WO2020223878A1 - 随机接入的方法、终端设备和网络设备 - Google Patents

随机接入的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020223878A1
WO2020223878A1 PCT/CN2019/085719 CN2019085719W WO2020223878A1 WO 2020223878 A1 WO2020223878 A1 WO 2020223878A1 CN 2019085719 W CN2019085719 W CN 2019085719W WO 2020223878 A1 WO2020223878 A1 WO 2020223878A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
transmission opportunity
priority
random access
transmission
Prior art date
Application number
PCT/CN2019/085719
Other languages
English (en)
French (fr)
Inventor
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980074105.2A priority Critical patent/CN112997574B/zh
Priority to PCT/CN2019/085719 priority patent/WO2020223878A1/zh
Publication of WO2020223878A1 publication Critical patent/WO2020223878A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This application relates to the field of communications, in particular to a random access method, terminal equipment and network equipment.
  • the New Radio (NR) system supports data transmission on the unlicensed spectrum.
  • communication equipment communicates on the unlicensed spectrum, it needs to be based on the principle of Listen Before Talk (LBT), that is, communication equipment Before signal transmission on the unlicensed spectrum channel, channel listening (or called channel detection) is required. Only when the channel detection result is that the channel is idle, the communication device can transmit the signal; if the communication device is unlicensed The result of channel sensing on the spectrum is that the channel is busy, and signal transmission cannot be performed.
  • LBT Listen Before Talk
  • NR-U NR-Based Access to Unlicensed Spectrum
  • the embodiments of the present application provide a random access method, terminal equipment, and network equipment, which can reduce the delay of random access.
  • a random access method includes: a terminal device receives a random access response RAR sent by a network device, and the RAR includes multiple messages used to transmit message 3 in random access. Transmission opportunity; the terminal device performs channel sensing on transmission opportunities after the first transmission opportunity according to the first transmission opportunity of the multiple transmission opportunities, until the channel sensing is successful.
  • a random access method includes: a network device sends a random access response RAR to a terminal device, and the RAR includes a message used for the terminal device to transmit in random access.
  • the network device determines the target transmission opportunity for receiving the message 3 according to the first transmission opportunity among the multiple transmission opportunities.
  • a terminal device which is used to execute the method in the foregoing first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a network device configured to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a device for implementing any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect to the second aspect or any of its implementation modes method.
  • the device is a chip.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the RAR sent by the network device to the terminal device includes multiple transmission opportunities for the transmission of message 3, which avoids that the terminal device has no available transmission opportunities due to channel listening failure when there is only one transmission opportunity. Go back to message 1 to retry the random access problem. Further, the terminal device can perform channel sensing for multiple transmission opportunities after the first transmission opportunity according to the first transmission opportunity among the multiple transmission opportunities, which increases the probability of successful channel sensing, thereby reducing random access Time delay.
  • Fig. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a four-step random access method according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a MAC PDU including RAR according to an embodiment of the present application.
  • Fig. 4 is a schematic block diagram of a BI prefix according to an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a RAPID prefix according to an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a MAC RAR according to an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of a random access method according to an embodiment of the present application.
  • FIGS 8-10 are schematic diagrams of partial transmission opportunities according to embodiments of the present application.
  • Fig. 11 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a device according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Radio, NR evolution system of NR system
  • LTE LTE-based access to unlicensed spectrum
  • LTE-U Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to carrier aggregation (CA) scenarios, can also be applied to dual connectivity (DC) scenarios, and can also be applied to standalone (SA) deployments.
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device 110 may provide services for a cell, and the terminal device 120 communicates with the network device 110 through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be the network device 110 (for example, a base station)
  • the corresponding cell the cell can belong to a macro base station or a base station corresponding to a small cell (Small cell).
  • the small cell here can include, for example, a metro cell, a micro cell, and a pico cell. Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in this embodiment of the application.
  • the terminal device After the cell search process, the terminal device has achieved downlink synchronization with the cell, so the terminal device can receive downlink data. However, the terminal equipment can only perform uplink transmission if it has achieved uplink synchronization with the cell.
  • the terminal equipment can establish a connection with the cell and obtain uplink synchronization through a random access procedure (Random Access Procedure).
  • the random access process can usually be triggered by the following events:
  • the terminal device can enter the RRC connected state (RRC_CONNECTED) from the radio resource control (Radio Resource Control, RRC) idle state (RRC_IDLE state).
  • RRC Radio Resource Control
  • the terminal device is in the connected state and needs to establish uplink synchronization with the new cell.
  • the uplink is in a "non-synchronised” state (DL or UL data arrival during RRC_CONNECTED when UL synchronisation status is "non-synchronised”).
  • the terminal device transitions from the RRC inactive state (Transition from RRC_INACTIVE).
  • the terminal device requests other system information (Other System Information, OSI).
  • OSI Operating System Information
  • the terminal device needs to perform beam failure recovery (Beam failure recovery).
  • Step 1 The terminal device sends a random access preamble (Preamble, that is, message1, Msg1) to the network device.
  • Preamble that is, message1, Msg1
  • the random access preamble may also be referred to as a preamble, a random access preamble sequence, a preamble sequence, and so on.
  • the terminal device may select physical random access channel (Physical Random Access Channel, PRACH) resources, and the PRACH resources may include time domain resources, frequency domain resources, and code domain resources.
  • PRACH Physical Random Access Channel
  • the terminal device can send the selected Preamble on the selected PRACH resource.
  • the network device can estimate the transmission delay between it and the terminal device according to the Preamble, and adjust the uplink timing accordingly, and can roughly determine the size of the resource required for the terminal device to transmit the message 3 (Msg3).
  • Msg3 message 3
  • Step 2 The network device sends a random access response (Random Access Response, RAR, that is, message2, Msg2) to the terminal device
  • RAR Random Access Response
  • the terminal device After the terminal device sends the Preamble to the network device, it can open a RAR window, in which RAR window detects the corresponding physical downlink control channel (Physical Downlink) according to the Random Access Radio Network Temporary Identifier (RA-RNTI) Control Channel, PDCCH). If the terminal device detects the PDCCH scrambled by the RA-RNTI, it can obtain the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) scheduled by the PDCCH. Wherein, the PDSCH includes the RAR corresponding to the Preamble.
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the terminal device can consider that this random access procedure has failed. It should be understood that both the terminal equipment and the network equipment need to uniquely determine the value of RA-RNTI, otherwise the terminal equipment cannot decode the RAR.
  • the RA-RNTI may calculate the value of the RA-RNTI by using the time-frequency position of the Preamble that is clear to both the transmitting and receiving parties.
  • RA-RNTI associated with Preamble can be calculated by formula (1):
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id(1)
  • s_id is the index of the first Orthogonal Frequency Division Multiplexing (OFDM) symbol of the PRACH resource (0 ⁇ s_id ⁇ 14), and t_id is the index of the first time slot of the PRACH resource in a system frame.
  • f_id is the index of the PRACH resource in the frequency domain (0 ⁇ f_id ⁇ 8)
  • ul_carrier_id is the uplink carrier used to transmit the Preamble (0 represents the NUL carrier, 1 represents the SUL carrier).
  • f_id is fixed to 0.
  • the network device since the time-frequency position of the Preamble sent by the terminal device is determined, the network device also obtains the time-frequency position of the Preamble when decoding the Preamble, and can then know the RA-RNTI that needs to be used in the RAR.
  • the terminal device successfully receives a RAR (using a certain RA-RNTI to decode), and the random access sequence identifier (Random Access Preamble Identifier, RAPID) in the RAR is the same as the preamble index sent by the terminal device, it can It is considered that the RAR is successfully received, and the terminal device can stop detecting the PDCCH scrambled by the RA-RNTI at this time.
  • RAPID Random Access Preamble Identifier
  • the RAR can be carried in the Media Access Control (MAC) protocol data unit (Protocol Data Unit, PDU).
  • MAC Media Access Control
  • PDU Protocol Data Unit
  • a MAC PDU can include one or more MAC subPDUs (subPDU) and possible padding (padding) bits, and a MAC subPDU can only have a Backoff Indicator (BI), or There are only random access sequence identifiers (Random Access Preamble Identifier, RAPID), or RAPID and MAC RAR.
  • BI Backoff Indicator
  • RAPID Random Access Preamble Identifier
  • RAPID Random Access Preamble Identifier
  • MAC PDU It can be seen from the structure of MAC PDU that if a network device detects random access requests from multiple terminal devices on the same PRACH resource, it can use one MAC PDU to respond to these access requests. Each random access The response to the request (corresponding to a preamble index) corresponds to a RAR. In other words, if multiple terminal devices send Preamble on the same PRACH resource (the same time and frequency position, using the same RA-RNTI), the corresponding RARs are multiplexed in the same MAC PDU.
  • all terminal devices that use the same PRACH resource to send the Preamble detect the same RA-RNTI scrambled PDCCH and receive the same MAC PDU, but different RAPIDs correspond to different RARs.
  • the MAC PDU can only be scrambled with one RA-RNTI, this also means that the RAR corresponding to the Preamble sent using different PRACH resources (different time and frequency positions) cannot be multiplexed into the same MAC PDU.
  • Fig. 4 is a schematic block diagram of a BI subheader in an embodiment of the present application.
  • the BI sub-header may include an extension field (E), a type field (T), two reserved fields (R), and a BI value.
  • the BI sub-header appears only once and is located at the first head of the MAC header (header). If the terminal device receives a BI subheader, it will save a backoff value, which is equal to the value corresponding to the BI in the header; otherwise, the terminal device can set the Backoff value to 0.
  • the value corresponding to BI specifies the time range that the terminal device needs to wait before resending the Preamble. If the terminal device does not receive the RAR within the RAR window, or if none of the received RARs matches the preamble index selected by the terminal device, it can be considered that the RAR reception fails. At this time, the terminal device needs to wait for a period of time before initiating random access.
  • the waiting time can be any random value within the waiting time interval specified by the value corresponding to 0 to BI.
  • Fig. 5 is a schematic block diagram of a RAPID subheader in an embodiment of the present application.
  • the RAPID subheader can include an E, a T, and RAPID values.
  • RAPID is the Preamble index received by the network device in response. If the terminal device finds that the value is the same as the index used when sending the Preamble, it can be considered that the corresponding RAR has been successfully received.
  • Fig. 6 is a schematic block diagram of a MAC RAR according to an embodiment of the present application.
  • MAC RAR may include: reserved bit R (for example, 1 bit), time alignment command (Timing Advance Command, TAC), uplink grant (UL grant), and temporary cell radio network temporary identification ( Temporary Cell Radio Network Temporary Identifier, TC-RNTI).
  • TAC can be used to specify the amount of time adjustment required for the uplink synchronization of the terminal equipment, and can occupy 12 bits.
  • UL grant can be used to schedule Msg3 uplink resource indication.
  • TC-RNTI can be used to scramble the Msg4 PDCCH (initial access).
  • Step 3 The terminal device sends Msg3.
  • the terminal device After receiving the RAR message, the terminal device determines whether the RAR is its own RAR message. For example, the terminal device can use the preamble index to check. After determining that it is its own RAR message, it can generate Msg3 in the RRC layer and send it to The network device sends Msg3, which needs to carry the identification information of the terminal device, etc.
  • Msg3 is mainly used to notify the network equipment of the random access trigger event.
  • the Msg3 sent by the terminal device in step 3 may include different content.
  • Msg3 may include the RRC connection request message (RRC Setup Request) generated by the RRC layer.
  • RRC Setup Request RRC connection request message
  • Msg3 may also carry, for example, the 5G-service temporary mobile subscriber identity (Serving-Temporary Mobile Subscriber Identity, S-TMSI) of the terminal device or a random number.
  • S-TMSI Serving-Temporary Mobile Subscriber Identity
  • Msg3 may include an RRC connection re-establishment request message (RRC Reestabilshment Request) generated by the RRC layer.
  • RRC Reestabilshment Request RRC connection re-establishment request message
  • Msg3 may also carry, for example, a Cell Radio Network Temporary Identifier (C-RNTI).
  • C-RNTI Cell Radio Network Temporary Identifier
  • Msg3 may include an RRC handover confirmation message (RRC Handover Confirm) generated by the RRC layer, which carries the C-RNTI of the terminal device.
  • RRC Handover Confirm RRC handover confirmation message
  • Msg3 may also carry information such as Buffer Status Report (BSR).
  • BSR Buffer Status Report
  • Msg3 may at least include the C-RNTI of the terminal device.
  • Step 4 The network device sends a contention resolution message (Msg4) to the terminal device.
  • Msg4 contention resolution message
  • Msg4 may include contention resolution messages and uplink transmission resources allocated for terminal equipment. After the terminal device receives the Msg4 sent by the network device, it can detect whether the Msg4 includes part of the content in the Msg3 sent by the terminal device. If it is included, it indicates that the random access process of the terminal device is successful, otherwise it is considered that the random access process has failed, and the terminal device needs to initiate the random access process again from step 1.
  • the network device Since the terminal device in step 3 can carry its own unique identifier in Msg3, the network device will carry the unique identifier of the terminal device in Msg4 in the contention resolution mechanism to specify the terminal device that wins the competition.
  • the terminal device Based on the NR-Based Access to Unlicensed Spectrum (NR-U) system, the terminal device must perform channel listening before each uplink transmission to detect whether the channel is free, only when the channel listening is successful Only then can the terminal device perform data transmission.
  • the terminal device performs random access if the RAR sent by the network device to the terminal device includes a UL grant (that is, the transmission opportunity of Msg3), then when the terminal device performs channel sensing for the transmission opportunity of Msg3, if the channel sensing If the listening fails, the terminal device may fall back to Msg1 to perform random access again, which may increase the delay of random access.
  • the embodiment of the present application provides a random access method, which can reduce the time delay for the terminal device to perform random access.
  • Unlicensed spectrum is a spectrum that can be used for radio equipment communications divided by countries and regions. This spectrum can be considered as a shared spectrum, that is, communication devices in different communication systems as long as they meet the regulatory requirements set by the country or region on the spectrum. Using this spectrum, it is not necessary to apply for a proprietary spectrum authorization from the government.
  • the communication device In order to allow various communication systems that use the unlicensed spectrum for wireless communication to coexist friendly on the spectrum, it needs to be based on the principle of LBT, that is, the communication device needs to perform channel listening before sending signals on the unlicensed spectrum channel ( Or called channel detection), the communication device can only send signals when the channel detection result is that the channel is idle; if the communication device performs channel detection on the unlicensed spectrum and the result is that the channel is busy, it cannot send signals.
  • the time for a communication device to use an unlicensed spectrum channel for signal transmission may not exceed the maximum channel occupation time (Maximum Channel Occupation Time, MCOT).
  • FIG. 7 is a schematic flowchart of a random access method 300 according to an embodiment of the present application.
  • the method described in FIG. 7 may be executed by a terminal device and a network device.
  • the terminal device may be, for example, the terminal device 120 shown in FIG. 1
  • the network device may be, for example, the network device 110 shown in FIG. 1.
  • the method 300 may include at least part of the following content.
  • method 300 can be applied to a four-step random access process, and can also be applied to a two-step random access process, for example, a fallback from four-step random access to a two-step random access process In the scene.
  • the network device sends an RAR to the terminal device, where the RAR includes multiple transmission opportunities for transmitting the message 3 in random access.
  • the transmission opportunity for transmitting the message 3 may also be referred to as UL grant or other names, which is not specifically limited in the embodiment of the present application.
  • the terminal device receives the RAR sent by the network device.
  • the terminal device performs channel sensing for the transmission opportunities after the first transmission opportunity according to the first transmission opportunity among the multiple transmission opportunities, until the channel sensing is successful.
  • the transmission opportunities after the first transmission opportunity mentioned in the above content may include the first transmission opportunity.
  • the transmission opportunity after the first transmission opportunity may refer to the transmission opportunity after the first transmission opportunity in the time domain, and may also refer to the transmission opportunity after the first transmission opportunity designated by the network device.
  • the network device determines a target transmission opportunity for receiving message 3 according to the first transmission opportunity among the multiple transmission opportunities.
  • the terminal device sends a Preamble to the network device after the uplink channel is successfully monitored, and opens the RAR window to monitor Msg2. After the network device sends Msg2 to the terminal device and the terminal device receives Msg2 in the RAR window, if the RAPID of the terminal device is indicated in Msg2, and multiple transmission opportunities for the transmission of message 3 in random access are indicated, then The terminal device can select the first transmission opportunity among multiple transmission opportunities.
  • s may be specified by the protocol or configured by the network device.
  • the multiple terminal devices may be in the first one at the same time after receiving Msg2. Channel listening is done before transmission opportunities. If the multiple terminal devices are in close positions and the channel detection is successful, the multiple terminal devices may choose the same (for example, the first channel listening successfully) transmission opportunity to transmit their respective Msg3, and Msg3 may occur. Conflict in competition, thereby reducing the probability of correct decoding of Msg3 by network equipment.
  • Random Access Channel Occasion, RO Random Access Channel Occasion
  • the terminal device may randomly select the first transmission opportunity among multiple transmission opportunities.
  • the terminal device randomly selects the first transmission opportunity among multiple transmission opportunities. In this way, different terminal devices may choose different first transmission opportunities, which can reduce the simultaneous selection of multiple terminal devices after receiving the same Msg2. The probability of reaching the same Msg3 resource can further reduce the probability of Msg3 contention conflict.
  • the following describes the implementation manner in which the terminal device randomly selects the first transmission opportunity.
  • the terminal device may randomly select the first transmission opportunity among the multiple transmission opportunities.
  • the terminal device may randomly select the first transmission opportunity among part of the transmission opportunities (for convenience of description, referred to as the third transmission opportunity) among the multiple transmission opportunities.
  • the method 300 may further include: the terminal device determines a third transmission opportunity among the multiple transmission opportunities.
  • the third transmission opportunity may be continuous or discontinuous in the time domain.
  • Msg2 includes 10 transmission opportunities, followed by transmission opportunity 1, transmission opportunity 2...transmission opportunity 10.
  • transmission opportunity 1 is the earliest in the time domain
  • transmission opportunity 10 is the latest in the time domain
  • the third transmission opportunity It can be transmission opportunity 1, transmission opportunity 2...transmission opportunity 5, or the third transmission opportunity can be transmission opportunity 2, transmission opportunity 4, transmission opportunity 5, and transmission opportunity 7.
  • the terminal device may randomly select the third transmission opportunity among multiple transmission opportunities.
  • the terminal device can determine the third transmission opportunity according to the priority of triggering the random access event.
  • the priority of triggering the random access event may also be referred to as the random access priority.
  • the random access triggered by the initial access and the RRC connection re-establishment process may have a higher priority, and the random access based on beam failure recovery or SR-triggered random access may have a lower priority. priority.
  • the random access triggered by the initial access and the RRC connection re-establishment process may have a lower priority, and the random access based on beam failure recovery or SR-triggered random access may have a higher priority.
  • Priority the random access triggered by the initial access and the RRC connection re-establishment process may have a lower priority, and the random access based on beam failure recovery or SR-triggered random access may have a higher priority.
  • the first starting point may be earlier than the second starting point in the time domain, where the first starting point is the third transmission opportunity determined by the terminal device according to the first priority
  • the second starting point is the starting point of the third transmission opportunity determined by the terminal device according to the second priority.
  • the Msg2 received by the first terminal device and the second terminal device includes 10 transmission opportunities, which are transmitted sequentially in the time domain.
  • Opportunity 1 transmission opportunity 2...transmission opportunity 10.
  • the start of the third transmission opportunity determined by the first terminal device may be transmission Chance 1
  • the starting point of the third transmission opportunity determined by the second terminal device may be transmission opportunity 6.
  • the early start of the third transmission opportunity means that the terminal device has a higher probability of selecting the earlier first transmission opportunity.
  • you can choose an earlier transmission opportunity so that once the channel listening is successful, the delay of random access can be reduced.
  • Choosing an earlier transmission opportunity also means that the terminal device can have more The transmission opportunity can try channel sensing, so the probability of random access can be increased.
  • the terminal device selecting a later transmission opportunity will obtain a correspondingly longer transmission opportunity delay and less transmission opportunity.
  • the random access priority may be stipulated in the protocol and preset on the terminal device, or it may be configured by the network device.
  • the method 300 may further include: the network device determines the random access priority. After that, the network device may send third indication information to the terminal device.
  • the third indication information is used to indicate random access priority. Access priority.
  • the third indication information may be carried in radio resource control (Radio Resource Control, RRC) signaling, or Msg2 may include the third indication information, or the third indication information may be carried in a broadcast message, that is, the network The device broadcasts the priority corresponding to various random access procedures.
  • RRC Radio Resource Control
  • the third transmission opportunity may be the first N transmission opportunities among multiple transmission opportunities. That is, the terminal device can select the first transmission opportunity among the first N transmission opportunities.
  • N is a positive integer.
  • N may be preset on the terminal device through a protocol, or N may be configured by a network device. If N is configured by a network device, the method 300 may further include: the network device determines N, and then the network device sends first indication information to the terminal device, where the first indication information is used to indicate N.
  • N/L may be preset on the terminal device by the protocol, or N/L may be configured by the network device.
  • the terminal device can select the first transmission opportunity among the first 4 transmission opportunities of the 10 transmission opportunities.
  • the terminal device can select the first transmission opportunity among the first 2 transmission opportunities of the 5 transmission opportunities.
  • the third transmission opportunity may be among multiple transmission opportunities.
  • the last M transmission opportunities In other words, the terminal device can select the first transmission opportunity among the last M transmission opportunities.
  • M is a positive integer.
  • M may be preset on the terminal device through a protocol, or M may be configured by a network device. If M is configured by a network device, the method 300 may further include: the network device determines M, and then the network device sends second indication information to the terminal device, and the second indication information is used to indicate M.
  • the M/L may be preset on the terminal device by the protocol, or the M/L may be configured by the network device. If the M/L is configured by a network device, the method 300 may further include: the network device determines the M/L, and then the network device sends first indication information to the terminal device, where the first indication information is used to indicate the M/L.
  • the terminal device can select the first transmission opportunity among the last 4 transmission opportunities of the 10 transmission opportunities.
  • the terminal device can select the first transmission opportunity among the last 2 transmission opportunities of the 5 transmission opportunities.
  • all transmission opportunities in the first N transmission opportunities may be earlier than all transmission opportunities in the last M transmission opportunities in the time domain.
  • the last transmission opportunity among the first N transmission opportunities may be adjacent to the first transmission opportunity among the last M transmission opportunities in the time domain.
  • Msg2 includes 10 transmission opportunities. In the time domain, they are transmission opportunity 1, transmission opportunity 2...transmission opportunity 10, and the first N transmission opportunities are transmission opportunity 1...transmission opportunity 5. The last M transmission opportunities are transmission opportunity 6...transmission opportunity 10.
  • the last transmission opportunity among the first N transmission opportunities may not be adjacent to the first transmission opportunity among the last M transmission opportunities in the time domain.
  • Msg2 includes 10 transmission opportunities. In the time domain, they are transmission opportunity 1, transmission opportunity 2...transmission opportunity 10.
  • the first N transmission opportunities are transmission opportunity 1...transmission opportunity 4.
  • the last M transmission opportunities are transmission opportunity 7...transmission opportunity 10. At this time, transmission opportunity 5 and transmission opportunity 6 will not be selected as the first transmission opportunity.
  • part of the first N transmission opportunities may be the same as part of the last M transmission opportunities.
  • Msg2 includes 10 transmission opportunities. In the time domain, they are transmission opportunity 1, transmission opportunity 2...transmission opportunity 10, and the first N transmission opportunities are transmission opportunity 1...transmission opportunity 5.
  • the last M transmission opportunities are transmission opportunity 4...transmission opportunity 10. It can be seen that transmission opportunity 4 and transmission opportunity 5 belong to both the first N transmission opportunities and the last M transmission opportunities.
  • N and M may be the same or different, which is not specifically limited in the embodiment of the present application.
  • Manner 3 The terminal device can select the third transmission opportunity according to the service carried.
  • the terminal device may select the third transmission opportunity according to the type of service carried.
  • the services carried by the terminal device may include but are not limited to: Ultra Reliable Low Latency Communication (URLLC) service, Enhanced Mobile Broadband (eMBB) service, Industrial Internet of Things service, Vertical industry services, Long-Term Evolution (Voice over Long-Term Evolution, VoLTE) services, Internet of Vehicles services, etc.
  • URLLC Ultra Reliable Low Latency Communication
  • eMBB Enhanced Mobile Broadband
  • Industrial Internet of Things service
  • Vertical industry services Long-Term Evolution (Voice over Long-Term Evolution, VoLTE) services
  • Internet of Vehicles services etc.
  • Msg2 may be divided into multiple parts, and the services carried by the terminal device are different, and the third transmission opportunity may belong to different parts.
  • Msg2 includes 10 transmission opportunities. In the time domain, they are transmission opportunity 1, transmission opportunity 2...transmission opportunity 10, transmission opportunity 1...transmission opportunity 3 is the first part, transmission opportunity 4...transmission opportunity 7 is The second part, transmission opportunity 8...transmission opportunity 10 is the third part.
  • the third transmission opportunity can be the first part of the 10 transmission opportunities, that is, transmission opportunity 1...transmission opportunity 3; if the service carried by the terminal device is an eMBB service, the third transmission opportunity The transmission opportunity can be the second part of the 10 transmission opportunities, that is, transmission opportunity 4...transmission opportunity 7.
  • the terminal device may select the third transmission opportunity according to the number of services carried.
  • the terminal device may select the third transmission opportunity among the first N transmission opportunities among the multiple transmission opportunities.
  • the terminal device may select the third transmission opportunity from the last M transmission opportunities among the multiple transmission opportunities.
  • the third transmission opportunity can be fixed as the first h transmission opportunities or the last h transmission opportunities of the multiple transmission opportunities.
  • the third transmission opportunity can be fixed as multiple transmission opportunities, such as the first h transmission opportunities or the last h transmission opportunities or the middle h transmissions. Opportunity etc.
  • the terminal device may randomly select the first transmission opportunity from the third transmission opportunity.
  • the terminal device selects the first transmission opportunity from a plurality of transmission opportunities. In this way, there are more transmission opportunities for the terminal device to select, thereby reducing the probability of message 3 contention conflict.
  • the terminal device may perform channel sensing on transmission opportunities after the first transmission opportunity according to the first transmission opportunity.
  • the terminal device may use the first transmission opportunity as a starting point to perform channel sensing for transmission opportunities after the first transmission opportunity.
  • the terminal device may use the first transmission opportunity as the starting point and sequentially target The transmission opportunity after the first transmission opportunity performs channel sensing.
  • the terminal device may first perform channel sensing for the first transmission opportunity, and if the channel sensing is successful, the terminal device uses the first transmission opportunity to send Msg3 to the network device. At this time, the first transmission opportunity is the target transmission opportunity. If the channel listening fails, the terminal device performs channel listening for the first transmission opportunity after the first transmission opportunity. If the listening is successful, the terminal device can determine the first transmission opportunity after the first transmission opportunity as the target Transmission opportunity; if the channel detection fails, the terminal device can perform channel detection for the second transmission opportunity after the first transmission opportunity, and so on, until the channel detection succeeds.
  • the Msg2 received by the terminal device includes 10 transmission opportunities. In the time domain, they are transmission opportunity 1, transmission opportunity 2...transmission opportunity 10, and the first transmission opportunity is transmission opportunity 4, and the terminal device first transmits Opportunity 4 performs channel sensing. If channel sensing is successful, the terminal device can use transmission opportunity 4 to send Msg3 to the network device. If the channel listening fails, then the terminal device performs channel listening for the transmission opportunity 5, and if the channel listening succeeds, the terminal device can use the transmission opportunity 5 to send Msg3 to the network device. If the channel detection fails, the terminal device continues to perform channel detection for transmission opportunity 6...transmission opportunity 10 until the channel detection succeeds.
  • the terminal device may use the first transmission opportunity as a starting point, and randomly perform channel sensing for transmission opportunities after the first transmission opportunity.
  • the terminal device may randomly perform channel sensing for the first transmission opportunity and all transmission opportunities after the first transmission opportunity.
  • the terminal device may start with the first transmission opportunity, and in turn, perform channel sensing for a fixed proportion of transmission opportunities after the first transmission opportunity. After all failed, the terminal device may use the remaining transmission opportunities after the first transmission opportunity. Randomly select transmission opportunities for channel listening.
  • Msg2 includes 10 transmission opportunities. In the time domain, they are transmission opportunity 1, transmission opportunity 2...transmission opportunity 10, and the first transmission opportunity is transmission opportunity 5.
  • the proportion of channel listening for transmission opportunities in sequence be 0.5
  • the number of transmission opportunities that the terminal device can perform channel sensing is 6 (transmission opportunity 5, transmission opportunity 6...transmission opportunity 10)
  • the terminal device can perform channel sensing for transmission 5, transmission opportunity 6, and transmission opportunity 7 in sequence.
  • Listen if the channel listening fails, the terminal device can randomly select a transmission opportunity from the remaining 3 transmission opportunities to perform channel listening until the channel listening succeeds.
  • the terminal device may use the target transmission opportunity to send the message 3 to the network device.
  • the network device can receive message 3 sent by the terminal device.
  • the terminal device may Perform the next random access attempt, that is, resend the Preamble to the network device.
  • the RAR sent by the network device to the terminal device includes multiple transmission opportunities for transmitting message 3, which avoids the terminal device having no available transmission opportunity due to channel listening failure when there is only one transmission opportunity. Need to fall back to message 1 to try random access again. Further, the terminal device can perform channel sensing for multiple transmission opportunities after the first transmission opportunity according to the first transmission opportunity among the multiple transmission opportunities, which increases the probability of successful channel sensing, thereby reducing random access Time delay.
  • the size of the sequence number of the foregoing processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the communication method according to the embodiment of the present application is described in detail above.
  • the communication device according to the embodiment of the present application will be described below with reference to FIG. 11 to FIG. 13.
  • the technical features described in the method embodiment are applicable to the following device embodiments.
  • FIG. 11 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication unit 410 is configured to receive a random access response RAR sent by a network device, where the RAR includes multiple transmission opportunities for transmitting message 3 in random access.
  • the processing unit 420 is configured to perform channel sensing on transmission opportunities after the first transmission opportunity according to the first transmission opportunity among the multiple transmission opportunities, until the channel sensing is successful.
  • the processing unit 420 is further configured to: select the first transmission opportunity from the multiple transmission opportunities.
  • the processing unit 420 is specifically configured to: the terminal device randomly selects the first transmission opportunity from the multiple transmission opportunities.
  • the processing unit 420 is specifically configured to: randomly select the first transmission opportunity from some of the multiple transmission opportunities.
  • the processing unit 420 is further configured to determine the partial transmission opportunity according to the priority of triggering the random access event.
  • the first starting point is earlier than the second starting point in the time domain, where the first starting point is determined by the processing unit 420 according to The starting point of the partial transmission opportunity determined by the first priority, and the second starting point is the starting point of the partial transmission opportunity determined by the processing unit 420 according to the second priority.
  • the partial transmission opportunity is the first of the multiple transmission opportunities. N transmission opportunities.
  • the N is preset on the terminal device 400 through a protocol, or the N is configured by the network device.
  • the partial transmission opportunities are the last M of the multiple transmission opportunities Transmission opportunities.
  • the M is preset on the terminal device 400 through a protocol, or the N is configured by the network device.
  • the priority of triggering the random access event is stipulated by the protocol, or the priority of triggering the random access event is configured by the network device.
  • the processing unit 420 is specifically configured to: take the first transmission opportunity as a starting point, and sequentially perform channel sensing on transmission opportunities after the first transmission opportunity.
  • the communication unit 410 is further configured to: use a target transmission opportunity to send the message 3 to the network device, wherein the target transmission opportunity is the terminal device listening The transmission opportunity corresponding to the successful channel.
  • terminal device 400 may correspond to the terminal device in the method 300, and can implement the corresponding operations of the terminal device in the method 300. For brevity, details are not described herein again.
  • FIG. 12 shows a schematic block diagram of a network device 500 according to an embodiment of the present application. As shown in FIG. 12, the network device 500 includes:
  • the communication unit 510 is configured to send a random access response RAR to a terminal device, where the RAR includes multiple transmission opportunities for the terminal device to transmit message 3 in random access.
  • the processing unit 520 is configured to determine a target transmission opportunity for receiving the message 3 according to the first transmission opportunity among the multiple transmission opportunities.
  • the processing unit 520 is further configured to: determine the first transmission opportunity from part of the multiple transmission opportunities.
  • the processing unit 520 is further configured to determine the partial transmission opportunity according to the priority of triggering the random access event.
  • the first starting point is earlier than the second starting point in the time domain, wherein the first starting point is determined by the processing unit 520 according to The starting point of the partial transmission opportunity determined by the first priority, and the second starting point is the starting point of the partial transmission opportunity determined by the processing unit 520 according to the second priority.
  • the partial transmission opportunity is the first N of the multiple transmission opportunities Transmission opportunities.
  • the communication unit 510 is further configured to send first indication information to the terminal device, where the first indication information is used to indicate the N.
  • the partial transmission opportunity is the last M transmissions among the multiple transmission opportunities opportunity.
  • the communication unit 510 is further configured to: send second indication information to the terminal device, where the second indication information is used to indicate the M.
  • the communication unit 510 is further configured to: send third indication information to the terminal device, where the third indication information is used to indicate the priority of triggering the random access event .
  • the communication unit 510 is further configured to: use the target transmission opportunity to receive the message 3 sent by the terminal device.
  • the network device 500 may correspond to the network device in the method 300, and can implement the corresponding operations of the network device in the method 300. For brevity, details are not described herein again.
  • FIG. 13 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 13 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 6710 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device in an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 600 may specifically be a terminal device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • Fig. 14 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 14 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the device 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the device 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device 700 may be a chip. It should be understood that the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 15 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 15, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及一种随机接入的方法、终端设备和网络设备,该方法包括:终端设备接收网络设备发送的随机接入响应RAR,该RAR中包括用于在随机接入中传输消息3的多个传输机会;终端设备根据多个传输机会中的第一传输机会,对该第一传输机会之后的传输机会进行信道侦听,直到信道侦听成功。本申请实施例的随机接入的方法、终端设备和网络设备,可以减少随机接入的时延。

Description

随机接入的方法、终端设备和网络设备 技术领域
本申请涉及通信领域,具体涉及一种随机接入的方法、终端设备和网络设备。
背景技术
新无线(New Radio,NR)系统中支持免授权频谱上的数据传输,通信设备在免授权频谱上进行通信时,需要基于先听后说(Listen Before Talk,LBT)的原则,即,通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听(或称为信道检测),只有当信道侦听结果为信道空闲时,通信设备才能进行信号发送;如果通信设备在免授权频谱的上进行信道侦听的结果为信道忙,则不能进行信号发送。
基于NR的免授权频谱接入(NR-Based Access to Unlicensed Spectrum,NR-U)系统,当终端设备进行随机接入时,对随机接入的时延要求较高。因此,如何减少随机接入的时延是一项亟待解决的问题。
发明内容
本申请实施例提供一种随机接入的方法、终端设备和网络设备,可以减少随机接入的时延。
第一方面,提供了一种随机接入的方法,所述方法包括:终端设备接收网络设备发送的随机接入响应RAR,所述RAR中包括用于在随机接入中传输消息3的多个传输机会;所述终端设备根据所述多个传输机会中的第一传输机会,对对所述第一传输机会之后的传输机会进行信道侦听,直到信道侦听成功。
第二方面,提供了一种随机接入的方法,所述方法包括:网络设备向终端设备发送随机接入响应RAR,所述RAR中包括用于所述终端设备在随机接入中传输消息3的多个传输机会;所述网络设备根据所述多个传输机会中的第一传输机会,确定用于接收所述消息3的目标传输机会。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
可选地,该装置为芯片。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
上述技术方案,网络设备向终端设备发送的RAR中包括用于传输消息3的多个传输机会,避免了只有一个传输机会时由于信道侦听失败后而导致的终端设备没有可用的传输机会,需要回退到消息1以重新尝试随机接入的问题。进一步地,终端设备可以根据多个传输机会中的第一传输机会,针对第一传输机会之后的多个传输机会进行信道侦听,增加了信道侦听成功的概率,从而可以降低随机接入的时延。
附图说明
图1是根据本申请实施例的一种通信系统架构的示意性图。
图2是根据本申请实施例的一种四步随机接入方法的示意性流程图。
图3是根据本申请实施例的包括RAR的一种MAC PDU的示意性图。
图4是根据本申请实施例的一种BI字头的示意性框图。
图5是根据本申请实施例的一种RAPID字头的示意性框图。
图6是根据本申请实施例的一种MAC RAR的示意性框图。
图7是根据本申请实施例的一种随机接入的方法的示意性流程图。
图8-图10是根据本申请实施例的部分传输机会的示意性图。
图11是根据本申请实施例的终端设备的示意性框图。
图12是根据本申请实施例的网络设备的示意性框图。
图13是根据本申请实施例的通信设备的示意性框图。
图14是根据本申请实施例的装置的示意性框图。
图15是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA) 场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
网络设备110可以为小区提供服务,终端设备120通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备110进行通信,该小区可以是网络设备110(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括例如城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体, 本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在小区搜索过程之后,终端设备已经与小区取得了下行同步,因此终端设备可以接收下行数据。但终端设备只有与小区取得上行同步,才能进行上行传输。终端设备可以通过随机接入过程(Random Access Procedure)与小区建立连接并取得上行同步。随机接入过程通常可以由以下事件触发:
(1)初始接入(Initial Access)。
终端设备可以从无线资源控制(Radio Resource Control,RRC)空闲态(RRC_IDLE态)进入RRC连接态(RRC_CONNECTED)。
(2)RRC连接重建过程(RRC Connection Re-establishment procedure)。
(3)切换(Handover)。
此时,终端设备处于连接态,需要与新的小区建立上行同步。
(4)RRC连接态下,下行数据或上行数据到达时,上行处于“不同步”状态(DL or UL data arrival during RRC_CONNECTED when UL synchronisation status is"non-synchronised")。
(5)RRC连接态下,上行数据到达时,没有可用的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源用于调度请求(Scheduling Request,SR)传输(UL data arrival during RRC_CONNECTED when there are no PUCCH resources for SR available)。
(6)SR失败(SR failure)。
(7)RRC在同步配置时的请求(Request by RRC upon synchronous reconfiguration)。
(8)终端设备从RRC非激活态过渡(Transition from RRC_INACTIVE)。
(9)在SCell添加时建立时间对齐(To establish time alignment at SCell addition)。
(10)终端设备请求其他系统信息(Other System Information,OSI)。
(11)终端设备需要进行波束(Beam)失败的恢复(Beam failure recovery)。
在NR系统中,可以支持两种随机接入方式:如图2所示的基于竞争的随机接入方式和基于非竞争的随机接入方式。下面将结合图2简单描述基于竞争的四步随机接入过程:
步骤1,终端设备向网络设备发送随机接入前导码(Preamble,也即message1,Msg1)。
其中,随机接入前导码也可以称为前导码、随机接入前导码序列、前导码序列等。
具体而言,终端设备可以选择物理随机接入信道(Physical Random Access Channel,PRACH)资源,PRACH资源可以包括时域资源、频域资源和码域资源。接下来,终端设备可以在选择的PRACH资源上发送选择的Preamble。网络设备可以根据Preamble估计其与终端设备之间的传输时延并以此校准上行定时(timing),以及可以大体确定终端设备传输消息3(Msg3)所需要的资源大小。
步骤2,网络设备向终端设备发送随机接入响应(Random Access Response,RAR,也即message2,Msg2)
终端设备向网络设备发送Preamble后,可以开启一个RAR窗口,在该RAR窗口内根据随机访问无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)检测对应的物理下行控制信道(Physical Downlink Control Channel,PDCCH)。若终端设备检测到RA-RNTI加扰的PDCCH后,可以获得该PDCCH调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。其中,该PDSCH中包括Preamble对应的RAR。
如果在此RAR窗口内没有接收到网络设备回复的RAR,则终端设备可以认为此次 随机接入过程失败。应理解,终端设备和网络设备都需要唯一地确定RA-RNTI的值,否则终端设备就无法解码RAR。
可选地,本申请实施例中,RA-RNTI可以通过收发双方都明确的Preamble的时频位置来计算RA-RNTI的值。比如,与Preamble相关联的RA-RNTI可以通过公式(1)计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id(1)
其中,s_id为PRACH资源的第一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的索引(0≤s_id<14),t_id为一个系统帧中PRACH资源的第一个时隙的索引(0≤t_id<80),f_id为频域中PRACH资源的索引(0≤f_id<8),ul_carrier_id为用于传输Preamble的上行载波(0表示NUL载波,1表示SUL载波)。对于FDD而言,每个子帧只有一个PRACH资源,因此,f_id固定为0。
换句话说,由于终端设备发送的Preamble时频位置是确定的,网络设备在解码Preamble时,也获得了该Preamble的时频位置,进而可以知道RAR中需要使用的RA-RNTI。当终端设备成功地接收到一个RAR(使用确定的RA-RNTI来解码),且该RAR中的随机访问序列标识符(Random Access Preamble Identifier,RAPID)与终端设备发送的Preamble index相同时,则可以认为成功接收了RAR,此时终端设备就可以停止检测RA-RNTI加扰的PDCCH了。
RAR可以携带在媒体访问控制(Media Access Control,MAC)协议数据单元(Protocol Data Unit,PDU)内,下面结合图4从包括RAR的MAC PDU构成的角度来介绍RAR携带的信息。
从图3中可以看到,一个MAC PDU可以包括一个或多个MAC子PDU(subPDU)以及可能存在的填充(padding)比特,一个MAC subPDU可以只有)回退指示(Backoff Indicator,BI),或只有随机访问序列标识符(Random Access Preamble Identifier,RAPID),或RAPID和MAC RAR。
从MAC PDU的结构可以看出,如果网络设备在同一PRACH资源上检测到来自多个终端设备的随机接入请求,则使用一个MAC PDU就可以对这些接入请求进行响应,每个随机接入请求(对应一个Preamble index)的响应对应一个RAR。换句话说,如果多个终端设备在同一PRACH资源(时频位置相同,使用同一RA-RNTI)发送Preamble,则对应的RAR复用在同一MAC PDU中。
即,使用相同PRACH资源发送Preamble(Preamble不一定相同)的所有终端设备都检测相同的RA-RNTI加扰的PDCCH,并接收相同的MAC PDU,但不同RAPID对应不同的RAR。
由于MAC PDU只能使用一个RA-RNTI加扰,这也意味着使用不同PRACH资源(时频位置不同)发送的Preamble对应的RAR不能复用到同一个MAC PDU中。
图4是本申请实施例的BI子头的示意性框图。如图4所示,BI子头可以包括一个扩展字段(E)、一个类型字段(T)、两个预留字段(R)以及BI值。
针对BI子头,该BI子头只出现一次,且位于MAC头(header)的第一个字头处。如果终端设备收到了一个BI子头,则会保存一个回退值,该值等于该字头中的BI对应的值;否则终端设备可以将Backoff值设为0。BI对应的值指定了终端设备重发Preamble前需要等待的时间范围。如果终端设备在RAR窗口内没有接收到RAR,或接收到的RAR中没有一个RAPID与自己选择的preamble index相符合,则可以认为此次RAR接收失败。此时终端设备需要等待一段时间后,再发起随机接入。等待的时间可以为在0至BI对应的值指定的等待时间区间内的任意一个随机值。
图5是本申请实施例的RAPID子头的示意性框图。
如图5所示,RAPID子头可以包括一个E、一个T以及RAPID值。其中,RAPID为网络设备响应接收到的Preamble index。如果终端设备发现该值与自己发送Preamble 时使用的索引相同,则可以认为成功接收到对应的RAR。
图6是本申请实施例的MAC RAR的示意性框图。如图6所示,MAC RAR可以包括:预留比特R(例如,1个比特)、时间对齐指令(Timing Advance Command,TAC)、上行授权(UL grant)、以及临时的小区无线网络临时标识(Temporary Cell Radio Network Temporary Identifier,TC-RNTI)。
其中,TAC可以用于指定终端设备上行同步所需要的时间调整量,可以占据12比特。UL grant可以用于调度Msg3的上行资源指示。TC-RNTI可以用于加扰Msg 4的PDCCH(初始接入)。
步骤3,终端设备发送Msg3。
终端设备在收到RAR消息后,判断该RAR是否为属于自己的RAR消息,例如终端设备可以利用前导码索引进行核对,在确定是属于自己的RAR消息后,可以在RRC层产生Msg3,并向网络设备发送Msg3,其中需要携带终端设备的标识信息等。
其中,Msg3主要用于通知网络设备该随机接入的触发事件。针对不同的随机接入触发事件,终端设备在步骤3中发送的Msg3可以包括不同的内容。
例如,对于初始接入的场景,Msg3可以包括RRC层生成的RRC连接请求消息(RRC Setup Request)。此外,Msg3还可以携带例如终端设备的5G-服务临时移动用户标识(Serving-Temporary Mobile Subscriber Identity,S-TMSI)或随机数等。
又例如,对于RRC连接重建场景,Msg3可以包括RRC层生成的RRC连接重建请求消息(RRC Reestabilshment Request)。此外,Msg3还可以携带例如小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)等。
又例如,对于切换场景,Msg3可以包括RRC层生成的RRC切换确认消息(RRC Handover Confirm),其携带终端设备的C-RNTI。此外,Msg3还可携带例如缓冲状态报告(Buffer Status Report,BSR)等信息。对于其它触发事件例如上/下行数据到达的场景,Msg3至少可以包括终端设备的C-RNTI。
步骤4,网络设备向终端设备发送冲突解决消息(contention resolution),即Msg4。
Msg4中可以包括竞争解决消息以及为终端设备分配的上行传输资源。终端设备接收到网络设备发送的Msg4后,可以检测Msg4中是否包括终端设备发送的Msg3中的部分内容。若包括则表明终端设备随机接入过程成功,否则认为随机接入过程失败,终端设备需要再次从步骤1开始发起随机接入过程。
由于步骤3中的终端设备可以在Msg3中携带自己唯一的标识,从而网络设备在竞争解决机制中,会在Msg4中携带终端设备的唯一标识以指定竞争中胜出的终端设备。
基于NR的免授权频谱接入(NR-Based Access to Unlicensed Spectrum,NR-U)系统,终端设备在每次上行传输之前要进行信道侦听,以侦听信道是否空闲,只有当信道侦听成功后终端设备才可以进行数据传输。在终端设备进行随机接入时,若网络设备向终端设备发送的RAR中包括一个UL grant(即Msg3的传输机会),这样在终端设备针对该Msg3的传输机会进行信道侦听时,若信道侦听失败,则终端设备可能回退到Msg1重新进行随机接入,这样可能增加随机接入的时延。
鉴于此,本申请实施例提供了一种随机接入的方法,可以减小终端设备进行随机接入的时延。
为了加深对本申请实施例的理解,下面对免授权频谱做简单介绍。
免授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱可以被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,可以不向政府申请专有的频谱授权。为了让使用免授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,需要基于LBT的原则,即,通信设备在免授权频谱的信道上进行信号发送前,需要先进行信道侦听(或称为信道检测),只有当信道侦听结果为信道空闲时,通信设备才能进行信号发送;如果通信设备在免授 权频谱的上进行信道侦听的结果为信道忙,则不能进行信号发送。且为了保证公平性,在一次传输中,通信设备使用免授权频谱的信道进行信号传输的时长可以不超过最大信道占用时间(Maximum Channel Occupation Time,MCOT)。
图7是根据本申请实施例的随机接入的方法300的示意性流程图。图7所述的方法可以由终端设备和网络设备执行,该终端设备例如可以为图1中所示的终端设备120,该网络设备例如可以为图1中所示的网络设备110。如图7所示,该方法300可以包括以下内容中的至少部分内容。
需要说明的是,方法300的技术方案可以应用于四步随机接入过程中,也可以应用于两步随机接入过程中,例如,由四步随机接入回退到两步随机接入过程中的场景。
在310中,网络设备向终端设备发送RAR,其中,该RAR中包括用于在随机接入中传输消息3的多个传输机会。
在本申请实施例中,传输消息3的传输机会也可以称为UL grant或者其他名称,本申请实施例对此不作具体限定。
在320中,终端设备接收网络设备发送的RAR。
在330中,终端设备根据多个传输机会中的第一传输机会,针对第一传输机会之后的传输机会进行信道侦听,直到信道侦听成功。
需要说明的是,上述内容提到的针对第一传输机会之后的传输机会可以包括第一传输机会。此外,第一传输机会之后的传输机会可以指在时域上的第一传输机会之后的传输机会,也可以指网络设备指定的第一传输机会之后的传输机会。
在340中,网络设备根据多个传输机会中的第一传输机会中,确定用于接收消息3的目标传输机会。
终端设备在上行信道侦听成功后向网络设备发送Preamble,并开启RAR窗口监听Msg2。网络设备向终端设备发送Msg2且终端设备在RAR窗口内接收到Msg2后,若Msg2中指示了该终端设备的RAPID,以及指示了用于在随机接入中传输消息3的多个传输机会,则终端设备可以在多个传输机会中选择第一传输机会。
在一种实现方式中,终端设备可以将多个传输机会中的第s个传输机会确定为第一传输机会,s为正整数。例如,s=1,即终端设备可以将多个传输机会中的第一个传输机会确定为第一传输机会。
可选地,s可以是协议规定的或网络设备配置的。
在该实现方式中,如果多个终端设备在相同的随机接入机会(Random Access Channel Occasion,RO)上发送了相同的Preamble,则该多个终端设备在收到Msg2后可能同时在第一个传输机会之前做信道侦听。若该多个终端设备处于相近的位置,且信道侦听成功,则该多个终端设备可能选择同一个(例如,第一个信道侦听成功的)传输机会传输各自的Msg3,从而可能出现Msg3的竞争冲突,进而降低网络设备对Msg3正确解码的概率。
在另一种实现方式中,终端设备可以在多个传输机会中,随机选择第一传输机会。
上述技术方案,终端设备在多个传输机会中随机选择第一传输机会,这样,不同的终端设备可能选择的第一传输机会不同,从而可以降低多个终端设备在接收到同一个Msg2后同时选择到相同的Msg3资源的概率,进而可以降低Msg3的竞争冲突概率。
下面介绍终端设备随机选择第一传输机会的实现方式。
实施例1,终端设备可以在该多个传输机会中,随机选择第一传输机会。
实施例2,终端设备可以在多个传输机会中的部分传输机会(为了描述方便,称为第三传输机会)中,随机选择第一传输机会。
此时,方法300还可以包括:终端设备确定多个传输机会中的第三传输机会。
其中,在多个传输机会中,第三传输机会在时域上可以是连续的,也可以是不连续的。例如,Msg2中包括10个传输机会,依次为传输机会1、传输机会2……传输机会 10,其中,传输机会1在时域上最早,传输机会10在时域上最晚,第三传输机会可以是传输机会1、传输机会2……传输机会5,或者,第三传输机会可以是传输机会2、传输机会4、传输机会5、传输机会7。
在本申请实施例中,终端设备确定第三传输机会的方式可以有多种。示例性地,方式1,终端设备可以在多个传输机会中随机选择第三传输机会。
方式2,终端设备可以根据触发随机接入事件的优先级,确定第三传输机会。其中,触发随机接入事件的优先级也可以称为随机接入优先级。
可选地,在随机接入优先级中,初始接入和RRC连接重建过程触发的随机接入可以具有较高的优先级,基于波束失败的恢复或SR触发的随机接入可以具有较低的优先级。
或者可选地,在随机接入优先级中,初始接入和RRC连接重建过程触发的随机接入可以具有较低的优先级,基于波束失败的恢复或SR触发的随机接入可以具有较高的优先级。
可选地,若第一优先级高于第二优先级,则第一起点在时域上可以早于第二起点,其中,第一起点为终端设备根据第一优先级确定的第三传输机会的起点,第二起点为终端设备根据第二优先级确定的第三传输机会的起点。
例如,若第一终端设备和第二终端设备在相同的RO上发送了相同的Preamble,第一终端设备和第二终端设备接收到的Msg2中包括10个传输机会,在时域上依次为传输机会1、传输机会2……传输机会10。若触发第一终端设备进行随机接入的事件为初始接入,触发第二终端设备进行随机接入的事件为波束失败的恢复,则第一终端设备确定的第三传输机会的起点可以为传输机会1,第二终端设备确定的第三传输机会的起点可以为传输机会6。
应理解,第三传输机会的起点早意味着终端设备选择到较早的第一传输机会的概率较大。针对随机接入优先级高的终端设备,可以选择较早的传输机会,这样一旦信道侦听成功可以降低随机接入的时延,选择较早的传输机会也意味着终端设备可以有更多的传输机会可以尝试信道侦听,因此可以增加随机接入概率。相反,对于随机接入优先级低的终端设备,终端设备选择较晚的传输机会将获得相应较长的传输机会时延和较少的传输机会。
可选地,随机接入优先级可以是协议规定,预设在终端设备上的,或者,也可以是网络设备配置的。
若随机接入优先级是网络设备配置的,则方法300还可以包括:网络设备确定随机接入优先级,之后,网络设备可以向终端设备发送第三指示信息,第三指示信息用于指示随机接入优先级。可选地,第三指示信息可以承载于无线资源控制(Radio Resource Control,RRC)信令中,或者,Msg2可以包括第三指示信息,或者,第三指示信息可以承载于广播消息中,即网络设备广播各种随机接入过程对应的优先级。
终端设备在根据随机接入优先级确定第三传输机会的过程中,作为一种示例,若随机接入优先级大于或等于预设优先级,即随机接入优先级较高,比如,当前随机接入过程由初始接入触发,则第三传输机会可以为多个传输机会中的前N个传输机会。也就是说,终端设备可以在前N个传输机会中选择第一传输机会。N为正整数。
其中,N可以是通过协议预设在终端设备上的,或者,N可以是网络设备配置的。若N是网络设备配置的,则方法300还可以包括:网络设备确定N,然后,网络设备向终端设备发送第一指示信息,第一指示信息用于指示N。
或者,令多个传输机会的数量为L,N/L可以是协议预设在终端设备上,或者,N/L可以是网络设备配置的。
比如,N/L为0.4,则当有10个传输机会时,终端设备可以在10个传输机会的前4个传输机会中选择第一传输机会。当有5个传输机会时,终端设备可以在5个传输机会的前2个传输机会中选择第一传输机会。
作为另一种示例,若随机接入优先级小于预设优先级,即随机接入优先级较低,比如,当前随机接入过程由SR触发,则第三传输机会可以为多个传输机会中的后M个传输机会。也就是说,终端设备可以在后M个传输机会中选择第一传输机会。其中,M为正整数。
可选地,M可以是通过协议预设在终端设备上的,或者,M可以是网络设备配置的。若M是网络设备配置的,则方法300还可以包括:网络设备确定M,然后,网络设备向终端设备发送第二指示信息,第二指示信息用于指示M。
或者,令多个传输机会的数量为L,M/L可以是协议预设在终端设备上,或者,M/L可以是网络设备配置的。若M/L是网络设备配置的,则方法300还可以包括:网络设备确定M/L,然后,网络设备向终端设备发送第一指示信息,第一指示信息用于指示M/L。
比如,M/L为0.4,则当有10个传输机会时,终端设备可以在10个传输机会的后4个传输机会中选择第一传输机会。当有5个传输机会时,终端设备可以在5个传输机会的后2个传输机会中选择第一传输机会。
应理解,在本申请实施例中,“第一”、“第二”和“第三”仅仅为了区分不同的对象,但并不对本申请实施例的范围构成限制。
可选地,前N个传输机会中的所有传输机会在时域上可以早于后M个传输机会中的所有传输机会。
此时,前N个传输机会中的最后一个传输机会可以与后M个传输机会中的第一个传输机会在时域上相邻。比如,如图8所示,Msg2中包括10个传输机会,在时域上依次为传输机会1、传输机会2……传输机会10,前N个传输机会为传输机会1……传输机会5,后M个传输机会为传输机会6……传输机会10。
或者,前N个传输机会中的最后一个传输机会可以与后M个传输机会中的第一个传输机会在时域上不相邻。比如,如图9所示,Msg2中包括10个传输机会,在时域上依次为传输机会1、传输机会2……传输机会10,前N个传输机会为传输机会1……传输机会4,后M个传输机会为传输机会7……传输机会10。此时,传输机会5和传输机会6不会被选择为第一传输机会。
可选地,前N个传输机会中的部分传输机会可以与后M个传输机会中的部分传输机会相同。
比如,如图10所示,Msg2中包括10个传输机会,在时域上依次为传输机会1、传输机会2……传输机会10,前N个传输机会为传输机会1……传输机会5,后M个传输机会为传输机会4……传输机会10。可以看到,传输机会4和传输机会5既属于前N个传输机会,又属于后M个传输机会。
可选地,N和M可以相同,也可以不同,本申请实施例对此不作具体限定。
方式3,终端设备可以根据承载的业务,选择第三传输机会。
作为一种示例,终端设备可以根据承载的业务类型,选择第三传输机会。
可选地,终端设备承载的业务可以包括但不限于:超可靠低时延通信(Ultra Reliable Low Latency Communication,URLLC)业务、增强型移动宽带(Enhanced Mobile Broadband,eMBB)业务、工业物联网业务、垂直行业业务、长期演进语音承载(Voice over Long-Term Evolution,VoLTE)业务、车联网业务等。
示例性地,Msg2中包括的多个传输机会可以分为多个部分,终端设备承载的业务不同,第三传输机会可以属于不同的部分。例如,Msg2中包括10个传输机会,在时域上依次为传输机会1、传输机会2……传输机会10,传输机会1……传输机会3为第一部分,传输机会4……传输机会7为第二部分,传输机会8……传输机会10为第三部分。若终端设备承载的业务为URLLC业务,则第三传输机会可以是该10个传输机会中的第一部分,即传输机会1……传输机会3;若终端设备承载的业务为eMBB业务,则第三传输机会可以是该10个传输机会中的第二部分,即传输机会4……传输机会7。
作为另一种示例,终端设备可以根据承载的业务数量,选择第三传输机会。
可选地,若终端设备承载的业务数量大于或等于阈值,则终端设备可以在多个传输机会中的前N个传输机会中选择第三传输机会。
可选地,若终端设备承载的业务数量小于阈值,则终端设备可以在多个传输机会中的后M个传输机会中选择第三传输机会。
方式4,第三传输机会可以固定为多个传输机会的前h个传输机会或后h个传输机会。
在方式4中,不区分随机接入优先级或终端设备承载的业务等,第三传输机会可以固定为多个传输机会的例如前h个传输机会或后h个传输机会或中间的h个传输机会等。
终端设备确定第三传输机会后,可以在第三传输机会中随机选择第一传输机会。
上述技术方案,终端设备从多个传输机会中选择第一传输机会,如此,可供终端设备选择的传输机会较多一些,进而可以降低消息3竞争冲突的概率。
在终端设备选择出第一传输机会后,终端设备可以根据第一传输机会,对第一传输机会之后的传输机会进行信道侦听。
可选地,终端设备可以以第一传输机会为起点,针对第一传输机会之后的传输机会进行信道侦听。
在终端设备以第一传输机会为起点,针对第一传输机会之后的传输机会进行信道侦听的过程中,在一种可能的实施例中,终端设备可以以第一传输机会为起点,依次针对第一传输机会之后的传输机会进行信道侦听。
具体而言,终端设备可以先针对第一传输机会进行信道侦听,若信道侦听成功,则终端设备利用第一传输机会向网络设备发送Msg3。此时,第一传输机会即为目标传输机会。若信道侦听失败,则终端设备针对第一传输机会后面的第一个传输机会进行信道侦听,若侦听成功,则终端设备可以将第一传输机会后面的第一个传输机会确定为目标传输机会;若信道侦听失败,则终端设备可以针对第一传输机会后面的第二个传输机会进行信道侦听,以此类推,直到信道侦听成功。
举例说明,终端设备接收到的Msg2中包括10个传输机会,在时域上依次为传输机会1、传输机会2……传输机会10,第一传输机会为传输机会4,则终端设备先针对传输机会4进行信道侦听,若信道侦听成功,则终端设备可以利用传输机会4向网络设备发送Msg3。若信道侦听失败,则接下来终端设备针对传输机会5进行信道侦听,若信道侦听成功,则终端设备可以利用传输机会5向网络设备发送Msg3。若信道侦听失败,则终端设备继续针对传输机会6……传输机会10进行信道侦听,直到信道侦听成功。
在另一种可能的实施例中,终端设备可以以第一传输机会为起点,随机针对第一传输机会之后的传输机会进行信道侦听。
作为一种示例,终端设备可以随机针对第一传输机会及第一传输机会之后所有的传输机会进行信道侦听。
作为另一种示例,终端设备可以以第一传输机会为起点,依次针对第一传输机会之后的固定比例的传输机会进行信道侦听都失败后,可以在第一传输机会之后剩下的传输机会中随机选择传输机会进行信道侦听。
例如,Msg2中包括10个传输机会,在时域上依次为传输机会1、传输机会2……传输机会10,第一传输机会为传输机会5,令针对传输机会依次进行信道侦听的比例为0.5,终端设备可以进行信道侦听的传输机会的数量为6(传输机会5、传输机会6……传输机会10),则终端设备可以依次针对传输5、传输机会6和传输机会7进行信道侦听,若信道侦听均失败,则终端设备可以在剩下的3个传输机会中随机选择传输机会进行信道侦听,直到信道侦听成功。
可选地,在本申请实施例中,在终端设备确定目标传输机会后,终端设备可以利用目标传输机会向网络设备发送消息3。相应地,网络设备可以接收终端设备发送的消息3。
可选地,在本申请实施例中,若终端设备根据第一传输机会,对第一传输机会之后 的传输机会进行信道侦听的结果都为失败,则此次随机接入失败,终端设备可以进行下一次随机接入尝试,即重新向网络设备发送Preamble。
本申请实施例,网络设备向终端设备发送的RAR中包括用于传输消息3的多个传输机会,避免了只有一个传输机会时由于信道侦听失败后而导致的终端设备没有可用的传输机会,需要回退到消息1以重新尝试随机接入的问题。进一步地,终端设备可以根据多个传输机会中的第一传输机会,针对第一传输机会之后的多个传输机会进行信道侦听,增加了信道侦听成功的概率,从而可以降低随机接入的时延。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的通信方法,下面将结合图11至图13,描述根据本申请实施例的通信装置,方法实施例所描述的技术特征适用于以下装置实施例。
图11示出了本申请实施例的终端设备400的示意性框图。如图11所示,该终端设备400包括:
通信单元410,用于接收网络设备发送的随机接入响应RAR,所述RAR中包括用于在随机接入中传输消息3的多个传输机会。
处理单元420,用于根据所述多个传输机会中的第一传输机会,对所述第一传输机会之后的传输机会进行信道侦听,直到信道侦听成功。
可选地,在本申请实施例中,所述处理单元420还用于:从所述多个传输机会中,选择所述第一传输机会。
可选地,在本申请实施例中,所述处理单元420具体用于:所述终端设备从所述多个传输机会中,随机选择所述第一传输机会。
可选地,在本申请实施例中,所述处理单元420具体用于:从所述多个传输机会中的部分传输机会中,随机选择所述第一传输机会。
可选地,在本申请实施例中,所述处理单元420还用于:根据触发随机接入事件的优先级,确定所述部分传输机会。
可选地,在本申请实施例中,第一优先级高于第二优先级,则第一起点在时域上早于第二起点,其中,所述第一起点为所述处理单元420根据所述第一优先级确定的所述部分传输机会的起点,所述第二起点为所述处理单元420根据所述第二优先级确定的所述部分传输机会的起点。
可选地,在本申请实施例中,若触发所述终端设备400进行随机接入的事件的优先级大于或等于预设优先级,所述部分传输机会为所述多个传输机会中的前N个传输机会。
可选地,在本申请实施例中,所述N是通过协议预设在所述终端设备400上的,或者,所述N是所述网络设备配置的。
可选地,在本申请实施例中,若触发所述终端设备400进行随机接入的事件的优先级小于预设优先级,所述部分传输机会为所述多个传输机会中的后M个传输机会。
可选地,在本申请实施例中,所述M是通过协议预设在所述终端设备400上的,或者,所述N是所述网络设备配置的。
可选地,在本申请实施例中,所述触发随机接入事件的优先级是协议规定的,或者,所述触发随机接入事件的优先级是所述网络设备配置的。
可选地,在本申请实施例中,所述处理单元420具体用于:以所述第一传输机会为起点,依次对所述第一传输机会之后的传输机会进行信道侦听。
可选地,在本申请实施例中,所述通信单元410还用于:利用目标传输机会,向所述网络设备发送所述消息3,其中,所述目标传输机会为所述终端设备侦听成功的信道对应的传输机会。
应理解,该终端设备400可对应于方法300中的终端设备,可以实现该方法300中的终端设备的相应操作,为了简洁,在此不再赘述。
图12示出了本申请实施例的网络设备500的示意性框图。如图12所示,该网络设备500包括:
通信单元510,用于向终端设备发送随机接入响应RAR,所述RAR中包括用于所述终端设备在随机接入中传输消息3的多个传输机会。
处理单元520,用于根据所述多个传输机会中的第一传输机会,确定用于接收所述消息3的目标传输机会。
可选地,在本申请实施例中,所述处理单元520还用于:从所述多个传输机会中的部分传输机会中,确定所述第一传输机会。
可选地,在本申请实施例中,所述处理单元520还用于:根据触发随机接入事件的优先级,确定所述部分传输机会。
可选地,在本申请实施例中,第一优先级高于第二优先级,则第一起点在时域上早于第二起点,其中,所述第一起点为所述处理单元520根据所述第一优先级确定的所述部分传输机会的起点,所述第二起点为所述处理单元520根据所述第二优先级确定的所述部分传输机会的起点。
可选地,在本申请实施例中,若触发所述终端设备进行随机接入的事件的优先级大于或等于预设优先级,所述部分传输机会为所述多个传输机会中的前N个传输机会。
可选地,在本申请实施例中,所述通信单元510还用于:向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述N。
可选地,在本申请实施例中,若触发所述终端设备进行随机接入的事件的优先级小于预设优先级,所述部分传输机会为所述多个传输机会中的后M个传输机会。
可选地,在本申请实施例中,所述通信单元510还用于:向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述M。
可选地,在本申请实施例中,所述通信单元510还用于:向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述触发随机接入事件的优先级。
可选地,在本申请实施例中,所述通信单元510还用于:利用所述目标传输机会,接收所述终端设备发送的所述消息3。
应理解,该网络设备500可对应于方法300中的网络设备,可以实现该方法300中的网络设备的相应操作,为了简洁,在此不再赘述。
图13是本申请实施例提供的一种通信设备600示意性结构图。图13所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图13所示,通信设备600还可以包括收发器630,处理器6710可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收 其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例的装置的示意性结构图。图14所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置700可以为芯片。应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、 双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图15是本申请实施例提供的一种通信系统800的示意性框图。如图15所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (56)

  1. 一种随机接入的方法,其特征在于,所述方法包括:
    终端设备接收网络设备发送的随机接入响应RAR,所述RAR中包括用于在随机接入中传输消息3的多个传输机会;
    所述终端设备根据所述多个传输机会中的第一传输机会,对所述第一传输机会之后的传输机会进行信道侦听,直到信道侦听成功。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述多个传输机会中,选择所述第一传输机会。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备从所述多个传输机会中,选择第一传输机会,包括:
    所述终端设备从所述多个传输机会中,随机选择所述第一传输机会。
  4. 根据权利要求2所述的方法,其特征在于,所述终端设备从所述多个传输机会中,选择所述第一传输机会,包括:
    所述终端设备从所述多个传输机会中的部分传输机会中,随机选择所述第一传输机会。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据触发随机接入事件的优先级,确定所述部分传输机会。
  6. 根据权利要求5所述的方法,其特征在于,第一优先级高于第二优先级,则第一起点在时域上早于第二起点,其中,所述第一起点为所述终端设备根据所述第一优先级确定的所述部分传输机会的起点,所述第二起点为所述终端设备根据所述第二优先级确定的所述部分传输机会的起点。
  7. 根据权利要求5或6所述的方法,其特征在于,若触发所述终端设备进行随机接入的事件的优先级大于或等于预设优先级,所述部分传输机会为所述多个传输机会中的前N个传输机会,N为正整数。
  8. 根据权利要求7所述的方法,其特征在于,所述N是通过协议预设在所述终端设备上的,或者,所述N是所述网络设备配置的。
  9. 根据权利要求5或6所述的方法,其特征在于,若触发所述终端设备进行随机接入的事件的优先级小于预设优先级,所述部分传输机会为所述多个传输机会中的后M个传输机会,M为正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述M是通过协议预设在所述终端设备上的,或者,所述N是所述网络设备配置的。
  11. 根据权利要求5至10中任一项所述的方法,其特征在于,所述触发随机接入事件的优先级是协议规定的,或者,所述触发随机接入事件的优先级是所述网络设备配置的。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述终端设备根据所述多个传输机会中的第一传输机会,对所述第一传输机会之后的传输机会进行信道侦听,包括:
    所述终端设备以所述第一传输机会为起点,依次针对所述第一传输机会之后的传输机会进行信道侦听。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备利用目标传输机会,向所述网络设备发送所述消息3,其中,所述目标传输机会为所述终端设备侦听成功的信道对应的传输机会。
  14. 一种随机接入的方法,其特征在于,所述方法包括:
    网络设备向终端设备发送随机接入响应RAR,所述RAR中包括用于所述终端设备在随机接入中传输消息3的多个传输机会;
    所述网络设备根据所述多个传输机会中的第一传输机会,确定用于接收所述消息3的目标传输机会。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述网络设备从所述多个传输机会中的部分传输机会中,确定所述第一传输机会。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据触发随机接入事件的优先级,确定所述部分传输机会。
  17. 根据权利要求16所述的方法,其特征在于,第一优先级高于第二优先级,则第一起点在时域上早于第二起点,其中,所述第一起点为所述网络设备根据所述第一优先级确定的所述部分传输机会的起点,所述第二起点为所述网络设备根据所述第二优先级确定的所述部分传输机会的起点。
  18. 根据权利要求16或17所述的方法,其特征在于,若触发所述终端设备进行随机接入的事件的优先级大于或等于预设优先级,所述部分传输机会为所述多个传输机会中的前N个传输机会。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述N。
  20. 根据权利要求16或17所述的方法,其特征在于,若触发所述终端设备进行随机接入的事件的优先级小于预设优先级,所述部分传输机会为所述多个传输机会中的后M个传输机会。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述M。
  22. 根据权利要求16至21中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述触发随机接入事件的优先级。
  23. 根据权利要求14至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备利用所述目标传输机会,接收所述终端设备发送的所述消息3。
  24. 一种终端设备,其特征在于,包括:
    通信单元,用于接收网络设备发送的随机接入响应RAR,所述RAR中包括用于在随机接入中传输消息3的多个传输机会;
    处理单元,用于根据所述多个传输机会中的第一传输机会,对所述第一传输机会之后的传输机会进行信道侦听,直到信道侦听成功。
  25. 根据权利要求24所述的终端设备,其特征在于,所述处理单元还用于:
    从所述多个传输机会中,选择所述第一传输机会。
  26. 根据权利要求25所述的终端设备,其特征在于,所述处理单元具体用于:
    从所述多个传输机会中,随机选择所述第一传输机会。
  27. 根据权利要求25所述的终端设备,其特征在于,所述处理单元具体用于:
    从所述多个传输机会中的部分传输机会中,随机选择所述第一传输机会。
  28. 根据权利要求27所述的终端设备,其特征在于,所述处理单元还用于:
    根据触发随机接入事件的优先级,确定所述部分传输机会。
  29. 根据权利要求28所述的终端设备,其特征在于,第一优先级高于第二优先级,则第一起点在时域上早于第二起点,其中,所述第一起点为所述处理单元根据所述第一优先级确定的所述部分传输机会的起点,所述第二起点为所述处理单元根据所述第二优先级确定的所述部分传输机会的起点。
  30. 根据权利要求28或29所述的终端设备,其特征在于,若触发所述终端设备进行随机接入的事件的优先级大于或等于预设优先级,所述部分传输机会为所述多个传输 机会中的前N个传输机会。
  31. 根据权利要求30所述的终端设备,其特征在于,所述N是通过协议预设在所述终端设备上的,或者,所述N是所述网络设备配置的。
  32. 根据权利要求28或29所述的终端设备,其特征在于,若触发所述终端设备进行随机接入的事件的优先级小于预设优先级,所述部分传输机会为所述多个传输机会中的后M个传输机会。
  33. 根据权利要求32所述的终端设备,其特征在于,所述M是通过协议预设在所述终端设备上的,或者,所述N是所述网络设备配置的。
  34. 根据权利要求28至33中任一项所述的终端设备,其特征在于,所述触发随机接入事件的优先级是协议规定的,或者,所述触发随机接入事件的优先级是所述网络设备配置的。
  35. 根据权利要求24至34中任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    以所述第一传输机会为起点,依次对所述第一传输机会之后的传输机会进行信道侦听。
  36. 根据权利要求24至35中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    利用目标传输机会,向所述网络设备发送所述消息3,其中,所述目标传输机会为所述终端设备侦听成功的信道对应的传输机会。
  37. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送随机接入响应RAR,所述RAR中包括用于所述终端设备在随机接入中传输消息3的多个传输机会;
    处理单元,用于根据所述多个传输机会中的第一传输机会,确定用于接收所述消息3的目标传输机会。
  38. 根据权利要求37所述的网络设备,其特征在于,所述处理单元还用于:
    从所述多个传输机会中的部分传输机会中,确定所述第一传输机会。
  39. 根据权利要求38所述的网络设备,其特征在于,所述处理单元还用于:
    根据触发随机接入事件的优先级,确定所述部分传输机会。
  40. 根据权利要求39所述的网络设备,其特征在于,第一优先级高于第二优先级,则第一起点在时域上早于第二起点,其中,所述第一起点为所述处理单元根据所述第一优先级确定的所述部分传输机会的起点,所述第二起点为所述处理单元根据所述第二优先级确定的所述部分传输机会的起点。
  41. 根据权利要求39或40所述的网络设备,其特征在于,若触发所述终端设备进行随机接入的事件的优先级大于或等于预设优先级,所述部分传输机会为所述多个传输机会中的前N个传输机会。
  42. 根据权利要求41所述的网络设备,其特征在于,所述通信单元还用于:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述N。
  43. 根据权利要求39或40所述的网络设备,其特征在于,若触发所述终端设备进行随机接入的事件的优先级小于预设优先级,所述部分传输机会为所述多个传输机会中的后M个传输机会。
  44. 根据权利要求43所述的网络设备,其特征在于,所述通信单元还用于:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述M。
  45. 根据权利要求39至44中任一项所述的网络设备,其特征在于,所述通信单元还用于:
    向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述触发随机接入事件的优先级。
  46. 根据权利要求37至45中任一项所述的网络设备,其特征在于,所述通信单元还用于:
    利用所述目标传输机会,接收所述终端设备发送的所述消息3。
  47. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法。
  48. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求14至23中任一项所述的方法。
  49. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法。
  50. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求14至23中任一项所述的方法。
  51. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求14至23中任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法。
  54. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求14至23中任一项所述的方法。
  55. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  56. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求14至23中任一项所述的方法。
PCT/CN2019/085719 2019-05-06 2019-05-06 随机接入的方法、终端设备和网络设备 WO2020223878A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980074105.2A CN112997574B (zh) 2019-05-06 2019-05-06 随机接入的方法、终端设备和网络设备
PCT/CN2019/085719 WO2020223878A1 (zh) 2019-05-06 2019-05-06 随机接入的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/085719 WO2020223878A1 (zh) 2019-05-06 2019-05-06 随机接入的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2020223878A1 true WO2020223878A1 (zh) 2020-11-12

Family

ID=73050961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085719 WO2020223878A1 (zh) 2019-05-06 2019-05-06 随机接入的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN112997574B (zh)
WO (1) WO2020223878A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117426135A (zh) * 2022-05-17 2024-01-19 北京小米移动软件有限公司 随机接入方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116113062A (zh) * 2021-11-09 2023-05-12 中兴通讯股份有限公司 基于竞争的随机接入方法、终端设备及存储介质
WO2024036538A1 (zh) * 2022-08-17 2024-02-22 Oppo广东移动通信有限公司 重复传输方法、终端设备和网络设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929826A (zh) * 2014-05-05 2014-07-16 盐城工学院 一种机器类通信终端自适应随机接入方法及系统
US20160100422A1 (en) * 2014-10-01 2016-04-07 Samsung Electronics Co., Ltd. System and method for improving spectral efficiency and coverage for user equipments
WO2018085701A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Message 3 transmission in random access procedure for nr
CN108476480A (zh) * 2017-08-16 2018-08-31 北京小米移动软件有限公司 随机接入方法及装置、用户设备和基站
CN109219152A (zh) * 2017-06-29 2019-01-15 索尼公司 无线通信系统中的电子设备以及无线通信方法
CN109392107A (zh) * 2017-08-08 2019-02-26 华为技术有限公司 一种通信的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180035470A1 (en) * 2016-07-28 2018-02-01 Asustek Computer Inc. Method and apparatus for improving msg3 transmission of random access procedure in a wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929826A (zh) * 2014-05-05 2014-07-16 盐城工学院 一种机器类通信终端自适应随机接入方法及系统
US20160100422A1 (en) * 2014-10-01 2016-04-07 Samsung Electronics Co., Ltd. System and method for improving spectral efficiency and coverage for user equipments
WO2018085701A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Message 3 transmission in random access procedure for nr
CN109219152A (zh) * 2017-06-29 2019-01-15 索尼公司 无线通信系统中的电子设备以及无线通信方法
CN109392107A (zh) * 2017-08-08 2019-02-26 华为技术有限公司 一种通信的方法和装置
CN108476480A (zh) * 2017-08-16 2018-08-31 北京小米移动软件有限公司 随机接入方法及装置、用户设备和基站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117426135A (zh) * 2022-05-17 2024-01-19 北京小米移动软件有限公司 随机接入方法及装置

Also Published As

Publication number Publication date
CN112997574A (zh) 2021-06-18
CN112997574B (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US11729830B2 (en) Method for transmitting information based on channel access manners, and user equipment
US12048021B2 (en) Random access method and device
WO2020020270A1 (zh) 随机接入的方法和通信设备
US12041623B2 (en) Random access method, terminal device and network device
US20210410195A1 (en) Method for two-step random access, terminal device and network device
CN111972032B (zh) 随机接入的方法和设备
US20220039152A1 (en) Method for transmitting information in random access process, terminal device and network device
WO2020186466A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020223878A1 (zh) 随机接入的方法、终端设备和网络设备
WO2019237805A1 (zh) 一种随机接入方法及装置、通信设备
WO2021077343A1 (zh) 无线通信方法和终端设备
WO2020210963A1 (zh) 消息传输的方法和设备
WO2020191599A1 (zh) 通信方法、终端设备和网络设备
WO2022067519A1 (zh) 随机接入方法和终端设备
US20230129426A1 (en) Wireless communication method and terminal device
WO2020227907A1 (zh) 一种资源确定方法及装置、终端
US20210204327A1 (en) Method for controlling power ramp counter, and terminal device
WO2021223191A1 (zh) 信息发送、接收方法、终端及网络设备
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2020082394A1 (zh) 随机接入的方法、终端设备和网络设备
WO2020186468A1 (zh) 随机接入的方法和设备
WO2020206597A1 (zh) 功率分配的方法和终端设备
US20220225433A1 (en) Wireless communication method, terminal device, and network device
WO2020198988A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2020177135A1 (zh) 功率控制方法及随机接入方法、装置、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928177

Country of ref document: EP

Kind code of ref document: A1