WO2021010517A1 - 차량용 전자 장치 및 그의 동작 방법 - Google Patents

차량용 전자 장치 및 그의 동작 방법 Download PDF

Info

Publication number
WO2021010517A1
WO2021010517A1 PCT/KR2019/008789 KR2019008789W WO2021010517A1 WO 2021010517 A1 WO2021010517 A1 WO 2021010517A1 KR 2019008789 W KR2019008789 W KR 2019008789W WO 2021010517 A1 WO2021010517 A1 WO 2021010517A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
time
distance
electronic device
signal
Prior art date
Application number
PCT/KR2019/008789
Other languages
English (en)
French (fr)
Inventor
박용수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2019/008789 priority Critical patent/WO2021010517A1/ko
Priority to US16/500,723 priority patent/US11285941B2/en
Priority to KR1020190107732A priority patent/KR20190107287A/ko
Publication of WO2021010517A1 publication Critical patent/WO2021010517A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0005Processor details or data handling, e.g. memory registers or chip architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]

Definitions

  • the present invention relates to an electronic device for a vehicle and a method of operating the electronic device for a vehicle.
  • a vehicle is a device that moves in a direction desired by a boarding user.
  • a typical example is a car.
  • Autonomous vehicle refers to a vehicle that can be driven automatically without human driving operation.
  • Autonomous vehicles drive by recognizing the surrounding environment with sensors such as lidar, radar, and camera mounted on the vehicle.
  • sensors such as lidar, radar, and camera mounted on the vehicle.
  • it is difficult to recognize the surrounding situation or detect blind spots only with sensors.
  • V2X Vehicle to Everything
  • objects such as other vehicles, imitation devices, and roads through wired and wireless networks, or the technology.
  • V2X is based on Dedicated Short-Range Communications (DSRC).
  • DSRC Dedicated Short-Range Communications
  • the present invention provides an electronic device for a vehicle that recognizes an obstacle situation and predicts a change in the reach of a communication signal, and controls the vehicle safely even when the reach of the communication signal is suddenly changed. There is a purpose.
  • an object of the present invention is to provide a method of operating an electronic device for a vehicle that controls a vehicle speed so as to secure a risk response preparation time defined as an expected reach of a V2X communication signal compared to the vehicle speed.
  • a method of operating an electronic device for a vehicle includes: receiving, by a processor, sensor data; Extracting driving environment information based on the sensor data; Determining a first distance, which is an expected reach of a V2X communication signal, based on the driving environment information; Calculating a first time, which is a risk response preparation time defined as the first distance compared to the speed of the vehicle; And generating a signal for controlling the speed of the vehicle to secure the first time.
  • the first time is divided according to the section, the first time is calculated in real time, and the danger state indicating the degree of danger of the section to which the first time calculated in real time belongs. It includes; generating a signal indicating a message.
  • the method of operating an electronic device for a vehicle includes generating a signal indicating a change of the section to a driver through an interface unit, and generating the acceleration control signal based on an input signal from the driver.
  • surrounding object information may be obtained using a radar of a vehicle and an ADAS camera, and a driving environment state may be classified based on the object information.
  • LOS line of sight
  • a communication channel it is possible to determine whether a communication channel is congested by checking whether a packet error rate (PER less than a packet error rate) or a retransmission rate (RR less than a retransmission rate) exceeds a preset reference value. If the communication channel is congested, the possibility of damage to the V2X signal may increase.
  • a packet error rate PER less than a packet error rate
  • RR retransmission rate
  • the farthest distance among the arrival distances of the V2X message is determined, and if the distance is greater than the first distance, which is the expected arrival distance, it may be determined as a false alarm with a high possibility of damage to the V2X signal.
  • the embodiment according to the present invention can reduce the probability of a false alarm by extracting the maximum reaching distance from among V2X messages received from other vehicles in the traveling direction and controlling the vehicle speed only when the first distance is greater than the maximum reaching distance.
  • a first time which is a risk response preparation time, may be calculated by dividing the expected arrival distance of the V2X signal by the vehicle speed.
  • the first time is classified by section, and if the first time is more than 0 seconds and less than 1 second, the first section, if more than 1 second and less than 3 seconds, the second section, and if it is more than 3 seconds and less than 5 seconds, the third If it exceeds 5 seconds and less than 7 seconds, it can be divided into a fourth section, and if it exceeds 7 seconds, it can be divided into a fifth section.
  • a message for each section of the first time can be set and displayed to the driver in real time, and a danger can be notified when the section is changed.
  • the first distance is reduced, and accordingly, the first time is shortened, resulting in a change of the section to the second section. If so, the second section change and danger status message may be displayed.
  • An embodiment according to the present invention may include an autonomous vehicle that changes the speed through section information of the first time.
  • the embodiment according to the present invention accelerates and controls the vehicle speed when the first time is longer than the minimum risk response preparation time through setting the minimum risk response preparation time, and increases the speed of the vehicle when the first time is shorter than the minimum risk response preparation time.
  • the first distance and the first time increase as the driving environment information becomes simpler, and if the first time is longer than the minimum risk response preparation time, the vehicle speed can be accelerated to prevent traffic congestion. have.
  • FIG. 1 is a view showing the exterior of a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a control block diagram of a vehicle according to an embodiment of the present invention.
  • FIG. 3 is a control block diagram of an electronic device according to an embodiment of the present invention.
  • 4A to 4B show examples of basic operations and application operations of an autonomous vehicle and a 5G network in a 5G communication system.
  • FIG. 5 is a flow chart of a processor according to an embodiment of the present invention.
  • 6, 7A, and 7B are diagrams illustrating object information for obtaining driving environment information according to an exemplary embodiment of the present invention.
  • FIG. 8 is a diagram showing a first distance measurement simulation result according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a first distance determining step (S300) according to an embodiment of the present invention.
  • FIGS 10 to 11 are views illustrating a vehicle speed control signal generation step (S500) according to an embodiment of the present invention.
  • FIG 12, 13A, and 13B are diagrams illustrating risk status messages for each first time interval according to an embodiment of the present invention.
  • FIGS. 14 to 17 are diagrams illustrating a process of generating a first time and speed control signal on an urban general road or a suburban highway according to an embodiment of the present invention.
  • FIG. 1 is a view showing a vehicle according to an embodiment of the present invention.
  • a vehicle 10 is defined as a transportation means running on a road or track.
  • the vehicle 10 is a concept including a car, a train, and a motorcycle.
  • the vehicle 10 may be a concept including all of an internal combustion engine vehicle including an engine as a power source, a hybrid vehicle including an engine and an electric motor as a power source, and an electric vehicle including an electric motor as a power source.
  • the vehicle 10 may be a shared vehicle.
  • the vehicle 10 may be an autonomous vehicle.
  • the electronic device 100 may be included in the vehicle 10.
  • the electronic device 100 may be a device that determines an expected arrival distance of the V2X communication signal from the vehicle 10 and controls the speed of the vehicle accordingly.
  • the vehicle 10 may control the vehicle speed based on the vehicle speed control signal generated by the electronic device 100.
  • the vehicle 10 may interact with at least one robot.
  • the robot may be an Autonomous Mobile Robot (AMR) capable of driving by magnetic force.
  • AMR Autonomous Mobile Robot
  • the mobile robot can move by itself, so that it is free to move, and it is equipped with a plurality of sensors to avoid obstacles while driving, so that it can travel avoiding obstacles.
  • the mobile robot may be a flying robot (eg, a drone) equipped with a flying device.
  • the mobile robot may include at least one wheel and may be a wheel-type robot that is moved through rotation of the wheel.
  • the mobile robot may be a legged robot that has at least one leg and is moved using the leg.
  • the robot may function as a device that complements the user's convenience of the vehicle 10. For example, the robot may perform a function of moving the luggage loaded in the vehicle 10 to the user's final destination. For example, the robot may perform a function of guiding a user who gets off the vehicle 10 to a final destination. For example, the robot may perform a function of transporting a user who gets off the vehicle 10 to a final destination.
  • At least one electronic device included in the vehicle may communicate with the robot through the communication device 220.
  • At least one electronic device included in the vehicle may provide the robot with data processed by at least one electronic device included in the vehicle.
  • at least one electronic device included in the vehicle may provide at least one of object data, HD map data, vehicle state data, vehicle location data, and driving plan data to the robot.
  • At least one electronic device included in the vehicle may receive data processed by the robot from the robot. At least one electronic device included in the vehicle may receive at least one of sensing data generated by the robot, object data, robot state data, robot position data, and movement plan data of the robot.
  • At least one electronic device included in the vehicle may generate a control signal further based on data received from the robot. For example, at least one electronic device included in the vehicle compares the information on the object generated by the object detection device 210 with the information on the object generated by the robot, and generates a control signal based on the comparison result. Can be generated.
  • At least one electronic device included in the vehicle may generate a control signal so that interference between the movement path of the vehicle 10 and the movement path of the robot does not occur.
  • At least one electronic device included in the vehicle may include a software module or a hardware module (hereinafter, an artificial intelligence module) that implements artificial intelligence (AI).
  • an artificial intelligence module that implements artificial intelligence (AI).
  • At least one electronic device included in the vehicle may input the acquired data to the artificial intelligence module and use the data output from the artificial intelligence module.
  • the artificial intelligence module may perform machine learning on input data using at least one artificial neural network (ANN).
  • ANN artificial neural network
  • the artificial intelligence module may output driving plan data through machine learning on input data.
  • At least one electronic device included in the vehicle may generate a control signal based on data output from the artificial intelligence module.
  • At least one electronic device included in the vehicle may receive data processed by artificial intelligence from an external device through the communication device 220. At least one electronic device included in the vehicle may generate a control signal based on data processed by artificial intelligence.
  • FIG. 2 is a control block diagram of a vehicle according to an embodiment of the present invention.
  • the vehicle 10 includes an electronic device 100 for a vehicle, a user interface device 200, an object detection device 210, a communication device 220, a driving operation device 230, and a main ECU 240. , A vehicle driving device 250, a driving system 260, a sensing unit 270, and a location data generating device 280.
  • the electronic device 100 may detect an object through the object detection device 210.
  • the electronic device 100 may exchange data with a nearby vehicle using the communication device 220.
  • the electronic device 100 may control a movement of the vehicle 10 or generate a signal for outputting information to a user based on data on an object received using the driving system 260.
  • a microphone, a speaker, and a display provided in the vehicle 10 may be used.
  • the electronic device 100 may safely control driving through the vehicle driving device 250.
  • the user interface device 200 is a device for communication between the vehicle 10 and a user.
  • the user interface device 200 may receive a user input and provide information generated by the vehicle 10 to the user.
  • the vehicle 10 may implement a user interface (UI) or a user experience (UX) through the user interface device 200.
  • UI user interface
  • UX user experience
  • the user interface device 200 may include an input unit and an output unit.
  • the input unit is for receiving information from the user, and data collected by the input unit may be processed as a control command of the user.
  • the input unit may include a voice input unit, a gesture input unit, a touch input unit, and a mechanical input unit.
  • the output unit is for generating an output related to visual, auditory or tactile sense, and may include at least one of a display unit, an audio output unit, and a haptic output unit.
  • the display unit may display graphic objects corresponding to various pieces of information.
  • the display unit is a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), a flexible display, 3 It may include at least one of a 3D display and an e-ink display.
  • the display unit forms a layer structure with the touch input unit or is integrally formed to implement a touch screen.
  • the display unit may be implemented as a head up display (HUD).
  • a projection module may be provided to output information through an image projected onto a windshield or window.
  • the display unit may include a transparent display. The transparent display can be attached to a windshield or window.
  • the display unit is arranged in one region of the steering wheel, one region of the instrument panel, one region of the seat, one region of each pillar, one region of the door, one region of the center console, one region of the headlining, and one region of the sun visor. Alternatively, it may be implemented in one region of the windshield or one region of the window.
  • the user interface device 200 may include a plurality of display units.
  • the sound output unit converts the electrical signal provided from the processor 170 into an audio signal and outputs it.
  • the sound output unit may include one or more speakers.
  • the haptic output unit generates a tactile output. For example, by vibrating the steering wheel, seat belt, and seat, it can be operated so that the user can recognize the output.
  • the user interface device 200 may be referred to as a vehicle display device.
  • the object detection apparatus 210 may include at least one sensor capable of detecting an object outside the vehicle 10.
  • the object detection device 210 may include at least one of a camera, a radar, a lidar, an ultrasonic sensor, and an infrared sensor.
  • the object detection device 210 may provide data on an object generated based on a sensing signal generated by a sensor to at least one electronic device included in the vehicle.
  • the objects may be various objects related to the operation of the vehicle 10.
  • it may include lanes, other vehicles, pedestrians, two-wheeled vehicles, traffic signals, lights, roads, structures, speed bumps, terrain objects, animals, and the like.
  • objects may be classified into moving objects and fixed objects.
  • the moving object may be a concept including other vehicles and pedestrians
  • the fixed object may be a concept including traffic signals, roads, and structures.
  • the camera may generate information on an object outside the vehicle 10 by using the image.
  • the camera may include at least one lens, at least one image sensor, and at least one processor that is electrically connected to the image sensor and processes a received signal, and generates data about an object based on the processed signal.
  • the camera may be at least one of a mono camera, a stereo camera, and an AVM (Around View Monitoring) camera.
  • the camera may use various image processing algorithms to obtain location information of an object, distance information of an object, or information of a relative speed of an object. For example, from the acquired image, the camera may acquire distance information and relative speed information from the object based on a change in the size of the object over time.
  • the camera may obtain distance information and relative speed information with an object through a pin hole model, road surface profiling, or the like.
  • the camera may obtain distance information and relative speed information from an object based on disparity information from a stereo image obtained from a stereo camera.
  • the radar may generate information on an object outside the vehicle 10 using radio waves.
  • the radar may include an electromagnetic wave transmitter, an electromagnetic wave receiver, and at least one processor that is electrically connected to the electromagnetic wave transmitter and the electromagnetic wave receiver, processes a received signal, and generates data for an object based on the processed signal.
  • the radar may be implemented in a pulse radar method or a continuous wave radar method according to the principle of radio wave emission.
  • the radar may be implemented in a frequency modulated continuous wave (FMCW) method or a frequency shift keyong (FSK) method according to a signal waveform among continuous wave radar methods.
  • FMCW frequency modulated continuous wave
  • FSK frequency shift keyong
  • the radar detects an object by means of an electromagnetic wave, a time of flight (TOF) method or a phase-shift method, and detects the position of the detected object, the distance to the detected object, and the relative speed. I can.
  • Lida may use laser light to generate information on an object outside the vehicle 10.
  • the radar may include at least one processor that is electrically connected to the optical transmitter, the optical receiver, and the optical transmitter and the optical receiver, processes a received signal, and generates data for an object based on the processed signal.
  • the rider may be implemented in a TOF (Time of Flight) method or a phase-shift method.
  • the lidar can be implemented either driven or non-driven. When implemented as a drive type, the rider is rotated by a motor, and objects around the vehicle 10 can be detected. When implemented in a non-driven manner, the lidar can detect an object located within a predetermined range with respect to the vehicle by optical steering.
  • the vehicle 10 may include a plurality of non-driven lidars.
  • the radar detects an object based on a laser light medium, a time of flight (TOF) method or a phase-shift method, and detects the position of the detected object, the distance to the detected object, and the relative speed. can do.
  • TOF time of flight
  • the communication device 220 may exchange signals with devices located outside the vehicle 10.
  • the communication device 220 may exchange signals with at least one of an infrastructure (eg, a server, a broadcasting station) and another vehicle.
  • the communication device 220 may include at least one of a transmission antenna, a reception antenna, a radio frequency (RF) circuit capable of implementing various communication protocols, and an RF element to perform communication.
  • RF radio frequency
  • the communication device 220 may include a short-range communication unit, a location information unit, a V2X communication unit, an optical communication unit, a broadcast transmission/reception unit, and an ITS (Intelligent Transport Systems) communication unit.
  • the V2X communication unit is a unit for performing wireless communication with a server (V2I: Vehicle to Infra), another vehicle (V2V: Vehicle to Vehicle), or a pedestrian (V2P: Vehicle to Pedestrian).
  • the V2X communication unit may include an RF circuit capable of implementing communication with infrastructure (V2I), communication between vehicles (V2V), and communication with pedestrians (V2P).
  • the communication device 220 may implement a vehicle display device together with the user interface device 200.
  • the vehicle display device may be referred to as a telematics device or an audio video navigation (AVN) device.
  • APN audio video navigation
  • the communication device 220 may communicate with a device located outside the vehicle 10 by using a 5G (eg, new radio, NR) communication system.
  • the communication device 220 may implement V2X (V2V, V2D, V2P, V2N) communication using a 5G method.
  • 4A to 4B show examples of basic operations and application operations of an autonomous vehicle and a 5G network in a 5G communication system.
  • 4A shows an example of a basic operation of an autonomous vehicle and a 5G network in a 5G communication system.
  • the autonomous vehicle transmits specific information transmission to the 5G network (S1).
  • the specific information may include autonomous driving related information.
  • the autonomous driving related information may be information directly related to driving control of the vehicle.
  • the autonomous driving related information may include one or more of object data indicating objects around the vehicle, map data, vehicle state data, vehicle location data, and driving plan data. .
  • the autonomous driving related information may further include service information necessary for autonomous driving.
  • the specific information may include information on a destination and a safety level of the vehicle input through the user terminal.
  • the 5G network may determine whether to remotely control the vehicle (S2).
  • the 5G network may include a server or module that performs remote control related to autonomous driving.
  • the 5G network may transmit information (or signals) related to remote control to the autonomous vehicle (S3).
  • the information related to the remote control may be a signal directly applied to the autonomous vehicle, and further may further include service information required for autonomous driving.
  • the autonomous vehicle may provide services related to autonomous driving by receiving service information such as insurance for each section selected on a driving route and information on dangerous sections through a server connected to the 5G network.
  • 4B shows an example of an application operation of an autonomous vehicle and a 5G network in a 5G communication system.
  • the autonomous vehicle performs an initial access procedure with the 5G network (S20).
  • the initial access procedure includes a cell search for obtaining a downlink (DL) operation, a process of obtaining system information, and the like.
  • the autonomous vehicle performs a random access procedure with the 5G network (S21).
  • the random access process includes a preamble transmission for uplink (UL) synchronization or UL data transmission, a random access response reception process, and the like, and will be described in more detail in paragraph G.
  • UL uplink
  • the random access process includes a preamble transmission for uplink (UL) synchronization or UL data transmission, a random access response reception process, and the like, and will be described in more detail in paragraph G.
  • the 5G network transmits a UL grant for scheduling transmission of specific information to the autonomous vehicle (S22).
  • the UL Grant reception includes a process of receiving time/frequency resource scheduling for transmission of UL data to a 5G network.
  • the autonomous vehicle transmits specific information to the 5G network based on the UL grant (S23).
  • the 5G network determines whether to remotely control the vehicle (S24).
  • the autonomous vehicle receives a DL grant through a physical downlink control channel in order to receive a response to specific information from the 5G network (S25).
  • the 5G network transmits information (or signals) related to remote control to the autonomous vehicle based on the DL grant (S26).
  • the driving manipulation device 230 is a device that receives a user input for driving. In the case of the manual mode, the vehicle 10 may be driven based on a signal provided by the driving operation device 230.
  • the driving operation device 230 may include a steering input device (eg, a steering wheel), an acceleration input device (eg, an accelerator pedal), and a brake input device (eg, a brake pedal).
  • the main ECU 240 may control the overall operation of at least one electronic device provided in the vehicle 10.
  • the vehicle driving device 250 is a device that electrically controls various vehicle driving devices in the vehicle 10.
  • the vehicle drive device 250 may include a power train drive control device, a chassis drive control device, a door/window drive control device, a safety device drive control device, a lamp drive control device, and an air conditioning drive control device.
  • the power train drive control device may include a power source drive control device and a transmission drive control device.
  • the chassis drive control device may include a steering drive control device, a brake drive control device, and a suspension drive control device.
  • the safety device driving control device may include a safety belt driving control device for controlling the safety belt.
  • the vehicle driving device 250 may be referred to as an ECU (Electronic Control Unit).
  • ECU Electronic Control Unit
  • the driving system 260 may control the movement of the vehicle 10 or generate a signal for outputting information to a user based on data on an object received by the object detection device 210.
  • the driving system 260 may provide the generated signal to at least one of the user interface device 200, the main ECU 240, and the vehicle driving device 250.
  • the driving system 260 may be a concept including ADAS.
  • ADAS 260 includes an adaptive cruise control system (ACC), an automatic emergency braking system (AEB), a forward collision warning system (FCW), and a lane maintenance assistance system (LKA: Lane). Keeping Assist), Lane Change Assist (LCA), Target Following Assist (TFA), Blind Spot Detection (BSD), High Beam Control System (HBA) , Auto Parking System (APS), PD collision warning system (PD collision warning system), Traffic Sign Recognition (TSR), Traffic Sign Assist (TSA), Night Vision System At least one of (NV: Night Vision), Driver Status Monitoring (DSM), and Traffic Jam Assist (TJA) may be implemented.
  • ACC adaptive cruise control system
  • AEB automatic emergency braking system
  • FCW forward collision warning system
  • LKA Lane maintenance assistance system
  • LKA Lane Change Assist
  • TSA Traffic Sign Recognition
  • TSA Traffic Sign Assist
  • TJA Traffic Jam Assist
  • the driving system 260 may include an autonomous driving electronic control unit (ECU).
  • the autonomous driving ECU may set an autonomous driving route based on data received from at least one of other electronic devices in the vehicle 10.
  • the autonomous driving ECU is based on data received from at least one of the user interface device 200, the object detection device 210, the communication device 220, the sensing unit 270, and the location data generating device 280, You can set the driving route.
  • the autonomous driving ECU may generate a control signal so that the vehicle 10 travels along the autonomous driving path.
  • the control signal generated by the autonomous driving ECU may be provided to at least one of the main ECU 240 and the vehicle driving device 250.
  • the sensing unit 270 may sense the state of the vehicle.
  • the sensing unit 270 includes an IMU (inertial navigation unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement.
  • IMU inertial navigation unit
  • the inertial navigation unit (IMU) sensor may include one or more of an acceleration sensor, a gyro sensor, and a magnetic sensor.
  • the sensing unit 270 may generate state data of the vehicle based on a signal generated by at least one sensor.
  • the sensing unit 270 includes vehicle attitude information, vehicle motion information, vehicle yaw information, vehicle roll information, vehicle pitch information, vehicle collision information, vehicle direction information, vehicle angle information, vehicle speed information , Vehicle acceleration information, vehicle tilt information, vehicle forward/reverse information, battery information, fuel information, tire information, vehicle ramp information, vehicle internal temperature information, vehicle internal humidity information, steering wheel rotation angle, vehicle external illumination, accelerator pedal Sensing signals for pressure applied, pressure applied to a brake pedal, etc. may be acquired.
  • the sensing unit 270 includes an accelerator pedal sensor, a pressure sensor, an engine speed sensor, an air flow sensor (AFS), an intake air temperature sensor (ATS), a water temperature sensor (WTS), a throttle position sensor ( TPS), a TDC sensor, a crank angle sensor (CAS), and the like may be further included.
  • AFS air flow sensor
  • ATS intake air temperature sensor
  • WTS water temperature sensor
  • TPS throttle position sensor
  • TDC crank angle sensor
  • CAS crank angle sensor
  • the sensing unit 270 may generate vehicle state information based on the sensing data.
  • the vehicle status information may be information generated based on data sensed by various sensors provided inside the vehicle.
  • the vehicle status information includes vehicle attitude information, vehicle speed information, vehicle tilt information, vehicle weight information, vehicle direction information, vehicle battery information, vehicle fuel information, vehicle tire pressure information, vehicle Steering information, vehicle interior temperature information, vehicle interior humidity information, pedal position information, vehicle engine temperature information, and the like may be included.
  • the sensing unit may include a tension sensor.
  • the tension sensor may generate a sensing signal based on the tension state of the seat belt.
  • the location data generating device 280 may generate location data of the vehicle 10.
  • the location data generating apparatus 280 may include at least one of a Global Positioning System (GPS) and a Differential Global Positioning System (DGPS).
  • GPS Global Positioning System
  • DGPS Differential Global Positioning System
  • the location data generating apparatus 280 may generate location data of the vehicle 10 based on a signal generated from at least one of GPS and DGPS.
  • the location data generating apparatus 280 may correct the location data based on at least one of an IMU (Inertial Measurement Unit) of the sensing unit 270 and a camera of the object detection apparatus 210.
  • IMU Inertial Measurement Unit
  • the location data generating device 280 may be referred to as a location positioning device.
  • the location data generating device 280 may be referred to as a Global Navigation Satellite System (GNSS).
  • GNSS Global Navigation Satellite System
  • Vehicle 10 may include an internal communication system 50.
  • a plurality of electronic devices included in the vehicle 10 may exchange signals through the internal communication system 50.
  • the signal may contain data.
  • the internal communication system 50 may use at least one communication protocol (eg, CAN, LIN, FlexRay, MOST, Ethernet).
  • FIG. 3 is a control block diagram of an electronic device according to an embodiment of the present invention.
  • the electronic device 100 may include a memory 140, a processor 170, an interface unit 180, and a power supply unit 190.
  • the memory 140 is electrically connected to the processor 170.
  • the memory 140 may store basic data for a unit, control data for controlling the operation of the unit, and input/output data.
  • the memory 140 may store data processed by the processor 170.
  • the memory 140 may be configured with at least one of ROM, RAM, EPROM, flash drive, and hard drive.
  • the memory 140 may store various data for overall operation of the electronic device 100, such as a program for processing or controlling the processor 170.
  • the memory 140 may be implemented integrally with the processor 170. Depending on the embodiment, the memory 140 may be classified as a sub-element of the processor 170.
  • the interface unit 180 may exchange signals with at least one electronic device provided in the vehicle 10 by wire or wirelessly.
  • the interface unit 180 includes an object detection device 210, a communication device 220, a driving operation device 230, a main ECU 240, a vehicle driving device 250, an ADAS 260, a sensing unit 270, and Signals may be exchanged with at least one of the location data generating devices 280 by wire or wirelessly.
  • the interface unit 180 may be composed of at least one of a communication module, a terminal, a pin, a cable, a port, a circuit, an element, and a device.
  • the interface unit 180 may receive driving environment information on a driving road.
  • the interface unit 180 may receive location data of the vehicle 10 from the location data generating device 280.
  • the interface unit 180 may receive driving speed data from the sensing unit 270.
  • the interface unit 180 may receive object data around the vehicle from the object detection device 210.
  • the power supply unit 190 may supply power to the electronic device 100.
  • the power supply unit 190 may receive power from a power source (eg, a battery) included in the vehicle 10 and supply power to each unit of the electronic device 100.
  • the power supply unit 190 may be operated according to a control signal provided from the main ECU 240.
  • the power supply unit 190 may be implemented as a switched-mode power supply (SMPS).
  • SMPS switched-mode power supply
  • the processor 170 may be electrically connected to the memory 140, the interface unit 180, and the power supply unit 190 to exchange signals.
  • the processor 170 includes application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, and controllers. It may be implemented using at least one of (controllers), micro-controllers, microprocessors, and electrical units for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors and controllers. It may be implemented using at least one of (controllers), micro-controllers, microprocessors, and electrical units for performing other functions.
  • the processor 170 may be driven by power provided from the power supply unit 190.
  • the processor 170 may receive data, process data, generate a signal, and provide a signal while power is supplied by the power supply unit 190.
  • the processor 170 may receive information from another electronic device in the vehicle 10 through the interface unit 180.
  • the processor 170 may receive driving environment information on a driving road from the object detecting device 210 and the location data generating device 280 through the interface unit 180.
  • the processor 170 may provide a control signal to another electronic device in the vehicle 10 through the interface unit 180.
  • the driving environment information may include object information including the type, number, and height of objects located in the driving direction obtained by the object detection apparatus 210 and GPS information obtained by the location data generating apparatus 280.
  • the driving environment information may include information on a currently driving road and information on surrounding obstacles.
  • the processor 170 may determine the first distance based on the driving environment information acquired through the interface unit 180.
  • the first distance may be an expected arrival distance of the V2X communication signal.
  • the first distance may be determined in consideration of a congestion level of a communication channel and a line of sight (LOS) environment based on driving environment information.
  • LOS line of sight
  • the processor 170 may receive a V2X message through V2X communication.
  • the processor 170 may receive a V2X message through the interface unit 180.
  • the processor 170 may acquire a reach distance for each V2X message based on the V2X message and vehicle-to-vehicle location information.
  • the V2X message arrival distance may mean the distance of the V2X message value actually received by the processor 170, and may be different from the first distance, which is an expected arrival distance.
  • the processor 170 may obtain a distance of the actually received V2X message and determine a message that has reached the farthest among them.
  • the second distance may be the longest distance among the distances reached for each message.
  • the second distance may be different from the first distance.
  • the processor 170 may determine the second distance and compare it with the first distance.
  • the processor 170 may generate a signal for controlling the speed of the vehicle. If the processor 170 determines that the second distance is farther than the first distance, the message received at a distance greater than the first distance may be determined as a false alarm. The processor 170 may not generate a signal for controlling the vehicle speed based on a message determined as a false alarm.
  • the processor 170 may obtain speed data of the vehicle 10 from the sensing unit 270.
  • the processor 170 may calculate a first time, which is a risk response preparation time.
  • the first time may refer to a time required when driving the first distance at the current speed of the vehicle 10.
  • the first distance may change according to the driving environment, and accordingly, the first time may also change in real time.
  • the processor 170 may calculate the first time in real time based on the driving environment information and generate a signal for controlling the speed of the vehicle to secure the first time.
  • the processor 170 may compare the first time and the minimum risk response preparation time.
  • the processor 170 may generate a signal for controlling the speed of the vehicle by comparing the first time and the minimum risk response preparation time.
  • the minimum risk response preparation time may mean a minimum time required to generate a response control signal in response to a risk factor of a driving situation.
  • the minimum risk response preparation time may include a second time, which is the minimum risk response preparation time for the driver, and a third time, which is the minimum risk response preparation time for the autonomous driving module.
  • the second time may mean a minimum time required for the driver to identify a risk factor in a driving situation and respond to the risk factor, and may vary depending on the driver.
  • the processor 170 may preset and store the second time. If the processor 170 determines that the first time is shorter than the second time based on the preset second time, it may generate a deceleration control signal based on the second time.
  • a deceleration control signal may be generated based on the second time, which is 4 seconds. Since the speed and time are inversely proportional to each other, a signal that decreases the speed so that the first time increases from 3 seconds to 4 seconds can be generated.
  • the third time may mean the minimum time required for the processor 170 to identify a risk factor in a driving situation from sensor data and generate a control signal corresponding to the risk factor, and may vary according to autonomous driving performance. can do. If the processor 170 determines that the first time is shorter than the third time, the processor 170 may generate a deceleration control signal based on the third time.
  • a deceleration control signal may be generated based on the third time, 2 seconds. Since the speed and time are inversely proportional to each other, a signal that decreases the speed so that the first time increases from 1 second to 2 seconds can be generated.
  • the processor 170 may generate an acceleration control signal based on the minimum risk response preparation time.
  • the processor 170 may request an input signal from the driver as to whether to generate an acceleration control signal through the interface unit 180.
  • the processor 170 may generate an acceleration control signal based on the driver's input signal.
  • the minimum risk response preparation time includes a second time and a third time, and a first time longer than the minimum risk response preparation time may mean that the first time is longer than the second time and the third time.
  • the processor 170 may determine that the first time is longer than the minimum risk response preparation time. Since the speed and time are inversely proportional to each other, a signal that increases the speed until the first time becomes 5 to 4 seconds can be generated. In this case, the processor 170 may request an input signal from the driver. The driver may not want to accelerate.
  • the deceleration control signal is further based on the longer of the second time and the third time. Can be created.
  • the processor 170 determines that the first time is between the second time and the third time, and the second time And a deceleration control signal may be generated based on a second time that is a longer time of the third time. Since the speed and time are inversely proportional to each other, a signal that decreases the speed so that the first time increases from 3 seconds to 4 seconds can be generated.
  • a deceleration control signal may be generated based on time, and a deceleration control signal may be secondarily generated based on a longer of the second time and the third time.
  • the processor 170 may calculate the first time in real time and generate a signal that displays a danger status message corresponding to the calculated first time.
  • the danger status message may mean a status message that divides the first time according to the section and displays a pre-stored danger level for each section in text.
  • the processor 170 may generate a signal displaying the section change to the driver through the interface unit 180.
  • the electronic device 100 may include at least one printed circuit board (PCB).
  • PCB printed circuit board
  • the memory 140, the interface unit 180, the power supply unit 190, and the processor 170 may be electrically connected to a printed circuit board.
  • FIG. 5 is a flow chart of a processor according to an embodiment of the present invention.
  • the processor 170 includes a sensor data receiving step (S100), driving environment information extraction step (S200), a first distance determination step (S300), a first time calculation step (S400), and a vehicle speed control signal.
  • the electronic device 100 may be operated through the generating step S500.
  • the sensor data reception step S300 may be a step of receiving object information detected by the object detection apparatus 210.
  • the sensor data reception step S300 may be a step of receiving GPS information generated by the location data generating device 280.
  • the sensor data reception step S300 may be a step of receiving vehicle internal data sensed by the sensing unit 270.
  • the processor 170 may receive sensor data through the interface unit 180.
  • the driving environment information extraction step S200 may be a step of extracting information on a road currently driving and information on surrounding objects based on the received sensor data.
  • the information on the surrounding objects may be information on obstacles including the type, number, and height of obstacles located in the driving direction.
  • FIGS. 5 to 6 a detailed description may refer to FIGS. 5 to 6.
  • the first distance determining step S300 may be a step of determining a first distance, which is an expected reach of a communication signal, in consideration of a congestion level of a communication channel and an LOS environment based on driving environment information.
  • the first distance may vary depending on the type of road and the presence of obstacles around it, as well as weather and topography. For example, in rainy or cloudy weather the first distance may be shorter than in sunny weather. For example, the first distance may be shorter in terrain with many mountains or hills around it than in flat land.
  • a detailed description may refer to FIG. 8.
  • the first time calculation step S400 may be calculated by dividing the first distance by the current speed of the vehicle 10. The first distance is determined in step S300. If the current speed of the vehicle 10 is high, the first time is short, and if the current speed of the vehicle 10 is low, the first time may be long. The longer the first time, the longer the speed controllable time can be, so it may be safer, but if the speed is too slow, it may be important to maintain an appropriate first time because a smooth traffic flow cannot be maintained.
  • the step of generating the vehicle speed control signal (S500) may be a step of controlling the speed of the vehicle to secure the first time. To secure the first time, it can be compared with the minimum risk response preparation time.
  • a detailed description may refer to FIGS. 10 to 11.
  • 6, 7A, and 7B are diagrams illustrating object information for obtaining driving environment information according to an exemplary embodiment of the present invention.
  • the driving environment information may include object information including the type, number, and height of objects located in the driving direction obtained by the object detection apparatus 210 and GPS information obtained by the location data generating apparatus 280.
  • the objects may be various objects related to the operation of the vehicle 10.
  • Objects may include lanes OB10, other vehicles OB11, pedestrians OB12, motorcycles OB13, traffic signals OB14 and OB15, roads, structures, terrain, speed bumps, lights, animals, etc. .
  • the lane OB10 may be a driving lane, a lane next to the driving lane, or a lane on which an opposite vehicle travels.
  • the lane OB10 may be a concept including left and right lines forming a lane.
  • the lane may be a concept including an intersection.
  • the other vehicle OB11 may be a vehicle running around the vehicle 10.
  • the other vehicle may be a vehicle located within a predetermined distance from the vehicle 10.
  • the other vehicle OB11 may be a vehicle preceding or following the vehicle 10.
  • the pedestrian OB12 may be a person located in the vicinity of the vehicle 10.
  • the pedestrian OB12 may be a person located within a predetermined distance from the vehicle 10.
  • the pedestrian OB12 may be a person located on a sidewalk or roadway.
  • the two-wheeled vehicle OB13 may refer to a vehicle located around the vehicle 100 and moving using two wheels.
  • the two-wheeled vehicle OB13 may be a vehicle having two wheels located within a predetermined distance from the vehicle 10.
  • the two-wheeled vehicle OB13 may be a motorcycle or bicycle located on a sidewalk or roadway.
  • the traffic signal may include a traffic light OB15, a traffic sign OB14, a pattern or text drawn on a road surface.
  • the road may include a road surface, a curve, an uphill, downhill slope, and the like.
  • the structure may be an object located around a road and fixed to the ground.
  • the structure may include a street light, a street tree, a building, a power pole, a traffic light, a bridge, a curb, and a wall.
  • the features may include mountains, hills, and the like.
  • Object information on a general road in an urban area may be more complex than object information on a suburban highway.
  • lanes OB10, other vehicles OB11, pedestrians OB12, traffic signs OB14, and various structures OB16, OB17, OB18, OB19 are objects. Can be detected. Object information including the type, number, and height of objects located in the driving direction obtained therefrom may be complex.
  • a lane OB10, another vehicle OB11, and a simple terrain object OB20 may be detected as objects.
  • Object information including the type, number and height of objects located in the driving direction obtained therefrom may be simple.
  • FIG. 8 is a diagram showing a first distance measurement simulation result according to an embodiment of the present invention.
  • an expected reach distance of a V2X communication signal may vary according to driving environment information. Based on the simulation results, the vehicle speed is 60km/h and the PPR (Packet Receiving Ratio) is 90%, and the DSRC signal's reach distance is expected to be 58.91m, the vehicle speed is 70km/h, and the PPR is 90%. In terms of %, the DSRC signal's reach is expected to be 152.49m. That is, the first distance may vary according to driving environment information such as whether it is an urban area or a highway.
  • PPR Packet Receiving Ratio
  • the driving environment information may be based on object information acquired by the object detection apparatus 210. If the object information is complex, the driving environment information may also be complex. Object information can be classified according to the driving environment state.
  • Driving environment conditions can be classified into urban areas, suburbs, and open areas.
  • Object information can be more complex in suburbs than in open areas.
  • Object information can be more complex in urban areas than in suburbs.
  • the driving environment condition can be classified according to the type of road.
  • Object information may be more complex on a general road than on a highway.
  • driving environment information may also be complex.
  • Objects detected on the suburban highway 602 are not diverse, and object information that can be obtained therefrom is simple, so driving environment information may be simple.
  • the first distance may mean an expected arrival distance of the V2X communication signal.
  • the first distance may be determined in consideration of a congestion level of a communication channel and a line of sight (LOS) environment based on driving environment information.
  • LOS line of sight
  • the degree of congestion of the communication channel may mean the degree of congestion of a channel used for V2X communication.
  • the wireless communication channels may be congested due to frequency interference or the like. That is, congestion of the communication channel may cause problems such as a decrease in communication speed and disconnection of a communication channel when a plurality of objects located around the host vehicle use the same channel or an adjacent channel.
  • Whether the communication channel is congested can be determined by checking whether the packet error rate (PER less than the packet error rate) or the retransmission rate (RR less than the retransmission rate) exceeds a preset reference value.
  • the LOS (line of sight) environment refers to an environment in which no obstacles exist in the communication environment.
  • the LOS environment may refer to a communication environment in which radio waves used for communication do not experience reflection, diffraction, scattering, or the like.
  • radio waves do not experience reflection, diffraction, scattering, etc., they do not have multiple paths, and transmission delay time problems due to multiple paths may not occur.
  • the driving environment information may be determined in consideration of whether the LOS environment is damaged through reflection, diffraction, and scattering of radio waves in the LOS environment.
  • the more obstacles inside the communication environment the higher the possibility of damage may be.
  • the first path may pass through an obstacle and follow a linear path from the first communication device to the second communication device.
  • a straight signal path may be a line-of-sight (LOS) path.
  • Another second path may be reflected by the obstacle to take a detour path from the first communication device to the second communication device.
  • This bypass path may be a non-LOS path.
  • FIG. 9 is a diagram illustrating a first distance determining step S300 according to an embodiment of the present invention.
  • a V2X message is received (301) and vehicle-to-vehicle location information is received (302) to determine a first distance (303), and a second distance (304). ), and if it is determined that the second distance is smaller than the first distance, the process may proceed to the first time determining step S400.
  • the second distance is determined by a processor receiving the V2X message from another vehicle through an interface unit, acquiring a reach for each message based on the V2X message and location information between vehicles, and extracting the farthest distance among the reaching distances for each message. I can.
  • the V2X message can contain various information.
  • the processor 170 may extract a message related to the vehicle 10 by analyzing the V2X message received from a remote vehicle.
  • the processor 170 may receive 302 location information between vehicles to determine a message arrival distance.
  • the first distance may vary according to driving environment information, a congestion level of a communication channel, and an LOS environment. As shown in FIG. 8, the first distance may vary depending on the type of road and the presence of nearby obstacles. For example, the first distance may be determined to be the shortest in the city center, the longest in the suburbs, and the longest in the open area. In addition, the first distance may vary depending on the weather and terrain.
  • the second distance may be determined by extracting the farthest distance from the arrival distances of the V2X message received from a distant vehicle.
  • the second distance may be the farthest distance within a certain angle of the driving direction of the vehicle 10 among messages sent from a distant vehicle and messages received as location information between vehicles.
  • the second distance may be the same as or different from the first distance.
  • the processor 170 may compare the first distance and the second distance. Whether the second distance is smaller than the first distance is determined (305), and if the first distance is smaller than the second distance, messages received at a distance greater than the first distance may be determined (306) as false alarms.
  • the contents analyzed in the message judged as a false alarm may not be used for vehicle control.
  • the probability of false alarm can be reduced.
  • contents related to the vehicle 10 analyzed in a message received from another vehicle may be used to control the vehicle 10.
  • FIGS 10 to 11 are views illustrating a vehicle speed control signal generation step (S500) according to an embodiment of the present invention.
  • a second time is calculated (511), and it is determined whether the first time is shorter than the second time (512), and the first time is less than the second time. If it is short, the deceleration control signal is generated 513 based on the second time, and if the first time is longer than the second time, the acceleration control signal is generated 514 based on the second time.
  • the second time may be a minimum risk response preparation time for the driver.
  • the second time may mean a minimum time required for the driver to identify a risk factor in a driving situation and respond to the risk factor, and may vary depending on the driver.
  • the second time may be preset and stored.
  • the second time may be set and stored as 4 seconds.
  • a deceleration control signal is generated 513 so that the first time becomes 4 seconds, and when the calculated first time is 5 seconds longer than 4 seconds, the first time is 4 seconds.
  • the acceleration control signal may be generated 514 to be seconds.
  • the acceleration control signal may be generated by the driver's input signal.
  • a third time is calculated (521), and it is determined whether the first time is shorter than the third time (522), and the first time is less than the third time. If it is short, the deceleration control signal is generated 523 based on the third time, and if the first time is longer than the third time, the acceleration control signal is generated 524 based on the third time.
  • the third time may mean a minimum time required for the processor 170 to identify a risk factor in a driving situation from sensor data and generate a control signal corresponding to the risk factor.
  • the third time may vary depending on the autonomous driving performance and may not be constant.
  • the third time can be lengthened in complex scenarios or situations that are not stored.
  • the third time can appear long in old vehicles.
  • the third time can be calculated as 2 seconds.
  • a deceleration control signal is generated 523 so that the first time becomes 2 seconds, and when the calculated first time is 3 seconds longer than 2 seconds, the first time is 2
  • the acceleration control signal may be generated 524 to become seconds.
  • the acceleration control signal may be generated by the driver's input signal.
  • the acceleration control signal may be generated based on a longer of the second time and the third time. For example, if the second time is 4 seconds and the third time is 2 seconds, an acceleration control signal is generated based on the second time, and if the second time is 4 seconds and the third time is 5 seconds, the third time It is possible to generate an acceleration control signal based on.
  • the acceleration control signal may receive an input signal from the driver indicating whether to generate the acceleration control signal, and may be generated based on the driver's input signal. This is to prevent acceleration even when the driver does not want to accelerate.
  • FIG 12, 13A, and 13B are diagrams illustrating risk status messages for each first time interval according to an embodiment of the present invention.
  • the first time may be divided according to sections. For example, if the first time is more than 0 seconds and less than 1 second, the first section (P1), if more than 1 second and less than 3 seconds, the second section (P2), if it is more than 3 seconds and less than 5 seconds, the third section (P3), If it exceeds 5 seconds and is less than 7 seconds, it can be divided into a fourth section (P4), and if it exceeds 7 seconds, it can be divided into a fifth section (P5).
  • the first section (P1) if more than 1 second and less than 3 seconds
  • the second section (P2) if it is more than 3 seconds and less than 5 seconds
  • the third section (P3) If it exceeds 5 seconds and is less than 7 seconds, it can be divided into a fourth section (P4), and if it exceeds 7 seconds, it can be divided into a fifth section (P5).
  • the processor 170 may set the danger status message according to the section.
  • the danger status message may be a message indicating the degree of danger.
  • P1 may be very dangerous 901
  • P2 may be dangerous 902
  • P3 may be normal (903)
  • P4 may be safe 904
  • P5 may be very safe 905.
  • the processor 170 may calculate the first time in real time and generate a signal that displays a danger status message of a section to which the first time calculated in real time belongs. For example, if the first time is calculated as 1.5 seconds, it corresponds to the P2 section, and a status message indicating the degree of danger of danger 902 may be displayed.
  • the status message indicating the degree of danger may be a signal indicating a color stored together with a text indicating the degree of danger.
  • very dangerous 901 may be displayed in red, dangerous 902 in orange, normal 903 in yellow, safe 904 in green, and very safe 905 with a blue background.
  • red, danger 902 may be indicated in orange, normal 903 in yellow, safety 904 in green, and very safe 905 in blue.
  • the number of sections, ranges of sections, status messages, and colors may be different.
  • a message indicating a danger status message of “Danger 902” and a message “Speed is reduced” may be displayed.
  • the danger status message may be displayed in orange.
  • the danger status message of'Very Safe (905)' and'Would you like to speed up? Yes/No’ message may be displayed.
  • the danger status message may be displayed in blue.
  • the change in the section may be displayed to the driver.
  • the driver For example, while driving in section P3, if an accident or delay occurs suddenly in the driving direction, the first distance is reduced, and accordingly, the first time is shortened, so that the section to the section P2 may be changed. If so, the section change to P2 and the danger 902 are displayed, and through this, the driver can efficiently cope with the sudden change in driving situation.
  • FIGS. 14 to 17 are diagrams illustrating a process of generating a first time and speed control signal on an urban general road or a suburban highway according to an embodiment of the present invention.
  • the first distance of the host vehicle 10 may be calculated as 60 m due to the surrounding obstacles 1303 such as buildings on a general road in the city.
  • the first distance of the other vehicle may also be 60m.
  • the second time may be 4 seconds, and the third time of the host vehicle 10 may be 2 seconds.
  • the host vehicle 10 may respond to the sudden appearance of another vehicle while transmitting and receiving a V2X message with the other vehicle.
  • the first distance areas 1301 and 1302 are areas in which the first distance is the radius around the vehicle, and may mean an area capable of stably transmitting and receiving V2X messages with other vehicles.
  • the V2X message of another vehicle received at a distance greater than the first distance of the host vehicle 10 may be a false alarm.
  • it may be difficult to cope with the sudden appearance of other vehicles. In this case, it is possible to respond to a dangerous situation through deceleration.
  • the first distance of the host vehicle 10 on a suburban highway may be calculated as 150 m.
  • the first distance of the other vehicle may also be 150m.
  • the second time may be 4 seconds and the third time may be 2 seconds.
  • the host vehicle 10 may respond to the sudden appearance of another vehicle while transmitting and receiving a V2X message with the other vehicle.
  • the first distance areas 1401 and 1402 are areas in which the first distance is the radius around the vehicle, and may mean an area capable of stably transmitting and receiving V2X messages with other vehicles.
  • the V2X message of another vehicle received at a distance greater than the first distance of the host vehicle 10 may be a false alarm.
  • it may be difficult to cope with the sudden appearance of other vehicles. In this case, it is possible to respond to a dangerous situation through deceleration.
  • the first distance may be 120m in the suburbs and 60m in the city center.
  • the second time may be 4 seconds and the third time may be 2 seconds, and the current speed may be maintained because there is no input signal from the driver.
  • the city center appears in front, and the own vehicle 10 is located at the first point 1501, which is the current suburb, and passes through the second point 1502, the third point 1503, and the fourth point 1504. It is possible to drive to the fifth point 1505 entering the city center.
  • the first distance may also be gradually reduced by the sensor data.
  • the first time may correspond to a section P4 of 5.45 seconds.
  • the first distance from the second point 1502 is reduced to 100 m, and if the current speed is 22 m/s, the first time may also be reduced to 4.54 seconds.
  • the P4 section may be changed to the P3 section. When there is a change in section, the section change through the display can be displayed to the driver.
  • the first distance from the third point 1503 is reduced to 88 m, and if the current speed is 22 m/s, the first time may also be reduced to 4 seconds.
  • the first time and the second time are equal to 4 seconds, and when the third point 1503 is passed, the first distance is further reduced, so that the first time may be shorter than the second time.
  • a deceleration control signal is generated based on the second time, and as a result, the first time can be maintained at 4 seconds like the second time.
  • the first time at the fourth point 1504 is maintained as 4 seconds, but the first distance is reduced to 80 m, and accordingly, the current speed may be reduced to 20 m/s. Since the first distance from the fifth point 1505 is 60 m and the first time is maintained at 4 seconds, the current speed can decelerate to 15 m/s.
  • a sudden change in the driving environment during driving may be assumed.
  • the first distance is momentarily shortened due to sudden change of weather or sudden delay in vehicle driving due to an accident of a vehicle ahead.
  • the deceleration control is performed based on the second time of 4 seconds, the driving stability may deteriorate due to sudden braking up to 5 m/s. Therefore, it is possible to generate a deceleration control signal that considers driving stability in a manner that first, based on the third time, 2 seconds, braking up to 10 m/s first, and gradually braking up to 5 m/s based on the second time, 4 seconds. I can.
  • the present invention described above can be implemented as a computer-readable code in a medium on which a program is recorded.
  • the computer-readable medium includes all types of recording devices storing data that can be read by a computer system. Examples of computer-readable media include HDD (Hard Disk Drive), SSD (Solid State Disk), SDD (Silicon Disk Drive), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc. There is also a carrier wave (eg, transmission over the Internet).
  • the computer may include a processor or a control unit. Therefore, the detailed description above should not be construed as restrictive in all respects and should be considered as illustrative. The scope of the present invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)

Abstract

본 발명은 직접통신을 통해 타 차량과 정보를 송수신하는 차량용 전자 장치에 있어서, 인터페이스부 및 상기 인터페이스부를 통해 주행 도로에서의 주행 환경 정보를 획득하고, 상기 주행 환경 정보에 기초하여 V2X 통신(Vehicle to Evryting communication) 신호의 예상 도달거리인 제1 거리를 결정하고, 차량의 속도 대비 상기 제1 거리로 정의되는 위험대응 준비시간인 제1 시간을 계산하고, 상기 위험대응 준비시간을 확보하도록 상기 차량의 속도를 제어하는 신호를 생성하는 프로세서;를 포함하는 차량용 전자 장치 및 그의 동작 방법에 관한 것이다. 차량용 전자 장치에서 생성된 데이터는, 5G 통신 방식을 통해 외부 장치에 전송될 수 있다. 본 발명의 자율 주행 차량의 전자 장치는, 인공 지능(Artificial Intelligence) 모듈, 드론(Unmanned Aerial Vehicle, UAV), 로봇, 증강 현실(Augmented Reality, AR) 장치, 가상 현실(virtual reality, VR), 5G 서비스와 관련된 장치 등과 연계 혹은 융복합될 수 있다.

Description

차량용 전자 장치 및 그의 동작 방법
본 발명은 차량용 전자 장치 및 차량용 전자 장치의 동작 방법에 관한 것이다.
차량은 탑승하는 사용자가 원하는 방향으로 이동시키는 장치이다. 대표적으로 자동차를 예를 들 수 있다. 자율 주행 차량은 인간의 운전 조작 없이 자동으로 주행할 수 있는 차량을 의미한다.
자율 주행 차량은 차량에 탑재된 라이다, 레이더, 카메라 등 센서로 주변 환경을 인지해 주행한다. 그러나 현재 기술 수준에서는 센서만으로 주변 상황을 인지하거나, 사각지대를 감지하기 어렵다. 소프트웨어 오류가 발생할 가능성도 있고 악천후에도 취약한 편이다.
더욱 안전하고 편리한 자율 주행을 위해 통신으로 센서의 부족한 부분을 보완하는 기술이 대한 연구가 활발하게 진행되고 있다. 이와 관련하여, V2X(Vehicle to Everything)는 유·무선망을 통해 다른 차량, 모방일 기기, 도로 등의 사물과 정보를 교환하는 것 또는 그 기술을 말한다.
V2X는 단거리 전용 직접 통신(Dedicated Short-Range Communications, DSRC)을 기반으로 하고 있다. 직접 통신은 두 매체 간의 통신 상황에 따라 통신 신호의 도달거리가 달라지는 특성이 있는데, 도심지에서는 주위에 장애물이 많고 Line of Sight가 유지되지 않는 경우가 많아 장애물이 거의 없는 고속도로에 비해 통신 신호 도달거리가 매우 짧아진다. 특히, 상황에 따라 급작스럽게 통신 신호의 도달거리가 변경되는 경우, 사고 발생 가능성이 높아지는 문제점이 있다.
본 발명은 상기한 문제점을 해결하기 위하여, 주위 장애물 상황을 인식하고 통신 신호의 도달거리 변화를 예상하여, 급작스럽게 통신 신호의 도달거리가 변경되는 경우에도 안전하게 차량을 제어하는 차량용 전자 장치를 제공하는데 목적이 있다.
또한, 본 발명은 차량의 속도 대비 V2X 통신 신호의 예상 도달거리로 정의되는 위험대응 준비시간을 확보하도록 차량의 속도를 제어하는 차량용 전자 장치의 동작 방법을 제공하는데 목적이 있다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위하여, 본 발명에 따른 차량용 전자 장치의 동작 방법은 프로세서가 센서 데이터를 수신하는 단계; 상기 센서 데이터에 기초하여 주행 환경 정보를 추출하는 단계; 상기 주행 환경 정보에 기초하여 V2X 통신(Vehicle to Evryting communication) 신호의 예상 도달거리인 제1 거리를 결정하는 단계; 차량의 속도 대비 상기 제1 거리로 정의되는 위험대응 준비시간인 제1 시간을 계산하는 단계; 및 상기 제1 시간을 확보하도록 상기 차량의 속도를 제어하는 신호를 생성하는 단계;를 포함한다.
본 발명에 따른 차량용 전자 장치의 동작 방법은 상기 제1 시간을 구간에 따라 나누고, 상기 제1 시간을 실시간으로 계산하고, 상기 실시간으로 계산된 제1 시간이 속해있는 구간의 위험 정도를 나타내는 위험 상태 메시지를 표시하는 신호를 생성하는 단계;를 포함한다.
본 발명에 따른 차량용 전자 장치의 동작 방법은 인터페이스부를 통해 상기 구간의 변경을 운전자에게 표시하는 신호를 생성하고, 운전자의 입력 신호에 기초하여 상기 가속 제어 신호를 생성하는 단계;를 포함한다.
본 발명에 따른 실시예는 차량의 레이더 및 ADAS 카메라를 이용하여 주변 오브젝트 정보를 획득하고, 상기 오브젝트 정보에 기초하여 주행 환경 상태를 분류할 수 있다.
본 발명에 따른 실시예는 오브젝트 검출 장치가 획득한 오브젝트 정보에 기초하여 LOS(line of sight) 환경의 손상 여부를 판단할 수 있다. LOS 환경의 손상 가능성이 크면 V2X 신호의 손상 가능성이 커질 수 있다.
본 발명에 따른 실시예는 패킷 에러율(Packet Error Rate 이하 PER) 또는 재전송율(Retransmission Rate 이하 RR)이 기 설정된 기준값 이상이 되는지 확인하여 통신 채널의 혼잡한지를 판단할 수 있다. 통신 채널이 혼잡하면 V2X 신호의 손상 가능성이 커질 수 있다.
본 발명에 따른 실시예는 V2X 메시지의 도달거리 중 가장 먼 거리를 결정하여 예상 도달거리인 제1 거리보다 먼 경우, V2X 신호의 손상 가능성이 큰 false alarm으로 판단할 수 있다.
본 발명에 따른 실시예는 진행 방향의 타 차량에서 받은 V2X 메시지들 중 최대 도달 거리를 추출하여 제1 거리가 최대 도달 거리보다 먼 경우에만 차량 속도 제어를 함으로써 false alarm 확률을 줄일 수 있다.
본 발명에 따른 실시예는 제1 거리가 최대 도달 거리보다 먼 경우, V2X 메시지들 중 자차와 관련된 메시지만 추출하여 차량 속도 제어에 활용할 수 있다.
본 발명에 따른 실시예는 V2X 신호의 예상 도달거리를 차량의 속도로 나누어 위험대응 준비시간인 제1 시간을 계산할 수 있다.
본 발명에 따른 실시예는 제1 시간을 구간 별로 분류하여 제1 시간이 0초 초과 1초 이하이면 제1 구간, 1초 초과 3초 이하이면 제2 구간, 3초 초과 5초 이하이면 제3 구간, 5초 초과 7초 이하이면 제4 구간, 7초 초과이면 제5 구간으로 나눌 수 있다.
본 발명에 따른 실시예는 제1 시간의 구간별 메시지를 설정하여 실시간으로 운전자에게 표시하고, 구간이 변경될 때 위험을 알릴 수 있다.
본 발명에 따른 실시예는 제3 구간에서 주행 중, 주행 방면에서 급작스럽게 사고가 발생하거나 지체현상이 발생하면 제1 거리가 줄어들고 이에 따라 제1 시간이 줄어들어 제2 구간으로의 구간의 변경이 발생하는 경우, 제2 구간 변경 및 위험 상태 메시지를 표시할 수 있다.
본 발명에 따른 실시예는 제1 시간의 구간 정보를 통해 속도를 변경하는 자율주행 차량을 포함할 수 있다.
본 발명에 따른 실시예는 최소 위험대응 준비시간의 설정을 통해 제1 시간이 최소 위험대응 준비시간보다 길면 차량의 속도를 가속 제어하고, 제1 시간이 최소 위험대응 준비시간보다 짧으면 차량의 속도를 감속 제어할 수 있다
차량이 교외에서 도심지로 진입할 때, 주행 환경 정보가 복잡해짐에 따라 제1 거리 및 제1 시간이 줄어들어 제1 시간이 최소 위험대응 준비시간보다 짧아지면 차량의 속도를 감속하여 위험 상황에 대비할 수 있다.
차량이 도심지에서 교외로 진입할 때, 주행 환경 정보가 단순해짐에 따라 제1 거리 및 제1 시간이 늘어나고 제1 시간이 최소 위험대응 준비시간보다 길어지면 차량의 속도를 가속하여 교통 정체를 막을 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명에 따르면 다음과 같은 효과가 하나 혹은 그 이상 있다.
첫째, 차량 내 센서 데이터를 통해 V2X 통신 신호의 도달거리를 예상할 수 있는 효과가 있다.
둘째, 가장 먼 V2X 메시지의 도달거리를 추출하여 False Alarm을 줄이는 효과가 있다.
셋째, 위험대응 준비시간을 계산하여 사고 발생 가능성을 낮추는 효과가 있다.
넷째, 위험대응 준비시간을 구간별로 분류하고 이에 대응되는 상태 메시지를 표시하여 운전자가 직관적으로 위험 상태를 알 수 있는 효과가 있다
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 차량의 외관을 도시한 도면이다.
도 2는 본 발명의 실시예에 따른 차량의 제어 블럭도이다.
도 3은 본 발명의 실시예에 따른 전자 장치의 제어 블럭도이다.
도 4a 내지 도 4b는, 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 기본동작 및 응용 동작의 일 예를 나타낸다.
도 5는 본 발명의 실시예에 따른 프로세서에 대한 플로우 차트이다.
도 6, 도 7a, 도 7b는 본 발명의 실시예에 따른 주행 환경 정보를 획득하기 위한 오브젝트 정보를 설명하는 도면이다.
도 8은 본 발명의 실시예에 따른 제1 거리 측정 시뮬레이션 결과를 나타내는 도면이다.
도 9는 본 발명의 실시예에 따른 제1 거리 결정 단계(S300)를 구체화한 도면이다.
도 10 내지 도 11은 본 발명의 실시예에 따른 차량 속도 제어 신호 생성 단계(S500)를 구체화한 도면이다.
도 12, 도 13a, 도 13b는 본 발명의 실시예에 따른 제1 시간 구간별 위험 상태 메시지를 나타내는 도면이다.
도 14 내지 도 17은 본 발명의 실시예에 따른 도심의 일반도로 또는 교외의 고속도로에서의 제1 시간 및 속도 제어 신호를 생성하는 과정을 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 본 발명의 실시예에 따른 차량을 도시한 도면이다.
도 1을 참조하면, 본 발명의 실시예에 따른 차량(10)은 도로나 선로 위를 달리는 수송 수단으로 정의된다. 차량(10)은 자동차, 기차, 오토바이를 포함하는 개념이다. 차량(10)은 동력원으로서 엔진을 구비하는 내연기관 차량, 동력원으로서 엔진과 전기 모터를 구비하는 하이브리드 차량, 동력원으로서 전기 모터를 구비하는 전기 차량등을 모두 포함하는 개념일 수 있다. 차량(10)은 공유형 차량일 수 있다. 차량(10)은 자율 주행 차량일 수 있다.
차량(10)에는 전자 장치(100)가 포함될 수 있다. 전자 장치(100)는 차량(10)에서 V2X 통신 신호의 예상 도달 거리를 결정하고, 그에 따라 차량의 속도를 제어하는 장치일 수 있다. 차량(10)은 전자 장치(100)에서 생성된 차량의 속도 제어 신호에 기초하여 차량의 속도를 제어할 수 있다.
한편, 차량(10)은 적어도 하나의 로봇(robot)과 상호 작용할 수 있다. 로봇은 자력으로 주행이 가능한 이동 로봇(Autonomous Mobile Robot, AMR)일 수 있다. 이동 로봇은 스스로 이동이 가능하여 이동이 자유롭고, 주행 중 장애물 등을 피하기 위한 다수의 센서가 구비되어 장애물을 피해 주행할 수 있다. 이동 로봇은 비행 장치를 구비하는 비행형 로봇(예를 들면, 드론)일 수 있다. 이동 로봇은 적어도 하나의 바퀴를 구비하고, 바퀴의 회전을 통해 이동되는 바퀴형 로봇일 수 있다. 이동 로봇은 적어도 하나의 다리를 구비하고, 다리를 이용해 이동되는 다리식 로봇일 수 있다.
로봇은 차량(10) 사용자의 편의를 보완하는 장치로 기능할 수 있다. 예를 들면, 로봇은 차량(10)에 적재된 짐을 사용자의 최종 목적지까지 이동하는 기능을 수행할 수 있다. 예를 들면, 로봇은 차량(10)에서 하차한 사용자에게 최종 목적지까지 길을 안내하는 기능을 수행할 수 있다. 예를 들면, 로봇은 차량(10)에서 하차한 사용자를 최종 목적지까지 수송하는 기능을 수행할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는 통신 장치(220)를 통해, 로봇과 통신을 수행할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는 로봇에 차량에 포함되는 적어도 하나의 전자 장치에서 처리한 데이터를 제공할 수 있다. 예를 들면, 차량에 포함되는 적어도 하나의 전자 장치는 오브젝트 데이터, HD 맵 데이터, 차량 상태 데이터, 차량 위치 데이터 및 드라이빙 플랜 데이터 중 적어도 어느 하나를 로봇에 제공할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는 로봇으로부터 로봇에서 처리된 데이터를 수신할 수 있다. 차량에 포함되는 적어도 하나의 전자 장치는 로봇에서 생성된 센싱 데이터, 오브젝트 데이터, 로봇 상태 데이터, 로봇 위치 데이터 및 로봇의 이동 플랜 데이터 중 적어도 어느 하나를 수신할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는 로봇으로부터 수신된 데이터에 더 기초하여, 제어 신호를 생성할 수 있다. 예를 들면, 차량에 포함되는 적어도 하나의 전자 장치는 오브젝트 검출 장치(210)에 생성된 오브젝트에 대한 정보와 로봇에 의해 생성된 오브젝트에 대한 정보를 비교하고, 비교 결과에 기초하여, 제어 신호를 생성할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는 차량(10)의 이동 경로와 로봇의 이동 경로간의 간섭이 발생되지 않도록, 제어 신호를 생성할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는 인공 지능(artificial intelligence, AI)를 구현하는 소프트웨어 모듈 또는 하드웨어 모듈(이하, 인공 지능 모듈)을 포함할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는 획득되는 데이터를 인공 지능 모듈에 입력(input)하고, 인공 지능 모듈에서 출력(output)되는 데이터를 이용할 수 있다.
인공 지능 모듈은 적어도 하나의 인공 신경망(artificial neural network, ANN)을 이용하여, 입력되는 데이터에 대한 기계 학습(machine learning)을 수행할 수 있다. 인공 지능 모듈은 입력되는 데이터에 대한 기계 학습을 통해 드라이빙 플랜 데이터를 출력할 수 있다.
차량에 포함되는 적어도 하나의 전자 장치는 인공 지능 모듈에서 출력되는 데이터에 기초하여 제어 신호를 생성할 수 있다.
실시예에 따라, 차량에 포함되는 적어도 하나의 전자 장치는 통신 장치(220)를 통해 외부 장치로부터 인공 지능에 의해 처리된 데이터를 수신할 수 있다. 차량에 포함되는 적어도 하나의 전자 장치는 인공 지능에 의해 처리된 데이터에 기초하여 제어 신호를 생성할 수 있다.
도 2는 본 발명의 실시예에 따른 차량의 제어 블럭도이다.
도 2를 참조하면, 차량(10)은 차량용 전자 장치(100), 사용자 인터페이스 장치(200), 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 차량 구동 장치(250), 주행 시스템(260), 센싱부(270) 및 위치 데이터 생성 장치(280)를 포함할 수 있다.
전자 장치(100)는 오브젝트 검출 장치(210)를 통해 오브젝트를 검출할 수 있다. 전자 장치(100)는 통신 장치(220)를 이용하여 주변 차량과 데이터를 교환할 수 있다. 전자 장치(100)는 주행 시스템(260)을 이용하여 수신한 오브젝트에 대한 데이터에 기초하여, 차량(10)의 움직임을 제어하거나, 사용자에게 정보를 출력하기 위한 신호를 생성할 수 있다. 이경우, 차량(10)에 구비된 마이크, 스피커, 디스플레이가 이용될 수 있다. 전자 장치(100)는 차량 구동 장치(250)를 통해 안전하게 주행을 제어할 수 있다.
사용자 인터페이스 장치(200)는 차량(10)과 사용자와의 소통을 위한 장치이다. 사용자 인터페이스 장치(200)는 사용자 입력을 수신하고, 사용자에게 차량(10)에서 생성된 정보를 제공할 수 있다. 차량(10)은 사용자 인터페이스 장치(200)를 통해, UI(User Interface) 또는 UX(User Experience)를 구현할 수 있다.
사용자 인터페이스 장치(200)는 입력부와 출력부를 포함할 수 있다.
입력부는 사용자로부터 정보를 입력받기 위한 것으로, 입력부에서 수집한 데이터는 사용자의 제어 명령으로 처리될 수 있다. 입력부는 음성 입력부, 제스쳐 입력부, 터치 입력부 및 기계식 입력부를 포함할 수 있다. 출력부는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시키기 위한 것으로 디스플레이부, 음향 출력부 및 햅틱 출력부 중 적어도 어느 하나를 포함할 수 있다.
디스플레이부는 다양한 정보에 대응되는 그래픽 객체를 표시할 수 있다. 디스플레이부는 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉서블 디스플레이(flexible display), 3차원 디스플레이(3D display), 전자잉크 디스플레이(e-ink display) 중에서 적어도 하나를 포함할 수 있다.
디스플레이부는 터치 입력부와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 디스플레이부는 HUD(Head Up Display)로 구현될 수 있다. 이경우, 투사 모듈을 구비하여 윈드 쉴드 또는 윈도우에 투사되는 이미지를 통해 정보를 출력할 수 있다. 디스플레이부는 투명 디스플레이를 포함할 수 있다. 투명 디스플레이는 윈드 쉴드 또는 윈도우에 부착될 수 있다.
디스플레이부는 스티어링 휠의 일 영역, 인스투루먼트 패널의 일 영역, 시트의 일 영역, 각 필러의 일 영역, 도어의 일 영역, 센타 콘솔의 일 영역, 헤드 라이닝의 일 영역, 썬바이저의 일 영역에 배치되거나, 윈드 쉴드의 일영역, 윈도우의 일영역에 구현될 수 있다.
한편, 사용자 인터페이스 장치(200)는 복수의 디스플레이부를 포함할 수 있다.
음향 출력부는 프로세서(170)로부터 제공되는 전기 신호를 오디오 신호로 변환하여 출력한다. 이를 위해, 음향 출력부는 하나 이상의 스피커를 포함할 수 있다.
햅틱 출력부는 촉각적인 출력을 발생시킨다. 예를 들면, 스티어링 휠, 안전 벨트, 시트를 진동시켜, 사용자가 출력을 인지할 수 있게 동작할 수 있다.
한편, 사용자 인터페이스 장치(200)는 차량용 디스플레이 장치로 명명될 수 있다.
오브젝트 검출 장치(210)는 차량(10) 외부의 오브젝트를 검출할 수 있는 적어도 하나의 센서를 포함할 수 있다. 오브젝트 검출 장치(210)는 카메라, 레이다, 라이다, 초음파 센서 및 적외선 센서 중 적어도 하나를 포함할 수 있다. 오브젝트 검출 장치(210)는 센서에서 생성되는 센싱 신호에 기초하여 생성된 오브젝트에 대한 데이터를 차량에 포함된 적어도 하나의 전자 장치에 제공할 수 있다.
오브젝트는 차량(10)의 운행과 관련된 다양한 물체들일 수 있다. 예를 들면, 차선, 타 차량, 보행자, 이륜차, 교통 신호, 빛, 도로, 구조물, 과속 방지턱, 지형물, 동물 등을 포함할 수 있다.
한편, 오브젝트는 이동 오브젝트와 고정 오브젝트로 분류될 수 있다. 예를 들면, 이동 오브젝트는 타 차량, 보행자를 포함하는 개념일 수 있고, 고정 오브젝트는 교통 신호, 도로, 구조물을 포함하는 개념일 수 있다.
카메라는 영상을 이용하여 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 카메라는 적어도 하나의 렌즈, 적어도 하나의 이미지 센서 및 이미지 센서와 전기적으로 연결되어 수신되는 신호를 처리하고, 처리되는 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다.
카메라는 모노 카메라, 스테레오 카메라, AVM(Around View Monitoring) 카메라 중 적어도 어느 하나일 수 있다. 카메라는 다양한 영상 처리 알고리즘을 이용하여, 오브젝트의 위치 정보, 오브젝트와의 거리 정보 또는 오브젝트와의 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는 획득된 영상에서, 시간에 따른 오브젝트 크기의 변화를 기초로, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 카메라는 핀홀(pin hole) 모델, 노면 프로파일링 등을 통해, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
예를 들면, 카메라는 스테레오 카메라에서 획득된 스테레오 영상에서 디스패러티(disparity) 정보를 기초로 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
레이다는 전파를 이용하여 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 레이다는 전자파 송신부, 전자파 수신부 및 전자파 송신부 및 전자파 수신부와 전기적으로 연결되어, 수신되는 신호를 처리하고, 처리되는 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다.
레이다는 전파 발사 원리상 펄스 레이다(Pulse Radar) 방식 또는 연속파 레이다(Continuous Wave Radar) 방식으로 구현될 수 있다. 레이다는 연속파 레이다 방식 중에서 신호 파형에 따라 FMCW(Frequency Modulated Continuous Wave)방식 또는 FSK(Frequency Shift Keyong) 방식으로 구현될 수 있다. 레이다는 전자파를 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다.
라이다는 레이저 광을 이용하여, 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 라이다는 광 송신부, 광 수신부 및 광 송신부 및 광 수신부와 전기적으로 연결되어, 수신되는 신호를 처리하고, 처리된 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다.
라이다는 TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식으로 구현될 수 있다. 라이다는 구동식 또는 비구동식으로 구현될 수 있다. 구동식으로 구현되는 경우, 라이다는 모터에 의해 회전되며, 차량(10) 주변의 오브젝트를 검출할 수 있다. 비구동식으로 구현되는 경우, 라이다는 광 스티어링에 의해, 차량을 기준으로 소정 범위 내에 위치하는 오브젝트를 검출할 수 있다.
차량(10)은 복수의 비구동식 라이다를 포함할 수 있다. 라이다는 레이저 광 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다.
통신 장치(220)는 차량(10) 외부에 위치하는 디바이스와 신호를 교환할 수 있다. 통신 장치(220)는 인프라(예를 들면, 서버, 방송국) 및 타 차량 중 적어도 어느 하나와 신호를 교환할 수 있다. 통신 장치(220)는 통신을 수행하기 위해 송신 안테나, 수신 안테나, 각종 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다.
통신 장치(220)는 근거리 통신부, 위치 정보부, V2X 통신부, 광통신부, 방송 송수신부, ITS(Intelligent Transport Systems) 통신부를 포함할 수 있다.
V2X 통신부는 서버(V2I : Vehicle to Infra), 타 차량(V2V : Vehicle to Vehicle) 또는 보행자(V2P : Vehicle to Pedestrian)와의 무선 통신 수행을 위한 유닛이다. V2X 통신부는 인프라와의 통신(V2I), 차량간 통신(V2V), 보행자와의 통신(V2P) 프로토콜이 구현 가능한 RF 회로를 포함할 수 있다.
한편, 통신 장치(220)는 사용자 인터페이스 장치(200)와 함께 차량용 디스플레이 장치를 구현할 수 있다. 이경우, 차량용 디스플레이 장치는 텔레 매틱스(telematics) 장치 또는 AVN(Audio Video Navigation) 장치로 명명될 수 있다.
통신 장치(220)는 5G(예를 들면, 뉴 라디오(new radio, NR)) 통신 시스템을 이용하여, 차량(10) 외부에 위치하는 디바이스와 통신할 수 있다. 통신 장치(220)는 5G 방식을 이용하여, V2X(V2V, V2D, V2P, V2N) 통신을 구현할 수 있다.
도 4a 내지 도 4b는, 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 기본동작 및 응용 동작의 일 예를 나타낸다.
도 4a은 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 기본동작의 일 예를 나타낸다.
자율 주행 차량(Autonomous Vehicle)은 특정 정보 전송을 5G 네트워크로 전송한다(S1).
상기 특정 정보는, 자율 주행 관련 정보를 포함할 수 있다.
상기 자율 주행 관련 정보는, 차량의 주행 제어와 직접적으로 관련된 정보일 수 있다. 예를 들어, 자율 주행 관련 정보는 차량 주변의 오브젝트를 지시하는 오브젝트 데이터, 맵 데이터(map data), 차량 상태 데이터, 차량 위치 데이터 및 드라이빙 플랜 데이터(driving plan data) 중 하나 이상을 포함할 수 있다.
상기 자율 주행 관련 정보는 자율 주행에 필요한 서비스 정보 등을 더 포함할 수 있다. 예를 들어, 상기 특정 정보는, 사용자 단말기를 통해 입력된 목적지와 차량의 안정 등급에 관한 정보를 포함할 수 있다. 그리고, 상기 5G 네트워크는 차량의 원격 제어 여부를 결정할 수 있다 (S2).
여기서, 상기 5G 네트워크는 자율 주행 관련 원격 제어를 수행하는 서버 또는 모듈을 포함할 수 있다.
그리고, 상기 5G 네트워크는 원격 제어와 관련된 정보(또는 신호)를 상기 자율 주행 차량으로 전송할 수 있다(S3).
전술한 바와 같이, 상기 원격 제어와 관련된 정보는 자율 주행 차량에 직접적으로 적용되는 신호일 수도 있고, 나아가 자율 주행에 필요한 서비스 정보를 더 포함할 수 있다. 본 발명의 일 실시예에서는 자율 주행 차량은, 상기 5G 네트워크에 연결된 서버를 통해 주행 경로 상에서 선택된 구간별 보험과 위험 구간 정보 등의 서비스 정보를 수신함으로써, 자율 주행과 관련된 서비스를 제공할 수 있다.
도 4b는 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 응용 동작의 일 예를 나타낸다.
자율 주행 차량은 5G 네트워크와 초기 접속(initial access) 절차를 수행한다(S20).
상기 초기 접속 절차는 하향 링크(Downlink, DL) 동작 획득을 위한 셀 서치(cell search), 시스템 정보(system information)를 획득하는 과정 등을 포함한다.
그리고, 상기 자율 주행 차량은 상기 5G 네트워크와 임의 접속(random access) 절차를 수행한다(S21).
상기 임의 접속 과정은 상향 링크(Uplink, UL) 동기 획득 또는 UL 데이터 전송을 위해 프리엠블 전송, 임의 접속 응답 수신 과정 등을 포함하며, 단락 G에서 보다 구체적으로 설명한다.
그리고, 상기 5G 네트워크는 상기 자율 주행 차량으로 특정 정보의 전송을 스케쥴링하기 위한 UL grant를 전송한다(S22).
상기 UL Grant 수신은 5G 네트워크로 UL 데이터의 전송을 위해 시간/주파수 자원 스케줄링을 받는 과정을 포함한다.
그리고, 상기 자율 주행 차량은 상기 UL grant에 기초하여 상기 5G 네트워크로 특정 정보를 전송한다(S23).
그리고, 상기 5G 네트워크는 차량의 원격 제어 여부를 결정한다(S24).
그리고, 자율 주행 차량은 5G 네트워크로부터 특정 정보에 대한 응답을 수신하기 위해 물리 하향링크 제어 채널을 통해 DL grant를 수신한다(S25).
그리고, 상기 5G 네트워크는 상기 DL grant에 기초하여 상기 자율 주행 차량으로 원격 제어와 관련된 정보(또는 신호)를 전송한다(S26).
운전 조작 장치(230)는 운전을 위한 사용자 입력을 수신하는 장치이다. 메뉴얼 모드인 경우, 차량(10)은 운전 조작 장치(230)에 의해 제공되는 신호에 기초하여 운행될 수 있다. 운전 조작 장치(230)는 조향 입력 장치(예를 들면, 스티어링 휠), 가속 입력 장치(예를 들면, 가속 페달) 및 브레이크 입력 장치(예를 들면, 브레이크 페달)를 포함할 수 있다.
메인 ECU(240)는 차량(10) 내에 구비되는 적어도 하나의 전자 장치의 전반적인 동작을 제어할 수 있다.
차량 구동 장치(250)는 차량(10)내 각종 차량 구동 장치를 전기적으로 제어하는 장치이다. 차량 구동 장치(250)는 파워 트레인 구동 제어 장치, 샤시 구동 제어 장치, 도어/윈도우 구동 제어 장치, 안전 장치 구동 제어 장치, 램프 구동 제어 장치 및 공조 구동 제어 장치를 포함할 수 있다. 파워 트레인 구동 제어 장치는 동력원 구동 제어 장치 및 변속기 구동 제어 장치를 포함할 수 있다. 샤시 구동 제어 장치는 조향 구동 제어 장치, 브레이크 구동 제어 장치 및 서스펜션 구동 제어 장치를 포함할 수 있다.
한편, 안전 장치 구동 제어 장치는 안전 벨트 제어를 위한 안전 벨트 구동 제어 장치를 포함할 수 있다.
차량 구동 장치(250)는 ECU(Electronic Control Unit)로 명명될 수 있다.
주행 시스템(260)은 오브젝트 검출 장치(210)에서 수신한 오브젝트에 대한 데이터에 기초하여, 차량(10)의 움직임을 제어하거나, 사용자에게 정보를 출력하기 위한 신호를 생성할 수 있다. 주행 시스템(260)은 생성된 신호를 사용자 인터페이스 장치(200), 메인 ECU(240) 및 차량 구동 장치(250) 중 적어도 어느 하나에 제공할 수 있다.
주행 시스템(260)은 ADAS를 포함하는 개념일 수 있다. ADAS(260)는 적응형 크루즈 컨트롤 시스템(ACC : Adaptive Cruise Control), 자동 비상 제동 시스템(AEB : Autonomous Emergency Braking), 전방 충돌 알림 시스템(FCW : Foward Collision Warning), 차선 유지 보조 시스템(LKA : Lane Keeping Assist), 차선 변경 보조 시스템(LCA : Lane Change Assist), 타겟 추종 보조 시스템(TFA : Target Following Assist), 사각 지대 감시 시스템(BSD : Blind Spot Detection), 하이빔 제어 시스템(HBA : High Beam Assist), 자동 주차 시스템(APS : Auto Parking System), 보행자 충돌 알림 시스템(PD collision warning system), 교통 신호 검출 시스템(TSR : Traffic Sign Recognition), 교통 신호 보조 시스템(TSA : Trafffic Sign Assist), 나이트 비전 시스템(NV : Night Vision), 운전자 상태 모니터링 시스템(DSM : Driver Status Monitoring) 및 교통 정체 지원 시스템(TJA : Traffic Jam Assist) 중 적어도 어느 하나를 구현할 수 있다.
주행 시스템(260)은 자율 주행 ECU(Electronic Control Unit)를 포함할 수 있다. 자율 주행 ECU는 차량(10) 내 다른 전자 장치들 중 적어도 어느 하나로부터 수신되는 데이터에 기초하여, 자율 주행 경로를 설정할 수 있다. 자율 주행 ECU는 사용자 인터페이스 장치(200), 오브젝트 검출 장치(210), 통신 장치(220), 센싱부(270) 및 위치 데이터 생성 장치(280) 중 적어도 어느 하나로부터 수신되는 데이터에 기초하여, 자율 주행 경로를 설정할 수 있다. 자율 주행 ECU는 자율 주행 경로를 따라 차량(10)이 주행하도록 제어 신호를 생성할 수 있다. 자율 주행 ECU에서 생성된 제어 신호는 메인 ECU(240) 및 차량 구동 장치(250) 중 적어도 어느 하나로 제공될 수 있다.
센싱부(270)는 차량의 상태를 센싱할 수 있다. 센싱부(270)는 IMU(inertial navigation unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 핸들 회전에 의한 스티어링 센서, 차량 내부 온도 센서, 차량 내부 습도 센서, 초음파 센서, 조도 센서, 가속 페달 포지션 센서 및 브레이크 페달 포지션 센서 중 적어도 어느 하나를 포함할 수 있다. 한편, IMU(inertial navigation unit) 센서는 가속도 센서, 자이로 센서, 자기 센서 중 하나 이상을 포함할 수 있다.
센싱부(270)는 적어도 하나의 센서에서 생성되는 신호에 기초하여, 차량의 상태 데이터를 생성할 수 있다. 센싱부(270)는 차량 자세 정보, 차량 모션 정보, 차량 요(yaw) 정보, 차량 롤(roll) 정보, 차량 피치(pitch) 정보, 차량 충돌 정보, 차량 방향 정보, 차량 각도 정보, 차량 속도 정보, 차량 가속도 정보, 차량 기울기 정보, 차량 전진/후진 정보, 배터리 정보, 연료 정보, 타이어 정보, 차량 램프 정보, 차량 내부 온도 정보, 차량 내부 습도 정보, 스티어링 휠 회전 각도, 차량 외부 조도, 가속 페달에 가해지는 압력, 브레이크 페달에 가해지는 압력 등에 대한 센싱 신호를 획득할 수 있다.
센싱부(270)는 그 외, 가속페달센서, 압력센서, 엔진 회전 속도 센서(engine speed sensor), 공기 유량 센서(AFS), 흡기 온도 센서(ATS), 수온 센서(WTS), 스로틀 위치 센서(TPS), TDC 센서, 크랭크각 센서(CAS), 등을 더 포함할 수 있다.
센싱부(270)는 센싱 데이터를 기초로, 차량 상태 정보를 생성할 수 있다. 차량 상태 정보는, 차량 내부에 구비된 각종 센서에서 감지된 데이터를 기초로 생성된 정보일 수 있다.
예를 들면, 차량 상태 정보는 차량의 자세 정보, 차량의 속도 정보, 차량의 기울기 정보, 차량의 중량 정보, 차량의 방향 정보, 차량의 배터리 정보, 차량의 연료 정보, 차량의 타이어 공기압 정보, 차량의 스티어링 정보, 차량 실내 온도 정보, 차량 실내 습도 정보, 페달 포지션 정보 및 차량 엔진 온도 정보 등을 포함할 수 있다.
한편, 센싱부는 텐션 센서를 포함할 수 있다. 텐션 센서는 안전 벨트의 텐션 상태에 기초하여 센싱 신호를 생성할 수 있다.
위치 데이터 생성 장치(280)는 차량(10)의 위치 데이터를 생성할 수 있다. 위치 데이터 생성 장치(280)는 GPS(Global Positioning System) 및 DGPS(Differential Global Positioning System) 중 적어도 어느 하나를 포함할 수 있다. 위치 데이터 생성 장치(280)는 GPS 및 DGPS 중 적어도 어느 하나에서 생성되는 신호에 기초하여 차량(10)의 위치 데이터를 생성할 수 있다. 실시예에 따라, 위치 데이터 생성 장치(280)는 센싱부(270)의 IMU(Inertial Measurement Unit) 및 오브젝트 검출 장치(210)의 카메라 중 적어도 어느 하나에 기초하여 위치 데이터를 보정할 수 있다.
위치 데이터 생성 장치(280)는 위치 측위 장치로 명명될 수 있다. 위치 데이터 생성 장치(280)는 GNSS(Global Navigation Satellite System)로 명명될 수 있다.
차량(10)은 내부 통신 시스템(50)을 포함할 수 있다. 차량(10)에 포함되는 복수의 전자 장치는 내부 통신 시스템(50)을 매개로 신호를 교환할 수 있다. 신호에는 데이터가 포함될 수 있다. 내부 통신 시스템(50)은 적어도 하나의 통신 프로토콜(예를 들면, CAN, LIN, FlexRay, MOST, 이더넷)을 이용할 수 있다.
도 3은 본 발명의 실시예에 따른 전자 장치의 제어 블럭도이다.
도 3을 참조하면, 전자 장치(100)는 메모리(140), 프로세서(170), 인터페이스부(180) 및 전원 공급부(190)를 포함할 수 있다.
메모리(140)는 프로세서(170)와 전기적으로 연결된다. 메모리(140)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(140)는 프로세서(170)에서 처리된 데이터를 저장할 수 있다. 메모리(140)는 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 중 적어도 어느 하나로 구성될 수 있다. 메모리(140)는 프로세서(170)의 처리 또는 제어를 위한 프로그램 등, 전자 장치(100) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 메모리(140)는 프로세서(170)와 일체형으로 구현될 수 있다. 실시예에 따라, 메모리(140)는 프로세서(170)의 하위 구성으로 분류될 수 있다.
인터페이스부(180)는 차량(10) 내에 구비되는 적어도 하나의 전자 장치와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(180)는 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 차량 구동 장치(250), ADAS(260), 센싱부(270) 및 위치 데이터 생성 장치(280) 중 적어도 어느 하나와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(180)는 통신 모듈, 단자, 핀, 케이블, 포트, 회로, 소자 및 장치 중 적어도 어느 하나로 구성될 수 있다.
인터페이스부(180)는 주행 도로에서의 주행 환경 정보를 수신할 수 있다. 인터페이스부(180)는 위치 데이터 생성 장치(280)로부터 차량(10) 위치 데이터를 수신할 수 있다. 인터페이스부(180)는 센싱부(270)로부터 주행 속도 데이터를 수신할 수 있다. 인터페이스부(180)는 오브젝트 검출 장치(210)로부터 차량 주변 오브젝트 데이터를 수신할 수 있다.
전원 공급부(190)는 전자 장치(100)에 전원을 공급할 수 있다. 전원 공급부(190)는 차량(10)에 포함된 파워 소스(예를 들면, 배터리)로부터 전원을 공급받아, 전자 장치(100)의 각 유닛에 전원을 공급할 수 있다. 전원 공급부(190)는 메인 ECU(240)로부터 제공되는 제어 신호에 따라 동작될 수 있다. 전원 공급부(190)는 SMPS(switched-mode power supply)로 구현될 수 있다.
프로세서(170)는 메모리(140), 인터페이스부(180), 전원 공급부(190)와 전기적으로 연결되어 신호를 교환할 수 있다. 프로세서(170)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
프로세서(170)는 전원 공급부(190)로부터 제공되는 전원에 의해 구동될 수 있다. 프로세서(170)는 전원 공급부(190)에 의해 전원이 공급되는 상태에서 데이터를 수신하고, 데이터를 처리하고, 신호를 생성하고, 신호를 제공할 수 있다.
프로세서(170)는 인터페이스부(180)를 통해 차량(10) 내 다른 전자 장치로부터 정보를 수신할 수 있다. 프로세서(170)는 인터페이스부(180)를 통해 오브젝트 검출 장치(210), 위치 데이터 생성 장치(280)로부터 주행 도로에서의 주행 환경 정보를 수신할 수 있다. 프로세서(170)는 인터페이스부(180)를 통해 차량(10) 내 다른 전자 장치로 제어 신호를 제공할 수 있다.
주행 환경 정보는 오브젝트 검출 장치(210)가 획득한 주행 방향에 위치하는 오브젝트의 종류, 개수 및 높이를 포함하는 오브젝트 정보 및 위치 데이터 생성 장치(280)가 획득한 GPS 정보를 포함할 수 있다. 주행 환경 정보는 현재 주행 중인 도로의 정보, 주위 장애물에 대한 정보를 포함할 수 있다.
프로세서(170)는 인터페이스부(180)를 통해 획득한 주행 환경 정보에 기초하여 제1 거리를 결정할 수 있다. 제1 거리는 V2X 통신 신호의 예상 도달 거리일 수 있다. 제1 거리는 주행 환경 정보를 기초로 통신 채널의 혼잡도 및 LOS(Line of Sight) 환경을 고려하여 결정할 수 있다.
프로세서(170)는 V2X 통신을 통해 V2X 메시지를 수신할 수 있다. 프로세서(170)는 인터페이스부(180)를 통해 V2X 메시지를 수신할 수 있다. 프로세서(170)는 V2X 메시지와 차량간 위치 정보에 기초하여 V2X 메시지별 도달거리를 획득할 수 있다. V2X 메시지 도달거리는 프로세서(170)가 실제로 수신한 V2X 메시지가의 도달거리를 의미할 수 있고, 예상 도달거리인 제1 거리와 상이할 수 있다.
프로세서(170)는 실제 수신한 V2X 메시지의 도달거리를 획득하고, 그 중 가장 멀리서 도달한 메시지를 판별할 수 있다. 제2 거리는 메시지별 도달 거리 중 가장 먼 거리일 수 있다. 제2 거리는 제1 거리와 상이할 수 있다. 프로세서(170)는 제2 거리를 결정하고, 제1 거리와 비교할 수 있다.
프로세서(170)는 제1 거리보다 제2 거리가 작다고 판단하면, 차량의 속도를 제어하는 신호를 생성할 수 있다. 프로세서(170)는 제1 거리보다 제2 거리가 멀다고 판단하면, 제1 거리보다 먼 거리에서 수신한 메시지는 false alarm으로 판단할 수 있다. 프로세서(170)는 false alarm으로 판단한 메시지에 기초하여 차량의 속도를 제어하는 신호를 생성하지 않을 수 있다.
프로세서(170)는 센싱부(270)로부터 차량(10)의 속도 데이터를 획득할 수 있다. 프로세서(170)는 위험대응 준비시간인 제1 시간을 계산할 수 있다. 위험대응 준비 시간은 차량(10)의 속도 대비 제1 거리로 정의될 수 있다. (제1 시간 = 제1 거리/차량의 속도)
제1 시간은 제1 거리를 현재 차량(10)의 속도로 주행하는 경우 소요되는 시간을 의미할 수 있다. 제1 거리는 주행 환경에 따라 변화할 수 있고, 그에 따라 제1 시간도 실시간으로 변화할 수 있다. 프로세서(170)는 주행 환경 정보를 기초로 실시간으로 제1 시간을 계산하고, 제1 시간을 확보하도록 차량의 속도를 제어하는 신호를 생성할 수 있다.
프로세서(170)는 제1 시간과 최소 위험대응 준비시간을 비교할 수 있다. 프로세서(170)는 제1 시간과 최소 위험대응 준비시간을 비교하여 차량의 속도를 제어하는 신호를 생성할 수 있다.
최소 위험대응 준비시간은 주행 상황의 위험 요소에 대응하여 대응 제어 신호를 생성하기까지 최소로 소요되는 시간을 의미할 수 있다. 최소 위험대응 준비시간은 운전자를 위한 최소 위험대응 준비시간인 제2 시간과 자율주행 모듈을 위한 최소 위험대응 준비시간인 제3 시간을 포함할 수 있다.
제2 시간은 운전자가 주행 상황에서의 위험 요소를 식별하고, 상기 위험 요소에 대응하기까지 소요되는 최소 시간을 의미할 수 있고, 운전자에 따라 상이할 수있다. 프로세서(170)는 제2 시간을 미리 설정하고, 저장할 수 있다. 프로세서(170)는 미리 설정된 제2 시간을 기준으로, 제2 시간보다 제1 시간이 짧다고 판단하면, 제2 시간에 기초하여 감속 제어 신호를 생성할 수 있다.
예를 들면, 운전자의 최소 위험대응 준비시간인 제2 시간이 4초인데 제1 시간이 3초로 계산되면, 제2 시간인 4초에 기초하여 감속 제어 신호를 생성할 수 있다. 속도와 시간은 반비례하는 관계이므로, 제1 시간이 3초에서 4초로 늘어나게 속도를 줄이는 신호를 생성할 수 있다.
제3 시간은 프로세서(170)가 센서 데이터로부터 주행 상황에서의 위험 요소를 식별하고, 상기 위험 요소에 대응하는 제어 신호를 생성하기까지 소요되는 최소 시간을 의미할 수 있고, 자율주행 성능에 따라 상이할 수 있다. 프로세서(170)는 제3 시간보다 제1 시간이 짧다고 판단하면, 제3 시간에 기초하여 감속 제어 신호를 생성할 수 있다.
예를 들면, 자율주행 모듈을 위한 최소 위험대응 준비시간인 제3 시간이 2초인데 제1 시간이 1초로 계산되면, 제3 시간인 2초에 기초하여 감속 제어 신호를 생성할 수 있다. 속도와 시간은 반비례하는 관계이므로, 제1 시간이 1초에서 2초로 늘어나게 속도를 줄이는 신호를 생성할 수 있다.
프로세서(170)는 최소 위험대응 준비시간보다 제1 시간이 길다고 판단하면, 상기 최소 위험대응 준비시간에 기초하여 가속 제어 신호를 생성할 수 있다. 프로세서(170)는 인터페이스부(180)를 통해 가속 제어 신호를 생성할 것인지 여부에 대해 운전자의 입력 신호를 요구할 수 있다. 프로세서(170)는 운전자의 입력 신호에 기초하여 가속 제어 신호를 생성할 수 있다.
최소 위험대응 준비시간은 제2 시간 및 제3 시간을 포함하고, 최소 위험대응 준비시간보다 제1 시간이 길다는 것은 제1 시간이 제2 시간 및 제3 시간보다 길다는 것을 의미할 수 있다.
예를 들면, 제2 시간이 4초, 제3 시간이 2초일 때, 제1 시간이 5초이면 프로세서(170)는 제1 시간이 최소 위험대응 준비시간보다 길다고 판단할 수 있다. 속도와 시간은 반비례하는 관계이므로, 제1 시간이 5초에서 4초가 될 때까지 속도를 올리는 신호를 생성할 수 있다. 이 때, 프로세서(170)는 운전자의 입력 신호를 요구할 수 있다. 운전자는 가속을 원하지 않을 수 있다.
프로세서(170)는 제1 시간과 최소 위험대응 준비시간을 비교하여 제1 시간이 제2 시간 및 제3 시간 사이라고 판단하면, 제2 시간 및 제3 시간 중 긴 시간에 더 기초하여 감속 제어 신호를 생성할 수 있다.
예를 들면, 제2 시간이 4초, 제3 시간이 2초일 때, 제1 시간이 3초이면 프로세서(170)는 제1 시간이 제2 시간 및 제3 시간 사이라고 판단하고, 제2 시간 및 제3 시간 중 긴 시간인 제2 시간에 기초하여 감속 제어 신호를 생성할 수 있다. 속도와 시간은 반비례하는 관계이므로, 제1 시간이 3초에서 4초로 늘어나게 속도를 줄이는 신호를 생성할 수 있다.
프로세서(170)는 제1 시간과 최소 위험대응 준비시간을 비교하여 제1 시간이 제2 시간 및 제3 시간 중 짧은 시간보다 더 짧다고 판단하면, 1차적으로 상기 제2 시간 및 제3 시간 중 짧은 시간에 기초하여 감속 제어 신호를 생성하고, 2차적으로 제2 시간 및 제3 시간 중 긴 시간에 기초하여 감속 제어 신호를 생성할 수 있다.
프로세서(170)는 제1 시간을 실시간으로 계산하고, 계산된 제1 시간에 대응되는 위험 상태 메시지를 표시하는 신호를 생성할 수 있다. 위험 상태 메시지는 제1 시간을 구간에 따라 나누고, 구간별 미리 저장된 위험 정도를 문자로 표시하는 상태 메시지를 의미할 수 있다.
프로세서(170)는 주행 중 제1 시간에 대응되는 구간의 변경이 발생하면, 인터페이스부(180)를 통해 구간 변경을 운전자에게 표시하는 신호를 생성할 수 있다.
전자 장치(100)는, 적어도 하나의 인쇄 회로 기판(printed circuit board, PCB)을 포함할 수 있다. 메모리(140), 인터페이스부(180), 전원 공급부(190) 및 프로세서(170)는, 인쇄 회로 기판에 전기적으로 연결될 수 있다.
도 5는 본 발명의 실시예에 따른 프로세서에 대한 플로우 차트이다.
도 5를 참조하면, 프로세서(170)는 센서 데이터 수신 단계(S100), 주행 환경 정보 추출 단계(S200), 제1 거리 결정 단계(S300), 제1 시간 계산 단계(S400) 및 차량 속도 제어 신호 생성 단계(S500)를 통해 전자 장치(100)를 작동할 수 있다.
센서 데이터 수신 단계(S300)는 오브젝트 검출 장치(210)가 검출한 오브젝트 정보를 수신하는 단계일 수 있다. 센서 데이터 수신 단계(S300)는 위치 데이터 생성 장치(280)가 생성한 GPS 정보를 수신하는 단계일 수 있다. 센서 데이터 수신 단계(S300)는 센싱부(270)가 센싱한 차량 내부 데이터를 수신하는 단계일 수 있다. 프로세서(170)는 인터페이스부(180)를 통해 센서 데이터를 수신할 수 있다.
주행 환경 정보 추출 단계(S200)는 수신한 센서 데이터에 기초하여 현재 주행 중인 도로에 대한 정보, 주위 오브젝트에 대한 정보를 추출하는 단계일 수 있다. 주위 오브젝트에 대한 정보는 주행 방향에 위치하는 장애물의 종류, 개수 및 높이를 포함하는 장애물에 대한 정보일 수 있다. 이하 구체적인 설명은 도 5 내지 도 6을 참고할 수 있다.
제1 거리 결정 단계(S300)는 주행 환경 정보를 기초로 통신 채널의 혼잡도 및 LOS 환경을 고려하여 통신 신호의 예상 도달거리인 제1 거리를 결정하는 단계일 수 있다. 제1 거리는 도로의 종류, 주위 장애물의 존재뿐만 아니라 날씨와 지형에 따라서도 달라질 수 있다. 예를 들면, 비가 오거나 흐린 날씨에서 제1 거리는 맑은 날씨에서 보다 짧아질 수 있다. 예를 들면, 주위에 산이나 언덕이 많은 지형에서 제1 거리는 평지에서 보다 짧아질 수 있다. 이하 구체적인 설명은 도 8을 참고할 수 있다.
제1 시간 계산 단계(S400)는 제1 거리를 현재 차량(10)의 속도로 나누어서 계산할 수 있다. 제1 거리는 S300단계에서 결정되고, 현재 차량(10)의 속도가 빠르면 제1 시간은 짧고, 현재 차량(10)의 속도가 느리면 제1 시간은 길 수 있다. 제1 시간이 길수록 속도 제어할 수 있는 시간이 늘어나서 안전할 수 있지만, 속도가 너무 느리면 원활한 교통 흐름을 유지할 수 없어 적절한 제1 시간을 유지하는 것이 중요할 수 있다.
차량의 속도 제어 신호 생성 단계(S500)는 제1 시간을 확보하기 위해 차량의 속도를 제어하는 단계일 수 있다. 제1 시간을 확보하기 위해서는 최소 위험대응 준비시간과 비교할 수 있다. 이하 구체적인 설명은 도 10 내지 도 11을 참고할 수 있다.
도 6, 도 7a, 도 7b는 본 발명의 실시예에 따른 주행 환경 정보를 획득하기 위한 오브젝트 정보를 설명하는 도면이다.
주행 환경 정보는 오브젝트 검출 장치(210)가 획득한 주행 방향에 위치하는 오브젝트의 종류, 개수 및 높이를 포함하는 오브젝트 정보 및 위치 데이터 생성 장치(280)가 획득한 GPS 정보를 포함할 수 있다.
도 6를 참조하면, 오브젝트는 차량(10)의 운행과 관련된 다양한 물체들일 수 있다. 오브젝트는 차로(OB10), 타 차량(OB11), 보행자(OB12), 이륜차(OB13), 교통 신호(OB14, OB15), 도로, 구조물, 지형물, 과속 방지턱, 빛, 동물 등을 포함할 수 있다.
차로(Lane)(OB10)는, 주행 차로, 주행 차로의 옆 차로, 대향되는 차량이 주행하는 차로일 수 있다. 차로(Lane)(OB10)는 차로(Lane)를 형성하는 좌우측 선(Line)을 포함하는 개념일 수 있다. 차로는 교차로를 포함하는 개념일 수 있다.
타 차량(OB11)은 차량(10)의 주변에서 주행 중인 차량일 수 있다. 타 차량은 차량(10)으로부터 소정 거리 이내에 위치하는 차량일 수 있다. 예를 들면, 타 차량(OB11)은, 차량(10)보다 선행 또는 후행하는 차량일 수 있다.
보행자(OB12)는 차량(10)의 주변에 위치한 사람일 수 있다. 보행자(OB12)는 차량(10)으로부터 소정 거리 이내에 위치하는 사람일 수 있다. 예를 들면, 보행자(OB12)는 인도 또는 차도상에 위치하는 사람일 수 있다.
이륜차(OB13)는 차량(100의 주변에 위치하고, 2개의 바퀴를 이용해 움직이는 탈것을 의미할 수 있다. 이륜차(OB13)는 차량(10)으로부터 소정 거리 이내에 위치하는 2개의 바퀴를 가지는 탈 것일 수 있다. 예를 들면, 이륜차(OB13)는 인도 또는 차도상에 위치하는 오토바이 또는 자전거일 수 있다.
교통 신호는 교통 신호등(OB15), 교통 표지판(OB14), 도로면에 그려진 문양 또는 텍스트를 포함할 수 있다.
도로는 도로면, 커브, 오르막, 내리막 등의 경사 등을 포함할 수 있다.
구조물은 도로 주변에 위치하고, 지면에 고정된 물체일 수 있다. 예를 들면, 구조물은, 가로등, 가로수, 건물, 전봇대, 신호등, 다리, 연석, 벽면을 포함할 수 있다.
지형물은, 산, 언덕, 등을 포함할 수 있다.
도 7a 내지 도 7b를 참조하면, 도심지의 일반 도로에서와 교외의 고속 도로에서의 주행 영상을 통해 얻을 수 있는 오브젝트 정보의 차이를 알 수 있다. 도심지의 일반 도로에서의 오브젝트 정보가 교외의 고속 도로에서의 오브젝트 정보에 비해 복잡할 수 있다.
예를 들면, 도 7a와 같이 도심지의 일반 도로에서는, 차로(OB10), 타 차량(OB11), 보행자(OB12), 교통 표지판(OB14)과 다양한 구조물(OB16, OB17, OB18, OB19)이 오브젝트로 검출될 수 있다. 이로부터 획득하는 주행 방향에 위치하는 오브젝트의 종류, 개수 및 높이를 포함하는 오브젝트 정보는 복잡할 수 있다.
예를 들면, 도 7b와 같이 교외의 고속 도로에서는, 차로(OB10), 타 차량(OB11)과 단순한 지형물(OB20)이 오브젝트로 검출될 수 있다. 이로부터 획득하는 주행 방향에 위치하는 오브젝트의 종류, 개수 및 높이를 포함하는 오브젝트 정보는 단순할 수 있다.
도 8은 본 발명의 실시예에 따른 제1 거리 측정 시뮬레이션 결과를 나타내는 도면이다.
도 8을 참조하면, 주행 환경 정보에 따라 V2X 통신 신호의 예상 도달거리가 달라질 수 있다. 시뮬레이션 결과를 통해, 차량의 속도가 60km/h, PPR(Packet Receiving Ratio)이 90% 기준으로 도심지에서의 DSRC 신호의 도달거리가 58.91m로 예상되고, 차량의 속도가 70km/h, PPR이 90% 기준으로 고속도로에서의 DSRC 신호의 도달거리가 152.49m로 예상된다. 즉, 제1 거리는 도심지인지 여부 또는 고속도로인지 여부 등의 주행 환경 정보에 따라 달라질 수 있다
주행 환경 정보는 오브젝트 검출 장치(210)가 획득한 오브젝트 정보에 기초할 수 있다. 오브젝트 정보가 복잡하면 주행 환경 정보도 복잡할 수 있다. 오브젝트 정보는 주행 환경 상태에 따라 분류할 수 있다.
주행 환경 상태는 도심지, 교외, 개활지로 분류할 수 있다. 오브젝트 정보는 개활지보다는 교외에서 더 복잡할 수 있다. 오브젝트 정보는 교외보다는 도심지에서 더 복잡할 수 있다.
주행 환경 상태는 도로 종류에 따라 분류할 수 있다. 오브젝트 정보는 고속 도로보다는 일반 도로에서 더 복잡할 수 있다.
도심지의 일반 도로(601)에서 검출되는 오브젝트는 다양하고, 이로부터 획득할 수 있는 오브젝트 정보는 복잡하므로, 주행 환경 정보도 복잡할 수 있다. 교외의 고속 도로(602)에서 검출되는 오브젝트는 다양하지 않고, 이로부터 획득할 수 있는 오브젝트 정보는 단순하므로, 주행 환경 정보도 단순할 수 있다.
제1 거리는 V2X 통신 신호의 예상 도달거리를 의미할 수 있다. 제1 거리는 주행 환경 정보를 기초로 통신 채널의 혼잡도 및 LOS (Line of Sight) 환경을 고려해서 결정할 수 있다.
통신 채널의 혼잡도는 V2X 통신을 위해 이용하고 있는 채널의 혼잡(congestion) 정도를 의미할 수 있다. 다수의 무선 통신 장치가 동일 채널 또는 인접 채널을 이용하는 경우 주파수 간섭 등으로 인하여 무선 통신 채널이 혼잡해질 수 있다. 즉, 통신 채널의 혼잡은 자차 주변에 위치하는 다수의 오브젝트들이 동일 채널 또는 인접 채널을 이용하는 경우 통신 속도 저하, 통신 채널 끊김 등의 문제점을 야기시킬 수 있다.
통신 채널의 혼잡 여부는 패킷 에러율(Packet Error Rate 이하 PER) 또는 재전송율(Retransmission Rate 이하 RR)이 기 설정된 기준값 이상이 되는지 확인하여 알 수 있다.
LOS (line of sight) 환경이란 NLOS (Non lind of sight) 환경과 달리 통신 환경 내부에 장애물이 존재하지 않는 환경을 의미한다. 다시 말하면, LOS 환경은 통신에 이용되는 전파가 반사, 회절, 산란 등을 겪지 않는 통신 환경을 의미할 수 있다. LOS 환경에서 전파는 반사, 회절, 산란 등을 겪지 않으므로 다중 경로를 갖지 않으며, 다중 경로에 따른 전송 지연 시간의 문제도 발생하지 않을 수 있다.
주행 환경 정보는 LOS 환경에서 전파의 반사, 회절, 산란 등을 통해 LOS 환경이 손상되었는지 여부를 고려하여 결정할 수 있다. LOS 환경은 통신 환경 내부에 장애물이 많을수록 손상 가능성이 높아질 수 있다.
본 실시예에서, 통신 장치간 주고받는 신호를 방해할 수 있는 복수의 장애물이 존재할 수 있다. 이 장애물들에 의해 상이한 신호 경로들을 생성할 수 있다. 예컨대, 제1 경로는 장애물을 통과하여, 제1 통신 장치로부터 제2 통신 장치로의 직선 경로를 따를 수 있다. 이러한 직선 신호 경로가 가시선(line-of-sight: LOS) 경로일 수 있다. 다른 제2 경로는 장애물에 반사됨으로써 제1 통신 장치로부터 제2 통신 장치로의 우회 경로를 취할 수 있다. 이러한 우회 경로가 비-가시선(non-LOS) 경로일 수 있다.
도 9은 본 발명의 실시예에 따른 제1 거리 결정 단계(S300)를 구체화한 도면이다.
도 9을 참조하면, 제1 거리 결정 단계(S300)는 V2X 메시지를 수신(301)하고 차량간 위치 정보를 수신(302)하여 제1 거리를 결정(303)하고, 제2 거리를 결정(304)하여 제1 거리보다 제2 거리가 작다고 판단하면 제1 시간 결정 단계(S400)로 넘어갈 수 있다.
제2 거리는 프로세서가 인터페이스부를 통해 타 차량으로부터 상기 V2X 메시지를 수신하고, 상기 V2X 메시지와 차량간 위치 정보에 기초하여 메시지별 도달거리를 획득하고, 상기 메시지별 도달거리 중 가장 먼 거리를 추출하여 결정할 수 있다.
V2X 메시지는 여러 정보를 포함할 수 있다. 프로세서(170)는 떨어진 차량(remote vehicle)으로부터 수신한 V2X 메시지를 분석하여 차량(10)과 관련된 메시지를 추출할 수 있다. 프로세서(170)는 차량간 위치 정보를 수신(302)하여 메시지 도달 거리를 결정할 수 있다.
제1 거리는 주행 환경 정보, 통신 채널의 혼잡도, LOS 환경에 따라 달라질 수 있다. 도 8에서와 같이 제1 거리는 도로의 종류, 주위 장애물의 존재에 따라 달라질 수 있다. 예를 들면, 제1 거리는 도심지에서 가장 짧고 교외에서 길고 개활지에서 가장 길게 결정될 수 있다. 뿐만 아니라 제1 거리는 날씨와 지형에 따라서도 달라질 수 있다.
제2 거리는 떨어진 차량으로부터 수신한 V2X 메시지의 도달 거리 중 가장 먼 거리를 추출하여 결정할 수 있다. 제2 거리는 떨어진 차량에서 보낸 메시지와 차량 간의 위치 정보로 수신된 메시지 중 차량(10)의 주행 방향의 일정 각도 내에서 가장 먼 거리일 수 있다. 제2 거리는 제1 거리와 같을 수도 있고 다를 수도 있다.
프로세서(170)는 제1 거리와 제2 거리를 비교할 수 있다. 제1 거리보다 제2 거리가 작은지 여부를 판단(305)하고 제1 거리가 제2 거리보다 작으면 제1 거리보다 먼 거리에서 수신한 메시지들은 false alarm으로 판단(306)할 수 있다.
False alarm으로 판단된 메시지에서 분석된 내용들은 차량 제어에 사용하지 않을 수 있다. 진행 방향의 remote vehicle에서 받은 V2X 메시지의 도달 거리를 추출하고 제1 거리와 비교함으로써 false alarm 확률을 줄일 수 있다.
제1 거리보다 제2 거리가 작은 경우 타 차량으로부터 수신한 메시지에서 분석된 차량(10)관련 내용들은 차량(10) 제어에 사용될 수 있다.
도 10 내지 도 11은 본 발명의 실시예에 따른 차량 속도 제어 신호 생성 단계(S500)를 구체화한 도면이다.
도 10을 참조하면, 차량 속도 제어 신호 생성 단계(S500)는 제2 시간을 계산(511)하고 제1 시간이 제2 시간보다 짧은 지 여부(512)를 판단하여 제1 시간이 제2 시간보다 짧으면 제2 시간에 기초하여 감속 제어 신호를 생성(513)하고, 제1 시간이 제2 시간보다 길면 제2 시간에 기초하여 가속 제어 신호를 생성(514)하는 과정을 포함할 수 있다.
제2 시간은 운전자를 위한 최소 위험대응 준비시간일 수 있다. 제2 시간은 운전자가 주행 상황에서의 위험 요소를 식별하고, 상기 위험 요소에 대응하기까지 소요되는 최소 시간을 의미할 수 있고, 운전자에 따라 상이할 수있다.
제2 시간은 미리 설정 및 저장될 수 있다. 예를 들면 제2 시간은 4초로 설정 및 저장될 수 있다. 계산된 제1 시간이 4초보다 짧은 3초일 경우, 제1 시간이 4초가 되도록 감속 제어 신호가 생성(513)되고, 계산된 제1 시간이 4초보다 긴 5초일 경우, 제1 시간이 4초가 되도록 가속 제어 신호가 생성(514)될 수 있다. 가속 제어 신호는 운전자의 입력 신호에 의해 생성될 수 있다.
도 11을 참조하면, 차량 속도 제어 신호 생성 단계(S500)는 제3 시간을 계산(521)하고 제1 시간이 제3 시간보다 짧은 지 여부(522)를 판단하여 제1 시간이 제3 시간보다 짧으면 제3 시간에 기초하여 감속 제어 신호를 생성(523)하고, 제1 시간이 제3 시간보다 길면 제3 시간에 기초하여 가속 제어 신호를 생성(524)하는 과정을 포함할 수 있다.
제3 시간은 프로세서(170)가 센서 데이터로부터 주행 상황에서의 위험 요소를 식별하고, 상기 위험 요소에 대응하는 제어 신호를 생성하기까지 소요되는 최소 시간을 의미할 수 있다.
제3 시간은 자율주행 성능에 따라 상이할 수 있고, 일정하지 않을 수 있다. 제3 시간은 복잡한 시나리오나 저장되어 있지 아니한 상황 속에서 길어질 수 있다. 제3 시간은 오래된 차량에서 길게 나타날 수 있다.
예를 들면, 제3 시간은 2초로 계산될 수 있다. 계산된 제1 시간이 2초보다 짧은 1초일 경우, 제1 시간이 2초가 되도록 감속 제어 신호가 생성(523)되고, 계산된 제1 시간이 2초보다 긴 3초일 경우, 제1 시간이 2초가 되도록 가속 제어 신호가 생성(524)될 수 있다. 가속 제어 신호는 운전자의 입력 신호에 의해 생성될 수 있다.
가속 제어 신호는 제2 시간과 제3 시간 중 긴 시간에 기초하여 생성될 수 있다. 예를 들면, 제2 시간이 4초이고 제3 시간이 2초이면, 제2 시간에 기초하여 가속 제어 신호를 생성하고, 제2 시간이 4초이고 제3 시간이 5초이면, 제3 시간에 기초하여 가속 제어 신호를 생성할 수 있다.
가속 제어 신호는 상기 가속 제어 신호를 생성할 것인지 여부에 대한 운전자의 입력 신호를 수신하고, 상기 운전자의 입력 신호에 기초하여 생성할 수 있다. 운전자가 가속을 원하지 않는 경우에도 가속되는 경우를 방지하기 위함이다.
도 12, 도 13a, 도 13b는 본 발명의 실시예에 따른 제1 시간 구간별 위험 상태 메시지를 나타내는 도면이다.
도 12를 참조하면, 제1 시간을 구간에 따라 나눌 수 있다. 예를 들면, 제1 시간이 0초 초과 1초 이하이면 제1 구간(P1), 1초 초과 3초 이하이면 제2 구간(P2), 3초 초과 5초 이하이면 제3 구간(P3), 5초 초과 7초 이하이면 제4 구간(P4), 7초 초과이면 제5 구간(P5)으로 나눌 수 있다.
프로세서(170)는 구간에 따라 위험 상태 메시지를 설정할 수 있다. 위험 상태 메시지는 위험 정도를 표시하는 메시지일 수 있다. 예를 들면 P1은 매우 위험(901), P2는 위험(902), P3는 보통(903), P4는 안전(904), P5는 매우 안전(905)의 위험 정도를 설정할 수 있다.
프로세서(170)는 제1 시간을 실시간으로 계산하고, 상기 실시간으로 계산된 제1 시간이 속해있는 구간의 위험 상태 메시지를 표시하는 신호를 생성할 수 있다. 예를 들면, 제1 시간이 1.5초로 계산되면 P2 구간에 해당하고, 위험(902)이라는 위험 정도를 표시하는 상태 메시지를 표시할 수 있다.
위험 정도를 표시하는 상태 메시지는 위험 정도에 대한 문자와 함께 저장된 색상을 표시하는 신호일 수 있다. 예를 들면 매우 위험(901)은 빨간색, 위험(902)은 주황색, 보통(903)은 노란색, 안전(904)은 초록색, 매우 안전(905)은 파란색 배경과 함께 표시될 수 있다. 또는 빨간색, 위험(902)은 주황색, 보통(903)은 노란색, 안전(904)은 초록색, 매우 안전(905)은 파란색 글씨로 표시될 수 있다.
구간의 개수, 구간의 범위, 상태 메시지 및 그 색상은 달라질 수 있다.
도 13a 내지 13b를 참조하면, 제1 시간 계산 결과 P2 구간과 P5 구간의 상태 메시지가 HUD에 표시되는 것을 알 수 있다. 위험 상태 메시지와 함께 차량 속도 제어 신호와 관련된 메시지가 표시될 수 있다.
예를 들면, 도 13a와 같이 ‘위험(902)’의 위험 상태 메시지와 함께 ‘속도가 줄어듭니다.’의 메시지가 표시될 수 있다. 상기 위험 상태 메시지는 주황색으로 표시될 수 있다.
예를 들면, 도 13b와 같이 ‘매우 안전(905)’의 위험 상태 메시지와 함께 ‘속도를 높이시겠습니까? Yes/No’ 메시지가 표시될 수 있다. 상기 위험 상태 메시지는 파란색으로 표시될 수 있다.
도면에 도시하지는 않았지만 제1 시간에 대응되는 구간의 변경이 발생하면, 상기 구간의 변경을 운전자에게 표시할 수 있다. 예를 들면, P3 구간에서 주행 중, 주행 방면에서 급작스럽게 사고가 발생하거나 지체현상이 발생하면 제1 거리가 줄어들고 이에 따라 제1 시간이 줄어들어 P2 구간으로의 구간의 변경이 발생할 수 있다. 그렇다면 P2로의 구간 변경 및 위험(902) 표시를 하고, 이를 통해 운전자는 급작스럽게 변동된 주행 상황에 효율적으로 대처할 수 있다.
도 14 내지 도 17는 본 발명의 실시예에 따른 도심의 일반도로 또는 교외의 고속도로에서의 제1 시간 및 속도 제어 신호를 생성하는 과정을 나타내는 도면이다.
도 14를 참조하면, 도심의 일반도로에서 건물 등의 주위 장애물(1303)에 의해 자차(10)의 제1 거리가 60m로 계산될 수 있다. 타 차량의 제1 거리도 60m일 수 있다. 제2 시간은 4초, 자차(10)의 제3 시간은 2초일 수 있다.
자차(10)의 제1 거리 영역(1301)과 타 차량 제1 거리 영역(1302)이 겹쳐지면, 자차(10)는 타 차량과 V2X 메시지를 송수신하면서 급작스러운 타 차량의 출현에 대응할 수 있다.
제1 거리 영역(1301, 1302)는 차량을 중심으로 제1 거리를 반경으로 한 영역으로서, 안정적으로 타 차량과 V2X 메시지를 송수신할 수 있는 영역을 의미할 수 있다.
자차(10)의 제1 거리 영역(1301)과 타 차량 제1 거리 영역(1302)이 겹치지 않는다면, 자차(10)의 제1 거리보다 먼 거리에서 수신한 타 차량의 V2X 메시지는 false alarm일 수 있고, 급작스러운 타 차량의 출현에 대응하기 어려울 수 있다. 이경우, 감속을 통하여 위험 상황에 대응할 수 있다.
현재 자차(10)의 속도가 80km/h, 즉 22m/s이면 제1 시간은 2.73초(60/22=2.73)고 P2 구간의 위험(902) 상태일 수 있고, 현재 자차(10)의 속도가 40km/h, 즉 11m/s이면 제1 시간은 5.45초(60/11=5.45)고, P4 구간의 안전(904) 상태일 수 있다.
현재 자차(10)의 속도가 80km/h인 경우 제1 시간은 2.73초로 제2 시간보다 짧고 제3 시간보다 길 수 있다. 제1 시간이 제2 시간과 제3 시간 사이에 형성되면 제2 시간 및 제3 시간 중 더 긴 시간에 기초하여 감속 제어 신호를 생성할 수 있다. 즉, 제2 시간과 제3 시간 중 더 긴 시간인 제2 시간에 기초하여 감속 제어 신호를 생성할 수 있다. 실시예에 따르면, 제2 시간인 4초를 기초로 하여 15m/s(60/4=15)까지 감속할 수 있다.
도 15를 참조하면, 교외의 고속도로에서 자차(10)의 제1 거리가 150m로 계산될 수 있다. 타 차량의 제1 거리도 150m일 수 있다. 제2 시간은 4초, 제3 시간은 2초일 수 있다.
자차(10)의 제1 거리 영역(1401)과 타 차량 제1 거리 영역(1402)이 겹쳐지면, 자차(10)는 타 차량과 V2X 메시지를 송수신하면서 급작스러운 타 차량의 출현에 대응할 수 있다.
제1 거리 영역(1401, 1402)는 차량을 중심으로 제1 거리를 반경으로 한 영역으로서, 안정적으로 타 차량과 V2X 메시지를 송수신할 수 있는 영역을 의미할 수 있다.
자차(10)의 제1 거리 영역(1401)과 타 차량 제1 거리 영역(1402)이 겹치지 않는다면, 자차(10)의 제1 거리보다 먼 거리에서 수신한 타 차량의 V2X 메시지는 false alarm일 수 있고, 급작스러운 타 차량의 출현에 대응하기 어려울 수 있다. 이경우, 감속을 통하여 위험 상황에 대응할 수 있다.
현재 자차(10)의 속도가 80km/h, 즉 22m/s이면 제1 시간은 6.82초(150/22=6.82)고 P4 구간의 안전(904) 상태일 수 있고, 현재 자차(10)의 속도가 120km/h, 즉 33m/s이면 제1 시간은 4.55초(150/33=4.55)고 P3 구간의 보통(903) 상태일 수 있다.
현재 자차(10)의 속도가 80km/h인 경우 제1 시간은 6.82초로 제2 시간 및 제3 시간보다 길 수 있다. 제1 시간이 제2 시간 및 제3 시간보다 길면 제2 시간 및 제3 시간 중 더 긴 시간인 제2 시간에 기초하여 가속 제어 신호를 생성할 수 있다. 이때, 운전자의 입력 신호를 요구할 수 있다. 실시예에 따르면 제2 시간인 4초를 기초로 하여 37.5m/s(150/4=37.5)까지 운전자의 입력 신호에 따라 가속할 수 있다.
도 16 내지 도 17을 참조하면, 교외를 주행하다가 도심으로 변경되는 상황에서의 속도 제어를 나타낼 수 있다. 교외에서는 제1 거리가 120m, 도심에서는 60m일 수 있다. 현재 자차(10)의 속도가 80km/s이고 제1 시간은 5.45초(120/22=5.45)로 P4의 안전(904) 구간에 해당할 수 있다. 제2 시간은 4초, 제3 시간은 2초일 수 있고, 운전자의 입력 신호가 없어 현재 속도를 유지중일 수 있다.
교외 주행 중 전방에 도심이 나타나고, 자차(10)는 현재 교외 지점인 제1 지점(1501)에 위치하며, 제2 지점(1502), 제3 지점(1503), 제4 지점(1504)을 거쳐 도심에 진입하는 제5 지점(1505)로 주행할 수 있다. 센서 데이터에 의해 제1 거리도 점진적으로 줄어들 수 있다.
제1 지점(1501)에서 제1 거리는 120m이고 현재 속도가 22m/s이면 제1 시간은 5.45초인 P4 구간에 해당할 수 있다. 제2 지점(1502)에서 제1 거리는 100m로 줄어들고 현재 속도가 22m/s이면 제1 시간도 4.54초로 줄어들 수 있다. 제1 시간이 줄어들면서 P4 구간에서 P3 구간으로 변경될 수 있다. 구간의 변경이 있는 경우, 디스플레이를 통한 구간 변경을 운전자에게 표시할 수 있다.
제3 지점(1503)에서 제1 거리는 88m로 줄어들고 현재 속도가 22m/s이면 제1 시간도 4초로 줄어들 수 있다. 제3 지점(1503)에서 제1 시간과 제2 시간이 4초로 같아지고 제3 지점(1503)을 지나가면 제1 거리가 더 줄어들기 때문에 제1 시간이 제2 시간보다 짧아 질 수 있다. 그러나 제2 시간에 기초하여 감속 제어 신호가 생성되고 그 결과, 제1 시간은 제2 시간과 같이 4초로 유지될 수 있다.
제3 지점(1503) 이후 제4 지점(1504)에서 제1 시간은 4초로 유지되지만 제1 거리가 80m로 줄어들고 이에 따라 현재 속도는 20m/s으로 줄어들 수 있다. 제5 지점(1505)에서 제1 거리는 60m이고 제1 시간은 4초로 유지되므로 현재 속도는 15m/s까지 감속할 수 있다.
도면에 도시하지는 않았지만, 주행 중 급격한 주행 환경 변화를 가정할 수 있다. 예를 들면, 전방 차량의 사고로 갑자기 차량 주행이 지체되거나 급변하는 날씨에 의해 제1 거리가 순간적으로 짧아지는 경우를 가정할 수 있다.
제1 거리가 60m인 도로에서 22m/s으로 주행 중 갑작스러운 주행 환경 변화로 인해 제1 거리가 20m로 짧아진 경우, 제1 시간은 0.91초(20/22=0.91)로 P1의 매우 위험(901) 구간에 해당할 수 있고, 빨간색으로 운전자에게 표시될 수 있다.
이 경우 바로 제2 시간인 4초에 기초하여 감속 제어를 하면 5m/s까지 급제동을 하여 주행 안정성이 떨어질 수 있다. 그러므로 제3 시간인 2초에 기초하여 우선적으로 10m/s까지 급제동을 하고, 제2 시간인 4초에 기초하여 5m/s까지 점진적으로 제동을 하는 방식으로 주행 안정성을 고려한 감속 제어 신호를 생성할 수 있다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 상기 컴퓨터는 프로세서 또는 제어부를 포함할 수도 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (18)

  1. 프로세서가,
    센서 데이터를 수신하는 단계;
    상기 센서 데이터에 기초하여 주행 환경 정보를 추출하는 단계;
    상기 주행 환경 정보에 기초하여 V2X 통신(Vehicle to Evryting communication) 신호의 예상 도달거리인 제1 거리를 결정하는 단계;
    차량의 속도 대비 상기 제1 거리로 정의되는 위험대응 준비시간인 제1 시간을 계산하는 단계; 및
    상기 제1 시간을 확보하도록 상기 차량의 속도를 제어하는 신호를 생성하는 단계;를 포함하는 차량용 전자 장치의 동작 방법.
  2. 제 1 항에 있어서,
    상기 주행 환경 정보는,
    오브젝트 검출 장치가 획득한 주행 방향에 위치하는 오브젝트의 종류, 개수 및 높이를 포함하는 오브젝트 정보 및 위치 데이터 생성 장치가 획득한 GPS 정보를 포함하는, 차량용 전자 장치의 동작 방법.
  3. 제 2 항에 있어서,
    상기 제1 거리는,
    상기 주행 환경 정보를 기초로 통신 채널의 혼잡도 및 LOS(Line of Sight) 환경을 고려하여 결정하는, 차량용 전자 장치의 동작 방법.
  4. 제 3 항에 있어서,
    V2X 메시지별 도달거리 중 가장 먼 거리인 제2 거리를 결정하는 단계;를 더 포함하고,
    상기 제2 거리는,
    인터페이스부를 통해 타 차량으로부터 상기 V2X 메시지를 수신하고,
    상기 V2X 메시지와 차량간 위치 정보에 기초하여 메시지별 도달거리를 획득하고,
    상기 메시지별 도달거리 중 가장 먼 거리를 추출하여 결정하는, 차량용 전자 장치의 동작 방법.
  5. 제 4 항에 있어서,
    상기 제1 거리와 상기 제2 거리를 비교하는 단계;를 더 포함하고,
    상기 제1 거리보다 상기 제2 거리가 작다고 판단하면 상기 차량의 속도를 제어하는 신호를 생성하는의 동작 방법, 차량용 전자 장치.
  6. 제 5 항에 있어서
    상기 프로세서는,
    상기 제1 거리보다 먼 거리에서 수신한 메시지는 false alarm으로 판단하는, 차량용 전자 장치의 동작 방법.
  7. 제 1 항에 있어서,
    상기 제1 시간과 최소 위험대응 준비시간과 비교하는 단계;를 더 포함하고,
    상기 최소 위험대응 준비시간은,
    운전자를 위한 최소 위험대응 준비시간인 제2 시간 및 자율주행 모듈을 위한 최소 위험대응 준비시간인 제3 시간을 포함하는, 차량용 전자 장치의 동작 방법.
  8. 제 7 항에 있어서,
    상기 제2 시간은 운전자가 주행 상황에서의 위험 요소를 식별하고, 상기 위험 요소에 대응하기까지 소요되는 최소 시간이고,
    상기 프로세서는,
    미리 설정된 상기 제2 시간을 기준으로 상기 제2 시간보다 상기 제1 시간이 짧다고 판단하면,
    상기 제2 시간에 기초하여 감속 제어 신호를 생성하는, 차량용 전자 장치의 동작 방법.
  9. 제 7 항에 있어서,
    상기 제3 시간은 상기 프로세서가 상기 센서 데이터로부터 주행 상황에서의 위험 요소를 식별하고, 상기 위험 요소에 대응하는 제어 신호를 생성하기까지 소요되는 최소 시간이고,
    상기 프로세서는,
    상기 제3 시간보다 상기 제1 시간이 짧다고 판단하면,
    상기 제3 시간에 기초하여 감속 제어 신호를 생성하는, 차량용 전자 장치의 동작 방법.
  10. 제 7 항에 있어서,
    상기 프로세서는,
    상기 최소 위험대응 준비시간보다 상기 제1 시간이 길다고 판단하면,
    상기 최소 위험대응 준비시간에 기초하여 가속 제어 신호를 생성하는, 차량용 전자 장치의 동작 방법.
  11. 제 10 항에 있어서,
    상기 가속 제어 신호는,
    상기 가속 제어 신호를 생성할 것인지 여부에 대한 상기 운전자의 입력 신호를 수신하고,
    상기 운전자의 입력 신호에 기초하여 생성하는, 차량용 전자 장치의 동작 방법.
  12. 제 11 항에 있어서,
    상기 프로세서는,
    상기 제1 시간이 상기 제2 시간 및 상기 제3 시간의 사이라 판단하면,
    상기 제2 시간 및 상기 제3 시간 중 긴 시간에 더 기초하여 감속 제어 신호를 생성하는, 차량용 전자 장치의 동작 방법.
  13. 제 1 항에 있어서,
    상기 제1 시간을 구간에 따라 분류하는 단계; 및
    위험 상태 메시지를 표시하는 신호를 생성하는 단계;를 더 포함하고,
    상기 프로세서는,
    상기 제1 시간을 실시간으로 계산하고,
    상기 실시간으로 계산된 제1 시간이 속해있는 구간의 위험 정도를 나타내는 상기 위험 상태 메시지를 표시하는 신호를 생성하는, 차량용 전자 장치의 동작 방법.
  14. 제 13 항에 있어서,
    상기 위험 상태 메시지를 표시하는 신호는,
    상기 위험 정도에 대응하는 문자와 함께 저장된 색상으로 표시하는 신호인, 차량용 전자 장치의 동작 방법.
  15. 제 14 항에 있어서,
    상기 프로세서는,
    주행 중 상기 제1 시간에 대응되는 구간의 변경이 발생하면,
    상기 구간의 변경을 운전자에게 표시하는 신호를 생성하는, 차량용 전자 장치의 동작 방법.
  16. 제 1 항 내지 제 15 항 중 어느 하나의 항에 있어서,
    상기 차량의 속도 제어 신호에 기초하여 차량의 속도를 제어하는 차량의 제어 방법.
  17. 직접통신을 통해 타 차량과 정보를 송수신하는 차량용 전자 장치에 있어서,
    인터페이스부; 및
    상기 인터페이스부를 통해 주행 도로에서의 주행 환경 정보를 획득하고,
    상기 주행 환경 정보에 기초하여 V2X 통신(Vehicle to Evryting communication) 신호의 예상 도달거리인 제1 거리를 결정하고,
    차량의 속도 대비 상기 제1 거리로 정의되는 위험대응 준비시간인 제1 시간을 계산하고,
    상기 위험대응 준비시간을 확보하도록 상기 차량의 속도를 제어하는 신호를 생성하는 프로세서;를 포함하는 차량용 전자 장치.
  18. 제 17 항에 있어서,
    상기 프로세서는,
    상기 제1 시간을 구간에 따라 분류하고,
    상기 제1 시간을 실시간으로 계산하고,
    상기 실시간으로 계산된 제1 시간이 속해있는 구간의 위험 정도를 나타내는 상기 위험 상태 메시지를 표시하는 신호를 생성하는, 차량용 전자 장치.
PCT/KR2019/008789 2019-07-16 2019-07-16 차량용 전자 장치 및 그의 동작 방법 WO2021010517A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2019/008789 WO2021010517A1 (ko) 2019-07-16 2019-07-16 차량용 전자 장치 및 그의 동작 방법
US16/500,723 US11285941B2 (en) 2019-07-16 2019-07-16 Electronic device for vehicle and operating method thereof
KR1020190107732A KR20190107287A (ko) 2019-07-16 2019-08-30 차량용 전자 장치 및 그의 동작 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/008789 WO2021010517A1 (ko) 2019-07-16 2019-07-16 차량용 전자 장치 및 그의 동작 방법

Publications (1)

Publication Number Publication Date
WO2021010517A1 true WO2021010517A1 (ko) 2021-01-21

Family

ID=68067788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008789 WO2021010517A1 (ko) 2019-07-16 2019-07-16 차량용 전자 장치 및 그의 동작 방법

Country Status (3)

Country Link
US (1) US11285941B2 (ko)
KR (1) KR20190107287A (ko)
WO (1) WO2021010517A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183758A (zh) * 2021-04-28 2021-07-30 昭通亮风台信息科技有限公司 一种基于增强现实的辅助驾驶方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662985B2 (en) 2019-10-21 2023-05-30 Woven Alpha, Inc. Vehicle developer systems, methods and devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130065109A (ko) * 2011-12-09 2013-06-19 현대자동차주식회사 차량의 스마트 크루즈 컨트롤 시스템 및 그 제어방법
KR20140038180A (ko) * 2012-09-20 2014-03-28 현대자동차주식회사 V2x 통신을 이용한 교차로 접근차량 경보 장치 및 방법
KR20170082674A (ko) * 2016-01-06 2017-07-17 한국전자통신연구원 차량안전 주행지원 단말장치 및 차량안전 주행지원 방법
KR20190003800A (ko) * 2011-06-01 2019-01-09 웨이모 엘엘씨 센서 필드 선택
WO2019098435A1 (ko) * 2017-11-15 2019-05-23 엘지전자 주식회사 차량에 구비된 차량 제어 장치 및 차량의 제어방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559761B1 (en) * 2001-10-05 2003-05-06 Ford Global Technologies, Llc Display system for vehicle environment awareness
US9254749B2 (en) * 2007-06-07 2016-02-09 GM Global Technology Operations LLC Cruise control interaction with driver commanded speed reset
US8509982B2 (en) * 2010-10-05 2013-08-13 Google Inc. Zone driving
DE102011117297A1 (de) * 2011-11-01 2013-05-02 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Fahrerassistenzsystems und dazugehöriges Fahrerassistenzsystem
US9253753B2 (en) * 2012-04-24 2016-02-02 Zetta Research And Development Llc-Forc Series Vehicle-to-vehicle safety transceiver using time slots
JP6600001B2 (ja) * 2015-02-26 2019-10-30 ボルボトラックコーポレーション 隊列の車間距離を制御する方法
JP6330825B2 (ja) * 2016-01-26 2018-05-30 トヨタ自動車株式会社 車両用衝突回避支援システム
US10798673B2 (en) * 2016-04-01 2020-10-06 Apple Inc. Autonomous resource selection for vehicle-to-vehicle sidelink communications
CN107993485B (zh) * 2017-10-30 2019-11-26 惠州市德赛西威汽车电子股份有限公司 一种基于车联网的自适应预警方法以及装置
US10657821B2 (en) * 2018-06-13 2020-05-19 Whelen Engineering Company, Inc. Autonomous intersection warning system for connected vehicles
US11299149B2 (en) * 2018-07-23 2022-04-12 Denso International America, Inc. Considerate driving system
US10979876B2 (en) * 2018-08-31 2021-04-13 Cohda Wireless Pty Ltd. Method for estimating the position of an object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190003800A (ko) * 2011-06-01 2019-01-09 웨이모 엘엘씨 센서 필드 선택
KR20130065109A (ko) * 2011-12-09 2013-06-19 현대자동차주식회사 차량의 스마트 크루즈 컨트롤 시스템 및 그 제어방법
KR20140038180A (ko) * 2012-09-20 2014-03-28 현대자동차주식회사 V2x 통신을 이용한 교차로 접근차량 경보 장치 및 방법
KR20170082674A (ko) * 2016-01-06 2017-07-17 한국전자통신연구원 차량안전 주행지원 단말장치 및 차량안전 주행지원 방법
WO2019098435A1 (ko) * 2017-11-15 2019-05-23 엘지전자 주식회사 차량에 구비된 차량 제어 장치 및 차량의 제어방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183758A (zh) * 2021-04-28 2021-07-30 昭通亮风台信息科技有限公司 一种基于增强现实的辅助驾驶方法及系统

Also Published As

Publication number Publication date
US20210276544A1 (en) 2021-09-09
KR20190107287A (ko) 2019-09-19
US11285941B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2017039047A1 (ko) 차량 및 그 제어방법
WO2021040060A1 (ko) 차량용 전자 장치 및 그의 동작 방법
WO2017209313A1 (ko) 차량용 디스플레이 장치 및 차량
WO2020226258A1 (ko) 자율 주행 차량과 이를 이용한 보행자 안내 시스템 및 방법
WO2020004767A1 (ko) 차량에 구비되는 텔레매틱스 시스템 및 이를 제어하는 방법
WO2021141142A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021090971A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2020145441A1 (ko) 차량용 전자 장치 및 차량용 전자 장치의 동작 방법
WO2018143589A1 (ko) 차선 정보를 출력하는 방법 및 장치
WO2020235714A1 (ko) 자율 주행 차량과 이를 이용한 주행 제어 시스템 및 방법
WO2020040324A1 (ko) 이동 its 스테이션 및 상기 이동 its 스테이션의 동작 방법
WO2020105751A1 (ko) 탑승자 모니터링 방법 및 이를 위한 장치
WO2021157760A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2020166749A1 (ko) 차량을 이용한 정보 표시 방법 및 시스템
WO2020145432A1 (ko) Multi soc 시스템을 통해 차량을 제어하는 방법
WO2021040057A1 (ko) 차량용 전자 장치 및 차량용 전자 장치의 동작 방법
WO2020138516A1 (ko) 통신 장치, 그것의 제어 방법 및 그것을 포함하는 통신 시스템
WO2021141143A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2020071564A1 (ko) 이동 its 스테이션 및 상기 이동 its 스테이션의 메시지 송수신 방법
WO2021002501A1 (ko) 차량용 전자 장치
WO2021182655A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021246534A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2020017677A1 (ko) 영상 출력 장치
WO2021010507A1 (ko) 경로 제공 장치 및 그것의 경로 제공 방법
WO2021010517A1 (ko) 차량용 전자 장치 및 그의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937654

Country of ref document: EP

Kind code of ref document: A1