间隔可以不包括终端针对PUSCH的准备时间N T,2。进一步的,第一时间间隔包括PDSCH的处理时间N T,1,PDSCH的处理时间是指终端在MSGB的接收窗口内接收PDSCH的处理时间,从而确定是否有发给自己的MSGB。其中N T,1的时长为N 1个符号,N 1与UE的针对PDSCH的处理时间相关的处理能力有关
进一步,可选地,所述第一时间间隔还包括第一固定时间长度。
例如:参考四步随机接入过程中MSG1的重传,第一固定时间长度可以取0.75ms。当然,第一固定时间长度的取值不局限于此,还可以其他的时间长度。
基于此,优选地,第一时间间隔包括所述第二时间和所述第一固定时间长度。例如:第一时间间隔为N T,1+0.75ms。
上述第一门限可以是预定义的或者通过网络指示的,例如网络通过系统消息或者配置信息指示。在一个例子中,第一门限的取值等于终端针对PUSCH的准备时间N T,2
3)所述第一时间间隔和所述第二时间间隔之和大于或大于等于第一时间、第二时间和第一固定时间长度之和;其中,所述第一时间为所述终端针对所述第一上行数据信道的准备时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
进一步,可选地,所述第一时间间隔大于或大于等于第二时间和第一固定时间长度之和。
例如:第一时间间隔与RACH时机和PUSCH时机之间的第二时间间隔之和,需要大于或大于等于N T,1+N T,2+0.75ms,且第一时间间隔需大于或大于等于N T,1+0.75ms。此时,终端在第一时间间隔期间,可以准备好PRACH的传输,且可以部分准备PUSCH传输。而在RACH时机和PUSCH时机之间的第二时间间隔期间,继续准备好PUSCH的传输。因此,终端在上述两个时间间隔内,共同完成PRACH和PUSCH传输的准备。
具体到两步随机接入过程中,终端发送MSGA,在MSGB的接收窗口检测调度MSGB的DCI;若终端在MSGB的接收窗口未检测到调度MSGB的DCI,或者检测到调度MSGB的DCI,但未成功接收到MSGB,则确定重传MSGA;终端确定PRACH时机和PUSCH时机之间的对应关系,根据 该对应关系,确定第一时间间隔;终端在MSGB的接收窗口的最后一个符号之后或者PDSCH的最后一个符号之后的第一时间间隔内准备好重传MSGA。如图7-2所示,第一时间间隔与PRACH时机和PUSCH时机之间的第二时间间隔存在关联关系。
在方案二中,第一时间间隔不包括MSGA的全部准备时间,可以只包含其中一部分。PRACH时机和PUSCH时机之间的第二时间间隔可以作为MSGA的部分准备时间。因此,第一时间间隔与PRACH时机和PUSCH时机之间的第二时间间隔是有关联关系的。通过整体考虑第一时间间隔与RACH时机和PUSCH时机之间的第二时间间隔,可以进一步缩短第一时间间隔,充分利用PRACH时机和PUSCH时机之间的第二时间间隔用于UE的准备时间,从而减少MSGA重传的延时。
在一实施方式中,本申请实施例的上述第一时间间隔可以是定义的。
在另一实施方式中,本申请实施例的上述第一时间间隔可以由网络设备指示给所述终端,或者,所述第一时间间隔中的部分时间信息由网络设备指示给所述终端。这里,所述网络设备可以是基站。基站可以根据具体情况灵活的配置和指示第一时间间隔,使得基站可以灵活的控制随机接入的延时,以及根据具体的终端处理能力和重传情况,最优的配置第一时间间隔,提高系统的随机接入性能。
例如:结合方案2,第一时间间隔包括PDSCH的接收时间N T,1和网络设备指示的目标时间间隔。由于网络设备配置RACH时机和PUSCH时机,以及它们之间的对应关系,因此网络设备对于RACH时机和PUSCH时机之间的第二时间间隔,以及终端需要的处理时间是清楚的,因此网络设备可以根据这些信息指示用于确定第一时间间隔的目标时间间隔。可选的,网络设备也可以直接指示第一时间间隔。
图8为本申请实施例提供的随机接入方法的流程示意图二,如图8所示,所述随机接入方法包括以下步骤:
步骤801:终端确定重传第一消息中的第一上行数据信道的情况下,在第一下行数据信道之后的第三时间间隔内准备好重传所述第一上行数据信道,所述第一消息包括第一随机接入信道和第一上行数据信道;其中,所述第一下行数据信道用于承载第二消息,所述第二消息为所述第一消息的响应消息。
在本申请一可选实施方式中,所述第一消息为两步随机接入过程中的MSGA。所述第一消息包括第一随机接入信道和第一上行数据信道,其中,所述第一随机接入信道例如为PRACH,所述第一上行数据信道例如为PUSCH。
在本申请一可选实施方式中,所述第一下行数据信道例如为PDSCH,所述第一下行数据信道用于承载第二消息,所述第二消息为所述第一消息的响应消息,例如所述第二消息为两步随机接入过程中的MSGB。
本申请实施例中,所述终端通过以下方式确定需要重传第一消息:
所述终端在第一时间窗口内检测到第一DCI,所述第一DCI用于调度所述第一下行数据信道,所述第一下行数据信道包括第一指示信息,所述第一指示信息用于指示基站成功收到所述第一随机接入信道,且未成功收到所述第一上行数据信道;所述终端基于所述第一指示信息,确定重传所述第一消息中的第一上行数据信道。进一步,所述未成功收到所述第一上行数据信道,包括:所述终端未检测到所述第一上行数据信道;或者,所述终端检测到所述第一上行数据信道且对所述第一上行数据信道解码失败。
在一个例子中,所述第一时间窗口称为MSGB的接收窗口,MSGB的接收窗口用于传输MSGA对应的第一DCI,所述第一DCI用于调度PDSCH。对于终端而言,终端在MSGB的接收窗口检测与MSGA对应的第一DCI,若检测到MSGA对应的第一DCI,则终端进一步在第一DCI调度的PDSCH上接收第一指示信息,终端基于第一指示信息,确定重传MSGA中的PUSCH。这里,所述第一指示信息用于指示MSGA中的PRACH被基站检测到,但是MSGA中的PUSCH没有检测到或者解码失败。
在本申请一可选实施方式中,所述终端确定重传第一消息中的第一上行数据信道的情况下,在第一下行数据信道的最后一个符号之后的第三时间间隔内准备好重传所述第一上行数据信道。
考虑到需要重传第一上行数据信道(如PUSCH)而不需要重传第一随机接入信道(如PRACH),需要定义第三时间间隔,以满足终端相应的处理时间要求。以下对第三时间间隔的具体实现进行说明。
所述第三时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
例如:第三时间间隔包括终端的PUSCH的准备时间N T,2,其中N T,2的时长为N 2个符号,N 2与终端的针对PUSCH的准备时间相关的处理能力有关。
进一步,可选地,所述第三时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
例如:第三时间间隔除了包括终端的PUSCH的准备时间N T,2,还包括PDSCH的处理时间N T,1,PDSCH的处理时间是指终端在MSGB的接收窗口内接收PDSCH的处理时间,从而确定是否有发给自己的MSGB。其中N T,1的时长为N 1个符号,N 1与UE的针对PDSCH的处理时间相关的处理能力有关。
进一步,可选地,所述第三时间间隔还包括第二固定时间长度。
这里,由于重传不包括PRACH,相应的第二固定时间长度相比前述方案中的第一固定时间长度可以适当减少。例如:参考四步随机接入过 程中MSG3的传输,第二固定时间长度可以取0.5ms。当然,第二固定时间长度的取值不局限于此,还可以其他的时间长度。
基于此,优选地,第三时间间隔包括所述第一时间、所述第二时间和所述第二固定时间长度。例如:第三时间间隔为N T,1+N T,2+0.5ms。
对于基站而言,基站检测MSGA的结果有多种情况,例如基站只检测到了PRACH,或者检测到PRACH和PUSCH,甚至只检测到PUSCH,基站可以在终端的MSGB的接收窗口进行应答,例如针对PRACH的应答,针对MSGA的应答等,其中,应答消息承载在PDSCH中。这种情况下,终端在PDSCH的最后一个符号之后的第三时间间隔内准备好重传MSGA的PUSCH,其中,终端接收的PDSCH为承载MSGB的PDSCH。
需要说明的是,上述第一指示信息是携带在PDSCH中的,本实施例的技术方案不局限于此,第一指示信息还可以携带在调度PDSCH的第一DCI中。
具体到两步随机接入过程中,终端发送MSGA,在MSGB的接收窗口检测调度MSGB的DCI;若终端在MSGB的接收窗口接收到第一指示信息,则确定重传MSGA中的PUSCH;终端在PDSCH(该PDSCH承载第一指示信息和/或MSGB)的最后一个符号之后的第三时间间隔内准备好重传MSGA中的PUSCH。如图9所示,MSGA的PUSCH重传的延时为第三时间间隔,该第三时间间隔需要考虑终端针对PUSCH的准备时间。
在一实施方式中,本申请实施例的上述第三时间间隔可以是定义的。
在另一实施方式中,本申请实施例的上述第三时间间隔可以由网络设备指示给所述终端,或者,所述第三时间间隔中的部分时间信息由网络设备指示给所述终端。基站可以根据具体情况灵活的配置和指示第三时间间隔,使得基站可以灵活的控制随机接入的延时,以及根据具体的终端处理能力和重传情况,最优的配置第三时间间隔,提高系统的随机接入性能。
图10为本申请实施例提供的随机接入装置的结构组成示意图一,如图10所示,所述随机接入装置包括:
处理单元1001,用于确定重传第一消息的情况下,在第一时间窗口或第一下行数据信道之后的第一时间间隔内准备好重传所述第一消息,所述第一消息包括第一随机接入信道和第一上行数据信道;
其中,所述第一时间窗口用于接收所述第一消息对应的第一DCI,所述第一DCI用于调度所述第一下行数据信道。
在一可选实施方式中,所述第一时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
在一可选实施方式中,所述第一时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
在一可选实施方式中,所述第一时间间隔还包括第一固定时间长度。
在一可选实施方式中,所述第一时间间隔基于第一传输时机和第二 传输时机之间的对应关系确定,所述第一传输时机用于传输所述第一消息中的第一随机接入信道,所述第二传输时机用于传输所述第一消息中的第一上行数据信道。
在一可选实施方式中,所述第一传输时机和所述第二传输时机之间具有第二时间间隔;
所述第二时间间隔小于或小于等于第一门限的情况下,所述第一时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
在一可选实施方式中,所述第一时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
在一可选实施方式中,所述第一时间间隔还包括第一固定时间长度。
在一可选实施方式中,所述第一传输时机和所述第二传输时机之间具有第二时间间隔;
所述第二时间间隔大于或大于等于第一门限的情况下,所述第一时间间隔包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的接收时间。
在一可选实施方式中,所述第一时间间隔还包括第一固定时间长度。
在一可选实施方式中,所述第一传输时机和所述第二传输时机之间具有第二时间间隔;
所述第一时间间隔和所述第二时间间隔之和大于或大于等于第一时间、第二时间和第一固定时间长度之和;
其中,所述第一时间为所述终端针对所述第一上行数据信道的准备时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
在一可选实施方式中,所述第一时间间隔大于或大于等于第二时间和第一固定时间长度之和。
在一可选实施方式中,所述第一时间间隔由网络设备指示给所述终端;或者,
所述第一时间间隔中的部分时间信息由网络设备指示给所述终端。
在一可选实施方式中,所述处理单元1001,用于在第一时间窗口的最后一个符号之后或者第一下行数据信道的最后一个符号之后的第一时间间隔内准备好重传所述第一消息。
在一可选实施方式中,所述装置还包括:
确定单元1002,用于在所述第一时间窗口未检测到与所述第一消息对应的第一DCI的情况下,确定重传第一消息;或者,在所述第一时间窗口检测到与所述第一消息对应的第一DCI,且在所述第一DCI调度的第一下行数据信道上未收到第二消息,则确定重传第一消息,所述第二消息为所述第一消息的响应消息。
在一可选实施方式中,所述第一下行数据信道用于承载第二消息,所 述第二消息为所述第一消息的响应消息。
本领域技术人员应当理解,本申请实施例的上述随机接入装置的相关描述可以参照本申请实施例的随机接入方法的相关描述进行理解。
图11为本申请实施例提供的随机接入装置的结构组成示意图二,如图11所示,所述随机接入装置包括:
处理单元1101,用于确定重传第一消息中的第一上行数据信道的情况下,在第一下行数据信道之后的第三时间间隔内准备好重传所述第一上行数据信道,所述第一消息包括第一随机接入信道和第一上行数据信道;
其中,所述第一下行数据信道用于承载第二消息,所述第二消息为所述第一消息的响应消息。
在一可选实施方式中,所述第三时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
在一可选实施方式中,所述第三时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
在一可选实施方式中,所述第三时间间隔还包括第二固定时间长度。
在一可选实施方式中,所述处理单元,用于在第一下行数据信道的最后一个符号之后的第三时间间隔内准备好重传所述第一上行数据信道。
在一可选实施方式中,所述第三时间间隔由网络设备指示给所述终端;或者,
所述第三时间间隔中的部分时间信息由网络设备指示给所述终端。
在一可选实施方式中,所述装置还包括:
检测单元1102,用于在第一时间窗口内检测到第一DCI,所述第一DCI用于调度所述第一下行数据信道,所述第一下行数据信道包括第一指示信息,所述第一指示信息用于指示基站成功收到所述第一随机接入信道,且未成功收到所述第一上行数据信道;
确定单元1103,用于基于所述第一指示信息,确定重传所述第一消息中的第一上行数据信道。
在一可选实施方式中,所述未成功收到所述第一上行数据信道,包括:
未检测到所述第一上行数据信道;或者,
检测到所述第一上行数据信道且对所述第一上行数据信道解码失败。
本领域技术人员应当理解,本申请实施例的上述随机接入装置的相关描述可以参照本申请实施例的随机接入方法的相关描述进行理解。
图12是本申请实施例提供的一种通信设备1200示意性结构图。该通信设备可以是终端,也可以是网络设备,图12所示的通信设备1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现 本申请实施例中的方法。
可选地,如图12所示,通信设备1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,如图12所示,通信设备1200还可以包括收发器1230,处理器1210可以控制该收发器1230与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1230可以包括发射机和接收机。收发器1230还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1200具体可为本申请实施例的网络设备,并且该通信设备1200可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1200具体可为本申请实施例的移动终端/终端,并且该通信设备1200可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的芯片的示意性结构图。图13所示的芯片1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,该芯片1300还可以包括输入接口1330。其中,处理器1310可以控制该输入接口1330与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1300还可以包括输出接口1340。其中,处理器1310可以控制该输出接口1340与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片, 芯片系统或片上系统芯片等。
图14是本申请实施例提供的一种通信系统1400的示意性框图。如图14所示,该通信系统1400包括终端1410和网络设备1420。
其中,该终端1410可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备1420可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器 (synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置 和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (53)

  1. 一种随机接入方法,所述方法包括:
    终端确定重传第一消息的情况下,在第一时间窗口或第一下行数据信道之后的第一时间间隔内准备好重传所述第一消息,所述第一消息包括第一随机接入信道和第一上行数据信道;
    其中,所述第一时间窗口用于接收所述第一消息对应的第一下行控制信息DCI,所述第一DCI用于调度所述第一下行数据信道。
  2. 根据权利要求1所述的方法,其中,所述第一时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
  3. 根据权利要求2所述的方法,其中,所述第一时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
  4. 根据权利要求3所述的方法,其中,所述第一时间间隔还包括第一固定时间长度。
  5. 根据权利要求1所述的方法,其中,所述第一时间间隔基于第一传输时机和第二传输时机之间的对应关系确定,所述第一传输时机用于传输所述第一消息中的第一随机接入信道,所述第二传输时机用于传输所述第一消息中的第一上行数据信道。
  6. 根据权利要求5所述的方法,其中,所述第一传输时机和所述第二传输时机之间具有第二时间间隔;
    所述第二时间间隔小于或小于等于第一门限的情况下,所述第一时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
  7. 根据权利要求6所述的方法,其中,所述第一时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
  8. 根据权利要求7所述的方法,其中,所述第一时间间隔还包括第一固定时间长度。
  9. 根据权利要求5所述的方法,其中,所述第一传输时机和所述第二传输时机之间具有第二时间间隔;
    所述第二时间间隔大于或大于等于第一门限的情况下,所述第一时间间隔包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的接收时间。
  10. 根据权利要求9所述的方法,其中,所述第一时间间隔还包括第一固定时间长度。
  11. 根据权利要求5所述的方法,其中,所述第一传输时机和所述 第二传输时机之间具有第二时间间隔;
    所述第一时间间隔和所述第二时间间隔之和大于或大于等于第一时间、第二时间和第一固定时间长度之和;
    其中,所述第一时间为所述终端针对所述第一上行数据信道的准备时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
  12. 根据权利要求11所述的方法,其中,所述第一时间间隔大于或大于等于第二时间和第一固定时间长度之和。
  13. 根据权利要求1至12中任一项所述的方法,其中,
    所述第一时间间隔由网络设备指示给所述终端;或者,
    所述第一时间间隔中的部分时间信息由网络设备指示给所述终端。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述在第一时间窗口或第一下行数据信道之后的第一时间间隔内准备好重传所述第一消息,包括:
    所述终端在第一时间窗口的最后一个符号之后或者第一下行数据信道的最后一个符号之后的第一时间间隔内准备好重传所述第一消息。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述方法还包括:
    所述终端在所述第一时间窗口未检测到与所述第一消息对应的第一DCI的情况下,确定重传第一消息;或者,
    所述终端在所述第一时间窗口检测到与所述第一消息对应的第一DCI,且在所述第一DCI调度的第一下行数据信道上未收到第二消息,则确定重传第一消息,所述第二消息为所述第一消息的响应消息。
  16. 根据权利要求1至15中任一项所述的方法,其中,所述第一下行数据信道用于承载第二消息,所述第二消息为所述第一消息的响应消息。
  17. 一种随机接入方法,所述方法包括:
    终端确定重传第一消息中的第一上行数据信道的情况下,在第一下行数据信道之后的第三时间间隔内准备好重传所述第一上行数据信道,所述第一消息包括第一随机接入信道和第一上行数据信道;
    其中,所述第一下行数据信道用于承载第二消息,所述第二消息为所述第一消息的响应消息。
  18. 根据权利要求17所述的方法,其中,所述第三时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
  19. 根据权利要求18所述的方法,其中,所述第三时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
  20. 根据权利要求19所述的方法,其中,所述第三时间间隔还包括 第二固定时间长度。
  21. 根据权利要求17至20中任一项所述的方法,其中,所述在第一下行数据信道之后的第三时间间隔内准备好重传所述第一上行数据信道,包括:
    所述终端在第一下行数据信道的最后一个符号之后的第三时间间隔内准备好重传所述第一上行数据信道。
  22. 根据权利要求17至21中任一项所述的方法,其中,
    所述第三时间间隔由网络设备指示给所述终端;或者,
    所述第三时间间隔中的部分时间信息由网络设备指示给所述终端。
  23. 根据权利要求17至22中任一项所述的方法,其中,所述方法还包括:
    所述终端在第一时间窗口内检测到第一DCI,所述第一DCI用于调度所述第一下行数据信道,所述第一下行数据信道包括第一指示信息,所述第一指示信息用于指示基站成功收到所述第一随机接入信道,且未成功收到所述第一上行数据信道;
    所述终端基于所述第一指示信息,确定重传所述第一消息中的第一上行数据信道。
  24. 根据权利要求23所述的方法,其中,所述未成功收到所述第一上行数据信道,包括:
    所述终端未检测到所述第一上行数据信道;或者,
    所述终端检测到所述第一上行数据信道且对所述第一上行数据信道解码失败。
  25. 一种随机接入装置,所述装置包括:
    处理单元,用于确定重传第一消息的情况下,在第一时间窗口或第一下行数据信道之后的第一时间间隔内准备好重传所述第一消息,所述第一消息包括第一随机接入信道和第一上行数据信道;
    其中,所述第一时间窗口用于接收所述第一消息对应的第一DCI,所述第一DCI用于调度所述第一下行数据信道。
  26. 根据权利要求25所述的装置,其中,所述第一时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
  27. 根据权利要求26所述的装置,其中,所述第一时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
  28. 根据权利要求27所述的装置,其中,所述第一时间间隔还包括第一固定时间长度。
  29. 根据权利要求25所述的装置,其中,所述第一时间间隔基于第一传输时机和第二传输时机之间的对应关系确定,所述第一传输时机用 于传输所述第一消息中的第一随机接入信道,所述第二传输时机用于传输所述第一消息中的第一上行数据信道。
  30. 根据权利要求29所述的装置,其中,所述第一传输时机和所述第二传输时机之间具有第二时间间隔;
    所述第二时间间隔小于或小于等于第一门限的情况下,所述第一时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
  31. 根据权利要求30所述的装置,其中,所述第一时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
  32. 根据权利要求31所述的装置,其中,所述第一时间间隔还包括第一固定时间长度。
  33. 根据权利要求29所述的装置,其中,所述第一传输时机和所述第二传输时机之间具有第二时间间隔;
    所述第二时间间隔大于或大于等于第一门限的情况下,所述第一时间间隔包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的接收时间。
  34. 根据权利要求33所述的装置,其中,所述第一时间间隔还包括第一固定时间长度。
  35. 根据权利要求29所述的装置,其中,所述第一传输时机和所述第二传输时机之间具有第二时间间隔;
    所述第一时间间隔和所述第二时间间隔之和大于或大于等于第一时间、第二时间和第一固定时间长度之和;
    其中,所述第一时间为所述终端针对所述第一上行数据信道的准备时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
  36. 根据权利要求35所述的装置,其中,所述第一时间间隔大于或大于等于第二时间和第一固定时间长度之和。
  37. 根据权利要求25至36中任一项所述的装置,其中,
    所述第一时间间隔由网络设备指示给所述终端;或者,
    所述第一时间间隔中的部分时间信息由网络设备指示给所述终端。
  38. 根据权利要求25至37中任一项所述的装置,其中,所述处理单元,用于在第一时间窗口的最后一个符号之后或者第一下行数据信道的最后一个符号之后的第一时间间隔内准备好重传所述第一消息。
  39. 根据权利要求25至38中任一项所述的装置,其中,所述装置还包括:
    确定单元,用于在所述第一时间窗口未检测到与所述第一消息对应的第一DCI的情况下,确定重传第一消息;或者,在所述第一时间窗口检测到与所述第一消息对应的第一DCI,且在所述第一DCI调度的第一 下行数据信道上未收到第二消息,则确定重传第一消息,所述第二消息为所述第一消息的响应消息。
  40. 根据权利要求25至39中任一项所述的装置,其中,所述第一下行数据信道用于承载第二消息,所述第二消息为所述第一消息的响应消息。
  41. 一种随机接入装置,所述装置包括:
    处理单元,用于确定重传第一消息中的第一上行数据信道的情况下,在第一下行数据信道之后的第三时间间隔内准备好重传所述第一上行数据信道,所述第一消息包括第一随机接入信道和第一上行数据信道;
    其中,所述第一下行数据信道用于承载第二消息,所述第二消息为所述第一消息的响应消息。
  42. 根据权利要求41所述的装置,其中,所述第三时间间隔包括第一时间,所述第一时间为所述终端针对所述第一上行数据信道的准备时间。
  43. 根据权利要求42所述的装置,其中,所述第三时间间隔还包括第二时间,所述第二时间为所述终端针对所述第一下行数据信道的处理时间。
  44. 根据权利要求43所述的装置,其中,所述第三时间间隔还包括第二固定时间长度。
  45. 根据权利要求41至44中任一项所述的装置,其中,所述处理单元,用于在第一下行数据信道的最后一个符号之后的第三时间间隔内准备好重传所述第一上行数据信道。
  46. 根据权利要求41至45中任一项所述的装置,其中,
    所述第三时间间隔由网络设备指示给所述终端;或者,
    所述第三时间间隔中的部分时间信息由网络设备指示给所述终端。
  47. 根据权利要求41至46中任一项所述的装置,其中,所述装置还包括:
    检测单元,用于在第一时间窗口内检测到第一DCI,所述第一DCI用于调度所述第一下行数据信道,所述第一下行数据信道包括第一指示信息,所述第一指示信息用于指示基站成功收到所述第一随机接入信道,且未成功收到所述第一上行数据信道;
    确定单元,用于基于所述第一指示信息,确定重传所述第一消息中的第一上行数据信道。
  48. 根据权利要求47所述的装置,其中,所述未成功收到所述第一上行数据信道,包括:
    未检测到所述第一上行数据信道;或者,
    检测到所述第一上行数据信道且对所述第一上行数据信道解码失败。
  49. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至24中任一项所述的方法。
  50. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至24中任一项所述的方法。
  51. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
  52. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至24中任一项所述的方法。
  53. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
PCT/CN2019/097792 2019-07-25 2019-07-25 一种随机接入方法及装置、终端 WO2021012286A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19938471.0A EP3993546B1 (en) 2019-07-25 2019-07-25 Random access method and device, and terminal
PCT/CN2019/097792 WO2021012286A1 (zh) 2019-07-25 2019-07-25 一种随机接入方法及装置、终端
CN202111647799.XA CN114222373A (zh) 2019-07-25 2019-07-25 一种随机接入方法及装置、终端
CN201980094201.3A CN113574956A (zh) 2019-07-25 2019-07-25 一种随机接入方法及装置、终端
US17/578,261 US20220141888A1 (en) 2019-07-25 2022-01-18 Random access method and device, and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/097792 WO2021012286A1 (zh) 2019-07-25 2019-07-25 一种随机接入方法及装置、终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/578,261 Continuation US20220141888A1 (en) 2019-07-25 2022-01-18 Random access method and device, and terminal

Publications (1)

Publication Number Publication Date
WO2021012286A1 true WO2021012286A1 (zh) 2021-01-28

Family

ID=74193093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097792 WO2021012286A1 (zh) 2019-07-25 2019-07-25 一种随机接入方法及装置、终端

Country Status (4)

Country Link
US (1) US20220141888A1 (zh)
EP (1) EP3993546B1 (zh)
CN (2) CN114222373A (zh)
WO (1) WO2021012286A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325377A (zh) * 2011-05-24 2012-01-18 电信科学技术研究院 一种资源调度指示方法及装置
US20180317264A1 (en) * 2017-04-26 2018-11-01 Samsung Electronics Co., Ltd. Method and apparatus for performing random access procedure
CN108811119A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 随机接入方法、设备和系统
CN109845378A (zh) * 2016-09-28 2019-06-04 索尼公司 下一代无线系统中的随机接入
CN109892000A (zh) * 2016-11-01 2019-06-14 高通股份有限公司 两步随机接入过程

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10868591B2 (en) * 2015-01-21 2020-12-15 Qualcomm Incorporated Spatial and frequency diversity design for machine type communications (MTC)
CN108141413B (zh) * 2015-10-30 2022-03-15 英特尔公司 针对无线数据传输的延迟减少
WO2018062875A1 (en) * 2016-09-27 2018-04-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal in communication system using scalable frame structure
US20180368188A1 (en) * 2017-06-15 2018-12-20 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
KR20190081548A (ko) * 2017-12-29 2019-07-09 주식회사 비즈모델라인 음파장치와 암호화폐를 이용한 비동기식 역방향 결제 방법
US20220183071A1 (en) * 2019-03-29 2022-06-09 Beijing Xiaomi Mobile Software Co., Ltd. Random access method and device, and computer readable storage medium
KR20210004711A (ko) * 2019-07-05 2021-01-13 삼성전자주식회사 무선 통신 시스템에서 랜덤 액세스 절차를 위한 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325377A (zh) * 2011-05-24 2012-01-18 电信科学技术研究院 一种资源调度指示方法及装置
CN109845378A (zh) * 2016-09-28 2019-06-04 索尼公司 下一代无线系统中的随机接入
CN109892000A (zh) * 2016-11-01 2019-06-14 高通股份有限公司 两步随机接入过程
US20180317264A1 (en) * 2017-04-26 2018-11-01 Samsung Electronics Co., Ltd. Method and apparatus for performing random access procedure
CN108811119A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 随机接入方法、设备和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3993546A4 *
VIVO: "Discussion on 2-step RACH procedure", 3GPP DRAFT; R1-1906125_DISCUSSION ON PROCEDURE FOR 2-STEP RACH, vol. RAN WG1, 1 May 2019 (2019-05-01), Reno, USA, pages 1 - 8, XP051708166 *

Also Published As

Publication number Publication date
EP3993546B1 (en) 2023-07-05
EP3993546A4 (en) 2022-06-29
US20220141888A1 (en) 2022-05-05
EP3993546A1 (en) 2022-05-04
CN113574956A (zh) 2021-10-29
CN114222373A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2020147115A1 (zh) 用于非授权频谱的无线通信方法和设备
JP7185758B2 (ja) 信号伝送方法及びその装置、端末装置並びにネットワーク装置
WO2020191637A1 (zh) 随机接入的方法、终端设备和网络设备
WO2020019230A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
WO2020198983A1 (zh) 一种用于非授权频谱的无线通信方法及装置、通信设备
WO2020186466A1 (zh) 无线通信的方法、终端设备和网络设备
US20230345525A1 (en) Random access method, and electronic device and storage medium
WO2020191561A1 (zh) 一种随机接入方法及装置、用户设备、网络设备
WO2020024616A1 (zh) 一种随机接入方法及相关设备
WO2020220358A1 (zh) 一种用于非授权频谱的功率调整方法及装置
WO2020191599A1 (zh) 通信方法、终端设备和网络设备
US11758541B2 (en) Information transmission method, terminal device and network device
WO2020061945A1 (zh) 用于随机接入的方法、网络设备和终端设备
WO2020061776A9 (zh) 一种反馈资源的复用方法、终端设备及网络设备
WO2020034203A1 (zh) 传输信号的方法、终端设备和网络设备
WO2020227907A1 (zh) 一种资源确定方法及装置、终端
WO2020191632A1 (zh) 一种功率控制方法及装置、终端、网络设备
WO2020087468A1 (zh) 无线通信方法和设备
WO2020019182A1 (zh) 一种信号传输方法及装置、终端设备、网络设备
WO2021077377A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2020020348A1 (zh) 一种信息传输方法及装置、终端设备、网络设备
WO2021012286A1 (zh) 一种随机接入方法及装置、终端
US11438936B2 (en) Random access method and apparatus, and user equipment and network device
WO2020177135A1 (zh) 功率控制方法及随机接入方法、装置、终端
WO2021142636A1 (zh) 上行传输的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019938471

Country of ref document: EP

Effective date: 20220125