WO2021010157A1 - Method for detecting orientation non-uniformity defect in retardation film and apparatus for detecting orientation non-uniformity defect in retardation film - Google Patents

Method for detecting orientation non-uniformity defect in retardation film and apparatus for detecting orientation non-uniformity defect in retardation film Download PDF

Info

Publication number
WO2021010157A1
WO2021010157A1 PCT/JP2020/025669 JP2020025669W WO2021010157A1 WO 2021010157 A1 WO2021010157 A1 WO 2021010157A1 JP 2020025669 W JP2020025669 W JP 2020025669W WO 2021010157 A1 WO2021010157 A1 WO 2021010157A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation film
polarizing plate
luminance image
orientation
detecting
Prior art date
Application number
PCT/JP2020/025669
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 橋本
増田 修
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021532766A priority Critical patent/JPWO2021010157A1/ja
Priority to CN202080050402.6A priority patent/CN114096833A/en
Priority to KR1020227000933A priority patent/KR20220018599A/en
Publication of WO2021010157A1 publication Critical patent/WO2021010157A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8848Polarisation of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8854Grading and classifying of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques

Definitions

  • the present invention relates to a method for detecting uneven alignment defects in a retardation film and a device for detecting uneven orientation defects. More specifically, by detecting and evaluating the orientation unevenness defect of the retardation film by quantitative evaluation using an optical system, the burden on the operator can be reduced and the reproducibility of the evaluation result can be improved.
  • the present invention relates to an orientation unevenness defect detection method and an orientation unevenness defect detection device used therein.
  • liquid crystal display devices have been widely used for televisions, personal computer monitors, etc. due to their features such as power saving, light weight, and thinness.
  • the liquid crystal display device has a problem of viewing angle dependence due to the refractive index anisotropy of the liquid crystal cell and the polarizing plate.
  • a typical method for improving the problem of viewing angle dependence there is a method using a retardation film.
  • the retardation film used therein has also been required to be thinner, and along with this, orientation unevenness defects that occur due to the manufacturing process have become remarkable. It was.
  • Patent Document 1 a transparent or translucent film sheet is targeted, a light source and a first polarizing plate are arranged between the light source and the film on one surface of the conveyed film sheet, and linear on the other surface.
  • a second polarizing plate is arranged between the array camera and the linear array camera and the film, and the deviation angle between the first polarizing plate and the second polarizing plate in the polarization direction is within ⁇ 20 °.
  • a patterned retardation film used for a 3D television is targeted, and first and second polarizing plates are arranged on a cross Nicol so as to sandwich the film, and the film is formed via the first polarizing plate. It includes a light source that irradiates inspection light, an imaging device that photographs transmitted light of a film through a second polarizing plate to obtain a brightness image, and a defect detection unit that detects defects from the brightness image.
  • the first and second polarizing plates are in a state where one of the polarization transmission axes is substantially parallel to the optical axis of one of the plurality of retardation regions of the patterned retardation film, and there is no defect.
  • a defect inspection device mainly for foreign matter or the like has been proposed, which adjusts one of the polarization transmission axes so that each brightness of a brightness image becomes the same level in the vicinity of the extinguished state when a film is photographed.
  • the present invention has been made in view of the above problems and situations, and the problem to be solved is to detect and evaluate the orientation unevenness defect of the retardation film by quantitative evaluation using an optical system. It is an object of the present invention to provide a method for detecting an orientation unevenness defect of a retardation film capable of reducing the burden and improving the reproducibility of an evaluation result, and an orientation unevenness defect detecting device used therefor.
  • the present inventor identifies the cause of the problem by using a device composed of two polarizing plates, a light irradiation device, an imaging device, and a defect detection unit in the process of examining the cause of the problem.
  • the burden on the operator is reduced by detecting and evaluating the alignment unevenness defect of the retardation film by quantitative evaluation using an optical system, and the evaluation result is obtained.
  • a method for detecting uneven orientation defects in a retardation film that can improve reproducibility can be obtained.
  • a method for detecting orientation unevenness defects in a retardation film which comprises the following steps (1) to (5).
  • Step (1) When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the slow axis of the retardation film is the first polarizing plate or the second polarized light. Either the first polarizing plate and the second polarizing plate, or the retardation film so as to be within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis of either of the plates. The step of rotating and arranging.
  • Step (2) A step of irradiating the retardation film with inspection light via the first polarizing plate.
  • Step (3) A step of photographing the retardation film with an imaging device via the second polarizing plate to obtain a luminance image.
  • Step (4) The captured luminance image is 35 with respect to the slow axis of the retardation film.
  • Step (5) The edge-enhanced luminance image is binarized at a predetermined threshold value to obtain bright pixels above the threshold value and dark pixels below the threshold value, and the pixels are oriented from the bright pixels or dark pixels. Step to detect unevenness.
  • expansion processing is performed on the binarized luminance image in a diagonal direction within a range of 70 to 120 ° with respect to the direction of the differential (difference) processing of the retardation film, and the diagonal direction is changed.
  • the method for detecting uneven orientation defects of a retardation film according to the first item which comprises the step (6) of performing image processing for emphasizing the components.
  • the angle of view ⁇ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction is the longitudinal direction of the retardation film.
  • An alignment unevenness detection device for a retardation film used in the method for detecting an orientation unevenness defect of a retardation film according to any one of the items 1 to 5.
  • the first polarizing plate and the second polarizing plate arranged on the cross Nicol so as to sandwich the retardation film,
  • a light source that irradiates the retardation film with inspection light via the first polarizing plate,
  • An imaging device that photographs the retardation film via the second polarizing plate to obtain a luminance image.
  • a defect detection unit that detects defects from the luminance image is provided.
  • the defect detection unit When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the slow axis of the retardation film is either the first polarizing plate or the second polarizing plate. Rotate either the first polarizing plate and the second polarizing plate or the retardation film so as to be within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis. An edge that emphasizes the edge portion by differentiating (difference) processing the arranged and photographed brightness image in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film.
  • An orientation unevenness detection device for a retardation film which comprises.
  • the defect detection unit Expansion processing is performed on the binarized luminance image in an oblique direction within a range of 70 to 120 ° with respect to the direction of differentiation (difference) processing of the retardation film, and the component in the oblique direction is performed.
  • the defect detection unit The device for detecting orientation unevenness defects in a retardation film according to item 7, further comprising an image processing circuit that performs shrinkage processing in the same direction with respect to the luminance image after performing the expansion treatment.
  • the defect detection unit Item 6 is characterized in that it has a filtering circuit that extracts the shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as an orientation unevenness defect component in the direction.
  • the device for detecting uneven orientation of a retardation film according to the above.
  • the angle of view ⁇ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction is determined in the longitudinal direction of the retardation film.
  • the burden on the operator can be reduced and the reproducibility of the evaluation result can be improved. It is possible to provide a method for detecting an orientation unevenness defect of a retardation film and an orientation unevenness defect detecting apparatus used therefor.
  • the polarized light is arranged so that the two polarizing plates are arranged on the cross Nicol and the slow axis of the retardation film is within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis of the polarizing plate.
  • Differentiation processing is a process that uses a differential filter to extract edges of an image (extracting a part of an image where the brightness changes suddenly is called edge extraction), but in the case of an image, it is not a continuous value.
  • edge extraction extract edges of an image
  • it is not a continuous value.
  • the direction of the differential processing is diagonally specified in the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film.
  • the slow axis is oriented in one direction by stretching or the like, but minute uneven orientation due to non-uniformity of the width hand tension applied during stretching or drying is other than the above one direction.
  • the detection accuracy of the uneven orientation can be improved by facilitating the extraction of the diagonal component of the uneven orientation by the differential processing.
  • the binarization of the obtained luminance image is for roughly distinguishing the defective portion from the other normal region, and the expansion process and the contraction process further perform the defect in the binarized image. It is presumed that the defect detection accuracy can be further improved by emphasizing the part.
  • Schematic diagram showing the outline of the conventional visual evaluation method for uneven orientation defects Schematic diagram illustrating the angle of view of the lens attached to the camera used for inspection Specific example of an image binarized with a predetermined threshold value (original brightness image) Specific example of an image binarized with a predetermined threshold value (binary image)
  • Flow chart of image processing and specific examples of processed images Schematic diagram showing an example of an orientation unevenness defect detecting apparatus for a retardation film of the present invention.
  • the method for detecting orientation unevenness defects in a retardation film of the present invention is characterized by having the above steps (1) to (5).
  • This feature is a technical feature common to or corresponding to the following embodiments.
  • the retardation film is further binarized in an oblique direction within a range of 70 to 120 ° with respect to the direction of the differential (difference) processing of the retardation film.
  • step (7) of performing the shrinkage treatment in the same direction with respect to the luminance image after the expansion treatment emphasizes the defective portion and reduces noise, so that the orientation is accurate and quantitative. It is preferable from the viewpoint of enabling uneven defect evaluation.
  • step (8) of extracting the shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as the orientation unevenness defect component in the direction It is preferable from the viewpoint of identifying the orientation unevenness and enabling accurate and quantitative alignment unevenness defect evaluation.
  • the angle of view ⁇ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction is the longitudinal direction of the retardation film. On the other hand, it is preferably within 23 °. This is because keeping the angle of view ⁇ within the above range, that is, keeping the distance between the retardation film and the camera at the above angle of view ⁇ reduces the dependence of the inspection light on the incident angle and is the center of the inspection area. This is to make the difference in shading of the image between the part and the corner uniform.
  • the retardation unevenness detection device of the present invention comprises a first polarizing plate and a second polarizing plate arranged on a cross Nicol so as to sandwich the retardation film, and the retardation film via the first polarizing plate.
  • the defect is provided with a light source that irradiates the inspection light, an imaging device that photographs the retardation film via the second polarizing plate to obtain a luminance image, and a defect detection unit that detects a defect from the luminance image.
  • the detection unit sets the slow axis of the retardation film to -10 to 10 ° (excluding 0 °) with respect to the absorption axis of either the first polarizing plate or the second polarizing plate arranged on the cross Nicol.
  • the luminance image taken by rotating and arranging either the first polarizing plate and the second polarizing plate or the retardation film so as to be within the range of) is the slow phase of the retardation film.
  • An edge detection circuit that emphasizes the edge portion by differentiating (difference) processing in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the axis, and the luminance image in which the edge is detected are subjected to a predetermined threshold value. It is characterized by having a binarizing circuit for binarizing each pixel into a bright pixel above the threshold and a dark pixel lower than the threshold.
  • the defect detection unit performs expansion processing on the binarized luminance image in an oblique direction within a range of 70 to 120 ° with respect to the direction of differentiation (difference) processing of the retardation film. It is preferable to have an image processing circuit that emphasizes the components in the oblique direction from the viewpoint of enabling accurate and quantitative evaluation of orientation unevenness defects.
  • the defect detection unit has an image processing circuit that performs shrinkage processing in the same direction with respect to the luminance image after performing the expansion processing enables accurate and quantitative orientation unevenness defect evaluation. From the point of view, it is preferable.
  • a filtering circuit in which the defect detection unit extracts the shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as an orientation uneven defect component in the direction. It is preferable to have it from the viewpoint of identifying the uneven orientation and enabling accurate and quantitative evaluation of the uneven orientation defect.
  • the angle of view ⁇ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction is the longitudinal direction of the retardation film.
  • the temperature is within 23 ° from the viewpoint of efficient work efficiency and quantitative evaluation of orientation unevenness defects.
  • the method for detecting orientation unevenness defects in a retardation film of the present invention is characterized by having the following steps (1) to (5).
  • Step (1) When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the slow axis of the retardation film is the first polarizing plate or the second polarized light. Either the first polarizing plate and the second polarizing plate, or the retardation film so as to be within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis of either of the plates. The step of rotating and arranging.
  • Step (2) A step of irradiating the retardation film with inspection light via the first polarizing plate.
  • Step (3) A step of photographing the retardation film with an imaging device via the second polarizing plate to obtain a luminance image.
  • Step (4) The captured luminance image is differentiated (difference) in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film to emphasize the edge portion. Steps to obtain a brightness image.
  • Step (5) The edge-enhanced luminance image is binarized at a predetermined threshold value to obtain bright pixels above the threshold value and dark pixels below the threshold value, and the pixels are oriented from the bright pixels or dark pixels. Step to detect unevenness.
  • phase difference film refers to an optical film that improves the problem of viewing angle dependence of a liquid crystal display device, and is, for example, an optical film having birefringence used in a VA (Visual Element) type liquid crystal display device. is there.
  • the optical film is a transparent resin film having a specific function based on optical characteristics.
  • the optical film is formed by stretching or the like, and if it is normally formed, it has uniform optical characteristics (birefringence, retardation, etc.) in the plane, but in reality, some non-uniformity occurs.
  • the value of the phase difference of the optical film can generally be defined by the following formula.
  • the in-plane phase difference Ro and the thickness direction phase difference Rt of the optical film are represented by the following equations (1) and (2).
  • n x is the refractive index in the slow axis direction in the film surface
  • n y is the refractive index in the phase advance axis direction in the film surface
  • n z is the refractive index in the thickness direction of the film
  • d is the film. Represents the thickness (nm) of.
  • the “slow phase axis” refers to the axis in which the phase is delayed and the traveling speed of the light is the slowest when the light propagates in the film causing birefringence. That is, it refers to the direction in which the in-plane refractive index is maximized.
  • the "phase-advancing axis” refers to the axis at which the traveling speed of light becomes the fastest, and refers to the direction in which the refractive index in the plane becomes the minimum.
  • the in-plane slow-phase axis and phase-advance axis of the retardation film can be confirmed by an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Polarimeter: manufactured by Axometrics).
  • the Ro and Rt of the retardation film can be measured by the following method.
  • the retardation Ro and Rt of the retardation film after humidity control at the measurement wavelength of 550 nm are measured by the automatic birefringence meter Axo Scan (Axo Scan Mueller), respectively. Measured in an environment of 23 ° C. and 55% RH using a Matrix Polarimator (manufactured by Axometrics).
  • the in-plane retardation Ro measured in an environment with a measurement wavelength of 550 nm, 23 ° C., and 55% RH is within the range of 20 to 120 nm. It is preferably in the range of 30 to 100 nm, and more preferably in the range of 30 to 100 nm.
  • the phase difference Rt in the thickness direction of the optical film is preferably in the range of 70 to 350 nm, and more preferably in the range of 100 to 320 nm.
  • the phase difference is a value that fluctuates depending on the wavelength of the light irradiating the optical film, the environmental conditions (temperature and humidity) for measurement, etc., it depends on the purpose of optical characteristic evaluation and the type of optical film to be evaluated. Therefore, it is desirable to set these conditions so that the phase difference becomes an arbitrary value.
  • the "orientation angle” refers to an angle formed by the orientation direction in which the molecules forming the retardation film are oriented with respect to a predetermined reference direction, and usually, the in-plane slow axis of the retardation film is a predetermined reference. Matches the angle made with respect to the direction.
  • the predetermined reference direction is usually the width direction of the retardation film and the direction in which the film is stretched.
  • the “alignment unevenness defect” according to the present invention means that the direction of the slow axis deviates from the reference direction at each sampled portion in the film plane (for example, when a plurality of samples are sampled along the width direction). Defects with unevenness.
  • a “polarizing plate” is a type of polarizing element, and is usually composed of a polarizer and a protective film.
  • the polarizer is used to change the vibration direction of the incident linearly polarized light by rotating the transmission axis direction with respect to the linearly polarized light having a specific vibration direction extracted from natural light (randomly polarized light).
  • a “polarizer” is an element that allows only light on a plane of polarization in a certain direction to pass through, and is a polyvinyl alcohol-based polarizing film.
  • the polyvinyl alcohol-based polarizing film includes a polyvinyl alcohol-based film dyed with iodine and a film obtained by dyeing a dichroic dye.
  • Absorption axis refers to the direction of the axis in which the polarizer absorbs the vibration of light, and usually refers to the angle that coincides with the stretching direction of the polarizer.
  • the "first polarizing plate and the second polarizing plate arranged on the cross Nicol" means that the "absorption axis" of the polarizer is orthogonal to the first polarizing plate and the second polarizing plate in the 90 ° direction.
  • the method for detecting orientation unevenness defects in a retardation film of the present invention includes the steps (1) to (5), and more preferably the step (5). It is preferable to have step (6), step (7) and step (8) following.
  • FIG. 1 is a schematic diagram showing an outline of a conventional visual evaluation method 10 for uneven orientation defects.
  • the irradiation light L emitted from the flat LED illumination 2 at the lower part is transmitted in the order of the first polarizing plate 3, the retardation film 1 and the second polarizing plate 4, and the present invention is performed.
  • This is a method of qualitatively observing the alignment unevenness defect of the retardation film 1 visually 5.
  • the absorption axes of the first polarizing plate 3 and the second polarizing plate 4 are arranged so as to form a cross Nicol, the irradiation light L is not transmitted as it is and becomes a dark part, but the evaluator makes a phase difference.
  • the irradiation light L is polarized according to the direction of the slow axis of the retardation film and transmitted light. If there is an orientation unevenness defect in visual inspection 5, it is observed as a dark region.
  • the evaluation is personal and qualitative because the evaluator's proficiency in how to handle the retardation film and the ranking based on the evaluator's experience for orientation unevenness defects affect the evaluation result. This is an evaluation method.
  • the method for detecting orientation unevenness defects in the retardation film of the present invention is a method for evaluating the defects in a certain step using an optical evaluation device, the evaluation is not personal and quantitative evaluation. Can be provided.
  • Step (1) When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the slow axis of the retardation film is the first polarizing plate or the second polarized light. Either the first polarizing plate and the second polarizing plate, or the retardation film so as to be within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis of either of the plates. The step of rotating and arranging.
  • the slow axis of the film is placed so as to be the same as the absorption axis of the polarizing plate.
  • the film is rotated slightly with respect to the absorption axis of the polarizing plate, the polarization state of the light passing through the film changes depending on the slow axis of the retardation film (the direction of polarization changes slightly), so that the second polarizing plate Light will reach through.
  • the uneven orientation defect which is the subject of this inspection, has a small change in brightness, so if the polarizing plate or retardation film is rotated too much, the light that reaches the camera, which is the imaging device, is too strong to observe.
  • the first polarizing plate is set so that the slow axis of the retardation film is within the range of -10 to 10 ° with respect to the absorption axis of either the first polarizing plate or the second polarizing plate.
  • the second polarizing plate or the retardation film is rotated, the retardation unevenness can be observed most clearly, so this is specified in this range.
  • the first polarizing plate and the second polarizing plate are rotated without rotating the retardation film, and the absorption axis of the polarizing plate is set. It is preferable to incline with respect to the slow axis of the retardation film.
  • Step (2) A step of irradiating the retardation film with inspection light via the first polarizing plate.
  • the lighting device that irradiates the inspection light it is necessary to transmit the inspection light in the order of the first polarizing plate, the retardation film, and the second polarizing plate, and a sufficient area is required to photograph the inspection light, and the brightness is as high as possible. It is preferably uniform.
  • the light source of the lighting device is not particularly limited, but is a fiber-type light source using a heavy hydrogen lamp, a halogen lamp, or an LED (Light Emitting Diet) lamp as a light source, or a fluorescent lamp, an LED, or an LED (Organic Light Emitting Diet). ) Can be used as a surface light source. It is preferably a surface light source (flat surface light source), and it is preferable to use flat LED illumination.
  • the amount of light for inspection is managed on the inspection machine control software LabVIEW (manufactured by (National Instruments)), and the brightness calculation area (for example, a rectangular area of about 80 mm ⁇ 60 mm to 400 mm ⁇ 300 mm) set on the LabVIEW It is preferable to measure the in-plane average brightness and adjust the amount of light of the light source so that the brightness value falls within the range of 128 ⁇ 10 in order to obtain a sufficient evaluation brightness image. Further, the brightness calculation region is affected by the incident angle of the inspection region, and a phenomenon occurs in which the brightness calculation region becomes darker toward the end of the inspection region.
  • the brightness calculation area Is preferably set narrower than the inspection area. For example, when the inspection area is 400 mm in length ⁇ 300 mm in width, the brightness calculation area is preferably set to 90 mm in length ⁇ 80 mm in width.
  • Step (3) A step of photographing the retardation film with an imaging device via the second polarizing plate to obtain a luminance image.
  • the photographing device is not particularly limited, but an area type or line sensor type CCD camera can be used. If the inspection area range of the retardation film can be covered within a few shots, it is preferable to use the area type, and if it is necessary to shoot a wider range, the line sensor type is preferable in terms of shooting time and accuracy. ..
  • the model acA2500-14 gm manufactured by Basler AG, and the lens model H6X8-1.0-II manufactured by APACECOM can be used.
  • the inspection area is determined by the angle of view of the lens mounted on the camera, the size of the polarizing plate and the size of the retardation film, and the distance between the retardation film and the lens mounted on the camera. If the imaging device is configured so that the sample can be moved in the width direction, it is possible to measure a sample of any width by performing the inspection multiple times.
  • the inspection may be performed by a plurality of imaging shots.
  • the size in the longitudinal direction is fixed by the inspection area of the device.
  • the size of the width is the maximum width that is generally used as a retardation film.
  • the angle of view ⁇ of the lens mounted on the camera is determined in detail from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction. Although it is calculated, it is preferable that the angle of view ⁇ is within 23 ° with respect to the longitudinal direction of the retardation film from the viewpoint of enabling work efficiency and quantitative alignment unevenness defect evaluation.
  • FIG. 2 is a schematic view illustrating an angle of view ⁇ of a lens mounted on a camera used for inspection.
  • the distance WD abbreviation of working distance, the distance from the tip of the lens to the position where the subject is in focus
  • the angle of view ⁇ of is 22.14 °.
  • is 19.73 °. Both can be calculated.
  • Step (4) The captured luminance image is differentiated (difference) in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film to emphasize the edge portion. Steps to obtain a brightness image.
  • Differentiation processing is a process that uses a differential filter to extract edges of an image (extracting a part of an image where the brightness changes suddenly is called edge extraction), but in the case of an image, it is not a continuous value. By taking the difference between the pixel values (“difference” in the present invention), it is treated as an approximation of differentiation.
  • Differentiation processing is performed at the examination stage by differentiating a matrix called a kernel (also called a matrix) in a direction within a range of 35 to 55 ° and a kernel in a direction within a range of -55 to -35 °. It is preferable to find and use the kernel of the time.
  • the edge refers to a portion of the image that is divided into light and dark areas. When emphasizing the edge, it is ideal to process it in the direction orthogonal to the direction in which the boundary between light and dark extends. Orientation unevenness defects appear along the direction of about 45 ° with respect to the longitudinal direction (or the width direction), but there is some variation in this angle, and in order to correspond to this, the orientation of the differential processing is set to the retardation film. It is preferable to have a width in the range of 35 to 55 ° with respect to the slow axis of.
  • the differential processing software to be used is not limited, but it is preferable to use the analysis software NI vision (manufactured by National Instruments).
  • Step (5) The edge-enhanced luminance image is binarized with a predetermined binarization software and a threshold value to obtain bright pixels above the threshold value and dark pixels below the threshold value, and the bright pixels are obtained. Alternatively, a step of detecting uneven orientation from dark pixels.
  • the uneven orientation defect is observed as a dark region. Therefore, in the case of binarization, since it is desired to leave a group of elements that appear dark in the image, a threshold value is set and only elements having a brightness lower than the threshold value are left.
  • the threshold value to be set is determined while confirming that the uneven part that can be visually confirmed remains clearly. That is, the threshold value may be determined empirically.
  • the captured luminance image is read into a personal computer using the analysis software NI vision (manufactured by National Instruments). Since the luminance image changes by adjusting the focus, contrast, and brightness, it is preferable not to make it artificial.
  • the brightness value 0 is expressed in black and the brightness value 255 is expressed in white. If no check mark is put in the Black Backg round, the brightness value 0 is represented by white and the brightness value 255 is represented by black.
  • [C] Image noise removal Shading processing is performed.
  • the shading process removes noise by averaging the brightness in the image.
  • a bandpass filter value of 20 to 100 is recommended. Since this set value depends on the initial luminance image, it is preferable to set it appropriately and optimally.
  • the threshold value is preferably adjusted according to the analysis software NI vision (manufactured by National Instruments).
  • this threshold value changes depending on the contrast of the image, it is preferable that the evaluator sets it every time instead of fixing it.
  • Binarization is performed with a predetermined threshold value, each pixel is obtained as a dark pixel above the threshold value and a bright pixel lower than the threshold value, and uneven orientation is detected from the bright pixel or the dark pixel.
  • FIG. 3 is a specific example of an image binarized with a predetermined threshold value.
  • FIG. 3A is the original luminance image taken, and the dark pixel portion that looks dark in the image is a candidate for the orientation unevenness defect.
  • FIG. 3B shows a threshold value determined and binarized as dark pixels so that candidates for the uneven orientation defect remain clearly.
  • the method for detecting uneven orientation defects of the present invention preferably further includes the following steps (6), (7), and (8).
  • Step (6) The binarized luminance image is expanded in an oblique direction within a range of 70 to 120 ° with respect to the direction of the differential (difference) processing of the retardation film. A step of performing image processing that emphasizes components in the diagonal direction.
  • expansion processing is performed to emphasize the defective part, and the expansion processing makes it easier to reduce the noise.
  • the “expansion process” is a process in which a binary black-and-white image is generally processed, and if there is even one white pixel around the pixel of interest, the process is replaced with white. That is.
  • the “shrinkage process” described later is called “erosion”, which is a process of replacing even one pixel with black pixels in the periphery.
  • Step (7) A step of performing a contraction process in the same direction with respect to the luminance image after performing the expansion process.
  • Performing the contraction process after the expansion process is also a process for removing noise as much as possible.
  • the direction of the differential process is performed in the direction orthogonal to the direction in which the unevenness exists, the angle in the direction in which the unevenness exists. It is preferable that the shrinkage treatment is performed in an oblique direction within a range of 70 to 120 ° with respect to the direction of the differential (difference) processing.
  • the expansion treatment and the contraction treatment can be performed using the analysis software NI vision (manufactured by National Instruments).
  • Step (8) A step of extracting a shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as an orientation unevenness defect component in the direction.
  • This step is also referred to as filtering or filtering, and the "filter condition defined by the representative length of each pixel region" is a condition that is empirically required in detecting an orientation unevenness defect.
  • filter processing 1 From the binarized luminance image, for example, those whose shape is close to a perfect circle are removed (filter processing 1), elements with a short length are removed (filter processing 2), and the area is outside the specified range. (Filtering process 3) is performed, and those satisfying the filter condition defined by the representative length of each pixel area are detected as alignment unevenness defects.
  • the filter process 1 is the quotient of Haywood circular factor H: the circumference of the pixel region divided by the circumference of the same area, the pixels are within the range of 1.5 ⁇ H ⁇ 5. It is preferable to leave only the area.
  • the Haywood circular factor H is 1 in the case of a perfect circle.
  • the filtering process 2 it is preferable to remove the pixel region having a specific length or less on the long side of the uneven orientation.
  • the filtering process 2 when the expansion factor L: the maximum ferret diameter of the pixel region is divided by the short side (ferret) of the value rectangle, only the pixel region within the range of 4 ⁇ L ⁇ 13 is left. Therefore, it is preferable to detect alignment unevenness defects.
  • the filter processing software used in the filter processing is not limited, but can be performed by using the analysis software NI vision (manufactured by National Instruments).
  • FIG. 4 shows a flowchart of image processing and a specific example of processed images.
  • (P1) Take a retardation film and acquire a luminance image.
  • (P2) Luminance image shading processing (equalizing the luminance in the image to remove noise),
  • (P3) Emphasis of edge portion by differentiation (difference) processing of luminance image
  • (P4) Binarization of luminance image,
  • (P5) Binary image enhancement processing (expansion and contraction processing),
  • (P6) Filtering to a binarized image 1 (removes elements whose shape is close to a perfect circle),
  • (P8) Filtering 3 (removing elements outside the specified area) to the binarized image,
  • (P9) Only orientation unevenness defects are detected from the binarized image by filtering.
  • the alignment unevenness defect detection device for retardation film used in the method for detecting alignment unevenness defect of retardation film of the present invention is arranged on a cross Nicol so as to sandwich the retardation film.
  • a photographing device for obtaining an image and a defect detecting unit for detecting defects from the luminance image are provided, and the defect detecting unit is an absorption shaft of either the first polarizing plate or the second polarizing plate arranged on the cross Nicol.
  • the luminance image taken by rotating and arranging any of the above is subjected to differentiation (difference) processing in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film.
  • An edge detection circuit that emphasizes the edge portion, and a binarization circuit that binarizes the edge-detected luminance image with a predetermined threshold and makes each pixel a bright pixel above the threshold and a dark pixel lower than the threshold. It is characterized by having.
  • FIG. 5 is a schematic view showing an example of an orientation unevenness defect detecting device for a retardation film of the present invention.
  • the retardation unevenness defect detecting device 50 of the retardation film of the present invention transmits the irradiation light L emitted from the flat LED illumination 52 at the lower part to the light shielding plate 53, the first polarizing plate 54, the retardation film 51, the light shielding plate 53, and the light shielding plate 53.
  • This is a device that transmits light in the order of the second polarizing plate 55 and photographs the alignment unevenness defect of the retardation film 51 with a camera 57 equipped with a lens 56.
  • the absorption axes of the first polarizing plate 53 and the second polarizing plate 54 are arranged so as to form a cross Nicol, the irradiation light L is not transmitted as it is and becomes a dark portion, but the retardation film 51 is used.
  • the irradiation light L is polarized according to the direction of the slow axis of the retardation film 51, and the uneven orientation is captured as a dark region in the captured image.
  • the retardation film 51 is not rotated, and the first polarizing plate 54 and the second polarizing plate 55 are absorbed by the polarizing plate with respect to the slow axis of the retardation film. It is preferable to have a mechanism (not shown) that rotates the shaft so as to be in the range of ⁇ 10 to 10 °.
  • each part are not particularly limited, but for example, as the evaluation retardation film, a strip-shaped sample cut into 450 mm in the longitudinal direction and 2000 mm in the width direction is used.
  • the photographing device determines the angle of view ⁇ of the lens calculated from the distance between the lens tip position of the photographing device and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction. It is preferable that the temperature is within 23 ° with respect to the longitudinal direction of the above. For example, in order to inspect a region of 400 mm in the longitudinal direction and 300 mm in the width direction, it is a viewpoint of inspection efficiency to assemble an inspection apparatus having the configuration shown in FIG. Is preferable.
  • the light source of the lighting device is not particularly limited, but as described above, a heavy hydrogen lamp, a halogen lamp, a fiber type light source using an LED lamp, or a surface light source using a fluorescent lamp, an LED, or an LED is used. Can be used.
  • the photographing device is not particularly limited, but an area type or line sensor type CCD camera can be used. If the measurement target range of the retardation film can be covered within a few shots, it is preferable to use the area type, and if it is necessary to shoot a wider range, the line sensor type is preferable in terms of shooting time and accuracy. ..
  • the specifications of the camera and lens are as described above.
  • the defect detection unit performs expansion processing in an oblique direction within a range of 70 to 120 ° with respect to the binarized luminance image with respect to the direction of differentiation (difference) processing of the retardation film. It is preferable to have an image processing circuit that emphasizes the components in the oblique direction.
  • the defect detection unit has an image processing circuit that performs shrinkage processing in the same direction with respect to the luminance image after performing the expansion treatment.
  • a filtering circuit in which the defect detection unit extracts the shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as the orientation unevenness defect component in the direction. It is preferable to have.
  • FIG. 6 is a schematic diagram illustrating a defect detection unit having an edge detection circuit, a binarization circuit, an image processing circuit, and a filtering circuit.
  • the defect detection unit 100 includes a control unit 101, a recording unit 102, a communication unit 103, a data processing unit 104, an operation display unit 105, and the like, and each unit is connected to each other so as to be communicable by a bus 106. There is.
  • the control unit 101 includes a CPU (Central Processing Unit) 101a that comprehensively controls the operation of the defect detection unit 100, and a RAM (Random) that functions as a work memory for temporarily storing various data when the CPU 101a executes a program. It includes an Access Memory) 101b, a program read and executed by the CPU 101a, a program memory 101c in which fixed data is stored, and the like.
  • the program memory 101c is composed of a ROM or the like.
  • the recording unit 102 stores and records image data that has been photographed and image-processed, data of various threshold values used in the image processing circuit, and irradiation condition data of the lighting device 52.
  • the communication unit 103 is provided with a communication interface such as a network I / F, and transmits the measurement conditions input from the operation display unit 105 to the photographing adjustment device 120 via a network such as an intranet. In addition, the communication unit 103 receives the image data sent from the photographing device 130.
  • the data processing unit 104 performs image processing from the luminance image data received by the communication unit 103 and photographed by the photographing device 130 (lens 56 and camera 57).
  • the data processing unit 104 has various processing circuits used in steps (4) to (8) according to the present invention.
  • the data processing unit 104 performs differential (difference) processing on the shading processing circuit 104a in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film to emphasize the edge portion.
  • the edge detection circuit 104b (step (4)) and the luminance image whose edge is detected are binarized at a predetermined threshold value, and each pixel is converted into a bright pixel above the threshold value and a dark pixel lower than the threshold value.
  • the conversion circuit 104c (step (5)), the image processing circuit 104d (step (6) and step (7)) that performs expansion processing or contraction processing on the luminance image, and the luminance image that has been contracted. It also has a filtering circuit 104e (step (8)) that extracts those satisfying the filter condition defined by the representative length of each pixel region as the alignment unevenness defect component in the direction.
  • the operation display unit 105 may be composed of, for example, an LCD (Liquid Crystal Display), a touch panel provided so as to cover the LCD, various switches and buttons, a numeric keypad, an operation key group, and the like (not shown).
  • the operation display unit 105 receives an instruction from the user and outputs the operation signal to the control unit 101. Further, the operation display unit 105 displays on the LCD an operation screen for displaying various setting screens for inputting various operation instructions and setting information, various processing results, and the like according to the display signal output from the control unit 101.
  • the data processing device 100 may include an external output device 150 that is communicably connected to the data processing device 100.
  • the external output device 150 may be a general PC (Personal Computer), an image forming device, or the like. Further, the external output device 150 may function as an operation display unit instead of the operation display unit 105 of the data processing device 100.
  • the obtained dope was uniformly cast on a stainless band support using a belt casting device under the conditions of a doping liquid temperature of 35 ° C. and a width of 1950 mm and a final film thickness of 40 ⁇ m.
  • the organic solvent in the obtained doping film was evaporated until the residual solvent amount reached 100% by mass to form a web, and then the web was peeled off from the stainless band support.
  • the obtained web was pre-dried at 110 ° C. for another 5 minutes to adjust the residual solvent amount to 10% by mass, and then the web was tentered at 160 ° C. to 1.4 times the original width in the TD direction. It was stretched to give the following predetermined phase difference. The stretching rate was 300% / min.
  • the drying temperature was 130 ° C., and the transport tension was 100 N / m.
  • the obtained film was slit to a width of 2000 mm, both ends of the film were knurled with a width of 10 mm and a height of 5 ⁇ m, wound on a core having an inner diameter of 15.24 cm with an initial tension of 220 N / m and a final tension of 110 N / m, and a length of 4000 m.
  • An evaluation retardation film 101 having a dry film thickness of 40 ⁇ m was obtained.
  • the retardation of the retardation film 101 was Ro: 50 nm and Rt: 120 nm as a result of measurement by the above-mentioned measuring method.
  • the evaluation retardation film was cut into strip-shaped samples of 450 mm in the longitudinal direction and 2000 mm in the width direction.
  • the angle of view ⁇ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film is 1150 mm and the size of the inspection region on the retardation film in the longitudinal direction is set to 20 °.
  • imaging was performed a plurality of times in the inspection area of 400 mm in the longitudinal direction and 300 mm in the width direction.
  • Step (1) When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the retardation film is delayed with respect to the absorption axis of the polarizer of the first polarizing plate. A step of rotating and arranging the first polarizing plate and the second polarizing plate so that the phase axis is ⁇ 7 °.
  • Step (2) A step of irradiating the retardation film with inspection light from flat LED illumination via the first polarizing plate.
  • Step (3) A step of photographing the retardation film with a photographing device (camera) via the second polarizing plate to obtain a luminance image.
  • Step (4) A step of obtaining a luminance image in which the edge portion is emphasized by differentiating (difference) the captured luminance image in the direction of 40 ° with respect to the slow axis of the retardation film.
  • Step (5) The edge-enhanced luminance image is binarized at a predetermined threshold value to obtain bright pixels above the threshold value and dark pixels below the threshold value, and the pixels are oriented from the bright pixels or dark pixels. Step to detect unevenness.
  • Step (6) Expansion processing is performed on the binarized luminance image in a diagonal direction of 90 ° with respect to the direction of differentiation (difference) processing of the retardation film, and the components in the diagonal direction are extracted. Steps to perform image processing to emphasize.
  • Step (7) A step of performing a contraction process in the same direction with respect to the luminance image after performing the expansion process.
  • Step (8) A step of extracting a shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as an orientation unevenness defect component in the direction.
  • Haywood circular factor H When the quotient is obtained by dividing the circumference of the pixel region by the circumference of the same area, only the pixel region within the range of 1.5 ⁇ H ⁇ 5 is left.
  • Example 2 to 8 In the evaluation conditions of Example 1, the device conditions ⁇ , ⁇ f and ⁇ p (each representing an angle) and the image processing conditions (step (4), step (5), step (6), step (7) shown in Table I. ), Step (8) -1: Filtering 1 and (8) -2: Filtering -2, and the same evaluation was performed to make Examples 2 to 8.
  • the angle of view of the lens mounted on the camera
  • ⁇ f the angle formed by the retard phase axis of the retardation film and the absorption axis of the polarizing plate
  • ⁇ p the angle formed by the absorption axes of the two polarizing plates. Represents each.
  • Comparative Examples 1 to 3 Using the orientation unevenness defect evaluation device shown in FIG. 1, three evaluators were evaluated: 1 year or more of evaluation experience (visual 1), 6 months or more and less than 1 year of evaluation experience (visual 2), and less than 6 months of evaluation experience (visual 3). Evaluation of Comparative Examples 1 to 3 was carried out.
  • Table I shows the above evaluation methods and evaluation results.
  • the evaluation is not personal and the evaluation reproducibility can be improved more easily.
  • the method for detecting uneven orientation defects of a retardation film and the device for detecting uneven orientation defects of a retardation film of the present invention can detect and evaluate uneven orientation defects of a retardation film by quantitative evaluation using an optical system, and the evaluation is personal. Instead, it is suitably used for a simpler evaluation of orientation unevenness defects in a retardation film.
  • Phase difference film 2 Flat LED illumination 3 1st polarizing plate 4 2nd polarizing plate 5 Visual observation 6 Tilt direction L Irradiation light ⁇ Angle 10
  • Conventional visual evaluation method for alignment unevenness defect 50 Orientation unevenness defect detection device 51 Phase difference film 51a Length 51b Width Hand length 52 Flat LED lighting 53 Shading plate 54 First polarizing plate 55 Second polarizing plate 56 Lens 57 Camera 100 Defect detection unit 101 Control unit 101a CPU 101b RAM 101c Program memory 102 Recording unit 103 Communication unit 104 Data processing unit 104a Shading processing circuit 104b Edge detection circuit 104c Binarization circuit 104d Image processing circuit 104e Filtering circuit 105 Operation display unit 120 Imaging adjustment device 130 Imaging device 150 External output device

Abstract

The present invention addresses the problem of providing a method for detecting an orientation non-uniformity defect in a retardation film and an apparatus for detecting an orientation non-uniformity defect in a retardation film that allow for more reproducible evaluation by performing detection and evaluation of an orientation non-uniformity defect in a retardation film through quantitative evaluation using an optical system. The method for detecting an orientation non-uniformity defect in a retardation film according to the present invention comprises the following steps (1) to (5). (1) Placing the retardation film between two polarizers arranged like crossed Nicols such that the slow axis of the retardation film is rotated and inclined at an angle of -10 to 10° with respect to the absorption axes of the polarizers. (2) Irradiating the retardation film with inspection light through one of the polarizers. (3) Obtaining a luminance image by capturing an image of the retardation film through the other polarizer. (4) Performing a differential operation (difference operation) on the captured luminance image in a direction oblique to the slow axis of the retardation film to enhance edges therein. (5) Binarizing the edge-enhanced luminance image using a predetermined threshold value to obtain bright pixels or dark pixels and detecting orientation non-uniformity from the pixels obtained.

Description

位相差フィルムの配向ムラ欠陥検出方法及び配向ムラ欠陥検出装置Orientation unevenness defect detection method and orientation unevenness defect detection device for retardation film
 本発明は、位相差フィルムの配向ムラ欠陥検出方法及び配向ムラ欠陥検出装置に関する。より詳しくは、位相差フィルムの配向ムラ欠陥の検出及び評価を、光学系を利用した定量評価によって行うことにより、作業者の負担を軽減し、評価結果の再現性を高めることができる位相差フィルムの配向ムラ欠陥検出方法及びそれに用いる配向ムラ欠陥検出装置に関する。 The present invention relates to a method for detecting uneven alignment defects in a retardation film and a device for detecting uneven orientation defects. More specifically, by detecting and evaluating the orientation unevenness defect of the retardation film by quantitative evaluation using an optical system, the burden on the operator can be reduced and the reproducibility of the evaluation result can be improved. The present invention relates to an orientation unevenness defect detection method and an orientation unevenness defect detection device used therein.
 近年、省電力、軽量、薄型といった特徴から液晶表示装置がテレビやパソコンのモニター等に広く用いられている。液晶表示装置は上記の利点と合わせて液晶セルや偏光板の屈折率異方性に起因する視野角依存性の問題を有している。この視野角依存性の問題を改善する代表的な方法として位相差フィルムを用いる方法がある。 In recent years, liquid crystal display devices have been widely used for televisions, personal computer monitors, etc. due to their features such as power saving, light weight, and thinness. In addition to the above advantages, the liquid crystal display device has a problem of viewing angle dependence due to the refractive index anisotropy of the liquid crystal cell and the polarizing plate. As a typical method for improving the problem of viewing angle dependence, there is a method using a retardation film.
 従来の位相差フィルムの製造において、厳重に管理されている製造工程であっても、フィルムの面品質を損なわせる欠陥の発生を完全に防ぐことは困難である。 In the conventional manufacturing of retardation film, it is difficult to completely prevent the occurrence of defects that impair the surface quality of the film even in the manufacturing process that is strictly controlled.
 さらに、近年では液晶表示装置の薄型化に伴い、そこに使用される位相差フィルムに対しても薄膜化が要求されており、それに伴って、製造工程起因で発現する配向ムラ欠陥が顕著になった。 Further, in recent years, as the liquid crystal display device has become thinner, the retardation film used therein has also been required to be thinner, and along with this, orientation unevenness defects that occur due to the manufacturing process have become remarkable. It was.
 このような欠陥を有するフィルムの市場への流出を防ぐためには、フィルムの欠陥検査が重要であり、配向ムラ欠陥の品質評価は、従来目視によってランク判定が行われてきた。しかしながら、このような目視による定性評価は、作業者の習熟度に評価結果が大きく依存してしまい、再現性が低く作業者が変わると結果が大きく変わることがある。また、信頼して評価できる人員が習熟者に限定されてしまうことによって、一部の作業者に工数が偏り、負担を大きくするなどの問題が生じていた。 In order to prevent the film having such defects from flowing out to the market, it is important to inspect the film for defects, and the quality evaluation of orientation unevenness defects has conventionally been performed by visual inspection. However, in such visual qualitative evaluation, the evaluation result greatly depends on the proficiency level of the worker, and the reproducibility is low, and the result may change significantly when the worker changes. In addition, since the number of personnel who can be evaluated with confidence is limited to proficient persons, there has been a problem that the man-hours are biased to some workers and the burden is increased.
 光学フィルムの欠陥検査としては、特許文献1及び2に開示されている欠陥検査方法及び検査装置が知られている。 As the defect inspection of the optical film, the defect inspection method and the inspection apparatus disclosed in Patent Documents 1 and 2 are known.
 特許文献1では、透明又は半透明のフィルムシートを対象とし、搬送されるフィルムシートの一方の面に光源と、該光源とフィルムの間に第1の偏光板を配置し、他方の面にリニアアレイカメラと、該リニアアレイカメラとフィルムの間に第2の偏光板を配置して、第1の偏光板と第2の偏光板との偏光方向のずれ角度を±20°以内として、リニアアレイカメラから出力されるビデオ信号の中から異物起因の欠陥情報を検出する方法が提案されている。 In Patent Document 1, a transparent or translucent film sheet is targeted, a light source and a first polarizing plate are arranged between the light source and the film on one surface of the conveyed film sheet, and linear on the other surface. A second polarizing plate is arranged between the array camera and the linear array camera and the film, and the deviation angle between the first polarizing plate and the second polarizing plate in the polarization direction is within ± 20 °. A method of detecting defect information caused by a foreign substance from a video signal output from a camera has been proposed.
 特許文献2では、3Dテレビに使用されるパターン化位相差フィルムを対象とし、フィルムを挟むようにクロスニコルに第1及び第2の偏光板を配置し、第1の偏光板を介してフィルムに検査光を照射する光源と、第2の偏光板を介してフィルムの透過光を撮影して輝度画像を得る撮影装置と、当該輝度画像から欠陥を検出する欠陥検出部とを備える。 In Patent Document 2, a patterned retardation film used for a 3D television is targeted, and first and second polarizing plates are arranged on a cross Nicol so as to sandwich the film, and the film is formed via the first polarizing plate. It includes a light source that irradiates inspection light, an imaging device that photographs transmitted light of a film through a second polarizing plate to obtain a brightness image, and a defect detection unit that detects defects from the brightness image.
 第1及び第2の偏光板は、いずれか一方の偏光透過軸がパターン化位相差フィルムが有する複数の位相差領域の内、いずれか一方の光学軸とほぼ平行となる状態とし、欠陥のないフィルムを撮影したときに輝度画像の「各輝度が消光状態近傍で同レベルとなるように」、一方の偏光透過軸を調整する、主に異物等による欠陥検査装置が提案されている。 The first and second polarizing plates are in a state where one of the polarization transmission axes is substantially parallel to the optical axis of one of the plurality of retardation regions of the patterned retardation film, and there is no defect. A defect inspection device mainly for foreign matter or the like has been proposed, which adjusts one of the polarization transmission axes so that each brightness of a brightness image becomes the same level in the vicinity of the extinguished state when a film is photographed.
 しかしながら、特許文献1で提案された方法では、2枚の偏光板がクロスニコル状態から大きく外れすぎており、この状態では偏光板を透過する光源からの光量が大きく、フィルムの欠陥起因で生じる偏光状態の変化を捉えにくくなってしまい、取得するべき配向ムラの情報を取得できないという問題がある。 However, in the method proposed in Patent Document 1, the two polarizing plates are too far from the cross Nicol state, and in this state, the amount of light from the light source passing through the polarizing plates is large, and the polarized light generated due to the defect of the film. There is a problem that it becomes difficult to grasp the change in the state and it is not possible to acquire the information on the uneven orientation to be acquired.
 また、特許文献2で提案された装置では、撮影された輝度画像が消光状態近傍で同レベルになるため、配向ムラを検出するための微小な偏光状態の変化を捉えられないという問題があった。さらに、撮影された輝度画像からパターン化位相差フィルムの異なる位相差領域の境界線を、画像処理により消去することが優先されているため、本来抽出したい欠陥部分までも消去してしまう可能性があった。 Further, in the apparatus proposed in Patent Document 2, since the captured luminance image has the same level in the vicinity of the quenching state, there is a problem that a minute change in the polarization state for detecting the alignment unevenness cannot be captured. .. Furthermore, since it is prioritized to erase the boundary lines of different retardation regions of the patterned retardation film from the captured luminance image by image processing, there is a possibility that even the defective portion originally desired to be extracted may be erased. there were.
特開平11-30591号公報Japanese Unexamined Patent Publication No. 11-30591 特開2013-50393号公報Japanese Unexamined Patent Publication No. 2013-50393
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、位相差フィルムの配向ムラ欠陥の検出及び評価を、光学系を利用した定量評価によって行うことにより、作業者の負担を軽減し、評価結果の再現性を高めることができる位相差フィルムの配向ムラ欠陥検出方法及びそれに用いる配向ムラ欠陥検出装置を提供することである。 The present invention has been made in view of the above problems and situations, and the problem to be solved is to detect and evaluate the orientation unevenness defect of the retardation film by quantitative evaluation using an optical system. It is an object of the present invention to provide a method for detecting an orientation unevenness defect of a retardation film capable of reducing the burden and improving the reproducibility of an evaluation result, and an orientation unevenness defect detecting device used therefor.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、2枚の偏光板、光照射装置、撮影装置、及び欠陥検出部で構成される装置を用いて、特定のステップを有する配向ムラ欠陥検出方法を採用することで、位相差フィルムの配向ムラ欠陥の検出及び評価を光学系を利用した定量評価によって行うことにより、作業者の負担を軽減し、評価結果の再現性を高めることができる位相差フィルムの配向ムラ欠陥検出方法が得られることを見出した。 In order to solve the above problems, the present inventor identifies the cause of the problem by using a device composed of two polarizing plates, a light irradiation device, an imaging device, and a defect detection unit in the process of examining the cause of the problem. By adopting the alignment unevenness defect detection method having the steps of, the burden on the operator is reduced by detecting and evaluating the alignment unevenness defect of the retardation film by quantitative evaluation using an optical system, and the evaluation result is obtained. We have found that a method for detecting uneven orientation defects in a retardation film that can improve reproducibility can be obtained.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problem according to the present invention is solved by the following means.
 1.位相差フィルムの配向ムラ欠陥検出方法であって、
 下記ステップ(1)~(5)を有することを特徴とする位相差フィルムの配向ムラ欠陥検出方法。
1. 1. This is a method for detecting uneven orientation defects in a retardation film.
A method for detecting orientation unevenness defects in a retardation film, which comprises the following steps (1) to (5).
 ステップ(1):クロスニコルに配置された第1偏光板及び第2偏光板の間に前記位相差フィルムを配置するときに、前記位相差フィルムの遅相軸が、前記第1偏光板又は第2偏光板のどちらかの吸収軸に対し、-10~10°(ただし、0°は除く)の範囲内になるように、前記第1偏光板及び第2偏光板か、又は前記位相差フィルムのいずれかを回転して配置するステップ。 Step (1): When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the slow axis of the retardation film is the first polarizing plate or the second polarized light. Either the first polarizing plate and the second polarizing plate, or the retardation film so as to be within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis of either of the plates. The step of rotating and arranging.
 ステップ(2):前記第1偏光板を介して前記位相差フィルムに検査光を照射するステップ。 Step (2): A step of irradiating the retardation film with inspection light via the first polarizing plate.
 ステップ(3):前記第2偏光板を介して前記位相差フィルムを撮影装置によって撮影し、輝度画像を得るステップ。 Step (3): A step of photographing the retardation film with an imaging device via the second polarizing plate to obtain a luminance image.
 ステップ(4):撮影された前記輝度画像を前記位相差フィルムの遅相軸に対して35

~55°又は-55~-35°の範囲内の方向に微分(差分)処理しエッジ部分を強調した輝度画像を得るステップ。
Step (4): The captured luminance image is 35 with respect to the slow axis of the retardation film.

A step of obtaining a luminance image in which the edge portion is emphasized by performing differential (difference) processing in a direction within the range of ~ 55 ° or −55 to −35 °.
 ステップ(5):エッジ強調された前記輝度画像を、所定の閾値で二値化し、各画素を閾値以上の明画素と閾値よりも低い暗画素とを得て、当該明画素又は暗画素から配向ムラを検出するステップ。 Step (5): The edge-enhanced luminance image is binarized at a predetermined threshold value to obtain bright pixels above the threshold value and dark pixels below the threshold value, and the pixels are oriented from the bright pixels or dark pixels. Step to detect unevenness.
 2.さらに、前記位相差フィルムの微分(差分)処理の方向に対して、70~120°の範囲内の斜め方向に、二値化された前記輝度画像に対して膨張処理を行い、当該斜め方向の成分を強調する画像処理を行うステップ(6)を有することを特徴とする第1項に記載の位相差フィルムの配向ムラ欠陥検出方法。 2. Further, expansion processing is performed on the binarized luminance image in a diagonal direction within a range of 70 to 120 ° with respect to the direction of the differential (difference) processing of the retardation film, and the diagonal direction is changed. The method for detecting uneven orientation defects of a retardation film according to the first item, which comprises the step (6) of performing image processing for emphasizing the components.
 3.さらに、前記膨張処理を行った後に、前記輝度画像に対して同方向に収縮処理を行うステップ(7)を有することを特徴とする第2項に記載の位相差フィルムの配向ムラ欠陥検出方法。 3. The method for detecting orientation unevenness defects in a retardation film according to item 2, further comprising a step (7) of performing a shrinkage treatment in the same direction with respect to the luminance image after the expansion treatment.
 4.さらに、前記収縮処理された前記輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出するステップ(8)を有することを特徴とする第3項に記載の位相差フィルムの配向ムラ欠陥検出方法。 4. Further, it is provided with the step (8) of extracting the shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as the orientation unevenness defect component in the direction. The method for detecting an orientation unevenness defect of a retardation film according to the third item, which is characteristic.
 5.前記撮影装置のレンズ先端位置と前記位相差フィルムとの距離、及び当該位相差フィルム上の検査領域の長手方向の大きさから算出される前記レンズの画角θが、当該位相差フィルムの長手方向に対して、23°以内であることを特徴とする第1項から第4項までのいずれか一項に記載の位相差フィルムの配向ムラ欠陥検出方法。 5. The angle of view θ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction is the longitudinal direction of the retardation film. The method for detecting an orientation unevenness defect of a retardation film according to any one of the items 1 to 4, wherein the distance is within 23 °.
 6.第1項から第5項のいずれか一項に記載の位相差フィルムの配向ムラ欠陥検出方法に用いる位相差フィルムの配向ムラ検出装置であって、
 前記位相差フィルムを挟むようにクロスニコルに配置される第1偏光板及び第2偏光板と、
 前記第1偏光板を介して前記位相差フィルムに検査光を照射する光源と、
 前記第2偏光板を介して前記位相差フィルムを撮影して輝度画像を得る撮影装置と、
 前記輝度画像から欠陥を検出する欠陥検出部とを備え、
 前記欠陥検出部は、
 クロスニコルに配置された第1偏光板及び第2偏光板の間に前記位相差フィルムを配置するときに、前記位相差フィルムの遅相軸が、前記第1偏光板又は第2偏光板のどちらかの吸収軸に対し、-10~10°(ただし、0°は除く)の範囲内になるように、前記第1偏光板及び第2偏光板か、又は前記位相差フィルムのいずれかを回転して配置し撮影された前記輝度画像を、前記位相差フィルムの遅相軸に対して35~55°又は-55~-35°の範囲内の方向に微分(差分)処理しエッジ部分を強調するエッジ検出回路と、
 エッジ検出された前記輝度画像を、所定の閾値で二値化し、各画素を閾値以上の明画素と閾値よりも低い暗画素とにする二値化回路と、
 を有することを特徴とする位相差フィルムの配向ムラ検出装置。
6. An alignment unevenness detection device for a retardation film used in the method for detecting an orientation unevenness defect of a retardation film according to any one of the items 1 to 5.
The first polarizing plate and the second polarizing plate arranged on the cross Nicol so as to sandwich the retardation film,
A light source that irradiates the retardation film with inspection light via the first polarizing plate,
An imaging device that photographs the retardation film via the second polarizing plate to obtain a luminance image.
A defect detection unit that detects defects from the luminance image is provided.
The defect detection unit
When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the slow axis of the retardation film is either the first polarizing plate or the second polarizing plate. Rotate either the first polarizing plate and the second polarizing plate or the retardation film so as to be within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis. An edge that emphasizes the edge portion by differentiating (difference) processing the arranged and photographed brightness image in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film. Detection circuit and
A binarization circuit that binarizes the edge-detected luminance image with a predetermined threshold value and makes each pixel a bright pixel equal to or higher than the threshold value and a dark pixel lower than the threshold value.
An orientation unevenness detection device for a retardation film, which comprises.
 7.前記欠陥検出部が、
 前記位相差フィルムの微分(差分)処理の方向に対して、70~120°の範囲内の斜め方向に、前記二値化された前記輝度画像に対して膨張処理を行い、当該斜め方向の成分を強調する画像処理回路を有することを特徴とする第6項に記載の位相差フィルムの配向ムラ欠陥検出装置。
7. The defect detection unit
Expansion processing is performed on the binarized luminance image in an oblique direction within a range of 70 to 120 ° with respect to the direction of differentiation (difference) processing of the retardation film, and the component in the oblique direction is performed. The misorientation defect detection device for a retardation film according to item 6, further comprising an image processing circuit that emphasizes.
 8.前記欠陥検出部が、
 前記膨張処理を行った後に、前記輝度画像に対して同方向に収縮処理を行う画像処理回路を有することを特徴とする第7項に記載の位相差フィルムの配向ムラ欠陥検出装置。
8. The defect detection unit
The device for detecting orientation unevenness defects in a retardation film according to item 7, further comprising an image processing circuit that performs shrinkage processing in the same direction with respect to the luminance image after performing the expansion treatment.
 9.前記欠陥検出部が、
 前記収縮処理された輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出するフィルタリング回路を有すること特徴とする第6項に記載の位相差フィルムの配向ムラ欠陥検出装置。
9. The defect detection unit
Item 6 is characterized in that it has a filtering circuit that extracts the shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as an orientation unevenness defect component in the direction. The device for detecting uneven orientation of a retardation film according to the above.
 10.前記撮影装置のレンズ先端位置と前記位相差フィルムとの距離、及び当該位相差フィルム上の検査領域の長手方向の大きさから算出される前記レンズの画角θを、当該位相差フィルムの長手方向に対して、23°以内とすることを特徴とする第6項から第9項までのいずれか一項に記載の位相差フィルムの配向ムラ欠陥検出装置。 10. The angle of view θ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction is determined in the longitudinal direction of the retardation film. The device for detecting uneven orientation of a retardation film according to any one of items 6 to 9, wherein the temperature is within 23 °.
 本発明の上記手段により、位相差フィルムの配向ムラ欠陥の検出及び評価を、光学系を利用した定量評価によって行うことにより、作業者の負担を軽減し、評価結果の再現性を高めることができる位相差フィルムの配向ムラ欠陥検出方法及びそれに用いる配向ムラ欠陥検出装置を提供することができる。 By the above means of the present invention, by detecting and evaluating the alignment unevenness defect of the retardation film by quantitative evaluation using an optical system, the burden on the operator can be reduced and the reproducibility of the evaluation result can be improved. It is possible to provide a method for detecting an orientation unevenness defect of a retardation film and an orientation unevenness defect detecting apparatus used therefor.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The mechanism of expression or mechanism of action of the effect of the present invention has not been clarified, but it is inferred as follows.
 2枚の偏光板をクロスニコルに配置し位相差フィルムの遅相軸を偏光板の吸収軸に対して-10~10°(ただし、0°は除く)の範囲内になるように、前記偏光板か、又は前記位相差フィルムのいずれかを回転して配置することにより、遅相軸の変化に伴う偏光状態の変化を強調し、欠陥部分(配向ムラ欠陥)の検出精度を向上できるものと推察される。 The polarized light is arranged so that the two polarizing plates are arranged on the cross Nicol and the slow axis of the retardation film is within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis of the polarizing plate. By rotating and arranging either the plate or the retardation film, it is possible to emphasize the change in the polarization state due to the change in the slow axis and improve the detection accuracy of the defective portion (alignment unevenness defect). Inferred.
 微分処理は、微分フィルターで画像のエッジ抽出(画像中の明るさが急に変化する部分を抽出することをエッジ抽出という。)を行う処理であるが、画像の場合は連続値ではないため、画素値間の差をとる(本発明でいう「差分」。)ことで微分の近似として扱う。 Differentiation processing is a process that uses a differential filter to extract edges of an image (extracting a part of an image where the brightness changes suddenly is called edge extraction), but in the case of an image, it is not a continuous value. By taking the difference between the pixel values (“difference” in the present invention), it is treated as an approximation of differentiation.
 上記欠陥部分のエッジを強調するため、当該微分処理の方向を前記位相差フィルムの遅相軸に対して35~55°又は-55~-35°の範囲内の方向に斜めに指定する。通常、位相差フィルムを製造する際には、延伸等によって遅相軸をある一方向に配向させるが、延伸時又は乾燥時にかかる幅手張力の不均一による微小な配向ムラが上記一方向以外にも蓄積するため、結果的に配向ムラの斜め成分を微分処理によって抽出しやすくすることで、配向ムラの検出精度を向上できるものと推察される。 In order to emphasize the edge of the defective portion, the direction of the differential processing is diagonally specified in the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film. Normally, when producing a retardation film, the slow axis is oriented in one direction by stretching or the like, but minute uneven orientation due to non-uniformity of the width hand tension applied during stretching or drying is other than the above one direction. As a result, it is presumed that the detection accuracy of the uneven orientation can be improved by facilitating the extraction of the diagonal component of the uneven orientation by the differential processing.
 さらに、得られた輝度画像を二値化することは、欠陥部分とそれ以外の正常な領域を大まかに区別するためであり、膨張処理及び収縮処理は前記二値化された画像において、さらに欠陥部分を強調することによって、欠陥の検出精度をより向上できるものと推察される。 Further, the binarization of the obtained luminance image is for roughly distinguishing the defective portion from the other normal region, and the expansion process and the contraction process further perform the defect in the binarized image. It is presumed that the defect detection accuracy can be further improved by emphasizing the part.
 前記収縮処理された前記輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出することにより、配向ムラ欠陥のみを検出することができ、以上の画像処理によって精度良く定量的な配向ムラ欠陥評価方法を提供することができるものと推察される。 Only the alignment unevenness defect is detected by extracting the shrinkage-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as the orientation unevenness defect component in the direction. It is presumed that the above image processing can provide an accurate and quantitative method for evaluating orientation unevenness defects.
従来の配向ムラ欠陥の目視評価方法の概略を示す模式図Schematic diagram showing the outline of the conventional visual evaluation method for uneven orientation defects 検査に用いるカメラに装着されるレンズの画角を説明する模式図Schematic diagram illustrating the angle of view of the lens attached to the camera used for inspection 所定の閾値で二値化した画像の具体例(元輝度画像)Specific example of an image binarized with a predetermined threshold value (original brightness image) 所定の閾値で二値化した画像の具体例(二値化画像)Specific example of an image binarized with a predetermined threshold value (binary image) 画像処理のフローチャートと、処理画像の具体例Flow chart of image processing and specific examples of processed images 本発明の位相差フィルムの配向ムラ欠陥検出装置の一例を示す模式図Schematic diagram showing an example of an orientation unevenness defect detecting apparatus for a retardation film of the present invention. エッジ検出回路、二値化回路、画像処理回路及びフィルタリング回路を有する欠陥検出部を説明する概略図Schematic diagram illustrating a defect detection unit having an edge detection circuit, a binarization circuit, an image processing circuit, and a filtering circuit.
 本発明の位相差フィルムの配向ムラ欠陥検出方法は、前記ステップ(1)~(5)を有することを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。 The method for detecting orientation unevenness defects in a retardation film of the present invention is characterized by having the above steps (1) to (5). This feature is a technical feature common to or corresponding to the following embodiments.
 本発明の実施態様としては、本発明の効果発現の観点から、さらに、前記位相差フィルムの微分(差分)処理の方向に対して、70~120°の範囲内の斜め方向に、二値化された前記輝度画像に対して膨張処理を行い、当該斜め方向の成分を強調する画像処理を行うステップ(6)を有することが、欠陥部分を強調することで、精度良く定量的な配向ムラ欠陥評価を可能にする観点から、好ましい。 In an embodiment of the present invention, from the viewpoint of exhibiting the effect of the present invention, the retardation film is further binarized in an oblique direction within a range of 70 to 120 ° with respect to the direction of the differential (difference) processing of the retardation film. Having the step (6) of performing expansion processing on the obtained luminance image and performing image processing for emphasizing the component in the oblique direction is to have an accurate and quantitative alignment unevenness defect by emphasizing the defect portion. It is preferable from the viewpoint of enabling evaluation.
 さらに、前記膨張処理を行った後に、前記輝度画像に対して同方向に収縮処理を行うステップ(7)を有することが、欠陥部分を強調しノイズを低減することで、精度良く定量的な配向ムラ欠陥評価を可能にする観点から、好ましい。 Further, having the step (7) of performing the shrinkage treatment in the same direction with respect to the luminance image after the expansion treatment emphasizes the defective portion and reduces noise, so that the orientation is accurate and quantitative. It is preferable from the viewpoint of enabling uneven defect evaluation.
 さらに、前記収縮処理された前記輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出するステップ(8)を有することが、配向ムラを特定し、精度良く定量的な配向ムラ欠陥評価を可能にする観点から、好ましい。 Further, it is possible to have the step (8) of extracting the shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as the orientation unevenness defect component in the direction. , It is preferable from the viewpoint of identifying the orientation unevenness and enabling accurate and quantitative alignment unevenness defect evaluation.
 前記撮影装置のレンズ先端位置と前記位相差フィルムとの距離、及び当該位相差フィルム上の検査領域の長手方向の大きさから算出される前記レンズの画角θは、当該位相差フィルムの長手方向に対して、23°以内であることが、好ましい。
 これは、前記画角θを上記範囲に収める、すなわち、位相差フィルムとカメラの距離を上記画角θになるように保つことは、検査光の入射角依存性を低減し、検査領域の中央部と隅部での画像の濃淡差を均一にするためである。
The angle of view θ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction is the longitudinal direction of the retardation film. On the other hand, it is preferably within 23 °.
This is because keeping the angle of view θ within the above range, that is, keeping the distance between the retardation film and the camera at the above angle of view θ reduces the dependence of the inspection light on the incident angle and is the center of the inspection area. This is to make the difference in shading of the image between the part and the corner uniform.
 本発明の位相差フィルムの配向ムラ検出装置は、前記位相差フィルムを挟むようにクロスニコルに配置される第1偏光板及び第2偏光板と、前記第1偏光板を介して前記位相差フィルムに検査光を照射する光源と、前記第2偏光板を介して前記位相差フィルムを撮影して輝度画像を得る撮影装置と、前記輝度画像から欠陥を検出する欠陥検出部とを備え、前記欠陥検出部は、クロスニコルに配置される前記第1偏光板又は第2偏光板のどちらかの吸収軸に対し、前記位相差フィルムの遅相軸を-10~10°(ただし、0°は除く)の範囲内になるように、前記第1偏光板及び第2偏光板か、又は前記位相差フィルムのいずれかを回転して配置し撮影された前記輝度画像を、前記位相差フィルムの遅相軸に対して35~55°又は-55~-35°の範囲内の方向に微分(差分)処理しエッジ部分を強調するエッジ検出回路と、エッジ検出された前記輝度画像を、所定の閾値で二値化し、各画素を閾値以上の明画素と閾値よりも低い暗画素とにする二値化回路と、を有することを特徴とする。 The retardation unevenness detection device of the present invention comprises a first polarizing plate and a second polarizing plate arranged on a cross Nicol so as to sandwich the retardation film, and the retardation film via the first polarizing plate. The defect is provided with a light source that irradiates the inspection light, an imaging device that photographs the retardation film via the second polarizing plate to obtain a luminance image, and a defect detection unit that detects a defect from the luminance image. The detection unit sets the slow axis of the retardation film to -10 to 10 ° (excluding 0 °) with respect to the absorption axis of either the first polarizing plate or the second polarizing plate arranged on the cross Nicol. ), The luminance image taken by rotating and arranging either the first polarizing plate and the second polarizing plate or the retardation film so as to be within the range of) is the slow phase of the retardation film. An edge detection circuit that emphasizes the edge portion by differentiating (difference) processing in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the axis, and the luminance image in which the edge is detected are subjected to a predetermined threshold value. It is characterized by having a binarizing circuit for binarizing each pixel into a bright pixel above the threshold and a dark pixel lower than the threshold.
 前記欠陥検出部が、前記位相差フィルムの微分(差分)処理の方向に対して、70~120°の範囲内の斜め方向に、前記二値化された前記輝度画像に対して膨張処理を行い、当該斜め方向の成分を強調する画像処理回路を有することが、精度良く定量的な配向ムラ欠陥評価を可能にする観点から、好ましい。 The defect detection unit performs expansion processing on the binarized luminance image in an oblique direction within a range of 70 to 120 ° with respect to the direction of differentiation (difference) processing of the retardation film. It is preferable to have an image processing circuit that emphasizes the components in the oblique direction from the viewpoint of enabling accurate and quantitative evaluation of orientation unevenness defects.
 また、前記欠陥検出部が、前記膨張処理を行った後に、前記輝度画像に対して同方向に収縮処理を行う画像処理回路を有することが、精度良く定量的な配向ムラ欠陥評価を可能にする観点から、好ましい。 Further, the fact that the defect detection unit has an image processing circuit that performs shrinkage processing in the same direction with respect to the luminance image after performing the expansion processing enables accurate and quantitative orientation unevenness defect evaluation. From the point of view, it is preferable.
 さらに、前記欠陥検出部が、前記収縮処理された輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出するフィルタリング回路を有することが、配向ムラを特定し、精度良く定量的な配向ムラ欠陥評価を可能にする観点から、好ましい。 Further, a filtering circuit is provided in which the defect detection unit extracts the shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as an orientation uneven defect component in the direction. It is preferable to have it from the viewpoint of identifying the uneven orientation and enabling accurate and quantitative evaluation of the uneven orientation defect.
 前記撮影装置のレンズ先端位置と前記位相差フィルムとの距離、及び当該位相差フィルム上の検査領域の長手方向の大きさから算出される前記レンズの画角θは、当該位相差フィルムの長手方向に対して、23°以内とすることが、作業効率良く定量的な配向ムラ欠陥評価を可能にする観点から、好ましい。 The angle of view θ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction is the longitudinal direction of the retardation film. On the other hand, it is preferable that the temperature is within 23 ° from the viewpoint of efficient work efficiency and quantitative evaluation of orientation unevenness defects.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
 ≪本発明の位相差フィルムの配向ムラ欠陥検出方法の概要≫
 本発明の位相差フィルムの配向ムラ欠陥検出方法は、下記ステップ(1)~(5)を有することを特徴とする。
<< Outline of the method for detecting uneven orientation defects in the retardation film of the present invention >>
The method for detecting orientation unevenness defects in a retardation film of the present invention is characterized by having the following steps (1) to (5).
 ステップ(1):クロスニコルに配置された第1偏光板及び第2偏光板の間に前記位相差フィルムを配置するときに、前記位相差フィルムの遅相軸が、前記第1偏光板又は第2偏光板のどちらかの吸収軸に対し、-10~10°(ただし、0°は除く)の範囲内になるように、前記第1偏光板及び第2偏光板か、又は前記位相差フィルムのいずれかを回転して配置するステップ。 Step (1): When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the slow axis of the retardation film is the first polarizing plate or the second polarized light. Either the first polarizing plate and the second polarizing plate, or the retardation film so as to be within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis of either of the plates. The step of rotating and arranging.
 ステップ(2):前記第1偏光板を介して前記位相差フィルムに検査光を照射するステップ。 Step (2): A step of irradiating the retardation film with inspection light via the first polarizing plate.
 ステップ(3):前記第2偏光板を介して前記位相差フィルムを撮影装置によって撮影し、輝度画像を得るステップ。 Step (3): A step of photographing the retardation film with an imaging device via the second polarizing plate to obtain a luminance image.
 ステップ(4):撮影された前記輝度画像を前記位相差フィルムの遅相軸に対して35~55°又は-55~-35°の範囲内の方向に微分(差分)処理しエッジ部分を強調した輝度画像を得るステップ。 Step (4): The captured luminance image is differentiated (difference) in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film to emphasize the edge portion. Steps to obtain a brightness image.
 ステップ(5):エッジ強調された前記輝度画像を、所定の閾値で二値化し、各画素を閾値以上の明画素と閾値よりも低い暗画素とを得て、当該明画素又は暗画素から配向ムラを検出するステップ。 Step (5): The edge-enhanced luminance image is binarized at a predetermined threshold value to obtain bright pixels above the threshold value and dark pixels below the threshold value, and the pixels are oriented from the bright pixels or dark pixels. Step to detect unevenness.
 ここで、「位相差フィルム」とは、液晶表示装置の視野角依存性の問題を改善する光学フィルムをいい、例えば、VA(Virtical Alignment)型液晶表示装置に用いる複屈折性を有する光学フィルムである。当該光学フィルムは、光学特性に基づく特定の機能を有する、透明な樹脂製のフィルムである。光学フィルムは、延伸等により形成され、正常に形成されていれば面内で均一な光学特性(複屈折性又は位相差性など)を有するが、実際には多少の不均一性が生じる。 Here, the "phase difference film" refers to an optical film that improves the problem of viewing angle dependence of a liquid crystal display device, and is, for example, an optical film having birefringence used in a VA (Visual Element) type liquid crystal display device. is there. The optical film is a transparent resin film having a specific function based on optical characteristics. The optical film is formed by stretching or the like, and if it is normally formed, it has uniform optical characteristics (birefringence, retardation, etc.) in the plane, but in reality, some non-uniformity occurs.
 前記光学フィルムの位相差の値は、一般に、下記の式で定義することができる。 The value of the phase difference of the optical film can generally be defined by the following formula.
 即ち、光学フィルムの面内方向の位相差Ro及び厚さ方向の位相差Rtは、下記の式(1)及び(2)で表される。 That is, the in-plane phase difference Ro and the thickness direction phase difference Rt of the optical film are represented by the following equations (1) and (2).
 Ro=(nx-ny)×d ・・・(1)
 Rt={(nx+ny)/2-nz}×d ・・・(2)
 なお、式中、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の進相軸方向の屈折率、nzはフィルムの厚さ方向の屈折率、dはフィルムの厚さ(nm)を表す。
Ro = (n x − n y ) × d ・ ・ ・ (1)
Rt = {(n x + n y ) /2- nz } × d ・ ・ ・ (2)
In the formula, n x is the refractive index in the slow axis direction in the film surface, n y is the refractive index in the phase advance axis direction in the film surface, n z is the refractive index in the thickness direction of the film, and d is the film. Represents the thickness (nm) of.
 また、「遅相軸」とは、複屈折を起こすフィルム内を光が伝播するとき、位相が遅れ光の進行速度が最も遅くなる軸をいう。すなわち、面内の屈折率が最大となる方向をいう。「進相軸」とは、光の進行速度が最も速くなる軸をいい、面内の屈折率が最小となる方向をいう。 The "slow phase axis" refers to the axis in which the phase is delayed and the traveling speed of the light is the slowest when the light propagates in the film causing birefringence. That is, it refers to the direction in which the in-plane refractive index is maximized. The "phase-advancing axis" refers to the axis at which the traveling speed of light becomes the fastest, and refers to the direction in which the refractive index in the plane becomes the minimum.
 位相差フィルムの面内遅相軸や進相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。 The in-plane slow-phase axis and phase-advance axis of the retardation film can be confirmed by an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Polarimeter: manufactured by Axometrics).
 位相差フィルムのRo及びRtの測定は、以下の方法で行うことができる。 The Ro and Rt of the retardation film can be measured by the following method.
 1)位相差フィルムを23℃、55%RHの環境下で24時間調湿する。この位相差フィルムの平均屈折率をアッベ屈折計で測定し、厚さdを市販のマイクロメーターを用いて測定する。 1) Humidity control of the retardation film at 23 ° C. and 55% RH for 24 hours. The average refractive index of this retardation film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
 2)調湿後の位相差フィルムの、測定波長550nmにおけるリターデーションRo及びRtを、それぞれ自動複屈折率計アクソスキャン(Axo Scan Mueller
Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃、55%RHの環境下で測定する。
2) The retardation Ro and Rt of the retardation film after humidity control at the measurement wavelength of 550 nm are measured by the automatic birefringence meter Axo Scan (Axo Scan Mueller), respectively.
Measured in an environment of 23 ° C. and 55% RH using a Matrix Polarimator (manufactured by Axometrics).
 本発明に係る位相差フィルムは、例えばVAモード用として用いられる場合、測定波長550nm、23℃、55%RHの環境下で測定される面内方向の位相差Roは、20~120nmの範囲内であることが好ましく、30~100nmの範囲内であることがより好ましい。光学フィルムの厚さ方向の位相差Rtは、70~350nmの範囲内であることが好ましく、100~320nmの範囲内であることがより好ましい。 When the retardation film according to the present invention is used for VA mode, for example, the in-plane retardation Ro measured in an environment with a measurement wavelength of 550 nm, 23 ° C., and 55% RH is within the range of 20 to 120 nm. It is preferably in the range of 30 to 100 nm, and more preferably in the range of 30 to 100 nm. The phase difference Rt in the thickness direction of the optical film is preferably in the range of 70 to 350 nm, and more preferably in the range of 100 to 320 nm.
 なお、位相差は光学フィルムに照射する光の波長、測定を行う環境条件(温度及び湿度)などによって変動する値であるため、光学特性評価の目的や評価対象である光学フィルムの種類などに応じて、位相差が任意の値となるようにこれらの条件を設定することが望ましい。 Since the phase difference is a value that fluctuates depending on the wavelength of the light irradiating the optical film, the environmental conditions (temperature and humidity) for measurement, etc., it depends on the purpose of optical characteristic evaluation and the type of optical film to be evaluated. Therefore, it is desirable to set these conditions so that the phase difference becomes an arbitrary value.
 ここで「配向角」は、位相差フィルムを形成する分子が配向した配向方向が、所定の基準方向に対してなす角度を指し、通常は、位相差フィルムの面内遅相軸が所定の基準方向に対してなす角度に一致する。所定の基準方向とは、通常位相差フィルムの幅手方向であり延伸される方向をいう。本発明に係る「配向ムラ欠陥」とは、この配向角がフィルム面内のそれぞれ採取した部位(例えば、幅手方向に沿って複数採取した場合)において遅相軸の方向が基準方向からずれを伴うムラがある欠陥をいう。 Here, the "orientation angle" refers to an angle formed by the orientation direction in which the molecules forming the retardation film are oriented with respect to a predetermined reference direction, and usually, the in-plane slow axis of the retardation film is a predetermined reference. Matches the angle made with respect to the direction. The predetermined reference direction is usually the width direction of the retardation film and the direction in which the film is stretched. The "alignment unevenness defect" according to the present invention means that the direction of the slow axis deviates from the reference direction at each sampled portion in the film plane (for example, when a plurality of samples are sampled along the width direction). Defects with unevenness.
 「偏光板」は、偏光素子の一種であり、通常偏光子と保護フィルムによって構成されている。偏光子は自然光(ランダム偏光)の中から取り出された特定の振動方向を持つ直線偏光に対し、その透過軸方位を回転させることで、入射した直線偏光の振動方向を変化させるために用いられる。「偏光子」は、一定方向の偏波面の光だけを通す素子であり、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。 A "polarizing plate" is a type of polarizing element, and is usually composed of a polarizer and a protective film. The polarizer is used to change the vibration direction of the incident linearly polarized light by rotating the transmission axis direction with respect to the linearly polarized light having a specific vibration direction extracted from natural light (randomly polarized light). A "polarizer" is an element that allows only light on a plane of polarization in a certain direction to pass through, and is a polyvinyl alcohol-based polarizing film. The polyvinyl alcohol-based polarizing film includes a polyvinyl alcohol-based film dyed with iodine and a film obtained by dyeing a dichroic dye.
 「吸収軸」は、偏光子が光の振動を吸収する軸の方向をいい、通常偏光子の延伸方向に一致する角度を指す。 "Absorption axis" refers to the direction of the axis in which the polarizer absorbs the vibration of light, and usually refers to the angle that coincides with the stretching direction of the polarizer.
 「クロスニコルに配置された第1偏光板及び第2偏光板」とは、上記偏光子の「吸収軸」が第1偏光板及び第2偏光板の間で、90°方向に直交していることをいう。 The "first polarizing plate and the second polarizing plate arranged on the cross Nicol" means that the "absorption axis" of the polarizer is orthogonal to the first polarizing plate and the second polarizing plate in the 90 ° direction. Say.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described. In the present application, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
〔1〕位相差フィルムの配向ムラ欠陥検出方法の構成
 本発明の位相差フィルムの配向ムラ欠陥検出方法は、前記ステップ(1)~(5)を有し、より好ましくは前記(5)のステップに続いてステップ(6)、ステップ(7)及びステップ(8)を有することが好ましい。
[1] Configuration of Method for Detecting Orientation Uneven Defects in Displacement Film The method for detecting orientation unevenness defects in a retardation film of the present invention includes the steps (1) to (5), and more preferably the step (5). It is preferable to have step (6), step (7) and step (8) following.
 先ず従来の配向ムラ欠陥の目視評価方法について概略を説明する。 First, the outline of the conventional visual evaluation method for orientation unevenness defects will be described.
 図1は、従来の配向ムラ欠陥の目視評価方法10の概略を示す模式図である。 FIG. 1 is a schematic diagram showing an outline of a conventional visual evaluation method 10 for uneven orientation defects.
 位相差フィルム1の配向ムラ欠陥の評価は、下部にあるフラットLED照明2から発光される照射光Lを、第1偏光板3、位相差フィルム1及び第2偏光板4の順に透過させ、当該位相差フィルム1の配向ムラ欠陥を目視5で定性的に観察する方法である。この際、第1偏光板3及び第2偏光板4の吸収軸はクロスニコルになるように配置されていることから、照射光Lはそのままでは透過せず暗部となるが、評価者が位相差フィルム1を前記偏光板の吸収軸方向から少し回転させる(図中、矢印の傾斜方向6に傾ける。)ことによって、位相差フィルムの遅相軸の方向にしたがって照射光Lが偏光して透過光となり、目視5において配向ムラ欠陥があれば暗い領域として観察される。 In the evaluation of the alignment unevenness defect of the retardation film 1, the irradiation light L emitted from the flat LED illumination 2 at the lower part is transmitted in the order of the first polarizing plate 3, the retardation film 1 and the second polarizing plate 4, and the present invention is performed. This is a method of qualitatively observing the alignment unevenness defect of the retardation film 1 visually 5. At this time, since the absorption axes of the first polarizing plate 3 and the second polarizing plate 4 are arranged so as to form a cross Nicol, the irradiation light L is not transmitted as it is and becomes a dark part, but the evaluator makes a phase difference. By slightly rotating the film 1 from the absorption axis direction of the polarizing plate (inclining in the inclination direction 6 of the arrow in the figure), the irradiation light L is polarized according to the direction of the slow axis of the retardation film and transmitted light. If there is an orientation unevenness defect in visual inspection 5, it is observed as a dark region.
 したがって、評価者の位相差フィルムの扱い方の習熟度や、配向ムラ欠陥に対する評価者の経験に基づくランク分けが、評価結果を左右するために、評価が属人的であり、かつ定性的な評価方法である。 Therefore, the evaluation is personal and qualitative because the evaluator's proficiency in how to handle the retardation film and the ranking based on the evaluator's experience for orientation unevenness defects affect the evaluation result. This is an evaluation method.
 本発明の位相差フィルムの配向ムラ欠陥検出方法は、光学的な評価装置を用いて一定のステップによって前記欠陥を評価する方法であることから、評価が属人的ではなく、かつ定量的な評価を提供することができる。 Since the method for detecting orientation unevenness defects in the retardation film of the present invention is a method for evaluating the defects in a certain step using an optical evaluation device, the evaluation is not personal and quantitative evaluation. Can be provided.
 以下、本発明の位相差フィルムの配向ムラ欠陥検出方法について、各ステップの詳細を説明する。 Hereinafter, the details of each step of the method for detecting orientation unevenness defects of the retardation film of the present invention will be described.
 ステップ(1):クロスニコルに配置された第1偏光板及び第2偏光板の間に前記位相差フィルムを配置するときに、前記位相差フィルムの遅相軸が、前記第1偏光板又は第2偏光板のどちらかの吸収軸に対し、-10~10°(ただし、0°は除く)の範囲内になるように、前記第1偏光板及び第2偏光板か、又は前記位相差フィルムのいずれかを回転させて配置するステップ。 Step (1): When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the slow axis of the retardation film is the first polarizing plate or the second polarized light. Either the first polarizing plate and the second polarizing plate, or the retardation film so as to be within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis of either of the plates. The step of rotating and arranging.
 クロスニコル状態の2枚の偏光板(第1偏光板及び第2偏光板)の間にフィルムを置いたとき、フィルムの遅相軸の向きが偏光板の吸収軸と同じ向きになるように置いても光は透過せず、何も観察できない。偏光板の吸収軸に対してフィルムをやや回転させると、フィルムを通過した光の偏光状態が位相差フィルムの遅相軸によって変化する(偏光の向きが若干変わる)ため、2枚目の偏光板を透過して光が届くようになる。 When the film is placed between two polarizing plates (first polarizing plate and second polarizing plate) in the cross Nicol state, the slow axis of the film is placed so as to be the same as the absorption axis of the polarizing plate. However, light does not pass through and nothing can be observed. When the film is rotated slightly with respect to the absorption axis of the polarizing plate, the polarization state of the light passing through the film changes depending on the slow axis of the retardation film (the direction of polarization changes slightly), so that the second polarizing plate Light will reach through.
 今回の検査対象である配向ムラ欠陥は輝度変化が微小なため、偏光板又は位相差フィルムを回転させすぎると撮影装置であるカメラに届く光が強すぎて観察できない。検討の結果、位相差フィルムの遅相軸が、前記第1偏光板又は第2偏光板のどちらかの吸収軸に対し、-10~10°の範囲内になるように、前記第1偏光板及び第2偏光板か、又は前記位相差フィルムのいずれかを回転させたときが最も位相差ムラがはっきりと観察できたため、この範囲に規定するものである。 The uneven orientation defect, which is the subject of this inspection, has a small change in brightness, so if the polarizing plate or retardation film is rotated too much, the light that reaches the camera, which is the imaging device, is too strong to observe. As a result of the examination, the first polarizing plate is set so that the slow axis of the retardation film is within the range of -10 to 10 ° with respect to the absorption axis of either the first polarizing plate or the second polarizing plate. And, when either the second polarizing plate or the retardation film is rotated, the retardation unevenness can be observed most clearly, so this is specified in this range.
 実際の操作では、後述する図5の配向ムラ欠陥検出装置において、前記位相差フィルムは回転させずに、前記第1偏光板及び第2偏光板を回転させて、前記偏光板の吸収軸を前記位相差フィルムの遅相軸に対して傾けることが好ましい。 In an actual operation, in the orientation unevenness defect detecting device of FIG. 5, which will be described later, the first polarizing plate and the second polarizing plate are rotated without rotating the retardation film, and the absorption axis of the polarizing plate is set. It is preferable to incline with respect to the slow axis of the retardation film.
 ステップ(2):前記第1偏光板を介して前記位相差フィルムに検査光を照射するステップ。 Step (2): A step of irradiating the retardation film with inspection light via the first polarizing plate.
 検査光を照射する照明装置としては、第1偏光板、位相差フィルム及び第2偏光板の順に検査光を透過させ、当該検査光を撮影するのに十分な面積が必要で、輝度はできる限り均一であることが好ましい。 As the lighting device that irradiates the inspection light, it is necessary to transmit the inspection light in the order of the first polarizing plate, the retardation film, and the second polarizing plate, and a sufficient area is required to photograph the inspection light, and the brightness is as high as possible. It is preferably uniform.
 照明装置の光源は、特に限定されるものではないが、重水素ランプやハロゲンランプ、LED(Light Emitting Diode)ランプを光源としたファイバー型の光源、又は蛍光灯やLED、OLED(Organic Light Emitting Diode)を用いた面光源を用いることができる。好ましくは面光源(フラット面光源)であり、フラットLED照明を用いることが好ましい。 The light source of the lighting device is not particularly limited, but is a fiber-type light source using a heavy hydrogen lamp, a halogen lamp, or an LED (Light Emitting Diet) lamp as a light source, or a fluorescent lamp, an LED, or an LED (Organic Light Emitting Diet). ) Can be used as a surface light source. It is preferably a surface light source (flat surface light source), and it is preferable to use flat LED illumination.
 検査光の光量は、検査機制御ソフト LabVIEW((National Instruments社製)上で管理しており、当該LabVIEW上で設定した輝度計算領域(例えば、80mm×60mm~400mm×300mm程度の矩形領域)の面内平均輝度を測定し、輝度値が128±10の範囲に収まるように光源の光量を調整することが、十分な評価用輝度画像を得る上好ましい。
 また、前記輝度計算領域は、検査領域に対して入射角依存の影響で、検査領域の端部にいくほど暗くなってしまう現象が発生する。端部の暗い部分まで含んで前記面内平均輝度を128±10になるよう調整しようとすると、中央部が過度に明るくなってしまい、肝心のムラを検出できなくなってしまうため、前記輝度計算領域は前記検査領域よりも狭く設定することが好ましい。例えば、検査領域を長手400mm×幅手300mmとした場合、輝度計算領域は、長手90mm×幅手80mmに設定することが好ましい。
The amount of light for inspection is managed on the inspection machine control software LabVIEW (manufactured by (National Instruments)), and the brightness calculation area (for example, a rectangular area of about 80 mm × 60 mm to 400 mm × 300 mm) set on the LabVIEW It is preferable to measure the in-plane average brightness and adjust the amount of light of the light source so that the brightness value falls within the range of 128 ± 10 in order to obtain a sufficient evaluation brightness image.
Further, the brightness calculation region is affected by the incident angle of the inspection region, and a phenomenon occurs in which the brightness calculation region becomes darker toward the end of the inspection region. If an attempt is made to adjust the in-plane average brightness to 128 ± 10 including the dark part at the end, the central part becomes excessively bright and the essential unevenness cannot be detected. Therefore, the brightness calculation area. Is preferably set narrower than the inspection area. For example, when the inspection area is 400 mm in length × 300 mm in width, the brightness calculation area is preferably set to 90 mm in length × 80 mm in width.
 ステップ(3):前記第2偏光板を介して前記位相差フィルムを撮影装置によって撮影し、輝度画像を得るステップ。 Step (3): A step of photographing the retardation film with an imaging device via the second polarizing plate to obtain a luminance image.
 撮影装置は、特に限定されるものではないが、エリア型若しくはラインセンサ型のCCDカメラを用いることができる。位相差フィルムの検査領域範囲を数回以内の撮影でカバーできる場合は、エリア型、それよりも広い範囲を撮影する必要がある場合はラインセンサ型を使用すると、撮影時間及び精度の面で好ましい。 The photographing device is not particularly limited, but an area type or line sensor type CCD camera can be used. If the inspection area range of the retardation film can be covered within a few shots, it is preferable to use the area type, and if it is necessary to shoot a wider range, the line sensor type is preferable in terms of shooting time and accuracy. ..
 撮影装置であるカメラは、例えば、BASLER社製型式acA2500-14gm、及びレンズはAPACECOM社製型式H6X8-1.0-IIなどを用いることができる。 For the camera as the photographing device, for example, the model acA2500-14 gm manufactured by Basler AG, and the lens model H6X8-1.0-II manufactured by APACECOM can be used.
 検査領域は、カメラに装着されるレンズの画角、偏光板の大きさ及び位相差フィルムの大きさ、及び位相差フィルムとカメラに装着されるレンズとの距離などで決まってくる。撮影装置はサンプルを幅手方向に移動できる構成とすれば、複数回にわたり検査を実施すればどんな幅のサンプルでも測定可能となる。 The inspection area is determined by the angle of view of the lens mounted on the camera, the size of the polarizing plate and the size of the retardation film, and the distance between the retardation film and the lens mounted on the camera. If the imaging device is configured so that the sample can be moved in the width direction, it is possible to measure a sample of any width by performing the inspection multiple times.
 例えば、位相差フィルムとして長手450mmで幅手2500mmの試料に対して、検査領域を長手400mmで幅手300mmとした場合、複数回の撮影によって検査を実施すればよい。なお、前記長手方向の大きさは装置の検査領域によって固定される。前記幅手の大きさは位相差フィルムとして一般的な最大幅である。 For example, when the inspection area is 400 mm in length and 300 mm in width for a sample having a length of 450 mm and a width of 2500 mm as a retardation film, the inspection may be performed by a plurality of imaging shots. The size in the longitudinal direction is fixed by the inspection area of the device. The size of the width is the maximum width that is generally used as a retardation film.
 また、前記カメラに装着されるレンズの画角θは、詳細には前記撮影装置のレンズ先端位置と前記位相差フィルムとの距離、及び当該位相差フィルム上の検査領域の長手方向の大きさから算出されるが、画角θは当該位相差フィルムの長手方向に対して、23°以内であることが、作業効率良く定量的な配向ムラ欠陥評価を可能にする観点から、好ましい。 Further, the angle of view θ of the lens mounted on the camera is determined in detail from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction. Although it is calculated, it is preferable that the angle of view θ is within 23 ° with respect to the longitudinal direction of the retardation film from the viewpoint of enabling work efficiency and quantitative alignment unevenness defect evaluation.
 図2は、検査に用いるカメラに装着されるレンズの画角θを説明する模式図である。
 レンズ56の先端位置と位相差フィルム51の距離WD(ワーキングディスタンスの略、レンズの先端から被写体のピントが合った位置までの距離をいう。)を、例えば、本発明に係る配向ムラ欠陥検査装置50として、仮にWDを1150mmとした場合、カメラの撮影領域は位相差フィルム51の搬送方向51cに対して、位相差フィルムの長手長51aが450mm、幅手長51bが375mmであった場合は、レンズの画角θは22.14°になる。また、検査領域が長手長400mm、幅手長300mmの場合は、θは19.73°になる。いずれも計算によって求めることができる。
FIG. 2 is a schematic view illustrating an angle of view θ of a lens mounted on a camera used for inspection.
The distance WD (abbreviation of working distance, the distance from the tip of the lens to the position where the subject is in focus) between the tip position of the lens 56 and the retardation film 51 is determined by, for example, the alignment unevenness defect inspection apparatus according to the present invention. Assuming that the WD is 1150 mm, the imaging region of the camera is a lens when the longitudinal length 51a of the retardation film 51 is 450 mm and the width length 51b is 375 mm with respect to the transport direction 51c of the retardation film 51. The angle of view θ of is 22.14 °. When the inspection area has a length of 400 mm and a width of 300 mm, θ is 19.73 °. Both can be calculated.
 ステップ(4):撮影された前記輝度画像を前記位相差フィルムの遅相軸に対して35~55°又は-55~-35°の範囲内の方向に微分(差分)処理しエッジ部分を強調した輝度画像を得るステップ。 Step (4): The captured luminance image is differentiated (difference) in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film to emphasize the edge portion. Steps to obtain a brightness image.
 一般的な微分処理の目的は、前記撮影された輝度画像のエッジ部分を強調することである。微分処理は、微分フィルターで画像のエッジ抽出(画像中の明るさが急に変化する部分を抽出することをエッジ抽出という。)を行う処理であるが、画像の場合は連続値ではないため、画素値間の差をとる(本発明でいう「差分」。)ことで微分の近似として扱う。微分処理は検討段階でカーネル(行列ともいう。)と呼ばれるマトリックスを、35~55°の範囲内の方向に微分処理するときのカーネル、及び-55~-35°範囲内の方向に微分処理するときのカーネルを求め、使用することが好ましい。 The purpose of general differential processing is to emphasize the edge portion of the captured luminance image. Differentiation processing is a process that uses a differential filter to extract edges of an image (extracting a part of an image where the brightness changes suddenly is called edge extraction), but in the case of an image, it is not a continuous value. By taking the difference between the pixel values (“difference” in the present invention), it is treated as an approximation of differentiation. Differentiation processing is performed at the examination stage by differentiating a matrix called a kernel (also called a matrix) in a direction within a range of 35 to 55 ° and a kernel in a direction within a range of -55 to -35 °. It is preferable to find and use the kernel of the time.
 前記エッジとは画像内で明暗の領域として分かれている部分を指す。エッジを強調する場合、明暗の境界が伸びる方向に対して直交する方向に処理するのが理想である。配向ムラ欠陥は長手方向(もしくは幅手方向)に対して約45°の向きに沿って発現するが、この角度にはある程度ばらつきがあり、それに対応するため、前記微分処理の向きを位相差フィルムの遅相軸に対して35~55°の範囲に幅を持たせで行うことが好ましい。 The edge refers to a portion of the image that is divided into light and dark areas. When emphasizing the edge, it is ideal to process it in the direction orthogonal to the direction in which the boundary between light and dark extends. Orientation unevenness defects appear along the direction of about 45 ° with respect to the longitudinal direction (or the width direction), but there is some variation in this angle, and in order to correspond to this, the orientation of the differential processing is set to the retardation film. It is preferable to have a width in the range of 35 to 55 ° with respect to the slow axis of.
 用いる微分処理用ソフトは限定されるものではないが、解析ソフト NI vision(National Instruments社製)を用いることが好ましい。 The differential processing software to be used is not limited, but it is preferable to use the analysis software NI vision (manufactured by National Instruments).
 ステップ(5):エッジ強調された前記輝度画像を、所定の二値化ソフト及び閾値で二値化し、各画素を閾値以上の明画素と閾値よりも低い暗画素とを得て、当該明画素又は暗画素から配向ムラを検出するステップ。 Step (5): The edge-enhanced luminance image is binarized with a predetermined binarization software and a threshold value to obtain bright pixels above the threshold value and dark pixels below the threshold value, and the bright pixels are obtained. Alternatively, a step of detecting uneven orientation from dark pixels.
 撮影した画像において、配向ムラ欠陥は暗い領域として観察される。よって、二値化の際は画像内の暗く映る要素群を残したいので、閾値を設定しその閾値よりも輝度が低い要素のみ残すことを実施する。 In the captured image, the uneven orientation defect is observed as a dark region. Therefore, in the case of binarization, since it is desired to leave a group of elements that appear dark in the image, a threshold value is set and only elements having a brightness lower than the threshold value are left.
 このとき、設定する閾値は目視で確認できるムラ部分がはっきり残るように確認しながら決定する。すなわち、閾値は経験的に値を決めればよい。 At this time, the threshold value to be set is determined while confirming that the uneven part that can be visually confirmed remains clearly. That is, the threshold value may be determined empirically.
 二値化は具体的には、以下の方法によって行うことが好ましい。 Specifically, it is preferable to perform binarization by the following method.
 [a]撮影した輝度画像を、解析ソフト NI vision(National Instruments社製)を用いてパソコンに読み込む。当該輝度画像はピント、コントラスト、及び明るさの調整で変化するため、作為的にしないことが好ましい。 [A] The captured luminance image is read into a personal computer using the analysis software NI vision (manufactured by National Instruments). Since the luminance image changes by adjusting the focus, contrast, and brightness, it is preferable not to make it artificial.
 [b]黒白の定義設定を行う。 [B] Set the definition of black and white.
 解析ソフト NI visionにて、Black Backgroundにレ点を入れると輝度値0を黒、輝度値255を白で表す。Black Backgroundにレ点を入れないと、輝度値0を白、輝度値255を黒で表す。 In the analysis software NI vision, when a check mark is put in the Black Backg round, the brightness value 0 is expressed in black and the brightness value 255 is expressed in white. If no check mark is put in the Black Backg round, the brightness value 0 is represented by white and the brightness value 255 is represented by black.
 [c]画像のノイズ除去
 シェーディング処理を行う。シェーディング処理は画像内の輝度を平均化することで、ノイズを除去するものである。
[C] Image noise removal Shading processing is performed. The shading process removes noise by averaging the brightness in the image.
 [d]バンドパスフィルターを適用する。 [D] Apply a bandpass filter.
 例えば、バンドパスフィルター数値は20~100が推奨である。この設定値は初期の輝度画像に依存するので適宜最適に設定すること好ましい。 For example, a bandpass filter value of 20 to 100 is recommended. Since this set value depends on the initial luminance image, it is preferable to set it appropriately and optimally.
 [e]輝度画像の二値化を行う。 [E] Binarize the luminance image.
 設定で8bit化し、閾値を設定する。閾値は解析ソフト NI vision(National Instruments社製)にしたがって調整することが好ましい。 Set the threshold to 8 bits in the settings. The threshold value is preferably adjusted according to the analysis software NI vision (manufactured by National Instruments).
 この閾値は画像のコントラストで変わるので、固定するのではなく毎回評価者が設定することが好ましい。 Since this threshold value changes depending on the contrast of the image, it is preferable that the evaluator sets it every time instead of fixing it.
 閾値が決まったら白黒画像にする。所定の閾値で二値化し、各画素を閾値以上の暗画素と閾値よりも低い明画素とを得て、当該明画素又は暗画素から配向ムラを検出する。 When the threshold is decided, make a black and white image. Binarization is performed with a predetermined threshold value, each pixel is obtained as a dark pixel above the threshold value and a bright pixel lower than the threshold value, and uneven orientation is detected from the bright pixel or the dark pixel.
 図3は、所定の閾値で二値化した画像の具体例である。 FIG. 3 is a specific example of an image binarized with a predetermined threshold value.
 図3Aが撮影された元の輝度画像であり、その中で暗く見える暗画素部分が配向ムラ欠陥の候補である。この配向ムラ欠陥の候補が明確に残るように閾値を決定して暗画素として二値化したものが図3Bである。 FIG. 3A is the original luminance image taken, and the dark pixel portion that looks dark in the image is a candidate for the orientation unevenness defect. FIG. 3B shows a threshold value determined and binarized as dark pixels so that candidates for the uneven orientation defect remain clearly.
 本発明の配向ムラ欠陥検出方法は、さらに以下のステップ(6)、ステップ(7)及びステップ(8)を有することが好ましい。 The method for detecting uneven orientation defects of the present invention preferably further includes the following steps (6), (7), and (8).
 ステップ(6):前記位相差フィルムの微分(差分)処理の方向に対して、70~120°の範囲内の斜め方向に、二値化された前記輝度画像に対して膨張処理を行い、当該斜め方向の成分を強調する画像処理を行うステップ。 Step (6): The binarized luminance image is expanded in an oblique direction within a range of 70 to 120 ° with respect to the direction of the differential (difference) processing of the retardation film. A step of performing image processing that emphasizes components in the diagonal direction.
 二値化した直後の画像は配向欠陥ムラ要素以外のノイズが多く残っているため、欠陥部分を強調するために膨張処理を実施し、膨張処理することによってノイズを低減しやすくする。ここで「膨張処理」とは、一般的に二値化された白黒の画像に対して処理が行われ、注目画素の周辺に1画素でも白い画素があれば白に置き換える処理を膨張(Dilation)という。後述する「収縮処理」とは、逆に周辺に1画素でも黒い画素があれば黒に置き換える処理を収縮(Erosion)という。 Since a lot of noise other than the alignment defect unevenness element remains in the image immediately after binarization, expansion processing is performed to emphasize the defective part, and the expansion processing makes it easier to reduce the noise. Here, the "expansion process" is a process in which a binary black-and-white image is generally processed, and if there is even one white pixel around the pixel of interest, the process is replaced with white. That is. On the contrary, the "shrinkage process" described later is called "erosion", which is a process of replacing even one pixel with black pixels in the periphery.
 当該配向欠陥ムラを残しつつノイズ除去するには、ムラが存在する方向に沿って処理するのが効果的である。これを微分処理の方向を基準として表すと、微分処理と直交する方向に処理することになる。なぜなら微分処理の方向はムラの存在する方向と直交する方向に実施するのが理想のためである。但し、ムラの方向もバラツキがあるため、このバラツキに対応するため、角度に幅を持たせ、微分(差分)処理の方向に対して、70~120°の範囲内の斜め方向に膨張処理を行うことが好ましい。 In order to remove noise while leaving the alignment defect unevenness, it is effective to process along the direction in which the unevenness exists. If this is expressed with reference to the direction of the differential processing, it will be processed in the direction orthogonal to the differential processing. This is because it is ideal that the direction of the differential processing is orthogonal to the direction in which the unevenness exists. However, since the direction of unevenness also varies, in order to deal with this variation, the angle should be widened and the expansion process should be performed diagonally within the range of 70 to 120 ° with respect to the direction of the differential (difference) process. It is preferable to do so.
 ステップ(7):前記膨張処理を行った後に、前記輝度画像に対して同方向に収縮処理を行うステップ。 Step (7): A step of performing a contraction process in the same direction with respect to the luminance image after performing the expansion process.
 膨張処理に続いて収縮処理を行うこともノイズをできるだけ除去するための処理であり、同様に微分処理の方向はムラの存在する方向と直交する方向に実施するため、ムラが存在する方向の角度に幅を持たせ、微分(差分)処理の方向に対して、70~120°の範囲内の斜め方向に収縮処理を行うことが好ましい。 Performing the contraction process after the expansion process is also a process for removing noise as much as possible. Similarly, since the direction of the differential process is performed in the direction orthogonal to the direction in which the unevenness exists, the angle in the direction in which the unevenness exists. It is preferable that the shrinkage treatment is performed in an oblique direction within a range of 70 to 120 ° with respect to the direction of the differential (difference) processing.
 前記膨張処理及び収縮処理は、前記解析ソフト NI vision(National Instruments社製)を用いて行うことができる。 The expansion treatment and the contraction treatment can be performed using the analysis software NI vision (manufactured by National Instruments).
 ステップ(8):前記収縮処理された輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出するステップ。 Step (8): A step of extracting a shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as an orientation unevenness defect component in the direction.
 このステップは、フィルター処理、又はフィルタリングともいい、「各画素領域の代表長さにより規定されるフィルター条件」とは、配向ムラ欠陥の検出において経験上から求められる条件である。 This step is also referred to as filtering or filtering, and the "filter condition defined by the representative length of each pixel region" is a condition that is empirically required in detecting an orientation unevenness defect.
 二値化した輝度画像から、例えば、形状が真円に近いものを除去したり(フィルター処理1)、長さが短い要素を除去したり(フィルター処理2)、面積が指定した範囲外のものを除去したり(フィルター処理3)するフィルタリングを行い、各画素領域の代表長さにより規定される当該フィルター条件を満たすものを、配向ムラ欠陥として検出する。 From the binarized luminance image, for example, those whose shape is close to a perfect circle are removed (filter processing 1), elements with a short length are removed (filter processing 2), and the area is outside the specified range. (Filtering process 3) is performed, and those satisfying the filter condition defined by the representative length of each pixel area are detected as alignment unevenness defects.
 具体的には、例えば、フィルター処理1として、ヘイウッド円形因子H:画素領域の周長を同面積の円周で除した商としたときに、1.5≦H≦5の範囲内にある画素領域のみ残すことが好ましい。なお、ヘイウッド円形因子Hは正円の場合は1である。 Specifically, for example, when the filter process 1 is the quotient of Haywood circular factor H: the circumference of the pixel region divided by the circumference of the same area, the pixels are within the range of 1.5 ≦ H ≦ 5. It is preferable to leave only the area. The Haywood circular factor H is 1 in the case of a perfect circle.
 さらにフィルター処理2として、配向ムラの長辺において特定の長さ以下の画素領域を除去することが好ましい。 Further, as the filtering process 2, it is preferable to remove the pixel region having a specific length or less on the long side of the uneven orientation.
 なお、フィルター処理2として、伸張因子L:画素領域の最大フェレー直径を当価長方形の短辺(フェレー)で除した商としたときに、4≦L≦13の範囲内にある画素領域のみ残して、配向ムラ欠陥を検出することが好ましい。 As the filtering process 2, when the expansion factor L: the maximum ferret diameter of the pixel region is divided by the short side (ferret) of the value rectangle, only the pixel region within the range of 4 ≦ L ≦ 13 is left. Therefore, it is preferable to detect alignment unevenness defects.
 前記フィルター処理において用いるフィルター処理ソフトは、限定されるものではないが前記解析ソフト NI vision(National Instruments社製)を用いて行うことができる。 The filter processing software used in the filter processing is not limited, but can be performed by using the analysis software NI vision (manufactured by National Instruments).
 図4に、画像処理のフローチャートと、具体的な処理画像例を示す。 FIG. 4 shows a flowchart of image processing and a specific example of processed images.
 (P1)位相差フィルムを撮影し輝度画像を取得、
 (P2)輝度画像のシェーディング処理(画像内の輝度を平均化してノイズを除去)、
 (P3)輝度画像の微分(差分)処理によるエッジ部分の強調
 (P4)輝度画像の二値化、
 (P5)二値化画像の強調処理(膨張及び収縮処理)、
 (P6)二値化画像へのフィルター処理1(形状が真円に近い要素を除去)、
 (P7)二値化画像へのフィルター処理2(長さが短い要素を除去)、
 (P8)二値化画像へのフィルター処理3(面積が指定した範囲外の要素を除去)、
 (P9)フィルター処理により二値化画像から配向ムラ欠陥のみを検出
(P1) Take a retardation film and acquire a luminance image.
(P2) Luminance image shading processing (equalizing the luminance in the image to remove noise),
(P3) Emphasis of edge portion by differentiation (difference) processing of luminance image (P4) Binarization of luminance image,
(P5) Binary image enhancement processing (expansion and contraction processing),
(P6) Filtering to a binarized image 1 (removes elements whose shape is close to a perfect circle),
(P7) Filtering to binary image 2 (removes short elements),
(P8) Filtering 3 (removing elements outside the specified area) to the binarized image,
(P9) Only orientation unevenness defects are detected from the binarized image by filtering.
[2]位相差フィルムの配向ムラ欠陥検出装置
 本発明の位相差フィルムの配向ムラ欠陥検出方法に用いる位相差フィルムの配向ムラ欠陥検出装置は、前記位相差フィルムを挟むようにクロスニコルに配置される第1偏光板及び第2偏光板と、前記第1偏光板を介して前記位相差フィルムに検査光を照射する光源と、前記第2偏光板を介して前記位相差フィルムを撮影して輝度画像を得る撮影装置と、前記輝度画像から欠陥を検出する欠陥検出部とを備え、前記欠陥検出部は、クロスニコルに配置される前記第1偏光板又は第2偏光板のどちらかの吸収軸に対し、前記位相差フィルムの遅相軸を-10~10°(ただし、0°は除く)の範囲内になるように、前記第1偏光板及び第2偏光板か、又は前記位相差フィルムのいずれかを回転して配置し撮影された前記輝度画像を、前記位相差フィルムの遅相軸に対して35~55°又は-55~-35°の範囲内の方向に微分(差分)処理しエッジ部分を強調するエッジ検出回路と、エッジ検出された前記輝度画像を、所定の閾値で二値化し、各画素を閾値以上の明画素と閾値よりも低い暗画素とにする二値化回路とを、有することを特徴とする。
[2] Alignment unevenness defect detection device for retardation film The alignment unevenness defect detection device for retardation film used in the method for detecting alignment unevenness defect of retardation film of the present invention is arranged on a cross Nicol so as to sandwich the retardation film. The first and second polarizing plates, the light source for irradiating the retardation film with inspection light via the first polarizing plate, and the retardation film taken through the second polarizing plate to obtain brightness. A photographing device for obtaining an image and a defect detecting unit for detecting defects from the luminance image are provided, and the defect detecting unit is an absorption shaft of either the first polarizing plate or the second polarizing plate arranged on the cross Nicol. On the other hand, the first and second polarizing plates or the retardation film so that the slow axis of the retardation film is within the range of -10 to 10 ° (excluding 0 °). The luminance image taken by rotating and arranging any of the above is subjected to differentiation (difference) processing in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film. An edge detection circuit that emphasizes the edge portion, and a binarization circuit that binarizes the edge-detected luminance image with a predetermined threshold and makes each pixel a bright pixel above the threshold and a dark pixel lower than the threshold. It is characterized by having.
 図5は、本発明の位相差フィルムの配向ムラ欠陥検出装置の一例を示す模式図である。 FIG. 5 is a schematic view showing an example of an orientation unevenness defect detecting device for a retardation film of the present invention.
 本発明の位相差フィルムの配向ムラ欠陥検出装置50は、下部にあるフラットLED照明52から発光される照射光Lを、遮光板53、第1偏光板54、位相差フィルム51、遮光板53及び第2偏光板55の順に透過させ、当該位相差フィルム51の配向ムラ欠陥をレンズ56を装着したカメラ57にて撮影する装置である。この際、第1偏光板53及び第2偏光板54の吸収軸はクロスニコルになるように配置されていることから、照射光Lはそのままでは透過せず暗部となるが、位相差フィルム51を前記偏光板の吸収軸方向から少し回転させる(傾ける)ことによって、位相差フィルム51の遅相軸の方向によって照射光Lが偏光し、撮影した画像において配向ムラは暗い領域として撮影される。 The retardation unevenness defect detecting device 50 of the retardation film of the present invention transmits the irradiation light L emitted from the flat LED illumination 52 at the lower part to the light shielding plate 53, the first polarizing plate 54, the retardation film 51, the light shielding plate 53, and the light shielding plate 53. This is a device that transmits light in the order of the second polarizing plate 55 and photographs the alignment unevenness defect of the retardation film 51 with a camera 57 equipped with a lens 56. At this time, since the absorption axes of the first polarizing plate 53 and the second polarizing plate 54 are arranged so as to form a cross Nicol, the irradiation light L is not transmitted as it is and becomes a dark portion, but the retardation film 51 is used. By slightly rotating (tilting) the polarizing plate from the absorption axis direction, the irradiation light L is polarized according to the direction of the slow axis of the retardation film 51, and the uneven orientation is captured as a dark region in the captured image.
 前記配向ムラ欠陥検出装置50において、位相差フィルム51を回転することはせず、前記第1偏光板54及び第2偏光板55を、位相差フィルムの遅相軸に対して、偏光板の吸収軸が-10~10°の範囲内になるように回転する機構(不図示)を有することが好ましい。 In the alignment unevenness defect detecting device 50, the retardation film 51 is not rotated, and the first polarizing plate 54 and the second polarizing plate 55 are absorbed by the polarizing plate with respect to the slow axis of the retardation film. It is preferable to have a mechanism (not shown) that rotates the shaft so as to be in the range of −10 to 10 °.
 また、各部の寸法は特に制限されるものではないが、例えば、評価用位相差フィルムは、長手方向に450mm、幅手方向に2000mmに切断した短冊状の試料を用いる。撮影装置は、撮影装置のレンズ先端位置と前記位相差フィルムとの距離、及び当該位相差フィルム上の検査領域の長手方向の大きさから算出される前記レンズの画角θを、当該位相差フィルムの長手方向に対して、23°以内とすることが好ましく、例えば、長手方向400mm、幅手方向300mmの領域を検査するため、図2で示す構成の検査装置を組み立てることが、検査効率の観点から好ましい。 The dimensions of each part are not particularly limited, but for example, as the evaluation retardation film, a strip-shaped sample cut into 450 mm in the longitudinal direction and 2000 mm in the width direction is used. The photographing device determines the angle of view θ of the lens calculated from the distance between the lens tip position of the photographing device and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction. It is preferable that the temperature is within 23 ° with respect to the longitudinal direction of the above. For example, in order to inspect a region of 400 mm in the longitudinal direction and 300 mm in the width direction, it is a viewpoint of inspection efficiency to assemble an inspection apparatus having the configuration shown in FIG. Is preferable.
 照明装置の光源は、特に限定されるものではないが、前述のとおり、重水素ランプやハロゲンランプ、LEDランプを光源としたファイバー型の光源、又は蛍光灯やLED、OLEDを用いた面光源を用いることができる。 The light source of the lighting device is not particularly limited, but as described above, a heavy hydrogen lamp, a halogen lamp, a fiber type light source using an LED lamp, or a surface light source using a fluorescent lamp, an LED, or an LED is used. Can be used.
 撮影装置は、特に限定されるものではないが、エリア型若しくはラインセンサ型のCCDカメラを用いることができる。位相差フィルムの測定対象範囲を数回以内の撮影でカバーできる場合は、エリア形、それよりも広い範囲を撮影する必要がある場合はラインセンサ形を使用すると、撮影時間、精度の面で好ましい。 The photographing device is not particularly limited, but an area type or line sensor type CCD camera can be used. If the measurement target range of the retardation film can be covered within a few shots, it is preferable to use the area type, and if it is necessary to shoot a wider range, the line sensor type is preferable in terms of shooting time and accuracy. ..
 カメラ及びレンズの仕様例としては前述のとおりである。 The specifications of the camera and lens are as described above.
 さらに、前記欠陥検出部が、前記位相差フィルムの微分(差分)処理の方向に対して、二値化された前記輝度画像に対して70~120°の範囲内の斜め方向に、膨張処理を行い、当該斜め方向の成分を強調する画像処理回路を有することが、好ましい。 Further, the defect detection unit performs expansion processing in an oblique direction within a range of 70 to 120 ° with respect to the binarized luminance image with respect to the direction of differentiation (difference) processing of the retardation film. It is preferable to have an image processing circuit that emphasizes the components in the oblique direction.
 また、前記欠陥検出部が、前記膨張処理を行った後に、前記輝度画像に対して同方向に収縮処理を行う画像処理回路を有することが好ましい。 Further, it is preferable that the defect detection unit has an image processing circuit that performs shrinkage processing in the same direction with respect to the luminance image after performing the expansion treatment.
 さらに、前記欠陥検出部が、前記収縮処理された輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出するフィルタリング回路を有することが好ましい。 Further, a filtering circuit is provided in which the defect detection unit extracts the shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as the orientation unevenness defect component in the direction. It is preferable to have.
 図6は、エッジ検出回路、二値化回路、画像処理回路及びフィルタリング回路を有する欠陥検出部を説明する概略図である。 FIG. 6 is a schematic diagram illustrating a defect detection unit having an edge detection circuit, a binarization circuit, an image processing circuit, and a filtering circuit.
 [欠陥検出部]
 欠陥検出部100の各構成について説明する。
[Defect detector]
Each configuration of the defect detection unit 100 will be described.
 図6に示すとおり、欠陥検出部100は、制御部101、記録部102、通信部103、データ処理部104及び操作表示部105等を備え、バス106により各部が相互に通信可能に接続されている。 As shown in FIG. 6, the defect detection unit 100 includes a control unit 101, a recording unit 102, a communication unit 103, a data processing unit 104, an operation display unit 105, and the like, and each unit is connected to each other so as to be communicable by a bus 106. There is.
 制御部101は、欠陥検出部100の動作を統括制御するCPU(Central Processing Unit)101aと、CPU101aがプログラムを実行する際に各種データを一時的に格納するためのワークメモリーとして機能するRAM(Random Access Memory)101bと、CPU101aが読み出して実行するプログラムや固定データが記憶されたプログラムメモリー101cなどを備えている。プログラムメモリー101cは、ROMなどにより構成されている。 The control unit 101 includes a CPU (Central Processing Unit) 101a that comprehensively controls the operation of the defect detection unit 100, and a RAM (Random) that functions as a work memory for temporarily storing various data when the CPU 101a executes a program. It includes an Access Memory) 101b, a program read and executed by the CPU 101a, a program memory 101c in which fixed data is stored, and the like. The program memory 101c is composed of a ROM or the like.
 記録部102は、撮影及び画像処理された画像データの他、画像処理回路で用いる各種閾値のデータ、照明装置52の照射条件データを格納、記録する。 The recording unit 102 stores and records image data that has been photographed and image-processed, data of various threshold values used in the image processing circuit, and irradiation condition data of the lighting device 52.
 通信部103は、ネットワークI/F等の通信用のインターフェイスを備え、イントラネット等のネットワークを介して、操作表示部105から入力された測定条件を撮影調整装置120に送信する。また、通信部103は、撮影装置130から送られる画像データを受信する。 The communication unit 103 is provided with a communication interface such as a network I / F, and transmits the measurement conditions input from the operation display unit 105 to the photographing adjustment device 120 via a network such as an intranet. In addition, the communication unit 103 receives the image data sent from the photographing device 130.
 データ処理部104は、通信部103により受信し、撮影装置130(レンズ56及びカメラ57)により撮影された輝度画像データから、画像処理を行う。 The data processing unit 104 performs image processing from the luminance image data received by the communication unit 103 and photographed by the photographing device 130 (lens 56 and camera 57).
 データ処理部104は、本発明に係るステップ(4)~ステップ(8)に用いられる、各種処理回路を有する。 The data processing unit 104 has various processing circuits used in steps (4) to (8) according to the present invention.
 データ処理部104は、シェーディング処理回路104aと、前記位相差フィルムの遅相軸に対して35~55°又は-55~-35°の範囲内の方向に微分(差分)処理しエッジ部分を強調するエッジ検出回路104b(ステップ(4))と、エッジ検出された前記輝度画像を、所定の閾値で二値化し、各画素を閾値以上の明画素と閾値よりも低い暗画素とにする二値化回路104c(ステップ(5))と、輝度画像に対して膨張処理又は収縮処理を行う画像処理回路104d(ステップ(6)及びステップ(7))と、前記収縮処理された輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出するフィルタリング回路104e(ステップ(8))とを有する。 The data processing unit 104 performs differential (difference) processing on the shading processing circuit 104a in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film to emphasize the edge portion. The edge detection circuit 104b (step (4)) and the luminance image whose edge is detected are binarized at a predetermined threshold value, and each pixel is converted into a bright pixel above the threshold value and a dark pixel lower than the threshold value. The conversion circuit 104c (step (5)), the image processing circuit 104d (step (6) and step (7)) that performs expansion processing or contraction processing on the luminance image, and the luminance image that has been contracted. It also has a filtering circuit 104e (step (8)) that extracts those satisfying the filter condition defined by the representative length of each pixel region as the alignment unevenness defect component in the direction.
 操作表示部105は、例えば、LCD(Liquid Crystal Display)、LCDを覆うように設けられたタッチパネル、各種スイッチやボタン、テンキー及び操作キー群等(図示略)から構成されてもよい。操作表示部105は、ユーザーからの指示を受け付けその操作信号を制御部101に出力する。また、操作表示部105は、制御部101から出力される表示信号に従って、各種操作指示や設定情報を入力するための各種設定画面や各種処理結果等を表示する操作画面をLCD上に表示する。 The operation display unit 105 may be composed of, for example, an LCD (Liquid Crystal Display), a touch panel provided so as to cover the LCD, various switches and buttons, a numeric keypad, an operation key group, and the like (not shown). The operation display unit 105 receives an instruction from the user and outputs the operation signal to the control unit 101. Further, the operation display unit 105 displays on the LCD an operation screen for displaying various setting screens for inputting various operation instructions and setting information, various processing results, and the like according to the display signal output from the control unit 101.
 [外部出力装置]
 データ処理装置100は、データ処理装置100と通信可能に接続される外部出力装置150を備えていてもよい。外部出力装置150は、一般的なPC(Personal Computer)であってもよいし、画像形成装置等であってもよい。また、外部出力装置150は、データ処理装置100の操作表示部105の代わりに操作表示部として機能してもよい。
[External output device]
The data processing device 100 may include an external output device 150 that is communicably connected to the data processing device 100. The external output device 150 may be a general PC (Personal Computer), an image forming device, or the like. Further, the external output device 150 may function as an operation display unit instead of the operation display unit 105 of the data processing device 100.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, the indication of "parts" or "%" is used, but unless otherwise specified, it indicates "parts by mass" or "% by mass".
 [実施例1]
 <評価用位相差フィルムの作製>
 下記の方法に従って、評価用位相差フィルム101を作製した。
[Example 1]
<Manufacturing of retardation film for evaluation>
An evaluation retardation film 101 was produced according to the following method.
 (微粒子分散希釈液の調製)
 10質量部のアエロジルR812(日本アエロジル社製、一次平均粒子径:7nm、見掛け比重50g/L)と、90質量部のエタノールとをディゾルバーで30分間撹拌混合した後、高圧分散機であるマントンゴーリンを用いて分散させて、微粒子分散液を調製した。
(Preparation of fine particle dispersion diluent)
10 parts by mass of Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g / L) and 90 parts by mass of ethanol are stirred and mixed with a dissolver for 30 minutes, and then Manton Goulin, which is a high-pressure disperser. To prepare a fine particle dispersion liquid by dispersing using.
 得られた微粒子分散液に、88質量部のジクロロメタンを撹拌しながら投入し、ディゾルバーで30分間撹拌混合して、希釈した。得られた溶液をアドバンテック東洋社製ポリプロピレンワインドカートリッジフィルターTCW-PPS-1Nで濾過して、微粒子分散希釈液を得た。 88 parts by mass of dichloromethane was added to the obtained fine particle dispersion while stirring, and the mixture was stirred and mixed with a dissolver for 30 minutes to dilute. The obtained solution was filtered through a polypropylene wind cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to obtain a fine particle dispersion diluent.
 (インライン添加液の調製)
 100質量部のジクロロメタンに、36質量部の前記作製した微粒子分散希釈液を撹拌しながら加えて30分間さらに撹拌した後、6質量部のセルロースアセテートプロピオネート(CAP:アセチル基置換度2.00、プロピオネート置換度0.60、重量平均分子量27万)を撹拌しながら加えて60分間さらに撹拌した。得られた溶液を、日本精線(株)製ファインメットNFで濾過して、インライン添加液を得た。濾材は、公称濾過精度20μmのものを用いた。
(Preparation of in-line additive solution)
To 100 parts by mass of dichloromethane, 36 parts by mass of the prepared fine particle dispersion diluted solution was added with stirring, and after further stirring for 30 minutes, 6 parts by mass of cellulose acetate propionate (CAP: acetyl group substitution degree 2.00). , Propionate substitution degree 0.60, weight average molecular weight 270,000) was added with stirring, and the mixture was further stirred for 60 minutes. The obtained solution was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to obtain an in-line additive solution. The filter medium used had a nominal filtration accuracy of 20 μm.
 (ドープの調製)
 下記成分を密閉容器に投入し、加熱及び撹拌しながら完全に溶解させた。得られた溶液をリーフディスクフィルターを装着した濾過器にて、温度50℃で濾過して、主ドープを得た。濾材は、公称濾過精度20μmのものを用いた。
(Preparation of doping)
The following components were placed in a closed container and completely dissolved while heating and stirring. The obtained solution was filtered through a filter equipped with a leaf disc filter at a temperature of 50 ° C. to obtain a main doping. The filter medium used had a nominal filtration accuracy of 20 μm.
 〈主ドープの組成〉
 セルロースアセテートプロピオネート(CAP:アセチル基置換度2.00、プロピオネート置換度0.60、重量平均分子量27万)
                          100質量部
 可塑剤:糖エステル;BzSc(ベンジルスクロース:平均エステル置換度=5.5)
                           12質量部
 ジクロロメタン                  430質量部
 メタノール                     11質量部
 100質量部の主ドープ1と、2.5質量部のインライン添加液とを、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分に混合して、ドープを
得た。
<Composition of main doping>
Cellulose acetate propionate (CAP: acetyl group substitution degree 2.00, propionate substitution degree 0.60, weight average molecular weight 270,000)
100 parts by mass Plasticizer: Sugar ester; BzSc (Benzyl sucrose: Average transesterification degree = 5.5)
12 parts by mass Dichloromethane 430 parts by mass Methanol 11 parts by mass 100 parts by mass Main doping 1 and 2.5 parts by mass of in-line additive liquid are sufficiently mixed with an in-line mixer (Toray static in-tube mixer Hi-Mixer, SWJ). Mixing gave a dope.
 (製膜工程)
 得られたドープを、ベルト流延装置を用いてステンレスバンド支持体上に、ドープの液温度35℃、幅1950mmの条件で、最終膜厚が40μmとなる条件で均一に流延させた。ステンレスバンド支持体上で、得られたドープ膜中の有機溶媒を、残留溶媒量が100質量%になるまで蒸発させてウェブを形成した後、ステンレスバンド支持体からウェブを剥離した。得られたウェブを、110℃でさらに5分予備乾燥させて残留溶媒量を10質量%にした後、ウェブをテンターで、160℃の条件でTD方向の元幅に対して1.4倍に延伸し、下記所定の位相差を付与した。延伸速度は300%/minの速度で延伸した。
(Film formation process)
The obtained dope was uniformly cast on a stainless band support using a belt casting device under the conditions of a doping liquid temperature of 35 ° C. and a width of 1950 mm and a final film thickness of 40 μm. On the stainless band support, the organic solvent in the obtained doping film was evaporated until the residual solvent amount reached 100% by mass to form a web, and then the web was peeled off from the stainless band support. The obtained web was pre-dried at 110 ° C. for another 5 minutes to adjust the residual solvent amount to 10% by mass, and then the web was tentered at 160 ° C. to 1.4 times the original width in the TD direction. It was stretched to give the following predetermined phase difference. The stretching rate was 300% / min.
 テンターで延伸後、130℃で1分間緩和を行った後、乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。得られたフィルムを、2000mm幅にスリットし、フィルム両端に幅10mm高さ5μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径15.24cmコアに巻き取り、長さ4000m、乾燥膜厚40μmの評価用位相差フィルム101を得た。
 上記位相差フィルム101の位相差は、前述の測定法によって測定した結果、Ro:50nm及びRt:120nmであった。
After stretching with a tenter, relaxation was performed at 130 ° C. for 1 minute, and then drying was completed while transporting the drying zone with a large number of rollers. The drying temperature was 130 ° C., and the transport tension was 100 N / m. The obtained film was slit to a width of 2000 mm, both ends of the film were knurled with a width of 10 mm and a height of 5 μm, wound on a core having an inner diameter of 15.24 cm with an initial tension of 220 N / m and a final tension of 110 N / m, and a length of 4000 m. , An evaluation retardation film 101 having a dry film thickness of 40 μm was obtained.
The retardation of the retardation film 101 was Ro: 50 nm and Rt: 120 nm as a result of measurement by the above-mentioned measuring method.
 <配向ムラ欠陥の評価>
 図5で示した配向ムラ欠陥評価装置を用いて、下記ステップ(1)~(8)によって、上記作製した位相差フィルムの配向ムラ欠陥を検出し、評価した。
<Evaluation of uneven orientation defects>
Using the alignment unevenness defect evaluation apparatus shown in FIG. 5, the orientation unevenness defects of the above-mentioned produced retardation film were detected and evaluated by the following steps (1) to (8).
 なお、評価用位相差フィルムは、長手方向に450mm、幅手方向に2000mmの短冊状の試料に切断した。前記撮影装置のレンズ先端位置と前記位相差フィルムとの距離を1150mm、及び当該位相差フィルム上の検査領域の長手方向の大きさから算出される前記レンズの画角θを、20°に設定することによって、長手方向400mm、幅手方向300mmの検査領域にて、撮影を複数回行った。 The evaluation retardation film was cut into strip-shaped samples of 450 mm in the longitudinal direction and 2000 mm in the width direction. The angle of view θ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film is 1150 mm and the size of the inspection region on the retardation film in the longitudinal direction is set to 20 °. As a result, imaging was performed a plurality of times in the inspection area of 400 mm in the longitudinal direction and 300 mm in the width direction.
 ステップ(1):クロスニコルに配置された第1偏光板及び第2偏光板の間に前記位相差フィルムを配置するときに、第1偏光板の偏光子の吸収軸に対して前記位相差フィルムの遅相軸が-7°になるように、第1偏光板及び第2偏光板を回転させて配置するステップ。 Step (1): When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the retardation film is delayed with respect to the absorption axis of the polarizer of the first polarizing plate. A step of rotating and arranging the first polarizing plate and the second polarizing plate so that the phase axis is −7 °.
 表I記載の角度は、反時計回りがマイナス、時計回りがプラスの値である。 The angles shown in Table I are negative for counterclockwise and positive for clockwise.
 ステップ(2):前記第1偏光板を介して前記位相差フィルムにフラットLED照明から検査光を照射するステップ。 Step (2): A step of irradiating the retardation film with inspection light from flat LED illumination via the first polarizing plate.
 ステップ(3):前記第2偏光板を介して前記位相差フィルムを撮影装置(カメラ)によって撮影し、輝度画像を得るステップ。 Step (3): A step of photographing the retardation film with a photographing device (camera) via the second polarizing plate to obtain a luminance image.
 ステップ(4):撮影された前記輝度画像を前記位相差フィルムの遅相軸に対して40°の方向に微分(差分)処理しエッジ部分を強調をした輝度画像を得るステップ。 Step (4): A step of obtaining a luminance image in which the edge portion is emphasized by differentiating (difference) the captured luminance image in the direction of 40 ° with respect to the slow axis of the retardation film.
 ステップ(5):エッジ強調された前記輝度画像を、所定の閾値で二値化し、各画素を閾値以上の明画素と閾値よりも低い暗画素とを得て、当該明画素又は暗画素から配向ムラを検出するステップ。 Step (5): The edge-enhanced luminance image is binarized at a predetermined threshold value to obtain bright pixels above the threshold value and dark pixels below the threshold value, and the pixels are oriented from the bright pixels or dark pixels. Step to detect unevenness.
 ステップ(6):前記位相差フィルムの微分(差分)処理の方向に対して、90°の斜め方向に、二値化された前記輝度画像に対して膨張処理を行い、当該斜め方向の成分を強調する画像処理を行うステップ。 Step (6): Expansion processing is performed on the binarized luminance image in a diagonal direction of 90 ° with respect to the direction of differentiation (difference) processing of the retardation film, and the components in the diagonal direction are extracted. Steps to perform image processing to emphasize.
 ステップ(7):前記膨張処理を行った後に、前記輝度画像に対して同方向に収縮処理を行うステップ。 Step (7): A step of performing a contraction process in the same direction with respect to the luminance image after performing the expansion process.
 ステップ(8):前記収縮処理された前記輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出するステップ。 Step (8): A step of extracting a shrink-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as an orientation unevenness defect component in the direction.
 (フィルタリング1)
 ヘイウッド円形因子H:画素領域の周長を同面積の円周で除した商としたときに、1.5≦H≦5の範囲内にある画素領域のみ残した。
(Filtering 1)
Haywood circular factor H: When the quotient is obtained by dividing the circumference of the pixel region by the circumference of the same area, only the pixel region within the range of 1.5 ≦ H ≦ 5 is left.
 (フィルタリング2)
 伸張因子L:画素領域の最大フェレー直径を当価長方形の短辺(フェレーで除した商としたときに、4≦L≦13の範囲内にある画素領域のみ残した。
(Filtering 2)
Stretch factor L: Only the pixel region within the range of 4 ≦ L ≦ 13 was left when the maximum ferret diameter of the pixel region was taken as the short side of the value rectangle (quotient divided by the ferret).
 [実施例2~8]
 実施例1の評価条件において、表I記載の装置条件θ、θf及びθp(それぞれ角度を表す。)、及び画像処理条件(ステップ(4)、ステップ(5)、ステップ(6)、ステップ(7)、ステップ(8)-1:フィルタリング1及び(8)-2:フィルタリング-2に変えて、同様な評価を行い、実施例2~8とした。
 ここで、θ:カメラに装着されているレンズの画角、θf:位相差フィルム遅相軸と偏光板の吸収軸とのなす角度、及びθp:2枚の偏光版の吸収軸のなす角度、をそれぞれ表す。
[Examples 2 to 8]
In the evaluation conditions of Example 1, the device conditions θ, θf and θp (each representing an angle) and the image processing conditions (step (4), step (5), step (6), step (7) shown in Table I. ), Step (8) -1: Filtering 1 and (8) -2: Filtering -2, and the same evaluation was performed to make Examples 2 to 8.
Here, θ: the angle of view of the lens mounted on the camera, θf: the angle formed by the retard phase axis of the retardation film and the absorption axis of the polarizing plate, and θp: the angle formed by the absorption axes of the two polarizing plates. Represents each.
 [比較例1~3]
 図1の配向ムラ欠陥評価装置を用い、評価者として、評価経験1年以上(目視1)、評価経験半年以上1年未満(目視2)及び評価経験半年未満(目視3)の3名で、比較例1~3の評価を実施した。
[Comparative Examples 1 to 3]
Using the orientation unevenness defect evaluation device shown in FIG. 1, three evaluators were evaluated: 1 year or more of evaluation experience (visual 1), 6 months or more and less than 1 year of evaluation experience (visual 2), and less than 6 months of evaluation experience (visual 3). Evaluation of Comparative Examples 1 to 3 was carried out.
 [比較例4]
 特開平11-30591号公報段落[0113]~[0122]記載の実施例に準拠した評価を実施した。
[Comparative Example 4]
Evaluation was carried out in accordance with the examples described in paragraphs [0113] to [0122] of JP-A-11-30591.
 [比較例5]
 特開2013-50393号公報段落[0098]~[0099]記載の実施例1に準拠した評価を実施した。
[Comparative Example 5]
Evaluation was carried out in accordance with Example 1 described in paragraphs [0998] to [0099] of JP2013-50393.
 ≪評価≫
 (1)煩雑性
 煩雑性は1サンプルの評価にかける時間で判定した。
≪Evaluation≫
(1) Complicity The complexity was judged by the time taken to evaluate one sample.
 ◎:1分未満
 〇:1分以上、5分未満
 △:5分以上、10分未満
 ×:10分以上
 〇~◎である場合、煩雑性が低く優れている評価方法であるとした。
⊚: less than 1 minute 〇: 1 minute or more and less than 5 minutes Δ: 5 minutes or more and less than 10 minutes ×: 10 minutes or more 〇 to ◎, it was considered that the evaluation method was excellent with low complexity.
 (2)検出精度
 検査した位相差フィルムを用いて表示装置を組み立てた後に、品質評価したときの結果(顧客先評価結果)とフィルム状態での品質評価結果(自社内評価結果)との一致度合いで検出精度をランク分けした。
(2) Detection accuracy The degree of agreement between the quality evaluation result (customer evaluation result) and the quality evaluation result in the film state (in-house evaluation result) after assembling the display device using the inspected retardation film. The detection accuracy was ranked by.
 ◎:9~10サンプルの評価結果が一致
 〇:6~8サンプルの評価結果が一致
 △:3~5サンプルの評価結果が一致
 ×:0~2サンプルの評価結果が一致
 検出精度は△以上が求められ、〇~◎であることが望ましい。
⊚: Evaluation results of 9 to 10 samples match 〇: Evaluation results of 6 to 8 samples match Δ: Evaluation results of 3 to 5 samples match ×: Evaluation results of 0 to 2 samples match Detection accuracy is △ or higher It is required, and it is desirable that it is 〇 to ◎.
 以上の評価方法及び評価結果を表Iに示した。 Table I shows the above evaluation methods and evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表Iの評価結果から、本発明の位相差フィルムの配向ムラ欠陥検出方法及び配向ムラ欠陥検出装置を用いることによって、位相差フィルムの配向ムラ欠陥評価の煩雑性及び検出精度が、目視評価に対して向上することが分かる。 From the evaluation results in Table I, by using the alignment unevenness defect detecting method and the alignment unevenness defect detecting device of the retardation film of the present invention, the complexity and detection accuracy of the orientation unevenness defect evaluation of the retardation film can be compared with the visual evaluation. It can be seen that it improves.
 したがって、本発明によって、位相差フィルムの配向ムラ欠陥の検出、評価を光学系による定量評価を行うことにより、評価が属人的ではなく、より簡便に評価再現性を高めることができる位相差フィルムの配向ムラ欠陥検出方法及び配向ムラ欠陥検出装置を提供することができた。 Therefore, according to the present invention, by performing quantitative evaluation using an optical system to detect and evaluate orientation unevenness defects in a retardation film, the evaluation is not personal and the evaluation reproducibility can be improved more easily. We were able to provide a method for detecting uneven orientation defects and an apparatus for detecting uneven orientation defects.
 本発明の位相差フィルムの配向ムラ欠陥検出方法及び配向ムラ欠陥検出装置は、位相差フィルムの配向ムラ欠陥の検出、評価を光学系による定量評価で行うことが可能であり、評価が属人的ではなく、より簡便な位相差フィルムの配向ムラ欠陥の評価に好適に利用される。 The method for detecting uneven orientation defects of a retardation film and the device for detecting uneven orientation defects of a retardation film of the present invention can detect and evaluate uneven orientation defects of a retardation film by quantitative evaluation using an optical system, and the evaluation is personal. Instead, it is suitably used for a simpler evaluation of orientation unevenness defects in a retardation film.
 1 位相差フィルム
 2 フラットLED照明
 3 第1偏光板
 4 第2偏光板
 5 目視
 6 傾斜方向
 L 照射光
 θ 画角
 10 従来の配向ムラ欠陥の目視評価方法
 50 配向ムラ欠陥検出装置
 51 位相差フィルム
 51a 長手長
 51b 幅手長
 52 フラットLED照明
 53 遮光板
 54 第1偏光板
 55 第2偏光板
 56 レンズ
 57 カメラ
 100 欠陥検出部
 101 制御部
 101a CPU
 101b RAM
 101c プログラムメモリー
 102 記録部
 103 通信部
 104 データ処理部
 104a シェーディング処理回路
 104b エッジ検出回路
 104c 二値化回路
 104d 画像処理回路
 104e フィルタリング回路
 105 操作表示部
 120 撮影調整装置
 130 撮影装置
 150 外部出力装置
1 Phase difference film 2 Flat LED illumination 3 1st polarizing plate 4 2nd polarizing plate 5 Visual observation 6 Tilt direction L Irradiation light θ Angle 10 Conventional visual evaluation method for alignment unevenness defect 50 Orientation unevenness defect detection device 51 Phase difference film 51a Length 51b Width Hand length 52 Flat LED lighting 53 Shading plate 54 First polarizing plate 55 Second polarizing plate 56 Lens 57 Camera 100 Defect detection unit 101 Control unit 101a CPU
101b RAM
101c Program memory 102 Recording unit 103 Communication unit 104 Data processing unit 104a Shading processing circuit 104b Edge detection circuit 104c Binarization circuit 104d Image processing circuit 104e Filtering circuit 105 Operation display unit 120 Imaging adjustment device 130 Imaging device 150 External output device

Claims (10)

  1.  位相差フィルムの配向ムラ欠陥検出方法であって、
     下記ステップ(1)~(5)を有することを特徴とする位相差フィルムの配向ムラ欠陥検出方法。
     ステップ(1):クロスニコルに配置された第1偏光板及び第2偏光板の間に前記位相差フィルムを配置するときに、前記位相差フィルムの遅相軸が、前記第1偏光板又は第2偏光板のどちらかの吸収軸に対し、-10~10°(ただし、0°は除く)の範囲内になるように、前記第1偏光板及び第2偏光板か、又は前記位相差フィルムのいずれかを回転して配置するステップ。
     ステップ(2):前記第1偏光板を介して前記位相差フィルムに検査光を照射するステップ。
     ステップ(3):前記第2偏光板を介して前記位相差フィルムを撮影装置によって撮影し、輝度画像を得るステップ。
     ステップ(4):撮影された前記輝度画像を前記位相差フィルムの遅相軸に対して35~55°又は-55~-35°の範囲内の方向に微分(差分)処理しエッジ部分を強調した輝度画像を得るステップ。
     ステップ(5):エッジ強調された前記輝度画像を、所定の閾値で二値化し、各画素を閾値以上の明画素と閾値よりも低い暗画素とを得て、当該明画素又は暗画素から配向ムラを検出するステップ。
    This is a method for detecting uneven orientation defects in a retardation film.
    A method for detecting orientation unevenness defects in a retardation film, which comprises the following steps (1) to (5).
    Step (1): When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the slow axis of the retardation film is the first polarizing plate or the second polarized light. Either the first polarizing plate and the second polarizing plate, or the retardation film so as to be within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis of either of the plates. The step of rotating and arranging.
    Step (2): A step of irradiating the retardation film with inspection light via the first polarizing plate.
    Step (3): A step of photographing the retardation film with a photographing apparatus via the second polarizing plate to obtain a luminance image.
    Step (4): The captured luminance image is differentiated (difference) in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film to emphasize the edge portion. Steps to obtain a brightness image.
    Step (5): The edge-enhanced luminance image is binarized at a predetermined threshold value to obtain bright pixels above the threshold value and dark pixels below the threshold value, and the pixels are oriented from the bright pixels or dark pixels. Step to detect unevenness.
  2.  さらに、前記位相差フィルムの微分(差分)処理の方向に対して、70~120°の範囲内の斜め方向に、二値化された前記輝度画像に対して膨張処理を行い、当該斜め方向の成分を強調する画像処理を行うステップ(6)を有することを特徴とする請求項1に記載の位相差フィルムの配向ムラ欠陥検出方法。 Further, expansion processing is performed on the binarized luminance image in a diagonal direction within a range of 70 to 120 ° with respect to the direction of the differential (difference) processing of the retardation film, and the diagonal direction is changed. The method for detecting uneven orientation defects in a retardation film according to claim 1, further comprising a step (6) of performing image processing for emphasizing the components.
  3.  さらに、前記膨張処理を行った後に、前記輝度画像に対して同方向に収縮処理を行うステップ(7)を有することを特徴とする請求項2に記載の位相差フィルムの配向ムラ欠陥検出方法。 The method for detecting an orientation unevenness defect of a retardation film according to claim 2, further comprising a step (7) of performing a shrinkage treatment in the same direction with respect to the luminance image after the expansion treatment.
  4.  さらに、前記収縮処理された前記輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出するステップ(8)を有することを特徴とする請求項3に記載の位相差フィルムの配向ムラ欠陥検出方法。 Further, it is provided with the step (8) of extracting the shrinkage-processed luminance image that satisfies the filter condition defined by the representative length of each pixel region as the orientation unevenness defect component in the direction. The method for detecting orientation unevenness defects in a retardation film according to claim 3.
  5.  前記撮影装置のレンズ先端位置と前記位相差フィルムとの距離、及び当該位相差フィルム上の検査領域の長手方向の大きさから算出される前記レンズの画角θが、当該位相差フィルムの長手方向に対して、23°以内であることを特徴とする請求項1から請求項4までのいずれか一項に記載の位相差フィルムの配向ムラ欠陥検出方法。 The angle of view θ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction is the longitudinal direction of the retardation film. The method for detecting an orientation unevenness defect of a retardation film according to any one of claims 1 to 4, wherein the distance is within 23 °.
  6.  請求項1から請求項5のいずれか一項に記載の位相差フィルムの配向ムラ欠陥検出方法に用いる位相差フィルムの配向ムラ検出装置であって、
     前記位相差フィルムを挟むようにクロスニコルに配置される第1偏光板及び第2偏光板と、
     前記第1偏光板を介して前記位相差フィルムに検査光を照射する光源と、
     前記第2偏光板を介して前記位相差フィルムを撮影して輝度画像を得る撮影装置と、
     前記輝度画像から欠陥を検出する欠陥検出部とを備え、
     前記欠陥検出部は、
     クロスニコルに配置された第1偏光板及び第2偏光板の間に前記位相差フィルムを配置するときに、前記位相差フィルムの遅相軸が、前記第1偏光板又は第2偏光板のどちらか

    の吸収軸に対し、-10~10°(ただし、0°は除く)の範囲内になるように、前記第1偏光板及び第2偏光板か、又は前記位相差フィルムのいずれかを回転して配置し撮影された前記輝度画像を、前記位相差フィルムの遅相軸に対して35~55°又は-55~-35°の範囲内の方向に微分(差分)処理しエッジ部分を強調するエッジ検出回路と、
     エッジ検出された前記輝度画像を、所定の閾値で二値化し、各画素を閾値以上の明画素と閾値よりも低い暗画素とにする二値化回路と、
     を有することを特徴とする位相差フィルムの配向ムラ検出装置。
    A device for detecting uneven orientation of a retardation film used in the method for detecting uneven orientation defects of a retardation film according to any one of claims 1 to 5.
    The first polarizing plate and the second polarizing plate arranged on the cross Nicol so as to sandwich the retardation film,
    A light source that irradiates the retardation film with inspection light via the first polarizing plate,
    An imaging device that photographs the retardation film via the second polarizing plate to obtain a luminance image.
    A defect detection unit that detects defects from the luminance image is provided.
    The defect detection unit
    When the retardation film is arranged between the first polarizing plate and the second polarizing plate arranged on the cross Nicol, the slow axis of the retardation film is either the first polarizing plate or the second polarizing plate.

    Rotate either the first polarizing plate and the second polarizing plate or the retardation film so as to be within the range of -10 to 10 ° (excluding 0 °) with respect to the absorption axis of. The luminance image taken by arranging the film is differentiated (difference) in a direction within the range of 35 to 55 ° or -55 to -35 ° with respect to the slow axis of the retardation film to emphasize the edge portion. Edge detection circuit and
    A binarization circuit that binarizes the edge-detected luminance image with a predetermined threshold value and makes each pixel a bright pixel equal to or higher than the threshold value and a dark pixel lower than the threshold value.
    An orientation unevenness detection device for a retardation film, which comprises.
  7.  前記欠陥検出部が、
     前記位相差フィルムの微分(差分)処理の方向に対して、70~120°の範囲内の斜め方向に、前記二値化された前記輝度画像に対して膨張処理を行い、当該斜め方向の成分を強調する画像処理回路を有することを特徴とする請求項6に記載の位相差フィルムの配向ムラ欠陥検出装置。
    The defect detection unit
    Expansion processing is performed on the binarized luminance image in an oblique direction within a range of 70 to 120 ° with respect to the direction of differentiation (difference) processing of the retardation film, and the component in the oblique direction is performed. The orientation unevenness defect detecting apparatus for a retardation film according to claim 6, further comprising an image processing circuit that emphasizes.
  8.  前記欠陥検出部が、
     前記膨張処理を行った後に、前記輝度画像に対して同方向に収縮処理を行う画像処理回路を有することを特徴とする請求項7に記載の位相差フィルムの配向ムラ欠陥検出装置。
    The defect detection unit
    The orientation unevenness defect detecting apparatus for a retardation film according to claim 7, further comprising an image processing circuit that performs shrinkage processing in the same direction with respect to the luminance image after performing the expansion treatment.
  9.  前記欠陥検出部が、
     前記収縮処理された輝度画像に対して、各画素領域の代表長さにより規定されるフィルター条件を満たすものを、当該方向の配向ムラ欠陥成分として抽出するフィルタリング回路を有すること特徴とする請求項6に記載の位相差フィルムの配向ムラ欠陥検出装置。
    The defect detection unit
    6. The feature is that the luminance image subjected to the shrinkage processing has a filtering circuit that extracts a filter condition that satisfies the filter condition defined by the representative length of each pixel region as an orientation unevenness defect component in the direction. The device for detecting uneven orientation of a retardation film according to the above.
  10.  前記撮影装置のレンズ先端位置と前記位相差フィルムとの距離、及び当該位相差フィルム上の検査領域の長手方向の大きさから算出される前記レンズの画角θが、当該位相差フィルムの長手方向に対して、23°以内とすることを特徴とする請求項6から請求項9までのいずれか一項に記載の位相差フィルムの配向ムラ欠陥検出装置。 The angle of view θ of the lens calculated from the distance between the lens tip position of the photographing apparatus and the retardation film and the size of the inspection region on the retardation film in the longitudinal direction is the longitudinal direction of the retardation film. The uneven orientation defect detecting apparatus for a retardation film according to any one of claims 6 to 9, wherein the distance is 23 ° or less.
PCT/JP2020/025669 2019-07-16 2020-06-30 Method for detecting orientation non-uniformity defect in retardation film and apparatus for detecting orientation non-uniformity defect in retardation film WO2021010157A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021532766A JPWO2021010157A1 (en) 2019-07-16 2020-06-30
CN202080050402.6A CN114096833A (en) 2019-07-16 2020-06-30 Method and apparatus for detecting defect of uneven alignment of retardation film
KR1020227000933A KR20220018599A (en) 2019-07-16 2020-06-30 Method for detecting non-uniform orientation defects of retardation film and apparatus for detecting non-uniform orientation defects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130811 2019-07-16
JP2019130811 2019-07-16

Publications (1)

Publication Number Publication Date
WO2021010157A1 true WO2021010157A1 (en) 2021-01-21

Family

ID=74210721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025669 WO2021010157A1 (en) 2019-07-16 2020-06-30 Method for detecting orientation non-uniformity defect in retardation film and apparatus for detecting orientation non-uniformity defect in retardation film

Country Status (5)

Country Link
JP (1) JPWO2021010157A1 (en)
KR (1) KR20220018599A (en)
CN (1) CN114096833A (en)
TW (1) TWI757776B (en)
WO (1) WO2021010157A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116818786A (en) * 2023-06-14 2023-09-29 成都瑞波科材料科技有限公司 Foreign matter detection device and method for optical film and optical film coating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236825A (en) * 2008-03-28 2009-10-15 Fujifilm Corp Defect detector and defect detection method
JP2012013848A (en) * 2010-06-30 2012-01-19 Sumitomo Chemical Co Ltd Set of rolled polarizing plates, method for manufacturing the same, and method for manufacturing liquid crystal panel
JP2013050393A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Device and method for detecting defect of patterned retardation film, and method for manufacturing patterned retardation film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130591A (en) 1997-07-11 1999-02-02 Asahi Chem Ind Co Ltd Method and device for inspecting film sheet defect
US6650410B2 (en) * 2000-03-08 2003-11-18 Fuji Photo Film Co., Ltd. Apparatus, system and method for checking film for defects
US7224457B2 (en) * 2003-09-25 2007-05-29 Georgia Tech Research Corporation Performing retardation measurements
JP5140451B2 (en) * 2008-02-05 2013-02-06 富士フイルム株式会社 Birefringence measuring method, apparatus and program
TWI536003B (en) * 2011-08-31 2016-06-01 富士軟片股份有限公司 Apparatus and method of detecting defect for patterned retardation film and method of manufacturing patterned retardation film
JP2013210245A (en) * 2012-03-30 2013-10-10 Dainippon Printing Co Ltd Film inspection system, and film inspection method
CN103472556B (en) * 2013-09-30 2015-10-28 武汉光迅科技股份有限公司 A kind of fast axle perpendicularity regulating device of composite wave plate and control method thereof
CN106489073A (en) * 2014-06-30 2017-03-08 住友化学株式会社 Detection means, detection method, processing meanss and processing method
GB201601960D0 (en) * 2016-02-03 2016-03-16 Glaxosmithkline Biolog Sa Novel device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236825A (en) * 2008-03-28 2009-10-15 Fujifilm Corp Defect detector and defect detection method
JP2012013848A (en) * 2010-06-30 2012-01-19 Sumitomo Chemical Co Ltd Set of rolled polarizing plates, method for manufacturing the same, and method for manufacturing liquid crystal panel
JP2013050393A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Device and method for detecting defect of patterned retardation film, and method for manufacturing patterned retardation film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116818786A (en) * 2023-06-14 2023-09-29 成都瑞波科材料科技有限公司 Foreign matter detection device and method for optical film and optical film coating device

Also Published As

Publication number Publication date
JPWO2021010157A1 (en) 2021-01-21
KR20220018599A (en) 2022-02-15
TW202122787A (en) 2021-06-16
TWI757776B (en) 2022-03-11
CN114096833A (en) 2022-02-25

Similar Documents

Publication Publication Date Title
JP4960026B2 (en) Film defect inspection apparatus and film manufacturing method
JP4628824B2 (en) Film defect inspection apparatus and film manufacturing method
US5828500A (en) Optical element inspecting apparatus
JP5024935B2 (en) Device and method for detecting defect of light transmitting member
US20030185429A1 (en) Method and apparatus for quantitatively evaluating scintillation, antiglare film and method of producing the same
JP5538220B2 (en) Non-uniformity inspection method for polarizing plate using image analysis, and automatic non-uniformity inspection system for polarizing plate using the same
RU2718427C2 (en) Digital pathology system
DE112008002816B4 (en) Test method based on captured images and test device
KR101211352B1 (en) FlLM lNSPECTION APPARATUS AND METHOD
KR20080027721A (en) Optical anisotropy parameter measurement apparatus
JP2009236825A (en) Defect detector and defect detection method
WO2021010157A1 (en) Method for detecting orientation non-uniformity defect in retardation film and apparatus for detecting orientation non-uniformity defect in retardation film
JP4440485B2 (en) Film defect inspection apparatus, defect inspection system, defect inspection method, and method for manufacturing film having birefringence characteristics
JP2009042040A (en) Polarization analyzer utilizing polarization imaging camera
KR101440975B1 (en) Automatic inspection apparatus for stain in the polarizing plate using color difference analysis
JP3538281B2 (en) Optical member inspection device
KR20100058012A (en) Optical system for detecting defect
WO1998015871A1 (en) Method of manufacturing liquid crystal display, optically inspecting instrument, and optically inspecting method
JP3803999B2 (en) Defect inspection equipment
CN113189119B (en) Internal defect detection device for medical optical element
KR101440974B1 (en) Automatic inspection method for stain in the polarizing plate using color difference analysis
Huang et al. Mueller matrix imaging of pathological slides with plastic coverslips
Chen et al. LOG-filter-based inspection of cluster Mura and vertical-band Mura on liquid crystal displays
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
CN216206540U (en) Optical detection device for stretched film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532766

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227000933

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841131

Country of ref document: EP

Kind code of ref document: A1