WO2020019182A1 - 一种信号传输方法及装置、终端设备、网络设备 - Google Patents

一种信号传输方法及装置、终端设备、网络设备 Download PDF

Info

Publication number
WO2020019182A1
WO2020019182A1 PCT/CN2018/096970 CN2018096970W WO2020019182A1 WO 2020019182 A1 WO2020019182 A1 WO 2020019182A1 CN 2018096970 W CN2018096970 W CN 2018096970W WO 2020019182 A1 WO2020019182 A1 WO 2020019182A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
preamble
configuration information
message
uplink data
Prior art date
Application number
PCT/CN2018/096970
Other languages
English (en)
French (fr)
Inventor
徐伟杰
尤心
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/096970 priority Critical patent/WO2020019182A1/zh
Priority to CN201880038020.4A priority patent/CN110771240B/zh
Priority to TW108126438A priority patent/TW202008817A/zh
Publication of WO2020019182A1 publication Critical patent/WO2020019182A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a signal transmission method and device, a terminal device, and a network device.
  • RACH Random Access Channel
  • LTE Long Term Evolution
  • RACH Random Access Channel
  • LTE Long Term Evolution
  • MSG1 For the first step of the two-step RACH process, MSG1 includes two parts of a preamble and a physical uplink shared channel (PUSCH).
  • the preamble can be used as a PUSCH demodulation reference signal. In some cases, it is not enough to cover the bandwidth of the PUSCH, so that the Preamble cannot be used as a demodulation reference signal for the PUSCH.
  • the embodiments of the present application provide a signal transmission method and device, a terminal device, and a network device, which can improve the bandwidth of the Preamble.
  • the terminal device sends a first message to the network device, where the first message includes at least a first preamble, where the first preamble is used as a demodulation reference signal for a first uplink data channel, and the first preamble occupies Discontinuous frequency domain resources.
  • the network device receives a first message sent by a terminal device, where the first message includes at least a first preamble, where the first preamble is used as a demodulation reference signal for a first uplink data channel, and the first preamble Occupies non-contiguous frequency domain resources.
  • a transmission unit configured to send a first message to a network device, where the first message includes at least a first preamble, where the first preamble is used as a demodulation reference signal for a first uplink data channel, and the first The preamble occupies non-contiguous frequency domain resources.
  • a transmission unit configured to receive a first message sent by a terminal device, where the first message includes at least a first preamble, where the first preamble is used as a demodulation reference signal for a first uplink data channel, and the first A preamble occupies non-contiguous frequency domain resources.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned signal transmission method.
  • the network device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned signal transmission method.
  • the chip provided in the embodiment of the present application is used to implement the foregoing signal transmission method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the foregoing signal transmission method.
  • the computer-readable storage medium provided in the embodiment of the present application is used to store a computer program, and the computer program causes a computer to execute the foregoing signal transmission method.
  • the computer program product provided in the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the foregoing signal transmission method.
  • the computer program provided in the embodiment of the present application when run on a computer, causes the computer to execute the foregoing signal transmission method.
  • the first preamble occupies non-continuous frequency domain resources (such as frequency domain resources using an interlace structure) to expand the frequency domain resource range it occupies, thereby It can be used as a demodulation reference signal for the first uplink data channel (PUSCH).
  • PUSCH non-continuous frequency domain resource structure
  • using a discontinuous frequency domain resource structure can expand the frequency domain range occupied by the first preamble, so that the first uplink data channel (PUSCH) can have enough frequency domain units in this frequency domain range for the first An uplink data channel (PUSCH), thereby more flexibly scheduling the first uplink data channel (PUSCH) in this frequency domain.
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a 4-step RACH process according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a 2-step RACH process according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of information transmitted in a first step in a 2-step RACH process according to an embodiment of the present application
  • FIG. 5 is a first schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an interlace structure according to an embodiment of the present application.
  • FIG. 7 is a second schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 8 is a schematic structural composition diagram of an information transmission device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (also referred to as a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device may be a mobile switching center, relay station, access point, vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal device can refer to an access terminal, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • terminal devices 120 may perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • the four-step RACH process includes four steps, which are:
  • a first step the terminal device sends a preamble (that is, a preamble sequence) to the base station through MSG1 (Message 1), where the preamble is a randomly selected preamble.
  • a preamble that is, a preamble sequence
  • step 2 after the base station detects that the terminal equipment sends a preamble, it sends a random access response (RAR, Random Access Response) to the terminal equipment through MSG2 (Message 2) to inform the terminal equipment that it is sending MSG3 (Message 3 ) Available uplink resource information, assigning a wireless network temporary identity (RNTI, Radio Network Tempory Identity) to the terminal device, providing the terminal device with a timing advance command (time advance command), etc .;
  • RAR Random Access Response
  • a third step after receiving the random access response, the terminal device sends an MSG3 message in the uplink resource specified by the random access response message, which carries a temporary identification information specific to the terminal device;
  • a fourth step the base station sends a contention resolution message to the terminal device through MSG4 (Message 4), and simultaneously allocates uplink transmission resources for the terminal device.
  • MSG4 Message 4
  • the terminal device receives MSG4 sent by the base station, it will detect whether the specific temporary identification of the terminal device sent by the terminal device on MSG3 is included in the contention resolution message sent by the base station. If it contains, it indicates that the terminal device's random access process is successful, otherwise The random process fails, and the terminal device needs to initiate the random access process again from the first step.
  • the delay cost of the four-step RACH process is relatively large.
  • a two-step RACH process scheme is proposed. Compared with the four-step RACH process, access can be reduced. Delay.
  • the two-step RACH process includes two steps, which are:
  • a first step the terminal device sends a preamble (that is, a preamble sequence) and other information to the base station through MSG1.
  • a preamble that is, a preamble sequence
  • uplink data may also be referred to as uplink data, which is sent through a physical uplink shared channel (PUSCH, Physical Uplink, Shared Channel), such as temporary identification information specific to a terminal device.
  • PUSCH Physical Uplink, Shared Channel
  • step 2 after the base station detects that a terminal device sends a PUSCH, it sends a random access response message and a contention resolution message to the terminal device through MSG2.
  • the terminal device needs to send a preamble and a PUSCH.
  • a cyclic prefix (CP, Cyclic Prefix) is set before the preamble and between the preamble and the PUSCH, and a guard time slot (GT, Guaranteed Time) is set after the PUSCH.
  • CP Cyclic Prefix
  • GT Guard Time slot
  • Preamble can play the role of time-frequency synchronization and channel estimation.
  • the reference signal used for PUSCH demodulation there are two schemes: one is to use the Preamble as the reference signal to demodulate the PUSCH, and the other is to pass (DMRS, Demodulation (Reference, Signal).
  • the advantage of the first solution is to use Preamble as the demodulation reference signal, which can save the resources occupied by DMRS.
  • a physical resource block (PRB, Physical Resource Block) occupied by the PUSCH must have a Preamble signal, that is, the PRB occupied by the Preamble must include the PRB occupied by the PUSCH.
  • PRB Physical Resource Block
  • the Preamble occupies 1048.75kHz.
  • the bandwidth occupied by the Preamble is equivalent to 6, 3, 1.5, 0.75, and 0.375 PRBs of the PUSCH, respectively.
  • the Preamble is to be used as a demodulation reference signal for the PUSCH, it must have sufficient bandwidth to cover the bandwidth of the PUSCH carrying the MSG3, and thus be used as the demodulation reference signal for the PUSCH.
  • This embodiment of the present application can solve the problem that when the preamble and the PUSCH are together in the first step of the two-step RACH process, the bandwidth of the preamble as the demodulation reference signal of the PUSCH is too small.
  • FIG. 5 is a first flowchart of a signal transmission method according to an embodiment of the present application. As shown in FIG. 5, the signal transmission method includes the following steps:
  • Step 501 A terminal device sends a first message to a network device, where the first message includes at least a first preamble, where the first preamble is used as a demodulation reference signal for a first uplink data channel, and the first The preamble occupies non-contiguous frequency domain resources.
  • the terminal device may be any device capable of communicating with a network device, such as a mobile phone, a tablet computer, a notebook computer, and a vehicle-mounted terminal.
  • a network device such as a mobile phone, a tablet computer, a notebook computer, and a vehicle-mounted terminal.
  • the network device may be a base station, such as a gNB in 5G, an eNB in LTE, and the like.
  • the terminal device sends a first message to the network device.
  • the first message is called MSG1
  • the first message includes at least a first preamble, where the first The preamble is used as a demodulation reference signal for the first uplink data channel, and the first preamble occupies non-continuous frequency domain resources.
  • the terminal device may perform a two-step RACH process (refer to FIG. 3), which is not limited to this, and may also perform a four-step RACH process (refer to FIG. 2).
  • the two-step RACH process is also referred to as a first type
  • the random access process and the four-step RACH process are also referred to as the second type of random access process.
  • the random access procedure in step 501 belongs to the first type of random access procedure
  • the first message further includes the first uplink data channel, and the first uplink data channel includes, for example, a temporary identifier specific to a terminal device. information.
  • the first preamble is used as a demodulation reference signal for a first uplink data channel, and the first preamble occupies a discontinuous frequency domain resource. Further, the frequency occupied by the first preamble is There is a first frequency domain interval between the domain units. Further, the first preamble occupies one or more frequency domain units, and the first frequency domain interval includes one or more frequency domain units. In one example, the granularity of the frequency domain unit is a subcarrier, or a PRB, or a resource block group (RBG), or a subband.
  • RBG resource block group
  • the preamble is transmitted.
  • the preamble uses an interlace structure, as shown in Figure 6, that is, the preamble signal no longer occupies continuous subcarriers. However, there is a certain interval between the occupied subcarriers, and the frequency domain bandwidth occupied by the preamble signal is therefore expanded. In this way, there is enough PRB for the PUSCH in the expanded frequency domain bandwidth, thereby expanding the frequency domain here. More flexible scheduling of PUSCH within range.
  • the terminal device receives first configuration information sent by the network device, wherein the first configuration information includes a first parameter, and the first parameter is used to determine the first preamble occupation A first frequency domain interval between the frequency domain units of. Further, the first configuration information is used to indicate a random access parameter, and the first configuration information is carried in a system message or radio resource control (RRC) signaling.
  • RRC radio resource control
  • you can add the corresponding configuration information for example, add interlace information to the PRACH preamble format, such as 1/2, 1/3, 1/6, etc., which represent the preamble signal every 2, 3 6 subcarriers occupy one subcarrier.
  • the first bandwidth corresponding to the frequency domain resources occupied by the first uplink data channel is within the range of the second bandwidth corresponding to the frequency domain resources occupied by the first preamble.
  • the frequency domain resources occupied by the preamble occupy one subcarrier every 3 subcarriers, and the occupied bandwidth is from subcarrier n1 to subcarrier n2.
  • the PUSCH can occupy a bandwidth in a range from subcarrier n1 to subcarrier n2.
  • an indication information may be added to the first configuration information to indicate the first uplink data channel. Whether the demodulation reference signal is the first preamble or the DMRS.
  • the first configuration information further affects the first The first frequency domain interval between the frequency domain units occupied by a preamble is configured.
  • the first uplink data channel may be a predefined or configured uplink data channel, and is not limited thereto.
  • the first uplink data channel may also be a scheduling-based uplink data channel.
  • FIG. 7 is a second flowchart of a signal transmission method according to an embodiment of the present application. As shown in FIG. 7, the signal transmission method includes the following steps:
  • Step 701 A network device receives a first message sent by a terminal device, where the first message includes at least a first preamble, where the first preamble is used as a demodulation reference signal for a first uplink data channel, and the first A preamble occupies non-contiguous frequency domain resources.
  • the network device may be a base station, such as a gNB in 5G, an eNB in LTE, and the like.
  • the terminal device may be any device capable of communicating with a network device, such as a mobile phone, a tablet computer, a notebook computer, and a vehicle-mounted terminal.
  • a network device such as a mobile phone, a tablet computer, a notebook computer, and a vehicle-mounted terminal.
  • a network device receives a first message sent by a terminal device.
  • the first message is called MSG1
  • the first message includes at least a first preamble, where the first A preamble is used as a demodulation reference signal for the first uplink data channel, and the first preamble occupies a discontinuous frequency domain resource.
  • the terminal device may perform a two-step RACH process (refer to FIG. 3), which is not limited to this, and may also perform a four-step RACH process (refer to FIG. 2).
  • the two-step RACH process is also referred to as a first type
  • the random access process and the four-step RACH process are also referred to as the second type of random access process.
  • the random access procedure in step 701 belongs to the first type of random access procedure
  • the first message further includes the first uplink data channel, and the first uplink data channel includes, for example, a temporary identifier specific to a terminal device. information.
  • the first preamble is used as a demodulation reference signal for a first uplink data channel, and the first preamble occupies a discontinuous frequency domain resource. Further, the frequency occupied by the first preamble is There is a first frequency domain interval between the domain units. Further, the first preamble occupies one or more frequency domain units, and the first frequency domain interval includes one or more frequency domain units. In one example, the granularity of the frequency domain unit is a subcarrier, or a PRB, or a resource block group (RBG), or a subband.
  • RBG resource block group
  • the preamble is transmitted.
  • the preamble uses an interlace structure, as shown in Figure 6, that is, the preamble signal no longer occupies continuous subcarriers. However, there is a certain interval between the occupied subcarriers, and the frequency domain bandwidth occupied by the preamble signal is therefore expanded. In this way, there is enough PRB for the PUSCH in the expanded frequency domain bandwidth, thereby expanding the frequency domain here. More flexible scheduling of PUSCH within range.
  • the network device sends first configuration information to the terminal device, wherein the first configuration information includes a first parameter, and the first parameter is used to determine a value occupied by the first preamble.
  • the first configuration information is used to indicate a random access parameter, and the first configuration information is carried in a system message or radio resource control (RRC) signaling.
  • RRC radio resource control
  • you can add the corresponding configuration information for example, add interlace information to the PRACH preamble format, such as 1/2, 1/3, 1/6, etc., which represent the preamble signal every 2, 3 6 subcarriers occupy one subcarrier.
  • the first bandwidth corresponding to the frequency domain resources occupied by the first uplink data channel is within the range of the second bandwidth corresponding to the frequency domain resources occupied by the first preamble.
  • the frequency domain resources occupied by the preamble occupy one subcarrier every 3 subcarriers, and the occupied bandwidth is from subcarrier n1 to subcarrier n2.
  • the PUSCH can occupy a bandwidth in a range from subcarrier n1 to subcarrier n2.
  • an indication information may be added to the first configuration information to indicate the first uplink data channel. Whether the demodulation reference signal is the first preamble or the DMRS.
  • the first configuration information further affects the first The first frequency domain interval between the frequency domain units occupied by a preamble is configured.
  • the first uplink data channel may be a predefined or configured uplink data channel, and is not limited thereto.
  • the first uplink data channel may also be a scheduling-based uplink data channel.
  • FIG. 8 is a schematic structural composition diagram of a signal transmission device according to an embodiment of the present application. The structure and functions of the information transmission device according to the embodiment of the present application are described below with reference to two scenarios.
  • the device includes:
  • the transmission unit 801 is configured to send a first message to a network device, where the first message includes at least a first preamble, where the first preamble is used as a demodulation reference signal of a first uplink data channel, and the first A preamble occupies non-contiguous frequency domain resources.
  • the first preamble occupying a discontinuous frequency domain resource includes:
  • the transmission unit 801 is further configured to receive first configuration information sent by the network device, where the first configuration information includes a first parameter, and the first parameter is used to determine the A first frequency domain interval between frequency domain units occupied by the first preamble.
  • the first configuration information is used to indicate a random access parameter, and the first configuration information is carried in a system message or RRC signaling.
  • the first preamble occupies one or more frequency domain units, and the first frequency domain interval includes one or more frequency domain units.
  • the granularity of the frequency domain unit is a subcarrier, or a PRB, or an RBG, or a subband.
  • the first message further includes the first uplink data channel.
  • the first bandwidth corresponding to the frequency domain resources occupied by the first uplink data channel is within a range of the second bandwidth corresponding to the frequency domain resources occupied by the first preamble.
  • the device includes:
  • a transmission unit 801 configured to receive a first message sent by a terminal device, where the first message includes at least a first preamble, where the first preamble is used as a demodulation reference signal of a first uplink data channel, and The first preamble occupies non-contiguous frequency domain resources.
  • the first preamble occupying a discontinuous frequency domain resource includes:
  • the transmission unit 801 is further configured to send first configuration information to the terminal device, where the first configuration information includes a first parameter, and the first parameter is used to determine the first A first frequency domain interval between frequency domain units occupied by a preamble.
  • the first configuration information is used to indicate a random access parameter, and the first configuration information is carried in a system message or RRC signaling.
  • the first preamble occupies one or more frequency domain units, and the first frequency domain interval includes one or more frequency domain units.
  • the granularity of the frequency domain unit is a subcarrier, or a PRB, or an RBG, or a subband.
  • the first message further includes the first uplink data channel.
  • the first bandwidth corresponding to the frequency domain resources occupied by the first uplink data channel is within a range of the second bandwidth corresponding to the frequency domain resources occupied by the first preamble.
  • FIG. 9 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 600 shown in FIG. 9 includes a processor 610, and the processor 610 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device in the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method in the embodiment of the present application. .
  • the communication device 600 may specifically be a mobile terminal / terminal device according to the embodiment of the present application, and the communication device 600 may implement a corresponding process implemented by the mobile terminal / terminal device in each method of the embodiment of the present application, for simplicity , Will not repeat them here.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 10 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by the other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal / terminal device in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiments of the present application. For simplicity, here No longer.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 11 is a schematic block diagram of a communication system 900 according to an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920.
  • the terminal device 910 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (Double SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium may be applied to the mobile terminal / terminal device in the embodiment of the present application, and the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • the computer program causes the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device. The corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法及装置、终端设备、网络设备,包括:终端设备向网络设备发送第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。

Description

一种信号传输方法及装置、终端设备、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种信号传输方法及装置、终端设备、网络设备。
背景技术
在第五代(5G,5 th Generation)系统中,随机接入信道(RACH,Random Access Channel)过程采用了类似长期演进(LTE,Long Term Evolution)的四步过程,然而,四步RACH(4-step RACH)过程的时延开销比较大,对于5G中的低时延高可靠场景是不合适的。在新空口(NR,New Radio)的标准化过程中,考虑到低时延高可靠相关业务的特点,提出了两的RACH(2-step RACH)过程的方案,相比四步RACH过程,可以减少接入时延。
对于两步RACH过程的第一步,MSG1包括前导码(Preamble)和物理上行共享信道(PUSCH,Physical Uplink Shared Channel)两部分信号,其中,Preamble可以作为PUSCH的解调参考信号,然而Preamble的带宽在某些情况下不足以覆盖PUSCH的带宽,导致Preamble无法作为PUSCH的解调参考信号。
发明内容
本申请实施例提供一种信号传输方法及装置、终端设备、网络设备,可以提高Preamble的带宽。
本申请实施例提供的信号传输方法,包括:
终端设备向网络设备发送第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
本申请实施例提供的信号传输方法,包括:
网络设备接收终端设备发送的第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非 连续的频域资源。
本申请实施例提供的信号传输装置,包括:
传输单元,用于向网络设备发送第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
本申请实施例提供的信号传输装置,包括:
传输单元,用于接收终端设备发送的第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信号传输方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的信号传输方法。
本申请实施例提供的芯片,用于实现上述的信号传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的信号传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的信号传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的信号传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的信号传输方法。
通过上述技术方案,在随机接入过程中,第一前导码(Preamble)占用非连续的频域资源(如采用交错(interlace)结构的频域资源)来扩大其占用的频域资源范围,从而可以作为第一上行数据信道(PUSCH)的解调参考信号。换言之,采用非连续的频域资源结构可以扩大第一前导码(Preamble)占用的频域范围,使得第一上行数据信道(PUSCH)可以在此频域范围内有足够的频域单元用于第一上行数据信道(PUSCH),从而在此频域范围内更灵活的调度第一上行数据信道(PUSCH)。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的4-step RACH过程的示意图;
图3为本申请实施例提供的2-step RACH过程的示意图;
图4为本申请实施例提供的2-step RACH过程中第一步传输的信息示意图;
图5为本申请实施例提供的信号传输方法的流程示意图一;
图6为本申请实施例提供的interlace结构的示意图;
图7为本申请实施例提供的信号传输方法的流程示意图二;
图8为本申请实施例提供的信息传输装置的结构组成示意图;
图9为本申请实施例提供的一种通信设备示意性结构图;
图10为本申请实施例的芯片的示意性结构图;
图11为本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包 括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对四步RACH过程和两步RACH过程进行描述。
参照图2,四步RACH过程包括四个步骤,分别为:
第一步(step1),终端设备通过MSG1(Message 1)向基站发送前导码(也即前导序列),这里的前导码为随机选择的前导码。
第二步(step2),基站检测到有终端设备发送前导码后,通MSG2(Message 2)向终端设备发送随机接入响应(RAR,Random Access Response),以告知终端设备在发送MSG3(Message 3)可以使用的上行资源信息,为终端设备分配无线网络临时标识(RNTI,Radio Network Tempory Identity),给终端设备提供定时提前命(time advance command)等;
第三步(step3),终端设备接收到随机接入响应后,在随机接入响应消息所指定的上行资源中发送MSG3消息,其中携带一个终端设备特定的临时标识信息;
第四步(step4),基站通过MSG4(Message 4)向终端设备发送竞争解决消息,同时为终端设备分配上行传输资源。终端设备接收到基站发送的MSG4时,会检测终端设备在MSG3上发送的终端设备的特定临时标识是否包含在基站发送的竞争解决消息中, 若包含则表明终端设备随机接入过程成功,否则认为随机过程失败,终端设备需要再次从第一步开始发起随机接入过程。
四步RACH过程的时延开销比较大,在NR的标准化过程中,考虑到低时延高可靠相关业务的特点,提出了两步RACH过程的方案,相比四步RACH过程,可以减少接入时延。参照图3,两步RACH过程包括两个步骤,分别为:
第一步(step1),终端设备通过MSG1向基站发送前导码(也即前导序列)和其他信息。
这里,其他信息也可以称作上行数据,通过物理上行共享信道(PUSCH,Physical Uplink Shared Channel)发送,例如终端设备特定的临时标识信息。
第二步(step2),基站检测到有终端设备发送PUSCH后,通MSG2向终端设备发送随机接入响应消息和竞争解决消息。
在两步RACH过程中,相当于将四步RACH过程的第一步和第三步合并为两步RACH过程中的第一步,将四步RACH过程的第二步和第四步合并为两步RACH过程中的第二步。因此,在两步RACH中的第一步中,终端设备需要发送前导码(Preamble)和PUSCH。如图4所示,其中,前导码之前以及前导码和PUSCH之间设置有循环前缀(CP,Cyclic Prefix),PUSCH之后设置有保护时隙(GT,Guaranteed Time)。
其中,Preamble可以起到时频同步和信道估计的作用,对于PUSCH的解调使用的参考信号,有两种方案:一种是利用Preamble作为参考信号解调PUSCH,另一种是通过(DMRS,Demodulation Reference Signal)解调PUSCH。第一种方案的好处是利用Preamble作为解调参考信号,可以节省DMRS占用的资源。如果Preamble要作为PUSCH的解调参考信号,需要PUSCH占据的物理资源块(PRB,Physical Resource Block)有Preamble的信号存在,即Preamble占据的PRB要包含PUSCH占据的PRB。但是,由于Preamble的带宽与配置的PRACH Preamble format有关,如表1和表2所示。
Figure PCTCN2018096970-appb-000001
表1:PRACH preamble formats(L RA=839,Δf RA∈{1.25,5}kHz)
Figure PCTCN2018096970-appb-000002
表2:Preamble formats(L RA=139,Δf RA=15·2 μkHz,μ∈{0,1,2,3})
举个例子,对于format 0、1、2,Preamble的序列长度为839,子载波间隔为1.25kHz,则Preamble占据的1048.75kHz,假设PUSCH采用15kHz、30kHz、60kHz、120kHz、240kHz子载波间隔,则Preamble占据的带宽分别相当于PUSCH的6、3、1.5、0.75、0.375个PRB。如果Preamble要作为PUSCH的解调参考信号,其必须要有足够的带宽来覆盖承载MSG3的PUSCH的带宽,从而作为PUSCH的解调参考信号。本申请实施例能够解决两步RACH过程的场景下,在第一步中preamble和PUSCH一起时,preamble作为PUSCH的解调参考信号时的带宽过小的问题。
图5为本申请实施例的信号传输方法的流程示意图一,如图5所示,所述信号传输方法包括以下步骤:
步骤501:终端设备向网络设备发送第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
本申请实施例中,所述终端设备可以是手机、平板电脑、笔记本电脑、车载终端等任意能够与网络设备进行通信的设备。
本申请实施例中,所述网络设备可以是基站,例如5G中的gNB,LTE中的eNB等等。
本申请实施例中,在随机接入过程中,终端设备向网络设备发送第一消息,这里,第一消息称为MSG1,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
本申请实施例中,终端设备可以执行两步RACH过程(参照图3),不局限于此,也可以执行四步RACH过程(参照图2),这里,两步RACH过程也称为第一类随机接 入过程,四步RACH过程也称为第二类随机接入过程。步骤501中的所述随机接入过程属于第一类随机接入过程的情况下,所述第一消息还包括所述第一上行数据信道,第一上行数据信道例如包括终端设备特定的临时标识信息。
在一实施方式中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源,进一步,所述第一前导码占用的频域单元之间具有第一频域间隔。进一步,所述第一前导码占用一个或多个频域单元,所述第一频域间隔包括一个或多个频域单元。在一个例子中,所述频域单元的粒度为子载波、或PRB、或资源块组(RBG)、或子带。
举个例子,在RACH过程(可以是两步RACH过程,也可以是四步RACH过程)中对preamble的发送,preamble采用interlace结构,如图6所示,即preamble信号不再占用连续的子载波,而是占用的子载波之间具有一定的间隔,preamble信号占用的频域带宽因此扩大,如此,使得在此扩大的频域带宽内有足够的PRB用于PUSCH,从而在此扩大的频域范围内更灵活的调度PUSCH。
在一实施方式中,所述终端设备接收所述网络设备发送的第一配置信息,其中,所述第一配置信息包括第一参数,所述第一参数用于确定所述第一前导码占用的频域单元之间的第一频域间隔。进一步,所述第一配置信息用于指示随机接入参数,所述第一配置信息携带在系统消息中或无线资源控制(RRC)信令中。举个例子,在RACH的配置信息中,可以增加相应的配置信息,例如在PRACH preamble format中增加interlace信息,如1/2、1/3、1/6等,分别代表preamble信号每2、3、6个子载波占用一个子载波。
基于以上技术方案,本申请实施例中,所述第一上行数据信道占用的频域资源对应的第一带宽位于所述第一前导码占用的频域资源对应的第二带宽的范围内。例如:preamble占用的频域资源为每3个子载波占用一个子载波,占用的带宽为从子载波n1到子载波n2,那么,PUSCH可以占据带宽从子载波n1到子载波n2的范围内的某些子载波。
本申请实施例中,为了区分第一上行数据信道的解调参考信号是所述第一前导码还是DMRS,可以在第一配置信息中增加一个指示信息,用于指示所述第一上行数据信道的解调参考信号是否为所述第一前导码,或者是否为所述DMRS。当所述第一配置信息中的指示信息用于指示所述第一上行数据信道的解调参考信号是所述第一前道码的情况下,所述第一配置信息再进一步对所述第一前导码占用的频域单元之间的第一频域间隔进行配置。
本申请实施例的上述方案中,第一上行数据信道可以是预定义或者配置的上行数据信道,不局限于此,第一上行数据信道也可以是基于调度的上行数据信道。
图7为本申请实施例的信号传输方法的流程示意图二,如图7所示,所述信号传输方法包括以下步骤:
步骤701:网络设备接收终端设备发送的第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
本申请实施例中,所述网络设备可以是基站,例如5G中的gNB,LTE中的eNB等等。
本申请实施例中,所述终端设备可以是手机、平板电脑、笔记本电脑、车载终端等任意能够与网络设备进行通信的设备。
本申请实施例中,在随机接入过程中,网络设备接收终端设备发送的第一消息,这里,第一消息称为MSG1,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
本申请实施例中,终端设备可以执行两步RACH过程(参照图3),不局限于此,也可以执行四步RACH过程(参照图2),这里,两步RACH过程也称为第一类随机接入过程,四步RACH过程也称为第二类随机接入过程。步骤701中的所述随机接入过程属于第一类随机接入过程的情况下,所述第一消息还包括所述第一上行数据信道,第一上行数据信道例如包括终端设备特定的临时标识信息。
在一实施方式中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源,进一步,所述第一前导码占用的频域单元之间具有第一频域间隔。进一步,所述第一前导码占用一个或多个频域单元,所述第一频域间隔包括一个或多个频域单元。在一个例子中,所述频域单元的粒度为子载波、或PRB、或资源块组(RBG)、或子带。
举个例子,在RACH过程(可以是两步RACH过程,也可以是四步RACH过程)中对preamble的发送,preamble采用interlace结构,如图6所示,即preamble信号不再占用连续的子载波,而是占用的子载波之间具有一定的间隔,preamble信号占用的频域带宽因此扩大,如此,使得在此扩大的频域带宽内有足够的PRB用于PUSCH,从而在此扩大的频域范围内更灵活的调度PUSCH。
在一实施方式中,所述网络设备向所述终端设备发送第一配置信息,其中,所述第 一配置信息包括第一参数,所述第一参数用于确定所述第一前导码占用的频域单元之间的第一频域间隔。进一步,所述第一配置信息用于指示随机接入参数,所述第一配置信息携带在系统消息中或无线资源控制(RRC)信令中。举个例子,在RACH的配置信息中,可以增加相应的配置信息,例如在PRACH preamble format中增加interlace信息,如1/2、1/3、1/6等,分别代表preamble信号每2、3、6个子载波占用一个子载波。
基于以上技术方案,本申请实施例中,所述第一上行数据信道占用的频域资源对应的第一带宽位于所述第一前导码占用的频域资源对应的第二带宽的范围内。例如:preamble占用的频域资源为每3个子载波占用一个子载波,占用的带宽为从子载波n1到子载波n2,那么,PUSCH可以占据带宽从子载波n1到子载波n2的范围内的某些子载波。
本申请实施例中,为了区分第一上行数据信道的解调参考信号是所述第一前导码还是DMRS,可以在第一配置信息中增加一个指示信息,用于指示所述第一上行数据信道的解调参考信号是否为所述第一前导码,或者是否为所述DMRS。当所述第一配置信息中的指示信息用于指示所述第一上行数据信道的解调参考信号是所述第一前道码的情况下,所述第一配置信息再进一步对所述第一前导码占用的频域单元之间的第一频域间隔进行配置。
本申请实施例的上述方案中,第一上行数据信道可以是预定义或者配置的上行数据信道,不局限于此,第一上行数据信道也可以是基于调度的上行数据信道。
图8为本申请实施例的信号传输装置的结构组成示意图,以下结合两种场景对本申请实施例的信息传输装置的结构及功能进行描述。
场景一:
如图8所示,所述装置包括:
传输单元801,用于向网络设备发送第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
在一实施方式中,所述第一前导码占用非连续的频域资源,包括:
所述第一前导码占用的频域单元之间具有第一频域间隔。
在一实施方式中,所述传输单元801,还用于接收所述网络设备发送的第一配置信息,其中,所述第一配置信息包括第一参数,所述第一参数用于确定所述第一前导码占用的频域单元之间的第一频域间隔。
在一实施方式中,所述第一配置信息用于指示随机接入参数,所述第一配置信息携带在系统消息中或RRC信令中。
在一实施方式中,所述第一前导码占用一个或多个频域单元,所述第一频域间隔包括一个或多个频域单元。
在一实施方式中,所述频域单元的粒度为子载波、或PRB、或RBG、或子带。
在一实施方式中,在第一类随机接入过程的情况下,所述第一消息还包括所述第一上行数据信道。
在一实施方式中,所述第一上行数据信道占用的频域资源对应的第一带宽位于所述第一前导码占用的频域资源对应的第二带宽的范围内。
场景二:
如图8所示,所述装置包括:
传输单元801,用于接收终端设备发送的第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
在一实施方式中,所述第一前导码占用非连续的频域资源,包括:
所述第一前导码占用的频域单元之间具有第一频域间隔。
在一实施方式中,所述传输单元801,还用于向所述终端设备发送第一配置信息,其中,所述第一配置信息包括第一参数,所述第一参数用于确定所述第一前导码占用的频域单元之间的第一频域间隔。
在一实施方式中,所述第一配置信息用于指示随机接入参数,所述第一配置信息携带在系统消息中或RRC信令中。
在一实施方式中,所述第一前导码占用一个或多个频域单元,所述第一频域间隔包括一个或多个频域单元。
在一实施方式中,所述频域单元的粒度为子载波、或PRB、或RBG、或子带。
在一实施方式中,在第一类随机接入过程的情况下,所述第一消息还包括所述第一上行数据信道。
在一实施方式中,所述第一上行数据信道占用的频域资源对应的第一带宽位于所述第一前导码占用的频域资源对应的第二带宽的范围内。
本领域技术人员应当理解,本申请实施例的上述信号传输装置的相关描述可以参照本申请实施例的信号传输方法的相关描述进行理解。
图9是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图9所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图9所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统900的示意性框图。如图9所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多 形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部 分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (42)

  1. 一种信号传输方法,所述方法包括:
    终端设备向网络设备发送第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
  2. 根据权利要求1所述的方法,其中,所述第一前导码占用非连续的频域资源,包括:
    所述第一前导码占用的频域单元之间具有第一频域间隔。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一配置信息,其中,所述第一配置信息包括第一参数,所述第一参数用于确定所述第一前导码占用的频域单元之间的第一频域间隔。
  4. 根据权利要求3所述的方法,其中,所述第一配置信息用于指示随机接入参数,所述第一配置信息携带在系统消息中或无线资源控制RRC信令中。
  5. 根据权利要求2至4任一项所述的方法,其中,所述第一前导码占用一个或多个频域单元,所述第一频域间隔包括一个或多个频域单元。
  6. 根据权利要求2至5任一项所述的方法,其中,所述频域单元的粒度为子载波、或物理资源块PRB、或资源块组RBG、或子带。
  7. 根据权利要求1至6任一项所述的方法,其中,所述第一消息还包括所述第一上行数据信道。
  8. 根据权利要求1至7任一项所述的方法,其中,所述第一上行数据信道占用的频域资源对应的第一带宽位于所述第一前导码占用的频域资源对应的第二带宽的范围内。
  9. 一种信号传输方法,所述方法包括:
    网络设备接收终端设备发送的第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
  10. 根据权利要求9所述的方法,其中,所述第一前导码占用非连续的频域资源,包括:
    所述第一前导码占用的频域单元之间具有第一频域间隔。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送第一配置信息,其中,所述第一配置信息包括第一参数,所述第一参数用于确定所述第一前导码占用的频域单元之间的第一频域间隔。
  12. 根据权利要求11所述的方法,其中,所述第一配置信息用于指示随机接入参数,所述第一配置信息携带在系统消息中或RRC信令中。
  13. 根据权利要求10至12任一项所述的方法,其中,所述第一前导码占用一个或多个频域单元,所述第一频域间隔包括一个或多个频域单元。
  14. 根据权利要求10至13任一项所述的方法,其中,所述频域单元的粒度为子载波、或PRB、或RBG、或子带。
  15. 根据权利要求9至14任一项所述的方法,其中,所述第一消息还包括所述第一上行数据信道。
  16. 根据权利要求9至15任一项所述的方法,其中,所述第一上行数据信道占用的频域资源对应的第一带宽位于所述第一前导码占用的频域资源对应的第二带宽的范围内。
  17. 一种信号传输装置,所述装置包括:
    传输单元,用于向网络设备发送第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
  18. 根据权利要求17所述的装置,其中,所述第一前导码占用非连续的频域资源,包括:
    所述第一前导码占用的频域单元之间具有第一频域间隔。
  19. 根据权利要求18所述的装置,其中,所述传输单元,还用于接收所述网络设备发送的第一配置信息,其中,所述第一配置信息包括第一参数,所述第一参数用于确定所述第一前导码占用的频域单元之间的第一频域间隔。
  20. 根据权利要求19所述的装置,其中,所述第一配置信息用于指示随机接入参数,所述第一配置信息携带在系统消息中或RRC信令中。
  21. 根据权利要求18至20任一项所述的装置,其中,所述第一前导码占用一个或多个频域单元,所述第一频域间隔包括一个或多个频域单元。
  22. 根据权利要求18至21任一项所述的装置,其中,所述频域单元的粒度为子载波、或PRB、或RBG、或子带。
  23. 根据权利要求17至22任一项所述的装置,其中,所述第一消息还包括所述第一上行数据信道。
  24. 根据权利要求17至23任一项所述的装置,其中,所述第一上行数据信道占用的频域资源对应的第一带宽位于所述第一前导码占用的频域资源对应的第二带宽的范围内。
  25. 一种信号传输装置,所述装置包括:
    传输单元,用于接收终端设备发送的第一消息,所述第一消息至少包括第一前导码,其中,所述第一前导码用作第一上行数据信道的解调参考信号,所述第一前导码占用非连续的频域资源。
  26. 根据权利要求25所述的装置,其中,所述第一前导码占用非连续的频域资源,包括:
    所述第一前导码占用的频域单元之间具有第一频域间隔。
  27. 根据权利要求26所述的装置,其中,所述传输单元,还用于向所述终端设备发送第一配置信息,其中,所述第一配置信息包括第一参数,所述第一参数用于确定所述第一前导码占用的频域单元之间的第一频域间隔。
  28. 根据权利要求27所述的装置,其中,所述第一配置信息用于指示随机接入参数,所述第一配置信息携带在系统消息中或RRC信令中。
  29. 根据权利要求26至28任一项所述的装置,其中,所述第一前导码占用一个或多个频域单元,所述第一频域间隔包括一个或多个频域单元。
  30. 根据权利要求26至29任一项所述的装置,其中,所述频域单元的粒度为子载波、或PRB、或RBG、或子带。
  31. 根据权利要求25至30任一项所述的装置,其中,所述第一消息还包括所述第一上行数据信道。
  32. 根据权利要求25至31任一项所述的装置,其中,所述第一上行数据信道占用的频域资源对应的第一带宽位于所述第一前导码占用的频域资源对应的第二带宽的范围内。
  33. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至8中 任一项所述的方法。
  34. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求9至16中任一项所述的方法。
  35. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至8中任一项所述的方法。
  36. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求9至16中任一项所述的方法。
  37. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至8中任一项所述的方法。
  38. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求9至16中任一项所述的方法。
  39. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至8中任一项所述的方法。
  40. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求9至16中任一项所述的方法。
  41. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至8中任一项所述的方法。
  42. 一种计算机程序,所述计算机程序使得计算机执行如权利要求9至16中任一项所述的方法。
PCT/CN2018/096970 2018-07-25 2018-07-25 一种信号传输方法及装置、终端设备、网络设备 WO2020019182A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/096970 WO2020019182A1 (zh) 2018-07-25 2018-07-25 一种信号传输方法及装置、终端设备、网络设备
CN201880038020.4A CN110771240B (zh) 2018-07-25 2018-07-25 一种信号传输方法及装置、终端设备、网络设备
TW108126438A TW202008817A (zh) 2018-07-25 2019-07-25 一種訊號傳輸方法及適用該方法的裝置、終端設備及網路設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/096970 WO2020019182A1 (zh) 2018-07-25 2018-07-25 一种信号传输方法及装置、终端设备、网络设备

Publications (1)

Publication Number Publication Date
WO2020019182A1 true WO2020019182A1 (zh) 2020-01-30

Family

ID=69181120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096970 WO2020019182A1 (zh) 2018-07-25 2018-07-25 一种信号传输方法及装置、终端设备、网络设备

Country Status (3)

Country Link
CN (1) CN110771240B (zh)
TW (1) TW202008817A (zh)
WO (1) WO2020019182A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115623581A (zh) * 2020-02-28 2023-01-17 Oppo广东移动通信有限公司 时间同步方法、终端设备和网络设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413045A (zh) * 2020-02-25 2022-11-29 Oppo广东移动通信有限公司 信息传输方法、终端设备和网络设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371126A (zh) * 2017-08-21 2017-11-21 西安电子科技大学 基于fdd‑lte网络的随机接入方法
WO2018085205A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Two-element random access channel (prach) transmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10383150B2 (en) * 2016-05-11 2019-08-13 Ofinno, Llc Random access process in a wireless device and wireeless network
US10834762B2 (en) * 2016-05-13 2020-11-10 Telefonaktiebolaget Lm Ericsson (Publ) Random access preamble receiver
US20180097590A1 (en) * 2016-09-30 2018-04-05 Qualcomm Incorporated Uplink (ul) random access channel (rach) and mobility signals
CN108282874B (zh) * 2017-01-06 2019-08-16 电信科学技术研究院 一种数据传输方法、装置及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085205A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Two-element random access channel (prach) transmission
CN107371126A (zh) * 2017-08-21 2017-11-21 西安电子科技大学 基于fdd‑lte网络的随机接入方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115623581A (zh) * 2020-02-28 2023-01-17 Oppo广东移动通信有限公司 时间同步方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN110771240A (zh) 2020-02-07
CN110771240B (zh) 2021-04-20
TW202008817A (zh) 2020-02-16

Similar Documents

Publication Publication Date Title
WO2020019194A1 (zh) 一种信号传输方法及装置、终端设备、网络设备
WO2020019230A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
WO2020020332A1 (zh) 一种随机接入方法、终端设备及存储介质
WO2019242452A1 (zh) 用于物理随机接入信道传输的信道接入方法、装置和程序
US11483116B2 (en) Signal transmission method and device and terminal
US20220210835A1 (en) Method and apparatus for determining cyclic prefix extension and user equipment
WO2020029256A1 (zh) 一种数据传输方法、终端设备及网络设备
US11510067B2 (en) Uplink signal transmission method, terminal device, and network device
WO2019237805A1 (zh) 一种随机接入方法及装置、通信设备
WO2020061850A1 (zh) 通信方法、终端设备和网络设备
WO2020220358A1 (zh) 一种用于非授权频谱的功率调整方法及装置
WO2020034203A1 (zh) 传输信号的方法、终端设备和网络设备
WO2020056721A1 (zh) 一种随机接入方法及装置、网络设备、终端
WO2020061945A1 (zh) 用于随机接入的方法、网络设备和终端设备
WO2020019182A1 (zh) 一种信号传输方法及装置、终端设备、网络设备
WO2020024611A1 (zh) 一种信息传输的方法、设备及计算机存储介质
WO2020191592A1 (zh) 一种寻呼时机配置方法及装置、终端、网络设备
WO2020206643A1 (zh) 一种随机接入方法、设备及存储介质
WO2020051919A1 (zh) 一种资源确定及配置方法、装置、终端、网络设备
WO2022183455A1 (zh) 一种随机接入资源确定方法、电子设备及存储介质
WO2020020348A1 (zh) 一种信息传输方法及装置、终端设备、网络设备
WO2019242383A1 (zh) 一种带宽部分的激活与配置方法及终端设备
WO2020191760A1 (zh) 一种信道传输方法、电子设备及存储介质
WO2020056777A1 (zh) 无线通信的方法、发送节点和接收节点
WO2020024250A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927311

Country of ref document: EP

Kind code of ref document: A1