WO2020191637A1 - 随机接入的方法、终端设备和网络设备 - Google Patents

随机接入的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020191637A1
WO2020191637A1 PCT/CN2019/079763 CN2019079763W WO2020191637A1 WO 2020191637 A1 WO2020191637 A1 WO 2020191637A1 CN 2019079763 W CN2019079763 W CN 2019079763W WO 2020191637 A1 WO2020191637 A1 WO 2020191637A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
information
terminal device
pusch
random access
Prior art date
Application number
PCT/CN2019/079763
Other languages
English (en)
French (fr)
Inventor
吴作敏
徐伟杰
徐婧
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/079763 priority Critical patent/WO2020191637A1/zh
Priority to JP2021556928A priority patent/JP7191248B2/ja
Priority to CN201980080188.6A priority patent/CN113170492A/zh
Priority to KR1020217034262A priority patent/KR20210139429A/ko
Priority to EP19922030.2A priority patent/EP3902362B1/en
Priority to ES19922030T priority patent/ES2946250T3/es
Priority to CN202110868871.5A priority patent/CN113490286B/zh
Publication of WO2020191637A1 publication Critical patent/WO2020191637A1/zh
Priority to US17/409,618 priority patent/US20210385854A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communications, in particular to a random access method, terminal equipment and network equipment.
  • a two-step random access process can be used.
  • message 1 (Msg 1) and message 3 (Msg 3) in the four-step random access process can be sent as the first message (Msg A) in the two-step random access process
  • message 2 (Msg 2) and message 2 (Msg 4) in the four-step random access process as the second message (Msg B) in the two-step random access process.
  • the terminal device Since the first message sent by the terminal device includes the random access preamble (Preamble) and the Physical Uplink Shared Channel (PUSCH), there may be two situations when the network device receives the first message. At this time, the terminal There is no clear regulation on how the equipment distinguishes these two situations.
  • Preamble random access preamble
  • PUSCH Physical Uplink Shared Channel
  • the embodiments of the present application provide a random access method, terminal equipment and network equipment, which can make the terminal equipment distinguish between two situations in which the network equipment receives the first message in a two-step random access process.
  • a random access method includes: a terminal device sends a first message to a network device, where the first message includes a random access preamble and a first physical uplink shared channel PUSCH, and The first PUSCH includes data obtained by performing rate matching on the first transport block; the terminal device receives the first downlink control information DCI or the second DCI sent by the network device for the first message.
  • a random access method includes: a network device receives a first message sent by a terminal device, where the first message includes a random access preamble and a first physical uplink shared channel PUSCH, The first PUSCH includes data obtained by performing rate matching on the first transport block; the network device sends the first downlink control information DCI or the second DCI to the terminal device according to a result of receiving the first message.
  • a terminal device which is used to execute the method in the first aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a network device configured to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a device for implementing any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the network device in the two-step random access process, after the terminal device sends the first message to the network device, the network device can send different DCIs to the terminal device according to different situations of receiving the first message, and the terminal device receives different DCIs Later, the two situations in which the network device receives the first message can be effectively distinguished, so that the subsequent two-step random access process can be performed for different situations in which the network device receives the first message.
  • Fig. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a four-step random access method according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a MAC PDU including RAR according to an embodiment of the present application.
  • Fig. 4 is a schematic block diagram of a MAC RAR according to an embodiment of the present application.
  • Fig. 5 is a schematic flowchart of a four-step random access to a two-step random access according to an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of a random access method according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a specific implementation of a random access method according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a device according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Radio, NR evolution system of NR system
  • LTE LTE-based access to unlicensed spectrum
  • LTE-U Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device 110 may provide services for a cell, and the terminal device 120 communicates with the network device 110 through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be the network device 110 (for example, a base station)
  • the corresponding cell the cell can belong to a macro base station or a base station corresponding to a small cell (Small cell).
  • the small cell here can include, for example, a metro cell, a micro cell, and a pico cell. Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • the terminal device After the cell search process, the terminal device has achieved downlink synchronization with the cell, so the terminal device can receive downlink data. However, the terminal equipment can only perform uplink transmission if it has achieved uplink synchronization with the cell. The terminal equipment can establish a connection with the cell and obtain uplink synchronization through a random access procedure (Random Access Procedure).
  • Random Access Procedure Random Access Procedure
  • the random access process can usually be triggered by the following events:
  • the terminal device can enter the RRC connected state (RRC_CONNECTED) from the radio resource control (Radio Resource Control, RRC) idle state (RRC_IDLE state).
  • RRC Radio Resource Control
  • the terminal device is in the connected state and needs to establish uplink synchronization with the new cell.
  • the uplink is in a "non-synchronised” state (DL or UL data arrival during RRC_CONNECTED when UL synchronisation status is "non-synchronised”).
  • PUCCH physical uplink control channel
  • the terminal device transitions from the RRC inactive state (Transition from RRC_INACTIVE).
  • the terminal device requests other system information (Other System Information, OSI).
  • OSI Operating System Information
  • the terminal device needs to perform beam failure recovery (Beam failure recovery).
  • Step 1 The terminal device sends a Preamble (that is, message1, Msg1) to the network device.
  • a Preamble that is, message1, Msg1
  • the random access preamble may also be referred to as a preamble, a random access preamble sequence, a preamble sequence, and so on.
  • the terminal device may select physical random access channel (Physical Random Access Channel, PRACH) resources, and the PRACH resources may include time domain resources, frequency domain resources, and code domain resources.
  • PRACH Physical Random Access Channel
  • the terminal device can send the selected Preamble on the selected PRACH resource.
  • the network device can estimate the transmission delay between it and the terminal device according to the Preamble and adjust the uplink timing accordingly.
  • Step 2 The network device sends a random access response (Random Access Response, RAR, that is, message2, Msg2) to the terminal device
  • RAR Random Access Response
  • the network device can send an RAR to the terminal device to inform the terminal device of the uplink resource information that can be used when sending Msg3.
  • the RAR may include information such as the identity of the preamble, the time advance (TA), the uplink grant (UL grant), and the temporary cell-radio network temporary identifier (TC-RNTI).
  • the terminal device after the terminal device sends the Preamble to the network device, it can open a RAR window and detect the RAR in the RAR window. If the terminal device does not detect the RAR in the RAR window, the terminal device can retransmit the Preamble sequence; if the terminal device detects the RAR in the RAR window, the terminal device can perform Msg3 transmission according to the UL grant indicated by the RAR.
  • the terminal device detects the RAR. Specifically, the terminal device can detect the corresponding Physical Downlink Control Channel (PDCCH) according to the Random Access Radio Network Temporary Identifier (RA-RNTI). Among them, the PDCCH scrambled by the RA-RNTI schedules a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), and the PDSCH includes the RAR corresponding to the Preamble.
  • PDCH Physical Downlink Control Channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the terminal equipment mentioned in the above content that does not detect RAR can include the following situations:
  • the terminal equipment does not detect the PDCCH scrambled by RA-RNTI.
  • the terminal equipment detects the PDCCH scrambled by the RA-RNTI, but fails to decode the PDSCH scheduled by the PDCCH.
  • the terminal device decodes the PDSCH, but the PDSCH does not include the RAR message corresponding to the Preamble.
  • the terminal device detecting the RAR may include: the terminal device decodes the PDSCH scheduled by the PDCCH scrambled by the RA-RNTI, and the PDSCH includes at least one RAR message, wherein one RAR message is a response to the Preamble sent by the terminal device.
  • the RA-RNTI may calculate the value of the RA-RNTI through the time-frequency resource location of the Preamble that is clear to both the sender and the receiver.
  • RA-RNTI associated with Preamble can be calculated by formula (1):
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id(1)
  • s_id is the index of the first Orthogonal Frequency Division Multiplexing (OFDM) symbol of the PRACH resource (0 ⁇ s_id ⁇ 14), and t_id is the index of the first time slot of the PRACH resource in a system frame.
  • f_id is the index of the PRACH resource in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is the uplink carrier used to transmit the Preamble (0 represents the NUL carrier, 1 represents the SUL carrier).
  • f_id is fixed to 0.
  • the RAR sent by the network device may be carried in the Media Access Control (MAC) protocol data unit (Protocol Data Unit, PDU).
  • MAC Media Access Control
  • PDU Protocol Data Unit
  • a MAC PDU can include one or more MAC subPDUs (subPDU) and possible padding (padding) bits.
  • a MAC subPDU can have only a backoff indicator (Backoff Indicator, BI), or only Random Access Preamble Identifier (RAPID), or RAPID and MAC RAR.
  • BI Backoff Indicator
  • RAPID Random Access Preamble Identifier
  • MAC PDU It can be seen from the structure of MAC PDU that if a network device detects random access requests from multiple terminal devices on the same PRACH resource, it can use one MAC PDU to respond to these access requests. Each random access The response to the request (corresponding to a preamble index) corresponds to a RAR. In other words, if multiple terminal devices send Preamble on the same PRACH resource (the same time and frequency position, using the same RA-RNTI), the corresponding RARs are multiplexed in the same MAC PDU.
  • all terminal devices that use the same PRACH resource to send the Preamble detect the same RA-RNTI scrambled PDCCH and receive the same MAC PDU, but different RAPIDs correspond to different RARs.
  • the MAC PDU can only be scrambled with one RA-RNTI, this also means that the RAR corresponding to the Preamble sent using different PRACH resources (different time and frequency positions) cannot be multiplexed into the same MAC PDU.
  • the BI subheader in the MAC PDU may include an extension field (E), a type field (T), two reserved fields (R), and a BI value.
  • E extension field
  • T type field
  • R reserved fields
  • BI value a value that is equal to the value corresponding to the BI in the header. If the terminal device receives a BI subheader, it will save a backoff value, which is equal to the value corresponding to the BI in the header; otherwise, the terminal device can set the Backoff value to 0.
  • the value corresponding to BI specifies the time range that the terminal device needs to wait before resending the Preamble.
  • the terminal device does not receive the RAR within the RAR window, or if none of the received RARs matches the preamble index selected by the terminal device, it can be considered that the RAR reception fails. At this time, the terminal device needs to wait for a period of time before initiating random access.
  • the waiting time can be any random value within the waiting time interval specified by the value corresponding to 0 to BI.
  • the RAPID subheader in the MAC PDU may include an E, a T, and RAPID value.
  • RAPID is the Preamble index received by the network device in response. If the terminal device finds that the value is the same as the index used when it sends the Preamble, it can be considered that the corresponding RAR has been successfully received.
  • Fig. 4 is a schematic block diagram of a MAC RAR in an embodiment of the present application.
  • the MAC RAR may include: reserved bit R (for example, 1 bit), time advance command (Timing Advance Command, TAC), UL grant, and TC-RNTI.
  • TAC time advance command
  • TAC can be used to specify the amount of time adjustment required for the uplink synchronization of the terminal equipment, occupying 12 bits.
  • the UL grant occupies 27 bits, which can be used to schedule Msg3 uplink resource indication.
  • TC-RNTI occupies 16 bits and can be used to scramble the Msg 4 PDCCH.
  • the 27-bit UL grant in each MAC RAR may include PUSCH frequency domain resource allocation, PUSCH time domain resource allocation, modulation or coding scheme (Modulation and Coding Scheme, MCS), channel state information (Channel State Information, CSI), etc.
  • MCS Modulation and Coding Scheme
  • CSI Channel State Information
  • Step 3 The terminal device sends Msg3.
  • the terminal device After receiving the RAR message, the terminal device determines whether the RAR is its own RAR message. For example, the terminal device can use the preamble index to check. After determining that it is its own RAR message, it can generate Msg3 in the RRC layer and send it to The network device sends Msg3, which needs to carry the identification information of the terminal device, etc.
  • the redundancy (Redundancy Version, RV) version number used for Msg3 transmission scheduled by UL grant in RAR is 0.
  • Msg3 is mainly used to notify the network equipment of the random access trigger event.
  • the Msg3 sent by the terminal device in step 3 may include different content.
  • Msg3 may include the RRC connection request message (RRC Setup Request) generated by the RRC layer.
  • RRC Setup Request RRC connection request message
  • Msg3 may also carry, for example, the 5G-service temporary mobile subscriber identity (Serving-Temporary Mobile Subscriber Identity, S-TMSI) of the terminal device or a random number.
  • S-TMSI Serving-Temporary Mobile Subscriber Identity
  • Msg3 may include an RRC connection reestablishment request message (RRC Reestablishment Request) generated by the RRC layer.
  • RRC Reestablishment Request RRC connection reestablishment request message
  • Msg3 may also carry, for example, a Cell Radio Network Temporary Identifier (C-RNTI).
  • C-RNTI Cell Radio Network Temporary Identifier
  • Msg3 may include an RRC handover confirmation message (RRC Handover Confirm) generated by the RRC layer, which carries the C-RNTI of the terminal device.
  • RRC Handover Confirm RRC handover confirmation message
  • Msg3 may also carry information such as Buffer Status Report (BSR).
  • BSR Buffer Status Report
  • Msg3 may at least include the C-RNTI of the terminal device.
  • Step 3 supports hybrid automatic repeat request (Hybrid Automatic Repeat Request, HARQ). If the network device is unsuccessful in receiving the Msg3, the network device can use the Downlink Control Information (DCI) format (format) 0_0 of the TC-RNTI scrambling code to schedule the retransmission of the MSG3.
  • DCI Downlink Control Information
  • the DCI format of the TC-RNTI scrambling code 0_0 can include the following: uplink and downlink DCI indication (1 bit), frequency domain resource allocation, time domain resource allocation (4 bits), frequency domain frequency hopping indication (1 bit), MCS (5 Bit), New Data Indicator (DAI) (1 bit reserved), RV version (2 bits), HARQ process number (4 bits reserved), PUSCH power control command word (2 bits), UL/Supplement UL (Supplement UL, SUL) carrier indicator (1 bit).
  • the size of the frequency domain resource allocation can be determined according to the uplink bandwidth part (Band Width Part, BWP).
  • Step 4 The network device sends the terminal device Msg4.
  • Msg4 may include contention resolution messages and uplink transmission resources allocated for terminal equipment. After the terminal device receives the Msg4 sent by the network device, it can detect whether the Msg4 includes part of the content in the Msg3 sent by the terminal device. If it is included, it indicates that the random access process of the terminal device is successful, otherwise it is considered that the random access process has failed, and the terminal device needs to initiate the random access process again from step 1.
  • the network device Since the terminal device in step 3 can carry its own unique identifier in Msg3, the network device will carry the unique identifier of the terminal device in Msg4 in the contention resolution mechanism to specify the terminal device that wins the competition.
  • Step 4 supports HARQ retransmission.
  • the terminal device After receiving Msg4, the terminal device performs physical uplink control channel (PUCCH) feedback. If the terminal device responds negatively to the decoding result received by Msg4 (Negative Acknowledgment, NACK), then the network device can perform HARQ on Msg4 Retransmission.
  • the network device may use the DCI format 1_0 of the C-RNTI or TC-RNTI scrambling code to schedule the initial transmission or retransmission of Msg4.
  • Random access is complete.
  • the DCI format 1_0 of the TC-RNTI scrambling code can include the following: uplink and downlink DCI indication (1 bit), frequency domain resource allocation (the size is determined by the DL BWP bandwidth), time domain resource allocation (4 bits), virtual resource block (Virtual Resource Block, VRB) to Physical Resource Block (Physical Resource Block, PRB) mapping (1 bit), MCS (5 bits), DAI (1 bit), RV version (2 bits), HARQ process number (4 bits) , Downlink allocation indicator DAI (2 bits reserved), PUCCH power control command word (2 bits), PUCCH resource indicator (3 bits), PDSCH-to-HARQ feedback time indicator (3 bits).
  • FIG. 5 is only a specific implementation of the two-step random access process, and should not limit the protection scope of this application.
  • the first message sent by the terminal device includes the Preamble and the PUSCH, there may be two situations in which the network device receives the first message. At this time, how the terminal device distinguishes the two situations has not yet been clearly defined.
  • an embodiment of the present application proposes a random access method, so that the terminal device can distinguish different situations in which the network device receives the first message.
  • FIG. 6 is a schematic flowchart of a random access method 300 according to an embodiment of the present application.
  • the method described in FIG. 6 may be executed by a terminal device and a network device.
  • the terminal device may be, for example, the terminal device 120 shown in FIG. 1
  • the network device may be, for example, the network device 110 shown in FIG. 1.
  • the method 300 may include at least part of the following content.
  • the terminal device sends a first message to the network device, the first message includes the Preamble and the first PUSCH, and the first PUSCH includes data obtained by performing rate matching on the first transport block.
  • the network device receives the first message.
  • the network device sends the first DCI or the second DCI to the terminal device according to the result of receiving the first message.
  • the terminal device receives the first DCI or the second DCI sent by the network device.
  • the first message in 310 including the Preamble and the first PUSCH can be understood as: between the terminal device sending the Preamble and the first PUSCH to the network device, there is no other message between the network device and the terminal device, and/or the network device can respond to The Preamble and the first PUSCH simultaneously send the second message to the terminal device.
  • the rate matching mentioned in the above content may include operations such as encoding, modulation, mapping, and precoding.
  • the first transmission block may include the identification of the terminal device.
  • the identifier of the terminal device may include but is not limited to: TC-RNTI, C-RNTI, random number with a fixed bit size, 5G-S-TMSI, and the like.
  • the RV version used when the terminal device sends the first PUSCH may be RV0.
  • the terminal device sends the first message to the network device, and accordingly, the network device can receive the first message.
  • the network device receives the first message, there can be multiple situations:
  • Case 1 The network device successfully detects the Preamble sequence, but fails to decode the first transmission block.
  • Case 2 The network device successfully detects the Preamble sequence and decodes the first transmission block.
  • Case 3 The network device neither detects the Preamble sequence nor decodes the first transmission block.
  • the network device may send a response message to the terminal device according to the result of receiving the first message.
  • the network device sending response information to the terminal device may include two situations:
  • Case A When the network device successfully detects the Preamble sequence, but fails to decode the first transmission block (that is, when the network device receives the first message), the network device cannot determine which terminal device sent the first message. , The network device may send the first DCI to the terminal device to make the terminal device retransmit the first transmission block.
  • the network device may use a first control resource set (Control Resource Set, CORESET) to send the first DCI to the terminal device, and may also use other resources to send the first DCI to the terminal device.
  • CORESET Control Resource Set
  • the terminal device can receive the first DCI by detecting a Physical Downlink Control Channel (PDCCH) on CORESET or other resources.
  • PDCCH Physical Downlink Control Channel
  • CORESET may be preset on the terminal device based on the protocol, or may be pre-configured to the terminal device by the network device.
  • the PDCCH mentioned in the embodiments of this application may also be an enhanced physical downlink control channel (EPDCCH), a machine type communication physical downlink control channel (Machine Type Communication Physical Downlink Control Channel, MPDCCH), and a physical secondary link.
  • EPDCCH enhanced physical downlink control channel
  • MPDCCH Machine Type Communication Physical Downlink Control Channel
  • NPDCCH Narrowband Physical Downlink Control Channel
  • the first DCI may be used to schedule the first PDSCH, and the first PDSCH includes preamble response information; or, the first DCI may include preamble response information.
  • the response information of the Preamble may include, but is not limited to, at least one of the following information: Preamble identification, TC-RNTI, first RV version information, first NDI information, first carrier indication information, first HARQ process number information, first One MCS information, PUSCH power control command word information.
  • the first RV version information can be used to determine the redundancy version of the second PUSCH
  • the PUSCH power control command word information can be used for the terminal device to determine the transmission power of the second PUSCH according to the transmission power of the first PUSCH
  • the first carrier indication information It can be used for the terminal device to determine the carrier information for transmitting the second PUSCH.
  • the second PUSCH includes data obtained by rate matching the first transport block, and the first PUSCH and the second PUSCH may be different. It can be understood that the first PUSCH and the second PUSCH are transmitted in the same transport block, so the second PUSCH is a retransmission for the first PUSCH.
  • the first PUSCH and the second PUSCH transmit the same first transport block, when determining the transmission parameters of the second PUSCH, there is no need to determine the transport block size of the first transport block according to the first MCS information.
  • the first MCS information may only be used to determine the modulation order of the second PUSCH.
  • the terminal device can directly retransmit the first transmission block in the first message after receiving the preamble response information .
  • the response information of the preamble can be carried in the MAC PDU, for example, the MAC PDU as shown in FIG. 3.
  • One MAC PDU may include at least one preamble response information. If one MAC PDU includes multiple preamble response information, the size of each preamble response information may be fixed and may include UL grant, for example, as shown in Figure 4 Show. The information included in each UL grant can be as shown in Table 2.
  • Preamble response information field Number of bits Frequency domain frequency hopping indicator 1 PUSCH frequency domain resource allocation 14 PUSCH time domain resource allocation 4 MCS 2 PUSCH power control command word 2 CSI request 1 RV version 2 Carrier indicator 1
  • the number of bits in each field of the Preamble response information in Table 2 is not limited to the number of bits shown in Table 2.
  • the MCS domain in Table 2 occupies 2 bits (used to indicate different modulation orders, such as one of q, 2, 4, and 6). In fact, the MCS domain can also occupy 5 bits or other Number of bits.
  • the RV version field in Table 2 occupies 2 bits (used to indicate RV version 0, 1, 2, 3). In fact, the RV version field can also occupy 1 bit (used to indicate RV version 0). Or RV version 2) or other bits.
  • the embodiment of the present application does not specifically limit the size of the Preamble response information in the two-step random access process, that is, the size of the Preamble response information in the two-step random access process can be the same as the four-step random access process.
  • the size of the response information of the Preamble in the access process is the same or can be different.
  • the size of the response information of the Preamble in the two-step random access process is the same as the size of the response information of the Preamble in the four-step random access process.
  • the information included in the UL grant in the response information of the Preamble in the two-step random access process is shown in Table 2
  • the information included in the UL grant in the response information of the Preamble in the four-step random access process is shown in Table 2. 1 shown.
  • the Preamble response information in the two-step random access process and the Preamble response information in the four-step random access process include information used to distinguish whether the current response information is for the two-step random access process or the four-step random access process. Instructions for the access process.
  • the reserved bit R in the MAC RAR may be used to indicate whether the MAC RAR is the response information for the two-step random access process or the four-step random access process.
  • Table 1 and Table 2 respectively include 1-bit information for displaying and indicating whether the current response information is for a two-step random access process or a four-step random access process.
  • the first carrier indication information included in the response information of the Preamble may also be used to determine the unlicensed carrier that sends the second PUSCH.
  • the response information of the Preamble may also include at least one of the following information: indication information of at least one uplink BWP, indication information of at least one uplink subband, indication information of at least two time domain resources, and at least two frequency domains Resource indication information, channel access type corresponding to the second PUSCH, and channel access priority corresponding to the second PUSCH.
  • Unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by the country and region. This spectrum can be considered as a shared spectrum, that is, the communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. Using this spectrum, it is not necessary to apply for a proprietary spectrum authorization from the government. In order to allow various communication systems that use unlicensed spectrum for wireless communication to coexist friendly on the spectrum, it needs to be based on the principle of Listen Before Talk (LBT), that is, communication devices perform signals on channels of unlicensed spectrum. Before sending, you need to perform channel listening (or called channel detection).
  • LBT Listen Before Talk
  • the communication device can send signals; if the communication device performs channel listening on the unlicensed spectrum If the channel is busy, the signal cannot be sent.
  • the duration of signal transmission by the communication device using the channel of the unlicensed spectrum may not exceed the maximum channel occupation time (Maximum Channel Occupation Time, MCOT).
  • multiple time-domain and/or frequency-domain candidate resources may be included when uplink data or downlink data is retransmitted, so as to increase transmission opportunities during data retransmission.
  • the channel access type included in the response information of the Preamble may include type 1 (Cat-1) channel access type, type 2 (Cat-2) channel access type, and type 4 (Cat-4) At least one of channel access types.
  • the Cat-1 channel access type can refer to: transmission immediately after the switching gap (switching gap) ends, that is, there is no need to detect whether the channel is idle.
  • This type 1 channel access type is suitable for transmission switching within a COT.
  • the switching gap may not exceed a specific period of time, such as 16 ⁇ s.
  • Cat-2 channel access type can refer to: signal transmission can be performed when the channel is idle within a single detection time, and signal transmission cannot be performed when the channel is occupied.
  • Cat-4 channel access type can refer to: channel access based on random backoff of variable contention window size (Contention Window Size, CWS).
  • CWS Contention Window Size
  • the communication device determines that CWS is CWp, CWp is a variable value, and the communication device A random number N is generated according to the value of CWp, the communication device performs channel detection on the unlicensed spectrum, and can perform signal transmission after the channel detection succeeds in all N time slots.
  • the priority of the channel access scheme can be further distinguished according to the priority of the transmission service.
  • the Cat-4 channel access type can have different channel access sub-schemes, and different channel access sub-schemes can correspond to different service transmission priorities.
  • Table 3 is an example of channel access parameters corresponding to different channel priorities under the Cat-4 channel access type. Among them, the smaller the p value, the higher the priority.
  • the terminal device after sending the first message, the terminal device can start the first timer or start the RAR time window, and receive the first DCI within the duration of the timer or the RAR time window.
  • the timer or the RAR time window may be preset on the terminal device based on a protocol, or may be pre-configured by the network device to the terminal device, for example, may be configured through RRC signaling.
  • timer or the RAR time window can be started after the Preamble is sent, or after the first PUSCH is sent, which is not specifically limited in the embodiment of the present application.
  • the terminal device may use the first RNTI to receive the first DCI.
  • the first RNTI may be determined according to at least one of the following: the time domain position of the preamble, the frequency domain position of the preamble, the identifier of the preamble, the time domain position of the first PUSCH, and the first The frequency domain position of the PUSCH, and the antenna port of the demodulation reference signal (Demodulation Reference Signal, DMRS) of the first PUSCH.
  • DMRS Demodulation Reference Signal
  • the time domain position of the Preamble or the time domain position of the first PUSCH may refer to the first symbol in the time domain resources occupied by the Preamble or the first PUSCH
  • the frequency domain position of the Preamble or the frequency domain position of the first PUSCH may refer to the frequency Which PRACH resource in the domain, or the resource block (Resource Block, RB) with the smallest number in the frequency domain resource.
  • the first RNTI may be RA-RNTI.
  • the terminal device or the network device can calculate the RA-RNTI according to the PRACH resource for transmitting the first message.
  • a possible calculation method is as formula (2):
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id (2)
  • s_id is the index of the first OFDM symbol of the PRACH resource transmitting the first message (0 ⁇ s_id ⁇ 14), and t_id is the index of the first time slot of the PRACH resource transmitting the first message in a system frame (0 ⁇ t_id ⁇ 80), f_id is the index of the PRACH resource for transmitting the first message in the frequency domain (0 ⁇ f_id ⁇ 8), ul_carrier_id is the uplink carrier used to transmit the first message (0 means NUL carrier, 1 means SUL carrier, Or, 0 means unlicensed carrier, 1 means licensed carrier).
  • the terminal device may send the second PUSCH to the network device, that is, retransmit the first transmission block to the network device.
  • the terminal device may send the second PUSCH to the network device according to the response information of the Preamble. For example, if the response information of the Preamble includes the first RV version information, the terminal device can determine the RV version used when sending the second PUSCH according to the first RV version information, and then send the second PUSCH to the network device according to the determined RV version.
  • the terminal device may send the second PUSCH to the network device based on information preset on the terminal device, for example, information specified by the protocol.
  • the terminal device When the first DCI schedules the first PDSCH and the first PDSCH includes the response information of the Preamble, the terminal device sends the second PUSCH to the network device. Specifically, the terminal device receives the first PUSCH within the duration of the RAR timer or RAR time window. After decoding the first PDSCH according to the first DCI, the terminal device determines whether the first PDSCH is for its own PDSCH, and if it is determined that it is for its own PDSCH, the terminal device can retransmit the first transport block to the network device.
  • the terminal device may find whether the first PDSCH includes the identity of the Preamble sent by the terminal device, if the first PDSCH includes the Preamble sent by the terminal device , The terminal device can determine that the first PDSCH is for its own PDSCH. After that, the terminal device may retransmit the first transmission block to the network device according to the TA command, UL grant, and TC-RNTI corresponding to the Preamble identifier.
  • the terminal device determines whether the first DCI is for itself, and if it is determined for itself DCI, the terminal device can retransmit the first transmission block to the network device.
  • the first RNTI may be determined according to the identity of the Preamble and/or the antenna port of the DMRS of the first PUSCH.
  • the network device After the network device receives the second PUSCH, it can be combined and received with the data in the first PUSCH to determine whether the first transmission block can be successfully decoded. If the network device correctly receives the first transmission block, the network device can send the second DCI to the terminal device. The subsequent process will be introduced later. For the sake of brevity, it will not be described here too much.
  • the network device may send a third DCI to the terminal device, where the third DCI is used to schedule the transmission of the third PUSCH, and the third PUSCH includes rate matching for the first transmission block The data obtained.
  • the terminal device may continue to retransmit the first transmission block to the network device.
  • the terminal device can receive the third DCI sent by the network device.
  • the terminal device may receive the third DCI according to the TC-RNTI.
  • the third DCI may include but is not limited to at least one of the following: uplink and downlink DCI indication, frequency domain resource allocation, time domain resource allocation, frequency domain frequency hopping indication, MCS, DAI indication, RV version, HARQ process Number, PUSCH power control command word, carrier indication.
  • the process of the terminal device retransmitting the first transmission block to the network device may be repeated until the network device correctly receives the first transmission block, or the number of retransmissions reaches the maximum number of retransmissions. After the network device correctly receives the first transmission, the network device may send the second DCI to the terminal device for the first transmission block.
  • the network device may send the second DCI to the terminal device according to the TC-RNTI or the first RNTI or the second RNTI, and accordingly, the terminal device may receive the second DCI according to the TC-RNTI or the first RNTI or the second RNTI.
  • the second RNTI may be determined according to at least one of the following: the time domain position of the preamble, the frequency domain position of the preamble, the identity of the preamble, the time domain position of the first PUSCH, and the first The frequency domain position of the PUSCH, the antenna port of the DMRS of the first PUSCH, and the identification of the terminal device.
  • the first DCI and the second DCI may use different RNTIs for scrambling. In this way, the terminal device can distinguish the first DCI from the second DCI more effectively.
  • the first PDSCH scheduled by the first DCI does not support HARQ retransmission.
  • Case B When the network device successfully detects the Preamble sequence and decodes the first transmission block (that is, Case 2 when the network device receives the first message), the network device can determine which terminal device sent the first message. At this time, the network device may send the second DCI to the terminal device.
  • the network device may use the second CORESET to send the second DCI to the terminal device, and may also use other resources to send the second DCI to the terminal device.
  • CORESET may be preset on the terminal device based on the protocol, or may be pre-configured to the terminal device by the network device.
  • the second DCI may include response information of the first transmission block; or, the second DCI may be used to schedule a second PDSCH, the second PDSCH includes data obtained by rate matching the second transmission block, and the second transmission block includes Response information of the first transmission block.
  • the response information of the first transmission block may include at least one of the following: the identity of the preamble, part or all of the content included in the first transmission block, TC-RNTI or C-RNTI.
  • the second DCI includes the response information of the first transmission block, and the second DCI is used to schedule the second PDSCH.
  • the second PDSCH includes the data obtained by rate matching the second transmission block.
  • the second transmission block includes the first transmission block. The response information for these two embodiments.
  • Embodiment 1 The second DCI includes response information of the first transmission block.
  • the terminal device may send Acknowledgment (ACK) information to the network device.
  • ACK Acknowledgment
  • the second DCI may include at least one of the following information: first PUCCH resource indication information, first PUCCH time domain position indication information, first PUCCH power control command word information, and second carrier indication information.
  • the terminal device may determine the first PUCCH resource for sending the ACK information according to the second DCI, and then use the first PUCCH resource to send the ACK information to the network device.
  • the network device will detect whether ACK information is included on the first PUCCH resource.
  • the network device does not detect whether the NACK information is included on the first PUCCH resource.
  • the second DCI may include at least one item of the above information, further, if the terminal device is configured with a carrier on the unlicensed spectrum, the second carrier indication information may also be used to determine the unlicensed carrier for transmitting the first PUCCH.
  • the second DCI may further include but is not limited to: at least two first PUCCH resource indicators, at least two first PUCCH time domain position indicators, first PUCCH channel access type, and first PUCCH channel access priority.
  • Embodiment 2 The second DCI is used to schedule a second PDSCH, the second PDSCH includes data obtained by rate matching the second transmission block, and the second transmission block includes response information of the first transmission block.
  • the second DCI may include at least one of the following information: second PUCCH resource indication information, PDSCH-to-HARQ feedback time indication information, third carrier indication information, second PUCCH power control command word information , The second RV version information, the second NDI information, the second HARQ process number information, and the second MCS information.
  • the second RV version information may be used to determine the corresponding redundancy version during transmission of the second transmission block
  • the second MCS information may be used to determine the corresponding modulation order and/or code rate during transmission of the second transmission block.
  • the terminal device may have received the second DCI but failed to decode the second PDSCH. At this time, the terminal device may send NACK information to the network device.
  • the terminal device may determine the second PUCCH resource according to the second DCI or a pre-configured resource, and then send NACK information to the network device on the second PUCCH resource.
  • the network device may send the second DCI to the terminal device for the NACK information.
  • the second DCI is used to schedule the transmission of the third PDSCH
  • the third PDSCH includes data obtained by rate matching the second transmission block. That is, the second DCI sent by the network device for the NACK information sent by the terminal device is used to schedule the retransmission of the second PDSCH.
  • the embodiment of the present application refers to the second DCI used to schedule the retransmission of the second PDSCH as the fourth DCI.
  • the value of the RV version in the fourth DCI may be different from the value of the RV version in the second DCI.
  • the value of the modulation order in the fourth DCI may be different from the value of the modulation order in the second DCI.
  • the process of scheduling retransmission of the second PDSCH may be repeated until the terminal device feeds back the ACK information to the network device, or the number of retransmissions reaches the maximum number of retransmissions.
  • the terminal device may receive the second DCI and decode the second PDSCH, then the terminal device may send ACK information to the network device. After the network device receives the ACK message sent by the terminal device, it indicates that the random access process is complete.
  • the terminal device may determine the second PUCCH resource according to the second DCI, and then send ACK information to the network device on the second PUCCH resource.
  • the terminal device may use the pre-configured second PUCCH resource to send the ACK information to the network device.
  • the size of the first DCI and the size of the second DCI may be the same. In this way, the number of blind PDCCH detections on the terminal device side can be effectively reduced.
  • the first DCI and/or the second DCI may also indicate that the DCI currently received by the terminal device is the first DCI Still the second DCI.
  • the first DCI may include a first indication information field, and the first indication information field is used to indicate that the DCI currently received by the terminal device is the first DCI, and/or the second DCI may include the first indication information Field, the first indication information field is used to indicate that the DCI currently received by the terminal device is the second DCI.
  • the first indication information field may include at least one bit.
  • bit "0" may be used to indicate that the DCI currently received by the terminal device is the first DCI
  • bit "1" may be used to indicate that the DCI currently received by the terminal device is The second DCI.
  • the first indication information field contains multiple bits, if the multiple bits are the same, it can be used to indicate that the DCI currently received by the terminal device is the first DCI. If the multiple bits are at least two different, then It can be used to indicate that the DCI currently received by the terminal device is the second DCI.
  • the first indication information field includes 3 bits.
  • the terminal device can determine that the DCI currently received is the second DCI; if the terminal device If the first indication information field in the currently received DCI is "000", the terminal device can determine that the currently received DCI is the first DCI.
  • the first parameter may be used to indicate whether the DCI currently received by the terminal device is the first DCI or the second DCI. For example, if the DCI currently received by the terminal device includes the first parameter, the DCI is the first DCI; if the DCI currently received by the terminal device does not include the first parameter, the DCI is the second DCI.
  • the second DCI may not include the first indication information domain; or, when the first DCI does not include the first indication information domain, the second DCI may Including the first indication information domain.
  • Figure 7 includes the technical solutions of Case A and Case B.
  • the terminal device sends the Preamble and the first PUSCH to the network device, where the first PUSCH includes data obtained by rate matching the first transport block. After that, the network device detects the Preamble and the first transmission block. If the network device receives the Preamble, the network device sends the first DCI of the first RNTI scrambling code to the terminal device. The first DCI is used to schedule the first PDSCH, and the first PDSCH includes the response information of the Preamble (case A). If the network device receives the first transmission block, the network device may send the second DCI of the second RNTI scrambling code to the terminal device, where the second DCI is used to schedule the second PDSCH, and the second PDSCH includes the rate of the second transmission block. For the data obtained by matching, the second transmission block includes response information of the first transmission block.
  • the terminal device receives the first DCI or the second DCI within the RAR time window. If the terminal device receives the first DCI and RAR grant, the terminal device can determine that the network device has not decoded the first transmission block, and the terminal device can send the first transmission block to the network device according to the RV version in the RAR and other information used for PUSCH retransmission.
  • the second PUSCH includes data obtained by rate matching the first transmission block, that is, the terminal device retransmits the first transmission block to the network device.
  • the terminal device If the terminal device receives the second DCI and decodes the second PDSCH, the terminal device sends ACK information to the network device, indicating that the random access is successful. If the terminal device receives the second DCI and does not decode the second PDSCH, the terminal device sends NACK information to the network device to request retransmission of the second PDSCH.
  • FIG. 7 is only a possible example of the embodiment of the present application, and does not constitute a limitation to the embodiment of the present application.
  • the network device in the two-step random access process, after the terminal device sends the first message to the network device, the network device can send different DCIs to the terminal device according to different situations of receiving the first message, and the terminal device receives different After the DCI, the two situations in which the network device receives the first message can be effectively distinguished, so that the subsequent two-step random access process can be performed for different situations in which the network device receives the first message.
  • the size of the sequence number of the foregoing processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the communication method according to the embodiment of the present application is described in detail above.
  • the communication device according to the embodiment of the present application will be described below in conjunction with FIG. 8 to FIG. 10.
  • the technical features described in the method embodiment are applicable to the following device embodiments.
  • FIG. 8 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication unit 410 is configured to send a first message to a network device, where the first message includes a random access preamble and a first PUSCH, and the first PUSCH includes data obtained by performing rate matching on a first transmission block.
  • the communication unit 410 is further configured to receive a first DCI or a second DCI sent by the network device, where the first DCI or the second DCI is sent for the first message.
  • the first DCI is used to schedule a first thing PDSCH, and the first PDSCH includes response information of the random access preamble; or, the first DCI includes all The response information of the random access preamble.
  • the response information of the random access preamble includes at least one of the following information: the identifier of the random access preamble, TC-RNTI, first RV version information, First NDI information, first carrier indication information, first HARQ process number information, first MCS information, PUSCH power control command word information.
  • the response information of the random access preamble includes the first RV version information, and the first RV version information is used to determine the redundancy version of the second PUSCH; and/ or,
  • the response information of the random access preamble includes the first MCS information, and the first MCS information is used to determine the modulation order of the second PUSCH; and/or,
  • the response information of the random access preamble includes the PUSCH power control command word information, and the PUSCH power control command word information is used to determine the transmission power of the second PUSCH according to the transmission power of the first PUSCH; and /or,
  • the response information of the random access preamble includes the first carrier indication information, and the first carrier indication information is used to determine carrier information for transmitting the second PUSCH;
  • the second PUSCH includes data obtained by performing rate matching on the first transport block.
  • the communication unit 410 is further configured to: send a second PUSCH to the network device according to the response information of the random access preamble, and the second PUSCH includes a Data obtained by rate matching of the first transmission block.
  • the communication unit 410 is further configured to: receive a third DCI, where the third DCI is used to schedule transmission of a third PUSCH, and the third PUSCH includes Data obtained by rate matching of the first transmission block.
  • the communication unit 410 is specifically configured to: the device receives the third DCI according to the TC-RNTI .
  • the communication unit 410 is further configured to: receive a second DCI sent by the network device for the first transmission block.
  • the second DCI includes response information of the first transport block.
  • the communication unit 410 is further configured to: send an acknowledgement to the network device.
  • the second DCI includes at least one of the following information: first PUCCH resource indication information, the first PUCCH time domain position indication information, and the first PUCCH power control Command word information, second carrier indication information;
  • the 410 communication unit is specifically configured to: send the acknowledgement to the network device according to the second DCI.
  • the second DCI is used to schedule a second PDSCH, and the second PDSCH includes data obtained by performing rate matching on a second transmission block, and the second transmission block includes the Response information of the first transmission block.
  • the communication unit 410 is further configured to: if the terminal device 400 receives the second DCI and does not decode the second PDSCH, send to the network device Negative response; or,
  • the terminal device 400 If the terminal device 400 receives the second DCI and decodes the second PDSCH, it sends an acknowledgement to the network device.
  • the communication unit 410 if the communication unit 410 sends a negative response to the network device, the communication unit 410 is further configured to: receive the first response sent by the network device in response to the negative response.
  • Two DCI where the second DCI is used to schedule transmission of a third PDSCH, and the third PDSCH includes data obtained by performing rate matching on the second transmission block.
  • the second DCI includes at least one of the following information: second PUCCH resource indication information, PDSCH to HARQ feedback time indication information, third carrier indication information, and second PUCCH power control command word information, second RV version information, second NDI information, second HARQ process number information, and second MCS information.
  • the second DCI includes the second RV version information, and the second RV version information is used to determine a redundancy version during transmission of the second transport block; and/ or,
  • the second DCI includes the second MCS information, and the second MCS information is used to determine a corresponding modulation order or code rate during transmission of the second transmission block.
  • the response information of the first transmission block includes at least one of the following information: the identifier of the random access preamble, the part included in the first transmission block, or All content, TC-RNTI or C-RNTI.
  • the size of the first DCI and the size of the second DCI are the same.
  • the first DCI includes a first indication information field, and the first indication information field in the first DCI is used to indicate that the DCI currently received by the terminal device is The first DCI; and, the second DCI also includes the first indication information field, and the first indication information field in the second DCI is used to indicate that the DCI currently received by the terminal device is The second DCI.
  • the communication unit 410 is specifically configured to: use a first control resource set to receive the first DCI sent by the network device; or use a second control resource set to receive The second DCI sent by the network device.
  • the communication unit 410 is specifically configured to: receive the first DCI according to the first RNTI.
  • the communication unit 410 is specifically configured to: receive the second DCI according to the first RNTI.
  • the first RNTI is determined according to at least one of the following: the time domain position of the random access preamble, the frequency domain position of the random access preamble, and the The identifier of the random access preamble, the time domain position of the first PUSCH, the frequency domain position of the first PUSCH, and the DMRS de-DMRS antenna port of the first PUSCH.
  • the communication unit 410 is specifically configured to: receive the second DCI according to the second RNTI.
  • the second RNTI is determined according to at least one of the following: the time domain position of the random access preamble, the frequency domain position of the random access preamble, and the The identification of the random access preamble, the time domain position of the first PUSCH, the frequency domain position of the first PUSCH, the antenna port of the DMRS of the first PUSCH, and the identification of the terminal device, where The first transmission block includes the identification of the terminal device.
  • the RV version used when the terminal device transmits the first PUSCH is RV0.
  • terminal device 400 may correspond to the terminal device in the method 300, and can implement the corresponding operations of the terminal device in the method 300. For the sake of brevity, details are not repeated here.
  • FIG. 9 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • the communication unit 510 is configured to receive a first message sent by a terminal device, where the first message includes a random access preamble and a first PUSCH, and the first PUSCH includes data obtained by performing rate matching on a first transport block;
  • the communication unit 510 is further configured to send the first DCI or the second DCI to the terminal device according to the result of receiving the first message.
  • the first DCI is used to schedule a first physical downlink shared channel PDSCH, and the first PDSCH includes response information of the random access preamble; or, the first The DCI includes response information of the random access preamble.
  • the response information of the random access preamble includes at least one of the following information: the identifier of the random access preamble, TC-RNTI, first RV version information, First NDI information, first carrier indication information, first HARQ process number information, first MCS information, PUSCH power control command word information.
  • the response information of the random access preamble includes the first RV version information, and the first RV version information is used to determine the redundancy version of the second PUSCH; and/ or,
  • the response information of the random access preamble includes the first MCS information, and the first MCS information is used to determine the modulation order of the second PUSCH; and/or,
  • the response information of the random access preamble includes the PUSCH power control command word information, and the PUSCH power control command word information is used to determine the transmission power of the second PUSCH according to the transmission power of the first PUSCH; and /or,
  • the response information of the random access preamble includes the first carrier indication information, and the first carrier indication information is used to determine carrier information for transmitting the second PUSCH;
  • the second PUSCH includes data obtained by performing rate matching on the first transport block.
  • the communication unit 510 is further configured to: receive a second PUSCH sent by the terminal device, where the second PUSCH includes data obtained by performing rate matching on the first transport block .
  • the communication unit 510 is further configured to: send a third DCI to the terminal device, where the third DCI is used to schedule transmission of a third PUSCH, and the third The PUSCH includes data obtained by performing rate matching on the first transport block.
  • the communication unit 510 is specifically configured to: according to the TC-RNTI, send all the information to the terminal device The third DCI.
  • the communication unit 510 is further configured to send a second DCI to the terminal device for the first transmission block.
  • the second DCI includes response information of the first transport block.
  • the communication unit 510 is further configured to: receive an acknowledgement sent by the terminal device.
  • the second DCI includes at least one of the following information: first PUCCH resource indication information, the first PUCCH time domain position indication information, and the first PUCCH power control Command word information, second carrier indication information;
  • the communication unit 510 is specifically configured to receive the affirmative response sent by the terminal device according to the second DCI.
  • the second DCI is used to schedule a second PDSCH, and the second PDSCH includes data obtained by performing rate matching on a second transmission block, and the second transmission block includes the Response information of the first transmission block.
  • the communication unit 510 is further configured to: if the terminal device receives the second DCI and does not decode the second PDSCH, receive the terminal device sent Negative response; or, if the terminal device receives the second DCI and decodes the second PDSCH, receive the positive response sent by the terminal device.
  • the communication unit 510 if the communication unit 510 receives a negative response sent by the terminal device, the communication unit 510 is further configured to: in response to the negative response, send the terminal device the The second DCI, where the second DCI is used to schedule transmission of a third PDSCH, and the third PDSCH includes data obtained by performing rate matching on the second transmission block.
  • the second DCI includes at least one of the following information: second PUCCH resource indication information, PDSCH to HARQ feedback time indication information, third carrier indication information, and second PUCCH power control command word information, second RV version information, second NDI information, second HARQ process number information, and second MCS information.
  • the second DCI includes the second RV version information, and the second RV version information is used to determine a redundancy version during transmission of the second transport block; and/ or,
  • the second DCI includes the second MCS information, and the second MCS information is used to determine a corresponding modulation order or code rate during transmission of the second transmission block.
  • the response information of the first transmission block includes at least one of the following information: the identifier of the random access preamble, the part included in the first transmission block, or All content, TC-RNTI or C-RNTI.
  • the size of the first DCI and the size of the second DCI are the same.
  • the first DCI includes a first indication information field, and the first indication information field in the first DCI is used to indicate that the DCI currently received by the terminal device is The first DCI; and, the second DCI also includes the first indication information field, and the first indication information field in the second DCI is used to indicate that the DCI currently received by the terminal device is The second DCI.
  • the communication unit 510 is specifically configured to: according to the result of receiving the first message, use the first control resource set to send the first DCI; or, according to receiving the first message As a result of a message, the second DCI is sent using the second control resource set.
  • the communication unit 510 is specifically configured to send the first DCI according to the first RNTI.
  • the communication unit 510 is specifically configured to send the second DCI according to the first RNTI.
  • the first RNTI is determined according to at least one of the following: the time domain position of the random access preamble, the frequency domain position of the random access preamble, and the The identifier of the random access preamble, the time domain position of the first PUSCH, the frequency domain position of the first PUSCH, and the antenna port of the DMRS of the first PUSCH.
  • the communication unit 510 is specifically configured to send the second DCI according to the second RNTI.
  • the second RNTI is determined according to at least one of the following: the time domain position of the random access preamble, the frequency domain position of the random access preamble, and the The identification of the random access preamble, the time domain position of the first PUSCH, the frequency domain position of the first PUSCH, the antenna port of the DMRS of the first PUSCH, and the identification of the terminal device, where The first transmission block includes the identification of the terminal device.
  • the network device 500 may correspond to the network device in the method 300, and can implement the corresponding operations of the network device in the method 300. For brevity, details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 10 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 6710 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device in an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 600 may specifically be a terminal device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • Fig. 11 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 11 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the device 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the device 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device 700 may be a chip. It should be understood that the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 12 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 12, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本申请实施例涉及一种随机接入的方法、终端设备和网络设备,该方法包括:终端设备向网络设备发送第一消息,所述第一消息包括随机接入前导码和第一物理上行共享信道PUSCH,所述第一PUSCH包括对第一传输块进行速率匹配得到的数据;所述终端设备接收所述网络设备针对所述第一消息发送的第一下行控制信息DCI或第二DCI。本申请实施例的随机接入的方法、终端设备和网络设备,可以在两步随机接入过程中,使终端设备区分网络设备接收第一消息的两种情况。

Description

随机接入的方法、终端设备和网络设备 技术领域
本申请涉及通信领域,具体涉及一种随机接入的方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)系统(或称5G系统、5G网络)中可以采用两步随机接入过程的方式。在两步随机接入过程中,可以将四步随机接入过程中的消息1(Msg 1)和消息3(Msg 3)作为两步随机接入过程中的第一消息(Msg A)来发送,并将四步随机接入过程中的消息2(Msg 2)和消息2(Msg 4)作为两步随机接入过程中的第二消息(Msg B)来发送。
由于终端设备发送的第一消息中包括随机接入前导码(Preamble)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH),因此,网络设备接收第一消息可能出现两种情况,此时,终端设备如何区分这两种情况,目前还没有明确的规定。
发明内容
本申请实施例提供一种随机接入的方法、终端设备和网络设备,可以在两步随机接入过程中,使终端设备区分网络设备接收第一消息的两种情况。
第一方面,提供了一种随机接入的方法,所述方法包括:终端设备向网络设备发送第一消息,所述第一消息包括随机接入前导码和第一物理上行共享信道PUSCH,所述第一PUSCH包括对第一传输块进行速率匹配得到的数据;所述终端设备接收所述网络设备针对所述第一消息发送的第一下行控制信息DCI或第二DCI。
第二方面,提供了一种随机接入的方法,所述方法包括:网络设备接收终端设备发送的第一消息,所述第一消息包括随机接入前导码和第一物理上行共享信道PUSCH,所述第一PUSCH包括对第一传输块进行速率匹配得到的数据;所述网络设备根据接收所述第一消息的结果,向所述终端设备发送第一下行控制信息DCI或第二DCI。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
上述技术方案,在两步随机接入过程中,终端设备向网络设备发送第一消息后,网络设备可以根据接收第一消息的不同情况向终端设备发送不同的DCI,终端设备接收到不同的DCI后,可以有效地区分出网络设备接收第一消息的两种情况,从而可以针对网络设备接收第一消息的不同情况执行后续的两步随机接入过程。
附图说明
图1是根据本申请实施例的一种通信系统架构的示意性图。
图2是根据本申请实施例的一种四步随机接入方法的示意性流程图。
图3是根据本申请实施例的包括RAR的一种MAC PDU的示意性图。
图4是根据本申请实施例的一种MAC RAR的示意性框图。
图5是根据本申请实施例的一种四步随机接入到两步随机接入的示意性流程图。
图6是根据本申请实施例的一种随机接入的方法的示意性流程图。
图7是根据本申请实施例的一种随机接入的方法的具体实现的示意性图。
图8是根据本申请实施例的终端设备的示意性框图。
图9是根据本申请实施例的网络设备的示意性框图。
图10是根据本申请实施例的通信设备的示意性框图。
图11是根据本申请实施例的装置的示意性框图。
图12是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、 个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
网络设备110可以为小区提供服务,终端设备120通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备110进行通信,该小区可以是网络设备110(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括例如城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在小区搜索过程之后,终端设备已经与小区取得了下行同步,因此终端设备可以接收下行数据。但终端设备只有与小区取得上行同步,才能进行上行传输。终端设备可以通过随机接入过程(Random Access Procedure)与小区建立连接并取得上行同步。
随机接入过程通常可以由以下事件触发:
(1)初始接入(Initial Access)。
终端设备可以从无线资源控制(Radio Resource Control,RRC)空闲态(RRC_IDLE态)进入RRC连接态(RRC_CONNECTED)。
(2)RRC连接重建过程(RRC Connection Re-establishment procedure)。
(3)切换(Handover)。
此时,终端设备处于连接态,需要与新的小区建立上行同步。
(4)RRC连接态下,下行数据或上行数据到达时,上行处于“不同步”状态(DL or UL data arrival during RRC_CONNECTED when UL synchronisation status is"non-synchronised")。
(5)RRC连接态下,上行数据到达时,没有可用的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源用于调度请求(Scheduling Request,SR)传输(UL data arrival during RRC_CONNECTED when there are no PUCCH resources for SR available)。
(6)SR失败(SR failure)。
(7)RRC在同步配置时的请求(Request by RRC upon synchronous reconfiguration)。
(8)终端设备从RRC非激活态过渡(Transition from RRC_INACTIVE)。
(9)在SCell添加时建立时间对齐(To establish time alignment at SCell addition)。
(10)终端设备请求其他系统信息(Other System Information,OSI)。
(11)终端设备需要进行波束(Beam)失败的恢复(Beam failure recovery)。
在NR系统中,可以支持两种随机接入方式:基于竞争的随机接入方式(如图2所示)和基于非竞争的随机接入方式。为了便于理解本申请实施例的方案,下面将结合图2简单介绍基于竞争的四步随机接入过程:
步骤1,终端设备向网络设备发送Preamble(也即message1,Msg1)。
其中,随机接入前导码也可以称为前导码、随机接入前导码序列、前导码序列等。
具体而言,终端设备可以选择物理随机接入信道(Physical Random Access Channel,PRACH)资源,PRACH资源可以包括时域资源、频域资源和码域资源。接下来,终端设备可以在选择的PRACH资源上发送选择的Preamble。网络设备可以根据Preamble估计其与终端设备之间的传输时延并以此校准上行定时(timing)。
步骤2,网络设备向终端设备发送随机接入响应(Random Access Response,RAR,也即message2,Msg2)
网络设备检测到有终端设备发送Preamble后,可以向终端设备发送RAR,以告知终端设备在发送Msg3时可以使用的上行资源信息。其中,RAR中可以包括Preamble的标识、定时提前(Time Advance,TA)、上行授权(UL grant)、临时小区-无线网络临时标识(Temporary Cell Radio Network Temporary Identifier,TC-RNTI)等信息。
相应地,对于终端设备来说,终端设备向网络设备发送Preamble后,可以开启一个RAR窗口,在该RAR窗口内检测RAR。若终端设备在RAR窗口内没有检测到RAR,则终端设备可以进行Preamble序列的重传;若终端设备在RAR窗口内检测到RAR,则终端设备可以根据RAR指示的UL grant进行Msg3的传输。
终端设备检测RAR,具体而言,终端设备可以根据随机访问无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)检测对应的物理下行控制信道(Physical Downlink Control Channel,PDCCH)。其中,RA-RNTI加扰的PDCCH调度物理下行共享信道(Physical Downlink Shared Channel,PDSCH),PDSCH中包括Preamble对应的RAR。
上述内容提到的终端设备没有检测到RAR可以包括以下几种情况:
a、终端设备没有检测到RA-RNTI加扰的PDCCH。
b、终端设备检测到RA-RNTI加扰的PDCCH,但没有解码出该PDCCH调度的PDSCH。
c、终端设备解码出PDSCH,但该PDSCH中不包括Preamble对应的RAR消息。
终端设备检测到RAR,可以包括:终端设备解码出该RA-RNTI加扰的PDCCH调度的PDSCH,且该PDSCH中包括至少一个RAR消息,其中一个RAR消息是对终端设备发送的该Preamble的响应。
可选地,本申请实施例中,RA-RNTI可以通过收发双方都明确的Preamble的时频资源位置来计算RA-RNTI的值。比如,与Preamble相关联的RA-RNTI可以通过公式(1)计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id(1)
其中,s_id为PRACH资源的第一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的索引(0≤s_id<14),t_id为一个系统帧中PRACH资源的第一个时隙的索引(0≤t_id<80),f_id为频域中PRACH资源的索引(0≤f_id<8),ul_carrier_id为用于传输Preamble的上行载波(0表示NUL载波,1表示SUL载波)。对于FDD而言,每个子帧只有一个PRACH资源,因此,f_id固定为0。
网络设备发送的RAR可以携带在媒体访问控制(Media Access Control,MAC)协议数据单元(Protocol Data Unit,PDU)内,下面结合图3从包括RAR的MAC PDU构成的角度来介绍RAR携带的信息。
从图3中可以看到,一个MAC PDU可以包括一个或多个MAC子PDU(subPDU)以及可能存在的填充(padding)比特,一个MAC subPDU可以只有回退指示(Backoff Indicator,BI),或只有随机访问序列标识符(Random Access Preamble Identifier,RAPID),或RAPID和MAC RAR。
从MAC PDU的结构可以看出,如果网络设备在同一PRACH资源上检测到来自多个终端设备的随机接入请求,则使用一个MAC PDU就可以对这些接入请求进行响应,每个随机接入请求(对应一个Preamble index)的响应对应一个RAR。换句话说,如果多个终端设备在同一PRACH资源(时频位置相同,使用同一RA-RNTI)发送Preamble,则对应的RAR复用在同一MAC PDU中。即,使用相同PRACH资源发送Preamble(Preamble不一定相同)的所有终端设备都检测相同的RA-RNTI加扰的PDCCH,并接收相同的MAC PDU,但不同RAPID对应不同的RAR。
由于MAC PDU只能使用一个RA-RNTI加扰,这也意味着使用不同PRACH资源(时频位置不同)发送的Preamble对应的RAR不能复用到同一个MAC PDU中。
MAC PDU中的BI子头可以包括一个扩展字段(E)、一个类型字段(T)、两个预留字段(R)以及BI值。针对BI子头,该BI子头只出现一次,且位于MAC头(header)的第一个字头处。如果终端设备收到了一个BI子头,则会保存一个回退值,该值等于该字头中的BI对应的值;否则终端设备可以将Backoff值设为0。BI对应的值指定了终端设备重发Preamble前需要等待的时间范围。如果终端设备在RAR窗口内没有接收到RAR,或接收到的RAR中没有一个RAPID与自己选择的preamble index相符合,则可以认为此次RAR接收失败。此时终端设备需要等待一段时间后,再发起随机接入。等待的时间可以为在0至BI对应的值指定的等待时间区间内的任意一个随机值。
MAC PDU中的RAPID子头可以包括一个E、一个T以及RAPID值。其中,RAPID为网络设备响应接收到的Preamble index。如果终端设备发现该值与自己发送Preamble时使用的索引相同,则可以认为成功接收到对应的RAR。
图4是本申请实施例的MAC RAR的示意性框图。如图4所示,MAC RAR可以包括:预留比特R(例如,1个比特)、时间提前命令(Timing Advance Command,TAC)、UL grant、以及TC-RNTI。 其中,TAC可以用于指定终端设备上行同步所需要的时间调整量,占据12比特。UL grant占据27比特,可以用于调度Msg3的上行资源指示。TC-RNTI占据16比特,可以用于加扰Msg 4的PDCCH。
在每个MAC RAR中的27比特的UL grant可以包括PUSCH频域资源分配、PUSCH时域资源分配、调制或编码方案(Modulation and Coding Scheme,MCS)和信道状态信息(Channel State Information,CSI)等信息,具体可以如表1所示:
表1
RAR grant域 比特数
频域跳频指示 1
PUSCH频域资源分配 14
PUSCH时域资源分配 4
MCS 4
PUSCH功控命令字 3
CSI请求 1
步骤3,终端设备发送Msg3。
终端设备在收到RAR消息后,判断该RAR是否为属于自己的RAR消息,例如终端设备可以利用前导码索引进行核对,在确定是属于自己的RAR消息后,可以在RRC层产生Msg3,并向网络设备发送Msg3,其中需要携带终端设备的标识信息等。RAR中的UL grant调度的Msg3传输使用的冗余(Redundancy Version,RV)版本号为0。
其中,Msg3主要用于通知网络设备该随机接入的触发事件。针对不同的随机接入触发事件,终端设备在步骤3中发送的Msg3可以包括不同的内容。
例如,对于初始接入的场景,Msg3可以包括RRC层生成的RRC连接请求消息(RRC Setup Request)。此外,Msg3还可以携带例如终端设备的5G-服务临时移动用户标识(Serving-Temporary Mobile Subscriber Identity,S-TMSI)或随机数等。
又例如,对于RRC连接重建场景,Msg3可以包括RRC层生成的RRC连接重建请求消息(RRC Reestablishment Request)。此外,Msg3还可以携带例如小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)等。
又例如,对于切换场景,Msg3可以包括RRC层生成的RRC切换确认消息(RRC Handover Confirm),其携带终端设备的C-RNTI。此外,Msg3还可携带例如缓冲状态报告(Buffer Status Report,BSR)等信息。对于其它触发事件例如上/下行数据到达的场景,Msg3至少可以包括终端设备的C-RNTI。
步骤3支持混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)。如果网络设备接收Msg3不成功,则网络设备可以使用TC-RNTI扰码的下行控制信息(Downlink Control Information,DCI)格式(format)0_0来调度MSG3的重传。
TC-RNTI扰码的DCI format 0_0可以包括以下内容:上下行DCI指示(1比特)、频域资源分配、时域资源分配(4比特)、频域跳频指示(1比特)、MCS(5比特)、新数据指示(New Data Indicator,DAI)(1比特预留)、RV版本(2比特)、HARQ进程号(4比特预留)、PUSCH功控命令字(2比特)、UL/增补UL(Supplement UL,SUL)载波指示(1比特)。其中,频域资源分配的大小可以根据上行带宽部分(Band Width Part,BWP)确定。
步骤4,网络设备向终端设备Msg4。
Msg4中可以包括竞争解决消息以及为终端设备分配的上行传输资源。终端设备接收到网络设备发送的Msg4后,可以检测Msg4中是否包括终端设备发送的Msg3中的部分内容。若包括则表明终端设备随机接入过程成功,否则认为随机接入过程失败,终端设备需要再次从步骤1开始发起随机接入过程。
由于步骤3中的终端设备可以在Msg3中携带自己唯一的标识,从而网络设备在竞争解决机制中,会在Msg4中携带终端设备的唯一标识以指定竞争中胜出的终端设备。
步骤4支持HARQ重传。终端设备在接收到Msg4后进行物理上行控制信道(Physical Uplink Control Channel,PUCCH)反馈,如果终端设备对Msg4接收的译码结果是否定应答(Negative Acknowledgment,NACK),那么网络设备可以会Msg4进行HARQ重传。示例性地,网络设备可以使用C-RNTI或TC-RNTI扰码的DCI format 1_0来调度Msg4的初传或重传。如果终端设备接收到C-RNTI扰码的DCI format 1_0及其对应的PDSCH,随机接入完成;果终端设备接收到TC-RNTI扰码的DCI format 1_0及其对应的PDSCH,并比对内容成功,随机接入完成。
其中,TC-RNTI扰码的DCI format 1_0可以包括以下内容:上下行DCI指示(1比特)、频域资源分配(大小根据DL BWP带宽确定)、时域资源分配(4比特)、虚拟资源块(Virtual Resource Block,VRB)到物理资源块(Physical Resource Block,PRB)映射(1比特)、MCS(5比特)、DAI(1比 特)、RV版本(2比特)、HARQ进程号(4比特)、下行分配指示DAI(2比特预留)、PUCCH功控命令字(2比特)、PUCCH资源指示(3比特)、PDSCH-to-HARQ反馈时间指示(3比特)。
四步随机接入的时延比较大,对于5G中的低时延高可靠场景是不合适的。考虑到低时延高可靠相关业务的特点,提出了两步随机接入过程的方案。如图5所示,在两步随机接入过程中,简单的说,相当于将四步随机接入过程的第一步和第三步合并为两步随机接入过程中的第一步,将四步随机接入过程的第二步和第四步合并为两步随机接入过程中的第二步。因此,在两步随机接入过程的第一步中,终端设备需要向网络设备发送Preamble和PUSCH。应理解,图5仅仅是两步随机接入过程的一种具体实现方式,不应对本申请的保护范围构成限定。
然而由于终端设备发送的第一消息中包括Preamble和PUSCH,因此,网络设备接收第一消息可能出现两种情况,此时,终端设备如何区分这两种情况,目前还没有明确的规定。为了解决上述问题,本申请实施例提出了一种随机接入的方法,在使得终端设备可以区分网络设备接收第一消息出现的不同情况。
图6是根据本申请实施例的随机接入的方法300的示意性流程图。图6所述的方法可以由终端设备和网络设备执行,该终端设备例如可以为图1中所示的终端设备120,该网络设备例如可以为图1中所示的网络设备110。如图6所示,该方法300可以包括以下内容中的至少部分内容。
在310中,终端设备向网络设备发送第一消息,第一消息包括Preamble和第一PUSCH,第一PUSCH包括对第一传输块进行速率匹配得到的数据。
在320中,网络设备接收第一消息。
在330中,网络设备根据接收第一消息的结果,向终端设备发送第一DCI或第二DCI。
在340中,终端设备接收网络设备发送的第一DCI或第二DCI。
310中的第一消息包括Preamble和第一PUSCH可以理解为:终端设备在向网络设备发送Preamble和第一PUSCH之间,网络设备与终端设备之间没有其他消息,和/或,网络设备可以针对Preamble和第一PUSCH同时向终端设备发送第二消息。
上述内容提到的速率匹配可以包括编码、调制、映射和预编码等操作。另外,第一传输块中可以包括终端设备的标识。示例性地,终端设备的标识可以包括但不限于:TC-RNTI、C-RNTI、固定比特数大小的随机数、5G-S-TMSI等。
可选地,在本申请实施例中,终端设备发送第一PUSCH时使用的RV版本可以为RV0。
终端设备向网络设备发送第一消息,相应地,网络设备可以接收第一消息。网络设备接收第一消息,可以有多种情况:
情况1:网络设备成功检测到Preamble序列,但没有解码出第一传输块。
情况2:网络设备成功检测到Preamble序列,且解码出第一传输块。
情况3:网络设备既没有检测到Preamble序列,也没有解码出第一传输块。
本申请实施例主要考虑情况1和情况2。应理解,对于情况3,网络设备并不能确定终端设备是否发送了第一消息,因此网络设备在情况3时可以不做任何处理。
网络设备接收到第一消息中的部分或全部消息后,可以根据接收第一消息的结果,向终端设备发送响应消息。其中,网络设备向终端设备发送响应信息可以包括两种情况:
情况A:当网络设备成功检测到Preamble序列,但没有解码出第一传输块(即网络设备接收第一消息的情况1)时,网络设备无法确定发送第一消息的是哪个终端设备,此时,网络设备可以向终端设备发送第一DCI,使终端设备重传第一传输块。
可选地,网络设备可以利用第一控制资源集合(Control Resource Set,CORESET)向终端设备发送第一DCI,也可以利用其它资源向终端设备发送第一DCI。此时,终端设备可以在CORESET或其它资源上通过检测物理下行控制信道(Physical Downlink Control Channel,PDCCH)来接收第一DCI。其中,CORESET可以是基于协议预设在终端设备上的,或者,可以是由网络设备预先配置给终端设备的。
本申请实施例中提到的PDCCH还可以是增强的物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)、机器类通信物理下行控制信道(Machine Type Communication Physical Downlink Control Channel,MPDCCH)、物理副链路控制信道(Physical Sidelink Control Channel,PSCCH)或窄带物理下行控制信道(Narrowband Physical Downlink Control Channel,NPDCCH),本申请实施例对此不作具体限定。
可选地,第一DCI可以用于调度第一PDSCH,第一PDSCH包括Preamble的响应信息;或,第一DCI可以包括Preamble的响应信息。
Preamble的响应信息可以包括但不限于以下信息中的至少一项:Preamble的标识、TC-RNTI、第一RV版本信息、第一NDI信息、第一载波指示信息、第一HARQ进程号信息、第一MCS信息、PUSCH 功控命令字信息。其中,第一RV版本信息可以用于确定第二PUSCH的冗余版本,PUSCH功控命令字信息可以用于终端设备根据第一PUSCH的发射功率确定第二PUSCH的发射功率,第一载波指示信息可以用于终端设备确定传输第二PUSCH的载波信息。
第二PUSCH包括对第一传输块速率匹配得到的数据,第一PUSCH与第二PUSCH可以不同。可以理解,第一PUSCH和第二PUSCH传输的传输块相同,因此,第二PUSCH是针对第一PUSCH的重传。
可选地,由于第一PUSCH和第二PUSCH传输相同的第一传输块,在确定第二PUSCH的传输参数时,不需要再根据第一MCS信息来确定第一传输块的传输块大小,因此,第一MCS信息可以仅用于确定第二PUSCH的调制阶数。
上述技术方案,通过在Preamble的响应信息中包括指示RV版本等用于重传的信息,可以使终端设备在收到Preamble的响应信息后,直接对第一消息中的第一传输块进行重传。
Preamble的响应信息可以携带在MAC PDU中,例如,如图3所示的MAC PDU。一个MAC PDU可以包括至少一个Preamble的响应信息,若一个MAC PDU包括多个Preamble的响应信息,则每个Preamble的响应信息的大小可以是固定的,且可以包括UL grant,例如,如图4所示。每个UL grant包括的信息可以如表2所示。
表2
Preamble响应信息域 比特数
频域跳频指示 1
PUSCH频域资源分配 14
PUSCH时域资源分配 4
MCS 2
PUSCH功控命令字 2
CSI请求 1
RV版本 2
载波指示 1
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本申请实施例的范围。比如,表2中Preamble响应信息的各个域的比特数并不限于表2所示的比特数。作为示例,表2中的MCS域占用2个比特(用于指示不同的调制阶数,例如q、2、4、6中的一种),实际上,MCS域也可以占用5个比特或其他比特数。作为另一示例,表2中的RV版本域占用2个比特(用于指示RV版本0、1、2、3),实际上,RV版本域也可以占用1个比特(用于指示RV版本0或RV版本2)或其他比特数。
还应理解,本申请实施例对两步随机接入过程中的Preamble的响应信息的大小不作具体限定,也就是说,两步随机接入过程中的Preamble的响应信息的大小可以和四步随机接入过程中的Preamble的响应信息的大小相同,也可以不同。
可选地,两步随机接入过程中的Preamble的响应信息的大小和四步随机接入过程中的Preamble的响应信息的大小相同。可选地,两步随机接入过程中的Preamble的响应信息中的UL grant包括的信息如表2所示,四步随机接入过程中的Preamble的响应信息中的UL grant包括的信息如表1所示。可选地,两步随机接入过程中的Preamble的响应信息和四步随机接入过程中的Preamble的响应信息中包括用于区分当前响应信息是针对两步随机接入过程还是针对四步随机接入过程的指示信息。例如,MAC RAR中的预留比特R可以用于指示该MAC RAR是针对两步随机接入过程还是针对四步随机接入过程的响应信息。又例如,表1和表2中分别还包括1比特信息,用于显示指示当前响应信息是针对两步随机接入过程的还是针对四步随机接入过程的。
对于Preamble的响应信息中包括的第一载波指示信息,进一步地,若终端设备在非授权频谱上进行传输,则第一载波指示信息还可以用于确定发送第二PUSCH的非授权载波。此时,Preamble的响应信息还可以包括以下信息中的至少一项:至少一个上行BWP的指示信息、至少一个上行子带的指示信息、至少两个时域资源的指示信息、至少两个频域资源的指示信息、第二PUSCH对应的信道接入类型、第二PUSCH对应的信道接入优先级。
为了加深对本申请实施例的理解,下面对非授权频谱做简单介绍。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱可以被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,可以不向政府申请专有的频谱授权。为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,需要基于先听后说(Listen Before Talk,LBT)的原则,即,通信设备在非授权频谱的信道上 进行信号发送前,需要先进行信道侦听(或称为信道检测),只有当信道侦听结果为信道空闲时,通信设备才能进行信号发送;如果通信设备在非授权频谱的上进行信道侦听的结果为信道忙,则不能进行信号发送。且为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长可以不超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。
因此,在非授权频谱上的两步随机接入过程中,上行数据或下行数据重传时可以包括多个时域和/或频域的候选资源,以增加数据重传时的传输机会。
当本申请实施例应用于非授权频谱时,Preamble的响应信息包括的信道接入类型可以包括类型1(Cat-1)信道接入类型、类型2(Cat-2)信道接入类型和类型4(Cat-4)信道接入类型中的至少一种。
其中,Cat-1信道接入类型可以指:切换空隙(switching gap)结束后立即传输,也即不需要检测信道是否空闲,该类型1的信道接入类型适用于一个COT内的传输切换。该切换空隙可以不超过特定时长例如16μs。
Cat-2信道接入类型可以指:单次检测时间内信道空闲则可以进行信号发送,信道被占用则不能进行信号发送。
Cat-4信道接入类型可以指:基于可变竞争窗口大小(Contention Window Size,CWS)的随机回退的信道接入,此时,通信设备确定CWS为CWp,CWp为可变值,通信设备根据CWp取值生成随机数N,通信设备在非授权频谱上进行信道检测,并在N个时隙都信道检测成功后可以进行信号发送。
另外,当信道接入类型为Cat-4信道接入类型时,可以根据传输业务的优先级进一步区分信道接入方案的优先级。也就是说,Cat-4信道接入类型可以具有不同的信道接入子方案,不同的信道接入子方案可以对应于不同的业务传输的优先级。表3为Cat-4信道接入类型下不同信道优先级对应的信道接入参数的一个示例。其中,p值越小,优先级越高。
表3
Figure PCTCN2019079763-appb-000001
对于终端设备来说,终端设备在发送完第一消息后,可以启动第一定时器或开启RAR时间窗,在定时器或RAR时间窗的时长范围内,接收第一DCI。
可选地,定时器或RAR时间窗可以是基于协议预设在终端设备上的,或者,可以是由网络设备预先配置给终端设备的,例如,可以通过RRC信令进行配置。
应理解,定时器或RAR时间窗可以在Preamble发送完之后启动,也可以在发送完第一PUSCH后启动,本申请实施例对此不作具体限定。
作为一种可能的实施例,终端设备可以利用第一RNTI,接收第一DCI。
可选地,在本申请实施例中,第一RNTI可以是根据以下至少一项确定的:Preamble的时域位置、Preamble的频域位置、Preamble的标识、第一PUSCH的时域位置、第一PUSCH的频域位置、第一PUSCH的解调参考信号(Demodulation Reference Signal,DMRS)的天线端口。
其中,Preamble的时域位置或第一PUSCH的时域位置可以指Preamble或第一PUSCH占用的时域资源中的第一个符号,Preamble的频域位置或第一PUSCH的频域位置可以指频域的第几个PRACH资源,或者,频域资源中编号最小的资源块(Resource Block,RB)。
可选地,第一RNTI可以是RA-RNTI。此时,终端设备或者网络设备可以根据传输第一消息的PRACH资源计算出RA-RNTI。一种可能的计算方式如公式(2):
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id    (2)
其中,s_id为传输第一消息的PRACH资源的第一个OFDM符号的索引(0≤s_id<14),t_id为一个系统帧中传输第一消息的PRACH资源的第一个时隙的索引(0≤t_id<80),f_id为频域中传输第一消息的PRACH资源的索引(0≤f_id<8),ul_carrier_id为用于传输第一消息的上行载波(0表示NUL载波,1表示SUL载波,或者,0表示非授权载波,1表示授权载波)。
终端设备接收到第一DCI后,可以向网络设备发送第二PUSCH,即向网络设备重传第一传输块。
作为一种示例,终端设备可以根据Preamble的响应信息,向网络设备发送第二PUSCH。例如,Preamble的响应信息中包括第一RV版本信息,则终端设备可以根据第一RV版本信息确定发送第二 PUSCH时使用的RV版本,然后,根据确定的RV版本向网络设备发送第二PUSCH。
作为另一种示例,终端设备可以基于预设在终端设备上的信息,例如,协议规定的信息,向网络设备发送第二PUSCH。
当第一DCI调度第一PDSCH,第一PDSCH包括Preamble的响应信息时,终端设备向网络设备发送第二PUSCH,具体而言,终端设备在RAR定时器或RAR时间窗的时长范围内接收到第一DCI,并根据第一DCI解码出第一PDSCH后,终端设备确定第一PDSCH是否是针对自己的PDSCH,若确定是针对自己的PDSCH,则终端设备可以向网络设备重传第一传输块。
示例性地,终端设备在确定第一PDSCH是否是针对自己的PDSCH的过程中,可以查找第一PDSCH中是否包括该终端设备发送的Preamble的标识,如果第一PDSCH中包括该终端设备发送的Preamble的标识,则终端设备可以确定第一PDSCH是针对自己的PDSCH。之后,终端设备可以根据Preamble标识对应的TA命令、UL grant和TC-RNTI等向网络设备重传第一传输块。
若第一DCI包括Preamble的响应信息,则终端设备在RAR定时器或RAR时间窗的时长范围内接收到第一DCI后,终端设备确定第一DCI是否是针对自己的DCI,若确定是针对自己的DCI,则终端设备可以向网络设备重传第一传输块。
可选地,若第一DCI包括Preamble的响应信息,第一RNTI可以是根据Preamble的标识和/或第一PUSCH的DMRS的天线端口确定的。
网络设备接收到第二PUSCH后,可以和第一PUSCH中的数据合并接收,以确定是否可以成功解码得到第一传输块。如果网络设备正确接收第一传输块,则网络设备可以向终端设备发送第二DCI。后续流程将在后面进行介绍,为了内容的简洁,此处不作过多描述。
如果网络设备仍然没有正确接收第一传输块,则网络设备可以向终端设备发送第三DCI,其中,该第三DCI用于调度第三PUSCH的传输,第三PUSCH包括对第一传输块速率匹配得到的数据。也就是说,若终端设备向网络设备重传第一传输块后,网络设备仍然没有正确接收第一传输块,则终端设备可以继续向网络设备重传第一传输块。
相应地,终端设备可以接收网络设备发送的第三DCI。作为一种示例,若Preamble的响应信息中包括TC-RNTI,则终端设备可以根据TC-RNTI接收第三DCI。
可选地,第三DCI可以包括但不限于以下中的至少一项:上下行DCI指示、频域资源分配、时域资源分配、频域跳频指示、MCS、DAI指示、RV版本、HARQ进程号、PUSCH功控命令字、载波指示。
终端设备向网络设备重传第一传输块的过程可以重复至网络设备正确接收第一传输块,或重传次数达到最大重传次数。在网络设备正确接收第一传输后,网络设备可以针对第一传输块向终端设备发送第二DCI。
可选地,网络设备可以根据TC-RNTI或第一RNTI或第二RNTI向终端设备发送第二DCI,相应地,终端设备可以根据TC-RNTI或第一RNTI或第二RNTI接收第二DCI。
可选地,在本申请实施例中,第二RNTI可以是根据以下至少一项确定的:Preamble的时域位置、Preamble的频域位置、Preamble的标识、第一PUSCH的时域位置、第一PUSCH的频域位置、第一PUSCH的DMRS的天线端口、终端设备的标识。
在本申请实施例中,可选地,第一DCI和第二DCI可以使用不同的RNTI来扰码。如此,终端设备可以更有效地区分出第一DCI和第二DCI。
可选地,第一DCI调度的第一PDSCH不支持HARQ重传。
情况B:当网络设备成功检测到Preamble序列,且解码出第一传输块(即网络设备接收第一消息的情况2)时,网络设备可以确定是哪个终端设备发送了第一消息。此时,网络设备可以向终端设备发送第二DCI。
可选地,网络设备可以利用第二CORESET向终端设备发送第二DCI,也可以利用其它资源向终端设备发送第二DCI。其中,CORESET可以是基于协议预设在终端设备上的,或者,可以是由网络设备预先配置给终端设备的。
可选地,第二DCI可以包括第一传输块的响应信息;或者,第二DCI可以用于调度第二PDSCH,第二PDSCH包括对第二传输块速率匹配得到的数据,第二传输块包括第一传输块的响应信息。
其中,第一传输块的响应信息可以包括以下中的至少一项:Preamble的标识、第一传输块中包括的部分或全部内容、TC-RNTI或C-RNTI。
下面分别介绍第二DCI包括第一传输块的响应信息,以及第二DCI用于调度第二PDSCH,第二PDSCH包括对第二传输块速率匹配得到的数据,第二传输块包括第一传输块的响应信息这两种实施例。
实施例一:第二DCI包括第一传输块的响应信息。
终端设备接收到第二DCI后,可以向网络设备发送肯定应答(Acknowledgment,ACK)信息。应理解,当第二DCI包括第一传输块的响应信息时,如果终端设备没有接收到第二DCI,那么终端设备不能确定网络设备是否向自己发送了第二DCI,因此终端设备不会向网络设备发送NACK。
在该实施例中,第二DCI可以包括以下信息中的至少一项:第一PUCCH资源指示信息、第一PUCCH时域位置指示信息、第一PUCCH功控命令字信息、第二载波指示信息。
此时,终端设备可以根据第二DCI确定发送ACK信息的第一PUCCH资源,然后,利用第一PUCCH资源向网络设备发送ACK信息。相应地,网络设备会在该第一PUCCH资源上检测是否包括ACK信息。可选地,网络设备在该第一PUCCH资源上不检测是否包括NACK信息。
第二DCI除了可以包括上述信息中的至少一项,进一步地,若终端设备被配置了非授权频谱上的载波,则第二载波指示信息还可以用于确定传输第一PUCCH的非授权载波。此时,第二DCI还可以包括但不限于:至少两个第一PUCCH资源指示、至少两个第一PUCCH时域位置指示、第一PUCCH信道接入类型、第一PUCCH信道接入优先级。
实施例二:第二DCI用于调度第二PDSCH,第二PDSCH包括对第二传输块速率匹配得到的数据,第二传输块包括第一传输块的响应信息。
在该实施例中,第二DCI可以包括以下信息中的至少一项:第二PUCCH资源指示信息,PDSCH-to-HARQ反馈时间指示信息、第三载波指示信息、第二PUCCH功控命令字信息、第二RV版本信息、第二NDI信息、第二HARQ进程号信息、第二MCS信息。其中,第二RV版本信息可以用于确定第二传输块传输时对应的冗余版本,第二MCS信息用于确定第二传输块传输时对应的调制阶数和/或码率。
在该实施例中,作为一种示例,终端设备可能接收到了第二DCI,但未解码出第二PDSCH,此时,终端设备可以向网络设备发送NACK信息。
可选地,终端设备可以根据第二DCI或者预配置的资源确定第二PUCCH资源,然后在第二PUCCH资源上向网络设备发送NACK信息。
相应地,网络设备接收到终端设备发送的NACK信息后,可以针对NACK信息向终端设备发送第二DCI。其中,该第二DCI用于调度第三PDSCH的传输,第三PDSCH包括对第二传输块速率匹配得到的数据。也就是说,网络设备针对终端设备发送的NACK信息发送的第二DCI用于调度第二PDSCH的重传。
为了描述方便,本申请实施例将用于调度第二PDSCH的重传的第二DCI称为第四DCI。可选地,第四DCI中的RV版本的取值可以和第二DCI中的RV版本的取值不同。可选地,第四DCI中的调制阶数的取值可以和第二DCI中的调制阶数的取值不同。
应理解,调度第二PDSCH的重传的过程可以重复至终端设备向网络设备反馈ACK信息,或者,重传次数达到最大重传次数。
作为另一种示例,终端设备可能接收到了第二DCI,且解码出了第二PDSCH,则终端设备可以向网络设备发送ACK信息。网络设备接收到终端设备发送的ACK信息后,表示随机接入过程完成。
可选地,终端设备可以根据第二DCI确定第二PUCCH资源,然后在第二PUCCH资源上向网络设备发送ACK信息。或者,终端设备可以利用预配置的第二PUCCH资源向网络设备发送ACK信息。
在本申请实施例中,第一DCI的大小和第二DCI的大小可以相同。如此,可以有效减少终端设备侧的PDCCH盲检测次数。
可选地,在本申请实施例中,为了使终端设备更好地区分第一DCI和第二DCI,第一DCI和/或第二DCI还可以指示终端设备当前接收到的DCI是第一DCI还是第二DCI。
作为一种示例,第一DCI可以包括第一指示信息域,该第一指示信息域用于指示终端设备当前接收到的DCI是第一DCI,和/或,第二DCI可以包括第一指示信息域,该第一指示信息域用于指示终端设备当前接收到的DCI是第二DCI。
其中,第一指示信息域可以包括至少一个比特。示例性地,当第一指示信息域为一个比特时,比特“0”可以用于指示终端设备当前接收到DCI是第一DCI,比特“1”可以用于指示终端设备当前接收到的DCI是第二DCI。当第一指示信息域为多个比特时,若该多个比特位相同,则可以用于指示终端设备当前接收到的DCI是第一DCI,若该多个比特位至少有两个不同,则可以用于指示终端设备当前接收到的DCI是第二DCI。例如,第一指示信息域包括3个比特,若终端设备当前接收到的DCI中的第一指示信息域为“010”,则终端设备可以确定当前接收到的DCI为第二DCI;若终端设备当前接收到的DCI中的第一指示信息域为“000”,则终端设备可以确定当前接收到的DCI为第一DCI。
作为另一种示例,第一参数可以用于指示终端设备当前接收到的DCI是第一DCI还是第二DCI。例如,若终端设备当前接收到的DCI中包括第一参数,则该DCI为第一DCI;若终端设备当前接收到 的DCI中不包括第一参数,则该DCI为第二DCI。
需要说明的是,在第一DCI中包括第一指示信息域时,第二DCI可以不包括第一指示信息域;或者,在第一DCI中不包括第一指示信息域时,第二DCI可以包括第一指示信息域。
下面结合图7对本申请实施例做进一步描述。可以看到,图7包括情况A和情况B的技术方案。
终端设备向网络设备发送Preamble和第一PUSCH,第一PUSCH包括对第一传输块速率匹配得到的数据。之后,网络设备检测Preamble和第一传输块。若网络设备接收到Preamble,则网络设备向终端设备发送第一RNTI扰码的第一DCI,第一DCI用于调度第一PDSCH,第一PDSCH包括Preamble的响应信息(情况A)。若网络设备接收到第一传输块,则网络设备可以向终端设备发送第二RNTI扰码的第二DCI,其中,第二DCI用于调度第二PDSCH,第二PDSCH包括对第二传输块速率匹配得到的数据,第二传输块包括第一传输块的响应信息。
接下来,终端设备在RAR时间窗内接收第一DCI或第二DCI。若终端设备接收到第一DCI和RAR grant,则终端设备可以确定网络设备没有解码出第一传输块,则终端设备可以根据RAR中的RV版本等用于PUSCH重传的信息向网络设备发送第二PUSCH,第二PUSCH包括对第一传输块速率匹配得到的数据,即终端设备向网络设备重传第一传输块。
若终端设备接收到第二DCI,且解码出第二PDSCH,则终端设备向网络设备发送ACK信息,表示随机接入成功。若终端设备接收到第二DCI,且未解码出第二PDSCH,则终端设备向网络设备发送NACK信息,请求第二PDSCH重传。
应理解,图7仅是本申请实施例的一种可能的示例,不构成对本申请实施例的限定。
还应理解,在本申请实施例中,“第一”、“第二”、“第三”和“第四”仅仅为了区分不同的对象,但并不对本申请实施例的范围构成限制。
本申请实施例,在两步随机接入过程中,终端设备向网络设备发送第一消息后,网络设备可以根据接收第一消息的不同情况向终端设备发送不同的DCI,终端设备接收到不同的DCI后,可以有效地区分出网络设备接收第一消息的两种情况,从而可以针对网络设备接收第一消息的不同情况执行后续的两步随机接入过程。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的通信方法,下面将结合图8至图10,描述根据本申请实施例的通信装置,方法实施例所描述的技术特征适用于以下装置实施例。
图8示出了本申请实施例的终端设备400的示意性框图。如图8所示,该终端设备400包括:
通信单元410,用于向网络设备发送第一消息,所述第一消息包括随机接入前导码和第一PUSCH,所述第一PUSCH包括对第一传输块进行速率匹配得到的数据。
通信单元410还用于,接收所述网络设备发送的第一DCI或第二DCI,其中,所述第一DCI或第二DCI是针对所述第一消息发送的。
可选地,在本申请实施例中,所述第一DCI用于调度第一物PDSCH,所述第一PDSCH包括所述随机接入前导码的响应信息;或,所述第一DCI包括所述随机接入前导码的响应信息。
可选地,在本申请实施例中,所述随机接入前导码的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、TC-RNTI、第一RV版本信息、第一NDI信息、第一载波指示信息、第一HARQ进程号信息、第一MCS信息、PUSCH功控命令字信息。
可选地,在本申请实施例中,所述随机接入前导码的响应信息包括所述第一RV版本信息,所述第一RV版本信息用于确定第二PUSCH的冗余版本;和/或,
所述随机接入前导码的响应信息包括所述第一MCS信息,所述第一MCS信息用于确定所述第二PUSCH的调制阶数;和/或,
所述随机接入前导码的响应信息包括所述PUSCH功控命令字信息,所述PUSCH功控命令字信息用于根据所述第一PUSCH的发射功率确定所述第二PUSCH的发射功率;和/或,
所述随机接入前导码的响应信息包括所述第一载波指示信息,所述第一载波指示信息用于确定传输 所述第二PUSCH的载波信息;
其中,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
可选地,在本申请实施例中,所述通信单元410还用于:根据所述随机接入前导码的响应信息,向所述网络设备发送第二PUSCH,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
可选地,在本申请实施例中,所述通信单元410还用于:接收第三DCI,其中,所述第三DCI用于调度第三PUSCH的传输,所述第三PUSCH包括对所述第一传输块进行速率匹配得到的数据。
可选地,在本申请实施例中,若所述随机接入前导码的响应信息包括TC-RNTI,所述通信单元410具体用于:设备根据所述TC-RNTI,接收所述第三DCI。
可选地,在本申请实施例中,所述通信单元410还用于:接收所述网络设备针对所述第一传输块发送的第二DCI。
可选地,在本申请实施例中,所述第二DCI包括所述第一传输块的响应信息。
可选地,在本申请实施例中,所述通信单元410还用于:向所述网络设备发送肯定应答。
可选地,在本申请实施例中,所述第二DCI包括以下信息中的至少一项:第一PUCCH资源指示信息、所述第一PUCCH时域位置指示信息、所述第一PUCCH功控命令字信息、第二载波指示信息;
所述410通信单元具体用于:根据所述第二DCI,向所述网络设备发送所述肯定应答。
可选地,在本申请实施例中,所述第二DCI用于调度第二PDSCH,所述第二PDSCH包括对第二传输块进行速率匹配得到的数据,所述第二传输块包括所述第一传输块的响应信息。
可选地,在本申请实施例中,所述通信单元410还用于:若所述终端设备400接收到所述第二DCI,且未解码出所述第二PDSCH,向所述网络设备发送否定应答;或,
若所述终端设备400接收到所述第二DCI,且解码出所述第二PDSCH,向所述网络设备发送肯定应答。
可选地,在本申请实施例中,若所述通信单元410向所述网络设备发送否定应答,所述通信单元410还用于:接收所述网络设备针对所述否定应答发送的所述第二DCI,其中,所述第二DCI用于调度第三PDSCH的传输,所述第三PDSCH包括对所述第二传输块进行速率匹配得到的数据。
可选地,在本申请实施例中,所述第二DCI包括以下信息中的至少一项:第二PUCCH资源指示信息、PDSCH到HARQ反馈时间指示信息、第三载波指示信息、所述第二PUCCH功控命令字信息,第二RV版本信息、第二NDI信息、第二HARQ进程号信息、第二MCS信息。
可选地,在本申请实施例中,所述第二DCI包括所述第二RV版本信息,所述第二RV版本信息用于确定所述第二传输块传输时的冗余版本;和/或,
所述第二DCI包括所述第二MCS信息,所述第二MCS信息用于确定所述第二传输块传输时对应的调制阶数或码率。
可选地,在本申请实施例中,所述第一传输块的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、所述第一传输块中包括的部分或全部内容、TC-RNTI或C-RNTI。
可选地,在本申请实施例中,所述第一DCI的大小和所述第二DCI的大小相同。
可选地,在本申请实施例中,所述第一DCI包括第一指示信息域,所述第一DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第一DCI;以及,所述第二DCI也包括所述第一指示信息域,所述第二DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第二DCI。
可选地,在本申请实施例中,所述通信单元410具体用于:利用第一控制资源集合,接收所述网络设备发送的所述第一DCI;或,利用第二控制资源集合,接收所述网络设备发送的所述第二DCI。
可选地,在本申请实施例中,所述通信单元410具体用于:根据第一RNTI,接收所述第一DCI。
可选地,在本申请实施例中,所述通信单元410具体用于:根据第一RNTI,接收所述第二DCI。
可选地,在本申请实施例中,所述第一RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的解DMRS的天线端口。
可选地,在本申请实施例中,所述通信单元410具体用于:根据第二RNTI,接收所述第二DCI。
可选地,在本申请实施例中,所述第二RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的DMRS的天线端口、所述终端设备的标识,其中,所述第一传输块中包括所述终端设备的标识。
可选地,在本申请实施例中,所述终端设备传输所述第一PUSCH时使用的RV版本为RV0。
应理解,该终端设备400可对应于方法300中的终端设备,可以实现该方法300中的终端设备的相 应操作,为了简洁,在此不再赘述。
图9示出了本申请实施例的网络设备500的示意性框图。如图9所示,该网络设备500包括:
通信单元510,用于接收终端设备发送的第一消息,所述第一消息包括随机接入前导码和第一PUSCH,所述第一PUSCH包括对第一传输块进行速率匹配得到的数据;
所述通信单元510还用于,根据接收所述第一消息的结果,向所述终端设备发送第一DCI或第二DCI。
可选地,在本申请实施例中,所述第一DCI用于调度第一物理下行共享信道PDSCH,所述第一PDSCH包括所述随机接入前导码的响应信息;或,所述第一DCI包括所述随机接入前导码的响应信息。
可选地,在本申请实施例中,所述随机接入前导码的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、TC-RNTI、第一RV版本信息、第一NDI信息、第一载波指示信息、第一HARQ进程号信息、第一MCS信息、PUSCH功控命令字信息。
可选地,在本申请实施例中,所述随机接入前导码的响应信息包括所述第一RV版本信息,所述第一RV版本信息用于确定第二PUSCH的冗余版本;和/或,
所述随机接入前导码的响应信息包括所述第一MCS信息,所述第一MCS信息用于确定所述第二PUSCH的调制阶数;和/或,
所述随机接入前导码的响应信息包括所述PUSCH功控命令字信息,所述PUSCH功控命令字信息用于根据所述第一PUSCH的发射功率确定所述第二PUSCH的发射功率;和/或,
所述随机接入前导码的响应信息包括所述第一载波指示信息,所述第一载波指示信息用于确定传输所述第二PUSCH的载波信息;
其中,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
可选地,在本申请实施例中,所述通信单元510还用于:接收所述终端设备发送的第二PUSCH,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
可选地,在本申请实施例中,所述通信单元510还用于:向所述终端设备发送第三DCI,其中,所述第三DCI用于调度第三PUSCH的传输,所述第三PUSCH包括对所述第一传输块进行速率匹配得到的数据。
可选地,在本申请实施例中,若所述随机接入前导码的响应信息包括TC-RNTI,所述通信单元510具体用于:根据所述TC-RNTI,向所述终端设备发送所述第三DCI。
可选地,在本申请实施例中,所述通信单元510还用于:针对所述第一传输块,向所述终端设备发送第二DCI。
可选地,在本申请实施例中,所述第二DCI包括所述第一传输块的响应信息。
可选地,在本申请实施例中,所述通信单元510还用于:接收所述终端设备发送的肯定应答。
可选地,在本申请实施例中,所述第二DCI包括以下信息中的至少一项:第一PUCCH资源指示信息、所述第一PUCCH时域位置指示信息、所述第一PUCCH功控命令字信息、第二载波指示信息;
所述通信单元510具体用于:根据所述第二DCI,接收所述终端设备发送的所述肯定应答。
可选地,在本申请实施例中,所述第二DCI用于调度第二PDSCH,所述第二PDSCH包括对第二传输块进行速率匹配得到的数据,所述第二传输块包括所述第一传输块的响应信息。
可选地,在本申请实施例中,所述通信单元510还用于:若所述终端设备接收到所述第二DCI,且未解码出所述第二PDSCH,接收所述终端设备发送的否定应答;或,若所述终端设备接收到所述第二DCI,且解码出所述第二PDSCH,接收所述终端设备发送的肯定应答。
可选地,在本申请实施例中,若所述通信单元510接收所述终端设备发送的否定应答,所述通信单元510还用于:针对所述否定应答,向所述终端设备发送所述第二DCI,其中,所述第二DCI用于调度第三PDSCH的传输,所述第三PDSCH包括对所述第二传输块进行速率匹配得到的数据。
可选地,在本申请实施例中,所述第二DCI包括以下信息中的至少一项:第二PUCCH资源指示信息、PDSCH到HARQ反馈时间指示信息、第三载波指示信息、所述第二PUCCH功控命令字信息,第二RV版本信息、第二NDI信息、第二HARQ进程号信息、第二MCS信息。
可选地,在本申请实施例中,所述第二DCI包括所述第二RV版本信息,所述第二RV版本信息用于确定所述第二传输块传输时的冗余版本;和/或,
所述第二DCI包括所述第二MCS信息,所述第二MCS信息用于确定所述第二传输块传输时对应的调制阶数或码率。
可选地,在本申请实施例中,所述第一传输块的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、所述第一传输块中包括的部分或全部内容、TC-RNTI或C-RNTI。
可选地,在本申请实施例中,所述第一DCI的大小和所述第二DCI的大小相同。
可选地,在本申请实施例中,所述第一DCI包括第一指示信息域,所述第一DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第一DCI;以及,所述第二DCI也包括所述第一指示信息域,所述第二DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第二DCI。
可选地,在本申请实施例中,所述通信单元510具体用于:根据接收所述第一消息的结果,利用第一控制资源集合发送所述第一DCI;或,根据接收所述第一消息的结果,利用第二控制资源集合发送所述第二DCI。
可选地,在本申请实施例中,所述通信单元510具体用于:根据第一RNTI,发送所述第一DCI。
可选地,在本申请实施例中,所述通信单元510具体用于:根据第一RNTI,发送所述第二DCI。
可选地,在本申请实施例中,所述第一RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的DMRS的天线端口。
可选地,在本申请实施例中,所述通信单元510具体用于:根据第二RNTI,发送所述第二DCI。
可选地,在本申请实施例中,所述第二RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的DMRS的天线端口、所述终端设备的标识,其中,所述第一传输块中包括所述终端设备的标识。
应理解,该网络设备500可对应于方法300中的网络设备,可以实现该方法300中的网络设备的相应操作,为了简洁,在此不再赘述。
图10是本申请实施例提供的一种通信设备600示意性结构图。图10所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图10所示,通信设备600还可以包括收发器630,处理器6710可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的装置的示意性结构图。图11所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置700可以为芯片。应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中 的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图12是本申请实施例提供的一种通信系统800的示意性框图。如图12所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以 是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (112)

  1. 一种随机接入的方法,其特征在于,所述方法包括:
    终端设备向网络设备发送第一消息,所述第一消息包括随机接入前导码和第一物理上行共享信道PUSCH,所述第一PUSCH包括对第一传输块进行速率匹配得到的数据;
    所述终端设备接收所述网络设备发送的第一下行控制信息DCI或第二DCI,其中,所述第一DCI或第二DCI是针对所述第一消息发送的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一DCI用于调度第一物理下行共享信道PDSCH,所述第一PDSCH包括所述随机接入前导码的响应信息;或,
    所述第一DCI包括所述随机接入前导码的响应信息。
  3. 根据权利要求2所述的方法,其特征在于,所述随机接入前导码的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、临时小区-无线网络临时标识符TC-RNTI、第一冗余RV版本信息、第一新数据指示NDI信息、第一载波指示信息、第一混合自动重传请求HARQ进程号信息、第一调制或编码方案MCS信息、PUSCH功控命令字信息。
  4. 根据权利要求3所述的方法,其特征在于,所述随机接入前导码的响应信息包括所述第一RV版本信息,所述第一RV版本信息用于确定第二PUSCH的冗余版本;和/或,
    所述随机接入前导码的响应信息包括所述第一MCS信息,所述第一MCS信息用于确定所述第二PUSCH的调制阶数;和/或,
    所述随机接入前导码的响应信息包括所述PUSCH功控命令字信息,所述PUSCH功控命令字信息用于根据所述第一PUSCH的发射功率确定所述第二PUSCH的发射功率;和/或,
    所述随机接入前导码的响应信息包括所述第一载波指示信息,所述第一载波指示信息用于确定传输所述第二PUSCH的载波信息;
    其中,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述随机接入前导码的响应信息,向所述网络设备发送第二PUSCH,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第三DCI,其中,所述第三DCI用于调度第三PUSCH的传输,所述第三PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  7. 根据权利要求6所述的方法,其特征在于,若所述随机接入前导码的响应信息包括TC-RNTI,所述终端设备接收第三DCI,包括:
    所述终端设备根据所述TC-RNTI,接收所述第三DCI。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备针对所述第一传输块发送的第二DCI。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第二DCI包括所述第一传输块的响应信息。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送肯定应答。
  11. 根据权利要求10所述的方法,其特征在于,所述第二DCI包括以下信息中的至少一项:第一物理上行控制信道PUCCH资源指示信息、所述第一PUCCH时域位置指示信息、所述第一PUCCH功控命令字信息、第二载波指示信息;
    所述终端设备向所述网络设备发送肯定应答,包括:
    所述终端设备根据所述第二DCI,向所述网络设备发送所述肯定应答。
  12. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第二DCI用于调度第二PDSCH,所述第二PDSCH包括对第二传输块进行速率匹配得到的数据,所述第二传输块包括所述第一传输块的响应信息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    若所述终端设备接收到所述第二DCI,且未解码出所述第二PDSCH,所述终端设备向所述网络设备发送否定应答;或,
    若所述终端设备接收到所述第二DCI,且解码出所述第二PDSCH,所述终端设备向所述网络设备发送肯定应答。
  14. 根据权利要求13所述的方法,其特征在于,若所述终端设备向所述网络设备发送否定应答, 所述方法还包括:
    所述终端设备接收所述网络设备针对所述否定应答发送的所述第二DCI,其中,所述第二DCI用于调度第三PDSCH的传输,所述第三PDSCH包括对所述第二传输块进行速率匹配得到的数据。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述第二DCI包括以下信息中的至少一项:第二PUCCH资源指示信息、PDSCH到HARQ反馈时间指示信息、第三载波指示信息、所述第二PUCCH功控命令字信息,第二RV版本信息、第二NDI信息、第二HARQ进程号信息、第二MCS信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第二DCI包括所述第二RV版本信息,所述第二RV版本信息用于确定所述第二传输块传输时的冗余版本;和/或,
    所述第二DCI包括所述第二MCS信息,所述第二MCS信息用于确定所述第二传输块传输时对应的调制阶数或码率。
  17. 根据权利要求9至16中任一项所述的方法,其特征在于,所述第一传输块的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、所述第一传输块中的部分或全部内容、TC-RNTI或小区-无线网络临时标识符C-RNTI。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述第一DCI的大小和所述第二DCI的大小相同。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,所述第一DCI包括第一指示信息域,所述第一DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第一DCI;以及,
    所述第二DCI也包括所述第一指示信息域,所述第二DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第二DCI。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述终端设备接收所述网络设备发送的第一下行控制信息DCI或第二DCI,包括:
    所述终端设备利用第一控制资源集合,接收所述网络设备发送的所述第一DCI;或,
    所述终端设备利用第二控制资源集合,接收所述网络设备发送的所述第二DCI。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述终端设备接收所述网络设备针对所述第一消息发送的第一下行控制信息DCI或第二DCI,包括:
    所述终端设备根据第一RNTI,接收所述第一DCI。
  22. 根据权利要求1至21中任一项所述的方法,其特征在于,所述终端设备接收所述网络设备针对所述第一消息发送的第一下行控制信息DCI或第二DCI,包括:
    所述终端设备根据第一RNTI,接收所述第二DCI。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的解调参考信号DMRS的天线端口。
  24. 根据权利要求1至21中任一项所述的方法,其特征在于,所述终端设备接收所述网络设备针对所述第一消息发送的第一下行控制信息DCI或第二DCI,包括:
    所述终端设备根据第二RNTI,接收所述第二DCI。
  25. 根据权利要求24所述的方法,其特征在于,所述第二RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的DMRS的天线端口、所述终端设备的标识,其中,所述第一传输块中包括所述终端设备的标识。
  26. 根据权利要求1至25中任一项所述的方法,其特征在于,所述终端设备传输所述第一PUSCH时使用的RV版本为RV0。
  27. 一种随机接入的方法,其特征在于,所述方法包括:
    网络设备接收终端设备发送的第一消息,所述第一消息包括随机接入前导码和第一物理上行共享信道PUSCH,所述第一PUSCH包括对第一传输块进行速率匹配得到的数据;
    所述网络设备根据接收所述第一消息的结果,向所述终端设备发送第一下行控制信息DCI或第二DCI。
  28. 根据权利要求27所述的方法,其特征在于,所述第一DCI用于调度第一物理下行共享信道PDSCH,所述第一PDSCH包括所述随机接入前导码的响应信息;或,
    所述第一DCI包括所述随机接入前导码的响应信息。
  29. 根据权利要求28所述的方法,其特征在于,所述随机接入前导码的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、临时小区-无线网络临时标识符TC-RNTI、第一冗余RV版本信息、第一新数据指示NDI信息、第一载波指示信息、第一混合自动重传请求HARQ进程号信息、第一调制或编码方案MCS信息、PUSCH功控命令字信息。
  30. 根据权利要求29所述的方法,其特征在于,所述随机接入前导码的响应信息包括所述第一RV版本信息,所述第一RV版本信息用于确定第二PUSCH的冗余版本;和/或,
    所述随机接入前导码的响应信息包括所述第一MCS信息,所述第一MCS信息用于确定所述第二PUSCH的调制阶数;和/或,
    所述随机接入前导码的响应信息包括所述PUSCH功控命令字信息,所述PUSCH功控命令字信息用于根据所述第一PUSCH的发射功率确定所述第二PUSCH的发射功率;和/或,
    所述随机接入前导码的响应信息包括所述第一载波指示信息,所述第一载波指示信息用于确定传输所述第二PUSCH的载波信息;
    其中,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  31. 根据权利要求29至30中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第二PUSCH,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  32. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三DCI,其中,所述第三DCI用于调度第三PUSCH的传输,所述第三PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  33. 根据权利要求32所述的方法,其特征在于,若所述随机接入前导码的响应信息包括TC-RNTI,所述网络设备向所述终端设备发送第三DCI,包括:
    所述网络设备根据所述TC-RNTI,向所述终端设备发送所述第三DCI。
  34. 根据权利要求31至33中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备针对所述第一传输块,向所述终端设备发送第二DCI。
  35. 根据权利要求27至34中任一项所述的方法,其特征在于,所述第二DCI包括所述第一传输块的响应信息。
  36. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的肯定应答。
  37. 根据权利要求36所述的方法,其特征在于,所述第二DCI包括以下信息中的至少一项:第一物理上行控制信道PUCCH资源指示信息、所述第一PUCCH时域位置指示信息、所述第一PUCCH功控命令字信息、第二载波指示信息;
    所述网络设备接收所述终端设备发送的肯定应答,包括:
    所述网络设备根据所述第二DCI,接收所述终端设备发送的所述肯定应答。
  38. 根据权利要求27至34中任一项所述的方法,其特征在于,所述第二DCI用于调度第二PDSCH,所述第二PDSCH包括对第二传输块进行速率匹配得到的数据,所述第二传输块包括所述第一传输块的响应信息。
  39. 根据权利要求38所述的方法,其特征在于,所述方法还包括:
    若所述终端设备接收到所述第二DCI,且未解码出所述第二PDSCH,所述网络设备接收所述终端设备发送的否定应答;或,
    若所述终端设备接收到所述第二DCI,且解码出所述第二PDSCH,所述网络设备接收所述终端设备发送的肯定应答。
  40. 根据权利要求39所述的方法,其特征在于,若所述网络设备接收所述终端设备发送的否定应答,所述方法还包括:
    所述网络设备针对所述否定应答,向所述终端设备发送所述第二DCI,其中,所述第二DCI用于调度第三PDSCH的传输,所述第三PDSCH包括对所述第二传输块进行速率匹配得到的数据。
  41. 根据权利要求38至40中任一项所述的方法,其特征在于,所述第二DCI包括以下信息中的至少一项:第二PUCCH资源指示信息、PDSCH到HARQ反馈时间指示信息、第三载波指示信息、所述第二PUCCH功控命令字信息,第二RV版本信息、第二NDI信息、第二HARQ进程号信息、第二MCS信息。
  42. 根据权利要求41所述的方法,其特征在于,所述第二DCI包括所述第二RV版本信息,所述第二RV版本信息用于确定所述第二传输块传输时的冗余版本;和/或,
    所述第二DCI包括所述第二MCS信息,所述第二MCS信息用于确定所述第二传输块传输时对应 的调制阶数或码率。
  43. 根据权利要求35至42中任一项所述的方法,其特征在于,所述第一传输块的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、所述第一传输块中的部分或全部内容、TC-RNTI或小区-无线网络临时标识符C-RNTI。
  44. 根据权利要求27至43中任一项所述的方法,其特征在于,所述第一DCI的大小和所述第二DCI的大小相同。
  45. 根据权利要求27至44中任一项所述的方法,其特征在于,所述第一DCI包括第一指示信息域,所述第一DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第一DCI;以及,
    所述第二DCI也包括所述第一指示信息域,所述第二DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第二DCI。
  46. 根据权利要求27至45中任一项所述的方法,其特征在于,所述网络设备根据接收所述第一消息的结果,向所述终端设备发送第一下行控制信息DCI或第二DCI,包括:
    所述网络设备根据接收所述第一消息的结果,利用第一控制资源集合发送所述第一DCI;或,
    所述网络设备根据接收所述第一消息的结果,利用第二控制资源集合发送所述第二DCI。
  47. 根据权利要求27至46中任一项所述的方法,其特征在于,所述网络设备根据接收所述第一消息的结果,向所述终端设备发送第一下行控制信息DCI或第二DCI,包括:
    所述网络设备根据第一RNTI,发送所述第一DCI。
  48. 根据权利要求27至47中任一项所述的方法,其特征在于,所述网络设备根据接收所述第一消息的结果,向所述终端设备发送第一下行控制信息DCI或第二DCI,包括:
    所述网络设备根据第一RNTI,发送所述第二DCI。
  49. 根据权利要求47或48所述的方法,其特征在于,所述第一RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的解调参考信号DMRS的天线端口。
  50. 根据权利要求27至47中任一项所述的方法,其特征在于,所述网络设备根据接收所述第一消息的结果,向所述终端设备发送第一下行控制信息DCI或第二DCI,包括:
    所述网络设备根据第二RNTI,发送所述第二DCI。
  51. 根据权利要求50所述的方法,其特征在于,所述第二RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的DMRS的天线端口、所述终端设备的标识,其中,所述第一传输块中包括所述终端设备的标识。
  52. 一种终端设备,其特征在于,包括:
    通信单元,用于向网络设备发送第一消息,所述第一消息包括随机接入前导码和第一物理上行共享信道PUSCH,所述第一PUSCH包括对第一传输块进行速率匹配得到的数据;
    所述通信单元还用于,接收所述网络设备发送的第一下行控制信息DCI或第二DCI,其中,所述第一DCI或第二DCI是针对所述第一消息发送的。
  53. 根据权利要求52所述的终端设备,其特征在于,所述第一DCI用于调度第一物理下行共享信道PDSCH,所述第一PDSCH包括所述随机接入前导码的响应信息;或,
    所述第一DCI包括所述随机接入前导码的响应信息。
  54. 根据权利要求53所述的终端设备,其特征在于,所述随机接入前导码的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、临时小区-无线网络临时标识符TC-RNTI、第一冗余RV版本信息、第一新数据指示NDI信息、第一载波指示信息、第一混合自动重传请求HARQ进程号信息、第一调制或编码方案MCS信息、PUSCH功控命令字信息。
  55. 根据权利要求54所述的终端设备,其特征在于,所述随机接入前导码的响应信息包括所述第一RV版本信息,所述第一RV版本信息用于确定第二PUSCH的冗余版本;和/或,
    所述随机接入前导码的响应信息包括所述第一MCS信息,所述第一MCS信息用于确定所述第二PUSCH的调制阶数;和/或,
    所述随机接入前导码的响应信息包括所述PUSCH功控命令字信息,所述PUSCH功控命令字信息用于根据所述第一PUSCH的发射功率确定所述第二PUSCH的发射功率;和/或,
    所述随机接入前导码的响应信息包括所述第一载波指示信息,所述第一载波指示信息用于确定传输所述第二PUSCH的载波信息;
    其中,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  56. 根据权利要求53至55中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    根据所述随机接入前导码的响应信息,向所述网络设备发送第二PUSCH,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  57. 根据权利要求56所述的终端设备,其特征在于,所述通信单元还用于:
    接收第三DCI,其中,所述第三DCI用于调度第三PUSCH的传输,所述第三PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  58. 根据权利要求57所述的终端设备,其特征在于,若所述随机接入前导码的响应信息包括TC-RNTI,所述通信单元具体用于:
    根据所述TC-RNTI,接收所述第三DCI。
  59. 根据权利要求56至58中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    接收所述网络设备针对所述第一传输块发送的第二DCI。
  60. 根据权利要求52至59中任一项所述的终端设备,其特征在于,所述第二DCI包括所述第一传输块的响应信息。
  61. 根据权利要求60所述的终端设备,其特征在于,所述通信单元还用于:
    向所述网络设备发送肯定应答。
  62. 根据权利要求61所述的终端设备,其特征在于,所述第二DCI包括以下信息中的至少一项:第一物理上行控制信道PUCCH资源指示信息、所述第一PUCCH时域位置指示信息、所述第一PUCCH功控命令字信息、第二载波指示信息;
    所述通信单元具体用于:
    根据所述第二DCI,向所述网络设备发送所述肯定应答。
  63. 根据权利要求52至59中任一项所述的终端设备,其特征在于,所述第二DCI用于调度第二PDSCH,所述第二PDSCH包括对第二传输块进行速率匹配得到的数据,所述第二传输块包括所述第一传输块的响应信息。
  64. 根据权利要求63所述的终端设备,其特征在于,所述通信单元还用于:
    若所述终端设备接收到所述第二DCI,且未解码出所述第二PDSCH,向所述网络设备发送否定应答;或,
    若所述终端设备接收到所述第二DCI,且解码出所述第二PDSCH,向所述网络设备发送肯定应答。
  65. 根据权利要求64所述的终端设备,其特征在于,若所述通信单元向所述网络设备发送否定应答,所述通信单元还用于:
    接收所述网络设备针对所述否定应答发送的所述第二DCI,其中,所述第二DCI用于调度第三PDSCH的传输,所述第三PDSCH包括对所述第二传输块进行速率匹配得到的数据。
  66. 根据权利要求63至65中任一项所述的终端设备,其特征在于,所述第二DCI包括以下信息中的至少一项:第二PUCCH资源指示信息、PDSCH到HARQ反馈时间指示信息、第三载波指示信息、所述第二PUCCH功控命令字信息,第二RV版本信息、第二NDI信息、第二HARQ进程号信息、第二MCS信息。
  67. 根据权利要求66所述的终端设备,其特征在于,所述第二DCI包括所述第二RV版本信息,所述第二RV版本信息用于确定所述第二传输块传输时的冗余版本;和/或,
    所述第二DCI包括所述第二MCS信息,所述第二MCS信息用于确定所述第二传输块传输时对应的调制阶数或码率。
  68. 根据权利要求60至67中任一项所述的终端设备,其特征在于,所述第一传输块的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、所述第一传输块中的部分或全部内容、TC-RNTI或小区-无线网络临时标识符C-RNTI。
  69. 根据权利要求52至68中任一项所述的终端设备,其特征在于,所述第一DCI的大小和所述第二DCI的大小相同。
  70. 根据权利要求52至69中任一项所述的终端设备,其特征在于,所述第一DCI包括第一指示信息域,所述第一DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第一DCI;以及,
    所述第二DCI也包括所述第一指示信息域,所述第二DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第二DCI。
  71. 根据权利要求52至70中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    利用第一控制资源集合,接收所述网络设备发送的所述第一DCI;或,
    利用第二控制资源集合,接收所述网络设备发送的所述第二DCI。
  72. 根据权利要求52至71中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    根据第一RNTI,接收所述第一DCI。
  73. 根据权利要求52至72中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    根据第一RNTI,接收所述第二DCI。
  74. 根据权利要求72或73所述的终端设备,其特征在于,所述第一RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的解调参考信号DMRS的天线端口。
  75. 根据权利要求52至72中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    根据第二RNTI,接收所述第二DCI。
  76. 根据权利要求75所述的终端设备,其特征在于,所述第二RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的DMRS的天线端口、所述终端设备的标识,其中,所述第一传输块中包括所述终端设备的标识。
  77. 根据权利要求52至76中任一项所述的终端设备,其特征在于,所述终端设备传输所述第一PUSCH时使用的RV版本为RV0。
  78. 一种网络设备,其特征在于,包括:
    通信单元,用于接收终端设备发送的第一消息,所述第一消息包括随机接入前导码和第一物理上行共享信道PUSCH,所述第一PUSCH包括对第一传输块进行速率匹配得到的数据;
    所述通信单元还用于,根据接收所述第一消息的结果,向所述终端设备发送第一下行控制信息DCI或第二DCI。
  79. 根据权利要求78所述的网络设备,其特征在于,所述第一DCI用于调度第一物理下行共享信道PDSCH,所述第一PDSCH包括所述随机接入前导码的响应信息;或,
    所述第一DCI包括所述随机接入前导码的响应信息。
  80. 根据权利要求79所述的网络设备,其特征在于,所述随机接入前导码的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、临时小区-无线网络临时标识符TC-RNTI、第一冗余RV版本信息、第一新数据指示NDI信息、第一载波指示信息、第一混合自动重传请求HARQ进程号信息、第一调制或编码方案MCS信息、PUSCH功控命令字信息。
  81. 根据权利要求80所述的网络设备,其特征在于,所述随机接入前导码的响应信息包括所述第一RV版本信息,所述第一RV版本信息用于确定第二PUSCH的冗余版本;和/或,
    所述随机接入前导码的响应信息包括所述第一MCS信息,所述第一MCS信息用于确定所述第二PUSCH的调制阶数;和/或,
    所述随机接入前导码的响应信息包括所述PUSCH功控命令字信息,所述PUSCH功控命令字信息用于根据所述第一PUSCH的发射功率确定所述第二PUSCH的发射功率;和/或,
    所述随机接入前导码的响应信息包括所述第一载波指示信息,所述第一载波指示信息用于确定传输所述第二PUSCH的载波信息;
    其中,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  82. 根据权利要求79至81中任一项所述的网络设备,其特征在于,所述通信单元还用于:
    接收所述终端设备发送的第二PUSCH,所述第二PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  83. 根据权利要求82所述的网络设备,其特征在于,所述通信单元还用于:
    向所述终端设备发送第三DCI,其中,所述第三DCI用于调度第三PUSCH的传输,所述第三PUSCH包括对所述第一传输块进行速率匹配得到的数据。
  84. 根据权利要求83所述的网络设备,其特征在于,若所述随机接入前导码的响应信息包括TC-RNTI,所述通信单元具体用于:
    根据所述TC-RNTI,向所述终端设备发送所述第三DCI。
  85. 根据权利要求82至84中任一项所述的网络设备,其特征在于,所述通信单元还用于:
    针对所述第一传输块,向所述终端设备发送第二DCI。
  86. 根据权利要求78至85中任一项所述的网络设备,其特征在于,所述第二DCI包括所述第一传输块的响应信息。
  87. 根据权利要求86所述的网络设备,其特征在于,所述通信单元还用于:
    接收所述终端设备发送的肯定应答。
  88. 根据权利要求87所述的网络设备,其特征在于,所述第二DCI包括以下信息中的至少一项:第一物理上行控制信道PUCCH资源指示信息、所述第一PUCCH时域位置指示信息、所述第一PUCCH功控命令字信息、第二载波指示信息;
    所述通信单元具体用于:
    根据所述第二DCI,接收所述终端设备发送的所述肯定应答。
  89. 根据权利要求78至85中任一项所述的网络设备,其特征在于,所述第二DCI用于调度第二PDSCH,所述第二PDSCH包括对第二传输块进行速率匹配得到的数据,所述第二传输块包括所述第一传输块的响应信息。
  90. 根据权利要求89所述的网络设备,其特征在于,所述通信单元还用于:
    若所述终端设备接收到所述第二DCI,且未解码出所述第二PDSCH,接收所述终端设备发送的否定应答;或,
    若所述终端设备接收到所述第二DCI,且解码出所述第二PDSCH,接收所述终端设备发送的肯定应答。
  91. 根据权利要求90所述的网络设备,其特征在于,若所述通信单元接收所述终端设备发送的否定应答,所述通信单元还用于:
    针对所述否定应答,向所述终端设备发送所述第二DCI,其中,所述第二DCI用于调度第三PDSCH的传输,所述第三PDSCH包括对所述第二传输块进行速率匹配得到的数据。
  92. 根据权利要求89至91中任一项所述的网络设备,其特征在于,所述第二DCI包括以下信息中的至少一项:第二PUCCH资源指示信息、PDSCH到HARQ反馈时间指示信息、第三载波指示信息、所述第二PUCCH功控命令字信息,第二RV版本信息、第二NDI信息、第二HARQ进程号信息、第二MCS信息。
  93. 根据权利要求92所述的网络设备,其特征在于,所述第二DCI包括所述第二RV版本信息,所述第二RV版本信息用于确定所述第二传输块传输时的冗余版本;和/或,
    所述第二DCI包括所述第二MCS信息,所述第二MCS信息用于确定所述第二传输块传输时对应的调制阶数或码率。
  94. 根据权利要求86至93中任一项所述的网络设备,其特征在于,所述第一传输块的响应信息包括以下信息中的至少一项:所述随机接入前导码的标识、所述第一传输块中的部分或全部内容、TC-RNTI或小区-无线网络临时标识符C-RNTI。
  95. 根据权利要求78至94中任一项所述的网络设备,其特征在于,所述第一DCI的大小和所述第二DCI的大小相同。
  96. 根据权利要求78至95中任一项所述的网络设备,其特征在于,所述第一DCI包括第一指示信息域,所述第一DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第一DCI;以及,
    所述第二DCI也包括所述第一指示信息域,所述第二DCI中的所述第一指示信息域用于指示所述终端设备当前接收到的DCI是所述第二DCI。
  97. 根据权利要求78至96中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    根据接收所述第一消息的结果,利用第一控制资源集合发送所述第一DCI;或,
    根据接收所述第一消息的结果,利用第二控制资源集合发送所述第二DCI。
  98. 根据权利要求78至97中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    根据第一RNTI,发送所述第一DCI。
  99. 根据权利要求78至98中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    根据第一RNTI,发送所述第二DCI。
  100. 根据权利要求98或99所述的网络设备,其特征在于,所述第一RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的解调参考信号DMRS的天线端口。
  101. 根据权利要求78至98中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    根据第二RNTI,发送所述第二DCI。
  102. 根据权利要求101所述的网络设备,其特征在于,所述第二RNTI是根据以下至少一项确定的:所述随机接入前导码的时域位置、所述随机接入前导码的频域位置、所述随机接入前导码的标识、所述第一PUSCH的时域位置、所述第一PUSCH的频域位置、所述第一PUSCH的DMRS的天线端口、 所述终端设备的标识,其中,所述第一传输块中包括所述终端设备的标识。
  103. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至26中任一项所述的方法。
  104. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求27至51中任一项所述的方法。
  105. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至26中任一项所述的方法。
  106. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求27至51中任一项所述的方法。
  107. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至26中任一项所述的方法。
  108. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求27至51中任一项所述的方法。
  109. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至26中任一项所述的方法。
  110. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求27至51中任一项所述的方法。
  111. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至26中任一项所述的方法。
  112. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求27至51中任一项所述的方法。
PCT/CN2019/079763 2019-03-26 2019-03-26 随机接入的方法、终端设备和网络设备 WO2020191637A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2019/079763 WO2020191637A1 (zh) 2019-03-26 2019-03-26 随机接入的方法、终端设备和网络设备
JP2021556928A JP7191248B2 (ja) 2019-03-26 2019-03-26 ランダムアクセス方法、端末装置及びネットワーク装置
CN201980080188.6A CN113170492A (zh) 2019-03-26 2019-03-26 随机接入的方法、终端设备和网络设备
KR1020217034262A KR20210139429A (ko) 2019-03-26 2019-03-26 무작위 접속의 방법, 단말 장치 및 네트워크 장치
EP19922030.2A EP3902362B1 (en) 2019-03-26 2019-03-26 Random access method, terminal device and network device
ES19922030T ES2946250T3 (es) 2019-03-26 2019-03-26 Método de acceso aleatorio, dispositivo terminal y dispositivo de red
CN202110868871.5A CN113490286B (zh) 2019-03-26 2019-03-26 随机接入的方法、终端设备和网络设备
US17/409,618 US20210385854A1 (en) 2019-03-26 2021-08-23 Random access method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079763 WO2020191637A1 (zh) 2019-03-26 2019-03-26 随机接入的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/409,618 Continuation US20210385854A1 (en) 2019-03-26 2021-08-23 Random access method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020191637A1 true WO2020191637A1 (zh) 2020-10-01

Family

ID=72610837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079763 WO2020191637A1 (zh) 2019-03-26 2019-03-26 随机接入的方法、终端设备和网络设备

Country Status (7)

Country Link
US (1) US20210385854A1 (zh)
EP (1) EP3902362B1 (zh)
JP (1) JP7191248B2 (zh)
KR (1) KR20210139429A (zh)
CN (2) CN113170492A (zh)
ES (1) ES2946250T3 (zh)
WO (1) WO2020191637A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220150964A1 (en) * 2018-08-09 2022-05-12 Ofinno, Llc Listen Before Talk Procedure and Uplink Switching
WO2022151427A1 (zh) * 2021-01-15 2022-07-21 Oppo广东移动通信有限公司 一种传输方法、终端设备和网络设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191716A1 (en) * 2019-03-28 2020-10-01 Qualcomm Incorporated Ra-rnti formula for extended random access response windows
CN111865534B (zh) * 2019-04-30 2021-07-13 大唐移动通信设备有限公司 一种信息传输方法、网络设备及终端
CN115996477A (zh) * 2021-10-20 2023-04-21 华为技术有限公司 一种通信方法及装置
CN116234051A (zh) * 2021-12-02 2023-06-06 展讯半导体(南京)有限公司 随机接入方法及相关设备
CN117336865A (zh) * 2022-06-24 2024-01-02 夏普株式会社 由用户设备执行的方法以及用户设备
WO2024036538A1 (zh) * 2022-08-17 2024-02-22 Oppo广东移动通信有限公司 重复传输方法、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163504A1 (ja) * 2015-04-09 2016-10-13 株式会社Nttドコモ ユーザ端末、無線通信システムおよび無線通信方法
CN106465401A (zh) * 2014-02-28 2017-02-22 Lg电子株式会社 在无线通信系统中发送具有低延迟的上行链路数据的方法和设备
US20180115983A1 (en) * 2014-11-06 2018-04-26 Ntt Docomo, Inc. User terminal and radio communication system
WO2018188626A1 (en) * 2017-04-13 2018-10-18 Huawei Technologies Co., Ltd. Methods and apparatus for determining network identifier for use by user equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017192793A1 (en) * 2016-05-06 2017-11-09 Intel IP Corporation Dual beam transmission and ack/nack feedback mechanism for pucch
US10342044B2 (en) * 2016-07-25 2019-07-02 Qualcomm Incorporated Latency reduction techniques for LTE transmission in unlicensed spectrum
CN110268790B (zh) * 2016-12-09 2024-02-20 瑞典爱立信有限公司 Prach调度方法、被调度的prach传输方法、网络节点和用户设备
KR102505734B1 (ko) * 2017-01-13 2023-03-03 모토로라 모빌리티 엘엘씨 캐리어 주파수에서 경합 기반 랜덤 액세스를 수행하기 위한 방법 및 장치
US11057935B2 (en) * 2017-03-22 2021-07-06 Comcast Cable Communications, Llc Random access process in new radio
US11653387B2 (en) * 2018-09-28 2023-05-16 Samsung Electronics Co., Ltd. Random access method and apparatus in wireless communication system
BR112021016034A2 (pt) * 2019-02-13 2021-11-09 Idac Holdings Inc Método implementado por uma unidade de transmissão/recepção sem fio, e, unidade de transmissão/recepção sem fio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465401A (zh) * 2014-02-28 2017-02-22 Lg电子株式会社 在无线通信系统中发送具有低延迟的上行链路数据的方法和设备
US20180115983A1 (en) * 2014-11-06 2018-04-26 Ntt Docomo, Inc. User terminal and radio communication system
WO2016163504A1 (ja) * 2015-04-09 2016-10-13 株式会社Nttドコモ ユーザ端末、無線通信システムおよび無線通信方法
WO2018188626A1 (en) * 2017-04-13 2018-10-18 Huawei Technologies Co., Ltd. Methods and apparatus for determining network identifier for use by user equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902362A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220150964A1 (en) * 2018-08-09 2022-05-12 Ofinno, Llc Listen Before Talk Procedure and Uplink Switching
US11743942B2 (en) * 2018-08-09 2023-08-29 Ofinno, Llc Listen before talk procedure and uplink switching
WO2022151427A1 (zh) * 2021-01-15 2022-07-21 Oppo广东移动通信有限公司 一种传输方法、终端设备和网络设备

Also Published As

Publication number Publication date
EP3902362A4 (en) 2022-01-19
CN113170492A (zh) 2021-07-23
JP2022528514A (ja) 2022-06-14
EP3902362B1 (en) 2023-04-26
JP7191248B2 (ja) 2022-12-16
CN113490286A (zh) 2021-10-08
ES2946250T3 (es) 2023-07-14
EP3902362A1 (en) 2021-10-27
KR20210139429A (ko) 2021-11-22
CN113490286B (zh) 2023-04-07
US20210385854A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
US11737110B2 (en) Method and apparatus for determining channel access scheme, terminal device, and network device
WO2020147115A1 (zh) 用于非授权频谱的无线通信方法和设备
WO2020191637A1 (zh) 随机接入的方法、终端设备和网络设备
WO2020186546A1 (zh) 随机接入的方法和设备
US20220046720A1 (en) Random access method, terminal device and network device
US20220394560A1 (en) Method and apparatus for pre-empting a resource
US20220052796A1 (en) Harq information feedback method and device
WO2020186466A1 (zh) 无线通信的方法、终端设备和网络设备
US11178688B2 (en) Method, base station and user equipment for uplink transmission and control thereof
WO2020223878A1 (zh) 随机接入的方法、终端设备和网络设备
WO2020227907A1 (zh) 一种资源确定方法及装置、终端
CN114208080B (zh) 竞争窗口大小的确定方法,网络设备,终端设备
WO2021163858A1 (zh) 一种进程选择方法及终端设备
WO2020206597A1 (zh) 功率分配的方法和终端设备
US11395350B2 (en) Random access method, terminal device, and network device
WO2020186468A1 (zh) 随机接入的方法和设备
WO2023279390A1 (zh) 一种资源指示方法及装置、终端设备
US20210385862A1 (en) Competition window size determination method and related product
EP3993546B1 (en) Random access method and device, and terminal
WO2023133878A1 (zh) 资源配置方法、终端设备和网络设备
WO2020199001A1 (zh) 信息发送方法、信息发送装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019922030

Country of ref document: EP

Effective date: 20210723

ENP Entry into the national phase

Ref document number: 2021556928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217034262

Country of ref document: KR

Kind code of ref document: A