WO2021010349A1 - 非アルコール性脂肪肝炎の血中線維化マーカーの開発 - Google Patents

非アルコール性脂肪肝炎の血中線維化マーカーの開発 Download PDF

Info

Publication number
WO2021010349A1
WO2021010349A1 PCT/JP2020/027144 JP2020027144W WO2021010349A1 WO 2021010349 A1 WO2021010349 A1 WO 2021010349A1 JP 2020027144 W JP2020027144 W JP 2020027144W WO 2021010349 A1 WO2021010349 A1 WO 2021010349A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar chain
formula
structure represented
biosynthetic precursor
sugar
Prior art date
Application number
PCT/JP2020/027144
Other languages
English (en)
French (fr)
Inventor
潤一 古川
直哉 坂本
久寿 花松
小川 浩司
剛生 須田
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to US17/625,856 priority Critical patent/US20230236194A1/en
Priority to EP20841396.3A priority patent/EP3998478A4/en
Priority to JP2021533054A priority patent/JPWO2021010349A1/ja
Priority to CN202080064043.XA priority patent/CN114364985A/zh
Publication of WO2021010349A1 publication Critical patent/WO2021010349A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/02Assays, e.g. immunoassays or enzyme assays, involving carbohydrates involving antibodies to sugar part of glycoproteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/38Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence, e.g. gluco- or galactomannans, Konjac gum, Locust bean gum or Guar gum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2440/00Post-translational modifications [PTMs] in chemical analysis of biological material
    • G01N2440/38Post-translational modifications [PTMs] in chemical analysis of biological material addition of carbohydrates, e.g. glycosylation, glycation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/08Hepato-biliairy disorders other than hepatitis
    • G01N2800/085Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease

Definitions

  • the present invention relates to a marker for liver disease.
  • the present invention relates to blood fibrosis markers for nonalcoholic steatohepatitis.
  • Non-alcoholic steatohepatitis leads to the development of liver cirrhosis and liver cancer.
  • the most accurate evaluation of liver fibrosis is histological evaluation by liver biopsy, but the burden on the patient is heavy and there is a risk of infectious diseases. Therefore, hyaluronic acid in blood (Non-Patent Document 1), type IV collagen, M2BPGi, etc. are used as non-invasive evaluation of liver fibrosis (Non-Patent Document 2), but these are also increased in other diseases. Therefore, a diagnostic marker with high disease specificity is required.
  • Non-Patent Document 2 M2BPGi has been discovered as an index for measuring hepatic fibrosis in hepatitis C patients (Non-Patent Document 2), and is not optimized for determining hepatic fibrosis in NASH. So far, the inventors have found that the expression of N-linked sugar chain (A3F) on ⁇ 1-antitrypsin in serum is significantly increased in the process of fibrosis in NASH disease (Patent Document). 1), A3F showed a correlation with inflammation in liver tissue rather than factor F, which is an index of fibrosis.
  • A3F N-linked sugar chain
  • the present inventors have conducted intensive studies to solve the above problems, and the expression of sugar chains (A2F sight) and its biosynthetic precursor sugar chains in blood increases with the progress of liver fibrosis in NASH. I found something to do. Furthermore, the present inventors have also found that the biosynthetic precursors of the A2F visect sugar chain bound to IgA2 and the A2F visect sugar chain bound to IgA2 are preferable markers. The present inventors have completed the present invention based on these findings.
  • Formula (I) in the sample A method for evaluating the progress of liver fibrosis in NASH, which comprises measuring the amount of a sugar chain having a structure represented by and / or a biosynthetic precursor sugar chain of a sugar chain having a structure represented by the formula (I). .. (2) The method according to (1), which comprises measuring the total amount of biosynthetic precursor sugar chains of sugar chains having a structure represented by the formula (I). (3) The biosynthetic precursor sugar chain of the sugar chain having the structure represented by the formula (I) is sugar chain 1, 2A, 2B, 3A, 3B, 4, 5A, and 5B: The method according to (1) or (2), which has one or more structures selected from the group consisting of.
  • Biosynthetic precursor sugar chains of sugar chains having a structure represented by the formula (I) and / or sugar chains having a structure represented by the formula (I) are bound to IgA2, (1) to (1) to ( The method according to any one of 3). (5) The method according to any one of (1) to (4), wherein the sample is a blood sample. (6) A marker for evaluating the progress of liver fibrosis in NASH, wherein the formula (I): A marker containing a sugar chain having a structure represented by and / or a biosynthetic precursor sugar chain of a sugar chain having a structure represented by the formula (I).
  • the biosynthetic precursor sugar chain of the sugar chain having the structure represented by the formula (I) is sugar chain 1, 2A, 2B, 3A, 3B, 4, 5A, and 5B:
  • the marker according to (6) which has one or more structures selected from the group consisting of.
  • the biosynthetic precursor sugar chain of the sugar chain having the structure represented by the formula (I) and / or the sugar chain having the structure represented by the formula (I) is bound to IgA2, (6) or ( 7) The marker described.
  • a kit for evaluating the progress of liver fibrosis in NASH wherein the formula (I): A means for measuring the amount of a sugar chain having a structure represented by and / or a biosynthetic precursor sugar chain of a sugar chain having a structure represented by the formula (I), and / or a structure represented by the formula (I). A kit containing a sugar chain having a sugar chain and / or a biosynthetic precursor sugar chain of a sugar chain having a structure represented by the formula (I).
  • the biosynthetic precursor sugar chain of the sugar chain having the structure represented by the formula (I) is sugar chain 1, 2A, 2B, 3A, 3B, 4, 5A, and 5B:
  • the means is specific for a protein to which a sugar chain having a structure represented by the formula (I) and / or a biosynthetic precursor sugar chain of a sugar chain having a structure represented by the formula (I) is bound.
  • the kit according to (9) or (10) which is an antibody, antibody fragment, interacting protein, or peptide.
  • a disease-specific and non-invasive marker capable of determining liver fibrosis in NASH is provided. Therefore, by using the marker of the present invention, hepatic fibrosis in NASH can be accurately determined, and the burden on the patient can be reduced. Using the marker of the present invention, the degree of progression of NASH and the therapeutic effect of NASH can be accurately investigated.
  • FIG. 1 is a graph showing the expression level of A2F spect with fibrosis.
  • FIG. 2 is a graph showing expression fluctuations associated with fibrosis of the biosynthetic precursor sugar chain of A2F figure. The arrows in the figure indicate the biosynthetic pathway of A2F. The structures of sugar chain 1, sugar chain 2 (2A, 2B), sugar chain 3 (3A, 3B) 4, and sugar chain 5 (5A, 5B) are shown in the present specification.
  • FIG. 3 is a graph showing the results of analyzing the pathological evaluation of fibrosis in liver biopsy and the correlation between the fibrosis evaluation factor in blood and the expression of A2F figure.
  • FIG. 3 is a graph showing the results of analyzing the pathological evaluation of fibrosis in liver biopsy and the correlation between the fibrosis evaluation factor in blood and the expression of A2F figure.
  • FIG. 4 is a graph comparing the expression levels of A2F sight in the NASH fiber group and the hepatitis C (HCV) patient group.
  • FIG. 5 is a graph showing the results of ROC analysis using a sample (F3 or higher) in which the fibrosis stage is defined. From left to right, the ROC curve of the sum of the biosynthetic precursor sugar chains 1, 2A, 2B, 3A, 3B, 4, 5A, and 5B of type IV collagen 7s, Fib4, A2F sight, and A2F sight is shown.
  • FIG. 6 shows the results of N-linked sugar chain analysis in the pass-through fraction of NASH F3 / 4 pool serum and the protein G-bound fraction.
  • the left panel is SDS-PAGE (CBB staining) of serum and each fraction, the middle panel is an analysis chart of N-linked sugar chains by MALDI-TOF MS, and the right panel is around m / z 3100 of the chart (highlight). Area) is expanded.
  • FIG. 7 shows the results of N-binding sugar chain analysis and carrier analysis on the protein band detected by CBB staining after separating the protein G-binding fraction of NASH F3 / 4 pool serum by SDS-PAGE.
  • FIG. 8 shows the results of examining the serum IgA2 concentration associated with the progress of fibrosis using the IgA2 ELISA kit.
  • the formula (I) in the sample A method for evaluating the progress of liver fibrosis in NASH, which comprises measuring the amount of a sugar chain having a structure represented by and / or a biosynthetic precursor sugar chain of a sugar chain having a structure represented by the formula (I). I will provide a.
  • a sugar chain having a structure represented by the formula (I) is called an A2F visect.
  • A2F spect is an N-linked sugar chain, which is bound to a protein via an asparagine residue.
  • the biosynthetic precursor sugar chain of A2F bisect may be any sugar chain as long as it is a sugar chain located upstream of the biosynthetic pathway of A2F visect.
  • sugar chains 1, 2A, 2B, 3A, 3B, 4, 5A, and 5B examples of sugar chains having the structure represented by (in the present specification, these sugar chains may be referred to as sugar chains 1, 2A, 2B, 3A, 3B, 4, 5A, 5B for convenience), but are limited thereto. Not done.
  • GlcNAc is N-acetylglucosamine
  • Man is mannose
  • Fuc is fucose
  • Gal is galactose
  • Neu5Ac is N-acetylneuramine. Represents an acid.
  • a1-3, a1-6, and a2-6 are ⁇ 1-3 glycosidic bond, ⁇ 1-6 glycosidic bond, and ⁇ 2, respectively.
  • the biosynthetic precursor sugar chain of A2F sight and / or A2F sight is used as a marker of liver fibrosis in NASH.
  • Only the A2F spect may be used as a marker, or one or more A2F spect biosynthetic precursor sugar chains may be used as a marker.
  • A2F spect and one or more A2F spect biosynthetic precursor sugar chains may be used as markers.
  • the progress of hepatic fibrosis may be evaluated by using two or more kinds of biosynthetic precursor sugar chains of A2F sight as markers and determining the sum of these.
  • the progress of liver fibrosis is evaluated by determining the amount of A2F sight alone.
  • the progress of liver fibrosis is evaluated by determining the total amount of seven types of sugar chains of sugar chains 1, 2A, 2B, 3A, 3B, 4, 5A, and 5B. ..
  • the present inventors have found that A2F-visect sugar chain modification in IgA2 is promoted with the progress of hepatic fibrosis, while IgA2 in serum does not increase significantly. Therefore, in the present invention, preferred markers of liver fibrosis in NASH are A2F sight bound to IgA2 (immunoglobulin IgA2 protein) and biosynthetic precursor sugar chains of A2F sight bound to IgA2.
  • A2F spect and its biosynthetic precursor sugar chain can be used as a marker for the progress of hepatic fibrosis in NASH, and A2F visect bound to IgA2 and biosynthetic precursor sugar chain of A2F visect bound to IgA2 are used in NASH. It has not been previously known that it can be used as a preferable marker for the progress of liver fibrosis.
  • the IgA2 protein may be wild-type or mutant.
  • the mutant of IgA2 may be, for example, a mutant caused in the body or a mutant due to a polymorphism.
  • the IgA2 variant may have an amino acid sequence in which one to several amino acids have been deleted, substituted, added, or inserted in the amino acid sequence of wild-type IgA2.
  • the number means 2, 3, 4, 5, 5, 6, 7, 8, or 9.
  • the asparagine residue to which the sugar chain can be bound is conserved.
  • the sample used in the method of the present invention may be obtained from any subject, but it is preferably obtained from a subject suffering from NASH or a subject suspected of having NASH.
  • the sample does not have to be obtained by an invasive method such as liver biopsy.
  • examples of the sample include blood, urine, cerebrospinal fluid, lymph, saliva, sweat and the like, but a blood sample is preferable, and serum is more preferable.
  • Means and methods for measuring the expression level (sometimes referred to simply as the amount) of A2F sight and / or its biosynthetic precursor sugar chain in a sample are known to those skilled in the art.
  • the protein fraction in serum is precipitated by a technique such as ethanol precipitation, purified, and labeled sugar by a glycoblotting method and a sialic acid binding mode-specific amide label (SALSA method).
  • SALSA method sialic acid binding mode-specific amide label
  • the analysis is performed by the absolute quantitative value of each sugar chain detected by adding an internal standard sugar chain having a known concentration, or the relative quantitative value obtained from the total amount of N-linked sugar chains in serum.
  • the protein is separated by using an antibody, an antibody fragment, an interacting protein, a peptide such as peptide M, etc., which is specific to the protein to which the A2F spectrum and / or its biosynthetic precursor sugar chain is bound. Then, the amount of A2F peptide and / or its biosynthetic precursor sugar chain bound to the protein may be measured by using, for example, known chromatography or mass analysis.
  • the antibody may be either a monoclonal antibody or a polyclonal antibody, but a monoclonal antibody is preferable.
  • a lectin that binds to A2F sight and / or its biosynthetic precursor sugar chain may be used.
  • Means and methods for measuring the amount of biosynthetic precursor sugar chains of A2F visect bound to IgA2 and A2F visect bound to IgA2 in a sample are also known.
  • IgA2 in the sample is separated.
  • IgA2 may be separated using an anti-IgA2 antibody, a fragment of the antibody, or another protein or peptide that interacts with IgA2. Separation may be performed using immunoprecipitation or affinity chromatography.
  • the amount of A2F visect and / or its biosynthetic precursor bound to the separated IgA2 is measured. The method for measuring the amount of these sugar chains is as described above.
  • the method of the present invention it can be evaluated that the larger the amount of A2F visect and / or its biosynthetic precursor sugar chain in the sample, the more the patient's liver fibrosis progresses. On the contrary, it can be determined that the smaller the amount of A2F spect and / or its biosynthetic precursor sugar chain in the sample, the less the patient's liver fibrosis has progressed. For example, by comparing the amount of A2F figure and / or its biosynthetic precursor sugar chain in a sample derived from a subject having no liver fibrosis with the amount of the above sugar chain in a NASH patient sample, liver fiber. The progress of biosynthesis may be evaluated. Further, for example, as described in Example 4, the progress of liver fibrosis may be evaluated by determining the cutoff value using the ROC curve.
  • Assessing the progression of liver fibrosis involves determining at what stage liver fibrosis is.
  • the following new Inuyama classification is an example of the classification of the liver fibrosis stage: F0: No fibrosis, F1: Fibrotic enlargement of portal vein area, F2: Fibrous crosslink formation, F3: Fibrotic crosslink formation with strain of lobular structure, F4: Cirrhosis.
  • the present invention provides a marker for evaluating the progress of liver fibrosis in NASH, which comprises an A2F sight and / or a biosynthetic precursor sugar chain of the A2F sight.
  • a marker for evaluating the progress of liver fibrosis in NASH which comprises an A2F sight and / or a biosynthetic precursor sugar chain of the A2F sight.
  • the A2F sight and its biosynthetic precursor sugar chain are as described above.
  • the marker of the present invention may contain only A2F sight, may contain one or more biosynthetic precursor sugar chains of A2F sight, or may contain one or more A2F sight. It may contain the biosynthetic precursor sugar chain of A2F invention.
  • a specific example of the marker of the present invention is a marker containing only A2F spect.
  • a further specific example of the marker of the present invention is a marker containing seven types of sugar chains: sugar chains 1, 2A, 2B, 3A, 3B, 4, 5A, and 5B.
  • Preferred markers of the present invention are A2F visect bound to IgA2 and a biosynthetic precursor sugar chain of A2F visect bound to IgA2.
  • liver fibrosis By measuring the amount of the marker of the present invention in the sample, the progress of liver fibrosis in the patient can be evaluated.
  • the evaluation of liver fibrosis has been described above, but will be described in more detail below.
  • the method for evaluating the progress of hepatic fibrosis in NASH of the present invention is A2F spect on glycoprotein contained in blood and its biosynthetic precursor sugar chain, A2F visect bound to IgA2, and A2F visect bound to IgA2. Includes comparing the amount of biosynthetic precursor sugar chains in the above with reference values.
  • the amount of any one of the A2F spect and its biosynthetic precursor sugar chain, the A2F visect bound to IgA2, and the biosynthetic precursor sugar chain of A2F Sight bound to IgA2 in the subject is for determining that the healthy subject group.
  • the threshold value (reference value) or more is exceeded, liver fibrosis in NASH can be determined.
  • the progress of liver fibrosis is F0: no fibrosis
  • F1 fibrous enlargement of the portal vein area
  • F2 fibrous crosslink formation
  • F3 fibrous crosslink formation with strain of lobular structure.
  • F4 Can follow the cirrhosis distinction.
  • the method for evaluating the progress of liver fibrosis in the subject NASH of the present invention can determine which stage of the above F0 to F4 the target liver is in. In this case, the range of the reference value of the target at various stages is measured in advance, and the A2F spect and its biosynthetic precursor sugar chain in the target, the A2F visect bound to IgA2, and the A2F spect bound to IgA2 are raw. If the amount of any of the synthetic precursor sugar chains falls within a certain range, it is likely that the stage is relevant.
  • the classification is not limited to the above F0 to F4, and different classifications may be used.
  • liver fibrosis markers By using the marker of the present invention in combination with other liver fibrosis markers, the accuracy of evaluation of the progress of liver fibrosis in NASH can be improved.
  • examples of other liver fibrosis markers include, but are not limited to, type IV collagen 7S, hyaluronic acid, M2BPGi and the like.
  • the present invention provides, in yet another embodiment, a kit for assessing the progression of liver fibrosis in NASH.
  • the kits of the present invention are used to carry out the methods for assessing the development of liver fibrosis in NASH described above.
  • the kit of the present invention comprises means for measuring the amount of biosynthetic precursor sugar chains in A2F and / or A2F, and / or biosynthetic precursor sugar chains in A2F and / or A2F.
  • the A2F sight and its biosynthetic precursor sugar chain are as described above.
  • the means for measuring the amount of the biosynthetic precursor sugar chain of A2F sight and / or A2F sight in the kit of the present invention is not particularly limited, but the biosynthetic precursor sugar of A2F sight and / or A2F sight in the sample. It may be a means for separating the protein to which the chain is bound. Examples of such means include antibodies, antibody fragments, interacting proteins, or peptides M that are specific to the blood secretory proteins to which the biosynthetic precursor sugar chains of A2F visect and / or A2F visect are bound. Peptides and the like can be mentioned.
  • IgA2 is a special example of a blood secretory protein to which the biosynthetic precursor sugar chain of A2F sight and / or A2F sight is bound.
  • the antibody may be either a monoclonal antibody or a polyclonal antibody, but a monoclonal antibody is preferable.
  • Further examples of means for measuring the amount of biosynthetic precursor sugar chains in A2F and / or A2F sights include lectins that bind to biosynthetic precursor sugar chains in A2F and / or A2F sights, and / or A2F sights. Chromatographic carriers containing such lectins can be mentioned. Further examples of the above means include reagents used in the glycoblotting method and the sialic acid binding mode-specific amide labeling (SALSA method).
  • the amount of marker in each blood can be measured by the MS method.
  • N-linked sugar chains are released from serum by PNGase F digestion, and labeled sugar chains are prepared by a glycoblotting method and a sialic acid binding mode-specific amide label (SALSA method).
  • SALSA method sialic acid binding mode-specific amide label
  • the labeled sugar chain can be analyzed by MALDI-TOF MS.
  • a sugar chain component in plasma can be cut out without using the MS method, and this can be allowed to act on a lectin (E4-PHA) that specifically recognizes A2F sight and its biosynthetic precursor sugar chain. Can be quantified with.
  • E4-PHA lectin
  • A2F visect bound to a specific protein or peptide and its biosynthetic precursor sugar chain can be used.
  • an antibody that selectively binds to the protein or peptide to which the sugar chain binds is used to separate this fraction, and the A2F lectin present on the protein and its biosynthetic precursor sugar chain are specifically selected. It can be quantified by acting with the recognized lectin.
  • the lectin it is preferable to use a lectin labeled with an isotope element, a fluorescent reagent or the like. It is preferable to use IgA2 or IgM as the protein to which the sugar chain is bound. It is also possible to use a lectin or antibody that recognizes an A2F bisect bound to a specific protein or peptide and its biosynthetic precursor sugar chain without separating into the above fractions.
  • the present invention is, in yet another embodiment, a method for evaluating the progress of liver fibrosis in NASH, wherein the following steps: Provided are methods comprising (a) separating IgA2 or IgM in a sample and then (b) measuring the amount of biosynthetic precursor sugar chains of A2F visect and / or A2F visect bound to IgA2 or IgM. ..
  • the means for separating IgA2 or IgM contained in the sample include, but are not limited to, anti-IgA2 antibody or anti-IgM antibody, fragments of the antibody, proteins and peptides that interact with IgA2 or IgM, and the like. Means can be appropriately selected and used.
  • the present inventors have found that protein G, which is originally used for the separation of IgG, can be suitably used for the separation for this purpose.
  • the methods, markers and kits of the present invention are NASH-specific and can evaluate the progression of liver fibrosis in NASH. In addition, the evaluation can be performed non-invasively using the methods, markers and kits of the present invention.
  • the therapeutic effect of NASH may be evaluated using the methods, markers and kits of the present invention.
  • the prognosis of NASH may also be evaluated using the methods, markers and kits of the present invention.
  • the methods, markers and kits of the present invention may be used to evaluate the efficacy of therapeutic agents for NASH. These evaluations can also be performed non-invasively.
  • a comprehensive N-linked sugar chain was carried out using the sera of (samples, 28 samples).
  • a serum protein fraction was prepared by ethanol precipitation of each serum, and labeled sugar chains were prepared by a glycoblotting method and a sialic acid binding mode-specific amide labeling (SALSA method).
  • SALSA method sialic acid binding mode-specific amide labeling
  • FIG. 2 The analysis result by MALDI-TOF MS regarding A2F figure is shown in FIG. It was confirmed that the expression level of A2F spect increased with the progress of fibrosis. Similarly, an increase in expression associated with fibrosis was confirmed in sugar chains located upstream in the biosynthetic pathway of A2F spectrum (Fig. 2).
  • the sugar chains 1 to 5 are the sugar chain 1, the sugar chain 2 (2A, 2B), the sugar chain 3 (3A, 3B) 4, and the sugar chain 5 (5A, 5B) described above. From these results, it was confirmed that the expression increased with hepatic fibrosis not only in A2F spect but also in its biosynthetic precursor.
  • the A2F spect sugar chain was measured in the hepatitis C patient serum (HCV: 25 samples) by the same method, and the NASH fiber group (F0, F1 / F2, F3 / The expression level was compared with that of F4) (Fig. 4).
  • the expression level of A2F visect sugar chain did not show a high value as in the NASH F3 / 4 group, although the case included cases in which liver fibers were advanced.
  • the expression level increased as fibrosis progressed, and in the F3 / 4 group, the expression of A2F spect sugar chains was more than double that of hepatitis C patients. Therefore, it was suggested that the A2F visect sugar chain is a disease-specific marker that can evaluate the progression of liver fibrosis in NASH disease.
  • AUC score was similar to the AUC score of type IV collagen 7s (denoted as 4-7s in FIG. 5) and Fib-4. Differences were observed between the sum of the precursor sugar chains and the curved shape of type IV collagen 7s.
  • the cutoff value for the diagnosis of severe fibrosis in the ROC curve of type IV collagen 7s was 6 ng / mL, and the number of false positive samples exceeding this value was 5 out of 42 samples (F1 / 2 5 samples), but A2F.
  • NASH F3 / 4 pool serum was fractionated by protein G into a pass-through fraction and a protein G-binding fraction (eluted fraction), and confirmed by SDS-PAGE.
  • N-linked sugar chains of the pass-through fraction and the eluted fraction were analyzed by the Glycoblotting method. The results are shown in FIG. It was clarified that the elution fraction contained a large amount of A2F visect sugar chains whose expression was increased by the fibrosis of NASH.
  • the eluted fraction prepared from standard serum using protein G was digested with trypsin, and the peptide to which the A2F visect sugar chain was bound was comprehensively analyzed by LC-MS.
  • IgA2 was identified among the IgM and IgA subclasses. ..
  • Serum IgA2 of F0, F1 / 2 and F3 / 4 (20 samples, 32 samples, 35 samples, respectively) using IgA2 ELISA (Enzyme-Linked ImmunoSorbent Assay) kit to evaluate the concentration of serum IgA2 in the progress of fibrosis. The concentration was measured. The results are shown in FIG. An increase in the formed IgA2 concentration was observed with the progress of fibrosis, but a significant increase in the expression of IgA2 protein was not observed with the progress of fibrosis. Therefore, it was shown that the A2F visect sugar chain modification in IgA2 was promoted with the progress of fibrosis. From the above results, it was found that the A2F visect sugar chain bound to IgA2 is a promising biomarker for hepatic fibrosis in NASH.
  • IgA2 ELISA Enzyme-Linked ImmunoSorbent Assay
  • the present invention is useful in diagnosing liver diseases and the like.
  • the present invention is useful in assessing the progression of liver fibrosis in NASH. Therefore, the present invention is useful in the field of diagnostic agents for liver diseases, the field of research on liver diseases, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Diabetes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

試料中の式(I)で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖の量を測定することを含む、非アルコール性脂肪肝炎における肝線維化の進展を評価する方法。

Description

非アルコール性脂肪肝炎の血中線維化マーカーの開発
 本発明は、肝疾患のマーカーに関する。詳細には、本発明は、非アルコール性脂肪肝炎の血中線維化マーカーに関する。
 非アルコール性脂肪肝炎(NASH)における肝線維化の進展は、肝硬変や肝がんの発症へと繋がるため、線維化の早期発見は非常に重要な課題である。肝線維化の評価は肝生検による組織学的評価が最も正確であるが、患者への負担が大きく感染症等のリスクもある。そのため肝線維化の非侵襲的な評価として血液中のヒアルロン酸(非特許文献1)、IV型コラーゲン、M2BPGiなどが用いられているが(非特許文献2)、これらは他の疾患でも上昇するため疾患特異性の高い診断マーカーが求められている。例えば、M2BPGiはC型肝炎患者の肝線維化を測定する指標として発見されており(非特許文献2)、NASHにおける肝線維化判定に最適化されたものでない。これまでに発明者らは、NASH疾患における線維化の過程で血清中のα1-アンチトリプシン上のN-結合型糖鎖(A3F)の発現が有意に上昇することを見出しているが(特許文献1)、A3Fは、線維化の指標となるF因子等よりは肝組織内の炎症と相関を示すものであった。
国際公開第WO2017-126514号公報
Suzuki A, Angulo P, Lymp J, Li D, Satomura S, Lindor K. Hyaluronic acid, an accurate serum marker for severe hepatic fibrosis in patients with non-alcoholic fatty liver disease. Liver Int 2005; 25:779-786. Tianhui L, Xiaoming W, Morten A, Diana J.L,and Federica G. Molecular Serum Markers of Liver Fibrosis. Biomark Insights. 2012; 7: 105-117. Kuno A, Ikehara Y, Tanaka Y, et al. A serum "sweet-doughnut" protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep. 2013; 3:1065.
 NASHにおける肝線維化の進展を評価できる、疾患特異的で非侵襲的なマーカーを見いだすことが必要であった。
 本発明者らは、上記課題を解決するために鋭意研究を重ね、血液中の糖鎖(A2F bisect)およびその生合成前駆体糖鎖が、NASHにおいて肝線維化の進展に伴って発現が上昇することを見いだした。さらに本発明者らは、IgA2に結合したA2F bisect糖鎖、およびIgA2に結合したA2F bisect糖鎖の生合成前駆体が好ましいマーカーであることも見いだした。本発明者らは、これらの知見に基づいて本発明を完成させるに至った。
 したがって、本発明は以下のものを提供する。
 (1)試料中の式(I):
Figure JPOXMLDOC01-appb-C000007
で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖の量を測定することを含む、NASHにおける肝線維化の進展を評価する方法。
 (2)式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖の量の総和を測定することを含む、(1)記載の方法。
 (3)式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖が、糖鎖1、2A、2B、3A、3B、4、5A、および5B:
Figure JPOXMLDOC01-appb-C000008
からなる群より選択される1種またはそれ以上の構造を有するものである、(1)または(2)記載の方法。
 (4)式(I)で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖がIgA2に結合している、(1)~(3)のいずれか記載の方法。
 (5)試料が血液試料である、(1)~(4)のいずれか記載の方法。
 (6)NASHにおける肝線維化の進展を評価するためのマーカーであって、式(I):
Figure JPOXMLDOC01-appb-C000009
で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖を含むマーカー。
 (7)式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖が、糖鎖1、2A、2B、3A、3B、4、5A、および5B:
Figure JPOXMLDOC01-appb-C000010
からなる群より選択される1種またはそれ以上の構造を有するものである、(6)記載のマーカー。
 (8)式(I)で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖がIgA2に結合している、(6)または(7)記載のマーカー。
 (9)NASHにおける肝線維化の進展を評価するためのキットであって、式(I):
Figure JPOXMLDOC01-appb-C000011

で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖の量を測定するための手段、および/または式(I)で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖を含むキット。
 (10)式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖が、糖鎖1、2A、2B、3A、3B、4、5A、および5B:
Figure JPOXMLDOC01-appb-C000012
からなる群より選択される1種またはそれ以上の構造を有するものである、(9)記載のキット。
 (11)該手段が、式(I)で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖が結合しているタンパク質に特異的な抗体、抗体断片、相互作用するタンパク質、もしくはペプチドである、(9)または(10)記載のキット。
 (12)該抗体、抗体断片、相互作用するタンパク質、もしくはペプチドが、IgA2に特異的なものである、(11)記載のキット。
 本発明によれば、NASHにおける肝線維化を判定できる、疾患特異的で非侵襲的なマーカーが提供される。したがって、本発明のマーカーを用いることにより、NASHにおける肝線維化を正確に判定でき、患者への負担も少なくすることができる。本発明のマーカーを用いて、NASHの進行程度やNASHの治療効果を正確に調べることができる。
図1は、線維化に伴うA2F bisectの発現量を示すグラフである。 図2は、A2F bisectの生合成前駆体糖鎖の線維化に伴う発現変動を示すグラフである。図中の矢印はA2Fの生合成経路を示す。糖鎖1、糖鎖2(2A、2B)、糖鎖3(3A、3B)、4、糖鎖5(5A、5B)の構造は本明細書中に示されている。 図3は、肝生検における病理学的な線維化評価および血中における線維化評価因子とA2F bisectの発現の相関を解析した結果を示すグラフである。 図4は、NASH線維群とC型肝炎(HCV)患者群のA2F bisectの発現量を比較したグラフである。 図5は、線維化ステージを定義した検体(F3以上)を用いてROC解析を行った結果を示すグラフである。左から右に、IV型コラーゲン7s、Fib4、A2F bisect、およびA2F bisectの生合成前駆体糖鎖1、2A、2B、3A、3B、4、5A、5Bの総和のROC曲線を示す。 図6は、NASH F3/4プール血清の素通り画分とプロテインG結合画分中のN結合型糖鎖解析を行った結果を示す。左パネルは、血清および各画分のSDS-PAGE(CBB染色)、中パネルは、MALDI-TOF MSによるN結合型糖鎖の解析チャート、右パネルは、チャートのm/z 3100付近(ハイライトエリア)を拡大したものである。 図7は、NASH F3/4プール血清のプロテインG結合画分をSDS-PAGEにより分離し、CBB染色で検出されたタンパク質バンドについて、N結合型糖鎖解析およびキャリア解析を行った結果を示す。 図8は、IgA2 ELISAキットを用いて、繊維化進展に伴う血清IgA2濃度を調べた結果を示す。
 本発明は、1の態様において、試料中の式(I):
Figure JPOXMLDOC01-appb-C000013
で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖の量を測定することを含む、NASHにおける肝線維化の進展を評価する方法を提供する。
 式(I)で示される構造を有する糖鎖をA2F bisectという。A2F bisectはN結合型糖鎖であり、アスパラギン残基を介してタンパク質に結合している。A2F bisectの生合成前駆体糖鎖は、A2F bisectの生合成経路の上流に位置する糖鎖であればいずれの糖鎖であってもよい。A2F bisectの生合成前駆体糖鎖の例としては、糖鎖1、2A、2B、3A、3B、4、5A、および5B:
Figure JPOXMLDOC01-appb-C000014
で示される構造を有する糖鎖(本明細書において便宜上これらの糖鎖を糖鎖1、2A、2B、3A、3B、4、5A、5Bと呼ぶことがある)が挙げられるが、これらに限定されない。
 式(I)および糖鎖1、2A、2B、3A、3B、4、5A、5Bにおいて、GlcNAcはN-アセチルグルコサミン、Manはマンノース、Fucはフコース、Galはガラクトース、Neu5AcはN-アセチルノイラミン酸を表す。式(I)および糖鎖1、2A、2B、3A、3B、4、5A、5Bにおいて、a1-3、a1-6、a2-6はそれぞれα1-3グリコシド結合、α1-6グリコシド結合およびα2-6グリコシド結合を表し、b1-2、b1-4はそれぞれβ1-2グリコシド結合およびβ1-4グリコシド結合を表す。式(I)および糖鎖1、2A、2B、3A、3B、4、5A、5Bにおいて、還元末端のGlcNAcb1-はタンパク中のアスパラギンとの結合を示す。
 本発明の上記方法において、A2F bisectおよび/またはA2F bisectの生合成前駆体糖鎖を、NASHにおける肝線維化のマーカーとして用いる。A2F bisectのみをマーカーとして用いてもよく、1種またはそれ以上のA2F bisectの生合成前駆体糖鎖をマーカーとして用いてもよい。あるいは、A2F bisectと1種またはそれ以上のA2F bisectの生合成前駆体糖鎖をマーカーとして用いてもよい。2種以上の糖鎖をマーカーとして用い、それらの量の総和を求めることにより、肝線維化の進展の評価の精度を上げることができる。例えば、A2F bisectの2種以上の生合成前駆体糖鎖をマーカーとして用い、これらの総和を求めることにより、肝線維化の進展を評価してもよい。本発明の方法の1の具体例において、A2F bisectのみの量を求めることにより、肝線維化の進展を評価する。本発明の方法のさらなる具体例において、糖鎖1、2A、2B、3A、3B、4、5A、5Bの7種の糖鎖の量の総和を求めることにより、肝線維化の進展を評価する。
 本発明者らは、肝繊維化に進展に伴ってIgA2におけるA2F bisect糖鎖修飾が促進され、その一方で、血清中のIgA2は有意には増加しないことを見いだした。したがって、本発明において、NASHにおける肝線維化の好ましいマーカーは、IgA2(免疫グロブリンIgA2タンパク質)に結合したA2F bisect、およびIgA2に結合したA2F bisectの生合成前駆体糖鎖である。なお、A2F bisectおよびその生合成前駆体糖鎖をNASHにおける肝繊維化進展のマーカーとして使用できること、ならびにIgA2に結合したA2F bisect、およびIgA2に結合したA2F bisectの生合成前駆体糖鎖をNASHにおける肝繊維化進展の好ましいマーカーとして使用できることは従来知られていなかった。
 IgA2タンパク質は、野生型であってもよく、変異体であってもよい。IgA2の変異体は、例えば体内で生じる突然変異や多形による変異体であってもよい。IgA2の変異体は、野生型IgA2のアミノ酸配列において、1個~数個のアミノ酸が欠失、置換、付加、挿入されたアミノ酸配列を有するものであってもよい。ここで、数個とは、2個、3個、4個、5個、6個、7個、8個または9個を意味する。変異型IgA2タンパク質において、糖鎖が結合しうるアスパラギン残基が保存されていることが好ましい。
 本発明の方法に用いられる試料は、いずれの対象から得られたものであってもいが、NASHに罹っている対象またはNASHが疑われる対象から得られたものが好ましい。試料は、肝生検のような侵襲的な方法で得られたものである必要はない。試料の例としては、血液、尿、髄液、リンパ液、唾液、汗などが挙げられるが、血液試料が好ましく、血清がより好ましい。
 試料中のA2F bisectおよび/またはその生合成前駆体糖鎖の発現量(単に量ということがある)を測定する手段、方法は当業者に公知である。例えば、実施例1に記載するように、エタノール沈殿などの手法により血清中のタンパク質画分を沈殿させ、精製し、グライコブロッティング法およびシアル酸結合様式特異的アミド標識(SALSA法)により、標識糖鎖を調製する。得られた標識糖鎖をMALDI-TOF質量スペクトルにより解析することで、糖鎖の量を測定してもよい。測定の際、濃度既知の内部標準糖鎖を加えることで検出された各糖鎖の絶対定量値、もしくは血清中のN結合型糖鎖の総量から求めた相対定量値により解析する。また例えば、A2F bisectおよび/またはその生合成前駆体糖鎖が結合しているタンパク質に特異的な抗体、抗体断片、相互作用するタンパク質、もしくはペプチドMなどのペプチド類等を用いて当該タンパク質を分離し、当該タンパク質に結合しているA2F bisectおよび/またはその生合成前駆体糖鎖の量を、例えば公知のクロマトグラフィーや質量分析等を用いて測定してもよい。抗体はモノクローナル抗体、ポリクローナル抗体のどちらでもよいが、モノクローナル抗体が好ましい。クロマトグラフィーにおいて、A2F bisectおよび/またはその生合成前駆体糖鎖に結合するレクチンを用いてもよい。
 試料中のIgA2に結合したA2F bisect、およびIgA2に結合したA2F bisectの生合成前駆体糖鎖の量を測定する手段・方法も公知である。先ず、試料中のIgA2を分離する。例えば、抗IgA2抗体、該抗体の断片、IgA2と相互作用する他のタンパク質やペプチドを用いてIgA2を分離してもよい。免疫沈降法やアフィニティークロマトグラフィーを用いて分離を行ってもよい。次に、分離されたIgA2に結合しているA2F bisectおよび/またはその生合成前駆体の量を測定する。これらの糖鎖の量の測定方法は上で説明したとおりである。
 本発明の方法において、試料中のA2F bisectおよび/またはその生合成前駆体糖鎖の量が多いほど、患者の肝線維化が進展していると評価することができる。逆に、試料中のA2F bisectおよび/またはその生合成前駆体糖鎖の量が少ないほど、患者の肝線維化が進展していないと判定することができる。例えば、肝線維化を有していない対象由来の試料中のA2F bisectおよび/またはその生合成前駆体糖鎖の量と、NASH患者試料中の上記糖鎖の量とを比較することによって肝線維化の進展を評価してもよい。また例えば、実施例4に記載するように、ROC曲線を用いてカットオフ値を決定することにより肝線維化の進展を評価してもよい。
 肝線維化の進展の評価は、肝線維化がどの段階にあるのかを判定することを包含する。肝線維化段階の分類の一例として以下の新犬山分類が挙げられる:
F0:線維化なし、F1:門脈域の線維性拡大、F2:線維性架橋形成、F3:小葉構造のひずみを伴った線維性架橋形成、F4:肝硬変。
 本発明は、もう1つの態様において、NASHにおける肝線維化の進展を評価するためのマーカーであって、A2F bisect、および/またはA2F bisectの生合成前駆体糖鎖を含むマーカーを提供する。A2F bisect、およびその生合成前駆体糖鎖については上で説明したとおりである。
 本発明のマーカーはA2F bisectだけを含むものであってもよく、1種またはそれ以上のA2F bisectの生合成前駆体糖鎖を含むものであってもよく、あるいはA2F bisectと1種またはそれ以上のA2F bisectの生合成前駆体糖鎖を含むものであってもよい。本発明のマーカーの1の具体例は、A2F bisectのみを含むマーカーである。本発明のマーカーのさらなる具体例は、糖鎖1、2A、2B、3A、3B、4、5A、5Bの7種の糖鎖を含むマーカーである。
 本発明の好ましいマーカーは、IgA2に結合したA2F bisect、およびIgA2に結合したA2F bisectの生合成前駆体糖鎖である。
 試料中の本発明のマーカーの量を測定することによって、患者における肝線維化の進展を評価することができる。肝線維化の評価については上で説明したとおりであるが、以下により具体的に説明する。本発明のNASHにおける肝線維化の進展を評価する方法は、血液中に含まれる糖タンパク質上のA2F bisectおよびその生合成前駆体糖鎖、ならびにIgA2に結合したA2F bisect、およびIgA2に結合したA2Fbisectの生合成前駆体糖鎖の量を基準値と比較することを含む。例えば、対象におけるA2F bisectおよびその生合成前駆体糖鎖、ならびにIgA2に結合したA2F bisect、およびIgA2に結合したA2Fbisectの生合成前駆体糖鎖のうちのいずれかの量が健常人群との判定用閾値(基準値)以上となった場合に、NASHにおける肝線維化を判定することができる。
また、前述のように、肝線維化の進展は、F0:線維化なし、F1:門脈域の線維性拡大、F2:線維性架橋形成、F3:小葉構造のひずみを伴った線維性架橋形成、F4:肝硬変区別に従うことができる。本発明の対象のNASHにおける肝線維化の進展を評価する方法は、対象の肝臓が上記F0~F4のどの段階にあるかを判定することができる。この場合、予め種々の段階での対象の基準値の範囲を計測しておき、対象におけるA2F bisectおよびその生合成前駆体糖鎖、ならびにIgA2に結合したA2F bisect、およびIgA2に結合したA2Fbisectの生合成前駆体糖鎖のうちのいずれかの量が、特定の範囲に入る場合は、該当する段階である可能性が高い。なお、上記F0~F4の分類には限定されず、異なる分類を使用してもよい。
 本発明のマーカーを、他の肝線維化マーカーと併用することにより、NASHにおける肝線維化の進展の評価の精度を上げることができる。他の肝線維化マーカーの例としてはIV型コラーゲン7S、ヒアルロン酸、M2BPGiなどが挙げられるが、これらに限定されない。
 本発明は、さらにもう1つの態様において、NASHにおける肝線維化の進展を評価するためのキットを提供する。本発明のキットは、上で説明したNASHにおける肝臓線維化の進展を評価するための方法を実施するために使用される。本発明のキットは、A2F bisectおよび/またはA2F bisectの生合成前駆体糖鎖の量を測定するための手段、ならびに/あるいはA2F bisectおよび/またはA2F bisectの生合成前駆体糖鎖を含む。A2F bisect、およびその生合成前駆体糖鎖については上で説明したとおりである。
 本発明のキットにおけるA2F bisect、および/またはA2F bisectの生合成前駆体糖鎖の量を測定するための手段は特に限定されないが、試料中のA2F bisectおよび/またはA2F bisectの生合成前駆体糖鎖が結合しているタンパク質を分離するための手段であってもよい。そのような手段の例としては、A2F bisectおよび/またはA2F bisectの生合成前駆体糖鎖が結合している血中分泌タンパク質に特異的な抗体、抗体断片、相互作用するタンパク質、もしくはペプチドMなどのペプチド類等が挙げられる。A2F bisectおよび/またはA2F bisectの生合成前駆体糖鎖が結合している血中分泌タンパク質の特別な例としては、IgA2が挙げられる。抗体はモノクローナル抗体、ポリクローナル抗体のどちらでもよいが、モノクローナル抗体が好ましい。A2F bisect、および/またはA2F bisectの生合成前駆体糖鎖の量を測定するための手段のさらなる例としては、A2F bisect、および/またはA2F bisectの生合成前駆体糖鎖に結合するレクチン、およびかかるレクチンを含むクロマトグラフィー用担体が挙げられる。上記手段のさらなる例として、グライコブロッティング法およびシアル酸結合様式特異的アミド標識(SALSA法)に用いられる試薬類が挙げられる。
 次にマーカーの測定方法について記載する。各血液にあるマーカー量は、MS法により測定することができる。例えば、血清よりPNGase F消化により、N結合型糖鎖を遊離させ、グライコブロッティング法とシアル酸の結合様式特異的アミド標識(SALSA法)により標識糖鎖を調製する。これにより、標識糖鎖についてMALDI-TOF MSによる解析を行うことができる。また、MS法によらなくても、例えば、血漿中の糖鎖成分を切り出し、これに、A2F bisectおよびその生合成前駆体糖鎖を特異的に認識するレクチン(E4-PHA)と作用させることで定量することができる。レクチンは、同位体元素や蛍光試薬等でラベル化したレクチンを使用することが好ましい。
 また、発明のマーカーとして、特定のタンパク質やペプチドに結合したA2F bisectおよびその生合成前駆体糖鎖を使用することができる。この場合、糖鎖が結合するタンパク質やペプチドに対して選択的に結合する抗体を用いて、この画分を分離し、タンパク質上に存在するA2F bisectおよびその生合成前駆体糖鎖を特異的に認識するレクチンと作用させることで定量することができる。レクチンは、同位体元素や蛍光試薬等でラベル化したレクチンを使用することが好ましい。糖鎖が結合してるタンパク質としてIgA2やIgMを使用することが好ましい。
 なお、上記画分に分離しなくても、特定のタンパク質やぺプチドに結合したA2F bisectおよびその生合成前駆体糖鎖を認識するレクチンや抗体を使用することもできる。
 本発明は、さらにもう1つの態様において、NASHにおける肝繊維化の進展を評価するための方法であって、下記工程:
 (a)試料中のIgA2またはIgMを分離し、次いで
 (b)IgA2またはIgMに結合しているA2F bisectおよび/またはA2F bisectの生合成前駆体糖鎖の量を測定する
を含む方法を提供する。
 試料中に含まれるIgA2またはIgMの分離手段の例としては、特に限定されないが、抗IgA2抗体または抗IgM抗体、該抗体の断片、IgA2またはIgMと相互作用するタンパク質やペプチドなどが挙げられ、これらの手段を適宜選択して使用することができる。本発明者らは、本来はIgGの分離に使用されるプロテインGが本目的の分離において好適に使用できることを見いだしている。
 本発明の方法、マーカーおよびキットはNASH特異的であり、NASHにおける肝線維化の進展を評価することができる。さらに、本発明の方法、マーカーおよびキットを用いて該評価を非侵襲的に行うこともできる。
 本発明の方法、マーカーおよびキットを用いてNASHの治療効果を評価してもよい。また、本発明の方法、マーカーおよびキットを用いてNASHの予後を評価してもよい。さらに、本発明の方法、マーカーおよびキットを用いてNASHの治療薬の有効性を評価してもよい。これらの評価もまた非侵襲的に行うことができる。
 以下に実施例を示して本発明をより詳細かつ具体的に説明するが、実施例は本発明の範囲を限定するものではない。
 なお、本願は、2019年7月12日出願の日本国特許出願第2019-129798号に対して優先権を主張するものであり、参照により、日本国特許出願第2019-129798号の全内容を本願に一体化させる。
 A2F bisect、および/またはA2F bisectの生合成前駆体糖鎖の有用性を検証するために、NASH F0、F1またはF2(F1/F2)、F3またはF4(F3/F4)(それぞれ20検体、22検体、28検体)の血清を用いて網羅的なN-結合型糖鎖を実施した。各血清をエタノール沈殿することで血清タンパク質画分を調製し、グライコブロッティング法とシアル酸の結合様式特異的アミド標識(SALSA法)により標識糖鎖を調製した。標識糖鎖についてMALDI-TOF MSによる解析を行った。
 A2F bisectに関するMALDI-TOF MSによる解析結果を図1に示す。線維化の進展に伴いA2F bisectの発現量が上昇することが確認された。A2F bisectの生合成経路において上流に位置する糖鎖においても、同様に線維化に伴う発現上昇が確認された(図2)。図2において糖鎖1~糖鎖5は上で説明した糖鎖1、糖鎖2(2A、2B)、糖鎖3(3A、3B)、4、糖鎖5(5A、5B)である。これらの結果から、A2F bisectのみならずその生合成前駆体においても、肝線維化に伴う発現上昇が確認された。
 次に、A2F bisectの発現量と肝生検における病理学的な線維化評価および血中における線維化評価因子との相関解析を行った(図3)。その結果、A2F bisectの発現量は線維化の指標であるF因子やfib4 indexと高い相関を示す一方で、炎症を評価するCRPとは相関を示さず、脂肪肝因子(steatosis)とは逆相関を示した。以上の結果より、A2F bisectの発現変化はNASHの線維化因子と高い相関を示すことが確認された。
 A2F bisect糖鎖の疾患特異性を検討するため、C型肝炎患者血清(HCV :25検体)におけるA2F bisect糖鎖の測定を同様の手法で行い、NASH線維群(F0、F1/F2、F3/F4)との発現量の比較を行った(図4)。C型肝炎患者では肝線維が進行している症例を含むにも関わらず、A2F bisect糖鎖の発現量はNASH F3/4群のような高値を示さなかった。NASHでは、線維化が進行するにつれて発現量が増加し、F3/4群ではC型肝炎患者と比較してA2F bisect糖鎖の発現が2倍以上であった。従って、A2F bisect糖鎖はNASH疾患における肝線維化進展を評価できる疾患特異的なマーカーであることが示唆された。
 A2F bisect糖鎖の線維化識別感度を評価するため、肝生検および病理診断により線維化ステージを定義した検体を用いてROC解析を行った(F0(20検体)、F1/2(22検体)、F3/4(28検体))。結果を図5に示す。A2F bisect糖鎖単独の発現量よりも、図2に示した前駆体糖鎖(糖鎖1、糖鎖2(2A、2B)、糖鎖3(3A、3B)、4、糖鎖5(5A、5B))の発現量の総和(SUM2)を用いることでAUCスコアが上昇した。この総和のAUCスコアは、IV型コラーゲン7s(図5では4-7sと表記)やFib-4のAUCスコアと同程度であることが明らかとなった。前駆体糖鎖の総和とIV型コラーゲン7sの曲線の形状には違いが観察された。前駆体糖鎖の総和とIV型コラーゲン7sのコンビネーションによる分析結果(AUCスコア)は、前駆体糖鎖の総和単独およびIV型コラーゲン7s単独のそれらと比べて、いずれも有意に大きいことが示された。またIV型コラーゲン7sのROC曲線における重度線維化診断のカットオフ値は6ng/mLであり、この値を超える偽陽性検体は42検体中 5 検体(F1/2 5検体)であったが、A2F bisectおよび生合成前駆体糖鎖1、2A、2B、3A、3B、4の合算値のカットオフ値(139.7pmol/2.5uL serum)を利用することで、IV型コラーゲン7sによる偽陽性を40%(42検体中3検体)に減らすことが可能となった。
 A2F bisect糖鎖が結合しているタンパク質を同定するために以下の実験を行った。
 NASH F3/4プール血清をプロテインGにより、素通り画分とプロテインG結合画分(溶出画分)に分画し、SDS-PAGEで確認した。グライコブロッティング法により素通り画分と溶出画分のN結合型糖鎖解析を行なった。結果を図6に示す。NASHの線維化で発現上昇が認められたA2F bisect糖鎖が溶出画分に多く含まれていることが明らかとなった。
 NASH F3/4プール血清中のプロテインGによる溶出画分をSDS-PAGEにより分離し、クマシーブリリアントブルー(CBB)染色で検出されたタンパク質バンドについてN結合型糖鎖解析を行なった。結果を図7に示す。バンド8、9と13にA2F bisect糖鎖が検出され、内部標準糖鎖より定量したところバンド9にA2F bisect糖鎖が75%と最も多く含まれていることが明らかとなった。ペプチドマスフィンガープリンティング法(PMF)により各バンドに含まれるタンパク質を同定した結果、バンド8には補体C3とIgM、バンド9にはIgAが含まれていることが明らかとなった。
 標準血清からプロテインGを用いて調製した溶出画分をトリプシンにより消化し、A2F bisect糖鎖が結合するペプチドをLC-MSにより網羅的に解析した結果、IgMおよびIgAサブクラスのうちIgA2が同定された。
 繊維化進展における血清IgA2の濃度を評価するため、IgA2 ELISA(Enzyme-Linked ImmunoSorbent Assay)キットを用いて、F0、F1/2およびF3/4(それぞれ20検体、32検体、35検体)の血清IgA2濃度測定を行った。結果を図8に示す。繊維化の進展に伴って結成IgA2濃度の上昇が見られたが、繊維化の進展に伴うIgA2タンパク質の有意な発現上昇は見られなかった。したがって、繊維化の進展に伴いIgA2におけるA2F bisect糖鎖修飾が促進していることが示された。
 以上の結果より、IgA2に結合したA2F bisect糖鎖は、NASHにおける肝繊維化の有力なバイオマーカーであることがわかった。
 本発明は、肝疾患の診断等において有用である。特に本発明は、NASHにおける肝線維化の進展を評価することにおいて有用である。したがって、本発明は、肝疾患の診断薬の分野、肝疾患の研究の分野などにおいて有用である。

Claims (12)

  1.  試料中の式(I):
    Figure JPOXMLDOC01-appb-C000001
    で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖の量を測定することを含む、NASHにおける肝線維化の進展を評価する方法。
  2.  式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖の量の総和を測定することを含む、請求項1記載の方法。
  3.  式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖が、糖鎖1、2A、2B、3A、3B、4、5A、および5B:
    Figure JPOXMLDOC01-appb-C000002
    からなる群より選択される1種またはそれ以上の構造を有するものである、請求項1または2記載の方法。
  4.  式(I)で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖がIgA2に結合している、請求項1~3のいずれか1項記載の方法。
  5.  試料が血液試料である、請求項1~4のいずれか1項記載の方法。
  6.  NASHにおける肝線維化の進展を評価するためのマーカーであって、式(I):
    Figure JPOXMLDOC01-appb-C000003
    で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖を含むマーカー。
  7.  式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖が、糖鎖1、2A、2B、3A、3B、4、5A、および5B:
    Figure JPOXMLDOC01-appb-C000004
    からなる群より選択される1種またはそれ以上の構造を有するものである、請求項6記載のマーカー。
  8.  式(I)で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖がIgA2に結合している、請求項6または7記載のマーカー。
  9.  NASHにおける肝線維化の進展を評価するためのキットであって、式(I):
    Figure JPOXMLDOC01-appb-C000005
    で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖の量を測定するための手段、および/または式(I)で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖を含むキット。
  10.  式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖が、糖鎖1、2A、2B、3A、3B、4、5A、および5B:
    Figure JPOXMLDOC01-appb-C000006
    からなる群より選択される1種またはそれ以上の構造を有するものである、請求項9記載のキット。
  11.  該手段が、式(I)で示される構造を有する糖鎖および/または式(I)で示される構造を有する糖鎖の生合成前駆体糖鎖が結合しているタンパク質に特異的な抗体、抗体断片、相互作用するタンパク質、もしくはペプチドである、請求項9または10記載のキット。
  12.  該抗体、抗体断片、相互作用するタンパク質、もしくはペプチドが、IgA2に特異的なものである、請求項11記載のキット。
PCT/JP2020/027144 2019-07-12 2020-07-10 非アルコール性脂肪肝炎の血中線維化マーカーの開発 WO2021010349A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/625,856 US20230236194A1 (en) 2019-07-12 2020-07-10 Development of blood fibrosis marker for non-alcoholic steatohepatitis
EP20841396.3A EP3998478A4 (en) 2019-07-12 2020-07-10 DEVELOPMENT OF A BLOOD FIBROSIS MARKER FOR NON-ALCOHOLIC STEATOHEPATITIS
JP2021533054A JPWO2021010349A1 (ja) 2019-07-12 2020-07-10
CN202080064043.XA CN114364985A (zh) 2019-07-12 2020-07-10 非酒精性脂肪性肝炎的血液纤维化标志物的开发

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019129798 2019-07-12
JP2019-129798 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021010349A1 true WO2021010349A1 (ja) 2021-01-21

Family

ID=74209901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027144 WO2021010349A1 (ja) 2019-07-12 2020-07-10 非アルコール性脂肪肝炎の血中線維化マーカーの開発

Country Status (5)

Country Link
US (1) US20230236194A1 (ja)
EP (1) EP3998478A4 (ja)
JP (1) JPWO2021010349A1 (ja)
CN (1) CN114364985A (ja)
WO (1) WO2021010349A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287805A (ja) * 1998-02-03 1999-10-19 Wako Pure Chem Ind Ltd 胎児染色体異常の判別方法
WO2009069776A1 (ja) * 2007-11-30 2009-06-04 National University Corporation Hokkaido University 糖鎖分析による肝疾患の診断方法
WO2015129384A1 (ja) * 2014-02-27 2015-09-03 シスメックス株式会社 糖鎖を含む標的物質の検出用試薬、検出方法、および糖鎖を含む標的物質を検出するために用いられる担体ならびにその製造方法
JP2017502307A (ja) * 2014-01-08 2017-01-19 李▲錚▼ 唾液の糖タンパク質糖鎖に基づいて肝疾患を識別するレクチンチップ及びその使用
WO2017126514A1 (ja) 2016-01-19 2017-07-27 国立大学法人北海道大学 非アルコール性脂肪肝炎検出方法
JP2018066631A (ja) * 2016-10-19 2018-04-26 日本化薬株式会社 Nashやnafldの進展度の検査方法及び炎症疾患や癌の検査方法
JP2018184406A (ja) * 2011-10-19 2018-11-22 ロシュ グリクアート アーゲー フコシル化抗体の分離法
JP2019129798A (ja) 2018-02-02 2019-08-08 東ソー株式会社 加熱サンプルを用いたより迅速で効率的な等温増幅反応
JP2020020755A (ja) * 2018-08-03 2020-02-06 国立大学法人金沢大学 肝硬変の診断方法、非アルコール性脂肪肝炎及び肝細胞がんの合併症の診断方法並びに非アルコール性脂肪肝炎及び食道胃静脈瘤の合併症の診断方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2995145C (en) * 2015-08-26 2023-08-01 Vib Vzw Means and methods for monitoring inflammation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287805A (ja) * 1998-02-03 1999-10-19 Wako Pure Chem Ind Ltd 胎児染色体異常の判別方法
WO2009069776A1 (ja) * 2007-11-30 2009-06-04 National University Corporation Hokkaido University 糖鎖分析による肝疾患の診断方法
JP2018184406A (ja) * 2011-10-19 2018-11-22 ロシュ グリクアート アーゲー フコシル化抗体の分離法
JP2017502307A (ja) * 2014-01-08 2017-01-19 李▲錚▼ 唾液の糖タンパク質糖鎖に基づいて肝疾患を識別するレクチンチップ及びその使用
WO2015129384A1 (ja) * 2014-02-27 2015-09-03 シスメックス株式会社 糖鎖を含む標的物質の検出用試薬、検出方法、および糖鎖を含む標的物質を検出するために用いられる担体ならびにその製造方法
WO2017126514A1 (ja) 2016-01-19 2017-07-27 国立大学法人北海道大学 非アルコール性脂肪肝炎検出方法
JP2018066631A (ja) * 2016-10-19 2018-04-26 日本化薬株式会社 Nashやnafldの進展度の検査方法及び炎症疾患や癌の検査方法
JP2019129798A (ja) 2018-02-02 2019-08-08 東ソー株式会社 加熱サンプルを用いたより迅速で効率的な等温増幅反応
JP2020020755A (ja) * 2018-08-03 2020-02-06 国立大学法人金沢大学 肝硬変の診断方法、非アルコール性脂肪肝炎及び肝細胞がんの合併症の診断方法並びに非アルコール性脂肪肝炎及び食道胃静脈瘤の合併症の診断方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KUNO AIKEHARA YTANAKA Y ET AL.: "A serum ''sweet-doughnut'' protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis", SCI REP, vol. 3, 2013, pages 1065
See also references of EP3998478A4
SUZUKI AANGULO PLYMP JLI DSATOMURA SLINDOR K: "Hyaluronic acid, an accurate serum marker for severe hepatic fibrosis in patients with non-alcoholic fatty liver disease", LIVER INT, vol. 25, 2005, pages 779 - 786
TIANHUI LXIAOMING WMORTEN ADIANA J.LFEDERICA G: "Molecular Serum Markers of Liver Fibrosis", BIOMARK INSIGHTS., vol. 7, 2012, pages 105 - 117

Also Published As

Publication number Publication date
EP3998478A1 (en) 2022-05-18
JPWO2021010349A1 (ja) 2021-01-21
EP3998478A4 (en) 2023-08-09
US20230236194A1 (en) 2023-07-27
CN114364985A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
JP6029218B2 (ja) 肺癌鑑別マーカー
US10866240B2 (en) Method for analyzing PSA and method for distinguishing prostate cancer from prostatic hypertrophy using that method for analyzing PSA
US8557602B2 (en) Method for detecting and distinguishing intrahepatic cholangiocarcinoma
US9796761B2 (en) Glycan markers as measure of disease state of hepatic diseases
WO2015182580A1 (ja) 大腸がんの転移検出方法
US20130005598A1 (en) Methods for Diagnosing The Malignant Potential of Pancreatic Cystic Lesions
US20140274794A1 (en) Methods and Compositions for Diagnosis of Ovarian Cancer
WO2014010055A1 (ja) 上皮性卵巣癌鑑別マーカー
USRE46572E1 (en) Plasma biomarker tool for the diagnosis of liver cancer comprising liver carboxylesterase 1 and liver cancer screening method
JP5906447B2 (ja) 上皮性卵巣癌鑑別マーカー
JP2013525761A (ja) 癌診断のための方法およびキット
EP3677910B1 (en) Diagnosing pancreatic cancer using methionyl-trna synthetase and ck19
KR20150129932A (ko) 보체인자 b 단백질에 특이적으로 결합하는 항체를 포함하는 췌장암 진단용 키트
WO2021010349A1 (ja) 非アルコール性脂肪肝炎の血中線維化マーカーの開発
CN116121392A (zh) 用于胰腺囊性肿瘤诊断的方法和试剂
KR102131860B1 (ko) 아르기닌이 메틸화된 ggt1에 특이적으로 결합하는 대장암 진단용 바이오마커 조성물
TW202311745A (zh) 肝細胞癌之早期檢測
JP7522412B2 (ja) 前立腺癌の診断を補助する方法
JP6168625B2 (ja) 上皮性卵巣癌鑑別マーカー
Schulz et al. Clinical laboratory testing in human medicine based on the detection of glycoconjugates
KR102128251B1 (ko) 아르기닌이 메틸화된 drd2에 특이적으로 결합하는 대장암 진단용 바이오마커 조성물
JP7539369B2 (ja) 病態情報生成方法、病態情報生成システム、he4糖鎖分析キット及びhe4
US20120214169A1 (en) Differential levels of haptoglodin isoforms in small cell lung cancer
WO2023209065A1 (en) Glycan structures of haptoglobin as a biomarker of hepatocellular carcinoma
WO2023209067A1 (en) Glycan structures of haptoglobin as a biomarker of hepatocellular carcinoma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020841396

Country of ref document: EP

Effective date: 20220214