WO2021009830A1 - マイクロバブル生成ユニット及び水浄化システム - Google Patents

マイクロバブル生成ユニット及び水浄化システム Download PDF

Info

Publication number
WO2021009830A1
WO2021009830A1 PCT/JP2019/027867 JP2019027867W WO2021009830A1 WO 2021009830 A1 WO2021009830 A1 WO 2021009830A1 JP 2019027867 W JP2019027867 W JP 2019027867W WO 2021009830 A1 WO2021009830 A1 WO 2021009830A1
Authority
WO
WIPO (PCT)
Prior art keywords
throat
generation unit
liquid
gas
micro
Prior art date
Application number
PCT/JP2019/027867
Other languages
English (en)
French (fr)
Inventor
和義 足立
Original Assignee
株式会社KB.cuento
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社KB.cuento filed Critical 株式会社KB.cuento
Priority to PCT/JP2019/027867 priority Critical patent/WO2021009830A1/ja
Priority to JP2021532586A priority patent/JP7086435B2/ja
Publication of WO2021009830A1 publication Critical patent/WO2021009830A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material

Definitions

  • the present invention relates to an apparatus that generates microbubbles.
  • Microbubbles have a property of adhering pollutants and the like to float in a liquid
  • attempts have been made to attach pollutants to the microbubbles and levitate them to purify contaminated water.
  • Microbubbles are fine bubbles having a diameter of 0.5 mm or less, and are also called radical bubbles.
  • it is effective to flow contaminated water directly into the microbubble generator to generate microbubbles from the contaminated water, so microbubbles are generated in the liquid.
  • Various devices have been proposed (see, for example, Patent Document 1).
  • the gas-liquid dissolution mixer of Patent Document 1 sucks gas downstream of the throat of the Venturi tube to generate bubbles in a mixer having a Venturi tube, and creates bubbles in a conduit connected to the downstream of the mixer.
  • the liquid and bubbles reach the redistribution device while being dissolved in the liquid, the liquid and bubbles are reaccelerated by the Venturi tube provided in the redistribution device, and the microbubbles are mixed from the nozzle port provided downstream of the redistribution device.
  • the jet flow is jetted.
  • the supply path for supplying the gas to the mixer is generally on the wall surface that defines the flow path of the liquid in the mixer.
  • the present inventors have already proposed a fine bubble generator in which the outlet end of the gas supply path for supplying gas opens toward the downstream side of the liquid flow (see Patent Document 2).
  • the fine bubble generator disclosed in Patent Document 2 includes a gas supply path formed as an L-shaped tube, and the outlet end of the gas supply path is formed in a horizontal portion of the L-shaped tube. Is arranged parallel to the flow of the liquid to prevent the backflow of the gas.
  • the gas supply path is formed as a hole on the wall surface defining the liquid inflow path so that the outlet end faces the downstream side of the liquid flow with respect to the fine bubble generator.
  • the configuration is also disclosed. According to such a configuration, it is not necessary to form an L-shaped tube, and it is possible to facilitate the manufacture of a fine bubble generator.
  • the hole provided as the liquid inflow path is only a hole having a shape such that the outlet end faces the downstream side of the liquid flow.
  • the degree of inclination and other structures it can be said that it is preferable that the device can be manufactured at low cost.
  • an object of the present invention is to provide a microbubble generation unit and a water purification system that can effectively generate microbubbles and can be produced at low cost while preventing backflow of gas. ..
  • the microbubble generation unit of the present invention includes an inflow pipe portion into which a pressurized liquid flows in, a discharge pipe portion in which a liquid containing microbubbles is discharged, and an inflow pipe portion and a discharge pipe portion.
  • the gas mixing hole is provided so that the angle between the flow direction of the gas and the mixing direction of the gas intersects sharply.
  • the gas mixing hole is provided so that the angle between the liquid flow direction and the gas mixing direction intersects at an acute angle, so that the outlet end of the gas mixing hole that mixes the gas is located on the downstream side of the liquid flow. It will open facing you. That is, the gas mixing hole has a structure in which it is difficult for the liquid to enter the gas mixing hole unless the liquid flows back. By having this configuration, it becomes difficult for the liquid to flow into the gas mixing hole in the normal flow of the liquid. As a result, even if contaminated water containing a pollutant is introduced as a liquid, the pollutant does not enter the gas mixing hole, and it is possible to prevent the gas mixing hole from being clogged. As a result, even if the contaminated water is poured directly into the microbubble generation unit, the microbubbles can be generated from the contaminated water.
  • the inner diameter of the throat is formed in at least two steps so that the liquid inflow pipe side is narrower and the discharge pipe side is wider, and the outlet end of the gas mixing hole is formed. It is preferable that the inner diameter of the throat is formed in a step other than the narrowest step.
  • the inner diameter of the throat is formed in a stepped shape of at least two steps so that the liquid inflow pipe side is narrower and the discharge pipe side is wider, so that a difference in static pressure generated in the throat can be provided. Then, by providing the outlet end of the gas mixing hole in a step other than the narrowest step of the inner diameter of the throat, the liquid having the lowest pressure in the step having the narrowest inner diameter of the throat becomes higher pressure thereafter. It can be mixed with the gas in steps to promote the dissolution of the gas.
  • the inner diameter of the throat portion is formed in a three-step step shape that expands toward the discharge pipe portion side.
  • the stepwise forming process can be performed at a lower cost than the tapered forming process. Therefore, the inner diameter of the throat is formed in a three-step step shape that expands toward the discharge pipe side, so that the static pressure of the throat gradually increases from the upstream to the downstream. , The configuration can reduce the processing cost.
  • the outlet end of the gas mixing hole is provided at the middle stage of the three stages.
  • the angle between the flow direction of the liquid and the mixing direction of the gas is preferably in the range of 60 to 80 °, more preferably 70 to 78 °, and further preferably 70 °. It is 75 °.
  • the angle at which the gas mixing holes are provided is within the above range. If it exceeds 80 °, backflow of gas and clogging of pollutants are likely to occur, and if it is less than 60 °, the difficulty of processing increases and production is performed. This is because the cost is high.
  • the micro-bubble generation unit of the present invention preferably has a check valve provided at the inlet end of the gas mixing hole.
  • the check valve is required when adjusting the pressure and shutting off the power supply because the suction pressure changes to the output pressure when the in and out pressures are equal. Therefore, by providing the check valve, it is possible to more effectively prevent the backflow of gas.
  • the water purification system of the present invention includes the microbubble generation unit described in any of the above, a contaminated water tank that supplies contaminated water to the inflow pipe of the unit, and a liquid containing microbubbles discharged from the discharge pipe of the unit. It is equipped with a septic tank that floats and separates.
  • the microbubble generation unit can generate microbubbles from the contaminated water, the contaminated water (liquid) flowing out from the contaminated water tank is directly flowed into the microbubble generation unit and discharged from the microbubble generation unit. It is possible to adopt a configuration in which the microbubbles to be generated flow into the septic tank.
  • microbubble generation unit and the water purification system of the present invention there is an effect that microbubbles can be effectively generated and can be produced at low cost while preventing the backflow of gas.
  • FIG. 1 shows a cross-sectional image of the micro-bubble generation unit of the first embodiment.
  • the microbubble generation unit 1 includes an inflow pipe portion 21 into which a pressurized liquid flows in, a discharge pipe portion 23 for discharging the generated microbubbles, and an inflow pipe portion 21 and a discharge pipe portion 23. Consists of a throat 22 connecting with. The inflow pipe portion 21, the throat portion 22, and the discharge pipe portion 23 are connected in this order to form a flow path for the liquid flowing in from the inflow pipe portion 21.
  • the throat portion 22 is provided with a gas mixing hole 3.
  • the inflow pipe portion 21 is formed of a tubular portion 21a having the largest diameter and a truncated cone portion 21b whose diameter gradually decreases toward the throat portion 22 side. Further, the discharge pipe portion 23 is formed of a truncated cone portion 23b whose diameter gradually increases from the throat portion 22 and a tubular portion 23a having a large diameter thereof. As for the specific size of the diameter, when the diameter R 1 of the tubular portion 21a is 1, the diameter R 2 of the tubular portion 23a is 0.75. The diameter R 2 of the tubular portion 23a is provided smaller than the diameter R 1 of the tubular portion 21a in order to make the opening pressure gentle.
  • the throat portion 22 is composed of a throat front stage 22a, a throat middle stage 22b, and a throat rear stage 22c, and is provided so that the diameter gradually increases from the throat front stage 22a to the throat middle stage 22b and the throat rear stage 22c.
  • the front throat 22a, the middle throat 22b, and the rear throat 22c all have a tubular shape having a diameter smaller than that of the inflow pipe 21 and the discharge pipe 23, and the pipe cross-sectional area is the inflow pipe 21 and the discharge pipe 21 and the discharge. It is smaller than the pipe portion 23.
  • the diameter R 1 of the tubular portion 21a is 1
  • the diameter R 3 of the throat front stage 22a is 0.33
  • the diameter R 4 of the throat middle stage 22b is 0.42
  • the throat rear stage 22c is 0.42
  • the diameter R 5 of is 0.5.
  • the throat portion 22 is provided so that the diameter is gradually increased in order to gradually increase the static pressure of the liquid flowing into the throat portion 22, and the throat portion 22 is not tapered but has a stepped shape. By providing it, it is possible to process it at low cost.
  • a male screw portion 4a is provided at the end of the inflow pipe portion 21 opposite to the throat portion 22, and a male screw portion 4b is provided at the end of the discharge pipe portion 23 opposite to the throat portion 22. It can be connected to a joint or the like having a female screw portion. Unlike the above configuration, for example, a female screw portion may be provided on the inner wall of at least one end of the inflow pipe portion 21 and the discharge pipe portion 23.
  • the gas mixing hole 3 is provided so that the angle between the liquid flow direction and the gas mixing direction intersects at an acute angle. That is, the gas mixing hole 3 is formed on the wall surface defining the middle stage 22b of the throat as a hole having a shape such that the outlet end 3b faces the downstream side of the liquid flow with respect to the microbubble generation unit 1.
  • the angle ⁇ indicates the angle of the gas mixing hole 3 with respect to the direction perpendicular to the flow direction of the liquid, and is 15 °. Further, when the diameter R 1 of the tubular portion 21a is 1, the diameter R 6 of the gas mixing hole 3 is 0.29.
  • the holes By forming the holes so that the outlet end 3b of the gas mixing hole 3 faces the discharge pipe portion 23 in this way, it is possible to prevent backflow of gas and clogging of pollutants. Further, since the angle ⁇ is set to 15 °, it is possible to manufacture the gas at low cost while having the effect of preventing the backflow of gas and the clogging. Since the female screw portion 5 is formed in the gas mixing hole 3, for example, a member having a check valve and a male screw portion is screwed and fixed to prevent a backflow of liquid. It is also possible to prevent it more reliably.
  • the liquid pressurized through a known pump flows into the inflow pipe portion 21 through the hose 8a.
  • gas is supplied from the gas mixing hole 3 to the middle throat 22b. Since the static pressure in the throat 22 is relatively negative, the gas is naturally sucked into the middle throat 22b through the gas mixing hole 3 without the need for a gas supply device or the like.
  • the liquid flowing into the inflow pipe portion 21 is pressurized and has a high pressure, but the static pressure is the lowest in the throat front stage 22a having the smallest diameter.
  • the static pressure gradually increases in the process of being guided to the discharge pipe portion 23 having a larger diameter through the middle stage 22b of the throat portion and the rear stage 22c of the throat portion. Therefore, the gas sucked into the middle throat 22b dissolves in the liquid. After that, as the pressure of the pressurized liquid decreases, the gas dissolved in the liquid becomes supersaturated. Then, the gas that cannot be dissolved in the liquid becomes microbubbles, which generates microbubbles.
  • FIG. 2 shows a system configuration diagram of the water purification system of the first embodiment.
  • the water purification system 10 floats and separates the microbubble generation unit 1, the contaminated water tank 6 that supplies contaminated water to the microbubble generation unit 1, and the microbubbles discharged from the microbubble generation unit 1. Consists of 7.
  • the contaminated water tank 6 and the micro-bubble generation unit 1 are connected by a hose 8a, and the micro-bubble generation unit 1 and the septic tank 7 are connected by a hose 8b.
  • the micro-bubble generation unit 1 and the hose 8a are connected by using a joint 9a having a female screw portion (not shown).
  • the micro-bubble generation unit 1 and the hose 8b are connected to the female screw portion (not shown). ) Is connected using a joint 9b.
  • the contaminated water containing pollutants in the contaminated water tank 6 is pumped from the contaminated water tank 6 by a pump (not shown) and flows into the microbubble generation unit 1 through the hose 8a. In this process, it is pressurized by the pump and flows into the microbubble generation unit 1 in a high pressure state.
  • microbubbles are generated by the microbubble generation method of the microbubble generation unit 1 described above.
  • the generated microbubbles are negatively charged, positively charged pollutants contained in the contaminated water adhere to the generated microbubbles while passing through the discharge pipe portion 23 of the microbubble generation unit 1. Then, the microbubbles to which the pollutants are attached are transported to the septic tank 7 through the hose 8b together with the liquid from which the pollutants have been removed.
  • the microbubbles that have reached the septic tank 7 float in the septic tank 7 with contaminants attached due to the rising nature of the microbubbles. After that, the microbubbles disappear in the ascending process, and only the pollutants are retained in the upper part of the septic tank 7. Since the microbubbles are gradually rising, the pollutants retained in the upper part of the septic tank 7 continue to accumulate in the upper part of the septic tank 7. After the pollutants are floated and separated in this way, the pollutants that have floated and accumulated are scooped up and collected by the scrubber 7a provided on the upper part of the septic tank 7. In this way, pollutants are removed and contaminated water is purified.
  • the water purification system 10 of Example 1 can also be used, for example, to float and separate tritium from contaminated water containing tritium (tritium).
  • the micro-bubble generation unit 1 of Example 1 can also be used for producing carbon dioxide-containing water or carbon dioxide-containing liquid fertilizer for hydroponics, or for producing emulsion fuel.
  • water or liquid fertilizer containing carbon dioxide gas can be generated by supplying water or liquid fertilizer from the inflow pipe portion 21 of the microbubble generation unit 1 and supplying carbon dioxide gas from the gas mixing hole 3.
  • FIG. 3 shows a cross-sectional image of the micro-bubble generation unit of the second embodiment.
  • the microbubble generation unit 11 includes an inflow pipe portion 21 into which the pressurized liquid flows in, an discharge pipe portion 23 in which the generated microbubbles are discharged, and an inflow pipe, as in the first embodiment. It is composed of a throat portion 22 that connects the portion 21 and the discharge pipe portion 23.
  • the throat portion 22 is composed of two stages, a throat front stage 22a and a throat rear stage 22c, and the gas mixing hole 3 is formed on the wall surface defining the throat rear stage 22c with microbubbles.
  • the outlet end 3b is formed as a hole having a shape facing the downstream side of the liquid flow.
  • the present invention is useful as a contaminated water purification device. It can also be used as a device for desalinating seawater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)

Abstract

気体の逆流を防止しつつ、効果的にマイクロバブルを生成でき、かつ低コストで作製可能なマイクロバブル生成ユニット及び水浄化システムを提供する。加圧された液体が流入する流入管部と、マイクロバブルを含む液体を排出する排出管部と、流入管部と排出管部の間に位置し、流入管部および排出管部より管断面積が小さい喉部と、喉部または排出管部の壁面に形成され、喉部内または管部内に気体を混入させる孔であって、液体の流れ方向と気体の混入方向との間の角度が鋭角に交差する気体混入孔を備える。喉部の内径は、液体流入管部側がより狭まり、排出管部側がより拡がるように、少なくとも2段の階段状に形成され、気体混入孔の出口端は、喉部の内径が最狭以外の段に形成されたことが好ましい。

Description

マイクロバブル生成ユニット及び水浄化システム
 本発明は、マイクロバブルを生成する装置に関するものである。
 近年、マイクロバブルが、液体中において汚染物質などを付着させて浮上する性質を有することに着目し、マイクロバブルに汚染物質を付着させて浮上させ、汚染水を浄化することが試みられている。マイクロバブルとは、直径が0.5mm以下の微細な気泡のことであり、ラジカルバブルともいう。
 マイクロバブルに汚染物質を効率よく付着させるためには、マイクロバブル生成装置に直接汚染水を流し、汚染水からマイクロバブルを生成することが効果的であることから、液体中にマイクロバブルを発生させる様々な装置が提案されている(例えば、特許文献1を参照。)。
 特許文献1の気液溶解混合装置は、ベンチュリ管を有する混合器において、ベンチュリ管の喉部の下流で気体を吸い込んで気泡を生成し、混合器の下流に接続される管路において、気泡を液体中に溶解しながら液体および気泡を再分配装置まで到達させ、再分配装置が備えるベンチュリ管によって、液体および気泡を再加速し、再分配装置の下流に設けられたノズル口からマイクロバブルが混合された噴流が噴射されるものである。
 しかしながら、特許文献1の装置のように、液体と気体を混合するマイクロバブル生成装置は一般的に、混合器に気体を供給する供給路が、混合器内の液体の流路を画定する壁面に、液体の流れに直交する孔を開けることにより形成されている。そのため、マイクロバブル生成装置に汚染水を直接流入させると、特に気体を供給する供給路の出口付近に汚染物質が詰まり、マイクロバブル生成装置がすぐに使用できなくなるという問題が生じていた。
 そこで、本発明者らは既に、気体を供給する気体供給路の出口端が、液体の流れの下流側を向いて開口する微細気泡生成装置を提案している(特許文献2を参照)。
 上記特許文献2に開示された微細気泡生成装置は、L字状の管として形成された気体供給路を備え、気体供給路の出口端をL字状の管の水平部に形成し、水平部を液体の流れと平行に配置することで、気体の逆流を防止する構造となっている。また、上記特許文献2においては、気体供給路が、液体流入路を画定する壁面に、微細気泡生成装置に対し、出口端が液体の流れの下流側を向くような形状の孔として形成される構成も開示されている。かかる構成によれば、L字状の管を形成する必要がなくなり、微細気泡生成装置の製造を容易にすることができることになる。
特公平6-93991号公報 特許第6104399号公報
 しかしながら、上記特許文献2に開示された微細気泡生成装置では、液体流入路として設けられる孔が、出口端が液体の流れの下流側を向くような形状の孔とされるのみであり、具体的な傾斜の程度や、その他の構造については十分な開示がなされていなかった。また、装置の作製に当たっては、低コストで作製し得ることが好ましいといえる。
 かかる状況に鑑みて、本発明は、気体の逆流を防止しつつ、効果的にマイクロバブルを生成でき、かつ低コストで作製可能なマイクロバブル生成ユニット及び水浄化システムを提供することを目的とする。
 上記課題を解決すべく、本発明のマイクロバブル生成ユニットは、加圧された液体が流入する流入管部と、マイクロバブルを含む液体を排出する排出管部と、流入管部と排出管部の間に位置し、流入管部および排出管部より管断面積が小さい喉部と、喉部または排出管部の壁面に形成され、喉部内または管部内に気体を混入させる孔であって、液体の流れ方向と気体の混入方向との間の角度が鋭角に交差する気体混入孔を備える。
 気体混入孔が、液体の流れ方向と気体の混入方向との間の角度が鋭角に交差するように設けられることにより、気体を混入させる気体混入孔の出口端が、液体の流れの下流側を向いて開口することとなる。すなわち、気体混入孔は、液体が逆流しないと気体混入孔内に液体が入り込み難い構造となっている。この構成を有することで、通常の液体の流れの中では、気体混入孔に液体が流れ込み難くなる。これにより、液体として汚染物質を含む汚染水を流入させたとしても、汚染物質が気体混入孔に入り込むことがなく、気体混入孔が詰まることを防止することができる。その結果、マイクロバブル生成ユニットに直接汚染水を流し込んでも、汚染水からマイクロバブルを生成することができる。
 本発明のマイクロバブル生成ユニットにおいて、喉部の内径は、液体流入管部側がより狭まり、排出管部側がより拡がるように、少なくとも2段の階段状に形成され、気体混入孔の出口端は、喉部の内径が最狭以外の段に形成されたことが好ましい。
 喉部の内径について、液体流入管部側がより狭まり、排出管部側がより拡がるように、少なくとも2段の階段状に形成されることにより、喉部内に生じる静圧に差を設けることができる。そして、気体混入孔の出口端を、喉部の内径が最狭以外の段に設けることにより、喉部の内径が最狭の段で最も低圧となった液体が、その後、より高圧となった段階で気体と混合することができ、気体の溶解を促進できる。
 本発明のマイクロバブル生成ユニットにおいて、喉部の内径は、排出管部側へ近いほど拡がる3段の階段状に形成されたことが好ましい。階段状に形成する加工は、テーパ状に形成する加工に比べて、低コストで実施できる。したがって、喉部の内径が、排出管部側へ近いほど拡がる3段の階段状に形成されることで、喉部の静圧が上流から下流に向けて次第に高くなる効果を十分に有しつつ、加工コストを抑える構成とすることができる。
 本発明のマイクロバブル生成ユニットにおいて、気体混入孔の出口端は、3段の内、中段の位置に設けられたことが好ましい。気体混入孔の出口端が、3段の内、中段の位置に設けられることにより、流入管部から流入した液体が、喉部前段で静圧が最も低圧となった後に、より高圧となった状態で気体と混合することができ、液体と気体の溶解が促進される。
 本発明のマイクロバブル生成ユニットにおいて、液体の流れ方向と気体の混入方向との間の角度は、60~80°の範囲であることが好ましく、より好ましくは70~78°であり、さらに好ましくは75°である。気体混入孔が設けられる角度が上記範囲とされるのは、80°を超えると、気体の逆流や汚染物質の詰まり等が生じやすく、60°未満であると、加工の難易度が上がり、作製コストが高くなるからである。
 本発明のマイクロバブル生成ユニットは、気体混入孔の入口端に逆止弁が設けられることが好ましい。逆止弁は、イン、アウトが等圧になると、吸引圧から出圧になるので、圧力調整時及び電源遮断時に必要となる。したがって、逆止弁が設けられることにより、気体の逆流をより効果的に防止することができる。
 本発明の水浄化システムは、上記の何れかに記載のマイクロバブル生成ユニットと、ユニットの流入管部に汚染水を供給する汚染水槽と、ユニットの排出管部から排出されたマイクロバブルを含む液体を浮上分離する浄化槽とを備える。
 本発明の水浄化システムは、マイクロバブル生成ユニットが汚染水からマイクロバブルを生成できるため、汚染水槽から流出される汚染水(液体)を直接マイクロバブル生成ユニットに流入させ、マイクロバブル生成ユニットから排出されるマイクロバブルを浄化槽に流入させる構成を採用することができる。
 本発明のマイクロバブル生成ユニット及び水浄化システムによれば、気体の逆流を防止しつつ、効果的にマイクロバブルを生成でき、かつ低コストで作製可能できるといった効果がある。
実施例1のマイクロバブル生成ユニットの断面イメージ図 実施例1の水浄化システムのシステム構成図 実施例2のマイクロバブル生成ユニットの断面イメージ図
 以下、本発明の実施形態の一例を、図面を参照しながら詳細に説明していく。なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。
 図1は、実施例1のマイクロバブル生成ユニットの断面イメージ図を示している。図1に示すように、マイクロバブル生成ユニット1は、加圧された液体が流入する流入管部21、生成されたマイクロバブルを排出する排出管部23、および流入管部21と排出管部23とを接続する喉部22から成る。流入管部21、喉部22及び排出管部23が順に繋がり、流入管部21から流入される液体の流路を形成している。喉部22には、気体混入孔3が設けられている。
 流入管部21は、最も径の大きい筒状部分21aと、喉部22側に向かって徐々に径が小さくなる円錐台部分21bとから形成されている。また、排出管部23は、喉部22から徐々に径が大きくなる円錐台部分23bと、その大きい径を有する筒状部分23aとから形成されている。具体的な径の大きさは、筒状部分21aの径Rを1とした場合に、筒状部分23aの径Rは0.75となっている。筒状部分21aの径Rよりも筒状部分23aの径Rが小さく設けられているのは、開放圧力を緩やかにするためである。
 喉部22は、喉部前段22a、喉部中段22b及び喉部後段22cから成り、喉部前段22aから喉部中段22b、喉部後段22cへと段階的に径が大きくなるように設けられている。
 喉部前段22a、喉部中段22b及び喉部後段22cは、何れも流入管部21及び排出管部23よりも径が小さい筒状を呈しており、管断面積が、流入管部21および排出管部23よりも小さくなっている。具体的には、筒状部分21aの径Rを1とした場合に、喉部前段22aの径Rは0.33、喉部中段22bの径Rは0.42、喉部後段22cの径Rは0.5となっている。喉部22が、段階的に径が大きくなるように設けられているのは、喉部22に流入した液体の静圧が次第に高くなるようにするためであり、テーパ状ではなく、階段状に設けることで、低コストで加工することが可能である。
 流入管部21の喉部22と反対側の端部には雄螺子部4aが設けられ、また、排出管部23の喉部22と反対側の端部には雄螺子部4bが設けられ、雌螺子部を有する継手等と接続可能になっている。上記構成とは異なり、例えば、流入管部21と排出管部23の少なくとも何れかの端部の内壁に雌螺子部を設ける構成としてもよい。
 気体混入孔3は、液体の流れ方向と気体の混入方向との間の角度が鋭角に交差するように設けられている。すなわち、気体混入孔3は、喉部中段22bを画定する壁面に、マイクロバブル生成ユニット1に対し、出口端3bが液体の流れの下流側を向くような形状の孔として形成されている。ここで、角度θは、液体の流れ方向と垂直な方向に対する気体混入孔3の角度を示したものであり、15°となっている。また、筒状部分21aの径Rを1とした場合、気体混入孔3の径Rは、0.29となっている。
 このように、気体混入孔3の出口端3bが排出管部23に向くように孔が形成されることにより、気体の逆流や汚染物質の詰まりを防止することができる。また、角度θが15°とされることにより、気体の逆流防止や詰まりを防止する効果を有しつつ、低コストでの作製が可能となっている。
 なお、気体混入孔3には、雌螺子部5が形成されているため、例えば、逆止弁を有し、かつ雄螺子部を有する部材を螺合して固定することで、液体の逆流をより確実に防止することも可能である。
 次に、上記のように形成されたマイクロバブル生成ユニット1によるマイクロバブルの生成方法について説明する。まず、液体を貯留する槽から、既知のポンプ(図示せず)を介して加圧された液体がホース8aを通り流入管部21に流入される。同時に、気体混入孔3から喉部中段22bに気体が供給される。気体は、喉部22内の静圧が相対的に負圧となっているため、特に気体供給器等を必要とせず、自然に気体混入孔3を介して喉部中段22bに吸引される。
 流入管部21に流入した液体は、加圧され高圧となっているが、最も径の小さい喉部前段22aにおいて静圧は最も低圧となる。その後、喉部中段22b、喉部後段22cを経て、より径の大きい排出管部23へと導かれる過程で、静圧は次第に上昇することになる。したがって、喉部中段22bに吸引された気体は液体に溶解することになる。その後、加圧されていた液体の圧力が下がることで、液体に溶解していた気体は過飽和の状態となる。そして、液体に溶解していられなくなった気体がマイクロバブルとなり、これによりマイクロバブルが生成される。
 次に、図2を参照しながら、水浄化システムによる汚染水の浄化について説明する。図2は、実施例1の水浄化システムのシステム構成図を示している。図2に示すように、水浄化システム10は、マイクロバブル生成ユニット1、マイクロバブル生成ユニット1に汚染水を供給する汚染水槽6及びマイクロバブル生成ユニット1から排出されたマイクロバブルを浮上分離する浄化槽7から成る。汚染水槽6とマイクロバブル生成ユニット1は、ホース8aにより接続され、マイクロバブル生成ユニット1と浄化槽7は、ホース8bにより接続されている。マイクロバブル生成ユニット1とホース8aは、雌螺子部(図示せず)を有する継手9aを用いて接続されており、同様に、マイクロバブル生成ユニット1とホース8bは、雌螺子部(図示せず)を有する継手9bを用いて接続されている。
 汚染水槽6内の汚染物質を含んだ汚染水は、汚染水槽6からポンプ(図示せず)によって汲みだされ、ホース8aを通ってマイクロバブル生成ユニット1内へと流れていく。この過程で、ポンプによって加圧され、高圧の状態でマイクロバブル生成ユニット1内に流入される。流入した液体は、上述したマイクロバブル生成ユニット1のマイクロバブル生成方法によって、マイクロバブルが生成される。
 生成されたマイクロバブルは、マイナスに帯電しているため、マイクロバブル生成ユニット1の排出管部23を通過中に、汚染水中に含まれているプラスに帯電する汚染物質を付着する。そして、汚染物質を付着させたマイクロバブルは、汚染物質が除去された液体とともに、ホース8bを通って浄化槽7へと搬送される。
 浄化槽7に到達したマイクロバブルは、マイクロバブルの上昇する性質によって浄化槽7内を、汚染物質を付着させた状態で浮上していく。その後、マイクロバブルは上昇過程で消滅し、汚染物質だけが浄化槽7の上部に滞留される。マイクロバブルは、順次上昇しているため、浄化槽7の上部に留められた汚染物質は、浄化槽7の上部に溜まり続ける。このようにして汚染物質を浮上分離させた後、浄化槽7の上部に設けられているスクラバ7aによって、浮上して溜められた汚染物質を掬い取って回収する。このようにして、汚染物質が除去されて、汚染水が浄化される。
 実施例1の水浄化システム10は、例えば、トリチウム(三重水素)を含む汚染水からトリチウムを浮上分離させるためにも用いることができる。また、実施例1のマイクロバブル生成ユニット1は、水耕栽培のための炭酸ガス含有水若しくは炭酸ガス含有液肥の生成、又はエマルション燃料の生成にも用いることができる。具体的には、マイクロバブル生成ユニット1の流入管部21から水又は液肥を供給し、気体混入孔3から炭酸ガスを供給することで、炭酸ガスを含む水又は液肥を生成することができる。水耕栽培において当該水又は液肥を供給すると、植物の根に供給された水又は液肥から炭酸ガスが蒸発し、その炭酸ガスが植物の葉の裏側にある気孔に直に接触する。これにより、葉の裏側にある気孔から炭酸ガスを吸収する性質を有する植物に対して炭酸ガスを効率よく吸収させることができる。また、マイクロバブル生成ユニット1の流入管部21から水及び油を供給することで、油中に水が分散しエマルション燃料を生成することができる。これにより、従来エマルション燃料を生成するために用いていた界面活性剤を用いなくても容易にエマルション燃料を生成することができる。
 図3は、実施例2のマイクロバブル生成ユニットの断面イメージ図を示している。図3に示すように、マイクロバブル生成ユニット11は、実施例1と同様に、加圧された液体が流入する流入管部21、生成されたマイクロバブルを排出する排出管部23、および流入管部21と排出管部23とを接続する喉部22から成る。
 しかしながら、実施例1とは異なり、喉部22は、喉部前段22a及び喉部後段22cの2段で構成されており、気体混入孔3は、喉部後段22cを画定する壁面に、マイクロバブル生成ユニット11に対し、出口端3bが液体の流れの下流側を向くような形状の孔として形成されている。
 このように、喉部22を2段で構成することにより、より作製が容易となり、低コストで製造することが可能となる。また、気体混入孔3は、最も径が小さい喉部前段22aではなく、より大きい径を有する喉部後段22cを画定する壁面に設けられるため、効果的に液体に気体を溶解することが可能である。
 本発明は、汚染水の浄化装置として有用である。また、海水を淡水化するための装置としても利用可能である。
 1,11  マイクロバブル生成ユニット
 3  気体混入孔
 3a  入口端
 3b  出口端
 4a,4b  雄螺子部
 5  雌螺子部
 6  汚染水槽
 7  浄化槽
 7a  スクラバ
 8a,8b  ホース
 9a,9b  継手
 10  水浄化システム
 21  流入管部
 21a,23a  筒状部分
 21b,23b  円錐台部分
 22  喉部
 22a  喉部前段
 22b  喉部中段
 22c  喉部後段
 23   排出管部
 R  径
 θ  角度
 

Claims (7)

  1.  加圧された液体が流入する流入管部と、
     マイクロバブルを含む前記液体を排出する排出管部と、
     前記流入管部と前記排出管部の間に位置し、前記流入管部および前記排出管部より管断面積が小さい喉部と、
     前記喉部または前記排出管部の壁面に形成され、前記喉部内または前記管部内に気体を混入させる孔であって、前記液体の流れ方向と前記気体の混入方向との間の角度が鋭角に交差する気体混入孔、
     を備えたことを特徴とするマイクロバブル生成ユニット。
  2.  前記喉部の内径は、前記液体流入管部側がより狭まり、前記排出管部側がより拡がるように、少なくとも2段の階段状に形成され、
     前記気体混入孔の出口端は、前記喉部の内径が最狭以外の段に形成されたことを特徴とする請求項1に記載のマイクロバブル生成ユニット。
  3.  前記喉部の内径は、前記排出管部側へ近いほど拡がる3段の階段状に形成されたことを特徴とする請求項1又は2に記載のマイクロバブル生成ユニット。
  4.  前記気体混入孔の出口端は、前記3段の内、中段の位置に設けられたことを特徴とする請求項3に記載のマイクロバブル生成ユニット。
  5.  前記角度は、60~80°の範囲であることを特徴とする請求項1~4の何れかに記載のマイクロバブル生成ユニット。
  6.  前記気体混入孔の入口端に逆止弁が設けられることを特徴とする請求項1~5の何れかに記載のマイクロバブル生成ユニット。
  7.  請求項1~6の何れかに記載のマイクロバブル生成ユニットと、
     前記ユニットの流入管部に汚染水を供給する汚染水槽と、
     前記ユニットの排出管部から排出されたマイクロバブルを含む液体を浮上分離する浄化槽と、
     を備える水浄化システム。
PCT/JP2019/027867 2019-07-16 2019-07-16 マイクロバブル生成ユニット及び水浄化システム WO2021009830A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/027867 WO2021009830A1 (ja) 2019-07-16 2019-07-16 マイクロバブル生成ユニット及び水浄化システム
JP2021532586A JP7086435B2 (ja) 2019-07-16 2019-07-16 マイクロバブル生成ユニット及び水浄化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027867 WO2021009830A1 (ja) 2019-07-16 2019-07-16 マイクロバブル生成ユニット及び水浄化システム

Publications (1)

Publication Number Publication Date
WO2021009830A1 true WO2021009830A1 (ja) 2021-01-21

Family

ID=74210307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027867 WO2021009830A1 (ja) 2019-07-16 2019-07-16 マイクロバブル生成ユニット及び水浄化システム

Country Status (2)

Country Link
JP (1) JP7086435B2 (ja)
WO (1) WO2021009830A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747264A (ja) * 1993-08-05 1995-02-21 Idec Izumi Corp 微細泡沫製造方法及び製造装置
JPH0760088A (ja) * 1993-08-26 1995-03-07 Idec Izumi Corp 気液溶解混合装置
JP2007307450A (ja) * 2006-05-17 2007-11-29 Yamaha Motor Co Ltd 気泡発生装置
WO2015060382A1 (ja) * 2013-10-23 2015-04-30 株式会社アース・リ・ピュア 微細気泡生成装置および微細気泡生成装置を備える汚染水浄化システム
JP2015085237A (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 気液混合装置および風呂給湯装置
WO2015156015A1 (ja) * 2014-04-11 2015-10-15 有限会社オーケー・エンジニアリング ループ流式バブル発生ノズル
WO2017047796A1 (ja) * 2015-09-18 2017-03-23 株式会社ピーシーエス 超微細気泡含有水製造方法、超微細気泡含有水製造装置及び飲食用成分の水抽出方法
JP2017056438A (ja) * 2015-09-18 2017-03-23 Npo法人エコロジカル・ファーストエイド 曝気撹拌装置
JP2018038944A (ja) * 2016-09-06 2018-03-15 株式会社ビーエイチ オゾン水シャワー装置
WO2018088482A1 (ja) * 2016-11-14 2018-05-17 Kyb株式会社 流体送入装置及び流体送入システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747264A (ja) * 1993-08-05 1995-02-21 Idec Izumi Corp 微細泡沫製造方法及び製造装置
JPH0760088A (ja) * 1993-08-26 1995-03-07 Idec Izumi Corp 気液溶解混合装置
JP2007307450A (ja) * 2006-05-17 2007-11-29 Yamaha Motor Co Ltd 気泡発生装置
WO2015060382A1 (ja) * 2013-10-23 2015-04-30 株式会社アース・リ・ピュア 微細気泡生成装置および微細気泡生成装置を備える汚染水浄化システム
JP2015085237A (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 気液混合装置および風呂給湯装置
WO2015156015A1 (ja) * 2014-04-11 2015-10-15 有限会社オーケー・エンジニアリング ループ流式バブル発生ノズル
WO2017047796A1 (ja) * 2015-09-18 2017-03-23 株式会社ピーシーエス 超微細気泡含有水製造方法、超微細気泡含有水製造装置及び飲食用成分の水抽出方法
JP2017056438A (ja) * 2015-09-18 2017-03-23 Npo法人エコロジカル・ファーストエイド 曝気撹拌装置
JP2018038944A (ja) * 2016-09-06 2018-03-15 株式会社ビーエイチ オゾン水シャワー装置
WO2018088482A1 (ja) * 2016-11-14 2018-05-17 Kyb株式会社 流体送入装置及び流体送入システム

Also Published As

Publication number Publication date
JP7086435B2 (ja) 2022-06-20
JPWO2021009830A1 (ja) 2021-01-21

Similar Documents

Publication Publication Date Title
KR100843970B1 (ko) 마이크로 버블 발생장치
JP6104399B2 (ja) 微細気泡生成装置および微細気泡生成装置を備える汚染水浄化システム
JP2008126226A (ja) 撹拌曝気装置
JP2008212788A (ja) 洗浄装置及び洗浄方法
JP2008086868A (ja) マイクロバブル発生装置
KR20150003473U (ko) 기체를 액체에 용해시키는 생성 장치 및 유체 노즐
CN110127799B (zh) 一种微气泡溶气水发生系统
JP2007117799A (ja) 微細気泡生成器及びこれを用いた微細気泡生成装置
FI96388C (fi) Menetelmä ja laitteisto kaasun liuottamiseksi
JP6449531B2 (ja) 微細気泡発生装置
KR101467150B1 (ko) 폐색방지 기능이 있는 스태틱 라인 방식의 미세기포 발생장치
JP4107241B2 (ja) 微細気泡発生ノズル
JP2007000848A (ja) 微細気泡発生方法
JP2007268390A (ja) 気泡発生装置
JP2003245533A (ja) 超微細気泡発生装置
JP7086435B2 (ja) マイクロバブル生成ユニット及び水浄化システム
JPH1066962A (ja) 汚水処理装置
KR101688638B1 (ko) 오존 미세 기포를 이용한 유기물 세정 장치
JP5218948B1 (ja) 気体溶解器
JP2005000882A (ja) マイクロバブル発生装置
JP2007000846A (ja) 微細気泡発生装置
US6892968B1 (en) Nozzle assembly for use in the treatment of waste water
JP2001259395A (ja) エアレータ
JP2579734B2 (ja) フローティング形脱墨装置
JP2008178806A (ja) 微細気泡発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937497

Country of ref document: EP

Kind code of ref document: A1