WO2021010071A1 - インダクタ - Google Patents
インダクタ Download PDFInfo
- Publication number
- WO2021010071A1 WO2021010071A1 PCT/JP2020/023264 JP2020023264W WO2021010071A1 WO 2021010071 A1 WO2021010071 A1 WO 2021010071A1 JP 2020023264 W JP2020023264 W JP 2020023264W WO 2021010071 A1 WO2021010071 A1 WO 2021010071A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- inductor
- winding
- conical
- conical coil
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 77
- 239000004020 conductor Substances 0.000 claims abstract description 60
- 239000011810 insulating material Substances 0.000 abstract description 4
- 238000005259 measurement Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 22
- 230000005540 biological transmission Effects 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/02—Fixed inductances of the signal type without magnetic core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
Definitions
- the present disclosure relates to an inductor having a conical coil.
- Patent Document 1 discloses a chip-type inductor in which a winding is wound around a core.
- windings are wound around dogbone-shaped cores having different diameters at the start and end of coil winding, and an exterior material containing resin is arranged on the top surface. Further, this inductor sets the winding density of the winding on the side where the core diameter is small to be low, enables the capacitance to be adjusted, and reduces the resonance generated between the coils.
- the winding density of the winding on the smaller core diameter side is set low to change the stray capacitance.
- the change in stray capacitance is in two stages.
- the inductor described in Patent Document 1 has a coil wound around an inclined core. Therefore, the accuracy of the winding position of the winding cannot be obtained, and it tends to be difficult to stabilize the stray capacitance between the coils. Therefore, it may not be possible to keep the electrical characteristics of the coil constant.
- An object of the embodiment of the present invention is to provide an inductor capable of reducing stray capacitance in a high frequency region and improving electrical characteristics (high frequency characteristics).
- One embodiment of the present invention is an inductor including a conical coil in which a coil conductor is spirally wound, and the winding diameter of the conical coil is continuously expanded in the winding axis direction of the conical coil.
- the distance between the coil conductors adjacent to each other is continuously increased from the larger winding diameter to the smaller winding diameter of the conical coil, and the floating capacitance generated around the coil conductor is the winding of the conical coil. It changes continuously from the beginning to the end of the winding.
- the stray capacitance in the high frequency region can be reduced and the electrical characteristics (high frequency characteristics) can be improved.
- the inductor 1 includes a housing 2 and a conical coil 3.
- the housing 2 is formed of an insulating material such as a ceramic material.
- the insulating material of the housing 2 may be a magnetic material or a non-magnetic material.
- the housing 2 is formed in a rectangular parallelepiped shape, for example.
- the housing 2 has a first main surface 2A and a second main surface 2B facing each other.
- the housing 2 is not limited to a rectangular parallelepiped shape, and may be, for example, a cylindrical shape.
- the conical coil 3 is provided inside the housing 2.
- the conical coil 3 is formed by a coil conductor 4 wound in a spiral shape.
- the coil conductor 4 is formed of a conductive metal material such as copper, nickel, silver, etc. as the conductive material.
- the coil conductor 4 is formed in an elongated strip shape.
- the coil conductor 4 is spirally wound so that the direction orthogonal to the first main surface 2A (first end surface) and the second main surface 2B (second end surface) of the housing 2 is the winding axis direction. There is.
- the coil conductor 4 includes a coil portion 4A wound in a conical shape, an electrode connecting portion 4B connected to the first end portion of the coil portion 4A, and an electrode connecting portion connected to the second end portion of the coil portion 4A. It is equipped with 4C.
- the first end portion of the coil conductor 4 is located on the maximum diameter side of the conical coil 3 and is the large diameter side end portion of the conical coil 3.
- the first end portion of the coil conductor 4 is arranged at a position close to the first main surface 2A of the housing 2 and serves as an electrode connecting portion 4B.
- the second end portion of the coil conductor 4 is located on the small diameter side of the conical coil 3 and is the small diameter side end portion of the conical coil 3.
- the second end portion of the coil conductor 4 is arranged at a position close to the second main surface 2B of the housing 2 and serves as an electrode connecting portion 4C.
- the cross section of the coil conductor 4 has a rectangular shape.
- the long side of the cross section of the coil conductor 4 is parallel to the first main surface 2A and the second main surface 2B.
- the position accuracy of the conical coil 3 becomes high.
- the winding diameter of the conical coil 3 continuously increases as it approaches the first main surface 2A from the second main surface 2B.
- the coil conductors 4 are arranged so as not to overlap when viewed from the winding axis direction of the conical coil 3.
- the first winding portion and the second winding portion of the coil conductor 4 do not overlap each other and are separated from each other at intervals in the winding radial direction. This point is the same for the second and subsequent rolls.
- the insulating material of the housing 2 is arranged around the coil conductor 4 without any gap.
- the spacing dimension (pitch of the conical coil 3) of the coil conductor 4 (coil portion 4A) with respect to the winding axis direction of the conical coil 3 continuously increases from the larger winding diameter to the smaller winding diameter of the conical coil 3 (FIG. In FIGS. 1 to 3, only 9-step changes are shown).
- FIG. 3 for example, counting in order from the distance between the first winding portion and the second winding portion of the coil conductor 4 located on the second main surface 2B side, the first main surface 2A
- the distance between the 9th and 10th windings of the coil conductor 4 located on the side is defined as the distances A1 to A9, respectively.
- the spacing dimension A2 between the second and third winding portions of the coil conductor 4 is smaller than the spacing dimension A1 between the first and second winding portions of the coil conductor 4. (A1> A2). This point is the same for the second and subsequent turns (A1> A2> ...> A9).
- the first external electrode 5 is provided in the housing 2 and is connected to the first end portion (electrode connecting portion 4B) of the coil conductor 4.
- the first external electrode 5 is formed of, for example, a conductive metal material as the conductive material.
- the first external electrode 5 is arranged on the first main surface 2A of the housing 2.
- the second external electrode 6 is provided in the housing 2 and is connected to the second end portion (electrode connecting portion 4C) of the coil conductor 4.
- the second external electrode 6 is formed of, for example, a conductive metal material as the conductive material.
- the second external electrode 6 is arranged on the second main surface 2B of the housing 2.
- the first external electrode 5 and the second external electrode 6 are arranged apart from each other.
- FIG. 4 shows an equivalent circuit of the inductor 1 when wound N times (N turns).
- the inductor 1 a parallel resonance circuit of a parallel resonance circuit (first stage of the N stages 11 1, 2-stage parallel resonant circuit 11 2, N-1 stage of the parallel resonant circuit 11 N-1, N-th stage parallel Only the resonant circuit 11N is shown).
- the first stage of the parallel resonant circuit 11 1 is an inductor element L 1 and the resistance element R 1 connected in series are formed by parallel connection of the capacitor element C 1.
- 2-stage parallel resonant circuit 11 2 is an inductor element L 2 and the resistance element R 2 connected in series are formed by parallel connection of the capacitor element C 2.
- Parallel resonant circuit 11 N-1 to N-1 stage is formed by parallel connection of the inductor element L N-1 and the resistance element R N-1 connected in series to the capacitor element C N-1.
- Parallel resonant circuit 11 N of the N-th stage is an inductor element L N and a resistor R N which are connected in series are formed by parallel connection of the capacitor element C N. The same applies to the 3rd to N-2nd stages. These N-stage parallel resonant circuits are sequentially connected in series.
- the first-stage parallel resonant circuit 11 1 corresponds to the coil conductor 4 on the minimum diameter side.
- Parallel resonant circuit 11 N of the N-th stage corresponds to the coil conductors 4 of the maximum diameter.
- the diameter of the second winding portion is larger than that of the first winding portion of the coil conductor 4. Therefore, than the parallel inductance of the resonant circuit 11 1 of the inductor element L 1 of the first stage, towards the parallel resonant circuit 11 second inductance value of the inductor element L 2 of the second stage is increased. This point is the same for the third and subsequent stages.
- the inductor 1 according to the embodiment of the present invention has the above configuration.
- the inductor 1 is manufactured by a manufacturing method including the following three steps.
- an insulator ink composed of ceramic particles, an organic binder and a solvent, and a conductor ink composed of metal particles, an organic binder and a solvent are ejected by an inkjet method, and the solvent in each ink is repeatedly volatilized and dried.
- layers made of ceramic particles and metal particles are laminated one by one along the winding axis direction.
- a molded product composed of ceramic particles, metal particles, and an organic component is formed.
- the molded product does not need to be laminated along the winding axis direction of the conical coil 3, and may be laminated along the radial direction of the conical coil 3.
- the organic component of the molded product formed in the first step is removed.
- the third step the molded product from which the organic component has been removed in the second step is heated, and the insulator and the conductor are sintered at the same time. As a result, the housing 2 in which the conical coil 3 is built is formed.
- the first external electrode 5 and the second external electrode 6 are attached to the housing 2.
- the inductor 1 is completed.
- the first external electrode 5 is located on the first main surface 2A of the housing 2 and is electrically connected to the first end portion (electrode connecting portion 4B) of the conical coil 3.
- the second external electrode 6 is located on the second main surface 2B of the housing 2 and is electrically connected to the second end portion (electrode connecting portion 4C) of the conical coil 3.
- the electrical characteristics (high frequency characteristics) when the inductor 1 (and the inductors according to the first and second comparative examples) according to the present embodiment will be described with reference to FIGS. 5 to 8.
- the characteristics when the inductor 1 according to the present embodiment is used are shown by a solid line
- the characteristics when the inductor according to the first comparative example is used are shown by a chain double-dashed line
- the characteristics of are shown by broken lines.
- the inductor according to the first comparative example is formed so that the coil spacing dimension (coil-to-coil distance) changes in two steps.
- the inductor according to the second comparative example is formed with the coil spacing dimension (coil-to-coil distance) constant.
- FIG. 5 shows an example of the relationship between the inductance (L) per turn and the capacitance (C) between the coils. As shown by the broken line in FIG. 5, in the second comparative example, since the coil spacing dimension is constant, the capacitance increases in proportion to the increase in the inductance per turn.
- the coil spacing dimension changes in two steps. Specifically, in the portion where the winding diameter of the coil is small, the distance between the coils is large. In the portion where the coil winding diameter is large, the coil spacing dimension is small. Therefore, in the portion where the winding diameter of the coil is small, the increase in capacitance is small with respect to the increase in inductance per turn. In the portion where the winding diameter of the coil is large, the increase in capacitance is large with respect to the increase in inductance per turn. At this time, the ratio of the increase in capacitance to the increase in inductance per turn changes in two steps.
- the spacing dimension of the coil conductors 4 is continuously increased from the larger winding diameter to the smaller winding diameter of the conical coil 3. Therefore, as shown by the solid line in FIG. 5, in the portion where the winding diameter of the conical coil 3 is small, the increase in capacitance is small with respect to the increase in inductance per turn. In the portion where the winding diameter of the conical coil 3 is large, the increase in capacitance is large with respect to the increase in inductance per turn.
- the ratio of the increase in capacitance to the increase in inductance per turn is continuously increasing.
- the stray capacitance of the inductor 1 is the capacitance between the coil conductors 4 adjacent to each other in the winding axis direction, and continuously changes from the winding start to the winding end of the conical coil 3.
- the capacitance between the coils becomes smaller when the inductance is about 5 nH or less, as compared with the second comparative example. ing.
- the stray capacitance of the inductor 1 is smaller on the smaller winding diameter of the conical coil 3 (that is, on the larger spacing dimension of the coil conductors 4) as compared with the second comparative example.
- the capacitance between the coils is larger than that of the first and second comparative examples when the inductance is about 5 nH or more.
- the stray capacitance of the inductor 1 is larger on the larger winding diameter of the conical coil 3 (that is, on the smaller spacing dimension of the coil conductors 4) as compared with the first and second comparative examples. ..
- the frequency characteristic (impedance curve) of the impedance of the inductor was obtained for the case where the inductor according to the present embodiment and the first and second comparative examples was formed at the ratio of the inductance and the capacitance shown in FIG. The result is shown in FIG.
- the impedance tends to decrease (capacitive region) as the frequency increases. This point is the same in the first and second comparative examples.
- the amount of decrease in impedance in the high frequency range of, for example, 20 GHz or more is smaller.
- the stray capacitance (capacitive component of impedance) in the high frequency region is smaller than that of the first and second comparative examples.
- the portion of the conical coil 3 having a small winding diameter mainly contributes to impedance.
- the distance between the coil conductors 4 is large and the stray capacitance is small in the portion where the winding diameter of the conical coil 3 is small.
- the impedance in the high frequency region is higher than that in the first and second comparative examples. Therefore, the amount of noise attenuation in the high frequency range can be improved. Further, when the inductor according to the first comparative example is used, the characteristics tend to decrease (that is, the range in which the electrical characteristics are unstable) when the frequency is around 3 to 6 GHz. That is, the electrical characteristics are more stable when the inductor 1 according to the present embodiment is used.
- FIG. 8 shows an example of the frequency characteristic (that is, the transmission characteristic) of the transmission coefficient (S21 of the S parameter).
- the cutoff frequency at which the transmission coefficient of the inductor 1 becomes -3 dB is 40 GHz or more.
- the amount of decrease in the transmission coefficient is smaller in the high frequency region, and the transmission coefficient in the high frequency region is higher. That is, the inductor 1 according to the present embodiment can improve the transmission characteristics in the high frequency region. Therefore, the inductor 1 according to the present embodiment can improve the amount of noise attenuation in the high frequency region.
- the spacing dimension of the coil conductors 4 adjacent to each other in the winding axis direction of the conical coil 3 is continuously increased from the larger winding diameter to the smaller winding diameter of the conical coil 3. ..
- the stray capacitance generated around the coil conductor 4 continuously changes from the start to the end of winding of the conical coil 3.
- the stray capacitance that contributes in the high frequency range can be reduced as compared with the conventional case.
- the impedance in the high frequency range can be increased.
- the cutoff frequency can be increased and the transmission characteristics in the high frequency region can be improved.
- the electrical characteristics (high frequency characteristics) of the inductor 1 can be improved.
- the distance between the coils (the distance between the coil conductors 4) can be controlled more accurately, and the electrical characteristics of the inductor 1 can be stabilized.
- the first winding portion of the coil conductor 4 is on the second main surface 2B side, and the tenth winding portion of the coil conductor 4 is on the first main surface 2A side.
- the present invention is not limited to this, and the first winding portion of the coil conductor 4 may be on the first main surface 2A side, and the tenth winding portion of the coil conductor 4 may be on the second main surface 2B side.
- the conical coil 3 formed by the coil conductors 4 which are separated from each other at intervals in the winding diameter direction without overlapping portions is used.
- the present invention is not limited to this, and adjacent portions of the coil conductor 4 may be arranged so that parts thereof overlap with each other.
- the housing 2 is formed of a homogeneous material throughout.
- the present invention is not limited to this, and the inside of the housing may be filled with a material having a magnetic permeability larger than that of the other portion, for example, located in the radial inner portion of the conical coil 3 to form a core. ..
- the conical coil 3 is embedded inside the housing 2.
- the present invention is not limited to this, and the housing may be omitted and a coil conductor may be wound around the core member to form a conical coil.
- the inductor included in the above embodiment for example, the inductor described below can be considered.
- the first aspect is an inductor including a conical coil in which a coil conductor is spirally wound, and the winding diameter of the conical coil is continuously expanded in the winding axis direction of the conical coil.
- the distance between the adjacent coil conductors is continuously increased from the larger winding diameter to the smaller winding diameter of the conical coil, and the floating capacitance generated around the coil conductor is the start of winding of the conical coil. It changes continuously from to the end of the winding.
- the stray capacitance that contributes in the high frequency range can be reduced as compared with the conventional case.
- the impedance in the high frequency range can be increased.
- the cutoff frequency can be increased and the transmission characteristics in the high frequency region can be improved.
- the electrical characteristics (high frequency characteristics) of the inductor can be improved.
- the distance between the coils can be controlled with high accuracy, and the electrical characteristics of the inductor can be stabilized.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
インダクタ(1)は、絶縁材料からなる筐体(2)と、筐体(2)の内部に位置して螺旋状に巻回されたコイル導体(4)からなるコニカルコイル(3)と、を備えている。コニカルコイル(3)の巻き径は、連続的に拡大している。コニカルコイル(3)の巻き軸方向に対して隣り合うコイル導体(4)の間隔寸法は、コニカルコイル(3)の巻き径が大きい方から小さい方にかけて連続的に大きくなっている。コイル導体(4)の周囲に生じる浮遊容量は、コニカルコイル(3)の巻き始めから巻き終わりにかけて連続的に変化している。
Description
本開示は、コニカルコイルを備えたインダクタに関する。
コイル状の導体を備えた各種のインダクタが知られている(例えば、特許文献1)。特許文献1には、コアに巻き線を巻くチップ型のインダクタが開示されている。特許文献1に記載されたインダクタでは、コイルの巻き始めと巻き終わりで径の異なるドッグボーン型のコアに巻き線が巻かれ、樹脂を含む外装材が天面に配置されている。さらに、このインダクタは、コア径の小さい側の巻き線の巻き密度を低く設定し、容量の調整を可能にすると共に、コイル間で発生する共振を低減させている。
ところで、特許文献1に記載されたインダクタでは、コア径の小さい側の巻き線の巻き密度を低く設定し、浮遊容量を変化させている。しかし、浮遊容量の変化は、2段階になっている。また、特許文献1に記載されたインダクタは、傾斜のあるコアにコイルを巻いている。このため、巻き線の巻き位置の精度が取れず、コイル間の浮遊容量を安定させることが難しい傾向がある。このため、コイルとしての電気特性を一定にすることができない可能性がある。
本発明の一実施形態の目的は、高周波域での浮遊容量を低減し、電気特性(高周波特性)を向上できるインダクタを提供することにある。
本発明の一実施形態は、インダクタであって、コイル導体を螺旋状に巻回したコニカルコイルを備え、前記コニカルコイルの巻き径は、連続的に拡大しており、前記コニカルコイルの巻き軸方向に対して隣り合う前記コイル導体の間隔寸法は、前記コニカルコイルの巻き径が大きい方から小さい方にかけて連続的に大きくなっており、前記コイル導体の周囲に生じる浮遊容量は、前記コニカルコイルの巻き始めから巻き終わりにかけて連続的に変化している。
本発明の一実施形態によれば、高周波域での浮遊容量を低減し、電気特性(高周波特性)を向上できる。
以下、本発明の実施形態によるインダクタを、添付図面を参照しつつ詳細に説明する。
図1ないし図4は、本発明の実施形態によるインダクタ1を示している。インダクタ1は、筐体2と、コニカルコイル3とを備えている。
筐体2は、例えばセラミックス材料のような絶縁材料によって形成されている。筐体2の絶縁材料は、磁性材料でもよく、非磁性材料でもよい。筐体2は、例えば直方体形状に形成されている。筐体2は、互いに対面する第1主面2Aと第2主面2Bとを有している。筐体2は、直方体形状に限らず、例えば円柱形状でもよい。
コニカルコイル3は、筐体2の内部に設けられている。コニカルコイル3は、螺旋状に巻回されたコイル導体4によって形成されている。コイル導体4は、導電性材料として、例えば銅、ニッケル、銀等のような導電性金属材料によって形成されている。コイル導体4は、細長い帯状に形成されている。
コイル導体4は、筐体2の第1主面2A(第1端面)および第2主面2B(第2端面)と直交する方向が巻き軸方向となるように、螺旋状に巻回されている。コイル導体4は、円錐形状に巻回されたコイル部4Aと、コイル部4Aの第1端部に接続された電極接続部4Bと、コイル部4Aの第2端部に接続された電極接続部4Cと、を備えている。コイル導体4の第1端部は、コニカルコイル3の最大径側に位置して、コニカルコイル3の大径側端部になっている。コイル導体4の第1端部は、筐体2の第1主面2Aに近い位置に配置され、電極接続部4Bとなっている。コイル導体4の第2端部は、コニカルコイル3の小径側に位置して、コニカルコイル3の小径側端部になっている。コイル導体4の第2端部は、筐体2の第2主面2Bに近い位置に配置され、電極接続部4Cとなっている。
図3に示すように、コイル導体4の断面は、矩形形状となっている。コイル導体4の断面の長辺は、第1主面2Aおよび第2主面2Bと平行になっている。例えば、筐体2およびコニカルコイル3を第1主面2Aおよび第2主面2Bと平行な層を積層して形成する場合、コニカルコイル3の位置精度が高くなる。
コニカルコイル3の巻き径は、第2主面2Bから第1主面2Aに近付くに従って、連続的に拡大している。コニカルコイル3の巻き軸方向から見たときに、コイル導体4が重複しないように配置されている。巻き軸方向で平面視した場合、例えばコイル導体4の1巻き目の部分と2巻き目の部分とは、互いに重複せず、巻き径方向に間隔をもって離間している。この点は、2巻き目以降でも同様である。筐体2の絶縁材料は、コイル導体4の周囲に隙間なく配置されている。
コニカルコイル3の巻き軸方向に対するコイル導体4(コイル部4A)の間隔寸法(コニカルコイル3のピッチ)は、コニカルコイル3の巻き径が大きい方から小さい方にかけて連続的に大きくなっている(図1ないし図3では、9段階の変化のみ図示)。ここで、図3に示すように、例えば第2主面2B側に位置したコイル導体4の1巻き目の部分と2巻き目の部分との間隔寸法から順番に数えて、第1主面2A側に位置したコイル導体4の9巻き目の部分と10巻き目の部分との間隔寸法までを、それぞれ間隔寸法A1~A9とする。このとき、例えばコイル導体4の2巻き目の部分と3巻き目の部分との間隔寸法A2は、コイル導体4の1巻き目の部分と2巻き目の部分との間隔寸法A1よりも小さくなっている(A1>A2)。この点は、2巻き目以降でも同様である(A1>A2>…>A9)。
第1外部電極5は、筐体2に設けられコイル導体4の第1端部(電極接続部4B)に接続されている。第1外部電極5は、導電性材料として例えば導電性金属材料によって形成されている。第1外部電極5は、筐体2の第1主面2Aに配置されている。
第2外部電極6は、筐体2に設けられコイル導体4の第2端部(電極接続部4C)に接続されている。第2外部電極6は、導電性材料として例えば導電性金属材料によって形成されている。第2外部電極6は、筐体2の第2主面2Bに配置されている。第1外部電極5と第2外部電極6は、互いに離間して配置されている。
次に、N回(Nターン)巻いたときのインダクタ1の等価回路を図4に示す。インダクタ1は、N段の並列共振回路(1段目の並列共振回路111、2段目の並列共振回路112、N-1段目の並列共振回路11N-1、N段目の並列共振回路11Nのみ図示)によって構成されている。例えば、1段目の並列共振回路111は、直列接続されたインダクタ素子L1および抵抗素子R1をキャパシタ素子C1に並列接続することで形成されている。2段目の並列共振回路112は、直列接続されたインダクタ素子L2および抵抗素子R2をキャパシタ素子C2に並列接続することで形成されている。N-1段目の並列共振回路11N-1は、直列接続されたインダクタ素子LN-1および抵抗素子RN-1をキャパシタ素子CN-1に並列接続することで形成されている。N段目の並列共振回路11Nは、直列接続されたインダクタ素子LNおよび抵抗素子RNをキャパシタ素子CNに並列接続することで形成されている。3段目からN-2段目についても同様に構成されている。これらN段の並列共振回路は、順次直列接続されている。
1段目の並列共振回路111は、最小径側のコイル導体4に対応している。N段目(図3では10段目)の並列共振回路11Nは、最大径側のコイル導体4に対応している。このとき、コイル導体4の1巻き目の部分よりも、2巻き目の部分の方が、径寸法が大きくなっている。このため、1段目の並列共振回路111のインダクタ素子L1のインダクタンス値よりも、2段目の並列共振回路112のインダクタ素子L2のインダクタンス値の方が大きくなっている。この点は、3段目以降についても同様である。
また、1段目の並列共振回路111の抵抗素子R1の抵抗値よりも、2段目の並列共振回路112の抵抗素子R2の抵抗値の方が大きくなっている。この点は、3段目以降についても同様である。
さらに、1段目の並列共振回路111のキャパシタ素子C1のキャパシタンス値よりも、2段目の並列共振回路112のキャパシタ素子C2のキャパシタンス値の方が大きくなっている。この点は、3段目以降についても同様である。但し、コイル導体4(コイル部4A)の間隔寸法は、コニカルコイル3の巻き径が大きい方から小さい方にかけて連続的に大きくなっている。このため、キャパシタ素子C1とキャパシタ素子C2との間のキャパシタンス値の増加分は、キャパシタ素子C2とキャパシタ素子C3との間のキャパシタンス値の増加分よりも小さくなっている。この点は、3段目以降についても同様である。
本発明の実施形態によるインダクタ1は、以上のような構成を有している。インダクタ1は、以下の3工程を含む製造方法を用いて製造される。
第1工程では、セラミック粒子と有機バインダと溶剤からなる絶縁体インクと、金属粒子と有機バインダと溶剤からなる導体インクとをインクジェット方式により吐出し、各インク中の溶媒の揮発乾燥を繰り返す。このとき、例えば巻き軸方向に沿って、セラミック粒子および金属粒子からなる層を1層ずつ積層する。これにより、セラミック粒子と金属粒子と有機成分からなる成形体を形成する。なお、成形体は、コニカルコイル3の巻き軸方向に沿って積層する必要はなく、コニカルコイル3の径方向に沿って積層してもよい。
第2工程(脱脂工程)では、第1工程で形成された成形体の有機成分を除去する。第3工程(焼成工程)では、第2工程で有機成分が除去された成形体を加熱し、絶縁体および導体を同時に焼結させる。これにより、コニカルコイル3が内蔵された筐体2が形成される。
その後、筐体2に第1外部電極5および第2外部電極6を取り付ける。これにより、インダクタ1が完成する。このとき、第1外部電極5は、筐体2の第1主面2Aに位置して、コニカルコイル3の第1端部(電極接続部4B)に電気的に接続される。第2外部電極6は、筐体2の第2主面2Bに位置して、コニカルコイル3の第2端部(電極接続部4C)に電気的に接続される。
次に、本実施形態によるインダクタ1(および第1,第2の比較例によるインダクタ)を用いたときの電気特性(高周波特性)について、図5ないし図8を参照しつつ説明する。なお、本実施形態によるインダクタ1を用いたときの特性を実線で示し、第1の比較例によるインダクタを用いたときの特性を二点鎖線で示し、第2の比較例によるインダクタを用いたときの特性を破線で示す。ここで、第1の比較例によるインダクタは、特許文献1に示すように、コイルの間隔寸法(コイル間距離)が2段階に変化するように形成されている。また、第2の比較例によるインダクタは、コイルの間隔寸法(コイル間距離)を一定にして形成されている。
1ターン当たりのインダクタンス(L)とコイル間の容量(C)との関係の一例を、図5に示す。図5に破線で示すように、第2の比較例では、コイルの間隔寸法が一定であるため、1ターン当たりのインダクタンスが増加するのに比例して、容量が増加している。
また、図5に二点鎖線で示すように、第1の比較例では、コイルの間隔寸法が2段階で変化する。具体的には、コイルの巻き径が小さい部分では、コイルの間隔寸法が大きい。コイルの巻き径が大きい部分では、コイルの間隔寸法が小さい。このため、コイルの巻き径が小さい部分では、1ターン当たりのインダクタンスの増加に対して、容量の増加は小さい。コイルの巻き径が大きい部分では、1ターン当たりのインダクタンスの増加に対して、容量の増加は大きい。このとき、1ターン当たりのインダクタンスの増加に対する容量の増加の比率は、2段階で変化している。
これに対し、本実施形態によるインダクタ1では、コイル導体4の間隔寸法は、コニカルコイル3の巻き径が大きい方から小さい方にかけて連続的に大きくなっている。このため、図5に実線で示すように、コニカルコイル3の巻き径が小さい部分では、1ターン当たりのインダクタンスの増加に対して、容量の増加は小さい。コニカルコイル3の巻き径が大きい部分では、1ターン当たりのインダクタンスの増加に対して、容量の増加は大きい。このような1ターン当たりのインダクタンスの増加に対する容量の増加の比率は、連続的に大きくなっている。このとき、インダクタ1の浮遊容量は、巻き軸方向に対して隣り合うコイル導体4間の容量であり、コニカルコイル3の巻き始めから巻き終わりにかけて連続的に変化している。
具体的には、本実施形態によるインダクタ1を用いたとき、コイル間の容量(即ち、インダクタ1の浮遊容量)は、インダクタンスが約5nH以下のとき、第2の比較例と比べて、小さくなっている。言い換えれば、インダクタ1の浮遊容量は、コニカルコイル3の巻き径が小さい方(即ち、コイル導体4の間隔寸法が大きい方)で、第2の比較例と比べて、小さくなっている。一方、コイル間の容量は、インダクタンスが約5nH以上のとき、第1,第2の比較例と比べて、大きくなっている。言い換えれば、インダクタ1の浮遊容量は、コニカルコイル3の巻き径が大きい方(即ち、コイル導体4の間隔寸法が小さい方)で、第1,第2の比較例と比べて、大きくなっている。
次に、本実施形態および第1,第2の比較例によるインダクタを図5に示すインダクタンスと容量の比率で形成した場合について、インダクタのインピーダンスの周波数特性(インピーダンスカーブ)を求めた。その結果を、図6に示す。本実施形態によるインダクタ1を用いたとき、インピーダンスは、周波数の増加に伴って、低下する傾向(容量性領域)を示している。この点については、第1,第2の比較例でも同様である。
しかし、第1,第2の比較例と比較して、本実施形態によるインダクタ1を用いたとき、例えば20GHz以上の高周波域でのインピーダンスの低下量が小さくなっている。これは、第1,第2の比較例と比べて、高周波域での浮遊容量(インピーダンスの容量成分)が少なくなっていることを示している。具体的には、高周波域では、コニカルコイル3のうち巻き径が小さい部分が、主としてインピーダンスに寄与する。このとき、本実施形態によるインダクタ1では、コニカルコイル3の巻き径が小さい部分で、コイル導体4の間隔寸法が大きく、浮遊容量が小さくなっている。この結果、高周波域でのインピーダンスは、第1,第2の比較例と比べて、高くなっている。従って、高周波域でのノイズの減衰量を向上することができる。また、第1の比較例によるインダクタを用いたとき、周波数が3~6GHz付近で、特性が低下する傾向(即ち、電気特性が不安定な範囲)が見られる。即ち、本実施形態によるインダクタ1を用いたときの方が、電気特性がより安定している。
次に、本実施形態によるインダクタ1(および第1,第2の比較例)をシャント実装した場合について、伝送特性をシミュレーションによって求めた。シミュレーションに用いた等価回路を、図7に示す。そして、図7の等価回路で求めた結果の一例を、図8に示す。即ち、図8は、透過係数(SパラメータのS21)の周波数特性(即ち、伝送特性)の一例を示している。
図8に示すように、本実施形態によるインダクタ1を用いたとき、インダクタ1の透過係数が-3dBになるカットオフ周波数が、40GHz以上となっている。このとき、第1,第2の比較例に比べて、透過係数の低下量が高周波域で小さくなっており、高周波域での透過係数が高くなっている。即ち、本実施形態によるインダクタ1では、高周波域での伝送特性を向上させることができる。従って、本実施形態によるインダクタ1は、高周波域でのノイズの減衰量を向上することができる。
かくして、本実施形態によるインダクタ1では、コニカルコイル3の巻き軸方向に対して隣り合うコイル導体4の間隔寸法は、コニカルコイル3の巻き径が大きい方から小さい方にかけて連続的に大きくなっている。コイル導体4の周囲に生じる浮遊容量は、コニカルコイル3の巻き始めから巻き終わりにかけて連続的に変化している。
このため、従来と比較して、高周波域で寄与する浮遊容量を低減することができる。これにより、高周波域でのインピーダンスを高くすることができる。また、従来と比較して、インダクタ1をシャント実装したとき、カットオフ周波数を高めて、高周波域での伝送特性を向上させることができる。以上により、インダクタ1の電気特性(高周波特性)を向上させることができる。加えて、コアに巻き線を巻く従来のコイルと比較して、コイル間距離(コイル導体4の間隔寸法)を精度よく制御でき、インダクタ1の電気特性を安定化させることができる。
なお、前記実施形態では、コイル導体4の1巻き目の部分を第2主面2B側とし、コイル導体4の10巻き目の部分を第1主面2A側とした。本発明はこれに限らず、コイル導体4の1巻き目の部分を第1主面2A側とし、コイル導体4の10巻き目の部分を第2主面2B側としてもよい。
前記実施形態では、互いに重複する部分がなく、巻き径方向に間隔をもって離間したコイル導体4によって形成されたコニカルコイル3を用いている。本発明はこれに限らず、コイル導体4のうち隣り合う部分は、その一部が互いに重複するように配置してもよい。
前記実施形態では、筐体2は全体に亘って均質な材料によって形成するものとした。本発明はこれに限らず、筐体の内部には、例えばコニカルコイル3の径方向内側部分に位置して、他の部分よりも透磁率の大きな材料を充填し、コアを形成してもよい。
前記実施形態では、筐体2の内部にコニカルコイル3を埋設するものとした。本発明はこれに限らず、筐体を省き、コア部材にコイル導体を巻回してコニカルコイルを形成してもよい。
前記実施形態で記載した具体的な数値は、一例を示したものであり、例示した値に限らない。
次に、上記実施形態に含まれるインダクタとして、例えば、以下に述べる態様のものが考えられる。
第1の態様としては、インダクタであって、コイル導体を螺旋状に巻回したコニカルコイルを備え、前記コニカルコイルの巻き径は、連続的に拡大しており、前記コニカルコイルの巻き軸方向に対して隣り合う前記コイル導体の間隔寸法は、前記コニカルコイルの巻き径が大きい方から小さい方にかけて連続的に大きくなっており、前記コイル導体の周囲に生じる浮遊容量は、前記コニカルコイルの巻き始めから巻き終わりにかけて連続的に変化している。
このため、従来と比較して、高周波域で寄与する浮遊容量を低減することができる。これにより、高周波域でのインピーダンスを高くすることができる。また、従来と比較して、インダクタをシャント実装したとき、カットオフ周波数を高めて、高周波域での伝送特性を向上させることができる。以上により、インダクタの電気特性(高周波特性)を向上させることができる。加えて、コアに巻き線を巻く従来のコイルと比較して、コイル間距離(コイル導体の間隔寸法)を精度よく制御でき、インダクタの電気特性を安定化させることができる。
1 インダクタ
3 コニカルコイル
4 コイル導体
A1,A2,…,A9 間隔寸法
3 コニカルコイル
4 コイル導体
A1,A2,…,A9 間隔寸法
Claims (1)
- インダクタであって、
コイル導体を螺旋状に巻回したコニカルコイルを備え、
前記コニカルコイルの巻き径は、連続的に拡大しており、
前記コニカルコイルの巻き軸方向に対して隣り合う前記コイル導体の間隔寸法は、前記コニカルコイルの巻き径が大きい方から小さい方にかけて連続的に大きくなっており、
前記コイル導体に生じる浮遊容量は、前記コニカルコイルの巻き始めから巻き終わりにかけて連続的に変化しているインダクタ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-132657 | 2019-07-18 | ||
JP2019132657 | 2019-07-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021010071A1 true WO2021010071A1 (ja) | 2021-01-21 |
Family
ID=74210566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/023264 WO2021010071A1 (ja) | 2019-07-18 | 2020-06-12 | インダクタ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021010071A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011109020A (ja) * | 2009-11-20 | 2011-06-02 | Tdk Corp | インダクタ部品 |
WO2018008573A1 (ja) * | 2016-07-06 | 2018-01-11 | 株式会社村田製作所 | 電子機器 |
WO2018180072A1 (ja) * | 2017-03-27 | 2018-10-04 | 株式会社村田製作所 | コイル素子 |
-
2020
- 2020-06-12 WO PCT/JP2020/023264 patent/WO2021010071A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011109020A (ja) * | 2009-11-20 | 2011-06-02 | Tdk Corp | インダクタ部品 |
WO2018008573A1 (ja) * | 2016-07-06 | 2018-01-11 | 株式会社村田製作所 | 電子機器 |
WO2018180072A1 (ja) * | 2017-03-27 | 2018-10-04 | 株式会社村田製作所 | コイル素子 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100360970B1 (ko) | 다층 인덕터 | |
US3638147A (en) | High-frequency low-pass filter with embedded electrode structure | |
KR100331732B1 (ko) | 인덕티브 소자 | |
US9479136B2 (en) | Electronic component | |
US20170263372A1 (en) | Coil device | |
KR20140003056A (ko) | 파워 인덕터 및 그 제조방법 | |
JP2007214341A (ja) | 積層インダクタ | |
JP2007042678A (ja) | コイルおよびフィルタ回路 | |
US9787276B2 (en) | Electronic component | |
US11640872B2 (en) | Method for manufacturing coil component | |
JP2022064179A (ja) | インダクタ部品 | |
JP2006100465A (ja) | コイル及びこれを用いたフィルタ回路 | |
WO2021010071A1 (ja) | インダクタ | |
EP0750364A2 (en) | Chip antenna | |
JP6652280B2 (ja) | インダクタ | |
WO2020255889A1 (ja) | インダクタ | |
KR102569684B1 (ko) | 자성코어, 인덕터 및 이를 포함하는 emi 필터 | |
CN110676029B (zh) | 电感器 | |
KR20150139267A (ko) | 권선형 인덕터 | |
JP2004006696A (ja) | 巻線型インダクタ | |
WO2021005967A1 (ja) | インダクタ | |
KR100372737B1 (ko) | 표면 실장형 칩 인덕터 및 제조 방법 | |
JP2004006760A (ja) | 電子部品 | |
JP7557665B2 (ja) | コモンモードチョークコイル | |
JP2016025150A (ja) | トロイダルコイル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20840122 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20840122 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |