WO2021010301A1 - DUX4 pre-mRNAのスプライシングを変化させるアンチセンスオリゴヌクレオチド - Google Patents

DUX4 pre-mRNAのスプライシングを変化させるアンチセンスオリゴヌクレオチド Download PDF

Info

Publication number
WO2021010301A1
WO2021010301A1 PCT/JP2020/026950 JP2020026950W WO2021010301A1 WO 2021010301 A1 WO2021010301 A1 WO 2021010301A1 JP 2020026950 W JP2020026950 W JP 2020026950W WO 2021010301 A1 WO2021010301 A1 WO 2021010301A1
Authority
WO
WIPO (PCT)
Prior art keywords
dux4
oligonucleotide
pharmaceutically acceptable
acceptable salt
gene
Prior art date
Application number
PCT/JP2020/026950
Other languages
English (en)
French (fr)
Inventor
小泉 誠
晃史 中村
隆廣 片桐
弘明 三橋
Original Assignee
第一三共株式会社
学校法人東海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社, 学校法人東海大学 filed Critical 第一三共株式会社
Priority to CN202080045492.XA priority Critical patent/CN114026234A/zh
Priority to BR112021024764A priority patent/BR112021024764A2/pt
Priority to US17/621,449 priority patent/US20220364086A1/en
Priority to CA3142925A priority patent/CA3142925A1/en
Priority to JP2021533025A priority patent/JPWO2021010301A1/ja
Priority to EP20841146.2A priority patent/EP3998108A1/en
Priority to AU2020313255A priority patent/AU2020313255A1/en
Priority to KR1020217040852A priority patent/KR20220032004A/ko
Publication of WO2021010301A1 publication Critical patent/WO2021010301A1/ja
Priority to IL288596A priority patent/IL288596A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • C12N2310/33415-Methylcytosine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/33Alteration of splicing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to an antisense oligonucleotide that alters the splicing of DUX4 pre-mRNA.
  • Facioscapulohumeral muscular dystrophy is a muscular dystrophy that shows strong muscle atrophy and weakness in the facioscapulohumeral muscles around the shoulder blades and upper arms (Non-Patent Document 1: Tawil R. and Van Der Maarel). SM Muscle Nerve 2006, 34: 1-15). The onset period is very wide, from 0 to 60s, but generally from around teens, symptoms such as difficulty in raising arms, whistling, and poor facial expression occur. Symptoms progress slowly, but the lower limbs are gradually impaired, often resulting in impaired walking. In addition, the degree of muscle damage is often different on the left and right.
  • Non-Patent Document 2 Arahata et al., Muscle Nerve 1995, 2: S56- S66.
  • Non-Patent Document 3 Padberg et al., Muscle Nerve 1995, 2: S73-S80. It is considered to be the second most common muscular disease after Duchenne muscular dystrophy and myotonic muscular dystrophy, and the prevalence is reported to be 1 in 14,000 to 20,000 in Europe and the United States (Non-Patent Document 4: Padberg et).
  • Non-Patent Document 5 Mostacciuolo et al., Clin Genet 2009, 75: 550-555;
  • Non-patent Document 6 Norwood et al, Brain 2009, 132: 3175-3186;
  • Non-patent Document 7 Deenen et al., Neurology 2014, 83: 1056-1059).
  • Non-Patent Document 8 Lemmers et al. ., Science 2010, 329: 1650-1653.
  • FSHD takes the form of dominant inheritance, and the disease is linked to the end of the long arm of chromosome 4 (4q35 region) (Non-Patent Document 9: Wijmenga et al., Nat Genet 1992, 2: 26-30).
  • D4Z4 In this 4q35 region, there is a region called D4Z4 in which a 3.3 kb sequence is repeated (D4Z4 repeat), which is normally repeated 11-100 times and is in a highly DNA-methylated heterochromatin state.
  • D4Z4 repeats on one chromosome 4 were shortened to 10 times or less, and as a result, DNA methylation in the 4q35 region was reduced (Non-Patent Document 10: van Overveld et al., Nat Genet 2003, 35: 315-317).
  • FSHD1 type The type in which this shortening of D4Z4 repeat is seen.
  • FSHD2 type a normal D4Z4 repeat count
  • SMCHD1 SMCHD1 gene involved in the methylation of D4Z4 repeats
  • Non-Patent Document 12 Gabriels et al., Gene 1999, 236: 25-32.
  • Expression of DUX4 in skeletal muscle occurs frequently only when the following two conditions are met. The first is a decrease in DNA methylation in the D4Z4 region and a loosening of the heterochromatin structure. The second is that the haplotypes called 4qA and 4qB existing on the 3'side of the D4Z4 repeat are 4qA (Non-Patent Document 13: Lemmers et al., Am J Hum Genet 2007, 81: 884-894). ..
  • the 4qA sequence contains a polyA addition sequence (ATTAAA) and acts as a polyA addition sequence that stabilizes DUX4 mRNA (Non-Patent Document 14: Lemmers et al., Science 2010, 329: 1650-1653). Since the 4qB sequence does not contain the polyA addition sequence, FSHD does not develop in people whose D4Z4 repeat of alleles with the 4qB sequence is shortened to 10 or less.
  • DUX4 encodes a transcription factor and can produce transcription products DUX4-fl and DUX4-s by alternative splicing (Non-Patent Document 15: Snider et al., PLoS Genet 2010, 6: e1001181). Full-length DUX4-fl is frequently expressed in FSHD patients (Non-Patent Document 16: Jones et al., Hum Mol Genet 2012, 21: 4419-4430), via the transcriptional activation domain at the C-terminus.
  • Non-Patent Document 17 Choi et al., Nucleic Acids Res 2016, 44: 5161-5173; Non-Patent Document 18: Mitsuhashi et al., Biol Open 2018, 7: bio033977
  • short-type DUX4-s is slightly expressed in cells derived from healthy humans, but does not function as a transcription factor because it does not have a transcription activation domain.
  • the DUX4-fl protein activates the expression of genes expressed in early embryos and testis such as PRAMEF2, TRIM43, and ZSCAN4 (Non-Patent Document 19: Geng et al., Dev Cell 2012, 22: 38-51).
  • Non-Patent Document 20 Kowaljow et al., Neuromuscul Disord 2007, 17: 611-623; Non-Patent Document 21: Wallace et al., Ann Neurol 2011, 69: 540-552) and muscle.
  • Non-Patent Document 22 Bosnakovski et al., EMBO J 2008, 27: 2766-2779;
  • Non-Patent Document 23 Banerji et al., Nat Communi 2017, 8: 2152), Inhibition of nonsense codon-mediated mRNA degradation (
  • Non-Patent Document 24 Feng et al., ELife 2015, 4: e04996), Formation of intracellular double-stranded RNA (Non-Patent Document 25: Shadle et al., PLoS Genet 2017, 13: e1006658), Protein aggregation (Non-Patent Document 25: Shadle et al., E1006658),
  • Patent Document 26 Homma et al., Ann Clin Transl Neurol 2015, 2: 151-166), etc.
  • Non-Patent Document 27 Jones et al., PLoS One 2016, 11: e0150938), Xenopus (Non-Patent Document 28: Wuebbles et al. Int J Clin Exp Pathol 2010, 3: 386-400), Zebra Fish (Non-Patent Document 28: Wuebbles et al.
  • Patent Document 29 Mitsuhashi et al., Hum Mol Genet 2013, 22: 568-577), Mouse (Non-Patent Document 30: Jones and Jones, PLoS One 2018, 13: e0192657; Non-Patent Document 31: Bosnakovski et al., An individual model expressing DUX4-fl in NatCommun 2017, 8: 550) has also been shown to induce cytotoxicity and symptoms similar to FSHD, and DUX4-fl is involved in the development of FSHD. It is believed that there is.
  • Non-Patent Document 32 De laco et al., Nat Genet 2017, 49: 941-945; Non-Patent Document 33: Hendrickson et al., Nat Genet 2017, 49. : 925-934).
  • DUX4-fl and DUX4-s have a common DNA binding domain on the N-terminal side. Therefore, when DUX4-fl and DUX4-s are present at the same time, they are considered to bind competitively to the same DNA. In experiments using cultured cells, when DUX4-fl and DUX4-s were introduced at a ratio of 1: 1, luciferase activation by DUX4-fl was suppressed to about 20%.
  • Non-Patent Document 34 Geng et al., Dev Cell 2012, 22: 38-51
  • DUX4-fl muscular dystrophy caused by DUX4-fl was observed.
  • Symptoms were alleviated
  • Non-Patent Document 35 Mitsuhashi et al., Hum Mol Genet 2013, 22: 568-577. Since DUX4-s has no transcription-promoting activity, it is considered to be the result of competitive inhibition of the target gene.
  • An object of the present invention is to establish a new treatment method for facial scapulohumeral muscular dystrophy.
  • antisense oligonucleotides are used to convert the splicing of the DUX4 gene from DUX4-fl to DUX4-s (Fig. 1). It may be possible to suppress cell death by reducing the relative amount of DUX4-fl transcription.
  • the present invention has been completed based on this idea.
  • the gist of the present invention is as follows.
  • (1) Contains an oligonucleotide having 15 to 30 bases consisting of a nucleotide sequence complementary to the region of nucleotide numbers 502 to 556 or 578 to 612 of DUX4-fl mRNA consisting of the nucleotide sequence of SEQ ID NO: 1 and having a 5'end thereof.
  • the oligonucleotide or a pharmaceutically acceptable salt thereof which is an oligonucleotide whose 3'end may be chemically modified and can convert the splicing of the DUX4 gene from DUX4-fl to DUX4-s.
  • (1) to (9) which is an oligonucleotide having a nucleotide number of 15 to 30 and consisting of a nucleotide sequence complementary to the region of nucleotide numbers 506 to 549 of the nucleotide sequence of SEQ ID NO: 1.
  • the oligonucleotide or a pharmaceutically acceptable salt thereof (11) Containing a sequence of at least 15 consecutive nucleotides in any of the sequences of SEQ ID NOs: 5 to 31 (where t in the sequence may be u and u may be t).
  • the oligonucleotide or a pharmaceutically acceptable salt thereof Conta sequence of at least 15 consecutive nucleotides in any of the sequences of SEQ ID NOs: 5 to 31 (where t in the sequence may be u and u may be t).
  • An oligonucleotide consisting of any of the following sequences or a pharmaceutically acceptable salt thereof; HO-G m1s -G e2s -G m1s -A m1s -G e2s -C m1s -A m1s -G e2s -G m1s -G m1s -T e2s -G m1s -A m1s -C e2s -C m1s -C m1s - C e2s- C m1t- H (DUX4-006); HO-G m1s- A e2s- C m1s- C m1s- C e2s- A m1s- C m1s- G e2s- A m1s- G m1s- G e2s- A m1s- G m1s- G e2s- G m1s-
  • Am1s , G m1s , C m1s , U m1s represent the corresponding 2'-OMe-RNA that is phosphorothioate-bound to the structure adjacent to the 3'side .
  • C e2t represents the corresponding ENA (the base site of C is 5-methylcytosine) that is phosphodiester-bonded to the structure adjacent to the 3'side .
  • a m1t , G m1t , and C m1t represent the corresponding 2'-OMe-RNA that is phosphodiester-bonded to the structure adjacent to the 3'side . ].
  • oligonucleotide according to (15), wherein the disease or symptom caused by the expression of the DUX4-fl gene is scapulohumeral muscular dystrophy, or a pharmaceutically acceptable salt thereof.
  • a therapeutic agent for a disease or symptom caused by the expression of the DUX4-fl gene which comprises the oligonucleotide according to any one of (1) to (16) or a pharmaceutically acceptable salt thereof.
  • the therapeutic agent according to (18), wherein the disease or symptom caused by the expression of the DUX4-fl gene is scapulohumeral muscular dystrophy.
  • An agent that converts the splicing of the DUX4 gene from DUX4-fl to DUX4-s which comprises the oligonucleotide according to any one of (1) to (16) or a pharmaceutically acceptable salt thereof.
  • Method. The therapeutic method according to (21), wherein the disease or symptom caused by the expression of the DUX4-fl gene is scapulohumeral muscular dystrophy.
  • the transcription amount of DUX4-fl can be reduced by converting the splicing of the DUX4 gene from DUX4-fl to DUX4-s using an antisense oligonucleotide.
  • This specification includes the contents described in the Japanese patent application, Japanese Patent Application No. 2019-129735 and / or drawings which are the basis of the priority of the present application.
  • D4 is a fertilized egg in which only the DUX4 minigene construct is injected
  • D4 + DUX4-048 is a fertilized egg in which both the DUX4 minigene construct and the compound of the example (DUX4-048) are injected.
  • the PCR product is shown.
  • M1 and M2 indicate markers, and [UI] indicates PCR products from uninjected fertilized eggs.
  • the present invention has 15 to 15 bases consisting of a nucleotide sequence complementary to the region of nucleotide numbers 502 to 556 or 578 to 612 (preferably the region of 506 to 549) of DUX4-fl mRNA consisting of the nucleotide sequence of SEQ ID NO: 1.
  • oligonucleotides, pharmaceutically acceptable salts or solvates thereof are provided.
  • sequence information of DUX4-fl mRNA is registered in GenBank, and the registration number (accession number) is HQ266761.
  • the base sequence is shown in SEQ ID NO: 1 in the sequence listing.
  • sequence of DUX4-s mRNA is the sequence of base numbers 1 to 477 of the base sequence of SEQ ID NO: 1.
  • DUX4-fl and DUX4-s are different splicing isoforms transcribed from one DUX4 gene, DUX4-fl is a full-length type (about 55 kDa), and DUX4-s is a short type (about 20 kDa).
  • DUX4-fl exerts a strong transcriptional activation ability via the transcriptional activation domain at the C-terminal, and it is considered that DUX4-fl is involved in the development of FSHD.
  • short-type DUX4-s is slightly expressed in cells derived from healthy humans, but does not function as a transcription factor because it does not have a transcription activation domain.
  • the oligonucleotide of the present invention can convert the splicing of the DUX4 gene from DUX4-fl to DUX4-s.
  • DUX4-fl usually does not contain introns, but there are patients who express what remains intron 1. Therefore, DUX4-fl may or may not contain an intron.
  • the degree of conversion from DUX4-fl to DUX4-s does not matter, but the conversion rate is preferably 10% or more, and more preferably 25% or more.
  • the degree of conversion from DUX4-fl to DUX4-s can be measured by the following method.
  • the oligonucleotide of the present invention is transfected into cells, total RNA is extracted from the transfected cells, a reverse transcription reaction is carried out, and then PCR is performed using a primer that amplifies both DUX4-fl and DUX4-s. Double-stranded DNA is obtained in the reaction.
  • Double-stranded DNA amplified from DUX4-fl and DUX4-s by gel electrophoresis can be separated as two bands, and the bands can be visualized to measure the degree of conversion.
  • the degree of visualization differs depending on the size of the amplified double-stranded DNA, so care must be taken to determine the degree of conversion.
  • the amount of mRNA of DUX4-fl and DUX4-s can be quantified to determine the degree of conversion. Can also be measured.
  • DUX4-fl and DUX4-s proteins Converted by detecting DUX4-fl and DUX4-s proteins in the sample by Western blotting, or by detecting peptide fragments specific to DUX4-fl and DUX4-s proteins by mass spectrometry. The degree of can be measured.
  • any of the sequences of SEQ ID NOs: 2-85 (preferably SEQ ID NOs: 5-31) (provided that t in the sequence may be u and u may be t. ) Contain a sequence of at least 15 consecutive nucleotides.
  • the number of bases of the oligonucleotide of the present invention is preferably 15 to 30, preferably 16 to 18, and more preferably 18.
  • an oligonucleotide having 15 to 30 bases consisting of a nucleotide sequence complementary to the region of nucleotide numbers 506 to 549 of the nucleotide sequence of SEQ ID NO: 1 can be exemplified, which is more preferable of the present invention.
  • a sequence of at least 15 consecutive nucleotides in any of the sequences of SEQ ID NOs: 5 to 31 (where t in the sequence may be u and u may be t). Oligonucleotides containing can be exemplified.
  • the oligonucleotide (antisense oligonucleotide) of the present invention may be any of natural DNA, natural RNA, DNA / RNA chimera, and modified products thereof, but at least one of the nucleotides constituting the oligonucleotide is used. It is preferably a modified nucleotide.
  • the modified nucleotide in the present invention includes a sugar-modified nucleotide (for example, a D-ribofuranose modified with a hydroxyl group at the 2'position (D-ribofuranose 2'-O-alkylated, D). -Revofuranose 2'-, 4'-crosslinked (D-ribofuranose 2'-O, 4'-C-alkyleneated, etc.), phosphodiester bond modified (For example, thioated, base-modified, and combinations thereof, etc. can be exemplified. At least one D-ribofuranose constituting an antisense oligonucleotide is 2'-O-alkylated.
  • a sugar-modified nucleotide for example, a D-ribofuranose modified with a hydroxyl group at the 2'position (D-ribofuranose 2'-O-alkylated, D).
  • RNA Ribonucleotide containing both of the acids has higher resistance to the nuclease, a higher therapeutic effect can be expected.
  • oligonucleotide (antisense oligonucleotide) of the present invention as an example of sugar modification, 2'-O-alkylation of D-ribofuranose (for example, 2'-O-methylation, 2'-O-amino) Ethylation, 2'-O-propylation, 2'-O-allylation, 2'-O-methoxyethylation, 2'-O-butylation, 2'-O-pentylation, 2'-O-propargyl 2'-O, 4'-C-alkyleneation of D-ribofuranose (eg, 2'-O, 4'-C-ethyleneation, 2'-O, 4'-C-methyleneation, etc.) 2'-O, 4'-C-propyleneation, 2'-O, 4'-C-tetramethyleneation, 2'-O, 4'-C-pentamethyleneation, etc.), S-cEt (2', 2'-, 4'-, 4
  • oligonucleotide (antisense oligonucleotide) of the present invention examples of modification of the phosphate diester bond include phosphorothioate bond, methylphosphonate bond, methylthiophosphonate bond, phosphorodithioate bond, phosphoromidate bond and the like. Can be done.
  • examples of base modification include 5-methylation, 5-fluorolation, 5-bromolation, 5-iodolation, N4-methylation, and thymine of cytosine.
  • 5-Demethylation (uracil) 5-fluorolation, 5-bromolation, 5-iodolation, N6-methylation of adenine, 8-bromolation, N2-methylation of guanine, 8-bromolation, etc. Can be done.
  • the nucleotide residues constituting the oligonucleotide of the present invention describes a structure in the Examples below, A t, G t, 5meC t, C t, T t, U t, A p, G p, 5meC p , C p, T p, U p, A s, G s, 5meC s, C s, T s, U s, A m1t, G m1t, C m1t, 5meC m1t, U m1t, A m1p, G m1p, C m1p , 5meC m1p , U m1p , A m1s , G m1s , C m1s , 5meC m1s , U m1s , A 2t , G 2t , C 2t , T 2t , A e2p , G e2p , C e2p
  • Suitable oligonucleotides of the present invention are the oligonucleotides shown in Tables 1 to 3, and more suitable ones are the oligonucleotides shown below.
  • the oligonucleotide (antisense oligonucleotide) of the present invention can be used in the literature (Nucleic Acids Research, 12, 4539 (1984)) using a commercially available synthesizer (for example, model 392 by the phosphoramidide method of PerkinElmer). ) Can be synthesized according to the method described in).
  • the phosphoramidite reagents used in this case are natural nucleosides and 2'-O-methylnucleosides (ie, 2'-O-methylguanosine, 2'-O-methyladenosine, 2'-O-methylcytidine, For 2'-O-methyluridine), commercially available reagents can be used.
  • the 2'-O-alkylguanosine, adenosine, cytidine and uridine having 2 to 6 carbon atoms in the alkyl group are as follows.
  • 2'-O-aminoethylguanosine, adenosine, cytidine, and uridine can be synthesized according to the literature (Blommers et al. Biochemistry (1998), 37, 17714-17725.).
  • 2'-O-propylguanosine, adenosine, cytidine, and uridine can be synthesized according to the literature (Lesnik, E.A. et al. Biochemistry (1993), 32, 7832-7838.).
  • reagents can be used for 2'-O-allyl guanosine, adenosine, cytidine, and uridine.
  • 2'-O-methoxyethylguanosine, adenosine, cytidine, and uridine can be synthesized according to the patent (US6261840) or the literature (Martin, P. Helv. Chim. Acta. (1995) 78, 486-504.
  • 2'-O-butylguanosine, adenosine, cytidine, and uridine can be synthesized according to the literature (Lesnik, E.A. et al. Biochemistry (1993), 32, 7832-7838.).
  • 2'-O-pentylguanosine, adenosine, cytidine, and uridine can be synthesized according to the literature (Lesnik, E.A. et al. Biochemistry (1993), 32, 7832-7838.).
  • reagents can be used for 2'-O-propargylguanosine, adenosine, cytidine, and uridine.
  • 4'-O, 4'-C-methyleneguanosine, adenosine, cytidine, 5-methylcytidine and thymidine 2'-O with 2-5 carbon atoms in the alkylene group according to the method described in WO99 / 14226.
  • 4'-C-alkylene guanosine, adenosine, cytidine, 5-methylcytidine and thymidine can be produced according to the method described in WO00 / 47599.
  • S-cEt (constrained ethyl) can be synthesized according to the literature (Seth, P.P. et al. J.Org.Chem (2010), 75, 1569-1581.).
  • AmNA can be synthesized according to the literature (Yahara, A. et al. ChemBioChem (2012), 13, 2513-2516.) Or WO2014 / 109384.
  • the nucleic acid base sequences are adenine (A) or (a), guanine (G) or (g), cytosine (C) or (c), thymine (T) or (t), and , Uracil can be described as (U) or (u), respectively. 5-Methylcytosine can be used instead of cytosine.
  • uracil (U) or (u) and thymine (T) or (t) are compatible. Both uracil (U) or (u) and thymine (T) or (t) can be used for base pairing with the complementary strand adenine (A) or (a).
  • Antisense having a phosphorothioate bond by reacting a reagent such as sulfur, tetraethylthiuram disulfide (TETD, Applied Biosystems), Beaucage reagent (Glen Research), or xanthan hydride after coupling the phosphoramidite reagent.
  • a reagent such as sulfur, tetraethylthiuram disulfide (TETD, Applied Biosystems), Beaucage reagent (Glen Research), or xanthan hydride after coupling the phosphoramidite reagent.
  • Oligonucleotides can be synthesized (Tetrahedron Letters, 32, 3005 (1991), J. Am. Chem. Soc. 112, 1253 (1990), PCT / WO98 / 54198).
  • CPG controlled pore glass
  • a commercially available one with 2'-O-methylnucleoside bound can be used.
  • 2'-O, 4'-C-methyleneguanosine, adenosine, 5-methylcytidine and thymidine 2'-O having 2 to 5 carbon atoms in the alkylene group according to the method described in WO99 / 14226.
  • an oligonucleotide in which a hydroxyalkyl phosphate group or an aminoalkyl phosphate group is bonded to the 3'end can be synthesized.
  • the oligonucleotide of the present invention can be chemically modified by binding its 3'end and / or 5'end to a molecular structure other than the nucleotide via a phosphodiester bond or a phosphorothioate bond.
  • the present invention also provides oligonucleotides chemically modified in this way.
  • 5'-Amino-Modifier C6 (Glen Research)
  • 5'-TFA-Amino-Modifier C6-CE Phosphoramidite 5'-TFA-Amino-Modifier-C5-
  • CE Phosphoramidite Link Technologies
  • Hydrophobic groups may be present at the 5'end and / or the 3'end of the oligonucleotide (antisense oligonucleotide) of the present invention.
  • Aminoalkyl phosphate groups containing fatty acids may be further attached to the 5'end and / or the 3'end of the oligonucleotide (antisense oligonucleotide) of the present invention, for example, the 5'end of the oligonucleotide.
  • Coupling amidite units corresponding to fatty acids such as 2-Cyanoethyl (6-palmitamidohexyl) diisopropylphosphoramidite (Nucleic Acids Res. (2020) 47, 6029-6044, Link Technologies) after the chain extension of the oligonucleotide having the target sequence is completed. It can be synthesized by making it.
  • An oligonucleotide having an aminoalkyl phosphate group (for example, an alkyl having 3 to 9 carbon atoms) at the 5'end and / or the 3'end and having the target sequence is a myristic acid. It can be synthesized by reacting active esters such as pentafluorophenyl esters of fatty acids such as palmitic acid, stearic acid, arachidic acid, and behenic acid (Nucleic Acids Res. (2020) 47, 6029-6044).
  • active esters such as pentafluorophenyl esters of fatty acids such as palmitic acid, stearic acid, arachidic acid, and behenic acid
  • an oligonucleotide having the target sequence is placed on a solid-phase carrier having an aminoalkyl phosphate group at the 5'end (for example, an alkyl having 3 to 9 carbon atoms). It can also be synthesized by deprotecting and purifying fatty acids such as myristic acid, palmitic acid, stearic acid, arachidic acid, and behenic acid after condensing them with a condensing agent such as HATU (PCT / WO2017 / 192679).
  • a condensing agent such as HATU (PCT / WO2017 / 192679).
  • the oligonucleotide (antisense oligonucleotide) of the present invention can be used as a medicine, specifically, for the treatment of facial scapulohumeral muscular dystrophy. Treatment may be performed before the onset (prevention), at the same time as the onset, or at any time after the onset.
  • the oligonucleotide of the present invention may be used in the form of a pharmaceutically acceptable salt thereof.
  • the pharmaceutically acceptable salt means a salt of an oligonucleotide (antisense oligonucleotide), and examples of such a salt include alkali metal salts such as sodium salt, potassium salt and lithium salt, calcium salt and magnesium.
  • Alkaline earth metal salts such as salts, aluminum salts, iron salts, zinc salts, copper salts, nickel salts, cobalt salts and other metal salts; inorganic salts such as ammonium salts, t-octylamine salts, dibenzylamine salts , Morphorine salt, glucosamine salt, phenylglycine alkyl ester salt, ethylenediamine salt, N-methylglucamine salt, guanidine salt, diethylamine salt, triethylamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine salt, chloroprocine salt, Amine salts such as prokine salts, diethanolamine salts, N-benzyl-phenethylamine salts, piperazine salts, tetramethylammonium salts, organic salts such as tris (hydroxymethyl) aminomethane salts; hydrofluorates, hydrochlorides, bromide Hydroch
  • Oligonucleotides may also exist as solvates (eg, hydrates), and such solvates are also included in the pharmaceutically acceptable salts of the oligonucleotides of the invention. It shall be.
  • the present invention provides a medicament containing the above-mentioned oligonucleotide or a pharmaceutically acceptable salt thereof.
  • the present invention also provides a therapeutic agent for a disease or symptom caused by the expression of the DUX4-fl gene, which comprises the above-mentioned oligonucleotide or a pharmaceutically acceptable salt thereof, particularly a therapeutic agent for facial scapulohumeral muscular dystrophy.
  • the DUX4-fl protein activates the expression of genes expressed in early embryos and testes such as PRAMEF2, TRIM43, and ZSCAN4 (Non-Patent Document 19: Geng et al., Dev Cell 2012, 22: 38-51). Expression of DUX4-fl is caused by apoptosis (Non-Patent Document 20: Kowaljow et al., Neuromuscul Disord 2007, 17: 611-623; Non-Patent Document 21: Wallace et al., Ann Neurol 2011, 69: 540-552) and muscle.
  • Non-Patent Document 22 Bosnakovski et al., EMBO J 2008, 27: 2766-2779;
  • Non-Patent Document 23 Banerji et al., Nat Communi 2017, 8: 2152), Inhibition of nonsense codon-mediated mRNA degradation (
  • Non-Patent Document 24 Feng et al., ELife 2015, 4: e04996), Formation of intracellular double-stranded RNA
  • Non-Patent Document 25 Shadle et al., PLoS Genet 2017, 13: e1006658
  • Protein aggregation Non-Patent Document 25: Shadle et al.
  • Patent Document 26 Homma et al., Ann Clin Transl Neurol 2015, 2: 151-166), etc. have been reported to cause various diseases and symptoms.
  • the oligonucleotide of the present invention Since the splicing of the DUX4 gene is converted from DUX4-fl, which has strong transcriptional activity, to DUX4-s, which does not have transcriptional activity, it has the effect of treating diseases or symptoms caused by the transcriptional activity of DUX4-fl.
  • the therapeutic agent for facial scapulohumeral muscular dystrophy of the present invention is recommended for patients expressing DUX4-fl. From various investigations including the report of Lemmers et al. (Non-Patent Document 8: Lemmers et al., Science 2010, 329: 1650-1653), haplotype 4qA was obtained regardless of whether it was FSHD1 type or FSHD2 type. Since it has been shown that DUX4-fl is expressed in patients with FSHD1, the present invention applies to both FSHD1 and FSHD2 types.
  • oligonucleotide of the present invention antisense oligonucleotide or a pharmaceutically acceptable salt thereof is used for the treatment of facial scapulohumeral muscle dystrophy, it itself or an appropriate pharmaceutically acceptable excipient or diluent. It can be mixed with the above and administered orally by tablets, capsules, granules, powders or syrups, or parenterally by injections, suppositories, patches or external preparations.
  • formulations include excipients (eg, sugar derivatives such as lactose, sucrose, grape sugar, mannitol, sorbitol; starch derivatives such as corn starch, bailesho starch, ⁇ -starch, dextrin; cellulose derivatives such as crystalline cellulose.
  • excipients eg, sugar derivatives such as lactose, sucrose, grape sugar, mannitol, sorbitol
  • starch derivatives such as corn starch, bailesho starch, ⁇ -starch, dextrin
  • cellulose derivatives such as crystalline cellulose.
  • Arabic gum Arabic gum; dextran; organic excipients such as pullulan; silicate derivatives such as light anhydrous silicic acid, synthetic aluminum silicate, calcium silicate, magnesium aluminometasilicate; phosphates such as calcium hydrogen phosphate; calcium carbonate Carbonates such as; inorganic excipients such as sulfates such as calcium sulfate), lubricants (eg, stearic acid; metal stearate salts such as calcium stearate, magnesium stearate; talc; colloidal silica Waxes such as bead wax, gay wax; boric acid; adipic acid; sulfate such as sodium sulfate; glycol; fumaric acid; sodium benzoate; DL leucine; sodium lauryl sulfate, lauryl sulfate such as magnesium lauryl sulfate : Silic acids such as silicic anhydride, silicate hydrate; starch derivatives, etc.
  • emulsifiers eg, colloidal clays such as bentonite, bee gum; metal hydroxides such as magnesium hydroxide, aluminum hydroxide; anionic surfactants such as sodium lauryl sulfate, calcium stearate; Cationic surfactants such as benzalkonium chloride; nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, sucrose fatty acid ester, etc.), stabilizers (like methylparaben, propylparaben) Paraoxybenzoic acid esters; alcohols such as chlorobutanol, benzyl alcohol, phenylethyl alcohol; benzalkonium chloride; phenols such as phenol and cresol; timeroser It is produced by a well-known method using additives such as le; dehydroacetic acid; sorbic acid, etc.), flavoring agents (for example, commonly used sweeteners, acidulants, flavors,
  • the therapeutic agent of the present invention preferably contains 0.1 to 250 ⁇ moles / mL oligonucleotide (antisense oligonucleotide) or a pharmaceutically acceptable salt thereof, preferably 1 to 50 ⁇ moles / mL oligonucleotide (antisense oligonucleotide). It may contain an oligonucleotide) or a pharmaceutically acceptable salt thereof, 0.02 to 10% w / v carbohydrate or polyhydric alcohol and 0.01 to 0.4% w / v pharmaceutically acceptable surfactant.
  • carbohydrate monosaccharides or disaccharides are particularly preferable.
  • these carbohydrates and polyhydric alcohols include glucose, galactose, mannose, lactose, maltose, mannitol and sorbitol. These may be used alone or in combination.
  • surfactant in the present invention include polyoxyethylene sorbitan mono-tri-ester, alkylphenyl polyoxyethylene, sodium taurocholate, sodium collate, and polyhydric alcohol ester.
  • polyoxyethylene sorbitan mono-tri-ester is particularly preferable, and oleate, laurate, stearate and palmitate are particularly preferable as the ester. These may be used alone or in combination.
  • the therapeutic agent of the present invention may more preferably contain 0.03 to 0.09 M pharmaceutically acceptable neutral salt, for example, sodium chloride, potassium chloride and / or calcium chloride.
  • the therapeutic agent of the present invention can more preferably contain 0.002 to 0.05 M of a pharmaceutically acceptable buffer.
  • a pharmaceutically acceptable buffer examples include sodium citrate, sodium glycinate, sodium phosphate, tris (hydroxymethyl) aminomethane. These buffers may be used alone or in combination.
  • the above-mentioned therapeutic agent may be supplied in a solution state.
  • it is usually preferable to freeze-dry it for the purpose of stabilizing the oligonucleotide (antisense oligonucleotide) and preventing a decrease in the therapeutic effect.
  • the therapeutic agent of the present invention also includes those in a lyophilized state for use after reconstitution with a solution so that each component has a predetermined concentration range.
  • Amino acids such as albumin and glycine may be further contained for the purpose of promoting the solubility of the freeze-dried product.
  • oligonucleotide of the present invention antisense oligonucleotide or a pharmaceutically acceptable salt thereof is administered to humans, for example, about 0.01 to 100 mg / kg (body weight) per day for an adult, preferably 0.1.
  • Subcutaneous injection, intravenous drip infusion, or intravenous injection may be performed at a dose of up to 20 mg / kg (body weight) in one or several divided doses, but the dose and frequency of administration are determined by the type of disease, symptoms, and age. , Can be changed as appropriate depending on the administration method and the like.
  • oligonucleotide (antisense oligonucleotide) of the present invention or a pharmaceutically acceptable salt thereof can be performed, for example, as follows. That is, an oligonucleotide (antisense oligonucleotide) or a pharmaceutically acceptable salt thereof is produced by a method well known to those skilled in the art, and this is sterilized by a conventional method to prepare, for example, a 125 mg / mL injectable solution.
  • This solution is intravenously administered to the patient intravenously, for example, in the form of an infusion solution so that the dose of the oligonucleotide (antisense oligonucleotide) is, for example, 10 mg per 1 kg of body weight. Administration is performed, for example, at intervals of one week, and thereafter, this treatment is repeated as appropriate while confirming the therapeutic effect.
  • the dose of the oligonucleotide antisense oligonucleotide
  • Administration is performed, for example, at intervals of one week, and thereafter, this treatment is repeated as appropriate while confirming the therapeutic effect.
  • the oligonucleotide (antisense oligonucleotide) of the present invention and a pharmaceutically acceptable salt thereof can be used to convert the splicing of the DUX4 gene from DUX4-fl to DUX4-s. Accordingly, the present invention provides agents that convert the splicing of the DUX4 gene from DUX4-fl to DUX4-s, including the above oligonucleotides or pharmaceutically acceptable salts thereof.
  • the expression level of DUX4-s in cells expressing DUX4-fl is about 10% or more, preferably 30% or more, as compared with the control.
  • oligonucleotides that can be increased to 50% or more or pharmaceutically acceptable salts thereof can be used, but as long as they have the function of converting DUX4-fl to DUX4-s, the above range Not limited to.
  • the agent of the present invention can be used as a pharmaceutical or as an experimental reagent.
  • the DUX4 gene When used as an experimental reagent, the DUX4 gene can be spliced by treating cells, tissues or organs expressing DUX4-fl with the oligonucleotide of the present invention (antisense oligonucleotide) and a pharmaceutically acceptable salt thereof. You can convert from DUX4-fl to DUX4-s.
  • the oligonucleotide (antisense oligonucleotide) of the present invention and its pharmaceutically acceptable salt may be used in an amount effective for converting the splicing of the DUX4 gene from DUX4-fl to DUX4-s.
  • Examples of cells expressing DUX4-fl include naturally occurring cells such as ES cells, iPS cells, and FSHD patient-derived myoblasts. In addition to naturally occurring cells, recombinant cells into which the DUX4 gene has been introduced can also be exemplified. Examples of tissues and organs expressing DUX4-fl include testis, early developmental embryos at the 4-cell stage, and skeletal muscle of FSHD patients. Expression of DUX4-fl is specific to DUX4-fl protein, such as analysis of DUX4-fl (transcript) in a sample by RT-PCR, detection of DUX4-fl protein in a sample by Western blotting, and DUX4-fl protein specificity. It can be analyzed by detecting the peptide fragment by mass spectrometry.
  • Other reagents used include CAP A for AKTA (1-methylimidazole acetonitrile solution, Sigma-Aldrich, product No. L040050), Cap B1 for AKTA (anacetic acid anhydride / acetonitrile solution, Sigma-Aldrich, product No.
  • Cap B2 for AKTA pyridine-acetonitrile solution, manufactured by Sigma-Aldrich, product No. L050150
  • DCA Devock diichloroacetic acid / toluene solution, manufactured by Sigma-Aldrich, manufactured by product No. L023050
  • the amidite reagent include phosphoramidite of 2'-O-Me nucleoside (adenosine product No. ANP-5751, cytidine product product No. ANP-5752, guanosine product product No. ANP-5753, uridine product product No. ANP).
  • -5754 one manufactured by ChemGenes was used.
  • Example 14 The non-natural phosphoramidite is described in Example 14 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-6-N-benzoyladenosine-3'-O-) of JP-A-2000-297097.
  • Example 27 (2-Cyanoethyl N, N-diisopropyl) phosphoramidite),
  • Example 27 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-2-N-isobutyryl guanosine-3' -O- (2-cyanoethyl N, N-diisopropyl) phosphoramidite)
  • Example 22 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-4-N-benzoyl-5- Methylcytidine-3'-O- (2-cyanoethyl N, N-diisopropyl) phosphoramidite)
  • Example 9 (5'-O-dimethoxytrityl-2'-O, 4'-C-ethylene-5-methyl)
  • a compound of uridine-3'-O- (2-cyanoethyl N, N-diisopropyl) phosphoramidite) was used
  • the oligomer was excised from the support by treating the protected oligonucleotide analog having the target sequence with 600 ⁇ L of concentrated aqueous ammonia, and the protecting group cyanoethyl group on the phosphorus atom and the protecting group on the nucleic acid base were removed.
  • the mixed solution of the oligomer was mixed with 300 ⁇ L of Clarity QSP DNA Loading Buffer (manufactured by Phenomenex) and charged on Clarity SPE 96 well plate (manufactured by Phenomenex).
  • DCA dichloroacetic acid
  • This compound is prepared by reverse phase HPLC (column (Phenomenex, Clarity 2.6 ⁇ m Oligo-MS 100A (2.1 ⁇ 50 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), aqueous 8 mM triethylamine, solution B: methanol, B. %: 10% ⁇ 25% (4 min, linear gradient); 60 ° C.; 0.5 mL / min; 260 nm), and the solution was eluted in 3.384 minutes. The compound was identified by negative ion ESI mass spectrometry (calculated value: 6446.76, measured value: 6446.75).
  • the base sequence of this compound is complementary to the nucleotide number 595-612 of Homo spiens clone 60-1 double homeobox protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No. HQ266761).
  • sequence listing shows the base sequence without distinguishing between the natural nucleoside and the 2'-O, 4'-C-ethylene nucleoside.
  • Examples 2-4-7 The compounds of Examples 2 to 47 shown in Table 1 were synthesized in the same manner as in Example 1.
  • lowercase letters indicate 2'-OMe-RNA
  • underlined uppercase letters indicate ENA.
  • the C base site of ENA is 5-methylcytosine.
  • Each nucleoside is bound by a phosphorothioate.
  • the target region indicates the nucleotide number of Homo spiens clone 60-1 double homeobox protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No. HQ2666761).
  • the molecular weight indicates the measured value by negative ion ESI mass spectrometry.
  • Example 48-95 By synthesizing under the same conditions as in Example 1, the compounds listed in Table 2 below can also be synthesized.
  • lowercase letters indicate 2'-OMe-RNA
  • underlined uppercase letters indicate ENA.
  • the C base site of ENA is 5-methylcytosine.
  • Each nucleoside is bound by a phosphorothioate.
  • the target region indicates the nucleotide number of Homo spiens clone 60-1 double homeobox protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No. HQ2666761).
  • the molecular weight indicates the measured value by negative ion ESI mass spectrometry.
  • Primer 207 (5'-CGCGTCCGTCCGTGAAATTCC-3') (SEQ ID NO: 86)
  • Primer 209 (5'-CAGGGGATATTGTGACATATCTCTGCAC-3') (SEQ ID NO: 87)
  • PrimeStar GXL (Takara; cat.no.R050A) using BAC DNA as a template.
  • the region 2163 bp containing exon 3 was amplified from DUX4 exon 1 by PCR using.
  • the PCR product was purified using MinElute Gel Extraction Kit (QIAGEN, cat.no.28606) and converted into a pCR blunt vector (Thermofisher scientific; cat.no.K275020) using Mighty mix (Takara; cat.no.6023). Ligation. Recombinant plasmid DNA was transformed into E. coli TOP10 competent cells (Thermofisher; cat.no.C404010) and selected on LB / kanamycin agar medium. The transformant colonies were liquid-cultured, and the recombinant plasmid DNA was purified with the GenElute plasmid miniprep kit (SIGMA; cat.no.PLN350).
  • the nucleotide sequence of the obtained recombinant plasmid DNA was deciphered with ABI3500xL Genetic Analyzer (Applied Biosystems), and it was confirmed that exons 1 to 3 of DUX4 were inserted, and it was named plasmid 318.
  • Primer 216 (5'-GAATTCTGCCACCATGGCCCTCCCG-3') (SEQ ID NO: 88) containing EcoRI recognition sequence and kozak sequence and primer 218 (5'-CTCGAGCTATAGGATCCACAGGGAGG-3') (sequence number 88) containing XhoI recognition sequence using plasmid 318 as a template.
  • PCR was performed again with PrimeStar GXL using No. 89), and the EcoRI recognition sequence and kozak sequence were added to the 5'end of the region containing DUX4 exon 1 to exon 3, and the XhoI recognition sequence was added to the 3'end.
  • the DUX4 gene DNA to which the restriction enzyme recognition sequence and the kozak sequence were added was ligated to the pCR blunt vector and named plasmid 320.
  • the plasmid 320 and the expression vector pcDNA3.1 (+) were treated with EcoRI and XhoI at 37 ° C for 2 hours, respectively, and bands were confirmed by agarose gel electrophoresis.
  • DNA was purified from the band corresponding to the DUX4 gene sequence and pcDNA3.1 (+) vector using MinElute Gel Extraction Kit (QIAGEN, cat.no.28606), and the DUX4 gene sequence and vector were ligated using Mighty mix. did.
  • the base sequence was confirmed with ABI3500xL Genetic Analyzer, and it was named DUX4 Minigene Construct.
  • HeLa cells which are cultured cell lines derived from human cervical cancer, were purchased from RIKEN BRC Cell Bank (cat. RCB0007, Tsukuba, Japan). .. HeLa cells were cultured in DMEM (SIGMA; cat.no.D5796) containing 10% FBS (Thermofisher scientific; cat.no.10270-106) at 37 ° C. and a CO 2 concentration of 5%.
  • DMEM SIGMA; cat.no.D5796
  • FBS Thermofisher scientific; cat.no.10270-106
  • the bands of DUX4-fl and DUX4-s were separated by 4.8% polyacrylamide gel electrophoresis, and the band intensity was visualized by LAS3000 (Fujifilm).
  • markers ⁇ / EcoT14I marker (Takara; cat.no.3010 processed with Takara; cat.no.1038A, used as M1 in the figure), 100bp marker (Takara; cat.no.3422B, as M2 in the figure) Used) was used.
  • control indicates that neither the DUX4 minigene construct nor the compound of the example was transfected.
  • D4 indicates transfected with only the DUX4 minigene construct.
  • a band of about 300 bp which seems to be derived from DUX4-s, was observed to be stronger than the lane of D4.
  • Recombinant plasmid DNA was transformed into E. coli TOP10 competent cells and selected on LB / kanamycin agar medium. Transformant colonies were liquid cultured and recombinant plasmid DNA was purified with the GenElute plasmid miniprep kit. Using the obtained recombinant plasmid DNA as a template, perform a Sanger reaction with M13 forward primer (5'-CGACGTTGTAAAACGACGGCCAGT-3'(SEQ ID NO: 92)) and M13 reverse primer (5'-ggaaacagctatgaccatgattac-3' (SEQ ID NO: 93)). , ABI 3500xL Genetic Analyzer was used to analyze the nucleotide sequence.
  • PCR was quantified by the ⁇ Ct method using Step One Plus (Thermofisher scientific) and the RPL13A gene as an internal standard.
  • the sequence of the primers used is as follows. ZSCAN4-Fw: 5'-TGGAAATCAAGTGGCAAAAA-3' (SEQ ID NO: 94); ZSCAN4-Rv: 5'-CTGCATGTGGACGTGGAC-3' (SEQ ID NO: 95) MBD3L2-Fw: 5'-GCGTTCACCTCTTTCCAAG-3' (SEQ ID NO: 96); MBD3L2-Rv: 5'-GCCATGTGGATTTCTCGTTT-3' (SEQ ID NO: 97) TRIM43-Fw: 5'-ACCCATCACTGGACTGGTGT-3'(SEQ ID NO: 98); TRIM43-Rv: 5'-CACATCCTCAAAAGAGCCTGA-3' (SEQ ID NO: 99) The result is shown in FIG.
  • DUX4 Minigene Construct and Example Compounds (Fig. 8A: DUX4-009, DUX4-031, DUX4-036, DUX4-048, Fig. 8B: DUX4-48.7, DUX4-48.11, DUX4-48.12, DUX4-48.13, DUX4-
  • the expression levels of ZSCAN4, MBD3L2, and TRIM43 were decreased in the cells transfected with 52.2) as compared with the cells transfected with the DUX4 minigene construct alone.
  • the obtained plasmid DUX4_pCS2 was linearized with NotI, and mRNA was synthesized in vitro using the mMessage mMachine SP6 transcription kit (ThermoFisher scientific; cat.no.AM1340) using it as a template, and RNeasy MinElute Cleanup kit (QIAGEN; cat. Purified by no.74204).
  • PCR was performed with PrimeSTAR GXL DNA polymerase (Takara; cat.no.R050A) using Primer 222 (SEQ ID NO: 90) and Primer 225 (SEQ ID NO: 91).
  • the bands of DUX4-fl and DUX4-s were separated by 4.8% polyacrylamide gel electrophoresis, and the band intensity was visualized by LAS3000 (Fujifilm).
  • Example 96-130 The compounds shown in Table 3 below were synthesized by synthesizing under the same conditions as in Example 1. In the sequences in the table, lowercase letters indicate 2'-OMe-RNA and uppercase letters indicate ENA. However, the C base site of ENA is 5-methylcytosine. Each nucleoside is bound by a phosphorothioate.
  • the target region indicates the nucleotide number of Homo spiens clone 60-1 double homeobox protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No. HQ2666761). The molecular weight indicates the measured value by negative ion ESI mass spectrometry.
  • Test Example 3 (A) Transfection of DUX4 minigene construct and example compound into HeLa cells and detection of transcripts from DUX4 minigene construct and DUX4 minigene construct and example compound into HeLa cells (DUX4-048, Transfection of DUX4-48.1 to DUX4-48.23, DUX4-052, DUX4-52.1 to DUX4-52.12) and detection of transcripts from the DUX4 minigene construct were described in Test Examples 1 (B) and (C). The same was done. The results of the gel electrophoresis are shown in FIGS. 10 to 13. In the figure, control indicates that neither the DUX4 minigene construct nor the compound of the example was transfected.
  • D4 indicates transfected with only the DUX4 minigene construct.
  • the band of about 300 bp that seems to be derived from DUX4-s is D4.
  • a band stronger than the lane was recognized.
  • the band believed to be derived from DUX4-fl was significantly reduced.
  • Acetone-MeOH-hexane-toluene and ISOLUTE HM-N were added to and dispersed in the residue obtained by adding MeOH and concentrating, the solvent was distilled off under reduced pressure, and the obtained residue was silica gel. The mixture was subjected to column chromatography (hexane / ethyl acetate / methanol) to obtain a crude product (3.98 g) of the intermediate.
  • the oligomer was cleaved from the support by treating the protected oligonucleotide analog with the desired sequence with 600 ⁇ L of concentrated aqueous ammonia, and the protecting group cyanoethyl group on the phosphorus atom and the protecting group on the nucleic acid base were removed.
  • a mixed solution of oligomers was mixed with 300 ⁇ L of Clarity QSP DNA Loading Buffer (manufactured by Phenomenex) and charged onto Clarity QSP cartridge 60 mg / 3 mL 30 ⁇ m (manufactured by Phenomenex).
  • This compound is prepared for reverse phase HPLC (column (Phenomenex, Clarity 2.6 ⁇ m Oligo-MS 100A (2.1 ⁇ 50 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), aqueous 8 mM triethylamine, solution B: methanol, B. %: 10% ⁇ 25% ⁇ 40% ⁇ 65% (4 min ⁇ 6 min ⁇ 8 min, linear compound); 60 ° C.; 0.5 mL / min; 260 nm), and the solution was eluted in 5.7 minutes. Compounds were identified by negative ion ESI mass spectrometry.
  • lowercase letters indicate 2'-OMe-RNA and uppercase letters indicate ENA.
  • the C base site of ENA is 5-methylcytosine.
  • Each nucleoside is bound by a phosphorothioate.
  • the target region indicates the nucleotide number of Homo spiens clone 60-1 double homeobox protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No. HQ2666761).
  • the molecular weight indicates the measured value by negative ion ESI mass spectrometry.
  • At the 5'end of the compounds of Examples 131-134 instead of hydroxyl groups, It has a group indicated by.
  • Example 135-138 The compounds shown in Table 5 below were synthesized by synthesizing under the same conditions as in Example 1. However, after the chain extension of the oligonucleotide having the target sequence is completed, a cup prepared by dissolving the compound of Reference Example 1 in acetonitrile: dichloromethane (1: 2 v / v) so as to have a concentration of 0.1 M is used. Ringed. After coupling, it was oxidized using an oxidizing solution [hydrous solution (about 0.05 mol / L)] [pyridine: water (9: 1)] (manufactured by Sigma-Aldrich).
  • the oligomer was cleaved from the support by treating the protected oligonucleotide analog with the desired sequence with 600 ⁇ L of concentrated aqueous ammonia, and the protecting group cyanoethyl group on the phosphorus atom and the protecting group on the nucleic acid base were removed.
  • a mixed solution of the oligomer was mixed with 300 ⁇ L of Clarity QSP DNA Loading Buffer (manufactured by Phenomenex) and charged onto 60 mg / 3 mL 30 ⁇ L (manufactured by Phenomenex) of Clarity QSP cartridge.
  • This compound is prepared for reverse phase HPLC (column (Phenomenex, Clarity 2.6 ⁇ m Oligo-MS 100A (2.1 ⁇ 50 mm)), solution A: 100 mM hexafluoroisopropanol (HFIP), aqueous 8 mM triethylamine, solution B: methanol, B. %: 10% ⁇ 25% ⁇ 40% ⁇ 65% (4 min ⁇ 6 min ⁇ 8 min, linear compound); 60 ° C.; 0.5 mL / min; 260 nm), and the solution was eluted in 6.2 minutes. Compounds were identified by negative ion ESI mass spectrometry.
  • lowercase letters indicate 2'-OMe-RNA and uppercase letters indicate ENA.
  • the C base site of ENA is 5-methylcytosine.
  • Each nucleoside is bound by a phosphorothioate.
  • the target region indicates the nucleotide number of Homo spiens clone 60-1 double homeobox protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No. HQ2666761).
  • the molecular weight indicates the measured value by negative ion ESI mass spectrometry.
  • At the 5'end of the compound of Example 135-138 instead of a hydroxyl group, It has a group indicated by. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
  • the present invention can be used for the treatment of facial scapulohumeral muscular dystrophy.
  • ⁇ SEQ ID NO: 1> DUX4-fl accession number: Shows the base sequence of HQ266761.
  • ⁇ SEQ ID NOS: 2-85> The sequences of the antisense oligonucleotides synthesized in Examples 1-118, 131-133, 135-137 are shown.
  • the antisense oligonucleotide may be a natural DNA, a natural RNA, a DNA / RNA chimera, or a modified form thereof, and even if at least one of the nucleotides constituting the antisense oligonucleotide is a modified nucleotide.
  • Good. ⁇ SEQ ID NO: 86-99> The primer sequences are shown.
  • the sequences of the antisense oligonucleotides synthesized in Examples 119-130, 134 and 138 are shown.
  • the antisense oligonucleotide may be a natural DNA, a natural RNA, a DNA / RNA chimera, or a modified form thereof, and even if at least one of the nucleotides constituting the antisense oligonucleotide is a modified nucleotide. Good.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cell Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

顔面肩甲上腕型筋ジストロフィーの新たな治療法を確立する。 配列番号1のヌクレオチド配列からなるDUX4-fl mRNAのヌクレオチド番号502~556又は578~612の領域に相補的なヌクレオチド配列からなる塩基数15~30のオリゴヌクレオチドを含み、その5'末端及び/又は3'末端が化学修飾されていても良いオリゴヌクレオチドであって、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換することができる前記オリゴヌクレオチド又はその薬学上許容できる塩。前記オリゴヌクレオチド又はその薬学上許容できる塩を含む、医薬(例えば、顔面肩甲上腕型筋ジストロフィー治療薬)。

Description

DUX4 pre-mRNAのスプライシングを変化させるアンチセンスオリゴヌクレオチド
 本発明は、DUX4 pre-mRNAのスプライシングを変化させるアンチセンスオリゴヌクレオチドに関する。
 顔面肩甲上腕型筋ジストロフィー(Facioscapulohumeral muscular dystrophy: FSHD)は顔面頬部、肩甲骨周囲、上腕の筋肉に強い筋萎縮、筋力低下を示す筋ジストロフィーである(非特許文献1:Tawil R. and Van Der Maarel S.M. Muscle Nerve 2006, 34:1-15)。発症時期は0歳から60代と非常に幅広いが、一般的に10代頃から腕が上がりにくい、口笛が吹けない、表情が乏しいなどの症状で発症する。症状の進行は緩やかであるが、徐々に下肢にも障害が及び、歩行に支障が生じる場合も多い。また、筋肉の障害の程度は左右で異なる場合が多い。筋病理所見としては、筋ジストロフィー一般に見られる筋線維の壊死や再生が認められるほか、炎症細胞の浸潤がみられることがある(非特許文献2:Arahata et al., Muscle Nerve 1995, 2:S56-S66)。骨格筋の症状に加え、神経性難聴や網膜症の合併も多く認められる(非特許文献3:Padberg et al., Muscle Nerve 1995, 2:S73-S80)。デュシェンヌ型筋ジストロフィー、筋強直型筋ジストロフィーについで頻度が高い筋疾患と考えられており、有病率は欧米では1.4万人から2万人に1人と報告されている(非特許文献4:Padberg et al., Muscle Nerve 1995, 2:S81-S84; Flanigan et al., Neuromuscul Disord 2001, 11:525-529; 非特許文献5:Mostacciuolo et al., Clin Genet 2009, 75:550-555; 非特許文献6:Norwood et al, Brain 2009, 132:3175-3186; 非特許文献7:Deenen et al., Neurology 2014, 83:1056-1059)。
 FSHDの原因となる遺伝的素因は非常に複雑であるが、2010年にLemmersらによって発表された「DUX4遺伝子の脱抑制」説が現在、広く信じられている(非特許文献8:Lemmers et al., Science 2010, 329:1650-1653)。FSHDは優性遺伝の形式をとり、病気は第4番染色体長腕の末端(4q35領域)に連鎖する(非特許文献9:Wijmenga et al., Nat Genet 1992, 2:26-30)。この4q35領域にはD4Z4と呼ばれる3.3kbの配列が反復した領域 (D4Z4リピート)が存在し、正常では11-100 回繰り返し、高度にDNAメチル化されたヘテロクロマチン状態をとっている。FSHD患者の約95%では片方の第4番染色体のD4Z4リピートが10回以下に短縮し、その結果、4q35領域のDNAメチル化が減少している(非特許文献10:van Overveld et al., Nat Genet 2003, 35:315-317)。このD4Z4リピートの短縮が見られる型をFSHD1型と呼ぶ。また、約5%のFSHD患者ではD4Z4リピート数は正常であるが、DNAメチル化の減少が起きており、FSHD2型と呼ばれる。現在、FSHD2型におけるメチル化減少の原因はD4Z4リピートのメチル化に関わるSMCHD1遺伝子の機能欠損変異によることがわかっている(非特許文献11:Lemmers et al., Nat Genet 2012, 44:1370-1374)。
 D4Z4配列の中には、転写因子タンパク質をコードするopen reading frame(ORF)が存在し、DUX4と呼ばれる(非特許文献12:Gabriels et al., Gene 1999, 236:25-32.)。骨格筋でのDUX4の発現は以下の2つの条件が揃った場合にのみ、高頻度で起こる。1つ目はD4Z4領域のDNAメチル化が減少し、ヘテロクロマチン構造が緩むことである。2つ目は、D4Z4リピートの3’側に存在する4qA、4qBと呼ばれるハプロタイプが4qAであることである(非特許文献13:Lemmers et al., Am J Hum Genet 2007, 81:884-894)。4qA配列はpolyA付加配列(ATTAAA)を含んでおり、DUX4のmRNAを安定化するpolyA付加配列としてはたらく(非特許文献14:Lemmers et al., Science 2010, 329:1650-1653)。4qB配列はpolyA付加配列を含まないため、4qB配列を持つアリルのD4Z4リピートが10以下に短縮した人ではFSHDを発症しない。
 DUX4は転写因子をコードしており、選択的スプライシングによりDUX4-flとDUX4-sという転写産物を生じうる(非特許文献15:Snider et al., PLoS Genet 2010, 6:e1001181)。FSHD患者では、高頻度に全長型のDUX4-flが発現しており(非特許文献16:Jones et al., Hum Mol Genet 2012, 21:4419-4430)、C末端の転写活性化ドメインを介して強力な転写活性化能を発揮する(非特許文献17:Choi et al., Nucleic Acids Res 2016, 44:5161-5173; 非特許文献18:Mitsuhashi et al., Biol Open 2018, 7:bio033977)。一方、ショート型のDUX4-sは健常人由来の細胞においてもわずかに発現が認められるが、転写活性化ドメインを持たないため、転写因子として機能しない。DUX4-flタンパク質はPRAMEF2, TRIM43, ZSCAN4など初期胚や精巣で発現する遺伝子の発現を活性化する(非特許文献19:Geng et al., Dev Cell 2012, 22:38-51)。DUX4-flの発現はアポトーシス(非特許文献20:Kowaljow et al., Neuromuscul Disord 2007, 17:611-623; 非特許文献21:Wallace et al., Ann Neurol 2011, 69:540-552)や筋発生異常 (非特許文献22:Bosnakovski et al.,EMBO J 2008, 27:2766-2779; 非特許文献23:Banerji et al., Nat Commun 2017, 8:2152), ナンセンスコドン介在mRNA分解の阻害 (非特許文献24:Feng et al., eLife 2015, 4:e04996), 細胞内二本鎖RNAの形成(非特許文献25:Shadle et al., PLoS Genet 2017, 13:e1006658), タンパク質凝集 (非特許文献26:Homma et al., Ann Clin Transl Neurol 2015, 2:151-166)等を引き起こすことが報告されている。ショウジョウバエ(非特許文献27:Jones et al., PLoS One 2016, 11:e0150938)、ツメガエル(非特許文献28:Wuebbles et al. Int J Clin Exp Pathol 2010, 3:386-400)、ゼブラフィッシュ(非特許文献29:Mitsuhashi et al., Hum Mol Genet 2013, 22:568-577)、マウス(非特許文献30:Jones and Jones, PLoS One 2018, 13:e0192657; 非特許文献31:Bosnakovski et al., Nat Commun 2017, 8:550)にDUX4-flを発現させた個体モデルにおいても、細胞毒性やFSHDに類似の症状を誘発することが示されており、DUX4-flがFSHDの発症に関与していると考えられている。なお、DUX4の生理的な機能として、初期胚発生時期の4細胞期特異的に発現し、上述のZSCAN4等を含む卵割期特異的遺伝子群を活性化するマスター転写因子であることが示されたが、その詳細についてはまだ十分にわかっていない(非特許文献32:De laco et al., Nat Genet 2017, 49:941-945; 非特許文献33:Hendrickson et al., Nat Genet 2017, 49:925-934)。
 DUX4-flとDUX4-sはN末端側に共通のDNA結合ドメインを有している。そのため、DUX4-flとDUX4-sが同時に存在する場合、同じDNAに競合的に結合すると考えられる。培養細胞を用いた実験では、DUX4-flとDUX4-sを1:1割合で遺伝子導入した場合、DUX4-flによるluciferaseの活性化が約20%に抑制された。(非特許文献34:Geng et al., Dev Cell 2012, 22:38-51)また、DUX4-flと同時に20倍量のDUX4-sをゼブラフィッシュに導入した実験では、DUX4-flによる筋ジストロフィー様症状が軽減された(非特許文献35:Mitsuhashi et al., Hum Mol Genet 2013, 22:568-577)。DUX4-s は転写促進活性がないため、標的遺伝子に対し競合阻害が起きた結果と考えられる。
Tawil R. and Van Der Maarel S.M. Muscle Nerve 2006, 34:1-15 Arahata et al., Muscle Nerve 1995, 2:S56-S66 Padberg et al., Muscle Nerve 1995, 2:S73-S80 Padberg et al., Muscle Nerve 1995, 2:S81-S84; Flanigan et al., Neuromuscul Disord 2001, 11:525-529 Mostacciuolo et al., Clin Genet 2009, 75:550-555; Norwood et al, Brain 2009, 132:3175-3186 Norwood et al, Brain 2009, 132:3175-3186 Deenen et al., Neurology 2014, 83:1056-1059 Lemmers et al., Science 2010, 329:1650-1653 Wijmenga et al., Nat Genet 1992, 2:26-30 van Overveld et al., Nat Genet 2003, 35:315-317 Lemmers et al., Nat Genet 2012, 44:1370-1374 Gabriels et al., Gene 1999, 236:25-32. Lemmers et al., Am J Hum Genet 2007, 81:884-894 Lemmers et al., Science 2010, 329:1650-1653 Snider et al., PLoS Genet 2010, 6:e1001181 Jones et al., Hum Mol Genet 2012, 21:4419-4430 Choi et al., Nucleic Acids Res 2016, 44:5161-5173 Mitsuhashi et al., Biol Open 2018, 7:bio033977 Geng et al., Dev Cell 2012, 22:38-51 Kowaljow et al., Neuromuscul Disord 2007, 17:611-623 Wallace et al., Ann Neurol 2011, 69:540-552 Bosnakovski et al.,EMBO J 2008, 27:2766-2779 Banerji et al., Nat Commun 2017, 8:2152 Feng et al., eLife 2015, 4:e04996 Shadle et al., PLoS Genet 2017, 13:e1006658 Homma et al., Ann Clin Transl Neurol 2015, 2:151-166 Jones et al., PLoS One 2016, 11:e0150938 Wuebbles et al. Int J Clin Exp Pathol 2010, 3:386-400 Mitsuhashi et al., Hum Mol Genet 2013, 22:568-577 Jones and Jones, PLoS One 2018, 13:e0192657 Bosnakovski et al., Nat Commun 2017, 8:550 De laco et al., Nat Genet 2017, 49:941-945 Hendrickson et al., Nat Genet 2017, 49:925-934 Geng et al., Dev Cell 2012, 22:38-51 Mitsuhashi et al., Hum Mol Genet 2013, 22:568-577
 本発明は、顔面肩甲上腕型筋ジストロフィーの新たな治療法を確立することを目的とする。
 DUX4-flとDUX4-sは1つのDUX4遺伝子から転写される異なるスプライシングアイソフォームであるため、アンチセンスオリゴヌクレオチドを用いてDUX4 遺伝子のスプライシングをDUX4-flからDUX4-sに変換し(図1)、相対的なDUX4-flの転写量を減少させることで細胞死を抑制できる可能性がある。本発明は、この着想に基づき、完成されたものである。
 本発明の要旨は以下の通りである。
(1)配列番号1のヌクレオチド配列からなるDUX4-fl mRNAのヌクレオチド番号502~556又は578~612の領域に相補的なヌクレオチド配列からなる塩基数15~30のオリゴヌクレオチドを含み、その5’末端及び/又は3’末端が化学修飾されていても良いオリゴヌクレオチドであって、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換することができる前記オリゴヌクレオチド又はその薬学上許容できる塩。
(2)配列番号2~85のいずれかの配列(但し、配列中のtはuであってもよく、uはtであってもよい)中の連続する少なくとも15個のヌクレオチドの配列を含む(1)記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(3)オリゴヌクレオチドの塩基数が16~18である(1)又は(2)に記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(4)オリゴヌクレオチドの塩基数が18である(3)記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(5)オリゴヌクレオチドを構成する糖及び/又はリン酸ジエステル結合の少なくとも1個が修飾されている(1)~(4)のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(6)オリゴヌクレオチドを構成する糖がD-リボフラノースであり、糖の修飾がD-リボフラノースの2’位の水酸基の修飾である(5)記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(7)糖の修飾がD-リボフラノースの2’-O-アルキル化及び/又は2’-O, 4’-C-アルキレン化である(6)記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(8)糖の修飾がD-リボフラノースの2’-O-メチル化及び/又は2'-O,4'-C-エチレン化 である(6)に記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(9)リン酸ジエステル結合の修飾がホスホロチオエートである(5)~(8)のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(10)配列番号1のヌクレオチド配列のヌクレオチド番号506から549の領域に相補的なヌクレオチド配列からなる塩基数15~30のオリゴヌクレオチドであることを特徴とする(1)~(9)のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(11)配列番号5~31のいずれかの配列(但し、配列中のtはuであってもよく、uはtであってもよい)中の連続する少なくとも15個のヌクレオチドの配列を含む(10)記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(12)以下のいずれかの配列からなるオリゴヌクレオチド又はその薬学上許容できる塩;
HO-Gm1s-Ge2s-Gm1s-Am1s-Ge2s-Cm1s-Am1s-Ge2s-Gm1s-Gm1s-Te2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Ce2s-Cm1t-H(DUX4-006);
HO-Gm1s-Ae2s-Cm1s-Cm1s-Ce2s-Am1s-Cm1s-Ge2s-Am1s-Gm1s-Ge2s-Gm1s-Am1s-Ge2s-Cm1s-Am1s-Ge2s-Gm1t-H(DUX4-009);
HO-Gm1s-Ae2s-Am1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2s-Cm1s-Cm1s-Ce2s-Am1s-Cm1s-Ge2s-Am1s-Gm1s-Ge2s-Gm1t-H(DUX4-011);
HO-Gm1s-Ge2s-Um1s-Gm1s-Te2s-Gm1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2s-Am1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2s-Cm1t-H(DUX4-014);
HO-Gm1s-Ae2s-Gm1s-Cm1s-Ae2s-Gm1s-Gm1s-Ge2s-Um1s-Gm1s-Ae2s-Cm1s-Cm1s-Ce2s-Cm1s-Cm1s-Ge2s-Cm1t-H(DUX4-036);
HO-Gm1s-Ge2s-Am1s-Gm1s-Ce2s-Am1s-Gm1s-Ge2s-Gm1s-Um1se2s-Am1s-Cm1s-Ce2s-Cm1s-Cm1s-Ce2s-Gm1t-H(DUX4-037);
HO-Am1s-Ce2s-Gm1s-Am1s-Ge2s-Gm1s-Gm1s-Ae2s-Gm1s-Cm1s-Ae2s-Gm1s-Gm1s-Ge2s-Um1s-Gm1s-Ae2s-Cm1t-H(DUX4-040);
HO-Cm1s-Ge2s-Am1s-Cm1s-Ce2s-Cm1s-Am1s-Ce2s-Gm1s-Am1s-Ge2s-Gm1s-Gm1s-Ae2s-Gm1s-Cm1s-Ae2s-Gm1t-H(DUX4-044);
HO-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Ae2s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1s-Ge2s-Am1t-H(DUX4-047);
HO-Cm1s-Ge2s-Am1s-Am1s-Ge2s-Gm1s-Cm1s-Ge2s-Am1s-Cm1s-Ce2s-Cm1s-Am1s-Ce2s-Gm1s-Am1s-Ge2s-Gm1t-H(DUX4-048);
HO-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Ae2s-Cm1s-Gm1s-Ae2s-Gm1t-H(DUX4-049);
HO-Um1s-Ge2s-Um1s-Gm1s-Ge2s-Gm1s-Cm1s-Ge2s-Am1s-Am1s-Ge2s-Gm1s-Cm1s-Ge2s-Am1s-Cm1s-Ce2s-Cm1t-H(DUX4-052);
HO-Gm1s-Te2s-Gm1s-Um1s-Ge2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1t-H(DUX4-053);
HO-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Cm1s-Cm1s-Cm1s-Ae2s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.7);
HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Cm1s-Cm1s-Ce2s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.10);
HO-Cm1s-Gm1s-Ae2s-Am1s-Gm1s-Gm1s-Cm1s-Gm1s-Ae2s-Cm1s-Ce2s-Cm1s-Am1s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.11)
HO-Ce2s-Gm1s-Ae2s-Am1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Cm1s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.12);
HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.14);
HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Ae2s-Cm1s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.15);
HO-Cm1s-Gm1s-Ae2s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Am1s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.19);
HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Cm1s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.20);
HO-Te2s-Gm1s-Te2s-Gm1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Ce2t-H(DUX4-52.1);
HO-Te2s-Gm1s-Te2s-Gm1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1t-H(DUX4-52.2);
HO-Te2s-Gm1s-Um1s-Gm1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Ce2t-H(DUX4-52.7);
HO-Um1s-Gm1s-Te2s-Gm1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Ae2s-Cm1s-Ce2s-Cm1t-H(DUX4-52.9)
[上記の配列中、Ae2s、Ge2s、Ce2s及びTe2sは、3’側に隣接する構造とホスホロチオエート結合した対応するENA(Cの塩基部位は、5-メチルシトシンである)を表す。Am1s、Gm1s、Cm1s、Um1s、は、3’側に隣接する構造とホスホロチオエート結合した対応する2’-OMeーRNAを表す。Ce2tは、3’側に隣接する構造とリン酸ジエステル結合した対応するENA(Cの塩基部位は、5-メチルシトシンである)を表す。Am1t、Gm1t、Cm1tは、3’側に隣接する構造とリン酸ジエステル結合した対応する2’-OMeーRNAを表す。]。
(13)オリゴヌクレオチドの5’末端又は3’末端に、脂肪酸を含むアミノアルキルリン酸基がさらに結合していることを特徴とする(1)~(12)のいずれかに記載のオリゴヌクレオチド又はその薬学上許容される塩。
(14)脂肪酸が、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸及びベヘン酸からなる群より選択される少なくとも一つである(13)に記載のオリゴヌクレオチド又はその薬学上許容される塩。
(15)DUX4-fl遺伝子の発現に起因する疾患又は症状の治療における使用のための、(1)~(14)のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(16)DUX4-fl遺伝子の発現に起因する疾患又は症状が、面肩甲上腕型筋ジストロフィーである(15)に記載のオリゴヌクレオチド又はその薬学上許容できる塩。
(17)(1)~(16)のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩を含む、医薬。
(18)(1)~(16)のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩を含む、DUX4-fl遺伝子の発現に起因する疾患又は症状の治療薬。
(19)DUX4-fl遺伝子の発現に起因する疾患又は症状が、面肩甲上腕型筋ジストロフィーである(18)に記載の治療薬。
(20)(1)~(16)のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩を含む、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換する薬剤。
(21)(1)~(16)のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩を対象に投与することによる、当該対象におけるDUX4-fl遺伝子の発現に起因する疾患又は症状の治療方法。
(22)DUX4-fl遺伝子の発現に起因する疾患又は症状が、面肩甲上腕型筋ジストロフィーである(21)に記載の治療方法。
(23)DUX4-fl遺伝子の発現に起因する疾患又は症状の治療薬の製造のための、(1)~(16)のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩の使用。
(24)DUX4-fl遺伝子の発現に起因する疾患又は症状が、面肩甲上腕型筋ジストロフィーである(22)に記載の使用。
 本発明により、アンチセンスオリゴヌクレオチドを用いてDUX4 遺伝子のスプライシングをDUX4-flからDUX4-sに変換することで、DUX4-flの転写量を減少させることができる。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2019‐129735の明細書および/または図面に記載される内容を包含する。
アンチセンスオリゴヌクレオチドを用いてDUX4 遺伝子のスプライシングをDUX4-flからDUX4-sに変換する方法を示す図。 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-004乃至DUX4-010)のトランスフェクションした結果、得られたDUX4転写産物のゲル電気泳動による解析。 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-011乃至DUX4-016)のトランスフェクションした結果、得られたDUX4転写産物のゲル電気泳動による解析。 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-022乃至DUX4-030)のトランスフェクションした結果、得られたDUX4転写産物のゲル電気泳動による解析。 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-031乃至DUX4-040)のトランスフェクションした結果、得られたDUX4転写産物のゲル電気泳動による解析。 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-041乃至DUX4-050)のトランスフェクションした結果、得られたDUX4転写産物のゲル電気泳動による解析。 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-051乃至DUX4-058)のトランスフェクションした結果、得られたDUX4転写産物のゲル電気泳動による解析。 DUX4が転写を活性化する標的遺伝子(上段:ZSCAN4、下段:MBD3L2、TRIM43)の発現量を示すグラフである。縦軸は、内部標準であるRPL13A遺伝子の発現量に対する相対発現レベルである。図中、「No」は、DUX4ミニジーンコンストラクト、実施例の化合物(DUX4-009, DUX4-031, DUX4-036, DUX4-048)ともにトランスフェクションしなかった細胞、「D4Z4」は、DUX4ミニジーンコンストラクトのみをトランスフェクションした細胞、「DUX4-009」、「DUX4-031」、「DUX4-036」及び「DUX4-048」は、DUX4ミニジーンコンストラクトと実施例の化合物(DUX4-009, DUX4-031, DUX4-036, DUX4-048)の両方をトランスフェクションした細胞、をそれぞれの相対発現レベルを示す。実験は、N=3で行い、結果の解析はD4Z4と比較したDunnett検定により、p<0.05の場合は”*”、p<0.01の場合は”**”を、p<0.001の場合は”***”を、それぞれ付した。 DUX4が転写を活性化する標的遺伝子(上段:ZSCAN4、下段:MBD3L2、TRIM43)の発現量を示すグラフである。縦軸は、内部標準であるRPL13A遺伝子の発現量に対する相対発現レベルである。図中、「No」は、DUX4ミニジーンコンストラクト、実施例の化合物(DUX4-48.7, DUX4-48.11, DUX4-48.12, DUX4-48.13, DUX4-52.2)ともにトランスフェクションしなかった細胞、「D4Z4」は、DUX4ミニジーンコンストラクトのみをトランスフェクションした細胞、「DUX4-48.7」、「DUX4-48.11」、「DUX4-48.12」、「DUX4-48.13」及び「DUX4-52.2」は、DUX4ミニジーンコンストラクトと実施例の化合物(DUX4-48.7, DUX4-48.11, DUX4-48.12, DUX4-48.13, DUX4-52.2)の両方をトランスフェクションした細胞、をそれぞれの相対発現レベルを示す。実験は、N=3で行い、結果の解析はD4Z4と比較したDunnett検定により、p<0.05の場合は”*”、p<0.01の場合は”**”を、p<0.001の場合は”***”を、それぞれ付した。 D4Z4 mRNAをインジェクションしたゼブラフィッシュ受精卵におけるPCR産物を示す図である。RT(1)は逆転写反応前、RT(+)は逆転写反応後のRNAサンプルの結果を示す。「D4」は、DUX4ミニジーンコンストラクトのみをインジェクションした受精卵、「D4 + DUX4-048」は、DUX4ミニジーンコンストラクトと実施例の化合物(DUX4-048)の両方をインジェクションした受精卵、をそれぞれのPCR産物を示す。「M1」、「M2」は、マーカーを示し、[UI]は、インジェクションしていない受精卵からのPCR産物を示す。 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-48.1乃至DUX4-48.10)のトランスフェクションした結果、得られたDUX4転写産物のゲル電気泳動による解析。 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-48.11乃至DUX4-48.13、DUX4-52.1及びDUX4-52.2)のトランスフェクションした結果、得られたDUX4転写産物のゲル電気泳動による解析。 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-48.14乃至DUX4-48.23、及び、DUX4-048)のトランスフェクションした結果、得られたDUX4転写産物のゲル電気泳動による解析。 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-52.3乃至DUX4-52.12、及び、DUX4-052)のトランスフェクションした結果、得られたDUX4転写産物のゲル電気泳動による解析。
 以下、本発明の実施の形態についてより詳細に説明する。
 本発明は、配列番号1のヌクレオチド配列からなるDUX4-fl mRNAのヌクレオチド番号502~556又は578~612の領域(好ましくは、506~549の領域)に相補的なヌクレオチド配列からなる塩基数15~30のオリゴヌクレオチドを含み、その5’末端及び/又は3’末端が化学修飾されていても良いオリゴヌクレオチドであって、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換することができる前記オリゴヌクレオチド、その薬学上許容できる塩又は溶媒和物を提供する。
 DUX4-fl mRNAの配列情報は、GenBankに登録されており、登録番号(accession number)はHQ266761である。その塩基配列を配列表の配列番号1に示す。DUX4-s mRNAの配列は、配列番号1の塩基配列の塩基番号1~477の配列である。
 DUX4-flとDUX4-sは1つのDUX4遺伝子から転写される異なるスプライシングアイソフォームであり、DUX4-flは全長型(約55 kDa)、DUX4-sはショート型(約20 kDa)である。DUX4-flは、C末端の転写活性化ドメインを介して強力な転写活性化能を発揮し、DUX4-flがFSHDの発症に関与していると考えられている。一方、ショート型のDUX4-sは、健常人由来の細胞においてもわずかに発現が認められるが、転写活性化ドメインを持たないため、転写因子として機能しない。
 本発明のオリゴヌクレオチドは、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換することができる。DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換することにより、相対的なDUX4-flの転写量を減少させることで細胞死が抑制でき、顔面肩甲上腕型筋ジストロフィーの治療効果が期待できる。DUX4-flは通常イントロンを含まないが、イントロン1が残ったものを発現する患者が存在する。よって、DUX4-flは、イントロンを含むものであっても、含まないものであってもよい。DUX4-flからDUX4-sへの変換の程度は問わないが、変換率が、10%以上であることが好ましく、25%以上であることがより好ましい。DUX4-flからDUX4-sへの変換の程度は、以下のような方法で測定することができる。本発明のオリゴヌクレオチドを細胞にトランスフェクトし、トランスフェクトした細胞より全RNAを抽出し、逆転写反応を行った後、DUX4-fl、及び、DUX4-sの両方を増幅するプライマーを用いてPCR反応で2本鎖DNAとする。これをゲル電気泳動でDUX4-fl及びDUX4-sから増幅した2本鎖DNAを2本のバンドとして分離し、バンドを可視化して変換の程度を測定することができる。その際に、エチジウムブロマイド、SYBR Green等を使って可視化する場合、増幅した2本鎖DNAのサイズによって可視化の程度が異なるので、変換の程度を判断するのに留意する必要がある。また、DUX4-fl、及び、DUX4-sに特異的なTaqManプローブを作成し、定量的PCRを行うことで、DUX4-fl、及び、DUX4-sのmRNA量を定量することで、変換の程度を測定することもできる。サンプル中のDUX4-fl、及び、DUX4-sタンパク質をウェスタンブロット法で検出したり、DUX4-fl、及び、DUX4-sタンパク質に特異的なペプチド断片を質量分析法で検出したりすることにより変換の程度を測定することができる。
 本発明のオリゴヌクレオチドとして、配列番号2~85(好ましくは、配列番号5~31)のいずれかの配列(但し、配列中のtはuであってもよく、uはtであってもよい)中の連続する少なくとも15個のヌクレオチドの配列を含むものを例示することができる。
 本発明のオリゴヌクレオチドの塩基数は、15~30が適当であり、16~18が好ましく、18がより好ましい。
 本発明の好ましいオリゴヌクレオチドとして、配列番号1のヌクレオチド配列のヌクレオチド番号506から549の領域に相補的なヌクレオチド配列からなる塩基数15~30のオリゴヌクレオチドを例示することができ、本発明のより好ましいオリゴヌクレオチドとして、配列番号5~31のいずれかの配列(但し、配列中のtはuであってもよく、uはtであってもよい)中の連続する少なくとも15個のヌクレオチドの配列を含むオリゴヌクレオチドを例示することができる。
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)は、天然型DNA、天然型RNA、DNA/RNAのキメラ、これらの修飾体のいずれであってもよいが、オリゴヌクレオチドを構成するヌクレオチドの少なくとも1つが修飾ヌクレオチドであることが好ましい。
 本発明における修飾ヌクレオチドとしては、糖が修飾されたもの(例えば、D-リボフラノースの2’位の水酸基が修飾されたもの(D-リボフラノースが2'-O-アルキル化されたもの、D-リボフラノースが2'-,4'-架橋化されたもの(D-リボフラノースが2'-O, 4'-C-アルキレン化されたものなど)など)、リン酸ジエステル結合が修飾されたもの(例えば、チオエート化、塩基が修飾されたもの、それらを組み合わせたものなどを例示することができる。アンチセンスオリゴヌクレオチドを構成する少なくとも1個のD-リボフラノースが2'-O-アルキル化(例えば、2’-O-メチル化)されたものや2'-O,4'-C-アルキレン化(例えば、2'-O,4'-C-エチレン化)されたものは、RNAに対する結合力が高いこと、ヌクレアーゼに対する耐性が高いことから、天然型のヌクレオチド(すなわち、オリゴDNA、オリゴRNA)より高い治療効果が期待できる。また、オリゴヌクレオチドを構成する少なくとも1個のリン酸ジエステル結合がチオエート化されたものも、ヌクレアーゼに対する耐性が高いことから、天然型のヌクレオチド(すなわち、オリゴDNA、オリゴRNA)より高い治療効果が期待できる。上記のような修飾された糖と修飾されたリン酸の両者を含むオリゴヌクレオチドは、ヌクレアーゼに対する耐性がより高いことから、さらに高い治療効果が期待できる。
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)について、糖の修飾の例としては、D-リボフラノースの2'-O-アルキル化(例えば、2'-O-メチル化、2'-O-アミノエチル化、2'-O-プロピル化、2'-O-アリル化、2'-O-メトキシエチル化、2'-O-ブチル化、2'-O-ペンチル化、2'-O-プロパルギル化など);D-リボフラノースの2'-O,4'-C-アルキレン化(例えば、2'-O,4'-C-エチレン化、2'-O,4'-C-メチレン化、2'-O,4'-C-プロピレン化、2'-O,4'-C-テトラメチレン化、2'-O,4'-C-ペンタメチレン化など)、S-cEt(2',4'-constrained ethyl)、AmNA(Amide-bridged nucleic acid)などの2'-,4'-架橋化;D-リボフラノースの2'-デオキシ-2'-C,4’-C-メチレンオキシメチレン化、3'-デオキシ-3'-アミノ-2'-デオキシ-D-リボフラノース、3'-デオキシ-3'-アミノ-2'-デオキシ-2'-フルオロ-D-リボフラノースなどの2'デオキシ化とその他の修飾の組み合わせなどを挙げることができる。
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)について、リン酸ジエステル結合の修飾の例としては、ホスホロチオエート結合、メチルホスホネート結合、メチルチオホスホネート結合、ホスホロジチオエート結合、ホスホロアミデート結合などを挙げることができる。
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)について、塩基の修飾の例としては、シトシンの5-メチル化、5-フルオロ化、5-ブロモ化、5-ヨード化、N4-メチル化、チミンの5-デメチル化(ウラシル)、5-フルオロ化、5-ブロモ化、5-ヨード化、アデニンのN6-メチル化、8-ブロモ化、グアニンのN2-メチル化、8-ブロモ化などを挙げることができる。
 本発明のオリゴヌクレオチドを構成するヌクレオチド残基としては、後述の実施例に構造を記載する、At、Gt、5meCt、Ct、Tt、Ut、Ap、Gp、5meCp、Cp、Tp、Up、As、Gs、5meCs、Cs、Ts、Us、Am1t、Gm1t、Cm1t、5meCm1t、Um1t、Am1p、Gm1p、Cm1p、5meCm1p、Um1p、Am1s、Gm1s、Cm1s、5meCm1s、Um1s、A2t、G2t、C2t、T2t、Ae2p、Ge2p、Ce2p、Te2p、Ae2s、Ge2s、Ce2s、Te2s、A1t、G1t、C1t、T1t、Ae1p、Ge1p、Ce1p、Te1p、Ae1s、Ge1s、Ce1s、Te1s、A3t、G3t、C3t、T3t、Ae3p、Ge3p、Ce3p、Te3p、Ae3s、Ge3s、Ce3s、Te3s、Am2t、Gm2t、5meCm2t、Tm2t、Am2p、Gm2p、5meCm2p、Tm2p、Am2s、Gm2s、5meCm2s、Tm2sを挙げることができる。
本発明のオリゴヌクレオチドとして好適なものは表1~3に示されるオリゴヌクレオチドであり、より好適なものは以下に示されるオリゴヌクレオチドである。
HO-Gm1s-Ge2s-Gm1s-Am1s-Ge2s-Cm1s-Am1s-Ge2s-Gm1s-Gm1s-Te2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Ce2s-Cm1t-H(DUX4-006);
HO-Gm1s-Ae2s-Cm1s-Cm1s-Ce2s-Am1s-Cm1s-Ge2s-Am1s-Gm1s-Ge2s-Gm1s-Am1s-Ge2s-Cm1s-Am1s-Ge2s-Gm1t-H(DUX4-009);
HO-Gm1s-Ae2s-Am1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2s-Cm1s-Cm1s-Ce2s-Am1s-Cm1s-Ge2s-Am1s-Gm1s-Ge2s-Gm1t-H(DUX4-011);
HO-Gm1s-Ge2s-Um1s-Gm1s-Te2s-Gm1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2s-Am1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2s-Cm1t-H(DUX4-014);
HO-Gm1s-Ae2s-Gm1s-Cm1s-Ae2s-Gm1s-Gm1s-Ge2s-Um1s-Gm1s-Ae2s-Cm1s-Cm1s-Ce2s-Cm1s-Cm1s-Ge2s-Cm1t-H(DUX4-036);
HO-Gm1s-Ge2s-Am1s-Gm1s-Ce2s-Am1s-Gm1s-Ge2s-Gm1s-Um1se2s-Am1s-Cm1s-Ce2s-Cm1s-Cm1s-Ce2s-Gm1t-H(DUX4-037);
HO-Am1s-Ce2s-Gm1s-Am1s-Ge2s-Gm1s-Gm1s-Ae2s-Gm1s-Cm1s-Ae2s-Gm1s-Gm1s-Ge2s-Um1s-Gm1s-Ae2s-Cm1t-H(DUX4-040);
HO-Cm1s-Ge2s-Am1s-Cm1s-Ce2s-Cm1s-Am1s-Ce2s-Gm1s-Am1s-Ge2s-Gm1s-Gm1s-Ae2s-Gm1s-Cm1s-Ae2s-Gm1t-H(DUX4-044);
HO-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Ae2s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1s-Ge2s-Am1t-H(DUX4-047);
HO-Cm1s-Ge2s-Am1s-Am1s-Ge2s-Gm1s-Cm1s-Ge2s-Am1s-Cm1s-Ce2s-Cm1s-Am1s-Ce2s-Gm1s-Am1s-Ge2s-Gm1t-H(DUX4-048);
HO-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Ae2s-Cm1s-Gm1s-Ae2s-Gm1t-H(DUX4-049);
HO-Um1s-Ge2s-Um1s-Gm1s-Ge2s-Gm1s-Cm1s-Ge2s-Am1s-Am1s-Ge2s-Gm1s-Cm1s-Ge2s-Am1s-Cm1s-Ce2s-Cm1t-H(DUX4-052);
HO-Gm1s-Te2s-Gm1s-Um1s-Ge2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1t-H(DUX4-053);
HO-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Cm1s-Cm1s-Cm1s-Ae2s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.7);
HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Cm1s-Cm1s-Ce2s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.10);
HO-Cm1s-Gm1s-Ae2s-Am1s-Gm1s-Gm1s-Cm1s-Gm1s-Ae2s-Cm1s-Ce2s-Cm1s-Am1s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.11);
HO-Ce2s-Gm1s-Ae2s-Am1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Cm1s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.12);
HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.14);
HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Ae2s-Cm1s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.15);
HO-Cm1s-Gm1s-Ae2s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Am1s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.19);
HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Cm1s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.20);
HO-Te2s-Gm1s-Te2s-Gm1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Ce2t-H(DUX4-52.1);
HO-Te2s-Gm1s-Te2s-Gm1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1t-H(DUX4-52.2);
HO-Te2s-Gm1s-Um1s-Gm1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Ce2t-H(DUX4-52.7);
HO-Um1s-Gm1s-Te2s-Gm1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Ae2s-Cm1s-Ce2s-Cm1t-H(DUX4-52.9)。
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)は、市販の合成機(例えば、パーキンエルマー社のホスホロアミダイド法によるモデル392)などを用いて、文献(Nucleic Acids Research, 12, 4539 (1984))に記載の方法に準じて合成することができる。その際に用いられるホスホロアミダイト試薬は、天然型のヌクレオシド及び2'-O-メチルヌクレオシド(すなわち、2'-O-メチルグアノシン、2'-O-メチルアデノシン、2'-O-メチルシチジン、2'-O-メチルウリジン)については、市販の試薬を用いることができる。アルキル基の炭素数が2~6個の2'-O-アルキルグアノシン、アデノシン、シチジンおよびウリジンについては、以下の通りである。
 2'-O-アミノエチルグアノシン、アデノシン、シチジン、ウリジンは、文献(Blommers et al. Biochemistry (1998), 37, 17714-17725.)に従って合成できる。
 2'-O-プロピルグアノシン、アデノシン、シチジン、ウリジンは、文献(Lesnik,E.A. et al. Biochemistry (1993), 32, 7832-7838.)に従って合成できる。
 2'-O-アリルグアノシン、アデノシン、シチジン、ウリジンは、市販の試薬を用いることができる。
 2'-O-メトキシエチルグアノシン、アデノシン、シチジン、ウリジンは、特許(US6261840)または、文献(Martin, P. Helv. Chim. Acta. (1995) 78, 486-504.に従って合成できる。
 2'-O-ブチルグアノシン、アデノシン、シチジン、ウリジンは、文献(Lesnik,E.A. et al. Biochemistry (1993), 32, 7832-7838.)に従って合成できる。
 2'-O-ペンチルグアノシン、アデノシン、シチジン、ウリジンは、文献(Lesnik,E.A. et al. Biochemistry (1993), 32, 7832-7838.)に従って合成できる。
 2'-O-プロパルギルグアノシン、アデノシン、シチジン、ウリジンは、市販の試薬を用いることができる。
 2'-O, 4'-C-メチレングアノシン、アデノシン、シチジン、5-メチルシチジンおよびチミジンについては、WO99/14226に記載の方法に従って、アルキレン基の炭素数が2~5個の2'-O, 4'-C-アルキレングアノシン、アデノシン、シチジン、5-メチルシチジンおよびチミジンについては、WO00/47599に記載の方法に従って製造することができる。
 D-リボフラノースの2'-デオキシ-2'-C,4'-C-メチレンオキシメチレン化されたヌクレオシドは、文献(Wang,G. et al. Tetrahedron (1999), 55, 7707-7724に従って合成できる。
 S-cEt(constrained ethyl)は、文献(Seth,P.P. et al. J.Org.Chem (2010), 75, 1569-1581.)に従って合成できる。
 AmNAは、文献(Yahara,A. et al. ChemBioChem (2012), 13, 2513-2516.)または、WO2014/109384に従って合成できる。
 本発明において、核酸塩基配列は、アデニンを(A)又は(a)、グアニンを(G)又は(g)、シトシンを(C)又は(c)、チミンを(T)又は(t)、及び、ウラシルを(U)又は(u)とそれぞれ記載することができる。シトシンの代わりに、5-メチルシトシンを使うことができる。核酸塩基のうち、ウラシル(U)又は(u)とチミン(T)又は(t)は、互換性がある。ウラシル(U)又は(u)とチミン(T)又は(t)のどちらも、相補鎖のアデニン(A)又は(a)との塩基対形成に使うことができる。
 ホスホロアミダイト試薬をカップリング後、硫黄、テトラエチルチウラムジスルフィド(TETD、アプライドバイオシステム社)、Beaucage試薬(Glen Research社)、または、キサンタンヒドリドなどの試薬を反応させることにより、ホスホロチオエート結合を有するアンチセンスオリゴヌクレオチドを合成することができる(Tetrahedron Letters, 32, 3005 (1991), J. Am. Chem. Soc. 112, 1253 (1990), PCT/WO98/54198)。
 合成機で用いるコントロールド ポア グラス(CPG)としては、2'-O-メチルヌクレオシドの結合したものは、市販のものを利用することができる。また、2'-O,4'-C-メチレングアノシン、アデノシン、5-メチルシチジンおよびチミジンについては、WO99/14226に記載の方法に従って、アルキレン基の炭素数が2~5個の2'-O, 4'-C-アルキレングアノシン、アデノシン、5-メチルシチジンおよびチミジンについては、WO00/47599に記載の方法に従って製造したヌクレオシドを文献(Oligonucleotide Synthesis, Edited by M.J.Gait, Oxford University Press, 1984)に従って、CPGに結合することができる。修飾されたCPG(特開平7-87982の実施例12bに記載)を用いることにより、3'末端に2-ヒドロキシエチルリン酸基が結合したオリゴヌクレオチドを合成できる。また、3'-amino-Modifier C3 CPG, 3'-amino-Modifier C7 CPG, Glyceryl CPG, (Glen Research), 3'-specer C3 SynBase CPG 1000, 3'-specer C9 SynBase CPG 1000(link technologies)を使えば、3'末端にヒドロキシアルキルリン酸基、または、アミノアルキルリン酸基が結合したオリゴヌクレオチドを合成できる。
 本発明のオリゴヌクレオチドは、その3’末端及び/又は5’末端に、リン酸ジエステル結合、ホスホロチオエート結合を介して、ヌクレオチド以外の分子構造と結合させることにより化学修飾をすることができる。本発明は、このように化学修飾されたオリゴヌクレオチドも提供する。
目的配列を有するオリゴヌクレオチドの鎖伸長が終了した後に、5'-Amino-Modifier C6 (Glen Research)、5'-TFA-Amino-Modifier C6-CE Phosphoramidite、5'-TFA-Amino-Modifier-C5-CE Phosphoramidite(Link Technologies)などを使えば、5'末端にアミノアルキルリン酸基が結合したオリゴヌクレオチドを合成できる。
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)の5’末端、および/または、3’末端には、疎水性基を有してもよい。本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)の5’末端、および/または、3’末端には、脂肪酸を含むアミノアルキルリン酸基がさらに結合していてもよく、例えば、オリゴヌクレオチドの5’末端、および/または、3’末端には、水酸基の代わりに、

Figure JPOXMLDOC01-appb-I000001

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005

で示す基を有してもよい。目的配列を有するオリゴヌクレオチドの鎖伸長が終了した後に2-Cyanoethyl (6-palmitamidohexyl) diisopropylphosphoramidite (Nucleic Acids Res. (2020) 47, 6029-6044、Link Technologies)などの脂肪酸に対応するアミダイトユニットをカップリングさせることにより合成することができる。
5’末端、および/または、3’末端にアミノアルキルリン酸基(例えば、アルキルとしては、3乃至9の炭素数を持つ。)を持ち、かつ、目的配列を有するオリゴヌクレオチドに、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸などの脂肪酸のペンタフルオロフェニルエステルなどの活性エステルを反応させることにより合成することができる(Nucleic Acids Res. (2020) 47, 6029-6044)。また、目的配列を有するオリゴヌクレオチドを固相合成時に、5’末端にアミノアルキルリン酸基(例えば、アルキルとしては、3乃至9の炭素数を持つ。)を持たせた固相担体上で、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸などの脂肪酸をHATUなどの縮合剤を用いて縮合後、脱保護・精製することで合成することもできる(PCT/WO2017/192679)。
さらに、5'-Tocopherol-CE Phosphoramidite、5'-Cholesterol-CE Phosphoramidite、5'-Cholesterol-TEG-CE Phosphoramidite(Link Technologies)などを使えば、5'末端にコレステロールやトコフェロールが結合したオリゴヌクレオチドを合成できる。
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)は、医薬として、具体的には、顔面肩甲上腕型筋ジストロフィー治療に用いることができる。治療は、発症前(予防)、発症と同時又は発症後のいずれの時期に行ってもよい。
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)は、その薬学上許容できる塩の形態で用いてもよい。「その薬学上許容できる塩」とは、オリゴヌクレオチド(アンチセンスオリゴヌクレオチド)の塩をいい、そのような塩としては、ナトリウム塩、カリウム塩、リチウム塩のようなアルカリ金属塩、カルシウム塩、マグネシウム塩のようなアルカリ土類金属塩、アルミニウム塩、鉄塩、亜鉛塩、銅塩、ニッケル塩、コバルト塩などの金属塩;アンモニウム塩のような無機塩、t-オクチルアミン塩、ジベンジルアミン塩、モルホリン塩、グルコサミン塩、フェニルグリシンアルキルエステル塩、エチレンジアミン塩、N-メチルグルカミン塩、グアニジン塩、ジエチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩、クロロプロカイン塩、プロカイン塩、ジエタノールアミン塩、N-ベンジル-フェネチルアミン塩、ピペラジン塩、テトラメチルアンモニウム塩、トリス(ヒドロキシメチル)アミノメタン塩のような有機塩などのアミン塩;弗化水素酸塩、塩酸塩、臭化水素酸塩、沃化水素酸塩のようなハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、燐酸塩などの無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルカンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩のようなアリールスルホン酸塩、酢酸塩、りんご酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、蓚酸塩、マレイン酸塩などの有機酸塩;グリシン塩、リジン塩、アルギニン塩、オルニチン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩などを挙げることができる。これらの塩は、公知の方法で製造することができる。
 また、オリゴヌクレオチド(アンチセンスオリゴヌクレオチド)は、溶媒和物(例えば、水和物)としても存在することがあり、そのような溶媒和物も本発明のオリゴヌクレオチドの薬学上許容できる塩に含まれるものとする。
 よって、本発明は、上記のオリゴヌクレオチド又はその薬学上許容できる塩を含む、医薬を提供する。また、本発明は、上記のオリゴヌクレオチド又はその薬学上許容できる塩を含む、DUX4-fl遺伝子の発現に起因する疾患又は症状の治療薬、特に顔面肩甲上腕型筋ジストロフィー治療薬を提供する。
 DUX4-flタンパク質はPRAMEF2, TRIM43, ZSCAN4など初期胚や精巣で発現する遺伝子の発現を活性化する(非特許文献19:Geng et al., Dev Cell 2012, 22:38-51)。DUX4-flの発現はアポトーシス(非特許文献20:Kowaljow et al., Neuromuscul Disord 2007, 17:611-623; 非特許文献21:Wallace et al., Ann Neurol 2011, 69:540-552)や筋発生異常 (非特許文献22:Bosnakovski et al.,EMBO J 2008, 27:2766-2779; 非特許文献23:Banerji et al., Nat Commun 2017, 8:2152), ナンセンスコドン介在mRNA分解の阻害 (非特許文献24:Feng et al., eLife 2015, 4:e04996), 細胞内二本鎖RNAの形成(非特許文献25:Shadle et al., PLoS Genet 2017, 13:e1006658), タンパク質凝集 (非特許文献26:Homma et al., Ann Clin Transl Neurol 2015, 2:151-166)等を引き起こすことが報告されており、様々な疾患や症状の原因になりうる。本発明のオリゴヌクレオチドは。DUX4遺伝子のスプライシングを、強い転写活性を有するDUX4-flから転写活性を持たないDUX4-sへ変換するため、DUX4-flの有する転写活性に起因する疾患又は症状を治療する効果を有する。
 本発明の顔面肩甲上腕型筋ジストロフィー治療薬は、DUX4-flを発現している患者を対象とするとよい。Lemmersらの報告(非特許文献8:Lemmers et al., Science 2010, 329:1650-1653)をはじめとした様々な調査から、FSHD1型であっても、FSHD2型であっても、ハプロタイプ4qAを持つ患者ではDUX4-flが発現していることが示されているため、本発明はFSHD1型にもFSHD2型にも適用される。
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)又はその薬学上許容できる塩を顔面肩甲上腕型筋ジストロフィーの治療に使用する場合には、それ自体あるいは適宜の薬学上許容される賦形剤、希釈剤などと混合し、錠剤、カプセル剤、顆粒剤、散剤若しくはシロップ剤などにより経口的に、あるいは、注射剤、坐剤、貼付剤若しくは外用剤などにより非経口的に投与することができる。
 これらの製剤は、賦形剤(例えば、乳糖、白糖、葡萄糖、マンニトール、ソルビトールのような糖誘導体;トウモロコシデンプン、バイレショデンプン、α澱粉、デキストリンのような澱粉誘導体;結晶セルロースのようなセルロース誘導体;アラビアゴム;デキストラン;プルランのような有機系賦形剤;軽質無水珪酸、合成珪酸アルミニウム、珪酸カルシウム、メタ珪酸アルミン酸マグネシウムのような珪酸塩誘導体;燐酸水素カルシウムのような燐酸塩;炭酸カルシウムのような炭酸塩;硫酸カルシウムのような硫酸塩などの無機系賦形剤など)、滑沢剤(例えば、ステアリン酸;ステアリン酸カルシウム、ステアリン酸マグネシウムのようなステアリン酸金属塩;タルク;コロイドシリカ;ビーズワックス、ゲイ蝋のようなワックス類;硼酸;アジピン酸;硫酸ナトリウムのような硫酸塩;グリコール;フマル酸;安息香酸ナトリウム;DLロイシン;ラウリル硫酸ナトリウム、ラウリル硫酸マグネシウムのようなラウリル硫酸塩:無水珪酸、珪酸水和物のような珪酸類;上記澱粉誘導体など)、結合剤(例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、マクロゴール、前記賦形剤と同様の化合物など)、崩壊剤(例えば、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、内部架橋カルボキシメチルセルロースナトリウムのようなセルロース誘導体;カルボキシメチルスターチ、カルボキシメチルスターチナトリウム、架橋ポリビニルピロリドンのような化学修飾されたデンプン・セルロース類など)、乳化剤(例えば、ベントナイト、ビーガムのようなコロイド性粘土;水酸化マグネシウム、水酸化アルミニウムのような金属水酸化物;ラウリル硫酸ナトリウム、ステアリン酸カルシウムのような陰イオン界面活性剤;塩化ベンザルコニウムのような陽イオン界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ショ糖脂肪酸エステルのような非イオン界面活性剤など)、安定剤(メチルパラベン、プロピルパラベンのようなパラオキシ安息香酸エステル類;クロロブタノール、ベンジルアルコール、フェニルエチルアルコールのようなアルコール類;塩化ベンザルコニウム;フェノール、クレゾールのようなフェノール類;チメロサール;デヒドロ酢酸;ソルビン酸など)、矯味矯臭剤(例えば、通常使用される甘味料、酸味料、香料など)、希釈剤などの添加剤を用いて周知の方法で製造される。
 本発明の治療薬は、0.1~250μmoles/mLのオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)又はその薬学上許容できる塩を含有するとよく、好ましくは、1~50μmoles/mLのオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)又はその薬学上許容できる塩、0.02~10%w/vの炭水化物又は多価アルコール及び0.01~0.4%w/vの薬学上許容される界面活性剤を含有させておいてもよい。
 上記炭水化物としては、単糖類又は二糖類が特に好ましい。これら炭水化物及び多価アルコールの例としては、グルコース、ガラクトース、マンノース、ラクトース、マルトース、マンニトール及びソルビトールが挙げられる。これらは、単独で用いても、併用してもよい。
 また、本発明における界面活性剤の好ましい例としては、ポリオキシエチレンソルビタンモノ~トリ-エステル、アルキルフェニルポリオキシエチレン、ナトリウムタウロコラート、ナトリウムコラート、及び多価アルコールエステルが挙げられる。このうち特に好ましいのは、ポリオキシエチレンソルビタンモノ~トリ-エステルであり、ここにおいてエステルとして特に好ましいのは、オレエート、ラウレート、ステアレート及びパルミテートである。これらは単独で用いても、併用してもよい。
 また、本発明の治療薬は、更に好ましくは、0.03~0.09Mの薬学上許容される中性塩、例えば、塩化ナトリウム、塩化カリウム及び/又は塩化カルシウムを含有させておいてもよい。
 また、本発明の治療薬は、更に好ましくは、0.002~0.05Mの薬学上許容される緩衝剤を含有することができる。好ましい緩衝剤の例としては、クエン酸ナトリウム、ナトリウムグリシネート、リン酸ナトリウム、トリス(ヒドロキシメチル)アミノメタンが挙げられる。これらの緩衝剤は、単独で用いても、併用してもよい。
 さらに、上記の治療薬は、溶液状態で供給してもよい。しかし、ある期間保存する必要がある場合等のために、オリゴヌクレオチド(アンチセンスオリゴヌクレオチド)を安定化して治療効果の低下を防止する目的で通常は凍結乾燥しておくことが好ましく、その場合は用時に溶解液(注射用蒸留水など)で再構成(reconstruction)して、即ち投与される液体状態にして用いればよい。従って、本発明の治療薬は、各成分が所定の濃度範囲になるよう溶解液で再構成して使用するための、凍結乾燥された状態のものも包含する。凍結乾燥物の溶解性を促進する目的で、アルブミン、グリシン等のアミノ酸を更に含有させておいてもよい。
 本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)又はその薬学上許容できる塩をヒトに投与する場合には、例えば、成人1日あたり約0.01~100mg/kg(体重)、好ましくは0.1~20mg/kg(体重)の投与量で、1回または数回に分けて皮下注射、点滴静脈注射、または、静脈注射するとよいが、その投与量や投与回数は、疾患の種類、症状、年齢、投与方法などにより適宜変更しうる。
 ヒト、例えば、DUX4-flを発現している患者への本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)又はその薬学上許容できる塩の投与は、例えば、以下のようにして行うことができる。すなわち、オリゴヌクレオチド(アンチセンスオリゴヌクレオチド)又はその薬学上許容できる塩を当業者に周知の方法で製造し、これを常法により滅菌処理し、例えば125mg/mLの注射用溶液を調製する。この溶液を、患者静脈内にオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)の投与量が体重1kg当たり例えば10mgとなるように、例えば輸液の形で点滴投与する。投与は、例えば1週間の間隔で行い、その後も、治療効果の確認をしながら、適宜この治療を繰り返す。
 また、本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)及びその薬学上許容できる塩は、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換するために用いることができる。よって、本発明は、上記のオリゴヌクレオチド又はその薬学上許容できる塩を含む、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換する薬剤を提供する。DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換する薬剤としては、DUX4-flを発現する細胞において、DUX4-s の発現量をコントロールと比較して約10%以上、好ましくは30%以上、更に好ましくは50%以上に増加させることができるオリゴヌクレオチド又はその薬学上許容できる塩を用いることができるが、DUX4-flからDUX4-sに変換する機能を有している限り、上記の範囲に限定されない。本発明の薬剤は、医薬として、あるいは実験用試薬として用いることができる。
 実験用試薬として用いる場合には、DUX4-flを発現する細胞、組織又は器官を本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)及びその薬学上許容できる塩で処理することにより、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換することができる。本発明のオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)及びその薬学上許容できる塩は、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換するのに有効な量で用いればよい。DUX4-flを発現する細胞としては、ES細胞、iPS細胞や、FSHD患者由来筋芽細胞などの天然由来の細胞を例示することができる。また、天然由来の細胞の他、DUX4遺伝子を導入した組み換え細胞を例示することもできる。DUX4-flを発現する組織及び器官としては、精巣、4細胞期の発生初期胚や、FSHD患者の骨格筋などを例示することができる。DUX4-flの発現は、サンプル中のDUX4-fl(転写産物)をRT-PCRで解析したり、サンプル中のDUX4-flタンパク質をウェスタンブロット法で検出したり、DUX4-flタンパク質に特異的なペプチド断片を質量分析法で検出したりすることにより解析することができる。
 以下、本発明を実施例によって具体的に説明する。なお、これらの実施例は、本発明を説明するためのものであって、本発明の範囲を限定するものではない。
(実施例1) HO-Cm1s-Te2s-Gm1s-Um1s-Ge2s-Gm1s-Gm1s-Ae2s-Gm1s-Am1s-Ge2s-Cm1s-Cm1s-Ce2s-Cm1s-Am1s-Ge2s-Gm1t-H(DUX4-035)(配列番号2)の合成
 核酸自動合成機(「MerMade 192X」BioAutomation製)を用い、ホスホロアミダイト法(Nucleic Acids Research,12,4539(1984))を用いて標記オリゴヌクレオチドを合成した。但し、縮合には、アクチベーター溶液-3(0.25mol/L 5-ベンジルチオ-1H-テトラゾール・アセトニトリル溶液,和光純薬工業社製,product No.013-20011)に、1-メチルイミダゾール(和光純薬工業社製,product No.134-12801)を0.4%加えた溶液を用い、反応時間は約10分とした。ホスホロチオエート結合を形成するためのチオ化試薬として、0.2Mになるようにフェニルアセチルジスルフィド(CARBOSYNTH製,product No.FP07495)を、脱水アセトニトリル(関東化学製,product No.01837-05):脱水ピリジン(関東化学製,product No.11339-05)=1:1(v/v)混合液を用いて溶解して用いた。その他使用した試薬としては、CAP A for AKTA(1-メチルイミダゾール・アセトニトリル溶液,Sigma-Aldrich製,product No.L040050)、Cap B1 for AKTA(無水酢酸・アセトニトリル溶液,Sigma-Aldrich製,product No.L050050)、Cap B2 for AKTA(ピリジン・アセトニトリル溶液,Sigma-Aldrich製,product No.L050150)、DCA Deblock(ジクロロ酢酸・トルエン溶液,Sigma-Aldrich製,product No.L023050)を用いた。アミダイト試薬としては、2’-O-Meヌクレオシドのホスホロアミダイト(アデノシン体product No.ANP-5751,シチジン体product No.ANP-5752,グアノシン体product No.ANP-5753,ウリジン体product No.ANP-5754)はChemGenes製のものを用いた。非天然型のホスホロアミダイトは特開2000-297097の実施例14(5’-O-ジメトキシトリチル-2’-O,4’-C-エチレン-6-N-ベンゾイルアデノシン-3’-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例27(5’-O-ジメトキシトリチル-2’-O,4’-C-エチレン-2-N-イソブチリルグアノシン-3’-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例22(5’-O-ジメトキシトリチル-2’-O,4’-C-エチレン-4-N-ベンゾイル-5-メチルシチジン-3’-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、実施例9(5’-O-ジメトキシトリチル-2’-O,4’-C-エチレン-5-メチルウリジン-3’-O-(2-シアノエチル N,N-ジイソプロピル)ホスホロアミダイト)、の化合物を用いた。固相担体として、Glen Unysupport FC 96ウェルフォーマット0.2μmol(GlenResearch製)を用い、標記の化合物を合成した。
 目的配列を有する保護されたオリゴヌクレオチド類縁体を600μLの濃アンモニア水で処理することによってオリゴマーを支持体から切り出すとともに、リン原子上の保護基シアノエチル基と核酸塩基上の保護基をはずした。オリゴマーの混合溶液を、Clarity QSP DNA Loading Buffer(Phenomenex製)300μLと混合し、Clarity SPE 96 well plate(Phenomenex製)上にチャージした。Clarity QSP DNA Loading Buffer:水=1:1溶液1mL、0.1Mテトラブチルアンモニウムブロミド水溶液:アセトニトリル=8:2(v/v)溶液2mL、3%ジクロロ酢酸(DCA)水溶液3mL、水4mL、20mM Tris水溶液2mLの順に添加した後、20mM Tris水溶液:アセトニトリル=9:1溶液にて抽出される成分を集めた。溶媒留去後、目的化合物を得た。本化合物は、逆相HPLC(カラム(Phenomenex,Clarity 2.6μm Oligo-MS 100A(2.1×50mm))、A溶液:100mMヘキサフルオロイソプロパノール(HFIP)、8mMトリエチルアミン水溶液、B溶液:メタノール、B%:10%→25%(4min,linear gradient);60℃;0.5mL/min;260nm)で分析すると、3.384分に溶出された。化合物は負イオンESI質量分析により同定した(計算値:6446.76、実測値:6446.75)。
 本化合物の塩基配列は、Homo spiens clone 60-1 double homeodomain protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No.HQ266761)のヌクレオチド番号595-612に相補的な配列である。
 なお、配列表には、天然ヌクレオシドと2’-O,4’-C-エチレンヌクレオシドとを区別することなく塩基配列を示す。
(実施例2~47)
 表1に示す実施例2乃至47の化合物を、実施例1と同様に合成した。
Figure JPOXMLDOC01-appb-T000006

 表中の配列において小文字は2’-OMe-RNA、下線を付した大文字はENAを示す。但し、ENAのCの塩基部位は、5-メチルシトシンである。各ヌクレオシドはホスホロチオエートで結合している。標的領域は、Homo spiens clone 60-1 double homeodomain protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No.HQ266761)のヌクレオチド番号を示す。分子量は、負イオンESI質量分析による実測値を示す。
(実施例48-95)
 実施例1と同様の条件で合成することにより、下記の表2に記載の化合物も合成することができる。
Figure JPOXMLDOC01-appb-T000007
 表中の配列において小文字は2’-OMe-RNA、下線を付した大文字はENAを示す。但し、ENAのCの塩基部位は、5-メチルシトシンである。各ヌクレオシドはホスホロチオエートで結合している。標的領域は、Homo spiens clone 60-1 double homeodomain protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No.HQ266761)のヌクレオチド番号を示す。分子量は、負イオンESI質量分析による実測値を示す。
 なお、本明細書において、At、Gt、5meCt、Ct、Tt、Ut、Ap、Gp、5meCp、Cp、Tp、Up、As、Gs、5meCs、Cs、Ts、Us、Am1t、Gm1t、Cm1t、5meCm1t、Um1t、Am1p、Gm1p、Cm1p、5meCm1p、Um1p、Am1s、Gm1s、Cm1s、5meCm1s、Um1s、A2t、G2t、C2t、T2t、Ae2p、Ge2p、Ce2p、Te2p、Ae2s、Ge2s、Ce2s、Te2s、A1t、G1t、C1t、T1t、Ae1p、Ge1p、Ce1p、Te1p、Ae1s、Ge1s、Ce1s、Te1s、A3t、G3t、C3t、T3t、Ae3p、Ge3p、Ce3p、Te3p、Ae3s、Ge3s、Ce3s、Te3s、Am2t、Gm2t、5meCm2t、Tm2t、Am2p、Gm2p、5meCm2p、Tm2p、Am2s、Gm2s、5meCm2s、Tm2sは、下記に示す構造を有する基である。
Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013
(試験例1)
(A)DUX4ミニジーンコンストラクトの構築
 DUX4遺伝子を含むBACクローンRP11-242C23(Morioka et al., PLoS One 2016, 11: e0151963)を保持する遺伝子組換え大腸菌を、Children's Hospital OaklandのBAC PAC Resources Centerから購入した。LB/クロラムフェニコール寒天培地で培養し、QIAGEN plasmid midi kit (QIAGEN, cat.no.12143)を用いてプロトコルQP01にしたがってBAC DNAを精製した。
 BAC DNAを鋳型としてプライマー207(5’-CGCGTCCGTCCGTGAAATTCC-3’)(配列番号86), プライマー209(5’-CAGGGGATATTGTGACATATCTCTGCAC-3’) (配列番号87)、PrimeStar GXL(Takara; cat.no.R050A)を用いたPCRによってDUX4エクソン1からエクソン3を含む領域2163bpを増幅した。PCR産物をMinElute Gel Extraction Kit(QIAGEN, cat.no.28606)を用いて精製し、Mighty mix (Takara; cat.no.6023)を用いてpCR bluntベクター(Thermofisher scientific; cat.no.K275020)にライゲーションした。組換えプラスミドDNAを大腸菌TOP10コンピテントセル(Thermofisher; cat.no.C404010)に形質転換し、LB/カナマイシン寒天培地で選択した。形質転換体のコロニーを液体培養し、GenElute plasmid miniprep kit(SIGMA; cat.no.PLN350)で組換えプラスミドDNAを精製した。得られた組換えプラスミドDNAの塩基配列をABI 3500xL Genetic Analyzer (Applied Biosystems)で解読し、DUX4のエクソン1からエクソン3までが挿入されていることを確認し、プラスミド318と名付けた。
 プラスミド318を鋳型とし、EcoRI認識配列とkozak配列を含むプライマー216(5’-GAATTCTGCCACCATGGCCCTCCCG-3’) (配列番号88)と、XhoI認識配列を含むプライマー218(5’-CTCGAGCTATAGGATCCACAGGGAGG-3’) (配列番号89)を用いて、再度PrimeStar GXLによるPCRをおこない、DUX4エクソン1からエクソン3を含む領域の5’末端にEcoRI認識配列とkozak配列を、3’末端にXhoI認識配列を付加した。制限酵素認識配列とkozak配列が付加したDUX4遺伝子DNAをpCR bluntベクターにライゲーションし、プラスミド320と名付けた。
 プラスミド320と発現ベクターpcDNA3.1(+) (Thermofisher scientific; cat.no.V79020)をそれぞれEcoRI, XhoIで37℃、2時間処理し、アガロース電気泳動でバンドを確認した。DUX4遺伝子配列とpcDNA3.1(+)ベクターに相当するバンドからDNAをMinElute Gel Extraction Kit(QIAGEN, cat.no.28606)を用いて精製し、Mighty mixを用いて、DUX4遺伝子配列とベクターをライゲーションした。ABI 3500xL Genetic Analyzerで塩基配列を確認し、DUX4ミニジーンコンストラクトと名付けた。
(B)HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物のトランスフェクション
 ヒト子宮頸部癌由来培養細胞株であるHeLa細胞は、理研BRC Cell Bankより購入した(cat. RCB0007, Tsukuba, Japan)。HeLa細胞は10% FBS (Thermofisher scientific; cat.no.10270-106)を含むDMEM (SIGMA; cat.no.D5796)中で、 37°C、CO2濃度5%の条件で培養した。 6ウェルディッシュ(Thermofisher scientific; cat.no.140675)にHeLa細胞を56 x 104個播種し、翌日、DUX4ミニジーンコンストラクト1μgと実施例の化合物(最終濃度100nM)をリポフェクタミン2000(Thermofisher scientific; cat.no.11668027)を用いて導入した。
(C)DUX4ミニジーンコンストラクトからの転写産物の検出
DUX4ミニジーンコンストラクトをトランスフェクションした後、24時間で細胞を回収し、RNeasy mini kit(QIAGEN; cat.no.74104)でRNAを抽出した。PrimeScript(Takara; cat.no.2680A)を用いて逆転写をおこない、DUX4-fl、DUX4-s 両方を増幅するプライマー(プライマー222: 5’-GGATTCAGATCTGGTTTCAGAATCGAAGG-3’ (配列番号90), プライマー225: 5’-CCAGGAGATGTAACTCTAATCCAGGTTTGC-3’ (配列番号91))でPCRをおこなった。4.8%ポリアクリルアミドゲル電気泳動でDUX4-flとDUX4-sのバンドを分離し、バンド強度をLAS3000(Fujifilm)で可視化した。マーカーとして、λ/EcoT14Iマーカー(Takara; cat.no.3010をTakara;cat.no.1038Aで処理、図中、M1として使用)、100bpマーカー(Takara;cat.no.3422B, 図中、M2として使用)を使用した。
 そのゲル電気泳動の結果を図2乃至7に示す。図中、controlは、DUX4ミニジーンコンストラクト、実施例の化合物ともにトランスフェクションしなかったものを示す。D4は、DUX4ミニジーンコンストラクトのみをトランスフェクションしたものを示す。実施例の化合物(DUX4-004乃至DUX4-016、DUX4-025乃至DUX4-058)のトランスフェクションした細胞において、DUX4-s由来と思われる300bp程度のバンドが、D4のレーンよりも強いバンドが認められた。
(D)実施例の化合物によって生成したDUX4-sのバンドの塩基配列の確認
DUX4ミニジーンコンストラクトをトランスフェクションした後、24時間で細胞を回収し、RNeasy mini kitでRNAを抽出した。PrimeScriptを用いて逆転写をおこない、DUX4-fl、DUX4-s 両方を増幅するプライマー(プライマー222, 225)でPCRをおこなった。2%アガロースゲル電気泳動にてDUX4-flとDUX4-sのバンドを分離し、約300bpのバンドを切り出し、MinElute Gel Extraction kitでDNAを精製し、Mighty mixを用いてpCR bluntベクターにライゲーションした。組換えプラスミドDNAを大腸菌TOP10コンピテントセルに形質転換し、LB/カナマイシン寒天培地で選択した。形質転換体のコロニーを液体培養し、GenElute plasmid miniprep kitで組換えプラスミドDNAを精製した。得られた組換えプラスミドDNAを鋳型にM13 forwardプライマー(5’- CGACGTTGTAAAACGACGGCCAGT-3’ (配列番号92))、M13 reverseプライマー(5’- ggaaacagctatgaccatgattac-3’ (配列番号93))でサンガー反応をおこない、ABI 3500xL Genetic Analyzerで塩基配列を解析した。その結果DUX4-sの配列(Genbank HQ266762)と比べ、エクソン2の3’末端10bpが欠失した配列であった。DUX4-sの終止コドンはエソン2の先頭に存在するため、本実験で確認された配列からも全長のDUX4-sタンパク質(GenBank: ADN68617.1)が産生されると考えられる。
(E)DUX4標的遺伝子の発現量の測定 
 DUX4ミニジーンコンストラクトと実施例の化合物(DUX4-009)をトランスフェクションした後、24時間で細胞を回収し、RNeasy mini kitでRNAを抽出した。PrimeScriptを用いて逆転写をおこないcDNAを合成した。そのcDNAを鋳型として用い、DUX4が転写を活性化する標的遺伝子として知られているZSCAN4, MBD3L2, TRIM43の発現量をPowerUP SYBR Green PCR master mix (Thermofisher scientific; cat.no. A25742)を用いたリアルタイムPCRで測定した。PCRはStepOne Plus(Thermofisher scientific)を用い、内部標準としてRPL13A遺伝子を用いたΔΔCt法で数値化した。用いたプライマーの配列は以下の通りである。
ZSCAN4-Fw: 5’-TGGAAATCAAGTGGCAAAAA-3’ (配列番号94); ZSCAN4-Rv: 5’-CTGCATGTGGACGTGGAC-3’ (配列番号95)
MBD3L2-Fw: 5’-GCGTTCACCTCTTTTCCAAG-3’ (配列番号96); MBD3L2-Rv: 5’-GCCATGTGGATTTCTCGTTT-3’ (配列番号97)
TRIM43-Fw: 5’-ACCCATCACTGGACTGGTGT-3’ (配列番号98); TRIM43-Rv: 5’-CACATCCTCAAAGAGCCTGA-3’ (配列番号99)
 その結果を図8ABに示す。DUX4ミニジーンコンストラクトと実施例の化合物(図8A:DUX4-009, DUX4-031, DUX4-036, DUX4-048、図8B:DUX4-48.7, DUX4-48.11, DUX4-48.12, DUX4-48.13, DUX4-52.2)をトランスフェクションした細胞は、DUX4ミニジーンコンストラクトのみをトランスフェクションした細胞と比較して、ZSCAN4, MBD3L2, TRIM43の発現量の低下が認められた。

(試験例2)
(A)DUX4 pre-mRNA (D4Z4 mRNA)の調製
 HeLa細胞の実験で用いているDUX4ミニジーンコンストラクトをEcoRIとXhoIで切断し、断片をアガロースゲル電気泳動で分離した。ゲルからDNAを精製し、SP6プロモーターを持つpCS2-V5ベクターへライゲーションした。得られたプラスミドDUX4_pCS2をNotIで線状化し、それを鋳型としてmMessage mMachine SP6 transcription kit (ThermoFisher scientific; cat.no.AM1340)を用いてmRNAをin vitro合成し、RNeasy MinElute Cleanup kit (QIAGEN; cat.no.74204)で精製した。

(B)ゼブラフィッシュへのD4Z4 mRNAと実施例の化合物のインジェクション、及び、 DUX4 pre-mRNAのスプライシングの変化の検出
 野生型ゼブラフィッシュ系統RIKEN WTの受精卵約100個にDUX4 pre-mRNA (終濃度:10ng/μl)のみ、またはDUX4 pre-mRNAと実施例化合物DUX-048(終濃度:500μM)の混合液を、マイクロインジェクター(Eppendorf)で1nL注入した。5時間後にTRIzol reagent (ThermoFisher scientific; cat.no.15596026)を加えて受精卵をホモジナイズし、RNeasy Mini kitを用いてRNAを精製した。RNase-free DNase set (QIAGEN; cat.no.79254)を用いてDNase処理をおこなった。得られたRNAの一部をRT-用サンプルとし、1.2μg分をPrimeScript 1st strand cDNA synthesis kitを用いて逆転写した。得られたcDNAを鋳型に、プライマー222(配列番号90), プライマー225(配列番号91)を用いPrimeSTAR GXL DNA polymerase(Takara; cat.no.R050A)によるPCRをおこなった。4.8%ポリアクリルアミドゲル電気泳動でDUX4-flとDUX4-sのバンドを分離し、バンド強度をLAS3000(Fujifilm)で可視化した。λ/EcoT14Iマーカー(Takara; cat.no.3010をTakara;cat.no.1038Aで処理、図中、M1として使用)、100bpマーカー(Takara;cat.no.3422B, 図中、M2として使用)を使用した。
 その結果を図9に示す。逆転写を行わなかった陰性対照(RT-)では予想通りバンドが検出されなかったことからプライマーの特異性が確認された。一方、逆転写をおこなったサンプル(RT+)では、実施例化合物(DUX-048)をインジェクトしたものでDUX4-fl相当のバンドが減少し、DUX4-s相当のバンドが増加した。

(実施例96-130)
 実施例1と同様の条件で合成することにより、下記の表3に記載の化合物を合成した。

Figure JPOXMLDOC01-appb-T000014
 表中の配列において小文字は2’-OMe-RNA、大文字はENAを示す。但し、ENAのCの塩基部位は、5-メチルシトシンである。各ヌクレオシドはホスホロチオエートで結合している。標的領域は、Homo spiens clone 60-1 double homeodomain protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No.HQ266761)のヌクレオチド番号を示す。分子量は、負イオンESI質量分析による実測値を示す。

(試験例3)
(A)HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物のトランスフェクション、及び、DUX4ミニジーンコンストラクトからの転写産物の検出
 HeLa細胞へのDUX4ミニジーンコンストラクトと実施例の化合物(DUX4-048、DUX4-48.1乃至DUX4-48.23、DUX4-052、DUX4-52.1乃至DUX4-52.12)のトランスフェクション、及び、DUX4ミニジーンコンストラクトからの転写産物の検出は、試験例1の(B)、(C)と同様に行った。
 そのゲル電気泳動の結果を図10乃至13示す。図中、controlは、DUX4ミニジーンコンストラクト、実施例の化合物ともにトランスフェクションしなかったものを示す。D4は、DUX4ミニジーンコンストラクトのみをトランスフェクションしたものを示す。実施例の化合物DUX4-048、DUX4-48.1乃至DUX4-48.23、DUX4-052、DUX4-52.1乃至DUX4-52.12)のトランスフェクションした細胞において、DUX4-s由来と思われる300bp程度のバンドが、D4のレーンよりも強いバンドが認められた。また、実施例の化合物(DUX4-48.7、DUX4-48.12、及び、DUX4-52.2)のトランスフェクションした細胞において、DUX4-fl由来と思われるバンドが、顕著に減少した。

(参考例1)2-Cyanoethyl (6-stearamidohexyl)diisopropylphosphoramidite
Figure JPOXMLDOC01-appb-I000015
 Stearic acid (5.00 g)のジクロロメタン(100 mL)懸濁液を約10℃に冷却し、6-amino-1-hexanol (3.09 g)、1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (3.37 g)、ジイソプロピルエチルアミン (3.06 mL)を加え、室温で17時間攪拌した。MeOHを加え、濃縮して得られた残渣にAcetone-MeOH-hexane-tolueneとISOLUTE HM-N (bulk, Biotage) を加えて分散させ、溶媒を減圧下留去し、得られた残分をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル/メタノール)に付し、中間体の粗精製物 (3.98 g) を得た。この粗精製物 (3.86 g)のジクロロメタン(100 mL)懸濁液を0℃に冷却し、ジイソプロピルエチルアミン(7.01 mL)、2-Cyanoethyl diisopropylchlorophosphoramidite(3.37 mL)を加え、室温で3時間攪拌した。溶媒を減圧下留去し、得られた残分をNH-シリカゲルカラムクロマトグラフィー(DCM/酢酸エチル)に付し、さらにNH-シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)に付して標記化合物 (785 mg) を無色固体として得た。
1H-NMR (CDCl3) δ: 0.88 (3H, t, J = 6.3 Hz), 1.15-1.20 (12H, m), 1.22-1.66 (38H, m), 2.14 (2H, t, J = 7.6 Hz), 2.65 (2H, t, J = 6.3 Hz), 3.24 (2H, dt, J = 6.7, 6.7 Hz), 3.53-3.92 (6H, m), 5.44 (1H, br s). MS (m/z): 423.6 (M-N(iPr)2+OH+Na)+.

(実施例131-134)
 実施例1と同様の条件で合成することにより、下記の表4に記載の化合物を合成した。但し、目的配列を有するオリゴヌクレオチドの鎖伸長が終了した後に、2-Cyanoethyl (6-palmitamidohexyl)diisopropylphosphoramidite (Nucleic Acids Res. (2020) 47, 6029-6044)を、濃度が0.1Mになるようにアセトニトリル:ジクロロメタン(1:2v/v)で溶解した溶液を用いて、カップリングした。カップリング後は、酸化溶液 [よう素溶液(約0.05mol/L)][ピリジン:水(9:1)](シグマアルドリッチ製)を用いて酸化した。
 目的配列を有する保護されたオリゴヌクレオチド類縁体を600μLの濃アンモニア水で処理することによってオリゴマーを支持体から切り出すとともに、リン原子上の保護基シアノエチル基と核酸塩基上の保護基をはずした。オリゴマーの混合溶液を、Clarity QSP DNA Loading Buffer(Phenomenex製)300μLと混合し、Clarity QSP cartridge 60mg/3mL 30μm(Phenomenex製)上にチャージした。Clarity QSP DNA Loading Buffer:水=1:1溶液1mL、0.1Mテトラブチルアンモニウムブロミド水溶液:アセトニトリル=8:2(v/v)溶液2mL、水4mL、20mM Tris水溶液4mLの順に添加した後、20mM Tris水溶液:アセトニトリル=8:2溶液800μLにて抽出される成分を集めた。溶媒留去後、目的化合物を得た。本化合物は、逆相HPLC(カラム(Phenomenex,Clarity 2.6μm Oligo-MS 100A(2.1×50mm))、A溶液:100mMヘキサフルオロイソプロパノール(HFIP)、8mMトリエチルアミン水溶液、B溶液:メタノール、B%:10%→25%→40%→65%(4min→6min→8min,linear gradient);60℃;0.5mL/min;260nm)で分析すると、5.7分に溶出された。化合物は負イオンESI質量分析により同定した。
Figure JPOXMLDOC01-appb-T000016
表中の配列において小文字は2’-OMe-RNA、大文字はENAを示す。但し、ENAのCの塩基部位は、5-メチルシトシンである。各ヌクレオシドはホスホロチオエートで結合している。標的領域は、Homo spiens clone 60-1 double homeodomain protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No.HQ266761)のヌクレオチド番号を示す。分子量は、負イオンESI質量分析による実測値を示す。
実施例131-134の化合物の5’末端には、水酸基の代わりに、
Figure JPOXMLDOC01-appb-I000017
で示す基を有している。

(実施例135-138)
 実施例1と同様の条件で合成することにより、下記の表5に記載の化合物を合成した。但し、目的配列を有するオリゴヌクレオチドの鎖伸長が終了した後に、参考例1の化合物を、濃度が0.1Mになるようにアセトニトリル:ジクロロメタン(1:2v/v)で溶解した溶液を用いて、カップリングした。カップリング後は、酸化溶液 [よう素溶液(約0.05mol/L)][ピリジン:水(9:1)](シグマアルドリッチ製)を用いて酸化した。
 目的配列を有する保護されたオリゴヌクレオチド類縁体を600μLの濃アンモニア水で処理することによってオリゴマーを支持体から切り出すとともに、リン原子上の保護基シアノエチル基と核酸塩基上の保護基をはずした。オリゴマーの混合溶液を、Clarity QSP DNA Loading Buffer(Phenomenex製)300μLと混合し、Clarity QSP cartridge 60mg/3mL 30μL(Phenomenex製)上にチャージした。Clarity QSP DNA Loading Buffer:水=1:1溶液1mL、0.1Mテトラブチルアンモニウムブロミド水溶液:アセトニトリル=8:2(v/v)溶液2mL、水4mL、20mM Tris水溶液4mLの順に添加した後、20mM Tris水溶液:アセトニトリル=8:2溶液800μLにて抽出される成分を集めた。溶媒留去後、目的化合物を得た。本化合物は、逆相HPLC(カラム(Phenomenex,Clarity 2.6μm Oligo-MS 100A(2.1×50mm))、A溶液:100mMヘキサフルオロイソプロパノール(HFIP)、8mMトリエチルアミン水溶液、B溶液:メタノール、B%:10%→25%→40%→65%(4min→6min→8min,linear gradient);60℃;0.5mL/min;260nm)で分析すると、6.2分に溶出された。化合物は負イオンESI質量分析により同定した。
Figure JPOXMLDOC01-appb-T000018
表中の配列において小文字は2’-OMe-RNA、大文字はENAを示す。但し、ENAのCの塩基部位は、5-メチルシトシンである。各ヌクレオシドはホスホロチオエートで結合している。標的領域は、Homo spiens clone 60-1 double homeodomain protein DUX4-fl (DUX4) mRNA (NCBI-GenBank accession No.HQ266761)のヌクレオチド番号を示す。分子量は、負イオンESI質量分析による実測値を示す。
実施例135-138の化合物の5’末端には、水酸基の代わりに、
Figure JPOXMLDOC01-appb-I000019
で示す基を有している。


 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
 本発明は、顔面肩甲上腕型筋ジストロフィーの治療に利用できる。
<配列番号1>DUX4-fl accession number: HQ266761の塩基配列を示す。

atggccctcccgacaccctcggacagcaccctccccgcggaagcccggggacgaggacggcgacggagactcgtttggaccccgagccaaagcgaggccctgcgagcctgctttgagcggaacccgtacccgggcatcgccaccagagaacggctggcccaggccatcggcattccggagcccagggtccagatttggtttcagaatgagaggtcacgccagctgaggcagcaccggcgggaatctcggccctggcccgggagacgcggcccgccagaaggccggcgaaagcggaccgccgtcaccggatcccagaccgccctgctcctccgagcctttgagaaggatcgctttccaggcatcgccgcccgggaggagctggccagagagacgggcctcccggagtccaggattcagatctggtttcagaatcgaagggccaggcacccgggacagggtggcagggcgcccgcgcaggcaggcggcctgtgcagcgcggcccccggcgggggtcaccctgctccctcgtgggtcgccttcgcccacaccggcgcgtggggaacggggcttcccgcaccccacgtgccctgcgcgcctggggctctcccacagggggctttcgtgagccaggcagcgagggccgcccccgcgctgcagcccagccaggccgcgccggcagaggggatctcccaacctgccccggcgcgcggggatttcgcctacgccgccccggctcctccggacggggcgctctcccaccctcaggctcctcgctggcctccgcacccgggcaaaagccgggaggaccgggacccgcagcgcgacggcctgccgggcccctgcgcggtggcacagcctgggcccgctcaagcggggccgcagggccaaggggtgcttgcgccacccacgtcccaggggagtccgtggtggggctggggccggggtccccaggtcgccggggcggcgtgggaaccccaagccggggcagctccacctccccagcccgcgcccccggacgcctccgcctccgcgcggcaggggcagatgcaaggcatcccggcgccctcccaggcgctccaggagccggcgccctggtctgcactcccctgcggcctgctgctggatgagctcctggcgagcccggagtttctgcagcaggcgcaacctctcctagaaacggaggccccgggggagctggaggcctcggaagaggccgcctcgctggaagcacccctcagcgaggaagaataccgggctctgctggaggagctttaggacgcggggttgggacggggtcgggtggttcggggcagggcggtggcctctctttcgcggggaacacctggctggctacggaggggcgtgtctccgccccgccccctccaccgggctgaccggcctgggattcctgccttctaggtctaggcccggtgagagactccacaccgcggagaactgccattctttcctgggcatcccggggatcccagagccggcccaggtaccagcagacctgcgcgcagtgcgcaccccggctgacgtgcaagggagctcgctggcctctctgtgcccttgttcttccgtgaaattctggctgaatgtctccccccaccttccgacgctgtctaggcaaacctggattagagttacatctc

<配列番号2~85>実施例1~118、131~133、135~137で合成したアンチセンスオリゴヌクレオチドの配列を示す。アンチセンスオリゴヌクレオチドは、天然型DNA、天然型RNA、DNA/RNAのキメラ、これらの修飾体のいずれであってもよく、アンチセンスオリゴヌクレオチドを構成するヌクレオチドの少なくとも1つが修飾ヌクレオチドであってもよい。

<配列番号86~99>プライマーの配列を示す。

<配列番号100~102>実施例119~130、134及び138で合成したアンチセンスオリゴヌクレオチドの配列を示す。アンチセンスオリゴヌクレオチドは、天然型DNA、天然型RNA、DNA/RNAのキメラ、これらの修飾体のいずれであってもよく、アンチセンスオリゴヌクレオチドを構成するヌクレオチドの少なくとも1つが修飾ヌクレオチドであってもよい。

Claims (24)

  1. 配列番号1のヌクレオチド配列からなるDUX4-fl mRNAのヌクレオチド番号502~556又は578~612の領域に相補的なヌクレオチド配列からなる塩基数15~30のオリゴヌクレオチドを含み、その5’末端及び/又は3’末端が化学修飾されていても良いオリゴヌクレオチドであって、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換することができる前記オリゴヌクレオチド又はその薬学上許容できる塩。
  2. 配列番号2~85のいずれかの配列(但し、配列中のtはuであってもよく、uはtであってもよい)中の連続する少なくとも15個のヌクレオチドの配列を含む請求項1記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  3. オリゴヌクレオチドの塩基数が16~18である請求項1又は2に記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  4. オリゴヌクレオチドの塩基数が18である請求項3記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  5. オリゴヌクレオチドを構成する糖及び/又はリン酸ジエステル結合の少なくとも1個が修飾されている請求項1~4のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  6. オリゴヌクレオチドを構成する糖がD-リボフラノースであり、糖の修飾がD-リボフラノースの2’位の水酸基の修飾である請求項5記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  7. 糖の修飾がD-リボフラノースの2’-O-アルキル化及び/又は2’-O, 4’-C-アルキレン化である請求項6記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  8. 糖の修飾がD-リボフラノースの2’-O-メチル化及び/又は2'-O,4'-C-エチレン化 である請求項6に記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  9. リン酸ジエステル結合の修飾がホスホロチオエートである請求項5~8のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  10. 配列番号1のヌクレオチド配列のヌクレオチド番号506から549の領域に相補的なヌクレオチド配列からなる塩基数15~30のオリゴヌクレオチドであることを特徴とする請求項1~9のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  11. 配列番号5~31のいずれかの配列(但し、配列中のtはuであってもよく、uはtであってもよい)中の連続する少なくとも15個のヌクレオチドの配列を含む請求項10記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  12. 以下のいずれかの配列からなるオリゴヌクレオチド又はその薬学上許容できる塩;
    HO-Gm1s-Ge2s-Gm1s-Am1s-Ge2s-Cm1s-Am1s-Ge2s-Gm1s-Gm1s-Te2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Ce2s-Cm1t-H(DUX4-006);
    HO-Gm1s-Ae2s-Cm1s-Cm1s-Ce2s-Am1s-Cm1s-Ge2s-Am1s-Gm1s-Ge2s-Gm1s-Am1s-Ge2s-Cm1s-Am1s-Ge2s-Gm1t-H(DUX4-009);
    HO-Gm1s-Ae2s-Am1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2s-Cm1s-Cm1s-Ce2s-Am1s-Cm1s-Ge2s-Am1s-Gm1s-Ge2s-Gm1t-H(DUX4-011);
    HO-Gm1s-Ge2s-Um1s-Gm1s-Te2s-Gm1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2s-Am1s-Gm1s-Ge2s-Cm1s-Gm1s-Ae2s-Cm1t-H(DUX4-014);
    HO-Gm1s-Ae2s-Gm1s-Cm1s-Ae2s-Gm1s-Gm1s-Ge2s-Um1s-Gm1s-Ae2s-Cm1s-Cm1s-Ce2s-Cm1s-Cm1s-Ge2s-Cm1t-H(DUX4-036);
    HO-Gm1s-Ge2s-Am1s-Gm1s-Ce2s-Am1s-Gm1s-Ge2s-Gm1s-Um1se2s-Am1s-Cm1s-Ce2s-Cm1s-Cm1s-Ce2s-Gm1t-H(DUX4-037);
    HO-Am1s-Ce2s-Gm1s-Am1s-Ge2s-Gm1s-Gm1s-Ae2s-Gm1s-Cm1s-Ae2s-Gm1s-Gm1s-Ge2s-Um1s-Gm1s-Ae2s-Cm1t-H(DUX4-040);
    HO-Cm1s-Ge2s-Am1s-Cm1s-Ce2s-Cm1s-Am1s-Ce2s-Gm1s-Am1s-Ge2s-Gm1s-Gm1s-Ae2s-Gm1s-Cm1s-Ae2s-Gm1t-H(DUX4-044);
    HO-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Ae2s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1s-Ge2s-Am1t-H(DUX4-047);
    HO-Cm1s-Ge2s-Am1s-Am1s-Ge2s-Gm1s-Cm1s-Ge2s-Am1s-Cm1s-Ce2s-Cm1s-Am1s-Ce2s-Gm1s-Am1s-Ge2s-Gm1t-H(DUX4-048);
    HO-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Ae2s-Cm1s-Gm1s-Ae2s-Gm1t-H(DUX4-049);
    HO-Um1s-Ge2s-Um1s-Gm1s-Ge2s-Gm1s-Cm1s-Ge2s-Am1s-Am1s-Ge2s-Gm1s-Cm1s-Ge2s-Am1s-Cm1s-Ce2s-Cm1t-H(DUX4-052);
    HO-Gm1s-Te2s-Gm1s-Um1s-Ge2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1t-H(DUX4-053);
    HO-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Cm1s-Cm1s-Cm1s-Ae2s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.7);
    HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Cm1s-Cm1s-Ce2s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.10);
    HO-Cm1s-Gm1s-Ae2s-Am1s-Gm1s-Gm1s-Cm1s-Gm1s-Ae2s-Cm1s-Ce2s-Cm1s-Am1s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.11);
    HO-Ce2s-Gm1s-Ae2s-Am1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Cm1s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.12);
    HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.14);
    HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Ae2s-Cm1s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.15);
    HO-Cm1s-Gm1s-Ae2s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1s-Am1s-Cm1s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.19);
    HO-Cm1s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Cm1s-Cm1s-Cm1s-Am1s-Ce2s-Gm1s-Ae2s-Gm1s-Gm1t-H(DUX4-48.20);
    HO-Te2s-Gm1s-Te2s-Gm1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Ce2t-H(DUX4-52.1);
    HO-Te2s-Gm1s-Te2s-Gm1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ae2s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Cm1t-H(DUX4-52.2);
    HO-Te2s-Gm1s-Um1s-Gm1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Am1s-Ce2s-Cm1s-Ce2t-H(DUX4-52.7);
    HO-Um1s-Gm1s-Te2s-Gm1s-Gm1s-Gm1s-Cm1s-Gm1s-Am1s-Am1s-Gm1s-Gm1s-Ce2s-Gm1s-Ae2s-Cm1s-Ce2s-Cm1t-H(DUX4-52.9)
    [上記の配列中、Ae2s、Ge2s、Ce2s及びTe2sは、3’側に隣接する構造とホスホロチオエート結合した対応するENA(Cの塩基部位は、5-メチルシトシンである)を表す。Am1s、Gm1s、Cm1s、Um1s、は、3’側に隣接する構造とホスホロチオエート結合した対応する2’-OMeーRNAを表す。Ce2tは、3’側に隣接する構造とリン酸ジエステル結合した対応するENA(Cの塩基部位は、5-メチルシトシンである)を表す。Am1t、Gm1t、Cm1tは、3’側に隣接する構造とリン酸ジエステル結合した対応する2’-OMeーRNAを表す。]。
  13. オリゴヌクレオチドの5’末端又は3’末端に、脂肪酸を含むアミノアルキルリン酸基がさらに結合していることを特徴とする請求項1~12のいずれかに記載のオリゴヌクレオチド又はその薬学上許容される塩。
  14. 脂肪酸が、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸及びベヘン酸からなる群より選択される少なくとも一つである請求項13に記載のオリゴヌクレオチド又はその薬学上許容される塩。
  15. DUX4-fl遺伝子の発現に起因する疾患又は症状の治療における使用のための、請求項1~14のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  16. DUX4-fl遺伝子の発現に起因する疾患又は症状が、面肩甲上腕型筋ジストロフィーである請求項15に記載のオリゴヌクレオチド又はその薬学上許容できる塩。
  17. 請求項1~16のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩を含む、医薬。
  18. 請求項1~16のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩を含む、DUX4-fl遺伝子の発現に起因する疾患又は症状の治療薬。
  19. DUX4-fl遺伝子の発現に起因する疾患又は症状が、面肩甲上腕型筋ジストロフィーである請求項18に記載の治療薬。
  20. 請求項1~16のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩を含む、DUX4遺伝子のスプライシングをDUX4-flからDUX4-sに変換する薬剤。
  21. 請求項1~16のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩を対象に投与することによる、当該対象におけるDUX4-fl遺伝子の発現に起因する疾患又は症状の治療方法。
  22. DUX4-fl遺伝子の発現に起因する疾患又は症状が、面肩甲上腕型筋ジストロフィーである請求項21に記載の治療方法。
  23. DUX4-fl遺伝子の発現に起因する疾患又は症状の治療薬の製造のための、請求項1~16のいずれかに記載のオリゴヌクレオチド又はその薬学上許容できる塩の使用。
  24. DUX4-fl遺伝子の発現に起因する疾患又は症状が、面肩甲上腕型筋ジストロフィーである請求項22に記載の使用。
PCT/JP2020/026950 2019-07-12 2020-07-10 DUX4 pre-mRNAのスプライシングを変化させるアンチセンスオリゴヌクレオチド WO2021010301A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202080045492.XA CN114026234A (zh) 2019-07-12 2020-07-10 改变DUX4 pre-mRNA剪接的反义寡核苷酸
BR112021024764A BR112021024764A2 (pt) 2019-07-12 2020-07-10 Oligonucleotídeo antissenso capaz de alterar o splicing de pré-mrna de dux4
US17/621,449 US20220364086A1 (en) 2019-07-12 2020-07-10 ANTISENSE OLIGONUCLEOTIDE CAPABLE OF ALTERING SPLICING OF DUX4 pre-mRNA
CA3142925A CA3142925A1 (en) 2019-07-12 2020-07-10 Antisense oligonucleotide capable of altering splicing of dux4 pre-mrna
JP2021533025A JPWO2021010301A1 (ja) 2019-07-12 2020-07-10
EP20841146.2A EP3998108A1 (en) 2019-07-12 2020-07-10 Antisense oligonucleotide capable of altering splicing of dux4 pre-mrna
AU2020313255A AU2020313255A1 (en) 2019-07-12 2020-07-10 Antisense oligonucleotide capable of altering splicing of DUX4 pre-mRNA
KR1020217040852A KR20220032004A (ko) 2019-07-12 2020-07-10 DUX4 프리-mRNA의 스플라이싱을 변화시키는 안티센스 올리고뉴클레오티드
IL288596A IL288596A (en) 2019-07-12 2021-12-01 An antisense oligonucleotide capable of altering splicing of dux4 pre-mRNA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-129735 2019-07-12
JP2019129735 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021010301A1 true WO2021010301A1 (ja) 2021-01-21

Family

ID=74210830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026950 WO2021010301A1 (ja) 2019-07-12 2020-07-10 DUX4 pre-mRNAのスプライシングを変化させるアンチセンスオリゴヌクレオチド

Country Status (11)

Country Link
US (1) US20220364086A1 (ja)
EP (1) EP3998108A1 (ja)
JP (1) JPWO2021010301A1 (ja)
KR (1) KR20220032004A (ja)
CN (1) CN114026234A (ja)
AU (1) AU2020313255A1 (ja)
BR (1) BR112021024764A2 (ja)
CA (1) CA3142925A1 (ja)
IL (1) IL288596A (ja)
TW (1) TW202117015A (ja)
WO (1) WO2021010301A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230023612A (ko) 2020-04-02 2023-02-17 마이레큘, 인크. 조작된 올리고뉴클레오티드를 사용한 표적화된 억제

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787982A (ja) 1993-01-29 1995-04-04 Sankyo Co Ltd 修飾オリゴデオキシリボヌクレオチド
WO1998054198A1 (en) 1997-05-30 1998-12-03 Hybridon, Inc. Novel sulfur transfer reagents for oligonucleotide synthesis
WO1999014226A2 (en) 1997-09-12 1999-03-25 Exiqon A/S Bi- and tri-cyclic nucleoside, nucleotide and oligonucleotide analogues
JP2000297097A (ja) 1999-02-12 2000-10-24 Sankyo Co Ltd 新規ヌクレオシド及びオリゴヌクレオチド類縁体
US6261840B1 (en) 2000-01-18 2001-07-17 Isis Pharmaceuticals, Inc. Antisense modulation of PTP1B expression
WO2014109384A1 (ja) 2013-01-10 2014-07-17 塩野義製薬株式会社 架橋型核酸誘導体の製造方法
WO2017147467A1 (en) * 2016-02-26 2017-08-31 Research Institute At Nationwide Children's Hospital Recombinant virus products and methods for inducing dux4 exon skipping
WO2017192679A1 (en) 2016-05-04 2017-11-09 Wave Life Sciences Ltd. Methods and compositions of biologically active agents
WO2019060432A2 (en) * 2017-09-19 2019-03-28 Children's National Medical Center GAPMERS AND METHODS OF USING THE SAME FOR THE TREATMENT OF MUSCLE DYSTROPHY
JP2019129735A (ja) 2018-01-30 2019-08-08 株式会社GISupply 有害動物の捕獲支援システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118316A1 (en) * 2010-09-02 2017-01-18 Université de Mons Agents useful in treating facioscapulohumeral muscular dystrophy
CA2999192A1 (en) * 2015-09-21 2017-03-30 Association Institut De Myologie Antisense oligonucleotides hybridizing with a key element of the polyadenylation region of a dux4 pre-mrna and uses thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787982A (ja) 1993-01-29 1995-04-04 Sankyo Co Ltd 修飾オリゴデオキシリボヌクレオチド
WO1998054198A1 (en) 1997-05-30 1998-12-03 Hybridon, Inc. Novel sulfur transfer reagents for oligonucleotide synthesis
WO1999014226A2 (en) 1997-09-12 1999-03-25 Exiqon A/S Bi- and tri-cyclic nucleoside, nucleotide and oligonucleotide analogues
JP2000297097A (ja) 1999-02-12 2000-10-24 Sankyo Co Ltd 新規ヌクレオシド及びオリゴヌクレオチド類縁体
US6261840B1 (en) 2000-01-18 2001-07-17 Isis Pharmaceuticals, Inc. Antisense modulation of PTP1B expression
WO2014109384A1 (ja) 2013-01-10 2014-07-17 塩野義製薬株式会社 架橋型核酸誘導体の製造方法
WO2017147467A1 (en) * 2016-02-26 2017-08-31 Research Institute At Nationwide Children's Hospital Recombinant virus products and methods for inducing dux4 exon skipping
WO2017192679A1 (en) 2016-05-04 2017-11-09 Wave Life Sciences Ltd. Methods and compositions of biologically active agents
WO2019060432A2 (en) * 2017-09-19 2019-03-28 Children's National Medical Center GAPMERS AND METHODS OF USING THE SAME FOR THE TREATMENT OF MUSCLE DYSTROPHY
JP2019129735A (ja) 2018-01-30 2019-08-08 株式会社GISupply 有害動物の捕獲支援システム

Non-Patent Citations (44)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. HQ266761
"Oligonucleotide Synthesis", 1984, OXFORD UNIVERSITY PRESS
ANSSEAU, E. ET AL.: "Antisense oligonucleotides used to target the DUX4 mRNA as therapeutic approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD", GENES, vol. 3, 9 August 2017 (2017-08-09), pages 1 - 21, XP055684651, DOI: 10.3390/genes8030093 *
BLOMMERS ET AL., BIOCHEMISTRY, vol. 37, 1998, pages 17714 - 17725
BOSNAKOVSKI ET AL., EMBO J, vol. 27, 2008, pages 2766 - 2779
BOSNAKOVSKI ET AL., NAT COMMUN, vol. 8, 2017, pages 2152
CHOI ET AL., NUCLEIC ACIDS RES, vol. 44, 2016, pages 5161 - 5173
DEENEN ET AL., NEUROLOGY, vol. 83, 2014, pages 1056 - 1059
FENG ET AL., ELIFE, vol. 4, 2015, pages e04996
FLANIGAN ET AL., NEUROMUSCUL DISORD, vol. 11, 2001, pages 525 - 529
GABRIELS ET AL., GENE, vol. 236, 1999, pages 25 - 32
GENG ET AL., DEV CELL, vol. 22, 2012, pages 38 - 51
HENDRICKSON ET AL., NAT GENET, vol. 49, 2017, pages 925 - 934
HOMMA ET AL., ANN CLIN TRANSL NEUROL, vol. 2, 2015, pages 151 - 166
J. AM. CHEM. SOC., vol. 112, 1990, pages 1253
JONES ET AL., HUM MOL GENET, vol. 21, 2012, pages 4419 - 4430
JONESJONES, PLOS ONE, vol. 13, 2018, pages e0192657
KOWALJOW ET AL., NEUROMUSCUL DISORD, vol. 17, 2007, pages 611 - 623
LEMMERS ET AL., AM J HUM GENET, vol. 81, 2007, pages 884 - 894
LEMMERS ET AL., NAT GENET, vol. 44, 2012, pages 1370 - 1374
LEMMERS ET AL., SCIENCE, vol. 329, 2010, pages 1650 - 1653
LESNIK, E.A. ET AL., BIOCHEMISTRY, vol. 32, 1993, pages 7832 - 7838
MARTIN, P., HELV. CHIM. ACTA., vol. 78, 1995, pages 486 - 504
MITSUHASHI ET AL., BIOL OPEN, vol. 7, 2018
MITSUHASHI ET AL., HUM MOL GENET, vol. 22, 2013, pages 568 - 577
MORIOKA ET AL., PLOS ONE, vol. 11, 2016, pages e0151963
MOSTACCIUOLO ET AL., CLIN GENET, vol. 75, 2009, pages 550 - 555
NORWOOD ET AL., BRAIN, vol. 132, 2009, pages 3175 - 3186
NUCLEIC ACIDS RES., vol. 47, 2020, pages 6029 - 6044
NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 4539
PADBERG ET AL., MUSCLE NERVE, vol. 2, 1995, pages S81 - S84
SETH, P.P. ET AL., J. ORG. CHEM, vol. 75, 2010, pages 1569 - 1581
SHADLE ET AL., PLOS GENET, vol. 13, 2017, pages el006658
SNIDER ET AL., PLOS GENET, vol. 6, 2010, pages el001181
TAWIL R.VAN DER MAAREL S.M., MUSCLE NERVE, vol. 34, 2006, pages 1 - 15
TETRAHEDRON LETTERS, vol. 32, 1991, pages 3005
VAN OVERVELD ET AL., NAT GENET, vol. 35, 2003, pages 315 - 317
VANDERPLANCK, C. ET AL.: "Keynote 5: Suppression of DUX4 or DUX4C expression by antisense strategies in a therapeutic approach for FSHD", THE JOURNAL OF GENE MEDICINE, vol. 13, 2011, pages 414, XP055162336, DOI: 10.1002/jgm.1582 *
VANDERPLANCK, C. ET AL.: "The FSHD atrophic Myotube phenotype is caused by DUX4 expression", PLOS ONE, vol. 6, no. 10, 28 October 2011 (2011-10-28), pages e26820, XP055011330, DOI: 10.1371/journal.pone.0026820 *
WALLACE ET AL., ANN NEUROL, vol. 69, 2011, pages 540 - 552
WANG, G. ET AL., TETRAHEDRON, vol. 55, 1999, pages 7707 - 7724
WIJMENGA ET AL., NAT GENET, vol. 2, 1992, pages 26 - 30
WUEBBLES ET AL., INT J CLIN EXP PATHOL, vol. 3, 2010, pages 386 - 400
YAHARA, A. ET AL., CHEMBIOCHEM, vol. 13, 2012, pages 2513 - 2516

Also Published As

Publication number Publication date
IL288596A (en) 2022-02-01
BR112021024764A2 (pt) 2022-04-19
CN114026234A (zh) 2022-02-08
TW202117015A (zh) 2021-05-01
EP3998108A1 (en) 2022-05-18
KR20220032004A (ko) 2022-03-15
US20220364086A1 (en) 2022-11-17
JPWO2021010301A1 (ja) 2021-01-21
CA3142925A1 (en) 2021-01-21
AU2020313255A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
EP2135948B1 (en) ENA nucleic acid drugs modifying splicing in mRNA precursor
JP7007304B2 (ja) B型肝炎感染症治療用のPAPD5又はPAPD7のmRNA減少用核酸分子
JP7416852B2 (ja) Htra1の発現を調節するためのアンチセンスオリゴヌクレオチド
JP2024041845A (ja) ホスホロジチオアートヌクレオシド間結合を含むギャップマーオリゴヌクレオチド
JP2023139252A (ja) 新規のチオホスホラミダイト
WO2021010301A1 (ja) DUX4 pre-mRNAのスプライシングを変化させるアンチセンスオリゴヌクレオチド
JP6934695B2 (ja) 核酸医薬とその使用
WO2019240164A1 (ja) 心筋障害治療薬
JPWO2019009299A1 (ja) α−シヌクレイン発現抑制するENAアンチセンスオリゴヌクレオチド
TW202039848A (zh) 肌肉生長抑制素訊號傳導抑制劑
JP7072748B2 (ja) アルポート症候群治療薬
JPWO2015178277A1 (ja) CD44遺伝子のバリアントエクソンのスキッピングを誘導し、正常型CD44mRNAの発現を増加させる核酸医薬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533025

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3142925

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021024764

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020313255

Country of ref document: AU

Date of ref document: 20200710

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112021024764

Country of ref document: BR

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2019-129735 DE 12/07/2019 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA CONFORME O ART. 15 DA PORTARIA 39/2021. O DOCUMENTO APRESENTADO NAO ESTA TRADUZIDO.

ENP Entry into the national phase

Ref document number: 2020841146

Country of ref document: EP

Effective date: 20220214

ENP Entry into the national phase

Ref document number: 112021024764

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211208