WO2020199171A1 - 一种传输参数确定方法及装置、用户设备 - Google Patents

一种传输参数确定方法及装置、用户设备 Download PDF

Info

Publication number
WO2020199171A1
WO2020199171A1 PCT/CN2019/081332 CN2019081332W WO2020199171A1 WO 2020199171 A1 WO2020199171 A1 WO 2020199171A1 CN 2019081332 W CN2019081332 W CN 2019081332W WO 2020199171 A1 WO2020199171 A1 WO 2020199171A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
data channel
payload
load
proportional relationship
Prior art date
Application number
PCT/CN2019/081332
Other languages
English (en)
French (fr)
Inventor
徐伟杰
唐海
Original Assignee
北京欧珀通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京欧珀通信有限公司 filed Critical 北京欧珀通信有限公司
Priority to PCT/CN2019/081332 priority Critical patent/WO2020199171A1/zh
Priority to CN201980064258.9A priority patent/CN112771967B/zh
Publication of WO2020199171A1 publication Critical patent/WO2020199171A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and in particular to a method and device for determining transmission parameters, and user equipment.
  • the random access process uses a four-step random access process.
  • the four-step random access process in the LTE system is still used.
  • Msg1 and Msg3 in the four-step random access process are transmitted through MsgA in the two-step random access process
  • Msg2 and Msg4 in the four-step random access process are transmitted through MsgB in the two-step random access process.
  • the transmission parameters in the two-step random access process are not clear, and the reliability of data transmission is low.
  • the embodiments of the present application provide a method and device for determining transmission parameters, and user equipment.
  • the user equipment sends the first uplink data channel in the first message according to the first information, where the first message includes the first uplink data channel and the first preamble;
  • the first information is used to determine at least one of the following transmission parameters of the first uplink data channel: time domain resources, frequency domain resources, and coding mode.
  • a sending unit configured to send the first uplink data channel in the first message according to the first information, the first message including the first uplink data channel and the first preamble;
  • the first information is used to determine at least one of the following transmission parameters of the first uplink data channel: time domain resources, frequency domain resources, and coding mode.
  • the user equipment provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned method for determining transmission parameters.
  • the chip provided in the embodiment of the present application is used to implement the aforementioned transmission parameter determination method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that a device installed with the chip executes the above-mentioned method for determining transmission parameters.
  • the computer-readable storage medium provided by the embodiments of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned method for determining transmission parameters.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above transmission parameter determination method.
  • the computer program provided in the embodiment of the present application runs on a computer
  • the computer executes the above-mentioned method for determining transmission parameters.
  • At least one of the time domain resource, frequency domain resource, and coding method of the first uplink data channel in the first message (ie MsgA) in the random access process is clarified, thereby ensuring performance and access
  • the time delay also improves the flexibility of data transmission.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2 is a flowchart of a four-step random access process provided by an embodiment of the present application
  • Figure 3 is a flowchart of a two-step random access process provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for determining transmission parameters provided by an embodiment of the present application.
  • Figure 5 is a resource structure diagram of application example one provided by an embodiment of the present application.
  • Fig. 6 is a resource structure diagram of application example 2 provided by an embodiment of the present application.
  • Fig. 7 is a resource structure diagram of application example four provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the structural composition of a transmission parameter determination apparatus provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip of an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via wired lines, such as public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminals 120 may perform device-to-device (D2D) communication.
  • D2D device-to-device
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • Random access is an important process for the UE to establish a wireless connection with the network side. Through random access, it can obtain uplink synchronization with the base station and apply for uplink resources.
  • the random access process is divided into a contention-based random access process and a non-competition-based random access process. Among them, the contention-based random access process includes a four-step random access process and a two-step random access process.
  • Figure 2 shows the flow chart of the four-step random access process, as shown in Figure 2, the four-step random access process The process includes the following steps:
  • Step 201 The UE sends Msg1 to the base station.
  • the UE sending Msg1 to the base station can be specifically implemented through the following process:
  • the UE determines the relationship between the synchronization signal block (Synchronization Signal Block, SSB) and PRACH resources (configured by the higher layer);
  • SSB Synchronization Signal Block
  • PRACH resources Configured by the higher layer
  • the UE receives a set of SSBs and determines its Reference Signal Received Power (RSRP) value, and selects the appropriate SSB according to the threshold;
  • RSRP Reference Signal Received Power
  • the UE determines physical random access channel (PRACH) resources based on the selected SSB and the corresponding relationship between the SSB and RACH resources;
  • PRACH physical random access channel
  • the UE sends the preamble on the PRACH time-frequency domain resources.
  • Step 202 The UE receives Msg2 sent by the base station.
  • the UE receiving the Msg2 sent by the base station can be specifically implemented through the following process:
  • the UE sends the preamble to the first Physical Downlink Control Channel (PDCCH) at the opportunity to open the RAR window (ra-Response Window) and monitor the PDCCH during the operation of the window, where PDCCH is PDCCH scrambled with RA-RNTI.
  • RA-RNTI is related to the PRACH time-frequency resource selected by the UE. The calculation of RA-RNTI is as follows:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id
  • s_id is the index of the first OFDM symbol of the PRACH resource (0 ⁇ s_id ⁇ 14);
  • t_id is the index of the first time slot of the PRACH resource in the system frame (0 ⁇ t_id ⁇ 80);
  • f_id is the index of PRACH opportunity in the frequency domain (0 ⁇ f_id ⁇ 8);
  • ul_carrier_id is an uplink (Uplink, UL) carrier used for preamble index transmission.
  • the UE After the UE successfully monitors the PDCCH scrambled by the RA-RNTI, it can obtain the PDSCH scheduled by the PDCCH, which includes the RAR.
  • Step 203 The UE sends Msg3 to the base station.
  • Msg3 is mainly used to send UE ID to the network to resolve contention conflicts. For example, if it is the initial access random process, the Msg3 will carry the RRC layer message, that is, CCCH SDU, which contains the UE ID and the connection establishment request (RRCSetupRequest); if it is the RRC reestablishment, it will carry the reestablishment request (RRCRestablishmentRequest). ).
  • Step 204 The UE receives Msg4 sent by the base station.
  • Msg4 has two functions, one is for contention conflict resolution; the second is to transmit RRC configuration messages to the terminal.
  • the UE receives the DCI format 1_0 of the Cell-Radio Network Temporary Identifier (C-RNTI) scrambling code and its corresponding PDSCH, the random access is complete; if the terminal receives the TC-RNTI scrambling code DCI format 1_0 and its corresponding PDSCH, and the content is successfully compared, and random access is completed.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the two-step random access process is in the process of standardization discussion and is in the research stage.
  • the two-step random access process can increase the delay and reduce the signaling overhead.
  • MsgA transmits Msg1 and Msg3 of the four-step random access process
  • MsgB transmits Msg2 of the four-step random access process.
  • Msg4 transmits Msg4 of the four-step random access process.
  • FIG. 3 shows a flow chart of the two-step random access process. As shown in Figure 3, the two-step random access process includes the following steps:
  • Step 301 The UE sends MsgA to the base station.
  • MsgA transmits Msg1 and Msg3 of the four-step random access process, that is, MsgA includes a preamble and an uplink data channel.
  • the uplink data channel is, for example, a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • Step 302 The UE receives the MsgB sent by the base station.
  • MsgB transmits Msg2 and Msg4 of the four-step random access process.
  • the PUSCH in MsgA needs to transmit information similar to Msg3 in the four-step random access process, such as the UE ID used to resolve contention collisions.
  • the transmission parameter setting in the two-step random access process is blank.
  • the PUSCH of MsgA needs to support different payload sizes to support multiple radio resource control (Radio Resource Control, RRC) connection states.
  • RRC Radio Resource Control
  • the payload and resource size of the PUSCH of Msg3 are configured by the network equipment to the user equipment.
  • the network device cannot predict the payload and resources. Therefore, blind detection of payload and resources is required, and corresponding mechanisms are also required.
  • the leading part of MsgA is a sequence with low peak-to-average ratio, which has a higher probability of acquisition.
  • the PUSCH of MsgA needs to have the same or similar acquisition probability to ensure the success of the two-step random access.
  • the base station acquisition probability it needs should be lower than that of the preamble. Only in this way can it be ensured that ordinary user data can obtain higher spectrum efficiency without excessive use of wireless resources.
  • the PUSCH part may need to send new control information. The probability of obtaining control information also needs to be different from the data.
  • the PUSCH part of Msg3 in the current four-step random access process cannot achieve this effect. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • FIG. 4 is a schematic flowchart of a method for determining a transmission parameter according to an embodiment of the application. As shown in FIG. 4, the method for determining a transmission parameter includes the following steps:
  • Step 401 The user equipment sends the first uplink data channel in the first message according to the first information, the first message includes the first uplink data channel and the first preamble; wherein the first information is used to determine the At least one of the following transmission parameters of the first uplink data channel: time domain resources, frequency domain resources, and coding mode.
  • the user equipment in the embodiments of the present application may be any device capable of communicating with the network, such as a mobile phone, a notebook, a tablet computer, a vehicle-mounted terminal, and a wearable terminal.
  • the network equipment in the embodiment of this application includes but is not limited to LTE base station (eNB) and NR base station (gNB.)
  • the technical solution of the embodiment of the present application is applied to a two-step random access process.
  • the two-step random access process includes two steps: 1) the user equipment sends the MsgA to the network equipment; 2) the network equipment sends the MsgA to the user equipment Send MsgB.
  • the first message is MsgA in a two-step random access process, and the first message includes a first uplink data channel and a first preamble.
  • the first uplink data channel is, for example, PUSCH.
  • the user equipment sends the first uplink data channel in the first message according to the first information, and the first information is used to determine at least one of the following transmission parameters of the first uplink data channel: time domain Resources, frequency domain resources, coding methods.
  • the first information is agreed upon; or, the first information is configured by the network device to the user equipment.
  • the base station and the user equipment agree on at least one transmission parameter of the time domain resource, frequency domain resource, and coding mode of the PUSCH of the MsgA in the two-step random access process, and the user equipment sends the PUSCH of the MsgA according to these transmission parameters.
  • the base station configures the user equipment with at least one transmission parameter of the time domain resource, the frequency domain resource, and the coding mode of the PUSCH of the MsgA in the two-step random access process, and the user equipment sends the PUSCH of the MsgA according to these transmission parameters.
  • the following describes how to determine each transmission parameter of the first uplink data channel respectively.
  • the symbols in the embodiments of the present application may be symbol orthogonal frequency division multiplexing (OFDM) symbols.
  • the payload (payload) can be transmitted on the first uplink data channel in the embodiment of the present application.
  • the time domain resource of the first uplink data channel is determined based on the start symbol position of the first uplink data channel and the number of symbols occupied by the first uplink data channel.
  • the start symbol position of the first uplink data channel is determined based on the first preamble.
  • the start symbol of the first uplink data channel is located after the end symbol of the first preamble.
  • the end symbol of the first preamble is symbol (i)
  • the start symbol of the first uplink data channel is symbol (i+N)
  • N represents the first offset
  • N is a positive integer .
  • the number of symbols occupied by the first uplink data channel is determined based on the load transmitted by the first uplink data channel.
  • the number of symbols occupied by the first uplink data channel is proportional to the load transmitted by the first uplink data channel.
  • the proportional relationship between the number of bits of the payload transmitted by the first uplink data channel and the number of bits of the reference payload is a first proportional relationship, and the number of symbols occupied by the payload transmitted by the first uplink data channel is equal to
  • the proportional relationship of the number of symbols occupied by the reference load is a second proportional relationship, and the first proportional relationship is the same as the second proportional relationship.
  • the number of symbols occupied by the payload transmitted by the first uplink data channel ceiling (the number of bits of the payload transmitted by the first uplink data channel/the number of bits of the reference payload * the number of symbols occupied by the reference payload).
  • ceiling represents rounding up.
  • the number of symbols occupied by the payload transmitted by the first uplink data channel floor (the number of bits of the payload transmitted by the first uplink data channel/the number of bits of the reference payload*the number of symbols occupied by the reference payload).
  • floor represents rounding down.
  • the frequency domain resource of the first uplink data channel is determined based on the start resource block (Resource Block, RB) position of the first uplink data channel and the number of symbols occupied by the first uplink data channel.
  • start resource block Resource Block, RB
  • the starting RB position of the first uplink data channel is determined based on the first preamble.
  • the start RB of the first uplink data channel is located after the start RB of the first preamble; or, the start RB of the first uplink data channel is located at the start RB of the first preamble prior to.
  • the start RB of the first preamble is RB(j)
  • the start RB of the first uplink data channel is RB(j+M)
  • M represents the second offset
  • M is positive Integer or negative integer.
  • the number of RBs occupied by the first uplink data channel is determined based on the load transmitted by the first uplink data channel.
  • the number of RBs occupied by the first uplink data channel is proportional to the load transmitted by the first uplink data channel.
  • the proportional relationship between the number of bits of the load transmitted by the first uplink data channel and the number of bits of the reference load is a first proportional relationship
  • the number of RBs occupied by the load transmitted by the first uplink data channel is equal to
  • the proportional relationship of the number of RBs occupied by the reference load is a third proportional relationship
  • the first proportional relationship is the same as the third proportional relationship.
  • the number of RBs occupied by the load transmitted by the first uplink data channel ceiling (the number of bits of the load transmitted by the first uplink data channel/the number of bits of the reference load*the number of RBs occupied by the reference load).
  • ceiling represents rounding up.
  • the number of RBs occupied by the load transmitted by the first uplink data channel floor (the number of bits of the load transmitted by the first uplink data channel/the number of bits of the reference load * the number of RBs occupied by the reference load).
  • floor represents rounding down.
  • the time domain resource of the first uplink data channel is determined based on the start symbol position of the first uplink data channel and the number of symbols occupied by the first uplink data channel.
  • time domain resources of the first uplink data channel can refer to the description in 1) above, and details are not described herein again.
  • the frequency domain resource of the first uplink data channel is determined based on the position of the start resource block RB of the first uplink data channel and the number of symbols occupied by the first uplink data channel.
  • the frequency domain resources of the first uplink data channel can refer to the description in 2) above, which will not be repeated here.
  • the number of resource elements (Resource Elements, RE) occupied by the first uplink data channel is determined based on the load transmitted by the first uplink data channel.
  • the number of REs occupied by the first uplink data channel is proportional to the load transmitted by the first uplink data channel.
  • the proportional relationship between the number of bits of the load transmitted by the first uplink data channel and the number of bits of the reference load is a first proportional relationship, and the number of REs occupied by the load transmitted by the first uplink data channel is equal to
  • the proportional relationship of the number of REs occupied by the reference load is a fourth proportional relationship, and the first proportional relationship is the same as the fourth proportional relationship.
  • the number of REs occupied by the load transmitted by the first uplink data channel ceiling (the number of bits of the load transmitted by the first uplink data channel/the number of bits of the reference load * the number of REs occupied by the reference load).
  • ceiling represents rounding up.
  • the number of REs occupied by the load transmitted by the first uplink data channel floor (the number of bits of the load transmitted by the first uplink data channel/the number of bits of the reference load * the number of REs occupied by the reference load).
  • floor represents rounding down.
  • the user equipment determines the number of RBs occupied by the first uplink data channel in the frequency domain and the number of symbols occupied by the first uplink data channel in the time domain according to the number of REs occupied by the first uplink data channel.
  • the coding mode of the first uplink data channel is determined according to the load type transmitted by the first uplink data channel.
  • the load transmitted by the first uplink data channel includes a first type of load and a second type of load, and the first type of load and the second type of load adopt independent coding methods. Further, the resources of the second type of load are appended to the resources of the first type of load.
  • the user equipment is based on the number of bits and resources of the first type of payload, the number of bits of the second type of payload, and the bit rate of the first type of payload and the second type of payload. Ratio to determine the resources of the second type of load. In another implementation manner, the user equipment determines the resource of the second type of load according to the resource of the first type of load and the resource allocation ratio of the first type of load to the second type of load.
  • the resources include time domain resources and/or frequency domain resources.
  • the solution in this application allows the two-step random access process to support more payload sizes, thereby improving the flexibility of access data transmission while ensuring performance and access delay.
  • the solution also introduces dual payloads to ensure that different types of information are protected at different levels.
  • the introduction of different codes can also achieve different processing time requirements for control or common data.
  • MsgA is the foregoing first message
  • PUSCH is the foregoing first uplink data channel.
  • the user equipment uses the transmission structure shown in FIG. 5 to send MsgA.
  • Each preamble and a PUSCH define the offset in the time domain.
  • the offset between the preamble and the PUSCH in the time domain is 1, that is, the first OFDM symbol after the preamble is the position where the PUSCH starts.
  • the offset is in the unit of OFDM symbol and can be any integer from 1 to N.
  • the way to obtain the offset can be determined by the preamble parameter, or the broadcast and delivery of the network device.
  • the user equipment determines the number of OFDM symbols occupied when transmitting the PUSCH according to the actual number of payload bits transmitted and the number of reference payload bits.
  • the proportional relationship between the actual number of payload bits transmitted and the number of reference payload bits is the same as the proportional relationship between the actual number of OFDM symbols occupied by the payload and the number of OFDM symbols occupied by the reference payload.
  • the following formula is used to determine the actual number of OFDM symbols occupied by the transmitted payload:
  • the actual number of OFDM symbols occupied by the transmitted payload ceiling (the number of bits of the actual transmitted payload/the number of bits of the reference payload*the number of OFDM symbols occupied by the reference payload).
  • ceiling represents rounding up.
  • the actual number of OFDM symbols occupied by the payload floor (the number of bits in the actual payload/the number of bits in the reference payload*the number of OFDM symbols occupied by the reference payload).
  • floor represents rounding down.
  • 54 bits are used as the number of bits of the reference payload, and 14 symbols are used as the number of OFDM symbols occupied by the reference payload.
  • the PUSCH occupies a fixed number of RBs, such as 6 RBs.
  • the user equipment uses the transmission structure shown in FIG. 6 to send MsgA.
  • Each preamble and a PUSCH define the offset in the frequency domain.
  • the offset between the preamble and the PUSCH in the frequency domain is Delta RB, that is, the difference between the first RB of the preamble and the RB starting from the PUSCH.
  • the offset can be any positive or negative integer.
  • the way to obtain the offset can be determined by the preamble parameter, or the broadcast and delivery of the network device.
  • the user equipment determines the number of RBs occupied when transmitting the PUSCH according to the actual number of payload bits transmitted and the number of reference payload bits.
  • the proportional relationship between the actual number of payload bits transmitted and the number of reference payload bits is the same as the proportional relationship between the actual number of RBs occupied by the payload and the number of RBs occupied by the reference payload.
  • the actual number of RBs occupied by the transmitted payload ceiling (the number of bits of the actual transmitted payload/the number of bits of the reference payload * the number of RBs occupied by the reference payload).
  • ceiling represents rounding up.
  • the actual number of RBs occupied by the payload floor (the number of bits of the actual payload/the number of bits of the reference payload * the number of RBs occupied by the reference payload).
  • floor represents rounding down.
  • 54 bits are used as the number of bits of the reference payload, and 6 RBs are used as the number of RBs occupied by the reference payload.
  • the PUSCH occupies a fixed number of OFDM symbols, such as 14 symbols.
  • Each preamble and one PUSCH of the user equipment defines the offset in the time domain and the frequency domain.
  • the offset in the frequency domain is Delta RB, that is, the difference between the first RB of the preamble and the RB starting from the PUSCH.
  • the offset in the frequency domain can be any positive or negative integer.
  • the time domain offset is in units of OFDM symbols. The way to obtain the offset can be determined by the preamble parameter, or the broadcast and delivery of the network device.
  • the user equipment determines the number of REs occupied when transmitting the PUSCH according to the actual number of payload bits transmitted and the number of reference payload bits.
  • the proportional relationship between the actual number of payload bits transmitted and the number of reference payload bits is the same as the proportional relationship between the actual number of REs occupied by the payload and the number of REs occupied by the reference payload.
  • the user equipment determines the number of RBs occupied by the PUSCH in the frequency domain and the number of OFDM symbols in the time domain according to the actual number of REs occupied by the transmitted payload.
  • PUSCH can transmit two payloads.
  • the two payloads are used to transmit different types of information.
  • the first payload (that is, the first type of payload) transmits necessary information for the random access process, such as the UE ID, RNTI, control channel, HARQ, etc. for user conflict resolution.
  • the second payload (that is, the second type of payload) transmits other information.
  • the first payload and the second payload are encoded independently.
  • the encoding relationship between the first payload and the second payload is shown in FIG. 7.
  • the two payloads can independently use channel coding methods, for example: the first payload uses polar coding and the second payload uses low-density parity-check (LDPC) coding.
  • LDPC low-density parity-check
  • both the first payload and the second payload use LDPC encoding.
  • the time-frequency resource of the second payload is mapped after the time-frequency resource of the first payload.
  • the OFDM symbol of the time-frequency resource of the second payload is after the OFDM symbol of the time-frequency resource of the first payload.
  • the RE sequence number of the time-frequency resource of the second payload is after the RE sequence number of the first payload.
  • the user equipment can respectively determine the channel coding rate and time-frequency resource used by the first payload and the second payload to send information through the broadcast parameters of the network device or a predetermined calculation method. specifically,
  • the user equipment obtains the rate ratio of the first payload and the second payload through the broadcast parameters of the network device.
  • the user equipment calculates the resources of the second payload (the number of RBs and/or the number of OFDM symbols) according to the number of bits and resources of the first payload (number of RBs and/or the number of OFDM symbols), the code rate ratio obtained above, and the number of bits of the second payload. Symbol number).
  • the system agrees on the rate ratio of the first payload and the second payload and the implicit calculation method.
  • the user equipment calculates the resources of the second payload (the number of RBs and/or the number of OFDM symbols) according to the number of bits and resources of the first payload (number of RBs and/or the number of OFDM symbols), the aforementioned agreed rate ratio, and the number of bits of the second payload. Symbol number).
  • the user equipment obtains the resource allocation ratio of the first payload and the second payload through the broadcast parameters of the network device, and determines the resources (the number of RBs and/or the number of OFDM symbols) of the second payload according to the resource allocation ratio.
  • FIG. 8 is a schematic diagram of the structural composition of a transmission parameter determination device provided by an embodiment of the application. As shown in FIG. 8, the transmission parameter determination device includes:
  • the sending unit 801 is configured to send a first uplink data channel in a first message according to the first information, where the first message includes the first uplink data channel and the first preamble;
  • the first information is used to determine at least one of the following transmission parameters of the first uplink data channel: time domain resources, frequency domain resources, and coding mode.
  • the time domain resource of the first uplink data channel is determined based on the start symbol position of the first uplink data channel and the number of symbols occupied by the first uplink data channel.
  • the start symbol position of the first uplink data channel is determined based on the first preamble.
  • the start symbol of the first uplink data channel is located after the end symbol of the first preamble.
  • the number of symbols occupied by the first uplink data channel is determined based on the load transmitted by the first uplink data channel.
  • the number of symbols occupied by the first uplink data channel is proportional to the load transmitted by the first uplink data channel.
  • the proportional relationship between the number of bits of the payload transmitted by the first uplink data channel and the number of bits of the reference payload is a first proportional relationship, and the number of symbols occupied by the payload transmitted by the first uplink data channel is equal to
  • the proportional relationship of the number of symbols occupied by the reference load is a second proportional relationship, and the first proportional relationship is the same as the second proportional relationship.
  • the frequency domain resource of the first uplink data channel is determined based on the starting RB position of the first uplink data channel and the number of symbols occupied by the first uplink data channel.
  • the starting RB position of the first uplink data channel is determined based on the first preamble.
  • the start RB of the first uplink data channel is located after the start RB of the first preamble; or, the start RB of the first uplink data channel is located in the first preamble Before the starting RB.
  • the number of RBs occupied by the first uplink data channel is determined based on the load transmitted by the first uplink data channel.
  • the number of RBs occupied by the first uplink data channel is proportional to the load transmitted by the first uplink data channel.
  • the proportional relationship between the number of bits of the load transmitted by the first uplink data channel and the number of bits of the reference load is a first proportional relationship
  • the number of RBs occupied by the load transmitted by the first uplink data channel is equal to
  • the proportional relationship of the number of RBs occupied by the reference load is a third proportional relationship
  • the first proportional relationship is the same as the third proportional relationship.
  • the number of REs occupied by the first uplink data channel is determined based on the load transmitted by the first uplink data channel.
  • the number of REs occupied by the first uplink data channel is proportional to the load transmitted by the first uplink data channel.
  • the proportional relationship between the number of bits of the load transmitted by the first uplink data channel and the number of bits of the reference load is a first proportional relationship, and the number of REs occupied by the load transmitted by the first uplink data channel is equal to
  • the proportional relationship of the number of REs occupied by the reference load is a fourth proportional relationship, and the first proportional relationship is the same as the fourth proportional relationship.
  • the device further includes:
  • the determining unit 802 is configured to determine the number of RBs occupied by the first uplink data channel in the frequency domain and the number of symbols occupied by the first uplink data channel in the time domain according to the number of REs occupied by the first uplink data channel.
  • the encoding mode of the first uplink data channel is determined according to the load type transmitted by the first uplink data channel.
  • the load transmitted by the first uplink data channel includes a first type of load and a second type of load, and the first type of load and the second type of load adopt independent coding methods.
  • the resources of the second type of load are added to the resources of the first type of load, and the resources include time domain resources and/or frequency domain resources; the apparatus further includes:
  • the determining unit 802 is configured to determine the number of bits and resources of the first type of payload, the number of bits of the second type of payload, and the code rate ratio of the first type of payload and the second type of payload.
  • the resource of the second type of load; or, the resource of the second type of load is determined according to the resource of the first type of load and the resource allocation ratio of the first type of load to the second type of load.
  • the first information is agreed upon; or, the first information is configured by the network device to the user equipment.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device may be a terminal.
  • the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 may call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 900 may further include a memory 920.
  • the processor 910 may call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be a network device of an embodiment of the application, and the communication device 900 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For brevity, details are not repeated here .
  • the communication device 900 may specifically be a mobile terminal/terminal according to an embodiment of the present application, and the communication device 900 may implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application. For brevity, This will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or it may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • it will not be omitted here. Repeat.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 11 is a schematic block diagram of a communication system 1100 according to an embodiment of the present application. As shown in FIG. 11, the communication system 1100 includes a user equipment 1110 and a network device 1120.
  • the user equipment 1110 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 1120 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for It's concise, so I won't repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding procedures implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present application.
  • the computer program runs on the computer, the computer can execute the corresponding methods implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种传输参数确定方法及装置、终端,包括:用户设备根据第一信息,发送第一消息中的第一上行数据信道,所述第一消息包括第一上行数据信道和第一前导码;其中,所述第一信息用于确定所述第一上行数据信道的以下至少一种传输参数:时域资源、频域资源、编码方式。

Description

一种传输参数确定方法及装置、用户设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种传输参数确定方法及装置、用户设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,随机接入过程采用的是四步随机接入过程。在新无线(New Radio,NR)系统中仍然沿用LTE系统中的四步随机接入过程。随着标准化的讨论,认为四步随机接入过程较为繁琐,会给终端的接入带来较大的时延,因此提出了两步随机接入过程。通过两步随机接入过程中的MsgA传输四步随机接入过程中的Msg1和Msg3,通过两步随机接入过程中的MsgB传输四步随机接入过程中的Msg2和Msg4。
目前,两步随机接入过程中的传输参数没有明确,数据传输可靠性较低。
发明内容
本申请实施例提供一种传输参数确定方法及装置、用户设备。
本申请实施例提供的传输参数确定方法,包括:
用户设备根据第一信息,发送第一消息中的第一上行数据信道,所述第一消息包括第一上行数据信道和第一前导码;
其中,所述第一信息用于确定所述第一上行数据信道的以下至少一种传输参数:时域资源、频域资源、编码方式。
本申请实施例提供的传输参数确定装置,包括:
发送单元,用于根据第一信息,发送第一消息中的第一上行数据信道,所述第一消息包括第一上行数据信道和第一前导码;
其中,所述第一信息用于确定所述第一上行数据信道的以下至少一种传输参数:时域资源、频域资源、编码方式。
本申请实施例提供的用户设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的传输参数确定方法。
本申请实施例提供的芯片,用于实现上述的传输参数确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的传输参数确定方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的传输参数确定方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的传输参数确定方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的传输参数确定方法。
通过上述技术方案,明确了随机接入过程中第一消息(即MsgA)中的第一上行数据信道的时域资源、频域资源、编码方式中的至少一种,从而在保证性能和接入时延的同时也提高了数据传输的灵活性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的四步随机接入过程的流程图;
图3是本申请实施例提供的两步随机接入过程的流程图;
图4是本申请实施例提供的传输参数确定方法的流程示意图;
图5是本申请实施例提供的应用示例一的资源结构图;
图6是本申请实施例提供的应用示例二的资源结构图;
图7是本申请实施例提供的应用示例四的资源结构图;
图8为本申请实施例提供的传输参数确定装置的结构组成示意图;
图9是本申请实施例提供的一种通信设备示意性结构图;
图10是本申请实施例的芯片的示意性结构图;
图11是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在 此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术概念进行说明。
随机接入是UE与网络侧建立无线连接的重要过程,通过随机接入可以与基站之间取得上行同步,申请上行资源。随机接入过程分为基于竞争的随机接入过程和基于非竞争的随机接入过程。其中,基于竞争的随机接入过程包括四步随机接入过程和两步随机接入过程,图2给出了四步随机接入过程的流程图,如图2所示,四步随机接入过程包括以下步骤:
步骤201:UE向基站发送Msg1。
这里,UE向基站发送Msg1具体可以通过以下过程来实现:
–UE确定同步信号块(Synchronization Signal Block,SSB)与PRACH资源的关系 (由高层配置);
–UE接收一组SSB并确定其参考信号接收功率(Reference Signal Received Power,RSRP)值,根据门限选择合适的SSB;
–UE基于选择的SSB和SSB与RACH资源的对应关系确定物理随机接入信道(Physical Random Access Channel,PRACH)资源;
–UE在PRACH时频域资源上发送前导码。
步骤202:UE接收基站发送的Msg2。
这里,UE接收基站发送的Msg2具体可以通过以下过程来实现:
–UE在发送了前导码之后的第一个物理下行控制信道(Physical Downlink Control Channel,PDCCH)时机(occasion)开启RAR窗口(ra-Response Window)并在该窗口运行期间监听PDCCH,其中,PDCCH是用RA-RNTI加扰的PDCCH。RA-RNTI跟UE所选PRACH时频资源有关,RA-RNTI的计算如下:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id
其中,s_id为PRACH资源的第一个OFDM符号的索引(0≤s_id<14);
t_id为系统帧中PRACH资源的第一个时隙的索引(0≤t_id<80);
f_id是频域中的PRACH时机的索引(0≤f_id<8);
ul_carrier_id是用于preamble index传输的上行(Uplink,UL)载波。
UE成功监测到RA-RNTI加扰的PDCCH之后,能够获得该PDCCH调度的PDSCH,其中包含了RAR。
步骤203:UE向基站发送Msg3。
Msg3主要用于向网络发送UE ID来解决竞争冲突。比如,如果是初始接入随机过程,则在Msg3中会携带RRC层消息,也就是CCCH SDU,其中包含UE ID和连接建立请求(RRCSetupRequest);如果是RRC重建,则会携带重建立请求(RRCRestablishmentRequest)。
步骤204:UE接收基站发送的Msg4。
Msg4有两个作用,一个是用于竞争冲突解决;第二是向终端传输RRC配置消息。这里,如果UE收到小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)扰码的DCI format 1_0及其对应的PDSCH,随机接入完成;如果终端收到TC-RNTI扰码的DCI format 1_0及其对应的PDSCH,并比对内容成功,随机接入完成。
两步随机接入过程正在标准化讨论过程,处于研究阶段。两步随机接入过程可以提高时延,同时也能降低信令开销,目前有个基本的方式是,MsgA传输四步随机接入过程的Msg1和Msg3,MsgB传输四步随机接入过程的Msg2和Msg4。
图3给出了两步随机接入过程的流程图,如图3所示,两步随机接入过程包括以下步骤:
步骤301:UE向基站发送MsgA。
MsgA传输四步随机接入过程的Msg1和Msg3,即MsgA包括前导码和上行数据信道,这里,上行数据信道例如是物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
步骤302:UE接收基站发送的MsgB。
MsgB传输四步随机接入过程的Msg2和Msg4。
在两步随机接入过程中,MsgA中的PUSCH需要传输类似于四步随机接入过程中Msg3的内容,如用于解决竞争冲的UE ID等信息。两步随机接入过程中的传输参数的设定是空白的。
一方面,在两步随机接入过程中,MsgA的PUSCH需要支持不同的载荷(Payload)大小,以支持多种无线资源控制(Radio Resource Control,RRC)连接状态。在四步随机接入过程中,Msg3的PUSCH的Payload和资源大小是网络设备配置给用户设备的。在两步随机接入过程中,网络设备无法预知Payload和资源,因此需要盲检测payload和资源,也需要相应的机制。
另一方面,在两步随机接入过程中,MsgA的前导部分为低峰均比的序列,有较高的获取概率。MsgA的PUSCH需要有相同或者相近的获取概率才能保证两步随机接入的成功。然而当MsgA传送冲突解决之外的信息,如普通的用户数据时,其需要的基站获取概率应该较前导码低。这样才能保证普通的用户数据能够获得较高的频谱效率,不会过度使用无线资源。再者,PUSCH部分可能需要新增控制信息的发送。控制信息的获取概率也需要和数据不同。然而,当前的四步随机接入过程中的Msg3的PUSCH部分不能达成这样的效果。为此,提出了本申请实施例的以下技术方案。
图4为本申请实施例提供的传输参数确定方法的流程示意图,如图4所示,所述传输参数确定方法包括以下步骤:
步骤401:用户设备根据第一信息,发送第一消息中的第一上行数据信道,所述第一消息包括第一上行数据信道和第一前导码;其中,所述第一信息用于确定所述第一上行数据信道的以下至少一种传输参数:时域资源、频域资源、编码方式。
本申请实施例中的用户设备可以是手机、笔记本、平板电脑、车载终端、可穿戴式终端等任意能够与网络进行通信的设备。
本申请实施例中的网络设备包括但不限于是LTE基站(eNB),NR基站(gNB。)
在一实施方式中,本申请实施例的技术方案应用于两步随机接入过程,两步随机接入过程包括两个步骤:1)用户设备向网络设备发送MsgA;2)网络设备向用户设备发送MsgB。
在一实施方式中,所述第一消息为两步随机接入过程中的MsgA,所述第一消息包括第一上行数据信道和第一前导码。这里,第一上行数据信道例如是PUSCH。本申请实施例中,用户设备根据第一信息,发送第一消息中的第一上行数据信道,所述第一信息用于确定所述第一上行数据信道的以下至少一种传输参数:时域资源、频域资源、编码方式。
本申请实施例中,所述第一信息为约定好的;或者,所述第一信息为网络设备配置给所述用户设备的。例如:基站和用户设备约定好两步随机接入过程的MsgA的PUSCH的时域资源,频域资源,编码方式中的至少一种传输参数,用户设备根据这些传输参数发送MsgA的PUSCH。例如:基站给用户设备配置两步随机接入过程的MsgA的PUSCH的时域资源,频域资源,编码方式中的至少一种传输参数,用户设备根据这些传输参数发送MsgA的PUSCH。
以下对所述第一上行数据信道的各个传输参数如何确定分别进行描述,需要说明的是,本申请实施例中的符号可以是符号正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,本申请实施例中的第一上行数据信道上能够传输载荷(payload)。
1)时域资源
所述第一上行数据信道的时域资源基于所述第一上行数据信道的起始符号位置和所述第一上行数据信道占用的符号个数确定。
1.1)所述第一上行数据信道的起始符号位置基于所述第一前导码确定。
在一实施方式中,所述第一上行数据信道的起始符号与所述第一前导码的结束符号之间具有第一偏移量,所述第一偏移量为一个或多个符号。进一步,所述第一上行 数据信道的起始符号位于所述第一前导码的结束符号之后。
举个例子:所述第一前导码的结束符号为符号(i),所述第一上行数据信道的起始符号为符号(i+N),N代表第一偏移量,N为正整数。
1.2)所述第一上行数据信道占用的符号个数基于所述第一上行数据信道传输的载荷确定。
这里,所述第一上行数据信道占用的符号个数与所述第一上行数据信道传输的载荷成正比。
在一实施方式中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的符号个数与参考载荷占用的符号个数的比例关系为第二比例关系,所述第一比例关系和所述第二比例关系相同。
举个例子:第一上行数据信道传输的载荷占用的符号个数=ceiling(第一上行数据信道传输的载荷的比特数/参考载荷的比特数*参考载荷占用的符号个数)。这里,ceiling代表向上取整。
举个例子:第一上行数据信道传输的载荷占用的符号个数=floor(第一上行数据信道传输的载荷的比特数/参考载荷的比特数*参考载荷占用的符号个数)。这里,floor代表向下取整。
2)频域资源
所述第一上行数据信道的频域资源基于所述第一上行数据信道的起始资源块(Resource Block,RB)位置和所述第一上行数据信道占用的符号个数确定。
2.1)所述第一上行数据信道的起始RB位置基于所述第一前导码确定。
在一实施方式中,所述第一上行数据信道的起始RB与所述第一前导码的起始RB之间具有第二偏移量,所述第二偏移量为一个或多个RB。
进一步,所述第一上行数据信道的起始RB位于所述第一前导码的起始RB之后;或者,所述第一上行数据信道的起始RB位于所述第一前导码的起始RB之前。
举个例子:所述第一前导码的起始RB为RB(j),所述第一上行数据信道的起始RB为RB(j+M),M代表第二偏移量,M为正整数或负整数。
2.2)所述第一上行数据信道占用的RB个数基于所述第一上行数据信道传输的载荷确定。
这里,所述第一上行数据信道占用的RB个数与所述第一上行数据信道传输的载荷成正比。
在一实施方式中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的RB个数与参考载荷占用的RB个数的比例关系为第三比例关系,所述第一比例关系和所述第三比例关系相同。
举个例子:第一上行数据信道传输的载荷占用的RB个数=ceiling(第一上行数据信道传输的载荷的比特数/参考载荷的比特数*参考载荷占用的RB个数)。这里,ceiling代表向上取整。
举个例子:第一上行数据信道传输的载荷占用的RB个数=floor(第一上行数据信道传输的载荷的比特数/参考载荷的比特数*参考载荷占用的RB个数)。这里,floor代表向下取整。
3)时域资源和频域资源
3.1)所述第一上行数据信道的时域资源基于所述第一上行数据信道的起始符号位置和所述第一上行数据信道占用的符号个数确定。
这里,所述第一上行数据信道的时域资源可以参照前述1)中的描述,此处不再赘述。
3.2)所述第一上行数据信道的频域资源基于所述第一上行数据信道的起始资源块RB位置和所述第一上行数据信道占用的符号个数确定。
这里,所述第一上行数据信道的频域资源可以参照前述2)中的描述,此处不再赘述。
3.3)所述第一上行数据信道占用的资源单元(Resource Element,RE)个数基于所述第一上行数据信道传输的载荷确定。
这里,所述第一上行数据信道占用的RE个数与所述第一上行数据信道传输的载荷成正比。
在一实施方式中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的RE个数与参考载荷占用的RE个数的比例关系为第四比例关系,所述第一比例关系和所述第四比例关系相同。
举个例子:第一上行数据信道传输的载荷占用的RE个数=ceiling(第一上行数据信道传输的载荷的比特数/参考载荷的比特数*参考载荷占用的RE个数)。这里,ceiling代表向上取整。
举个例子:第一上行数据信道传输的载荷占用的RE个数=floor(第一上行数据信道传输的载荷的比特数/参考载荷的比特数*参考载荷占用的RE个数)。这里,floor代表向下取整。
基于此,所述用户设备根据所述第一上行数据信道占用的RE个数,确定所述第一上行数据信道在频域上占用的RB个数以及在时域上占用的符号个数。
4)编码方式
所述第一上行数据信道的编码方式按照所述第一上行数据信道传输的载荷类型确定。
在一实施方式中,所述第一上行数据信道传输的载荷包括第一类型载荷和第二类型载荷,所述第一类型载荷和所述第二类型载荷采用独立的编码方式。进一步,所述第二类型载荷的资源附加在所述第一类型载荷的资源后。
在一实施方式中,所述用户设备根据所述第一类型载荷的比特数和资源,所述第二类型载荷的比特数,以及所述第一类型载荷和所述第二类型载荷的码率比率,确定所述第二类型载荷的资源。另一实施方式中,所述用户设备根据所述第一类型载荷的资源,以及所述第一类型载荷与所述第二类型载荷的资源配置比率,确定所述第二类型载荷的资源。
上述方案中,所述资源包括时域资源和/或频域资源。
本申请中方案可让两步随机接入过程支持较多的payload size,从而在保证性能和接入时延的同时也提高接入数据传输的灵活性。
该方案还引入了双payload,保证了不同类型的信息得到不同等级的保护。引入不同的编码还可以针对控制或者普通数据达到不同的处理时间要求。
以下结合具体应用示例对本申请实施例的技术方案进行举例说明,以下应用示例中的MsgA为上述的第一消息,PUSCH为上述的第一上行数据信道。
应用示例一
用户设备采用如图5所示的发射结构发送MsgA。每一个前导码和一个PUSCH定义了时域上的偏移量。图5所示的例子中,前导码和PUSCH在时域上的偏移量为1,即前导码之后的第一个OFDM符号为PUSCH开始的位置。其中偏移量以OFDM 符号为单位,可以是1~N的任意整数。偏移量的获得方式可以通过preamble参数,或网络设备广播下发等方式确定。
用户设备根据实际所传payload的比特数和参考payload的比特数确定传送PUSCH时占用的OFDM符号的个数。实际所传payload比特数和参考payload比特数的比例关系与实际所传payload占用OFDM符号数和参考payload占用OFDM符号数的比例关系相同。
在一个例子中,采用如下公式确定实际所传payload占用OFDM符号数:
实际所传payload占用OFDM符号数=ceiling(实际所传payload的比特数/参考payload的比特数*参考payload占用OFDM符号数)。这里,ceiling代表向上取整。
在另一个例子中,采用如下公式确定实际所传payload占用OFDM符号数:
实际所传payload占用OFDM符号数=floor(实际所传payload的比特数/参考payload的比特数*参考payload占用OFDM符号数)。这里,floor代表向下取整。
在一个例子中,采用54bit作为参考payload的比特数,采用14个符号作为参考payload占用的OFDM符号数。
在一个例子中,所述PUSCH占用固定的RB个数,如6个RB。
以图5为例,图5中X个OFDM符号的PUSCH发送的是参考payload size=a bits。用户设备在发送b bits的payload时,发送的符号数为Y=ceiling(b/a*X)或者Y=floor(b/a*X),这里,ceiling代表向上取整,floor代表向下取整。
应用示例二
用户设备采用如图6所示的发射结构发送MsgA。每一个前导码和一个PUSCH定义了频域上的偏移量。图6所示的例子中,前导码和PUSCH在频域上的偏移量为Delta RB,即前导码的第一个RB和PUSCH开始的RB之差。偏移量可以是任意正负整数。偏移量的获得方式可以通过preamble参数,或网络设备广播下发等方式确定。
用户设备根据实际所传payload的比特数和参考payload的比特数确定传送PUSCH时占用的RB数。实际所传payload比特数和参考payload比特数的比例关系与实际所传payload占用RB数和参考payload占用RB数的比例关系相同。
在一个例子中,采用如下公式确定实际所传payload占用RB数:
实际所传payload占用RB数=ceiling(实际所传payload的比特数/参考payload的比特数*参考payload占用RB数)。这里,ceiling代表向上取整。
在另一个例子中,采用如下公式确定实际所传payload占用RB数:
实际所传payload占用RB数=floor(实际所传payload的比特数/参考payload的比特数*参考payload占用RB数)。这里,floor代表向下取整。
在一个例子中,采用54bit作为参考payload的比特数,采用6个RB作为参考payload占用RB数。
在一个例子中,所述PUSCH占用固定的OFDM符号个数,如14个符号。
应用示例三
用户设备的每一个前导码和一个PUSCH定义了时域和频域上的偏移量。频域上的偏移量为Delta RB,即前导码的第一个RB和PUSCH开始的RB之差,频域上的偏移量可以是任意正负整数。时域偏移量以OFDM符号为单位。偏移量的获得方式可以通过preamble参数,或网络设备广播下发等方式确定。
用户设备根据实际所传payload的比特数和参考payload的比特数确定传送PUSCH时占用的RE个数。实际所传payload比特数和参考payload比特数的比例关系与实际所传payload占用RE数和参考payload占用RE数的比例关系相同。
用户设备根据实际所传payload占用RE数,确定PUSCH在频域上所占的RB个数和在时域上所占的OFDM符号个数。
应用示例四
两步随机接入过程中,PUSCH可以传输两种payload。两种payload用于传输不同类型的信息。其中第一payload(即第一类型载荷)传输随机接入过程的必要信息,如,用户冲突解决的UE ID,RNTI,控制信道,HARQ等等。第二payload(即第二类型载荷)传输其他信息。
第一payload和第二payload独立编码,在一个例子中,第一payload和第二payload的编码关系如图7所示。其中,两个payload可以独立采用信道编码方式,比如:第一payload采用极化(polar)编码和第二payload采用低密度校验码(Low-density Parity-check,LDPC)编码。又比如:第一payload和第二payload都采用LDPC编码。
进一步,第二payload的时频资源附加在第一payload时频资源后映射。例如:在时域上看,第二payload的时频资源所在的OFDM符号在第一payload的时频资源的OFDM符号之后。再例如:从时频的序号上看,第二payload的时频资源所在的RE序号在第一payload的RE序号之后。
用户设备可以通过网络设备的广播参数或者用预定的计算方法分别确定第一payload和第二payload所使用的信道编码率和时频资源等发送信息。具体地,
1)用户设备通过网络设备的广播参数获得第一payload和第二payload的码率比率。用户设备根据第一payload的比特数和资源(RB数和/或OFDM符号数),前述获得的码率比率,以及第二payload的比特数推算出第二payload的资源(RB数和/或OFDM符号数)。
2)系统约定第一payload和第二payload的码率比率和隐含的计算方式。用户设备根据第一payload的比特数和资源(RB数和/或OFDM符号数),前述约定的码率比率,以及第二payload的比特数推算出第二payload的资源(RB数和/或OFDM符号数)。
3)用户设备通过网络设备的广播参数获得第一payload和第二payload的资源配置比率,根据该资源配置比率来确定第二payload的资源(RB数和/或OFDM符号数)。
需要说明的是,本申请实施例的技术方案也可以扩展到其他需要自主灵活传输数据比特的上行信道。本申请中的编码方法可以实现不同等级的数据保护,是基于用户设备自主灵活选择payload下的多等级保护数据传输的较好解决方法。
图8为本申请实施例提供的传输参数确定装置的结构组成示意图,如图8所示,所述传输参数确定装置包括:
发送单元801,用于根据第一信息,发送第一消息中的第一上行数据信道,所述第一消息包括第一上行数据信道和第一前导码;
其中,所述第一信息用于确定所述第一上行数据信道的以下至少一种传输参数:时域资源、频域资源、编码方式。
在一实施方式中,所述第一上行数据信道的时域资源基于所述第一上行数据信道的起始符号位置和所述第一上行数据信道占用的符号个数确定。
在一实施方式中,所述第一上行数据信道的起始符号位置基于所述第一前导码确定。
在一实施方式中,所述第一上行数据信道的起始符号与所述第一前导码的结束符号之间具有第一偏移量,所述第一偏移量为一个或多个符号。
在一实施方式中,所述第一上行数据信道的起始符号位于所述第一前导码的结束符号之后。
在一实施方式中,所述第一上行数据信道占用的符号个数基于所述第一上行数据信道传输的载荷确定。
在一实施方式中,所述第一上行数据信道占用的符号个数与所述第一上行数据信道传输的载荷成正比。
在一实施方式中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的符号个数与参考载荷占用的符号个数的比例关系为第二比例关系,所述第一比例关系和所述第二比例关系相同。
在一实施方式中,所述第一上行数据信道的频域资源基于所述第一上行数据信道的起始RB位置和所述第一上行数据信道占用的符号个数确定。
在一实施方式中,所述第一上行数据信道的起始RB位置基于所述第一前导码确定。
在一实施方式中,所述第一上行数据信道的起始RB与所述第一前导码的起始RB之间具有第二偏移量,所述第二偏移量为一个或多个RB。
在一实施方式中,所述第一上行数据信道的起始RB位于所述第一前导码的起始RB之后;或者,所述第一上行数据信道的起始RB位于所述第一前导码的起始RB之前。
在一实施方式中,所述第一上行数据信道占用的RB个数基于所述第一上行数据信道传输的载荷确定。
在一实施方式中,所述第一上行数据信道占用的RB个数与所述第一上行数据信道传输的载荷成正比。
在一实施方式中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的RB个数与参考载荷占用的RB个数的比例关系为第三比例关系,所述第一比例关系和所述第三比例关系相同。
在一实施方式中,所述第一上行数据信道占用的RE个数基于所述第一上行数据信道传输的载荷确定。
在一实施方式中,所述第一上行数据信道占用的RE个数与所述第一上行数据信道传输的载荷成正比。
在一实施方式中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的RE个数与参考载荷占用的RE个数的比例关系为第四比例关系,所述第一比例关系和所述第四比例关系相同。
在一实施方式中,所述装置还包括:
确定单元802,用于根据所述第一上行数据信道占用的RE个数,确定所述第一上行数据信道在频域上占用的RB个数以及在时域上占用的符号个数。
在一实施方式中,所述第一上行数据信道的编码方式按照所述第一上行数据信道传输的载荷类型确定。
在一实施方式中,所述第一上行数据信道传输的载荷包括第一类型载荷和第二类型载荷,所述第一类型载荷和所述第二类型载荷采用独立的编码方式。
在一实施方式中,所述第二类型载荷的资源附加在所述第一类型载荷的资源后,所述资源包括时域资源和/或频域资源;所述装置还包括:
确定单元802,用于根据所述第一类型载荷的比特数和资源,所述第二类型载荷的比特数,以及所述第一类型载荷和所述第二类型载荷的码率比率,确定所述第二类 型载荷的资源;或者,根据所述第一类型载荷的资源,以及所述第一类型载荷与所述第二类型载荷的资源配置比率,确定所述第二类型载荷的资源。
在一实施方式中,所述第一信息为约定好的;或者,所述第一信息为网络设备配置给所述用户设备的。
本领域技术人员应当理解,本申请实施例的上述传输参数确定装置的相关描述可以参照本申请实施例的传输参数确定方法的相关描述进行理解。
图9是本申请实施例提供的一种通信设备900示意性结构图。该通信设备可以是终端,图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本申请实施例的移动终端/终端,并且该通信设备900可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统1100的示意性框图。如图11所示,该 通信系统1100包括用户设备1110和网络设备1120。
其中,该用户设备1110可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备1120可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围 为准。

Claims (51)

  1. 一种传输参数确定方法,所述方法包括:
    用户设备根据第一信息,发送第一消息中的第一上行数据信道,所述第一消息包括第一上行数据信道和第一前导码;
    其中,所述第一信息用于确定所述第一上行数据信道的以下至少一种传输参数:时域资源、频域资源、编码方式。
  2. 根据权利要求1所述的方法,其中,所述第一上行数据信道的时域资源基于所述第一上行数据信道的起始符号位置和所述第一上行数据信道占用的符号个数确定。
  3. 根据权利要求2所述的方法,其中,所述第一上行数据信道的起始符号位置基于所述第一前导码确定。
  4. 根据权利要求3所述的方法,其中,所述第一上行数据信道的起始符号与所述第一前导码的结束符号之间具有第一偏移量,所述第一偏移量为一个或多个符号。
  5. 根据权利要求4所述的方法,其中,所述第一上行数据信道的起始符号位于所述第一前导码的结束符号之后。
  6. 根据权利要求2至5中任一项所述的方法,其中,所述第一上行数据信道占用的符号个数基于所述第一上行数据信道传输的载荷确定。
  7. 根据权利要求6所述的方法,其中,所述第一上行数据信道占用的符号个数与所述第一上行数据信道传输的载荷成正比。
  8. 根据权利要求6或7所述的方法,其中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的符号个数与参考载荷占用的符号个数的比例关系为第二比例关系,所述第一比例关系和所述第二比例关系相同。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述第一上行数据信道的频域资源基于所述第一上行数据信道的起始资源块RB位置和所述第一上行数据信道占用的符号个数确定。
  10. 根据权利要求9所述的方法,其中,所述第一上行数据信道的起始RB位置基于所述第一前导码确定。
  11. 根据权利要求10所述的方法,其中,所述第一上行数据信道的起始RB与所述第一前导码的起始RB之间具有第二偏移量,所述第二偏移量为一个或多个RB。
  12. 根据权利要求11所述的方法,其中,
    所述第一上行数据信道的起始RB位于所述第一前导码的起始RB之后;或者,
    所述第一上行数据信道的起始RB位于所述第一前导码的起始RB之前。
  13. 根据权利要求9至12中任一项所述的方法,其中,所述第一上行数据信道占用的RB个数基于所述第一上行数据信道传输的载荷确定。
  14. 根据权利要求13所述的方法,其中,所述第一上行数据信道占用的RB个数与所述第一上行数据信道传输的载荷成正比。
  15. 根据权利要求13或14所述的方法,其中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的RB个数与参考载荷占用的RB个数的比例关系为第三比例关系,所述第一比例关系和所述第三比例关系相同。
  16. 根据权利要求9至12中任一项所述的方法,其中,所述第一上行数据信道 占用的资源单元RE个数基于所述第一上行数据信道传输的载荷确定。
  17. 根据权利要求16所述的方法,其中,所述第一上行数据信道占用的RE个数与所述第一上行数据信道传输的载荷成正比。
  18. 根据权利要求16或17所述的方法,其中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的RE个数与参考载荷占用的RE个数的比例关系为第四比例关系,所述第一比例关系和所述第四比例关系相同。
  19. 根据权利要求16至18中任一项所述的方法,其中,所述方法还包括:
    所述用户设备根据所述第一上行数据信道占用的RE个数,确定所述第一上行数据信道在频域上占用的RB个数以及在时域上占用的符号个数。
  20. 根据权利要求1至19中任一项所述的方法,其中,所述第一上行数据信道的编码方式按照所述第一上行数据信道传输的载荷类型确定。
  21. 根据权利要求20所述的方法,其中,所述第一上行数据信道传输的载荷包括第一类型载荷和第二类型载荷,所述第一类型载荷和所述第二类型载荷采用独立的编码方式。
  22. 根据权利要求21所述的方法,其中,所述第二类型载荷的资源附加在所述第一类型载荷的资源后,所述资源包括时域资源和/或频域资源;所述方法还包括:
    所述用户设备根据所述第一类型载荷的比特数和资源,所述第二类型载荷的比特数,以及所述第一类型载荷和所述第二类型载荷的码率比率,确定所述第二类型载荷的资源;或者,
    所述用户设备根据所述第一类型载荷的资源,以及所述第一类型载荷与所述第二类型载荷的资源配置比率,确定所述第二类型载荷的资源。
  23. 根据权利要求1至22中任一项所述的方法,其中,
    所述第一信息为约定好的;或者,
    所述第一信息为网络设备配置给所述用户设备的。
  24. 一种传输参数确定装置,所述装置包括:
    发送单元,用于根据第一信息,发送第一消息中的第一上行数据信道,所述第一消息包括第一上行数据信道和第一前导码;
    其中,所述第一信息用于确定所述第一上行数据信道的以下至少一种传输参数:时域资源、频域资源、编码方式。
  25. 根据权利要求24所述的装置,其中,所述第一上行数据信道的时域资源基于所述第一上行数据信道的起始符号位置和所述第一上行数据信道占用的符号个数确定。
  26. 根据权利要求25所述的装置,其中,所述第一上行数据信道的起始符号位置基于所述第一前导码确定。
  27. 根据权利要求26所述的装置,其中,所述第一上行数据信道的起始符号与所述第一前导码的结束符号之间具有第一偏移量,所述第一偏移量为一个或多个符号。
  28. 根据权利要求27所述的装置,其中,所述第一上行数据信道的起始符号位于所述第一前导码的结束符号之后。
  29. 根据权利要求25至28中任一项所述的装置,其中,所述第一上行数据信道占用的符号个数基于所述第一上行数据信道传输的载荷确定。
  30. 根据权利要求29所述的装置,其中,所述第一上行数据信道占用的符号个数与所述第一上行数据信道传输的载荷成正比。
  31. 根据权利要求29或30所述的装置,其中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的符号个数与参考载荷占用的符号个数的比例关系为第二比例关系,所述第一比例关系和所述第二比例关系相同。
  32. 根据权利要求24至31中任一项所述的装置,其中,所述第一上行数据信道的频域资源基于所述第一上行数据信道的起始资源块RB位置和所述第一上行数据信道占用的符号个数确定。
  33. 根据权利要求32所述的装置,其中,所述第一上行数据信道的起始RB位置基于所述第一前导码确定。
  34. 根据权利要求33所述的装置,其中,所述第一上行数据信道的起始RB与所述第一前导码的起始RB之间具有第二偏移量,所述第二偏移量为一个或多个RB。
  35. 根据权利要求34所述的装置,其中,
    所述第一上行数据信道的起始RB位于所述第一前导码的起始RB之后;或者,
    所述第一上行数据信道的起始RB位于所述第一前导码的起始RB之前。
  36. 根据权利要求32至35中任一项所述的装置,其中,所述第一上行数据信道占用的RB个数基于所述第一上行数据信道传输的载荷确定。
  37. 根据权利要求36所述的装置,其中,所述第一上行数据信道占用的RB个数与所述第一上行数据信道传输的载荷成正比。
  38. 根据权利要求36或37所述的装置,其中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的RB个数与参考载荷占用的RB个数的比例关系为第三比例关系,所述第一比例关系和所述第三比例关系相同。
  39. 根据权利要求32至35中任一项所述的装置,其中,所述第一上行数据信道占用的资源单元RE个数基于所述第一上行数据信道传输的载荷确定。
  40. 根据权利要求39所述的装置,其中,所述第一上行数据信道占用的RE个数与所述第一上行数据信道传输的载荷成正比。
  41. 根据权利要求39或40所述的装置,其中,所述第一上行数据信道传输的载荷的比特数与参考载荷的比特数的比例关系为第一比例关系,所述第一上行数据信道传输的载荷占用的RE个数与参考载荷占用的RE个数的比例关系为第四比例关系,所述第一比例关系和所述第四比例关系相同。
  42. 根据权利要求39至41中任一项所述的装置,其中,所述装置还包括:
    确定单元,用于根据所述第一上行数据信道占用的RE个数,确定所述第一上行数据信道在频域上占用的RB个数以及在时域上占用的符号个数。
  43. 根据权利要求24至42中任一项所述的装置,其中,所述第一上行数据信道的编码方式按照所述第一上行数据信道传输的载荷类型确定。
  44. 根据权利要求43所述的装置,其中,所述第一上行数据信道传输的载荷包括第一类型载荷和第二类型载荷,所述第一类型载荷和所述第二类型载荷采用独立的编码方式。
  45. 根据权利要求44所述的装置,其中,所述第二类型载荷的资源附加在所述第一类型载荷的资源后,所述资源包括时域资源和/或频域资源;所述装置还包括:
    确定单元,用于根据所述第一类型载荷的比特数和资源,所述第二类型载荷的比特数,以及所述第一类型载荷和所述第二类型载荷的码率比率,确定所述第二类型载荷的资源;或者,根据所述第一类型载荷的资源,以及所述第一类型载荷与所述第二类型载荷的资源配置比率,确定所述第二类型载荷的资源。
  46. 根据权利要求24至45中任一项所述的装置,其中,
    所述第一信息为约定好的;或者,
    所述第一信息为网络设备配置给所述用户设备的。
  47. 一种用户设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至23中任一项所述的方法。
  48. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至23中任一项所述的方法。
  49. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  50. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至23中任一项所述的方法。
  51. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
PCT/CN2019/081332 2019-04-03 2019-04-03 一种传输参数确定方法及装置、用户设备 WO2020199171A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/081332 WO2020199171A1 (zh) 2019-04-03 2019-04-03 一种传输参数确定方法及装置、用户设备
CN201980064258.9A CN112771967B (zh) 2019-04-03 2019-04-03 一种传输参数确定方法及装置、用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/081332 WO2020199171A1 (zh) 2019-04-03 2019-04-03 一种传输参数确定方法及装置、用户设备

Publications (1)

Publication Number Publication Date
WO2020199171A1 true WO2020199171A1 (zh) 2020-10-08

Family

ID=72664683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081332 WO2020199171A1 (zh) 2019-04-03 2019-04-03 一种传输参数确定方法及装置、用户设备

Country Status (2)

Country Link
CN (1) CN112771967B (zh)
WO (1) WO2020199171A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180242367A1 (en) * 2015-08-19 2018-08-23 Lg Electronics Inc. Random access procedure performing method in wireless communication system, and apparatus therefor
WO2018175705A1 (en) * 2017-03-23 2018-09-27 Intel IP Corporation Nr (new radio) prach (physical random access channel) configuration and multi-beam operation
CN108633024A (zh) * 2017-03-23 2018-10-09 夏普株式会社 用户设备、基站和相关方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019530995A (ja) * 2016-08-03 2019-10-24 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdongoppo Mobile Telecommunications Corp., Ltd. データ伝送方法および機器
CN108633021B (zh) * 2017-03-23 2024-01-19 华为技术有限公司 一种上行控制信道的资源映射方法及装置
CN111148106B (zh) * 2017-05-31 2021-09-17 Oppo广东移动通信有限公司 无线通信方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180242367A1 (en) * 2015-08-19 2018-08-23 Lg Electronics Inc. Random access procedure performing method in wireless communication system, and apparatus therefor
WO2018175705A1 (en) * 2017-03-23 2018-09-27 Intel IP Corporation Nr (new radio) prach (physical random access channel) configuration and multi-beam operation
CN108633024A (zh) * 2017-03-23 2018-10-09 夏普株式会社 用户设备、基站和相关方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "R1-1903435", SUMMARY OF 7.2.1.1 CHANNEL STRUCTURE FOR TWO-STEP RACH, 3 March 2019 (2019-03-03), XP051690819 *

Also Published As

Publication number Publication date
CN112771967B (zh) 2023-04-07
CN112771967A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2021016973A1 (zh) 一种信息传输方法、电子设备及存储介质
WO2020143057A1 (zh) 信道接入方案的确定方法及装置、终端设备、网络设备
WO2020020332A1 (zh) 一种随机接入方法、终端设备及存储介质
WO2019242452A1 (zh) 用于物理随机接入信道传输的信道接入方法、装置和程序
WO2020198983A1 (zh) 一种用于非授权频谱的无线通信方法及装置、通信设备
US11510067B2 (en) Uplink signal transmission method, terminal device, and network device
WO2020186466A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020220358A1 (zh) 一种用于非授权频谱的功率调整方法及装置
WO2020024616A1 (zh) 一种随机接入方法及相关设备
WO2020191561A1 (zh) 一种随机接入方法及装置、用户设备、网络设备
CN111935846B (zh) 传输信号的方法、终端设备和网络设备
WO2021088262A1 (zh) 确定时隙格式的方法及装置
WO2021134525A1 (zh) 无线通信方法、装置和通信设备
WO2020227907A1 (zh) 一种资源确定方法及装置、终端
WO2020191632A1 (zh) 一种功率控制方法及装置、终端、网络设备
TW202008817A (zh) 一種訊號傳輸方法及適用該方法的裝置、終端設備及網路設備
US11800546B2 (en) Method and apparatus for determining number of uplink control information transmission resources, and program
WO2021077377A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2020199171A1 (zh) 一种传输参数确定方法及装置、用户设备
US11438936B2 (en) Random access method and apparatus, and user equipment and network device
WO2023133902A1 (zh) 一种无线通信方法及装置、终端设备、网络设备
CN112911724B (zh) 一种指示信道接入类型的方法、终端设备及网络设备
WO2020206597A1 (zh) 功率分配的方法和终端设备
WO2021012286A1 (zh) 一种随机接入方法及装置、终端
WO2020198988A1 (zh) 一种随机接入方法、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922315

Country of ref document: EP

Kind code of ref document: A1