WO2020206597A1 - 功率分配的方法和终端设备 - Google Patents

功率分配的方法和终端设备 Download PDF

Info

Publication number
WO2020206597A1
WO2020206597A1 PCT/CN2019/081812 CN2019081812W WO2020206597A1 WO 2020206597 A1 WO2020206597 A1 WO 2020206597A1 CN 2019081812 W CN2019081812 W CN 2019081812W WO 2020206597 A1 WO2020206597 A1 WO 2020206597A1
Authority
WO
WIPO (PCT)
Prior art keywords
power allocation
pusch
allocation priority
terminal device
power
Prior art date
Application number
PCT/CN2019/081812
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/081812 priority Critical patent/WO2020206597A1/zh
Publication of WO2020206597A1 publication Critical patent/WO2020206597A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading

Definitions

  • This application relates to the field of communications, and in particular to a method and terminal equipment for power distribution.
  • a two-step random access process can be used.
  • message 1 (Msg 1) and message 3 (Msg 3) in the four-step random access process can be sent as the first message (Msg A) in the two-step random access process
  • message 2 (Msg 2) and message 2 (Msg 4) in the four-step random access process as the second message (Msg B) in the two-step random access process.
  • the multiple signals include the PUSCH in the first message, and the sum of the transmission power of the multiple signals is greater than the maximum transmission power of the terminal device, how does the terminal device To determine the transmit power of the Physical Uplink Shared Channel (PUSCH) in the first message, there is currently no clear regulation.
  • PUSCH Physical Uplink Shared Channel
  • the embodiments of the present application provide a power allocation method and terminal equipment.
  • the terminal equipment transmits multiple signals at the same transmission time, and the sum of the transmission power of the multiple signals is greater than the maximum transmission of the terminal equipment
  • the PUSCH transmit power in the first message can be effectively determined.
  • a method for power allocation includes: a terminal device determines a total transmission power at a first transmission moment, where the total transmission power is the sum of the transmission powers of multiple signals to be transmitted, and the multiple Each signal to be sent includes a first physical uplink shared channel PUSCH, the first PUSCH belongs to a first message, and the first message includes a random access preamble and the first PUSCH;
  • the terminal device determines the first transmit power of the first PUSCH according to the priority order of power allocation.
  • a terminal device which is used to execute the method in the first aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a device for implementing any one of the foregoing first aspect or the method in each implementation manner thereof.
  • the device includes a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect or the method in each implementation mode thereof.
  • the device may be a chip.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any aspect of the above-mentioned first aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned aspects of the first aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned aspects of the first aspect or the method in each implementation manner thereof.
  • the terminal device when the terminal device transmits multiple signals at the same transmission time, the multiple signals include the PUSCH in the first message, and the sum of the transmission power of the multiple signals is greater than the maximum of the terminal device.
  • the terminal device can determine the transmission power of the PUSCH in the first message according to the priority order of power allocation. Because in the priority order of power allocation, power can be allocated to the signal with higher priority and the signal with lower priority. The power of the signal may be compressed, so that the transmission power of the PUSCH in the first message can be effectively determined.
  • Fig. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a four-step random access method according to an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a four-step random access to a two-step random access according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a first message in a two-step random access according to an embodiment of the present application.
  • Fig. 5 is a schematic flowchart of a method for power allocation according to an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a device according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Radio, NR the evolution system of the NR system, the LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the unlicensed spectrum, the NR (NR-based access to unlicensed spectrum, on the unlicensed spectrum, NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Radio, NR the evolution system of the NR system, the LTE (LTE-based access to unlicense
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device 110 may provide services for a cell, and the terminal device 120 communicates with the network device 110 through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be the network device 110 (for example, a base station)
  • the corresponding cell the cell can belong to a macro base station or a base station corresponding to a small cell (Small cell).
  • the small cell here can include, for example, a metro cell, a micro cell, and a pico cell. Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • the terminal device After the cell search process, the terminal device has achieved downlink synchronization with the cell, so the terminal device can receive downlink data. However, the terminal equipment can only perform uplink transmission if it has achieved uplink synchronization with the cell. The terminal equipment can establish a connection with the cell and obtain uplink synchronization through a random access procedure (Random Access Procedure).
  • Random Access Procedure Random Access Procedure
  • Step 1 The terminal device sends a Preamble (that is, message1, Msg1) to the network device.
  • a Preamble that is, message1, Msg1
  • the random access preamble may also be referred to as a preamble, a random access preamble sequence, a preamble sequence, and so on.
  • the terminal device may select physical random access channel (Physical Random Access Channel, PRACH) resources, and the PRACH resources may include time domain resources, frequency domain resources, and code domain resources.
  • PRACH Physical Random Access Channel
  • the terminal device can send the selected Preamble on the selected PRACH resource.
  • the terminal device may obtain the PRACH resource for sending the preamble through random access resource configuration.
  • the random access resource configuration information used by the cell can be indicated to the accessed terminal equipment in the system message, so that the terminal equipment can determine the time domain information, frequency domain information and information of the PRACH resource through the indicated random access resource configuration information. Code domain information.
  • the random access resource configuration can include 256 configurations, including but not limited to Preamble format, period, radio frame offset, subframe number in the radio frame, start symbol in the subframe, and PRACH time slot in the subframe. Format, the number of PRACH opportunities in the PRACH time slot, the duration of PRACH opportunities, etc.
  • Step 2 The network device sends a random access response (Random Access Response, RAR, that is, message2, Msg2) to the terminal device
  • RAR Random Access Response
  • the network device can send an RAR to the terminal device to inform the terminal device of the uplink resource information that can be used when sending Msg3.
  • the RAR may include information such as the identifier of the preamble, the timing advance (Time Advance, TA), the uplink grant (UL grant), and the temporary cell-radio network temporary identifier (Temporary Cell Radio Network Temporary Identifier, TC-RNTI).
  • the terminal device after the terminal device sends the Preamble to the network device, it can open a RAR window, in the RAR window according to the random access radio network temporary identifier (Random Access Radio Network Temporary Identifier, RA-RNTI) detection Corresponding physical downlink control channel (Physical Downlink Control Channel, PDCCH). If the terminal device detects the PDCCH scrambled by the RA-RNTI, it can obtain the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) scheduled by the PDCCH. Wherein, the PDSCH includes the RAR corresponding to the Preamble.
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the terminal device can consider that this random access procedure has failed. It should be understood that both the terminal equipment and the network equipment need to uniquely determine the value of RA-RNTI, otherwise the terminal equipment cannot decode the RAR.
  • the RA-RNTI may calculate the value of the RA-RNTI by using the time-frequency position of the Preamble that is clear to both the transmitting and receiving parties.
  • RA-RNTI associated with Preamble can be calculated by formula (1):
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id (1)
  • s_id is the index of the first Orthogonal Frequency Division Multiplexing (OFDM) symbol of the PRACH resource (0 ⁇ s_id ⁇ 14), and t_id is the index of the first time slot of the PRACH resource in a system frame.
  • f_id is the index of the PRACH resource in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is the uplink carrier used to transmit the Preamble (0 represents the NUL carrier, 1 represents the SUL carrier).
  • f_id is fixed to 0.
  • Step 3 The terminal device sends Msg3.
  • the terminal device After receiving the RAR message, the terminal device determines whether the RAR is its own RAR message. For example, the terminal device can use the preamble index to check. After determining that it is its own RAR message, it can generate Msg3 in the RRC layer and send it to The network device sends Msg3, where Msg3 needs to carry temporary identification information specific to the terminal device, etc.
  • Step 4 The network device sends the terminal device Msg4.
  • Msg4 may include contention resolution messages and uplink transmission resources allocated for terminal equipment.
  • the terminal device After receiving the Msg4 sent by the network device, the terminal device detects whether the Msg4 includes the terminal device-specific temporary identifier included in the Msg3 of the terminal device. If it is included, it indicates that the random access process of the terminal device is successful, otherwise it is considered that the random access process has failed, and the terminal device needs to initiate the random access process from step 1 again.
  • the delay of four-step random access is relatively large, which is not suitable for the low-latency and high-reliability scenarios in 5G.
  • a two-step random access process scheme is proposed. As shown in Figure 3, in the two-step random access process, in simple terms, it is equivalent to combining the first and third steps of the four-step random access process into the first step in the two-step random access process. The second and fourth steps of the four-step random access process are combined into the second step of the two-step random access process.
  • the terminal device sends Msg A to the network device, and Msg A includes Preamble and PUSCH, as shown in Figure 4.
  • the network device sends Msg B to the terminal device, and Msg B includes PDCCH and PDSCH.
  • FIG. 3 is only a specific implementation of the two-step random access process, and should not limit the protection scope of the present application.
  • the terminal device may send signals on multiple uplink carriers, such as sending PUSCH, physical uplink control channel (PUCCH) ), PRACH, sounding reference signal (Sounding Reference Signal, SRS), etc.
  • the terminal device can respectively determine the transmit power of the signal to be sent according to the defined signal power calculation method.
  • the maximum transmission power of a terminal device is limited. If the sum of the power of each uplink channel or signal on each uplink carrier of the terminal device is greater than the maximum transmission power of the terminal device, the power of some or all of the uplink channels or signals needs to be Perform a certain degree of power compression to meet the maximum transmit power of the terminal device for transmission.
  • the priority of power allocation between different signals is defined, that is, the priority order of power allocation.
  • the terminal device can allocate the priority according to the specified power Power allocation is performed sequentially, that is, priority is allocated to high-priority signals, and the power of low-priority signals may be compressed so that the transmission power of the terminal device is less than or equal to the maximum transmission power of the terminal device.
  • the priority order of power allocation defined in version 15 (Rel) is as follows, among which the priority is arranged from high to low:
  • PRACH PRACH transmission on the PCell
  • Primary Cell Primary Cell, PCell
  • HARQ Hybrid Automatic Repeat Request
  • ACK Hybrid Automatic Repeat Request
  • PUCCH Switchuling Request, SR
  • PUSCH PUCCH transmission
  • CSI Channel State Information
  • PUSCH Physical Broadcast Channel
  • PUSCH (PUSCH transmission without HARQ-ACK information or CSI) that does not carry HARQ-ACK information or CSI;
  • SRS transmission in which the priority of aperiodic SRS is higher than semi-static and/or periodic SRS, or PRACH transmission on serving cells other than PCell (SRS transmission, with aperiodic SRS having higher priority than semi- persistent and/or periodic SRS, or PRACH transmission on a serving cell other than the PCell).
  • the power allocation priority of the PRACH transmitted on the PCell is the highest, and the power allocation priority of the PRACH transmitted on the SRS or non-PCell is the lowest.
  • the terminal device can preferentially allocate the power to the primary cell group (Master Cell Group, MCG) or the secondary cell group (Secondary Cell Group, SCG)
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the signal on the PCell is followed by the PCell of the SCG.
  • the PCell of the MCG is preferentially allocated, followed by the PCell of the SCG.
  • the terminal device can preferentially allocate power to the signal on the carrier used to transmit the PRACH. If there is no carrier configured to transmit the PUCCH, the terminal device can preferentially allocate power to the non-Supplementary UL Carrier.
  • the multiple signals include the PUSCH in the first message, and the sum of the transmission powers of the multiple signals When it is greater than the maximum transmission power of the terminal device, how the terminal device determines the transmission power of the PUSCH in the first message is currently not clearly defined.
  • the embodiment of the present application proposes a power allocation method. When a terminal device transmits multiple signals at the same transmission time, and the sum of the transmission power of the multiple signals is greater than the maximum transmission power of the terminal device, the first The PUSCH transmit power in a message.
  • FIG. 5 is a schematic flowchart of a method 300 for power allocation according to an embodiment of the present application.
  • the method described in FIG. 5 may be executed by a terminal device, and the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the method 300 may include at least part of the following content.
  • the method 300 may be applied to a scenario where a single cell is configured with multiple uplink carriers, may also be applied to a carrier aggregation scenario, or may be applied to other scenarios, which is not limited in the embodiment of the present application.
  • the terminal device determines the total transmission power at the first transmission time, where the total transmission power at the first transmission time is the sum of the transmission powers of multiple signals to be transmitted, and the multiple signals to be transmitted include the first PUSCH, A PUSCH belongs to the first message, and the first message includes the Preamble and the first PUSCH.
  • the first message including the Preamble and the first PUSCH can be understood as: between the terminal device sending the Preamble to the network device and sending the first PUSCH, there is no other message between the network device and the terminal device, and/or ,
  • the network device can send a random access response to the terminal device simultaneously for the Preamble and the first PUSCH.
  • the first PUSCH may carry information used to distinguish terminal devices, such as terminal device identifiers, radio network temporary identifiers (RNTI), and so on.
  • the first PUSCH may also carry the random access trigger event.
  • the random access process can usually be triggered by the following events:
  • the terminal device can enter the RRC connected state (RRC_CONNECTED) from the radio resource control (Radio Resource Control, RRC) idle state (RRC_IDLE state).
  • RRC Radio Resource Control
  • the terminal device is in the connected state and needs to establish uplink synchronization with the new cell.
  • the uplink is in a "non-synchronised” state (DL or UL data arrival during RRC_CONNECTED when UL synchronisation status is "non-synchronised”).
  • the terminal device transitions from the RRC inactive state (Transition from RRC_INACTIVE).
  • the terminal device requests other system information (Other System Information, OSI).
  • OSI Operating System Information
  • the terminal device needs to perform beam failure recovery (Beam failure recovery).
  • the content carried by the first PUSCH may be different.
  • the first PUSCH may carry the RRC connection request message (RRC Setup Request) generated by the RRC layer.
  • RRC Setup Request RRC connection request message
  • the first PUSCH may also carry, for example, a 5G-service temporary mobile subscriber identity (Serving-Temporary Mobile Subscriber Identity, S-TMSI) of the terminal device or a random number.
  • S-TMSI 5G-service temporary mobile subscriber identity
  • the first PUSCH may carry an RRC connection reestablishment request message (RRC Reestablishment Request) generated by the RRC layer.
  • RRC Reestablishment Request RRC connection reestablishment request message
  • the first PUSCH may also carry, for example, a Cell Radio Network Temporary Identifier (C-RNTI) and the like.
  • C-RNTI Cell Radio Network Temporary Identifier
  • the first PUSCH may carry an RRC handover confirmation message (RRC Handover Confirm) generated by the RRC layer, which carries the C-RNTI of the terminal device.
  • RRC Handover Confirm RRC handover confirmation message
  • the first PUSCH may also carry information such as Buffer Status Report (BSR).
  • BSR Buffer Status Report
  • the first PUSCH can at least carry the C-RNTI of the terminal device.
  • the multiple signals to be sent in the foregoing content may include, but are not limited to: PUSCH, PUCCH, PRACH, SRS, and so on.
  • the PDCCH can also be an enhanced physical downlink control channel (EPDCCH), a machine type communication physical downlink control channel (Machine Type Communication Physical Downlink Control Channel, MPDCCH), and a physical sidelink control channel (Physical Sidelink). Control Channel, PSCCH) or Narrowband Physical Downlink Control Channel (NPDCCH), which is not specifically limited in the embodiment of the application.
  • EPDCCH enhanced physical downlink control channel
  • MPDCCH Machine Type Communication Physical Downlink Control Channel
  • NPDCCH Narrowband Physical Downlink Control Channel
  • the sending channel can be understood as: sending data carried by the PUCCH, or allocating transmission resources to the PUCCH, or transmitting data on the PUCCH on the transmission resources.
  • the terminal device may be many ways for the terminal device to determine the total transmit power at the first transmission moment, which is not limited in this application.
  • the terminal device can calculate the transmission power of the signal to be transmitted according to the existing signal power calculation method, and then sum the transmission power of each signal to be transmitted to obtain the total transmission power at the first transmission moment.
  • the total transmission power at the first transmission time is not the actual transmission power of the terminal device at the first transmission time, and the total transmission power at the first transmission time is greater than or equal to the actual transmission power at the first transmission time.
  • the terminal device determines the first transmit power of the first PUSCH according to the priority order of power allocation.
  • the first maximum transmit power may be the absolute maximum transmit power P CMAX (i) of the terminal device, or may also be the linear value of the absolute maximum transmit power (Linear Value), that is, the standard
  • the terminal equipment can allocate the transmission power to PUSCH/PUCCH/PRACH/SRS according to the priority order of power allocation, so that the transmission power of the terminal equipment in each symbol of the transmission opportunity i is less than or equal to
  • the terminal device When the total transmit power at the first transmission moment is greater than the first maximum transmit power of the terminal device, the terminal device needs to compress all or part of the signal to be sent, that is, re-determine the transmit power of the signal to be sent, including re-determining the first PUSCH The transmit power to meet the first maximum transmit power of the terminal device.
  • the terminal device may determine the first transmit power of the first PUSCH according to the priority order of power allocation.
  • the first transmission power of the first PUSCH may be less than or equal to the transmission power of the first PUSCH before the transmission power is re-determined.
  • the power allocation priority order may be the same as the power allocation priority order of the foregoing content (for ease of description, it is referred to as the first power allocation priority order).
  • PRACH that is, Msg1
  • the first PUSCH that is, Msg3
  • the network device can use the downlink control information of the TC-RNTI scrambling code ( Downlink Control Information, DCI) format (format) 0_0 to schedule the retransmission of Msg3.
  • DCI Downlink Control Information
  • the first message includes Msg1 and Msg3 in the four-step random access process, that is, it includes the Preamble and the first PUSCH.
  • the first power allocation priority order is used, when the power of the first PUSCH part in the first message is compressed due to its low power allocation priority, the first message may not be correctly received by the network device, which may cause The retransmission of the first message increases the two-step random access delay.
  • this embodiment may increase additional uplink interference and waste of random access resources.
  • the embodiment of the present application proposes another embodiment.
  • the terminal device may determine the first transmit power of the first PUSCH according to the second power allocation priority order.
  • the second power allocation priority order may include that the power allocation priority of the first PUSCH is higher than at least one of the following power allocation priorities: the power allocation priority of PUSCH that does not carry HARQ-ACK information , The power allocation priority of PUSCH that does not carry CSI.
  • the power allocation priority of the first PUSCH may be the same as the power allocation priority of the PRACH transmitted in the PCell.
  • the priority order of the second power allocation may be as follows:
  • PUCCH carrying HARQ-ACK information and/or SR, or PUSCH carrying HARQ-ACK information
  • aperiodic SRS is higher than semi-static and/or periodic SRS, or PRACH transmission on serving cells other than PCell.
  • the second power allocation priority order may include that the power allocation priority of the first PUSCH is higher than at least one of the following power allocation priorities: the power allocation priority of the PUCCH carrying CSI, the PUSCH carrying CSI Power allocation priority of the first PUSCH, and the power allocation priority of the first PUSCH is lower than at least one of the following power allocation priorities: power allocation priority of PUCCH carrying HARQ-ACK information and/or SR, and HARQ-ACK information The priority of PUSCH power allocation.
  • the priority order of the second power allocation may be as follows:
  • PUCCH carrying HARQ-ACK information and/or SR, or PUSCH carrying HARQ-ACK information
  • aperiodic SRS is higher than semi-static and/or periodic SRS, or PRACH transmission on serving cells other than PCell.
  • the second power allocation priority order may include that the power allocation priority of the first PUSCH is higher than at least one of the following power allocation priorities: the power allocation priority of PUSCH that does not carry HARQ-ACK information, The power allocation priority of the PUSCH not carrying CSI, and the power allocation priority of the first PUSCH is lower than at least one of the following power allocation priorities: the power allocation priority of the PUCCH carrying CSI, the power allocation of the PUSCH carrying CSI priority.
  • the priority order of the second power allocation may be as follows:
  • PUCCH carrying HARQ-ACK information and/or SR, or PUSCH carrying HARQ-ACK information
  • aperiodic SRS is higher than semi-static and/or periodic SRS, or PRACH transmission on serving cells other than PCell.
  • the priority of the power allocation of the first PUSCH is higher, so that the priority of the power allocation of the first PUSCH can be guaranteed, and the first message cannot be correctly received by the network device, which causes the first message to be repeated.
  • the transmission problem reduces the time delay of the two-step random access process and also reduces the waste of random access resources due to uplink interference.
  • the terminal device may determine the second power allocation priority order according to the number of retransmissions of the first message.
  • the number of retransmissions of the first message may also be referred to as the power climb count parameter of the first message.
  • the second power allocation priority order may include that the power allocation priority of the first PUSCH is lower than the preset power allocation priority.
  • the second power allocation priority order may include that the power allocation priority of the first PUSCH is higher than the preset power allocation priority. In this way, it can be ensured that the power allocation priority of the first PUSCH is higher, so that the power of the first message with a higher number of retransmissions can be guaranteed first, and it can be ensured that the first message can be successfully received by the network device as soon as possible.
  • the threshold may be preset on the terminal device based on a protocol, or pre-configured by the network device to the terminal device, for example, it may be configured through RRC signaling.
  • the preset power allocation priority may be at least one of the following power allocation priorities:
  • the preset power allocation priority is the power allocation priority of PUCCH carrying HARQ-ACK information and/or SR
  • the power allocation priority of PUSCH carrying HARQ-ACK information and the retransmission of the first message The number of times is less than or equal to the threshold.
  • the second power allocation priority can be as follows:
  • PUCCH carrying HARQ-ACK information and/or SR, or PUSCH carrying HARQ-ACK information
  • aperiodic SRS is higher than semi-static and/or periodic SRS, or PRACH transmission on serving cells other than PCell.
  • the preset power allocation priority is the power allocation priority of PUCCH carrying HARQ-ACK information and/or SR
  • the power allocation priority of PUSCH carrying HARQ-ACK information and the repetition of the first message The number of transmissions is greater than or equal to the threshold.
  • the second power allocation priority can be as follows:
  • PUCCH carrying HARQ-ACK information and/or SR, or PUSCH carrying HARQ-ACK information
  • aperiodic SRS is higher than semi-static and/or periodic SRS, or PRACH transmission on serving cells other than PCell.
  • the second power allocation priority may be as follows:
  • PUCCH carrying HARQ-ACK information and/or SR, or PUSCH carrying HARQ-ACK information
  • aperiodic SRS is higher than semi-static and/or periodic SRS, or PRACH transmission on serving cells other than PCell.
  • the terminal device sets different priorities for the power allocation of the first PUSCH in the first message according to the number of retransmissions of the first message or the power rise count parameter, so as to give priority to ensuring that the number of retransmissions is large or the power is high.
  • Increase the power allocation of the first message with a large count parameter avoid more retransmissions of the first message due to power compression, reduce the delay of the two-step random access process, and reduce uplink interference and random access resources Waste.
  • the terminal device may determine the first PUSCH first transmit power according to the priority order of power allocation.
  • the first transmit power of the first PUSCH may also be determined according to other methods. For example, the terminal device may determine the first transmission power of the first PUSCH according to the channel quality of the first PUSCH at the first transmission moment.
  • the terminal device may send the first PUSCH to the network device based on the first transmission power at the first transmission moment.
  • the terminal device may also determine the second transmission power, where the second transmission power may be the transmission power of each signal to be transmitted except the first PUSCH among the plurality of signals to be transmitted; then, the terminal The device may transmit signals to be transmitted except for the first PUSCH among the plurality of signals to be transmitted based on the second transmission power.
  • the terminal device may determine the second transmit power in the same manner as the first transmit power, for example, determine the second transmit power according to the priority order of the second power allocation.
  • the terminal device may determine the second transmit power according to the second power allocation priority order.
  • the implementation manner for the terminal device to determine the second transmit power may be different from the manner for determining the first transmit power, as long as the total transmit power at the first transmission moment is less than or equal to the first maximum transmit power of the terminal device.
  • the terminal device determines the first transmission power according to the second power allocation priority order, and determines the second transmission power according to the channel quality at the first transmission moment.
  • the multiple signals include the PUSCH in the first message, and the sum of the transmission powers of the multiple signals is greater than that of the terminal device.
  • the terminal device can determine the PUSCH transmit power in the first message according to the priority order of power allocation. Because in the priority order of power allocation, power can be allocated to the signal with high priority first, and the priority is low The power of the signal may be compressed, so that the PUSCH transmission power in the first message can be effectively determined.
  • the size of the sequence number of the foregoing processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the communication method according to the embodiment of the present application is described in detail above.
  • the communication device according to the embodiment of the present application will be described below in conjunction with FIG. 6 and FIG. 7.
  • the technical features described in the method embodiment are applicable to the following device embodiments.
  • FIG. 6 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine the total transmit power at the first transmission moment, where the total transmit power is the sum of the transmit powers of multiple signals to be transmitted, and the multiple signals to be transmitted include a first PUSCH, and the first PUSCH Belongs to a first message, and the first message includes a random access preamble and the first PUSCH;
  • the processing unit 410 is further configured to determine the first transmission power of the first PUSCH according to the priority order of power allocation when the total transmission power is greater than the first maximum transmission power of the terminal device 400.
  • the power allocation priority of the first PUSCH is higher than at least one of the following power allocation priorities:
  • the power allocation priority of the first PUSCH is the same as the power allocation priority of the physical random access channel PRACH transmitted in the primary cell.
  • the power allocation priority of the first PUSCH is higher than at least one of the following power allocation priorities: the power of the PUCCH carrying CSI Allocation priority and power allocation priority of the PUSCH carrying the CSI;
  • the power allocation priority of the PUSCH carrying the HARQ-ACK information is the power allocation priority of the PUSCH carrying the HARQ-ACK information.
  • the power allocation priority of the first PUSCH is higher than at least one of the following power allocation priorities: no HARQ-ACK information is carried The priority of power allocation of PUSCH and the priority of power allocation of PUSCH not carrying CSI;
  • the power allocation priority of the first PUSCH is lower than at least one of the following power allocation priorities: the power allocation priority of the PUCCH carrying CSI, and the power allocation priority of the PUSCH carrying the CSI.
  • the processing unit 410 is further configured to: determine the power allocation priority order according to the number of retransmissions of the first message.
  • the power allocation priority of the first PUSCH is lower than the predetermined Set priority for power allocation.
  • the power allocation priority of the first PUSCH is higher than the pre- Set priority for power allocation.
  • the preset power allocation priority is at least one of the following power allocation priorities:
  • the power allocation priority of the PUSCH that does not carry the CSI is the power allocation priority of the PUSCH that does not carry the CSI.
  • the threshold is preset on the terminal device.
  • the terminal device 400 further includes: a communication unit 420, configured to send the first transmission power to the network device based on the first transmission time at the first transmission moment PUSCH.
  • the processing unit 410 is further configured to: determine a second transmission power according to the priority order of power allocation, where the second transmission power is among the plurality of signals to be transmitted Transmit power of the signal to be transmitted except for the first PUSCH;
  • the terminal device 400 further includes: a communication unit 420, configured to transmit signals to be transmitted other than the first PUSCH among the plurality of signals to be transmitted based on the second transmission power.
  • the PUSCH that does not carry the HARQ-ACK information and the PUSCH that does not carry the CSI do not belong to the first message.
  • the PUSCH carrying the HARQ-ACK information and the PUSCH carrying the CSI do not belong to the first message.
  • the first message is the first message in two-step random access.
  • terminal device 400 may correspond to the terminal device in the method 300, and can implement the corresponding operations of the terminal device in the method 300. For brevity, details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a terminal device 500 provided by an embodiment of the present application.
  • the terminal device 500 shown in FIG. 7 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the terminal device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the terminal device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the terminal device 500 may specifically be a terminal device of an embodiment of the present application, and the terminal device 500 may implement the corresponding processes implemented by the terminal device in each method of the embodiments of the present application. For brevity, details are not repeated here. .
  • Fig. 8 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 8 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the apparatus 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the device 600 may further include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 600 may further include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device 600 may be a chip. It should be understood that the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

一种功率分配的方法和终端设备,该方法包括:终端设备确定第一传输时刻的总发射功率,所述总发射功率为多个待发送信号的发射功率之和,所述多个待发送信号包括第一物理上行共享信道PUSCH,所述第一PUSCH属于第一消息,所述第一消息包括随机接入前导和所述第一PUSCH(310);当所述总发射功率大于所述终端设备的第一最大发射功率时,所述终端设备根据功率分配优先级顺序,确定所述第一PUSCH的第一发射功率(320)。上述功率分配的方法和终端设备,当终端设备同一传输时刻发送多个信号,且该多个信号的发射功率之和大于终端设备的最大发射功率时,能够有效地确定第一消息中的PUSCH的发射功率。

Description

功率分配的方法和终端设备 技术领域
本申请涉及通信领域,具体涉及一种功率分配的方法和终端设备。
背景技术
在新无线(New Radio,NR)系统(或称5G系统、5G网络)中可以采用两步随机接入过程的方式。在两步随机接入过程中,可以将四步随机接入过程中的消息1(Msg 1)和消息3(Msg 3)作为两步随机接入过程中的第一消息(Msg A)来发送,并将四步随机接入过程中的消息2(Msg 2)和消息2(Msg 4)作为两步随机接入过程中的第二消息(Msg B)来发送。
当终端设备同一传输时刻在多个上行载波上发送信号,其中,多个信号包括第一消息中的PUSCH,且该多个信号的发射功率之和大于终端设备的最大发射功率时,终端设备如何确定第一消息中的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的发射功率,目前还没有明确的规定。
发明内容
本申请实施例提供一种功率分配的方法和终端设备,在两步随机接入中,当终端设备同一传输时刻发送多个信号,且该多个信号的发射功率之和大于终端设备的最大发射功率时,能够有效地确定第一消息中的PUSCH的发射功率。
第一方面,提供了一种功率分配的方法,所述方法包括:终端设备确定第一传输时刻的总发射功率,所述总发射功率为多个待发送信号的发射功率之和,所述多个待发送信号包括第一物理上行共享信道PUSCH,所述第一PUSCH属于第一消息,所述第一消息包括随机接入前导和所述第一PUSCH;
当所述总发射功率大于所述终端设备的第一最大发射功率时,所述终端设备根据功率分配优先级顺序,确定所述第一PUSCH的第一发射功率。
第二方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种装置,用于实现上述第一方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面中的任一方面或其各实现方 式中的方法。
可选地,该装置可以为芯片。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面中的任一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面中的任一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面中的任一方面或其各实现方式中的方法。
上述技术方案,在两步随机接入中,当终端设备同一传输时刻发送多个信号,该多个信号包括第一消息中的PUSCH,且该多个信号的发射功率之和大于终端设备的最大发射功率时,终端设备可以根据功率分配优先级顺序确定第一消息中的PUSCH的发射功率,由于在功率分配优先级顺序中,可以将功率优先分配给优先级高的信号,而优先级低的信号的功率可能被压缩,从而可以有效地确定第一消息中的PUSCH的发射功率。
附图说明
图1是根据本申请实施例的一种通信系统架构的示意性图。
图2是根据本申请实施例的一种四步随机接入方法的示意性流程图。
图3是根据本申请实施例的一种四步随机接入到两步随机接入的示意性流程图。
图4是根据本申请实施例的一种两步随机接入中第一消息的示意性图。
图5是根据本申请实施例的一种功率分配的方法的示意性流程图。
图6是根据本申请实施例的终端设备的示意性框图。
图7是根据本申请实施例的终端设备的示意性框图。
图8是根据本申请实施例的装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio, NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系 统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
网络设备110可以为小区提供服务,终端设备120通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备110进行通信,该小区可以是网络设备110(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括例如城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在小区搜索过程之后,终端设备已经与小区取得了下行同步,因此终端设备可以接收下行数据。但终端设备只有与小区取得上行同步,才能进行上行传输。终端设备可以通过随机接入过程(Random Access Procedure)与小区建立连接并取得上行同步。
在NR系统中,可以支持两种随机接入方式:基于竞争的随机接入方式(如图2所示)和基于非竞争的随机接入方式。为了便于理解本申请实施例 的方案,下面结合图2简单介绍基于竞争的四步随机接入过程:
步骤1,终端设备向网络设备发送Preamble(也即message1,Msg1)。
其中,随机接入前导码也可以称为前导码、随机接入前导码序列、前导码序列等。
具体而言,终端设备可以选择物理随机接入信道(Physical Random Access Channel,PRACH)资源,PRACH资源可以包括时域资源、频域资源和码域资源。接下来,终端设备可以在选择的PRACH资源上发送选择的Preamble。
可选地,终端设备可以通过随机接入资源配置获取到发送Preamble的PRACH资源。比如,小区使用的随机接入资源配置信息可以在系统消息中指示给接入的终端设备,从而终端设备可以通过指示的随机接入资源配置信息,确定PRACH资源的时域信息、频域信息和码域信息。
其中,随机接入资源配置可以包括256种配置,包括但不限于Preamble格式、周期、无线帧偏移、无线帧内的子帧编号、子帧内的起始符号、子帧内PRACH时隙的格式、PRACH时隙内PRACH时机的个数、PRACH时机持续时间等。
步骤2,网络设备向终端设备发送随机接入响应(Random Access Response,RAR,也即message2,Msg2)
网络设备检测到有终端设备发送Preamble后,可以向终端设备发送RAR,以告知终端设备在发送Msg3时可以使用的上行资源信息。其中,RAR中可以包括Preamble的标识、定时提前(Time Advance,TA)、上行授权(UL grant)、临时小区-无线网络临时标识(Temporary Cell Radio Network Temporary Identifier,TC-RNTI)等信息。
相应地,对于终端设备来说,终端设备向网络设备发送Preamble后,可以开启一个RAR窗口,在该RAR窗口内根据随机访问无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)检测对应的物理下行控制信道(Physical Downlink Control Channel,PDCCH)。若终端设备检测到RA-RNTI加扰的PDCCH后,可以获得该PDCCH调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。其中,该PDSCH中包括Preamble对应的RAR。
如果在此RAR窗口内没有接收到网络设备回复的RAR,则终端设备可以认为此次随机接入过程失败。应理解,终端设备和网络设备都需要唯一地确定RA-RNTI的值,否则终端设备就无法解码RAR。
可选地,本申请实施例中,RA-RNTI可以通过收发双方都明确的Preamble的时频位置来计算RA-RNTI的值。比如,与Preamble相关联的RA-RNTI可以通过公式(1)计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id  (1)
其中,s_id为PRACH资源的第一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的索引(0≤s_id<14),t_id为一个系统帧 中PRACH资源的第一个时隙的索引(0≤t_id<80),f_id为频域中PRACH资源的索引(0≤f_id<8),ul_carrier_id为用于传输Preamble的上行载波(0表示NUL载波,1表示SUL载波)。对于FDD而言,每个子帧只有一个PRACH资源,因此,f_id固定为0。
步骤3,终端设备发送Msg3。
终端设备在收到RAR消息后,判断该RAR是否为属于自己的RAR消息,例如终端设备可以利用前导码索引进行核对,在确定是属于自己的RAR消息后,可以在RRC层产生Msg3,并向网络设备发送Msg3,其中,Msg3需要携带终端设备特定的临时标识信息等。
步骤4,网络设备向终端设备Msg4。
Msg4中可以包括竞争解决消息以及为终端设备分配的上行传输资源。终端设备接收到网络设备发送的Msg4后,检测Msg4中是否包括终端设备在Msg3中包括的终端设备特定的临时标识。若包括则表明终端设备随机接入过程成功,否则认为随机接入过程失败,终端设备需要再次从步骤1开始发起随机接入过程。
四步随机接入的时延比较大,对于5G中的低时延高可靠场景是不合适的。考虑到低时延高可靠相关业务的特点,提出了两步随机接入过程的方案。如图3所示,在两步随机接入过程中,简单的说,相当于将四步随机接入过程的第一步和第三步合并为两步随机接入过程中的第一步,将四步随机接入过程的第二步和第四步合并为两步随机接入过程中的第二步。
也就是说,在两步随机接入过程中,终端设备向网络设备发送Msg A,Msg A包括Preamble和PUSCH,如图4所示。之后,网络设备向终端设备发送Msg B,Msg B包括PDCCH和PDSCH。
应理解,图3仅仅是两步随机接入过程的一种具体实现方式,不应对本申请的保护范围构成限定。
在单小区配置了两个上行载波或者配置了载波聚合的情况下,在同一传输时刻,终端设备可能在多个上行载波上发送信号,如发送PUSCH、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、PRACH、探测参考信号(Sounding Reference Signal,SRS)等。终端设备可以根据定义的信号的功率计算方法分别确定要发送的信号的发射功率。然而,终端设备的最大发射功率是有限的,如果终端设备的上行各个载波上各个上行信道或信号的功率之和大于终端设备的最大发射功率,则需要对部分或者全部的上行信道或信号的功率进行一定程度的功率压缩,以满足终端设备的最大发射功率进行发送。
在5G NR中定义了不同的信号之间进行功率分配的优先级,即功率分配优先级顺序,当信号的功率之和超过终端设备的最大发射功率时,终端设备可以根据规定的功率分配优先级顺序进行功率分配,即优先将功率分配给优先级高的信号,而优先级低的信号的功率可能会被压缩,以使终端设备的发射功率小于或等于终端设备的最大发射功率。
版本15(Rel)中定义的功率分配优先级顺序如下,其中,优先级从高到低依次排列:
在主小区(Primary Cell,PCell)传输的PRACH(PRACH transmission on the PCell);
承载混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)-肯定应答(Acknowledgment,ACK)信息,和/或,调度请求(Scheduling Request,SR)的PUCCH,或承载HARQ-ACK信息的PUSCH(PUCCH transmission with HARQ-ACK information and/or SR or PUSCH transmission with HARQ-ACK information);
承载信道状态信息(Channel State Information,CSI)的PUCCH或承载CSI的PUSCH(PUCCH transmission with CSI or PUSCH transmission with CSI);
未承载HARQ-ACK信息或CSI的PUSCH(PUSCH transmission without HARQ-ACK information or CSI);
SRS传输,其中非周期性的SRS的优先级高于半静态和/或周期性的SRS,或者在除PCell之外的服务小区上的PRACH传输(SRS transmission,with aperiodic SRS having higher priority than semi-persistent and/or periodic SRS,or PRACH transmission on a serving cell other than the PCell)。
可以看到,PCell上传输的PRACH的功率分配优先级最高,SRS或者非PCell上传输的PRACH的功率分配优先级最低。
在载波聚合场景下,当不同载波的信号或者信号的功率分配优先级相同时,终端设备可以优先将功率分配给主小区组(Master Cell Group,MCG)或者辅小区组(Secondary Cell Group,SCG)的PCell上的信号,其次是SCG的PCell。并且MCG和SCG的PCell之间,优先分配给MCG的PCell,其次是SCG的PCell。在单小区配置了两个上行载波的场景下,终端设备可以优先将功率分配给用于传输PRACH的载波上的信号。如果没有配置发送PUCCH的载波,则终端设备可以优先将功率分配给非补充上行载波(Non-Supplementary UL Carrier)。
然而,在两步随机接入过程中,当终端设备同一传输时刻在多个上行载波上发送多个信号,该多个信号包括第一消息中的PUSCH,且该多个信号的发射功率之和大于终端设备的最大发射功率时,终端设备如何确定第一消息中的PUSCH的发射功率,目前还没有明确的规定。鉴于此,本申请实施例提出了一种功率分配的方法,当终端设备在同一传输时刻发送多个信号,且该多个信号的发射功率之和大于终端设备的最大发射功率时,可以确定第一消息中的PUSCH的发射功率。
图5是根据本申请实施例的功率分配的方法300的示意性流程图。图5所述的方法可以由终端设备执行,该终端设备例如可以为图1中所示的终端设备120。如图5所示,该方法300可以包括以下内容中的至少部分内容。
应理解,方法300可以应用于单小区配置了多个上行载波的场景中,也 可以应用于载波聚合的场景中,还可以应用于其它场景中,本申请实施例对此并不限定。
在310中,终端设备确定第一传输时刻的总发射功率,其中,第一传输时刻的总发射功率为多个待发送信号的发射功率之和,该多个待发送信号包括第一PUSCH,第一PUSCH属于第一消息,第一消息包括Preamble和第一PUSCH。
在本申请实施例中,第一消息包括Preamble和第一PUSCH可以理解为:终端设备在向网络设备发送Preamble和发送第一PUSCH之间,网络设备与终端设备之间没有其他消息,和/或,网络设备可以针对Preamble和第一PUSCH同时向终端设备发送随机接入响应。
在本申请实施例中,第一PUSCH可以承载用于区分终端设备的信息,如终端设备标识、无线网络临时标识(Radio Network Temporary Identifier,RNTI)等。此外,第一PUSCH还可以承载该随机接入的触发事件。其中,随机接入过程通常可以由以下事件触发:
(1)初始接入(Initial Access)。
终端设备可以从无线资源控制(Radio Resource Control,RRC)空闲态(RRC_IDLE态)进入RRC连接态(RRC_CONNECTED)。
(2)RRC连接重建过程(RRC Connection Re-establishment procedure)。
(3)切换(Handover)。
此时,终端设备处于连接态,需要与新的小区建立上行同步。
(4)RRC连接态下,下行数据或上行数据到达时,上行处于“不同步”状态(DL or UL data arrival during RRC_CONNECTED when UL synchronisation status is"non-synchronised")。
(5)RRC连接态下,上行数据到达时,没有可用的PUCCH资源用于调度请求(Scheduling Request,SR)传输(UL data arrival during RRC_CONNECTED when there are no PUCCH resources for SR available)。
(6)SR失败(SR failure)。
(7)RRC在同步配置时的请求(Request by RRC upon synchronous reconfiguration)。
(8)终端设备从RRC非激活态过渡(Transition from RRC_INACTIVE)。
(9)在辅小区(Secondary Cell,SCell)添加时建立时间对齐(To establish time alignment at SCell addition)。
(10)终端设备请求其他系统信息(Other System Information,OSI)。
(11)终端设备需要进行波束失败的恢复(Beam failure recovery)。
针对不同的随机接入触发事件,第一PUSCH承载的内容可以不同。
例如,对于初始接入的场景,第一PUSCH可以承载RRC层生成的RRC连接请求消息(RRC Setup Request)。此外,第一PUSCH还可以承载例如终端设备的5G-服务临时移动用户标识(Serving-Temporary Mobile Subscriber Identity,S-TMSI)或随机数等。
又例如,对于RRC连接重建场景,第一PUSCH可以承载RRC层生成的RRC连接重建请求消息(RRC Reestablishment Request)。此外,第一PUSCH还可以承载例如小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)等。
又例如,对于切换场景,第一PUSCH可以承载RRC层生成的RRC切换确认消息(RRC Handover Confirm),其携带终端设备的C-RNTI。此外,第一PUSCH还可承载例如缓冲状态报告(Buffer Status Report,BSR)等信息。对于其它触发事件例如上/下行数据到达的场景,第一PUSCH至少可以承载终端设备的C-RNTI。
可选地,上述内容中的多个待发送信号可以包括但不限于:PUSCH、PUCCH、PRACH、SRS等。其中,PDCCH还可以是增强的物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)、机器类通信物理下行控制信道(Machine Type Communication Physical Downlink Control Channel,MPDCCH)、物理副链路控制信道(Physical Sidelink Control Channel,PSCCH)或窄带物理下行控制信道(Narrowband Physical Downlink Control Channel,NPDCCH),本申请实施例对此不作具体限定。
以待发送信道为PUCCH进行说明,应理解,发送信道可以理解为:发送PUCCH承载的数据,或者,将传输资源分配给PUCCH,或者,在传输资源上传输PUCCH上的数据。
在本申请实施例中,终端设备确定第一传输时刻的总发射功率的方式可以有很多,本申请对此并不限定。例如,终端设备可以根据现有的信号的功率计算方法分别计算待发送信号的发射功率,之后,将各个待发送信号的发射功率进行求和即可得到第一传输时刻的总发射功率。
需要说明的是,第一传输时刻的总发射功率不是终端设备在第一传输时刻的实际发射功率,第一发射时刻的总发射功率大于或等于第一传输时刻的实际发射功率。
在320中,当第一传输时刻的总发射功率大于终端设备的第一最大发射功率时,终端设备根据功率分配优先级顺序,确定第一PUSCH的第一发射功率。
可选地,第一最大发射功率可以是终端设备的绝对最大发射功率P CMAX(i),或者也可以绝对最大发射功率的线性值(Linear Value),即标准中的
Figure PCTCN2019081812-appb-000001
当第一最大发射功率为
Figure PCTCN2019081812-appb-000002
时,在单小区配置了两个上行载波或者配置了载波聚合的情况下,如果在传输时机i中用于PUSCH/PUCCH/PRACH/SRS传输的终端设备的总发射功率将超过
Figure PCTCN2019081812-appb-000003
Figure PCTCN2019081812-appb-000004
为P CMAX(i)的线性值,终端设备可以根据功率分配优先级顺序对PUSCH/PUCCH/PRACH/SRS分配发射功率,以使终端设备在传输时机i的 每符号中的发射功率小于或等于
Figure PCTCN2019081812-appb-000005
当第一传输时刻的总发射功率大于终端设备的第一最大发射功率时,终端设备需要对全部或部分的待发送信号进行压缩,即重新确定待发送信号的发射功率,包括重新确定第一PUSCH的发射功率,以满足终端设备的第一最大发射功率。
在重新确定第一PUSCH的发射功率时,终端设备可以根据功率分配优先级顺序,确定第一PUSCH的第一发射功率。其中,第一PUSCH的第一发射功率可以小于或等于重新确定发射功率之前的第一PUSCH的发射功率。
在一种可能的实施例中,功率分配优先级顺序可以与前述内容的功率分配优先级顺序(为了描述方便,称为第一功率分配优先级顺序)相同。
在四步随机接入中,PRACH,也就是Msg1的功率分配优先级最高,而第一PUSCH,也就是Msg3的功率分配优先级较低。这是因为在四步随机接入中的Msg3可以支持重传,即使因为第一PUSCH进行了功率压缩而没有被网络设备正确接收到,则网络设备可以使用TC-RNTI扰码的下行控制信息(Downlink Control Information,DCI)格式(format)0_0来调度Msg3的重传。
然而在两步随机接入过程中,第一消息包括四步随机接入过程中的Msg1和Msg3,即包括Preamble和第一PUSCH两部分。如果使用第一功率分配优先级顺序,当第一消息中的第一PUSCH部分的功率由于其功率分配的优先级较低而被压缩,则可能第一消息不能被网络设备正确接收,从而会造成第一消息的重传,增加了两步随机接入的时延。此外,由于重传的功率攀升,该实施例可能增加额外的上行干扰和随机接入资源的浪费。
因此,本申请实施例提出了另一种实施例,在另一种可能的实施例中,终端设备可以根据第二功率分配优先级顺序,确定第一PUSCH的第一发射功率。
应理解,在本申请实施例中,“第一”和“第二”仅仅为了区分不同的对象,但并不对本申请实施例的范围构成限制。
在一种实现方式中,第二功率分配优先级顺序可以包括第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:未承载HARQ-ACK信息的PUSCH的功率分配优先级、未承载CSI的PUSCH的功率分配优先级。
具体地,作为一种示例,第一PUSCH的功率分配优先级可以与在PCell传输的PRACH的功率分配优先级相同。此时,第二功率分配优先级顺序可以如下所示:
在PCell传输的PRACH,或者在PCell传输的第一PUSCH(PUSCH transmission in Msg A of 2 step RACH on the PCell);
承载HARQ-ACK信息和/或SR的PUCCH,或承载HARQ-ACK信息的PUSCH;
承载CSI的PUCCH或承载CSI的PUSCH;
未承载HARQ-ACK信息或CSI的PUSCH;
SRS传输,其中非周期性的SRS的优先级高于半静态和/或周期性的SRS,或者在除PCell之外的服务小区上的PRACH传输。
作为另一种示例,第二功率分配优先级顺序可以包括第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:承载CSI的PUCCH的功率分配优先级、承载CSI的PUSCH的功率分配优先级,且第一PUSCH的功率分配优先级低于以下中的至少一项功率分配优先级:承载HARQ-ACK信息和/或SR的PUCCH的功率分配优先级、承载HARQ-ACK信息的PUSCH的功率分配优先级。
此时,第二功率分配优先级顺序可以如下所示:
在PCell传输的PRACH;
承载HARQ-ACK信息和/或SR的PUCCH,或承载HARQ-ACK信息的PUSCH;
在PCell传输的第一PUSCH;
承载CSI的PUCCH或承载CSI的PUSCH;
未承载HARQ-ACK信息或CSI的PUSCH;
SRS传输,其中非周期性的SRS的优先级高于半静态和/或周期性的SRS,或者在除PCell之外的服务小区上的PRACH传输。
作为另一种示例,第二功率分配优先级顺序可以包括第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:未承载HARQ-ACK信息的PUSCH的功率分配优先级、未承载CSI的PUSCH的功率分配优先级,且第一PUSCH的功率分配优先级低于以下中的至少一项功率分配优先级:承载CSI的PUCCH的功率分配优先级、承载CSI的PUSCH的功率分配优先级。
此时,第二功率分配优先级顺序可以如下所示:
在PCell传输的PRACH;
承载HARQ-ACK信息和/或SR的PUCCH,或承载HARQ-ACK信息的PUSCH;
承载CSI的PUCCH或承载CSI的PUSCH;
在PCell传输的第一PUSCH;
未承载HARQ-ACK信息或CSI的PUSCH;
SRS传输,其中非周期性的SRS的优先级高于半静态和/或周期性的SRS,或者在除PCell之外的服务小区上的PRACH传输。
需要说明的是,在本申请实施例中,除了第一PUSCH,其他PUSCH,如未承载HARQ-ACK信息的PUSCH、未承载CSI的PUSCH、承载HARQ-ACK信息的PUSCH以及承载CSI的PUSCH都不属于第一消息。
可以看到,在该实现方式中,第一PUSCH的功率分配优先级较高,从而可以保证第一PUSCH的功率分配的优先级,避免了第一消息不能被网络 设备正确接收造成第一消息重传的问题,减少了两步随机接入过程的时延,并且也减少了上行干扰的随机接入资源的浪费。
在另一种实现方式中,终端设备可以根据第一消息的重传次数确定第二功率分配优先级顺序。其中,第一消息的重传次数也可以称为第一消息的功率攀升计数参数。
可选地,当第一消息的重传次数小于或等于阈值时,第二功率分配优先级顺序可以包括第一PUSCH的功率分配优先级低于预设功率分配优先级。
可选地,当第一消息的重传次数大于或等于阈值时,第二功率分配优先级顺序可以包括第一PUSCH的功率分配优先级高于预设功率分配优先级。如此,可以保证第一PUSCH的功率分配优先级较高,从而可以保证重传次数较高的第一消息的功率能够优先保证,保证第一消息可以尽快被网络设备成功接收。
其中,该阈值可以是基于协议预设在终端设备上的,或者,由网络设备预先配置给终端设备的,例如,可以通过RRC信令进行配置。
可选地,在本申请实施例中,预设功率分配优先级可以为以下中的至少一项功率分配优先级:
承载HARQ-ACK信息和/或SR的PUCCH的功率分配优先级;
承载HARQ-ACK信息的PUSCH的功率分配优先级;
承载CSI的PUCCH的功率分配优先级;
承载CSI的PUSCH的功率分配优先级;
未承载HARQ-ACK信息的PUSCH的功率分配优先级;
未承载CSI的PUSCH的功率分配优先级。
示例性地,若预设功率分配优先级为承载HARQ-ACK信息和/或SR的PUCCH的功率分配优先级,以及承载HARQ-ACK信息的PUSCH的功率分配优先级,且第一消息的重传次数小于或等于阈值,此时,第二功率分配优先级可以如下所示:
在PCell传输的PRACH;
承载HARQ-ACK信息和/或SR的PUCCH,或承载HARQ-ACK信息的PUSCH;
在PCell传输的第一PUSCH;
承载CSI的PUCCH或承载CSI的PUSCH;
未承载HARQ-ACK信息或CSI的PUSCH;
SRS传输,其中非周期性的SRS的优先级高于半静态和/或周期性的SRS,或者在除PCell之外的服务小区上的PRACH传输。
再示例性地,若预设功率分配优先级为承载HARQ-ACK信息和/或SR的PUCCH的功率分配优先级,以及承载HARQ-ACK信息的PUSCH的功率分配优先级,且第一消息的重传次数大于或等于阈值,此时,第二功率分配优先级可以如下所示:
在PCell传输的PRACH,或在PCell传输的第一PUSCH;
承载HARQ-ACK信息和/或SR的PUCCH,或承载HARQ-ACK信息的PUSCH;
承载CSI的PUCCH或承载CSI的PUSCH;
未承载HARQ-ACK信息或CSI的PUSCH;
SRS传输,其中非周期性的SRS的优先级高于半静态和/或周期性的SRS,或者在除PCell之外的服务小区上的PRACH传输。
或者,第二功率分配优先级可以如下所示:
在PCell传输的PRACH;
在PCell传输的第一PUSCH;
承载HARQ-ACK信息和/或SR的PUCCH,或承载HARQ-ACK信息的PUSCH;
承载CSI的PUCCH或承载CSI的PUSCH;
未承载HARQ-ACK信息或CSI的PUSCH;
SRS传输,其中非周期性的SRS的优先级高于半静态和/或周期性的SRS,或者在除PCell之外的服务小区上的PRACH传输。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本申请实施例的范围。
在该实施例中,终端设备根据第一消息的重传次数或功率攀升计数参数的不同,设置第一消息中第一PUSCH的功率分配的不同优先级,优先保证了重传次数大的或功率攀升计数参数大的第一消息的功率分配,避免了第一消息由于功率压缩造成的更多次的重传,减少了两步随机接入过程的时延,减少了上行干扰和随机接入资源的浪费。
可选地,在本申请实施例中,当第一传输时刻的总发射功率大于终端设备的第一最大发射功率时,终端设备除了可以根据功率分配优先级顺序确定第一PUSCH的第一发射功率外,还可以根据其他方式确定第一PUSCH的第一发射功率。例如,终端设备可以根据第一PUSCH在第一传输时刻的信道质量,确定第一PUSCH的第一发射功率。
终端设备确定第一PUSCH的第一发射功率后,可以在第一传输时刻,基于第一发射功率向网络设备发送第一PUSCH。
在本申请实施例中,终端设备还可以确定第二发射功率,其中,第二发射功率可以为多个待发送信号中除第一PUSCH之外的每个待发送信号的发射功率;然后,终端设备可以基于第二发射功率,发送多个待发送信号中除第一PUSCH之外的待发送信号。
可选地,终端设备确定第二发射功率的实现方式可以与确定第一发射功率的方式相同,比如根据第二功率分配优先级顺序确定第二发射功率。终端设备根据第二功率分配优先级顺序确定第二发射功率的实现方式可以参考前述内容的描述,此处不再赘述。
可选地,终端设备确定第二发射功率的实现方式可以与确定第一发射功率的方式不同,只要第一传输时刻的总发射功率小于或等于终端设备的第一 最大发射功率即可。比如终端设备根据第二功率分配优先级顺序确定第一发射功率,根据第一传输时刻的信道质量确定第二发射功率。
本申请实施例,在两步随机接入中,当终端设备同一传输时刻发送多个信号,该多个信号包括第一消息中的PUSCH,且该多个信号的发射功率之和大于终端设备的最大发射功率时,终端设备可以根据功率分配优先级顺序确定第一消息中的PUSCH的发射功率,由于在功率分配优先级顺序中,可以将功率优先分配给优先级高的信号,而优先级低的信号的功率可能被压缩,从而可以有效地确定第一消息中的PUSCH的发射功率。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的通信方法,下面将结合图6和图7,描述根据本申请实施例的通信装置,方法实施例所描述的技术特征适用于以下装置实施例。
图6示出了本申请实施例的终端设备400的示意性框图。如图6所示,该终端设备400包括:
处理单元410,用于确定第一传输时刻的总发射功率,所述总发射功率为多个待发送信号的发射功率之和,所述多个待发送信号包括第一PUSCH,所述第一PUSCH属于第一消息,所述第一消息包括随机接入前导和所述第一PUSCH;
所述处理单元410还用于,当所述总发射功率大于所述终端设备400的第一最大发射功率时,根据功率分配优先级顺序,确定所述第一PUSCH的第一发射功率。
可选地,在本申请实施例中,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:
未承载HARQ-ACK信息的PUSCH的功率分配优先级;
未承载CSI的PUSCH的功率分配优先级。
可选地,在本申请实施例中,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级与在主小区传输的物理随机接入信道PRACH的功率分配优先级相同。
可选地,在本申请实施例中,在所述功率分配优先级顺序中,所述第一 PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:承载CSI的PUCCH的功率分配优先级、承载所述CSI的PUSCH的功率分配优先级;
且所述第一PUSCH的功率分配优先级低于以下中的至少一项功率分配优先级:
承载HARQ-ACK信息和/或SR的PUCCH的功率分配优先级;
承载所述HARQ-ACK信息的PUSCH的功率分配优先级。
可选地,在本申请实施例中,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:未承载HARQ-ACK信息的PUSCH的功率分配优先级、未承载CSI的PUSCH的功率分配优先级;
且所述第一PUSCH的功率分配优先级低于以下中的至少一项功率分配优先级:承载CSI的PUCCH的功率分配优先级、承载所述CSI的PUSCH的功率分配优先级。
可选地,在本申请实施例中,所述处理单元410还用于:根据所述第一消息的重传次数,确定所述功率分配优先级顺序。
可选地,在本申请实施例中,当所述第一消息的重传次数小于或等于阈值时,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级低于预设功率分配优先级。
可选地,在本申请实施例中,当所述第一消息的重传次数大于或等于阈值时,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于预设功率分配优先级。
可选地,在本申请实施例中,所述预设功率分配优先级为以下中的至少一项功率分配优先级:
承载HARQ-ACK信息和/或SR的PUCCH的功率分配优先级;
承载所述HARQ-ACK信息的PUSCH的功率分配优先级;
承载CSI的PUCCH的功率分配优先级;
承载所述CSI的PUSCH的功率分配优先级;
未承载所述HARQ-ACK信息的PUSCH的功率分配优先级;
未承载所述CSI的PUSCH的功率分配优先级。
可选地,在本申请实施例中,所述阈值是预设在所述终端设备上的。
可选地,在本申请实施例中,所述终端设备400还包括:通信单元420,用于在所述第一传输时刻,基于所述第一发射功率向所述网络设备发送所述第一PUSCH。
可选地,在本申请实施例中,所述处理单元410还用于:根据所述功率分配优先级顺序,确定第二发射功率,所述第二发射功率为所述多个待发送信号中除所述第一PUSCH之外的待发送信号的发射功率;
所述终端设备400还包括:通信单元420,用于基于所述第二发射功率,发送所述多个待发送信号中除所述第一PUSCH之外的待发送信号。
可选地,在本申请实施例中,所述未承载所述HARQ-ACK信息的 PUSCH和所述未承载所述CSI的PUSCH不属于所述第一消息。
可选地,在本申请实施例中,所述承载所述HARQ-ACK信息的PUSCH和所述承载所述CSI的PUSCH不属于所述第一消息。
可选地,在本申请实施例中,所述第一消息为两步随机接入中的第一消息。
应理解,该终端设备400可对应于方法300中的终端设备,可以实现该方法300中的终端设备的相应操作,为了简洁,在此不再赘述。
图7是本申请实施例提供的一种终端设备500示意性结构图。图7所示的终端设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,终端设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图7所示,终端设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该终端设备500具体可为本申请实施例的终端设备,并且该终端设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的装置的示意性结构图。图8所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在 此不再赘述。
可选地,该装置600可以为芯片。应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR  RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (35)

  1. 一种功率分配的方法,其特征在于,所述方法包括:
    终端设备确定第一传输时刻的总发射功率,所述总发射功率为多个待发送信号的发射功率之和,所述多个待发送信号包括第一物理上行共享信道PUSCH,所述第一PUSCH属于第一消息,所述第一消息包括随机接入前导和所述第一PUSCH;
    当所述总发射功率大于所述终端设备的第一最大发射功率时,所述终端设备根据功率分配优先级顺序,确定所述第一PUSCH的第一发射功率。
  2. 根据权利要求1所述的方法,其特征在于,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:
    未承载混合自动重传请求-肯定应答HARQ-ACK信息的PUSCH的功率分配优先级;
    未承载信道状态信息CSI的PUSCH的功率分配优先级。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级与在主小区传输的物理随机接入信道PRACH的功率分配优先级相同。
  4. 根据权利要求1或2所述的方法,其特征在于,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:承载CSI的PUCCH的功率分配优先级、承载所述CSI的PUSCH的功率分配优先级;
    且所述第一PUSCH的功率分配优先级低于以下中的至少一项功率分配优先级:
    承载HARQ-ACK信息和/或调度请求SR的PUCCH的功率分配优先级;
    承载所述HARQ-ACK信息的PUSCH的功率分配优先级。
  5. 根据权利要求1或2所述的方法,其特征在于,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:未承载HARQ-ACK信息的PUSCH的功率分配优先级、未承载CSI的PUSCH的功率分配优先级;
    且所述第一PUSCH的功率分配优先级低于以下中的至少一项功率分配优先级:承载CSI的PUCCH的功率分配优先级、承载所述CSI的PUSCH的功率分配优先级。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一消息的重传次数,确定所述功率分配优先级顺序。
  7. 根据权利要求6所述的方法,其特征在于,当所述第一消息的重传次数小于或等于阈值时,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级低于预设功率分配优先级。
  8. 根据权利要求6所述的方法,其特征在于,当所述第一消息的重传次数大于或等于阈值时,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于预设功率分配优先级。
  9. 根据权利要求7或8所述的方法,其特征在于,所述预设功率分配优先级为以下中的至少一项功率分配优先级:
    承载HARQ-ACK信息和/或SR的PUCCH的功率分配优先级;
    承载所述HARQ-ACK信息的PUSCH的功率分配优先级;
    承载CSI的PUCCH的功率分配优先级;
    承载所述CSI的PUSCH的功率分配优先级;
    未承载所述HARQ-ACK信息的PUSCH的功率分配优先级;
    未承载所述CSI的PUSCH的功率分配优先级。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述阈值是预设在所述终端设备上的。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一传输时刻,所述终端设备基于所述第一发射功率向所述网络设备发送所述第一PUSCH。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述功率分配优先级顺序,确定第二发射功率,所述第二发射功率为所述待发送信号中除所述第一PUSCH之外的待发送信号的发射功率;
    所述终端设备基于所述第二发射功率,发送所述多个待发送信号中除所述第一PUSCH之外的待发送信号。
  13. 根据权利要求2、5或9所述的方法,其特征在于,所述未承载所述HARQ-ACK信息的PUSCH和所述未承载所述CSI的PUSCH不属于所述第一消息。
  14. 根据权利要求4、5或9所述的方法,其特征在于,所述承载所述HARQ-ACK信息的PUSCH和所述承载所述CSI的PUSCH不属于所述第一消息。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述第一消息为两步随机接入中的第一消息。
  16. 一种终端设备,其特征在于,包括:
    处理单元,用于确定第一传输时刻的总发射功率,所述总发射功率为多个待发送信号的发射功率之和,所述多个待发送信号包括第一物理上行共享信道PUSCH,所述第一PUSCH属于第一消息,所述第一消息包括随机接入前导和所述第一PUSCH;
    所述处理单元还用于,当所述总发射功率大于所述终端设备的第一最大发射功率时,根据功率分配优先级顺序,确定所述第一PUSCH的第一发射 功率。
  17. 根据权利要求16所述的终端设备,其特征在于,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:
    未承载混合自动重传请求-肯定应答HARQ-ACK信息的PUSCH的功率分配优先级;
    未承载信道状态信息CSI的PUSCH的功率分配优先级。
  18. 根据权利要求16或17所述的终端设备,其特征在于,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级与在主小区传输的物理随机接入信道PRACH的功率分配优先级相同。
  19. 根据权利要求16或17所述的终端设备,其特征在于,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:承载CSI的PUCCH的功率分配优先级、承载所述CSI的PUSCH的功率分配优先级;
    且所述第一PUSCH的功率分配优先级低于以下中的至少一项功率分配优先级:
    承载HARQ-ACK信息和/或调度请求SR的PUCCH的功率分配优先级;
    承载所述HARQ-ACK信息的PUSCH的功率分配优先级。
  20. 根据权利要求16或17所述的终端设备,其特征在于,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于以下中的至少一项功率分配优先级:未承载HARQ-ACK信息的PUSCH的功率分配优先级、未承载CSI的PUSCH的功率分配优先级;
    且所述第一PUSCH的功率分配优先级低于以下中的至少一项功率分配优先级:承载CSI的PUCCH的功率分配优先级、承载所述CSI的PUSCH的功率分配优先级。
  21. 根据权利要求16所述的终端设备,其特征在于,所述处理单元还用于:
    根据所述第一消息的重传次数,确定所述功率分配优先级顺序。
  22. 根据权利要求21所述的终端设备,其特征在于,当所述第一消息的重传次数小于或等于阈值时,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级低于预设功率分配优先级。
  23. 根据权利要求21所述的终端设备,其特征在于,当所述第一消息的重传次数大于或等于阈值时,在所述功率分配优先级顺序中,所述第一PUSCH的功率分配优先级高于预设功率分配优先级。
  24. 根据权利要求22或23所述的终端设备,其特征在于,所述预设功率分配优先级为以下中的至少一项功率分配优先级:
    承载HARQ-ACK信息和/或SR的PUCCH的功率分配优先级;
    承载所述HARQ-ACK信息的PUSCH的功率分配优先级;
    承载CSI的PUCCH的功率分配优先级;
    承载所述CSI的PUSCH的功率分配优先级;
    未承载所述HARQ-ACK信息的PUSCH的功率分配优先级;
    未承载所述CSI的PUSCH的功率分配优先级。
  25. 根据权利要求22至24中任一项所述的终端设备,其特征在于,所述阈值是预设在所述终端设备上的。
  26. 根据权利要求16至25中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于在所述第一传输时刻,基于所述第一发射功率向所述网络设备发送所述第一PUSCH。
  27. 根据权利要求16至26中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    根据所述功率分配优先级顺序,确定第二发射功率,所述第二发射功率为所述多个待发送信号中除所述第一PUSCH之外的待发送信号的发射功率;
    所述终端设备还包括:
    通信单元,用于基于所述第二发射功率,发送所述多个待发送信号中除所述第一PUSCH之外的待发送信号。
  28. 根据权利要求17、20或24所述的终端设备,其特征在于,所述未承载所述HARQ-ACK信息的PUSCH和所述未承载所述CSI的PUSCH不属于所述第一消息。
  29. 根据权利要求19、20或24所述的终端设备,其特征在于,所述承载所述HARQ-ACK信息的PUSCH和所述承载所述CSI的PUSCH不属于所述第一消息。
  30. 根据权利要求16至29中任一项所述的终端设备,其特征在于,所述第一消息为两步随机接入中的第一消息。
  31. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的方法。
  32. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至15中任一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  34. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法。
  35. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
PCT/CN2019/081812 2019-04-08 2019-04-08 功率分配的方法和终端设备 WO2020206597A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081812 WO2020206597A1 (zh) 2019-04-08 2019-04-08 功率分配的方法和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081812 WO2020206597A1 (zh) 2019-04-08 2019-04-08 功率分配的方法和终端设备

Publications (1)

Publication Number Publication Date
WO2020206597A1 true WO2020206597A1 (zh) 2020-10-15

Family

ID=72750928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081812 WO2020206597A1 (zh) 2019-04-08 2019-04-08 功率分配的方法和终端设备

Country Status (1)

Country Link
WO (1) WO2020206597A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300305A (zh) * 2011-09-23 2011-12-28 电信科学技术研究院 一种上行功率控制的方法及装置
US20140171144A1 (en) * 2011-07-29 2014-06-19 Lg Electronics Inc. Terminal equipment and method for controlling uplink transmission power
CN104812046A (zh) * 2014-01-28 2015-07-29 电信科学技术研究院 一种上行信道的功率控制方法及装置
CN108207022A (zh) * 2017-12-26 2018-06-26 广东欧珀移动通信有限公司 功率调整方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140171144A1 (en) * 2011-07-29 2014-06-19 Lg Electronics Inc. Terminal equipment and method for controlling uplink transmission power
CN102300305A (zh) * 2011-09-23 2011-12-28 电信科学技术研究院 一种上行功率控制的方法及装置
CN104812046A (zh) * 2014-01-28 2015-07-29 电信科学技术研究院 一种上行信道的功率控制方法及装置
CN108207022A (zh) * 2017-12-26 2018-06-26 广东欧珀移动通信有限公司 功率调整方法及装置

Similar Documents

Publication Publication Date Title
US11737110B2 (en) Method and apparatus for determining channel access scheme, terminal device, and network device
WO2021016973A1 (zh) 一种信息传输方法、电子设备及存储介质
CN113490286B (zh) 随机接入的方法、终端设备和网络设备
US20220007426A1 (en) Random access method and device
WO2020020270A1 (zh) 随机接入的方法和通信设备
EP3941150A1 (en) Random access method, terminal device and network device
US11363644B2 (en) Methods and apparatus for indicating channel access
US20230345525A1 (en) Random access method, and electronic device and storage medium
WO2020186466A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020191599A1 (zh) 通信方法、终端设备和网络设备
WO2020191561A1 (zh) 一种随机接入方法及装置、用户设备、网络设备
WO2020061945A1 (zh) 用于随机接入的方法、网络设备和终端设备
WO2020223878A1 (zh) 随机接入的方法、终端设备和网络设备
US20230129426A1 (en) Wireless communication method and terminal device
WO2020210963A1 (zh) 消息传输的方法和设备
WO2020215330A1 (zh) 随机接入过程中传输信息的方法、终端设备和网络设备
WO2020191632A1 (zh) 一种功率控制方法及装置、终端、网络设备
WO2021223191A1 (zh) 信息发送、接收方法、终端及网络设备
WO2021077377A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2020227907A1 (zh) 一种资源确定方法及装置、终端
WO2020206597A1 (zh) 功率分配的方法和终端设备
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2020186468A1 (zh) 随机接入的方法和设备
WO2020199171A1 (zh) 一种传输参数确定方法及装置、用户设备
WO2019242382A1 (zh) 一种指示信道接入类型的方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924256

Country of ref document: EP

Kind code of ref document: A1