WO2021009953A1 - ガスタービンシステムおよびそれを備えた移動体 - Google Patents

ガスタービンシステムおよびそれを備えた移動体 Download PDF

Info

Publication number
WO2021009953A1
WO2021009953A1 PCT/JP2020/005608 JP2020005608W WO2021009953A1 WO 2021009953 A1 WO2021009953 A1 WO 2021009953A1 JP 2020005608 W JP2020005608 W JP 2020005608W WO 2021009953 A1 WO2021009953 A1 WO 2021009953A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion gas
flow path
turbine
turbine system
Prior art date
Application number
PCT/JP2020/005608
Other languages
English (en)
French (fr)
Inventor
雄一 仲谷
雄貴 森崎
康寛 齋木
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US17/624,965 priority Critical patent/US11885232B2/en
Priority to DE112020003364.3T priority patent/DE112020003364T5/de
Publication of WO2021009953A1 publication Critical patent/WO2021009953A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/04Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes
    • B64D33/06Silencing exhaust or propulsion jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/28Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto using fluid jets to influence the jet flow
    • F02K1/34Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto using fluid jets to influence the jet flow for attenuating noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/38Introducing air inside the jet
    • F02K1/386Introducing air inside the jet mixing devices in the jet pipe, e.g. for mixing primary and secondary flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K5/00Plants including an engine, other than a gas turbine, driving a compressor or a ducted fan
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/16Aircraft characterised by the type or position of power plant of jet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment

Definitions

  • the present disclosure relates to a gas turbine system and a mobile body equipped with the gas turbine system.
  • a gas turbine engine for an aircraft having a compression unit, a combustion unit, a turbine unit, a rotating body that rotates together with the turbine unit, and a fan that rotates in conjunction with the rotating body to generate thrust is known.
  • the gas turbine engine disclosed in Patent Document 1 is provided with a generator that rotates together with a fan to convert the kinetic energy that the fan rotates into electric power.
  • the electric power generated by the generator is used to drive an electric fan or the like arranged at the rear end of the aircraft.
  • Patent Document 1 converts the energy of the combustion gas generated by the combustion unit into electric power via a generator that rotates together with the turbine unit.
  • the combustion gas that has passed through the turbine section is discharged to the outside as it is, a part of the thermal energy of the combustion gas cannot be effectively utilized.
  • the speed difference between the speed of the high-temperature combustion gas and the speed of the external air is large, the mixing noise generated when the combustion gas and the external air are mixed becomes large.
  • the present disclosure has been made in view of such circumstances, and effectively utilizes the thermal energy of the combustion gas used to drive the turbine to reduce mixing noise when the combustion gas and the outside air are mixed. It is an object of the present invention to provide a gas turbine system capable of reduction and a moving body equipped with the gas turbine system.
  • the gas turbine system uses a compressor that compresses external air to generate compressed air, and a compressor that burns the compressed air generated by the compressor together with fuel to produce combustion gas.
  • An outer shell portion that is formed and is arranged so as to cover the compressor, the combustor, the turbine, and the exhaust portion, and the combustion gas that has passed through the turbine and the surface of the outer shell portion are circulated. It is provided with a heat exchange unit that exchanges heat with the outside air.
  • a gas turbine system capable of effectively utilizing the thermal energy of the combustion gas used to drive the turbine to reduce mixing noise when the combustion gas and the outside air are mixed, and a gas turbine system thereof.
  • a mobile body provided can be provided.
  • FIG. 2 is a cross-sectional view taken along the line AA of the gas turbine system shown in FIG.
  • FIG. 2 is a view of the gas turbine system shown in FIG. 2 as viewed from the downstream side in the flow direction of combustion gas along the axis of the turbine.
  • FIG. 4 is a cross-sectional view taken along the line BB of the gas turbine system shown in FIG. It is a partially enlarged view of the C part shown in FIG. It is a partially enlarged view of the D portion shown in FIG. It is a vertical sectional view of the gas turbine system which concerns on 2nd Embodiment of this disclosure.
  • FIG. 8 is a cross-sectional view taken along the line EE of the gas turbine system shown in FIG.
  • FIG. 8 is a view of the gas turbine system shown in FIG. 8 as viewed from the downstream side in the flow direction of combustion gas along the axis of the turbine.
  • FIG. 10 is a cross-sectional view taken along the line FF of the gas turbine system shown in FIG. It is a vertical sectional view of the gas turbine system which concerns on 3rd Embodiment of this disclosure.
  • FIG. 12 is a cross-sectional view taken along the line GG of the gas turbine system shown in FIG.
  • FIG. 12 is a view of the gas turbine system shown in FIG. 12 as viewed from the downstream side in the flow direction of combustion gas along the axis of the turbine.
  • FIG. 14 is a cross-sectional view taken along the line HH of the gas turbine system shown in FIG. It is sectional drawing which shows the derivation part which concerns on the modification. It is sectional drawing which shows the introduction part which concerns on the modification. It is sectional drawing which shows the introduction part which concerns on the modification. It is sectional drawing of the gas turbine system which concerns on the modification.
  • FIG. 1 is a schematic configuration diagram showing an aircraft 1 according to the first embodiment of the present disclosure.
  • FIG. 2 is a vertical sectional view of the gas turbine system 100 shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line AA of the gas turbine system 100 shown in FIG.
  • FIG. 4 is a view of the gas turbine system 100 shown in FIG. 2 as viewed from the downstream side in the distribution direction of the combustion gas Gc along the axis X1 of the turbine.
  • the aircraft 1 includes a gas turbine system 100 that generates electric power and an electric fan (thrust generator) 200 that generates thrust by the electric power generated by the gas turbine system 100.
  • the aircraft 1 of the present embodiment is a device that drives an electric fan 200 with electric power generated by a gas turbine system 100 to obtain thrust.
  • the gas turbine system 100 is derived from the compressor 10, the combustor 20, the turbine 30, the generator 40, the exhaust unit 60, and the nacelle (outer shell) 70.
  • a unit (heat exchange unit) 80 and an introduction unit 90 are provided.
  • the electric power generated by the generator 40 is supplied to the electric fan 200.
  • the compressor 10 is a device that generates compressed air by compressing the external air Ex1 that flows in from the front in the traveling direction of the aircraft 1.
  • the compressor 10 has a plurality of moving blades 11 rotating around the axis X1 and a plurality of fixed stationary blades 12, and allows the inflowing air to pass through the plurality of moving blades 11 and the plurality of stationary blades 12. Generates compressed air.
  • the combustor 20 is a device that burns compressed air generated by the compressor 10 together with fuel to generate high-temperature and high-pressure combustion gas.
  • the combustor 20 rotates the turbine 30 around the axis X1 by supplying a high-temperature and high-pressure combustion gas to the turbine 30.
  • Combustors 20 are provided at a plurality of locations around the axis X1.
  • the turbine 30 is a device driven by the combustion gas generated by the combustor 20.
  • the turbine 30 has a plurality of moving blades 31 rotating around the axis X, a plurality of fixed stationary blades 32, and a drive shaft 33 connected to the moving blades.
  • the driving force obtained by rotating the rotor blade 31 is transmitted to the generator 40 via the drive shaft 33.
  • the generator 40 is a device that is connected to the drive shaft 33 of the turbine 30 and generates electricity by the driving force of the turbine 30.
  • the generator 40 has a rotor (not shown) that is connected to the drive shaft 33 and rotates around the axis X1, and a stator that is fixedly arranged around the rotor. As shown in FIG. 1, the electric power generated by the generator 40 is supplied to the electric fan 200.
  • the electric fan 200 is a device that generates thrust by the electric power generated by the generator 40.
  • the electric fan 200 can be installed at an arbitrary position in the aircraft 1 away from the gas turbine system 100.
  • the electric fan 200 obtains thrust by rotating a fan (not shown).
  • the exhaust unit 60 guides the combustion gas Gc that has passed through the turbine 30 to the outside.
  • the exhaust portion 60 has an inner side wall portion 61 and an outer wall portion 62.
  • the inner side wall portion 61 extends along the axis X1 on which the turbine 30 rotates and is formed in a tubular shape around the axis X1.
  • the outer side wall portion 62 extends along the axis X1 and is formed in a tubular shape, and is arranged so as to surround the outer peripheral side of the inner side wall portion 61.
  • the inner side wall portion 61 and the outer wall portion 62 circulate the combustion gas discharged from the turbine 30 and form an annular flow path 63 extending along the axis X1.
  • the annular flow path 63 is a flow path formed in an annular shape around the axis X1 and guides the combustion gas discharged from the turbine 30 to the outside.
  • a storage space S1 surrounded by the inner side wall portion 61 is formed on the inner peripheral side of the inner side wall portion 61 with respect to the axis X1.
  • a generator 40 is arranged in the storage space S1. The generator 40 is fixed to the inner side wall portion 61 via a fixture (not shown).
  • the nacelle 70 is an outer shell arranged so as to cover each part of the gas turbine system 100 including the compressor 10, the combustor 20, the turbine 30, and the exhaust part 60.
  • the nacelle 70 is formed in a tubular shape extending along the axis X1.
  • the nacelle 70 is connected to the aircraft body (not shown) via a pylon 75.
  • the lead-out unit 80 is a device that guides the combustion gas Gc that has passed through the turbine 30 to the discharge port 81b provided on the surface of the nacelle 70, and exchanges heat between the combustion gas Gc and the external air Ex2.
  • the lead-out unit 80 has a lead-out flow path 81 and a lead-out fan 82 arranged in the lead-out flow path 81.
  • the lead-out flow path 81 guides the combustion gas Gc that has passed through the turbine 30 from the suction port 81a provided on the outer wall portion 62 to the discharge port 81b provided on the surface of the nacelle 70.
  • the combustion gas Gc discharged from the discharge port 81b is mixed with the external air Ex2 flowing on the surface of the nacelle 70 to become a mixed gas Mx, which is distributed toward the end of the nacelle 70.
  • discharge ports 81b are provided at a plurality of locations in the circumferential direction around the axis X1 (8 locations at 45 ° intervals in the example shown in FIG. 4).
  • a plurality of out-licensing units 80 are provided so as to correspond to the plurality of discharge ports 81b.
  • the combustion gas Gc flowing out from the plurality of discharge ports 81b to the surface of the nacelle 70 is mixed with the external air Ex2 to form a mixed gas Mx, which is guided to the end of the nacelle 70.
  • the temperature of the combustion gas Gc flowing out from the plurality of discharge ports 81b is sufficiently higher than the temperature of the external air Ex2 (for example, a temperature difference of 300 ° C. or more). Therefore, the flow velocity of the mixed gas Mx is higher than that of the external air Ex2. Further, since the pressure and velocity of the combustion gas Gc are also higher than those of the external air Ex2, the flow velocity of the mixed gas Mx is higher than that of the external air Ex2.
  • the lead-out unit 80 When the lead-out unit 80 is not provided, when the combustion gas Gc and the external air Ex2 are mixed at the end of the nacelle 70, the temperature difference between the combustion gas Gc and the external air Ex2 is large and the flow velocity difference is also large. , The mixing noise becomes large.
  • the lead-out unit 80 when the combustion gas Gc and the mixed gas Mx are mixed at the end of the nacelle 70, the temperature difference between the combustion gas Gc and the mixed gas Mx burns. Since the temperature difference between the gas Gc and the external air Ex2 is smaller and the flow velocity difference is also smaller, the mixing noise is reduced.
  • the lead-out fan 82 is a device that forcibly guides the combustion gas Gc flowing through the annular flow path 63 to the lead-out flow path 81.
  • the lead-out fan 82 is driven by the electric power generated by the generator 40 or the electric power supplied from another power supply device (not shown).
  • the lead-out fan 82 of the present embodiment is a cross-flow fan that rotates around the axis X2.
  • the lead-out fan 82 sucks the combustion gas Gc into the impeller by rotating an impeller having blades having a uniform shape along the axis X2 around the axis X2, and then discharges the combustion gas Gc into the lead-out flow path 81.
  • the introduction unit 90 is a device that guides the mixed gas Mx, which is a mixture of the combustion gas Gc discharged from the discharge port 81b and the external air Ex2, from the introduction port 91a provided on the surface of the nacelle 70 to the exhaust unit 60.
  • the introduction section 90 has an introduction flow path 91 and an introduction fan 92 arranged in the introduction flow path 91.
  • the introduction flow path 91 guides the mixed gas Mx flowing on the surface of the nacelle 70 from the introduction port 91a provided on the surface of the nacelle 70 to the discharge port 91b provided on the outer wall portion 62.
  • the mixed gas Mx discharged from the discharge port 91b is mixed with the combustion gas Gc and circulates toward the end of the nacelle 70.
  • the introduction port 91a is provided on the downstream side in the distribution direction of the combustion gas Gc and the external air Ex2 with respect to the discharge port 81b.
  • introduction ports 91a are provided at a plurality of locations in the circumferential direction around the axis X1 (8 locations at 45 ° intervals in the example shown in FIG. 4).
  • a plurality of introduction units 90 are provided so as to correspond to the plurality of introduction ports 91a.
  • the discharge port 81b and the introduction port 91a are arranged at the same position in the circumferential direction.
  • the discharge port 81b and the introduction port 91a may not be located at exactly the same position in the circumferential direction, but may be arranged so as to partially overlap in the circumferential direction.
  • the discharge port 81b and the introduction port 91a are arranged at overlapping positions in the circumferential direction, a part of the mixed gas Mx in which the combustion gas Gc flowing out from the discharge port 81b and the external air Ex2 are mixed is partially from the introduction port 91a. It is guided to the introduction flow path 91.
  • the mixed gas Mx discharged from the plurality of discharge ports 91b to the exhaust unit 60 has a temperature sufficiently lower than the temperature of the combustion gas Gc and a pressure sufficiently lower than the pressure of the combustion gas Gc. Therefore, the flow velocity of the combustion gas Gc is lower when the mixed gas Mx is discharged to the exhaust unit 60 than when the mixed gas Mx is not discharged to the exhaust unit 60.
  • the introduction portion 90 When the introduction portion 90 is not provided, when the combustion gas Gc and the mixed gas Mx are mixed at the end of the nacelle 70, the temperature difference and the pressure difference between the combustion gas Gc and the mixed gas Mx are large, and the flow velocity difference is also large. Since it is large, the mixing noise becomes large.
  • the introduction portion 90 when the introduction portion 90 is provided as in the present embodiment, when the combustion gas Gc and the mixed gas Mx are mixed at the end of the nacelle 70, the temperature difference and the pressure between the combustion gas Gc and the mixed gas Mx Since the difference is small and the difference in flow velocity is also small, mixing noise is reduced.
  • the introduction fan 92 is a device that forcibly guides the mixed gas Mx flowing on the surface of the nacelle 70 to the introduction flow path 91.
  • the introduction fan 92 is driven by the electric power generated by the generator 40 or the electric power supplied from another power supply device (not shown).
  • the introduction fan 92 of the present embodiment is a cross-flow fan that rotates around the axis X3.
  • the introduction fan 92 sucks the mixed gas Mx into the impeller by rotating an impeller having blades having a uniform shape along the axis X3 around the axis X3, and then discharges the mixed gas Mx into the annular flow path 63.
  • the aircraft 1 includes a compressor 10 that compresses external air Ex2 to generate compressed air, and a combustor 20 that burns compressed air generated by the compressor 10 together with fuel to generate combustion gas Gc.
  • the turbine 30 driven by the combustion gas Gc generated by the combustor 20, the exhaust unit 60 that guides the combustion gas Gc that has passed through the turbine 30 to the outside, and the turbine 30 extending along the rotating axis X1 and forming a tubular shape.
  • the temperature of the mixed gas Mx which is a mixture of the combustion gas Gc and the external air Ex2 rises above the temperature of the external air Ex2.
  • the lead-out unit 80 is not provided, when the combustion gas Gc and the external air Ex2 are mixed at the end of the nacelle 70, the temperature difference between the combustion gas Gc and the external air Ex2 is large and the flow velocity difference is also large. , The mixing noise becomes large.
  • the lead-out unit 80 since the lead-out unit 80 is provided, the temperature difference between the combustion gas Gc and the mixed gas Mx when the combustion gas Gc and the mixed gas Mx are mixed at the end of the nacelle 70. Is smaller than the temperature difference between the combustion gas Gc and the external air Ex2, and the flow velocity difference is also small, so that the mixing noise can be reduced.
  • the lead-out unit 80 guides the combustion gas Gc that has passed through the turbine 30 to the discharge port 81b provided on the surface of the nacelle 70 and mixes it with the external air Ex2 to obtain the combustion gas Gc.
  • the heat is exchanged with the external air Ex2.
  • a part of the combustion gas Gc having a temperature higher than that of the external air Ex2 that has passed through the turbine 30 and is guided to the exhaust unit 60 is provided on the surface of the nacelle 70 by the lead-out unit 80. It is guided to the exhaust port 81b and exchanges heat with the external air Ex2 by mixing with the external air Ex2.
  • the introduction unit 90 that guides the mixed gas Mx, which is a mixture of the combustion gas Gc discharged from the discharge port 81b and the external air Ex2, from the introduction port 91a provided on the surface of the nacelle 70 to the exhaust unit 60.
  • the mixed gas Mx which is a mixture of the combustion gas Gc discharged from the discharge port 81b and the external air Ex2
  • the introduction port 91a provided on the surface of the nacelle 70 to the exhaust unit 60.
  • a part of the mixed gas Mx in which the combustion gas Gc discharged to the surface of the nacelle 70 by the lead-out unit 80 and the external air Ex2 is mixed is provided in the exhaust unit 60 by the introduction unit 90. It is guided to the exhaust port 91b and mixed with the combustion gas Gc.
  • the introduction portion 90 When the introduction portion 90 is not provided, when the combustion gas Gc and the mixed gas Mx are mixed at the end of the nacelle 70, the temperature difference between the combustion gas Gc and the mixed gas Mx is large and the flow velocity difference is also large. Mixing noise becomes large.
  • the introduction portion 90 since the introduction portion 90 is provided, the temperature difference between the combustion gas Gc and the mixed gas Mx when the combustion gas Gc and the mixed gas Mx are mixed at the end of the nacelle 70. Is small and the difference in flow velocity is also small, so that mixing noise can be reduced.
  • the discharge ports 81b are provided at a plurality of locations in the circumferential direction around the axis X1
  • the introduction ports 91a are provided at a plurality of locations in the circumferential direction
  • the discharge ports 81b and the introduction ports 91a are provided in a circumferential direction. They are placed in overlapping positions in the direction. Therefore, a part of the mixed gas Mx in which the combustion gas Gc discharged from the discharge port 81b and the external air Ex2 are mixed is transferred from the introduction port 91a arranged at a position overlapping the discharge port 81b in the circumferential direction to the introduction section 90. Be guided.
  • the gas turbine system 100A according to the present embodiment is different from the gas turbine system 100 according to the first embodiment in that it includes a flow path forming portion 76.
  • FIG. 8 is a vertical sectional view of the gas turbine system 100A according to the present embodiment.
  • FIG. 9 is a cross-sectional view taken along the line EE of the gas turbine system 100A shown in FIG.
  • FIG. 10 is a view of the gas turbine system 100A shown in FIG. 8 as viewed from the downstream side in the distribution direction of the combustion gas Gc along the axis X1 of the turbine 30.
  • the flow path forming portion 76 is a member that extends along the axis X1 and is formed in a tubular shape around the axis X1. As shown in FIG. 9, the flow path forming portion 76 forms a mixed gas flow path 76a formed in an annular shape around the axis X1. As shown in FIG. 10, the flow path forming portion 76 is arranged coaxially with the nacelle 70 so as to cover the discharge port 81b and the introduction port 91a.
  • the mixed gas flow path 76a is a flow path formed between the flow path forming portion 76 and the surface of the nacelle 70, and is a mixed gas Mx in which the combustion gas Gc discharged from the discharge port 81b and the external air Ex2 are mixed. Is the flow path through which
  • the combustion gas Gc flowing out from the plurality of discharge ports 81b to the surface of the nacelle 70 is mixed with the external air Ex2 to form a mixed gas Mx, which is guided to the end of the nacelle 70.
  • the temperature of the combustion gas Gc flowing out from the plurality of discharge ports 81b is sufficiently higher than the temperature of the external air Ex2 (for example, a temperature difference of 300 ° C. or more). Therefore, the flow velocity of the mixed gas Mx is higher than that of the external air Ex2. Further, since the pressure and velocity of the combustion gas Gc are also higher than those of the external air Ex2, the flow velocity of the mixed gas Mx is higher than that of the external air Ex2.
  • the flow rate of the external air Ex2 mixed with the combustion gas Gc is limited, and the temperature of the mixed gas Mx can be set higher than that in the case where the flow path forming portion 76 is not provided.
  • the difference in flow velocity between the mixed gas Mx and the combustion gas Gc mixed at the end of the nacelle 70 becomes smaller than in the case where the flow path forming portion 76 is not provided, and the mixing noise is further reduced.
  • the gas turbine system 100B according to the present embodiment is different from the gas turbine system 100 according to the first embodiment in that it includes a flow path forming portion 77.
  • FIG. 12 is a vertical sectional view of the gas turbine system 100B according to the present embodiment.
  • FIG. 13 is a cross-sectional view taken along the line GG of the gas turbine system 100B shown in FIG.
  • FIG. 14 is a view of the gas turbine system 100B shown in FIG. 12 as viewed from the downstream side in the distribution direction of the combustion gas Gc along the axis X1 of the turbine 30.
  • the flow path forming portions 77 extend along the axis X1 and are arranged at a plurality of locations in the circumferential direction so as to cover both the discharge port 81b and the introduction port 91a. It is a member. As shown in FIGS. 13 and 14, the flow path forming portions 77 are arranged discretely at intervals in the circumferential direction around the axis X1 (8 locations at 45 ° intervals in the examples shown in FIGS. 13 and 14). ing.
  • the mixed gas flow path 77a is a flow path formed between the flow path forming portion 77 and the surface of the nacelle 70, and is a mixed gas Mx in which the combustion gas Gc discharged from the discharge port 81b and the external air Ex2 are mixed. Is the flow path through which
  • the combustion gas Gc flowing out from the plurality of discharge ports 81b to the surface of the nacelle 70 is mixed with the external air Ex2 to form a mixed gas Mx, which is guided to the end of the nacelle 70.
  • the temperature of the combustion gas Gc flowing out from the plurality of discharge ports 81b is sufficiently higher than the temperature of the external air Ex2 (for example, a temperature difference of 300 ° C. or more). Therefore, the flow velocity of the mixed gas Mx is higher than that of the external air Ex2. Further, since the pressure and velocity of the combustion gas Gc are also higher than those of the external air Ex2, the flow velocity of the mixed gas Mx is higher than that of the external air Ex2.
  • the flow rate of the external air Ex2 mixed with the combustion gas Gc is limited, and the temperature of the mixed gas Mx can be set higher than that in the case where the flow path forming portion 77 is not provided.
  • the difference in flow velocity between the mixed gas Mx and the combustion gas Gc mixed at the end of the nacelle 70 becomes smaller than in the case where the flow path forming portion 77 is not provided, and the mixing noise is further reduced.
  • the flow path forming portions 77 are arranged discretely at intervals in the circumferential direction around the axis X1. Therefore, on the surface of the nacelle 70 along the circumferential direction, the region where the external air Ex2 flows and the region where the mixed gas Mx flows are alternately repeated. As a result, mixing of the external air Ex2 and the mixed gas Mx is promoted at each position in the circumferential direction, so that the difference in flow velocity between the mixed gas Mx and the combustion gas Gc mixed at the end of the nacelle 70 becomes small, and mixing noise is generated. Further reduced.
  • the gas turbine system provided in the aircraft is provided with an introduction unit 90 for guiding the mixed gas Mx from the introduction port 91a provided on the surface of the nacelle 70 to the exhaust unit 60, but does not include the introduction unit 90. You may do so. Even when the introduction unit 90 is not provided, the combustion gas Gc guided from the exhaust unit 60 to the surface of the nacelle 70 by the lead-out unit 80 exchanges heat with the external air Ex2, so that mixing noise can be reduced. ..
  • the lead-out unit 80 included in the gas turbine system is provided with a lead-out fan 82 that forcibly guides the combustion gas Gc to the lead-out flow path 81, but other embodiments may be used.
  • the lead-out fan 82 may not be provided. Since the combustion gas Gc flowing through the annular flow path 63 has a pressure higher than that of the external air Ex2, the combustion gas Gc can be guided from the lead-out flow path 81 to the discharge port 81b provided on the surface of the nacelle 70 by the pressure difference. ..
  • the introduction port 91a for guiding the mixed gas Mx from the surface of the nacelle 70 to the introduction portion 90 has a shape in which an opening is provided on a flat surface, but other embodiments may be used.
  • the intake portion 78 may be provided so as to cover the introduction port 91a, and the mixed gas Mx flowing on the surface of the nacelle 70 may be forcibly guided to the introduction port 91a.
  • the intake portion 78 shown in FIG. 17 is a member arranged so as to form a flow path between the intake portion 78 and the surface of the nacelle 70.
  • the intake portion 78 is arranged so as to open on the upstream side in the flow direction of the mixed gas Mx and block the flow path at the position where the introduction port 91a is arranged.
  • the entire amount of the mixed gas Mx that has flowed into the flow path formed by the intake portion 78 on the upstream side in the flow direction of the mixed gas Mx is forcibly guided to the introduction port 91a.
  • the introduction port 91a for guiding the mixed gas Mx from the surface of the nacelle 70 to the introduction portion 90 has a shape in which an opening is provided on a flat surface, but other embodiments may be used.
  • a scoop portion 79 recessed from the surface of the nacelle 70 toward the exhaust portion 60 side is provided on the upstream side of the introduction port 91a in the flow direction of the mixed gas Mx, and the surface of the nacelle 70 is formed.
  • the mixed gas Mx to be circulated may be forcibly guided to the introduction port 91a.
  • the scoop portion 79 shown in FIG. 18 has a shape recessed from the surface of the nacelle 70 toward the exhaust portion 60 side.
  • the scoop portion 79 introduces a part of the mixed gas Mx from the upstream side in the flow direction of the mixed gas Mx, and forcibly guides the introduced mixed gas Mx to the introduction port 91a.
  • the heat exchange between the combustion gas Gc and the external air Ex2 is performed by discharging the combustion gas Gc from the lead-out unit 80 to the surface of the nacelle 70 and mixing it with the external air Ex2. It may be the aspect of. As shown in FIG. 19, the closed flow path member 78A provides a closed flow path through which the combustion gas Gc flows on the surface portion of the nacelle 70, and the closed flow path member 78A is provided without mixing the combustion gas Gc and the external air Ex2. The heat may be exchanged through the heat exchange.
  • the closed flow path member 78A shown in FIG. 19 is a member arranged so as to form a closed flow path in which only the combustion gas Gc flows between the closed flow path member 78A and the surface of the nacelle 70.
  • the closed flow path member 78A is provided so as to form a closed flow path that communicates the discharge port 81b and the introduction port 91a. The entire amount of the combustion gas Gc discharged from the discharge port 81b flows through the closed flow path and is guided to the introduction port 91a.
  • the gas turbine system described in each of the above-described embodiments is grasped as follows, for example.
  • the gas turbine system (100) is a compressor (10) that compresses external air to generate compressed air, and a compressor (10) that burns compressed air generated by the compressor (10) together with fuel to produce combustion gas.
  • (30) extends along the rotating axis (X1) and is formed in a tubular shape so as to cover the compressor (10), the combustor (20), the turbine (30), and the exhaust unit (60).
  • the outer shell portion (70) arranged in the outer shell portion (70) and the heat exchange portion (80) for exchanging heat between the combustion gas passing through the turbine (30) and the external air flowing on the surface of the outer shell portion (70). Be prepared.
  • a part of the combustion gas (Gc) having a temperature higher than that of the external air (Ex2) that has passed through the turbine (30) and is guided to the exhaust unit (60) is
  • the heat exchange unit (80) exchanges heat with the external air (Ex2), and the temperature of the mixed gas (Mx), which is a mixture of the combustion gas (Gc) and the external air (Ex2), rises above the temperature of the external air (Ex2). To do.
  • the heat exchange unit (80) is not provided, the combustion gas (Gc) and the external air (Gc) and the external air (Gc) are mixed when the combustion gas (Gc) and the external air (Ex2) are mixed at the end of the outer shell portion (70). Since the temperature difference and pressure difference from Ex2) are large and the flow velocity difference is also large, the mixing noise becomes large.
  • the combustion gas (Gc) and the external air (Ex2) are mixed at the end portion of the outer shell portion (70). Since the temperature difference between the combustion gas (Gc) and the mixed gas (Mx) is smaller than the temperature difference and pressure difference between the combustion gas (Gc) and the external air (Ex2), and the flow velocity difference is also small. Mixing noise can be reduced.
  • the heat exchange unit (80) guides the combustion gas that has passed through the turbine (30) to the discharge port (81b) provided on the surface of the outer shell portion (70). Heat exchange between the combustion gas and the external air is performed by mixing with the external air.
  • a part of the combustion gas (Gc) having a temperature higher than that of the external air (Ex2) that has passed through the turbine (30) and is guided to the exhaust unit (60) is It is guided by the heat exchange unit (80) to the exhaust port (81b) provided on the surface of the outer shell portion (70), and exchanges heat with the external air (Ex2) by mixing with the external air (Ex2).
  • an introduction port (91a) provided on the surface of the outer shell portion (70) is a mixed gas in which a combustion gas discharged from the discharge port (81b) and external air are mixed. It is provided with an introduction unit (90) leading from the exhaust unit (60).
  • a mixed gas in which combustion gas (Gc) discharged to the surface of the outer shell portion (70) by the heat exchange portion (80) and external air (Ex2) are mixed.
  • a part of (Mx) is guided by the introduction part (90) to the discharge port (91b) provided in the exhaust part (60) and mixed with the combustion gas (Gc).
  • the introduction portion (90) When the introduction portion (90) is not provided, when the combustion gas (Gc) and the mixed gas (Mx) are mixed at the end of the outer shell portion (70), the combustion gas (Gc) and the mixed gas (Mx) are mixed. Since the temperature difference and pressure difference between the gas and the gas are large and the flow velocity difference is also large, the mixing noise becomes large.
  • the combustion gas (Gc) and the mixed gas (Mx) are mixed at the end portion of the outer shell portion (70). At the same time, the temperature difference and pressure difference between the combustion gas (Gc) and the mixed gas (Mx) are small, and the flow velocity difference is also small, so that mixing noise can be reduced.
  • the discharge ports (81b) are provided at a plurality of locations in the circumferential direction around the axis (X1), and the introduction ports (91a) are provided at a plurality of locations in the circumferential direction.
  • the discharge port (81b) and the introduction port (91a) are arranged at overlapping positions in the circumferential direction. Therefore, a part of the mixed gas (Mx) in which the combustion gas (Gc) discharged from the discharge port (81b) and the external air (Ex2) are mixed is arranged at a position overlapping with the discharge port (81b) in the circumferential direction. It is guided from the introduced introduction port (91a) to the introduction part (90).
  • the gas turbine system (100) covers the discharge port (81b) and the introduction port (91a), and the mixed gas flow path (76a) through which the mixed gas flows between the gas turbine system (100) and the surface of the outer shell portion (70).
  • the combustion gas (Gc) flowing out from the plurality of discharge ports (81b) to the surface of the outer shell portion (70) is a mixture formed between the flow path forming portion (76) and the surface of the outer shell portion (70). It circulates in the gas flow path (76a). Since the mixed gas flow path (76a) is a flow path covered by the flow path forming portion (76), the external air flowing on the outer peripheral side with respect to the axis X1 flows into the flow path forming portion (76). None.
  • the flow rate of the external air (Ex2) mixed with the combustion gas (Gc) is limited, and the temperature of the mixed gas (Mx) can be set higher than that in the case where the flow path forming portion (76) is not provided. ..
  • the difference in flow velocity between the mixed gas (Mx) and the combustion gas (Gc) mixed at the end of the nacelle (70) becomes smaller than in the case where the flow path forming portion (76) is not provided, and the mixing noise is further reduced. Will be done.
  • the flow path forming portion (76) extends along the axis (X1) and is formed in a tubular shape around the axis (X1), and the mixed gas flow path (76a) is formed. ) Is a flow path formed in an annular shape around the axis (X1). By mixing the combustion gas (Gc) and the external air (Ex2) in the mixed gas flow path (76a) formed in an annular shape, the mixed gas (Mx) is compared with the case where the flow path forming portion (76) is not provided.
  • the temperature of can be set to a high temperature.
  • the flow path forming portion (77) extends along the axis (X1) and is circumferential so as to cover both the discharge port (81b) and the introduction port (91a). They are arranged at multiple locations at intervals.
  • the flow path forming portions (77) are arranged discretely at intervals in the circumferential direction around the axis (X1). Therefore, on the surface of the outer shell portion (70) along the circumferential direction, the region where the external air (Ex2) flows and the region where the mixed gas (Mx) flows are alternately repeated.
  • the gas turbine system (100) is a generator (200) connected to a turbine (30) to generate electricity by driving the turbine (30) and to supply electric power to a thrust generator (200) that generates electric thrust by electric power. 40) is provided.
  • the thrust generator (200) can be operated by the electric power generated by the generator (40) by driving the turbine (30).
  • the moving body described in each of the above-described embodiments is grasped as follows, for example.
  • the moving body (1) according to the present disclosure includes a gas turbine system (100) according to any one of the above, and a thrust generator (200) that generates thrust by electric power generated by the gas turbine system (100). Be prepared.
  • the combustion gas (Gc) and the external air (Ex2) can be effectively utilized by effectively utilizing the thermal energy of the combustion gas (Gc) used to drive the turbine (30). Mixing noise at the time of mixing can be reduced.

Abstract

外部空気を圧縮して圧縮空気を生成する圧縮機(10)と、圧縮機(10)により生成された圧縮空気を燃料とともに燃焼させて燃焼ガスを生成する燃焼器(20)と、燃焼器(20)が生成する燃焼ガスによって駆動されるタービン(30)と、タービン30を通過した燃焼ガスを外部へ導く排気部60と、タービン30が回転する軸線X1に沿って延びるとともに筒状に形成され、圧縮機10と、燃焼器20と、タービン30と、排気部60とを覆うように配置されるナセル70と、タービン30を通過した燃焼ガスをナセル70の表面に設けられた排出口81bへ導く導出部80と、を備えるガスタービンシステム100を提供する。

Description

ガスタービンシステムおよびそれを備えた移動体
 本開示は、ガスタービンシステムおよびそれを備えた移動体に関するものである。
 従来、圧縮部と、燃焼部と、タービン部と、タービン部とともに回転する回転体と、回転体と連動して回転して推力を発生するファンを備える航空機用のガスタービンエンジンが知られている(例えば、特許文献1参照)。特許文献1に開示されるガスタービンエンジンは、ファンとともに回転する発電機を設けることで、ファンが回転する運動エネルギーを電力に変換している。発電機が生成した電力は、航空機の後端に配置された電動ファン等を駆動するために用いられる。
米国特許出願公開第2018/0050806号明細書
 特許文献1に開示されるガスタービンエンジンは、燃焼部が発生した燃焼ガスのエネルギーを、タービン部とともに回転する発電機を介して電力に変換している。しかしながら、タービン部を通過した燃焼ガスは、そのまま外部へ排出されるため、燃焼ガスの熱エネルギーの一部を有効に活用することができない。また、高温の燃焼ガスの速度と外部空気の速度との速度差が大きいため、燃焼ガスと外部空気とが混合する際に発生するミキシングノイズが大きくなってしまう。
 本開示は、このような事情に鑑みてなされたものであって、タービンの駆動に用いられた燃焼ガスの熱エネルギーを有効に活用して燃焼ガスと外部空気とが混合する際のミキシングノイズを低減することが可能なガスタービンシステムおよびそれを備えた移動体を提供することを目的とする。
 上記課題を解決するために、本開示に係るガスタービンシステムは、外部空気を圧縮して圧縮空気を生成する圧縮機と、前記圧縮機により生成された圧縮空気を燃料とともに燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼器が生成する燃焼ガスによって駆動されるタービンと、前記タービンを通過した燃焼ガスを外部へ導く排気部と、前記タービンが回転する軸線に沿って延びるとともに筒状に形成され、前記圧縮機と、前記燃焼器と、前記タービンと、前記排気部とを覆うように配置される外殻部と、前記タービンを通過した燃焼ガスと前記外殻部の表面を流通する外部空気との熱交換をさせる熱交換部と、を備える。
 本開示によれば、タービンの駆動に用いられた燃焼ガスの熱エネルギーを有効に活用して燃焼ガスと外部空気とが混合する際のミキシングノイズを低減することが可能なガスタービンシステムおよびそれを備えた移動体を提供することができる。
本開示の第1実施形態に係る航空機を示す概略構成図である。 図1に示すガスタービンシステムの縦断面図である。 図2に示すガスタービンシステムのA-A矢視断面図である。 図2に示すガスタービンシステムをタービンの軸線に沿って燃焼ガスの流通方向下流側からみた図である。 図4に示すガスタービンシステムのB-B矢視断面図である。 図5に示すC部分の部分拡大図である。 図5に示すD部分の部分拡大図である。 本開示の第2実施形態に係るガスタービンシステムの縦断面図である。 図8に示すガスタービンシステムのE-E矢視断面図である。 図8に示すガスタービンシステムをタービンの軸線に沿って燃焼ガスの流通方向下流側からみた図である。 図10に示すガスタービンシステムのF-F矢視断面図である。 本開示の第3実施形態に係るガスタービンシステムの縦断面図である。 図12に示すガスタービンシステムのG-G矢視断面図である。 図12に示すガスタービンシステムをタービンの軸線に沿って燃焼ガスの流通方向下流側からみた図である。 図14に示すガスタービンシステムのH-H矢視断面図である。 変形例に係る導出部を示す断面図である。 変形例に係る導入部を示す断面図である。 変形例に係る導入部を示す断面図である。 変形例に係るガスタービンシステムの断面図である。
〔第1実施形態〕
 以下、本開示の第1実施形態に係る航空機(移動体)1について、図面を参照して説明する。図1は、本開示の第1実施形態に係る航空機1を示す概略構成図である。図2は、図1に示すガスタービンシステム100の縦断面図である。図3は、図2に示すガスタービンシステム100のA-A矢視断面図である。図4は、図2に示すガスタービンシステム100をタービンの軸線X1に沿って燃焼ガスGcの流通方向下流側からみた図である。
 図1に示すように、航空機1は、電力を生成するガスタービンシステム100と、ガスタービンシステム100が生成した電力により推力を発生する電動ファン(推力発生器)200と、を備える。本実施形態の航空機1は、ガスタービンシステム100が生成した電力により電動ファン200を駆動して推力を得る装置である。
 図1及び図2に示すように、ガスタービンシステム100は、圧縮機10と、燃焼器20と、タービン30と、発電機40と、排気部60と、ナセル(外殻部)70と、導出部(熱交換部)80と、導入部90と、を備える。図1に示すように、発電機40が生成した電力は、電動ファン200に供給される。
 圧縮機10は、航空機1の進行方向の前方から流入する外部空気Ex1を圧縮して圧縮空気を生成する装置である。圧縮機10は、軸線X1回りに回転する複数の動翼11と、固定された複数の静翼12とを有し、流入した空気を複数の動翼11と複数の静翼12を通過させることにより、圧縮空気を生成する。
 燃焼器20は、圧縮機10により生成された圧縮空気を燃料とともに燃焼させて高温かつ高圧の燃焼ガスを生成する装置である。燃焼器20は、高温かつ高圧の燃焼ガスをタービン30に供給することによりタービン30を軸線X1回りに回転させる。燃焼器20は、軸線X1回りの複数個所に設けられている。
 タービン30は、燃焼器20が生成する燃焼ガスによって駆動される装置である。タービン30は、軸線X回りに回転する複数の動翼31と、固定された複数の静翼32と、動翼と連結された駆動軸33と、を有する。燃焼ガスを複数の動翼31と複数の静翼32を通過させることにより、動翼31が軸線X1回りに回転する。動翼31が回転することにより得られる駆動力は、駆動軸33を介して発電機40に伝達される。
 発電機40は、タービン30の駆動軸33に連結されるとともにタービン30の駆動力により発電する装置である。発電機40は、駆動軸33に連結されて軸線X1回りに回転するロータ(図示略)と、ロータの回りに固定して配置されるステータとを有する。図1に示すように、発電機40が発生した電力は、電動ファン200に供給される。
 電動ファン200は、発電機40が生成した電力により推力を発生する装置である。電動ファン200は、航空機1において、ガスタービンシステム100から離れた任意の位置に設置可能である。電動ファン200は、ファン(図示略)を回転させることにより推力を得る。
 排気部60は、図2に示すように、タービン30を通過した燃焼ガスGcを外部へ導くものである。排気部60は、内側壁部61と、外側壁部62とを有する。内側壁部61は、タービン30が回転する軸線X1に沿って延びるとともに軸線X1回りに筒状に形成される。外側壁部62は、軸線X1に沿って延びるとともに筒状に形成され、内側壁部61の外周側を取り囲むように配置される。
 図3に示すように、内側壁部61および外側壁部62は、タービン30から排出される燃焼ガスを流通させるとともに軸線X1に沿って延びる環状流路63を形成する。環状流路63は、軸線X1を中心に環状に形成される流路であり、タービン30から排出される燃焼ガスを外部へ導く。
 図2および図3に示すように、軸線X1に対して内側壁部61の内周側には、内側壁部61により取り囲まれる収納空間S1が形成されている。収納空間S1には、発電機40が配置されている。発電機40は、固定具(図示略)を介して内側壁部61に固定されている。
 ナセル70は、圧縮機10と、燃焼器20と、タービン30と、排気部60を含むガスタービンシステム100の各部を覆うように配置される外殻である。ナセル70は、軸線X1に沿って延びる筒状に形成されている。ナセル70は、航空機本体(図示略)にパイロン75を介して連結されている。
 導出部80は、タービン30を通過した燃焼ガスGcをナセル70の表面に設けられた排出口81bへ導き、燃焼ガスGcと外部空気Ex2との熱交換をさせる装置である。導出部80は、導出流路81と、導出流路81に配置される導出ファン82と、を有する。導出流路81は、タービン30を通過した燃焼ガスGcを、外側壁部62に設けられた吸入口81aからナセル70の表面に設けられた排出口81bへ導く。排出口81bから排出される燃焼ガスGcは、ナセル70の表面を流通する外部空気Ex2と混合して混合ガスMxとなりナセル70の端部へ向けて流通する。
 図4に示すように、ナセル70の表面には、軸線X1回りの周方向の複数箇所(図4に示す例では45°間隔で8箇所)に排出口81bが設けられている。複数の排出口81bに対応するように複数の導出部80が設けられている。図5に示すように、複数の排出口81bからナセル70の表面へ流出した燃焼ガスGcは、それぞれ外部空気Ex2と混合して混合ガスMxとなり、ナセル70の端部へ導かれる。
 複数の排出口81bから流出する燃焼ガスGcの温度は、外部空気Ex2の温度よりも十分に高い(例えば、300℃以上の温度差)。そのため、外部空気Ex2よりも混合ガスMxの流速が高くなる。また、燃焼ガスGcの圧力および速度も外部空気Ex2より高いため、外部空気Ex2よりも混合ガスMxの流速が高くなる。
 導出部80を設けない場合には、ナセル70の端部において燃焼ガスGcと外部空気Ex2とが混合する際に、燃焼ガスGcと外部空気Ex2との温度差が大きく、かつ流速差も大きいため、ミキシングノイズが大きくなってしまう。
 一方、本実施形態のように導出部80を設ける場合には、ナセル70の端部において燃焼ガスGcと混合ガスMxとが混合する際に、燃焼ガスGcと混合ガスMxとの温度差が燃焼ガスGcと外部空気Ex2との温度差よりも小さく、かつ流速差も小さいため、ミキシングノイズが低減される。
 導出ファン82は、環状流路63を流通する燃焼ガスGcを強制的に導出流路81へ導く装置である。導出ファン82は、発電機40が生成する電力または他の電源装置(図示略)から供給される電力により駆動される。図6に示すように、本実施形態の導出ファン82は、軸線X2回りに回転するクロスフローファンである。導出ファン82は、軸線X2に沿って一様な形状の翼を持つ羽根車を軸線X2回りに回転させることにより、羽根車の内部に燃焼ガスGcを吸い込んでから導出流路81に吐き出す。
 導入部90は、排出口81bから排出された燃焼ガスGcと外部空気Ex2とが混合した混合ガスMxをナセル70の表面に設けられた導入口91aから排気部60へ導く装置である。導入部90は、導入流路91と、導入流路91に配置される導入ファン92と、を有する。
 導入流路91は、ナセル70の表面を流通する混合ガスMxを、ナセル70の表面に設けられた導入口91aから外側壁部62に設けられた排出口91bへ導く。排出口91bから排出される混合ガスMxは、燃焼ガスGcと混合されてナセル70の端部へ向けて流通する。図2に示すように、導入口91aは、排出口81bよりも燃焼ガスGcおよび外部空気Ex2の流通方向の下流側に設けられている。
 図4に示すように、ナセル70の表面には、軸線X1回りの周方向の複数箇所(図4に示す例では45°間隔で8箇所)に導入口91aが設けられている。複数の導入口91aに対応するように複数の導入部90が設けられている。排出口81bおよび導入口91aは、周方向で同一の位置に配置されている。なお、排出口81bおよび導入口91aは、周方向で完全に同一の位置とはせずに、周方向で一部が重複するように配置してもよい。
 排出口81bおよび導入口91aが周方向で重複する位置に配置されているため、排出口81bから流出した燃焼ガスGcと外部空気Ex2とが混合した混合ガスMxの一部は、導入口91aから導入流路91に導かれる。複数の排出口91bから排気部60に排出される混合ガスMxは、燃焼ガスGcの温度よりも十分に低い温度であり、かつ燃焼ガスGcの圧力よりも十分に低い圧力である。そのため、混合ガスMxを排気部60に排出しない場合に比べ、混合ガスMxを排気部60に排出する場合の方が燃焼ガスGcの流速が低下する。
 導入部90を設けない場合には、ナセル70の端部において燃焼ガスGcと混合ガスMxが混合する際に、燃焼ガスGcと混合ガスMxとの温度差および圧力差が大きく、かつ流速差も大きいため、ミキシングノイズが大きくなってしまう。一方、本実施形態のように導入部90を設ける場合には、ナセル70の端部において燃焼ガスGcと混合ガスMxとが混合する際に、燃焼ガスGcと混合ガスMxとの温度差および圧力差が小さく、かつ流速差も小さくなるため、ミキシングノイズが低減される。
 導入ファン92は、ナセル70の表面を流通する混合ガスMxを強制的に導入流路91へ導く装置である。導入ファン92は、発電機40が生成する電力または他の電源装置(図示略)から供給される電力により駆動される。図7に示すように、本実施形態の導入ファン92は、軸線X3回りに回転するクロスフローファンである。導入ファン92は、軸線X3に沿って一様な形状の翼を持つ羽根車を軸線X3回りに回転させることにより、羽根車の内部に混合ガスMxを吸い込んでから環状流路63に吐き出す。
 以上説明した本実施形態の航空機1が奏する作用および効果について説明する。
 本開示に係る航空機1は、外部空気Ex2を圧縮して圧縮空気を生成する圧縮機10と、圧縮機10により生成された圧縮空気を燃料とともに燃焼させて燃焼ガスGcを生成する燃焼器20と、燃焼器20が生成する燃焼ガスGcによって駆動されるタービン30と、タービン30を通過した燃焼ガスGcを外部へ導く排気部60と、タービン30が回転する軸線X1に沿って延びるとともに筒状に形成され、圧縮機10と、燃焼器20と、タービン30と、排気部60とを覆うように配置されるナセル70と、タービン30を通過した燃焼ガスGcとナセル70の表面を流通する外部空気Ex2との熱交換をさせる導出部80と、を備える。
 本開示に係る航空機1によれば、タービン30を通過して排気部60に導かれた外部空気Ex2よりも高温の燃焼ガスGcの一部が、導出部80により外部空気Ex2と熱交換し、燃焼ガスGcと外部空気Ex2とが混合した混合ガスMxの温度が外部空気Ex2の温度よりも上昇する。導出部80を設けない場合には、ナセル70の端部において燃焼ガスGcと外部空気Ex2とが混合する際に、燃焼ガスGcと外部空気Ex2との温度差が大きく、かつ流速差も大きいため、ミキシングノイズが大きくなってしまう。
 それに対して、本開示に係る航空機1では、導出部80を設けるため、ナセル70の端部において燃焼ガスGcと混合ガスMxとが混合する際に、燃焼ガスGcと混合ガスMxとの温度差が燃焼ガスGcと外部空気Ex2との温度差よりも小さく、かつ流速差も小さくなるため、ミキシングノイズを低減することができる。
 本開示に係る航空機1によれば、導出部80は、タービン30を通過した燃焼ガスGcをナセル70の表面に設けられた排出口81bへ導いて外部空気Ex2と混合させることにより燃焼ガスGcと外部空気Ex2との熱交換をさせる。本開示に係る航空機1によれば、タービン30を通過して排気部60に導かれた外部空気Ex2よりも高温の燃焼ガスGcの一部は、導出部80によってナセル70の表面に設けられた排出口81bへ導かれ、外部空気Ex2と混合することにより外部空気Ex2と熱交換する。
 本開示に係る航空機1は、排出口81bから排出された燃焼ガスGcと外部空気Ex2とが混合した混合ガスMxをナセル70の表面に設けられた導入口91aから排気部60へ導く導入部90を備える。本開示に係る航空機1によれば、導出部80によりナセル70の表面に排出された燃焼ガスGcと外部空気Ex2とが混合した混合ガスMxの一部が、導入部90によって排気部60に設けられた排出口91bに導かれ、燃焼ガスGcと混合する。
 導入部90を設けない場合には、ナセル70の端部において燃焼ガスGcと混合ガスMxが混合する際に、燃焼ガスGcと混合ガスMxとの温度差が大きく、かつ流速差も大きいため、ミキシングノイズが大きくなってしまう。それに対して、本開示に係る航空機1では、導入部90を設けるため、ナセル70の端部において燃焼ガスGcと混合ガスMxとが混合する際に、燃焼ガスGcと混合ガスMxとの温度差が小さく、かつ流速差も小さくなるため、ミキシングノイズを低減することができる。
 本開示に係る航空機1において、排出口81bは、軸線X1回りの周方向の複数箇所に設けられ、導入口91aは、周方向の複数箇所に設けられ、排出口81bおよび導入口91aは、周方向で重複する位置に配置されている。そのため、排出口81bから排出された燃焼ガスGcと外部空気Ex2とが混合した混合ガスMxの一部は、排出口81bと周方向で重複する位置に配置された導入口91aから導入部90へ導かれる。
〔第2実施形態〕
 以下、本開示の第2実施形態に係る航空機(移動体)について、図面を参照して説明する。本実施形態は、第1実施形態の変形例であり、以下で説明する場合を除き、第1実施形態と同様であるものとし、以下での説明を省略する。本実施形態に係るガスタービンシステム100Aは、流路形成部76を備える点で第1実施形態に係るガスタービンシステム100と異なる。
 図8は、本実施形態に係るガスタービンシステム100Aの縦断面図である。図9は、図8に示すガスタービンシステム100AのE-E矢視断面図である。図10は、図8に示すガスタービンシステム100Aをタービン30の軸線X1に沿って燃焼ガスGcの流通方向下流側からみた図である。
 図8および図9に示すように、流路形成部76は、軸線X1に沿って延びるとともに軸線X1回りに筒状に形成される部材である。図9に示すように、流路形成部76は、軸線X1回りに環状に形成される混合ガス流路76aを形成する。図10に示すように、流路形成部76は、排出口81bおよび導入口91aを覆うようにナセル70と同軸に配置されている。混合ガス流路76aは、流路形成部76とナセル70の表面との間に形成される流路であり、排出口81bから排出される燃焼ガスGcと外部空気Ex2とを混合した混合ガスMxが流通する流路である。
 図11に示すように、複数の排出口81bからナセル70の表面へ流出した燃焼ガスGcは、それぞれ外部空気Ex2と混合して混合ガスMxとなり、ナセル70の端部へ導かれる。複数の排出口81bから流出する燃焼ガスGcの温度は、外部空気Ex2の温度よりも十分に高い(例えば、300℃以上の温度差)。そのため、外部空気Ex2よりも混合ガスMxの流速が高くなる。また、燃焼ガスGcの圧力および速度も外部空気Ex2より高いため、外部空気Ex2よりも混合ガスMxの流速が高くなる。
 複数の排出口81bからナセル70の表面へ流出した燃焼ガスGcは、流路形成部76とナセル70の表面との間に形成される混合ガス流路76aを流通する。混合ガス流路76aは、流路形成部76により覆われた流路であるため、流路形成部76よりも軸線X1に対して外周側を流通する外部空気が流入することがない。
 そのため、燃焼ガスGcと混合する外部空気Ex2の流量が制限され、流路形成部76を備えない場合に比べ、混合ガスMxの温度を高い温度とすることができる。これにより、流路形成部76を備えない場合に比べ、ナセル70の端部で混合する混合ガスMxと燃焼ガスGcその流速差が小さくなり、ミキシングノイズが更に低減される。
〔第3実施形態〕
 以下、本開示の第3実施形態に係る航空機(移動体)について、図面を参照して説明する。本実施形態は、第1実施形態の変形例であり、以下で説明する場合を除き、第1実施形態と同様であるものとし、以下での説明を省略する。本実施形態に係るガスタービンシステム100Bは、流路形成部77を備える点で第1実施形態に係るガスタービンシステム100と異なる。
 図12は、本実施形態に係るガスタービンシステム100Bの縦断面図である。図13は、図12に示すガスタービンシステム100BのG-G矢視断面図である。図14は、図12に示すガスタービンシステム100Bをタービン30の軸線X1に沿って燃焼ガスGcの流通方向下流側からみた図である。
 図12および図14に示すように、流路形成部77は、軸線X1に沿って延びるとともに排出口81bおよび導入口91aの双方を覆うように周方向の複数個所に間隔を空けて配置される部材である。図13および図14に示すように、流路形成部77は、軸線X1回りの周方向に間隔を空けて(図13および図14に示す例では45°間隔で8箇所)離散的に配置されている。混合ガス流路77aは、流路形成部77とナセル70の表面との間に形成される流路であり、排出口81bから排出される燃焼ガスGcと外部空気Ex2とを混合した混合ガスMxが流通する流路である。
 図15に示すように、複数の排出口81bからナセル70の表面へ流出した燃焼ガスGcは、それぞれ外部空気Ex2と混合して混合ガスMxとなり、ナセル70の端部へ導かれる。複数の排出口81bから流出する燃焼ガスGcの温度は、外部空気Ex2の温度よりも十分に高い(例えば、300℃以上の温度差)。そのため、外部空気Ex2よりも混合ガスMxの流速が高くなる。また、燃焼ガスGcの圧力および速度も外部空気Ex2より高いため、外部空気Ex2よりも混合ガスMxの流速が高くなる。
 複数の排出口81bからナセル70の表面へ流出した燃焼ガスGcは、流路形成部77とナセル70の表面との間に形成される混合ガス流路77aを流通する。混合ガス流路76aは、流路形成部77により覆われた流路であるため、流路形成部77よりも軸線X1に対して外周側を流通する外部空気が流入することがない。
 そのため、燃焼ガスGcと混合する外部空気Ex2の流量が制限され、流路形成部77を備えない場合に比べ、混合ガスMxの温度を高い温度とすることができる。これにより、流路形成部77を備えない場合に比べ、ナセル70の端部で混合する混合ガスMxと燃焼ガスGcその流速差が小さくなり、ミキシングノイズが更に低減される。
 流路形成部77は、軸線X1回りの周方向に間隔を空けて離散的に配置されている。そのため、周方向に沿ってナセル70の表面において、外部空気Ex2が流通する領域と、混合ガスMxが流通する領域とが交互に繰り返される。これにより、周方向の各位置において外部空気Ex2と混合ガスMxとの混合が促進されるため、ナセル70の端部で混合する混合ガスMxと燃焼ガスGcその流速差が小さくなり、ミキシングノイズが更に低減される。
〔他の実施形態〕
 以上の説明において、航空機が備えるガスタービンシステムは、混合ガスMxをナセル70の表面に設けられた導入口91aから排気部60へ導く導入部90を備えるものとしたが、導入部90を備えないようにしてもよい。導入部90を備えない場合であっても、導出部80により排気部60からナセル70の表面に導かれた燃焼ガスGcと外部空気Ex2とが熱交換するため、ミキシングノイズを低減することができる。
 以上の説明において、ガスタービンシステムが備える導出部80は、燃焼ガスGcを強制的に導出流路81へ導く導出ファン82を備えるものとしたが、他の態様であってもよい。例えば、図16に示すように、導出ファン82を備えないようにしてもよい。環状流路63を流通する燃焼ガスGcが外部空気Ex2よりも高い圧力を有するため、圧力差によって燃焼ガスGcを導出流路81からナセル70の表面に設けられた排出口81bへ導くことができる。
 以上の説明において、ナセル70の表面から導入部90へ混合ガスMxを導く導入口91aは、平面上に開口が設けられる形状としたが、他の態様であってもよい。例えば、図17に示すように、導入口91aを覆うようにインテーク部78を設け、ナセル70の表面を流通する混合ガスMxを強制的に導入口91aへ導くようにしてもよい。
 図17に示すインテーク部78は、ナセル70の表面との間に流路を形成するように配置される部材である。インテーク部78は、混合ガスMxの流通方向の上流側で開口し、導入口91aが配置される位置で流路を閉塞させるように配置されている。混合ガスMxの流通方向の上流側でインテーク部78により形成される流路に流入した混合ガスMxは、その全量が強制的に導入口91aへ導かれる。
 以上の説明において、ナセル70の表面から導入部90へ混合ガスMxを導く導入口91aは、平面上に開口が設けられる形状としたが、他の態様であってもよい。例えば、図18に示すように、導入口91aよりも混合ガスMxの流通方向の上流側にナセル70の表面よりも排気部60側に向けて凹んだスクープ部79を設け、ナセル70の表面を流通する混合ガスMxを強制的に導入口91aへ導くようにしてもよい。
 図18に示すスクープ部79は、ナセル70の表面よりも排気部60側に向けて凹んだ形状を有する。スクープ部79は、混合ガスMxの流通方向の上流側から混合ガスMxの一部を導入し、導入された混合ガスMxを強制的に導入口91aへ導く。
 以上の説明において、燃焼ガスGcと外部空気Ex2との熱交換は、導出部80からナセル70の表面に燃焼ガスGcを排出して外部空気Ex2と混合させることによりなされるものとしたが、他の態様であってもよい。図19に示すように、閉流路部材78Aによりナセル70の表面部分に燃焼ガスGcが流通する閉流路を設け、燃焼ガスGcと外部空気Ex2とを混合させずに閉流路部材78Aを介して熱交換させるようにしてもよい。
 図19に示す閉流路部材78Aは、ナセル70の表面との間に燃焼ガスGcのみが流通する閉流路を形成するように配置される部材である。閉流路部材78Aは、排出口81bと導入口91aとを連通する閉流路を形成するように設けられている。排出口81bから排出された燃焼ガスGcの全量は、閉流路を流通して導入口91aに導かれる。
 以上説明した各実施形態に記載のガスタービンシステムは例えば以下のように把握される。
 本開示に係るガスタービンシステム(100)は、外部空気を圧縮して圧縮空気を生成する圧縮機(10)と、圧縮機(10)により生成された圧縮空気を燃料とともに燃焼させて燃焼ガスを生成する燃焼器(20)と、燃焼器(20)が生成する燃焼ガスによって駆動されるタービン(30)と、タービン(30)を通過した燃焼ガスを外部へ導く排気部(60)と、タービン(30)が回転する軸線(X1)に沿って延びるとともに筒状に形成され、圧縮機(10)と、燃焼器(20)と、タービン(30)と、排気部(60)とを覆うように配置される外殻部(70)と、タービン(30)を通過した燃焼ガスと外殻部(70)の表面を流通する外部空気との熱交換をさせる熱交換部(80)と、を備える。
 本開示に係るガスタービンシステム(100)によれば、タービン(30)を通過して排気部(60)に導かれた外部空気(Ex2)よりも高温の燃焼ガス(Gc)の一部が、熱交換部(80)により外部空気(Ex2)と熱交換し、燃焼ガス(Gc)と外部空気(Ex2)とが混合した混合ガス(Mx)の温度が外部空気(Ex2)の温度よりも上昇する。熱交換部(80)を設けない場合には、外殻部(70)の端部において燃焼ガス(Gc)と外部空気(Ex2)とが混合する際に、燃焼ガス(Gc)と外部空気(Ex2)との温度差および圧力差が大きく、かつ流速差も大きいため、ミキシングノイズが大きくなってしまう。
 それに対して、本開示に係るガスタービンシステム(100)では、熱交換部(80)を設けるため、外殻部(70)の端部において燃焼ガス(Gc)と外部空気(Ex2)とが混合する際に、燃焼ガス(Gc)と混合ガス(Mx)との温度差が燃焼ガス(Gc)と外部空気(Ex2)との温度差および圧力差よりも小さく、かつ流速差も小さくなるため、ミキシングノイズを低減することができる。
 本開示に係るガスタービンシステム(100)において、熱交換部(80)は、タービン(30)を通過した燃焼ガスを外殻部(70)の表面に設けられた排出口(81b)へ導いて外部空気と混合させることにより燃焼ガスと外部空気との熱交換をさせる。本開示に係るガスタービンシステム(100)によれば、タービン(30)を通過して排気部(60)に導かれた外部空気(Ex2)よりも高温の燃焼ガス(Gc)の一部は、熱交換部(80)によって外殻部(70)の表面に設けられた排出口(81b)へ導かれ、外部空気(Ex2)と混合することにより外部空気(Ex2)と熱交換する。
 本開示に係るガスタービンシステム(100)は、排出口(81b)から排出された燃焼ガスと外部空気とが混合した混合ガスを外殻部(70)の表面に設けられた導入口(91a)から排気部(60)へ導く導入部(90)を備える。本開示に係るガスタービンシステム(100)によれば、熱交換部(80)により外殻部(70)の表面に排出された燃焼ガス(Gc)と外部空気(Ex2)とが混合した混合ガス(Mx)の一部が、導入部(90)によって排気部(60)に設けられた排出口(91b)に導かれ、燃焼ガス(Gc)と混合する。¥
 導入部(90)を設けない場合には、外殻部(70)の端部において燃焼ガス(Gc)と混合ガス(Mx)が混合する際に、燃焼ガス(Gc)と混合ガス(Mx)との温度差および圧力差が大きく、かつ流速差も大きいため、ミキシングノイズが大きくなってしまう。それに対して、本開示に係るガスタービンシステム(100)では、導入部(90)を設けるため、外殻部(70)の端部において燃焼ガス(Gc)と混合ガス(Mx)とが混合する際に、燃焼ガス(Gc)と混合ガス(Mx)との温度差および圧力差が小さく、かつ流速差も小さくなるため、ミキシングノイズを低減することができる。
 本開示に係るガスタービンシステム(100)において、排出口(81b)は、軸線(X1)回りの周方向の複数箇所に設けられ、導入口(91a)は、周方向の複数箇所に設けられ、排出口(81b)および導入口(91a)は、周方向で重複する位置に配置されている。そのため、排出口(81b)から排出された燃焼ガス(Gc)と外部空気(Ex2)とが混合した混合ガス(Mx)の一部は、排出口(81b)と周方向で重複する位置に配置された導入口(91a)から導入部(90)へ導かれる。
 本開示に係るガスタービンシステム(100)は、排出口(81b)および導入口(91a)を覆い、かつ外殻部(70)の表面との間に混合ガスが流通する混合ガス流路(76a)を形成する流路形成部(76,77)を備える。複数の排出口(81b)から外殻部(70)の表面へ流出した燃焼ガス(Gc)は、流路形成部(76)と外殻部(70)の表面との間に形成される混合ガス流路(76a)を流通する。混合ガス流路(76a)は、流路形成部(76)により覆われた流路であるため、流路形成部(76)よりも軸線X1に対して外周側を流通する外部空気が流入することがない。
 そのため、燃焼ガス(Gc)と混合する外部空気(Ex2)の流量が制限され、流路形成部(76)を備えない場合に比べ、混合ガス(Mx)の温度を高い温度とすることができる。これにより、流路形成部(76)を備えない場合に比べ、ナセル(70)の端部で混合する混合ガス(Mx)と燃焼ガス(Gc)その流速差が小さくなり、ミキシングノイズが更に低減される。
 本開示に係るガスタービンシステム(100)は、流路形成部(76)は、軸線(X1)に沿って延びるとともに軸線(X1)回りに筒状に形成されており、混合ガス流路(76a)は、軸線(X1)回りに環状に形成される流路である。環状に形成さあれる混合ガス流路(76a)で燃焼ガス(Gc)と外部空気(Ex2)とを混合させることで、流路形成部(76)を備えない場合に比べ、混合ガス(Mx)の温度を高い温度とすることができる。
 本開示に係るガスタービンシステム(100)において、流路形成部(77)は、軸線(X1)に沿って延びるとともに排出口(81b)および導入口(91a)の双方を覆うように周方向の複数箇所に間隔を空けて配置されている。流路形成部(77)は、軸線(X1)回りの周方向に間隔を空けて離散的に配置されている。そのため、周方向に沿って外殻部(70)の表面において、外部空気(Ex2)が流通する領域と、混合ガス(Mx)が流通する領域とが交互に繰り返される。これにより、周方向の各位置において外部空気(Ex2)と混合ガス(Mx)との混合が促進されるため、外殻部(70)の端部で混合する混合ガス(Mx)と燃焼ガス(Gc)その流速差が小さくなり、ミキシングノイズが更に低減される。
 本開示に係るガスタービンシステム(100)は、タービン(30)に連結されてタービン(30)の駆動により発電するとともに電力により推力を発生する推力発生器(200)に電力を供給する発電機(40)を備える。本開示に係るガスタービンシステム(100)によれば、タービン(30)の駆動により発電機(40)で生成される電力で推力発生器(200)を動作させることができる。
 以上説明した各実施形態に記載の移動体は例えば以下のように把握される。
 本開示に係る移動体(1)は、上記のいずれかに記載のガスタービンシステム(100)と、ガスタービンシステム(100)が生成した電力により推力を発生する推力発生器(200)と、を備える。
 本開示に係る移動体(1)によれば、タービン(30)の駆動に用いられた燃焼ガス(Gc)の熱エネルギーを有効に活用して燃焼ガス(Gc)と外部空気(Ex2)とが混合する際のミキシングノイズを低減することができる。
1    航空機(移動体)
10   圧縮機
20   燃焼器
30   タービン
40   発電機
60   排気部
70   ナセル(外殻部)
76,77 流路形成部
78   インテーク部
79   スクープ部
80   導出部(熱交換部)
81   導出流路
81a  吸入口
81b  排出口
82   導出ファン
90   導入部
91   導入流路
91a  導入口
91b  排出口
92   導入ファン
100,100A,100B ガスタービンシステム
200  電動ファン
Ex1,Ex2 外部空気
Gc   燃焼ガス
Mx   混合ガス
S1   収納空間
X1,X2,X3 軸線

Claims (9)

  1.  外部空気を圧縮して圧縮空気を生成する圧縮機と、
     前記圧縮機により生成された圧縮空気を燃料とともに燃焼させて燃焼ガスを生成する燃焼器と、
     前記燃焼器が生成する燃焼ガスによって駆動されるタービンと、
     前記タービンを通過した燃焼ガスを外部へ導く排気部と、
     前記タービンが回転する軸線に沿って延びるとともに筒状に形成され、前記圧縮機と、前記燃焼器と、前記タービンと、前記排気部とを覆うように配置される外殻部と、
     前記タービンを通過した燃焼ガスと前記外殻部の表面を流通する外部空気との熱交換をさせる熱交換部と、を備えるガスタービンシステム。
  2.  前記熱交換部は、前記タービンを通過した燃焼ガスを前記外殻部の表面に設けられた排出口へ導いて外部空気と混合させることにより燃焼ガスと外部空気との熱交換をさせる請求項1に記載のガスタービンシステム。
  3.  前記排出口から排出された燃焼ガスと外部空気とが混合した混合ガスを前記外殻部の表面に設けられた導入口から前記排気部へ導く導入部を備える請求項2に記載のガスタービンシステム。
  4.  前記排出口は、前記軸線回りの周方向の複数箇所に設けられ、
     前記導入口は、前記周方向の複数箇所に設けられ、
     前記排出口および前記導入口は、前記周方向で重複する位置に配置されている請求項3に記載のガスタービンシステム。
  5.  前記排出口および前記導入口を覆い、かつ前記外殻部の表面との間に前記混合ガスが流通する混合ガス流路を形成する流路形成部を備える請求項3または請求項4に記載のガスタービンシステム。
  6.  前記流路形成部は、前記軸線に沿って延びるとともに前記軸線回りに筒状に形成されており、
     前記混合ガス流路は、前記軸線回りに環状に形成される流路である請求項5に記載のガスタービンシステム。
  7.  前記流路形成部は、前記軸線に沿って延びるとともに前記排出口および前記導入口の双方を覆うように前記周方向の複数箇所に間隔を空けて配置されている請求項5に記載のガスタービンシステム。
  8.  前記タービンに連結されて前記タービンの駆動により発電するとともに電力により推力を発生する推力発生器に電力を供給する発電機を備える請求項1から請求項7のいずれか一項に記載のガスタービンシステム。
  9.  請求項8に記載のガスタービンシステムと、
     前記ガスタービンシステムが生成した電力により推力を発生する推力発生器と、を備える移動体。
     
PCT/JP2020/005608 2019-07-12 2020-02-13 ガスタービンシステムおよびそれを備えた移動体 WO2021009953A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/624,965 US11885232B2 (en) 2019-07-12 2020-02-13 Gas turbine system and movable body including the same
DE112020003364.3T DE112020003364T5 (de) 2019-07-12 2020-02-13 Gasturbinensystem und Bewegungskörper, der dasselbe enthält

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130169 2019-07-12
JP2019130169A JP7297574B2 (ja) 2019-07-12 2019-07-12 ガスタービンシステムおよびそれを備えた移動体

Publications (1)

Publication Number Publication Date
WO2021009953A1 true WO2021009953A1 (ja) 2021-01-21

Family

ID=74210520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005608 WO2021009953A1 (ja) 2019-07-12 2020-02-13 ガスタービンシステムおよびそれを備えた移動体

Country Status (4)

Country Link
US (1) US11885232B2 (ja)
JP (1) JP7297574B2 (ja)
DE (1) DE112020003364T5 (ja)
WO (1) WO2021009953A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215536A (en) * 1978-12-26 1980-08-05 The Boeing Company Gas turbine mixer apparatus
US5947412A (en) * 1997-01-10 1999-09-07 Titan Corporation Jet engine noise suppressor assembly
JP2005004199A (ja) * 2003-05-28 2005-01-06 Rohr Inc 航空機エンジンノイズリダクション用組立体及び方法
JP2006205755A (ja) * 2005-01-25 2006-08-10 Japan Aerospace Exploration Agency 航空機用推進システム
JP2008144764A (ja) * 2006-12-06 2008-06-26 Boeing Co:The 航空機エンジンノズルの流体のパッシブ誘導システムおよび方法
US20180148187A1 (en) * 2015-07-31 2018-05-31 Safran Nacelles Acoustic attenuation structure with a plurality of attenuation degrees for a propulsion assembly of an aircraft

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944624A (en) 1957-08-07 1960-07-12 Rolls Royce Jet noise suppressor nozzle
US4099375A (en) 1977-02-03 1978-07-11 The United States Of America As Represented By The Secretary Of The Navy Exhaust plume reduction and cooling system
US4958489A (en) 1985-03-04 1990-09-25 General Electric Company Means for controlling augmentor liner coolant flow pressure in a mixed flow, variable cycle gas turbine engine
US5203164A (en) 1990-06-06 1993-04-20 Paulson Allen E Method and apparatus for quieting a turbojet engine
US5706651A (en) * 1995-08-29 1998-01-13 Burbank Aeronautical Corporation Ii Turbofan engine with reduced noise
US6612106B2 (en) 2000-05-05 2003-09-02 The Boeing Company Segmented mixing device having chevrons for exhaust noise reduction in jet engines
FR2892152B1 (fr) 2005-10-19 2007-11-23 Airbus France Sas Turbomoteur a bruit de jet attenue
JP5447920B2 (ja) 2009-03-25 2014-03-19 独立行政法人 宇宙航空研究開発機構 航空機用排気ノズル
US8984890B2 (en) * 2011-10-31 2015-03-24 General Electric Company Turbofan engine mixer assembly
US10392120B2 (en) * 2016-04-19 2019-08-27 General Electric Company Propulsion engine for an aircraft
US10308366B2 (en) 2016-08-22 2019-06-04 General Electric Company Embedded electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215536A (en) * 1978-12-26 1980-08-05 The Boeing Company Gas turbine mixer apparatus
US5947412A (en) * 1997-01-10 1999-09-07 Titan Corporation Jet engine noise suppressor assembly
JP2005004199A (ja) * 2003-05-28 2005-01-06 Rohr Inc 航空機エンジンノイズリダクション用組立体及び方法
JP2006205755A (ja) * 2005-01-25 2006-08-10 Japan Aerospace Exploration Agency 航空機用推進システム
JP2008144764A (ja) * 2006-12-06 2008-06-26 Boeing Co:The 航空機エンジンノズルの流体のパッシブ誘導システムおよび方法
US20180148187A1 (en) * 2015-07-31 2018-05-31 Safran Nacelles Acoustic attenuation structure with a plurality of attenuation degrees for a propulsion assembly of an aircraft

Also Published As

Publication number Publication date
DE112020003364T5 (de) 2022-03-31
US11885232B2 (en) 2024-01-30
US20220268178A1 (en) 2022-08-25
JP7297574B2 (ja) 2023-06-26
JP2021014824A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
US8616835B2 (en) Gas turbine
CN1971011B (zh) 涡轮喷嘴冷却子系统和燃气涡轮发动机
CN104995375B (zh) 在涡轮发动机中的热气体路径和盘腔之间的密封组件
US10494999B2 (en) Thermally efficient gas turbine engine for an aircraft
JP6283173B2 (ja) ガスタービンシステム用の冷却組立体
JP2007046610A (ja) 自動車等のための流体圧縮用多段モータ−コンプレッサ
JP2009047163A (ja) 効率範囲が広い出力タービンを備えた内燃機関装置
CN105484871A (zh) 一种利用退役涡扇发动机改制车载燃气轮机
US8082738B2 (en) Diffuser arranged between the compressor and the combustion chamber of a gas turbine
WO2017188040A1 (ja) ガスタービン
JP2017141825A (ja) ガスタービンエンジン用の翼形部
JP2017150469A (ja) タービンエンジンのためのステータリム
WO2021009953A1 (ja) ガスタービンシステムおよびそれを備えた移動体
JP2013148082A (ja) ガスタービン装置
JP6586389B2 (ja) 圧縮機ディフューザおよびガスタービン
US10641118B2 (en) Sealing apparatus for gas turbine, gas turbine, and aircraft engine
KR102161765B1 (ko) 터빈용 에어포일, 이를 포함하는 터빈
WO2021009952A1 (ja) ガスタービンシステムおよびそれを備えた移動体
WO2021009954A1 (ja) ガスタービンシステムおよびそれを備えた移動体
US11746661B2 (en) Turbine blade and turbine including the same
KR101967067B1 (ko) 토크튜브 및 이를 포함하는 가스 터빈
US10995668B2 (en) Turbine vane, turbine, and gas turbine including the same
CN110397499A (zh) 用于涡轮增压器的可变喷嘴及其控制方法和涡轮增压器
KR102155797B1 (ko) 터빈 블레이드 및 이를 포함하는 터빈
KR102062530B1 (ko) 베인으로 향하는 유로 개선 구조의 트랜지션피스를 포함하는 가스 터빈 엔진의 연소기, 및 이를 포함하는 가스 터빈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839553

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20839553

Country of ref document: EP

Kind code of ref document: A1