WO2021008786A1 - Repartiteur avec separation de flux integree - Google Patents

Repartiteur avec separation de flux integree Download PDF

Info

Publication number
WO2021008786A1
WO2021008786A1 PCT/EP2020/066265 EP2020066265W WO2021008786A1 WO 2021008786 A1 WO2021008786 A1 WO 2021008786A1 EP 2020066265 W EP2020066265 W EP 2020066265W WO 2021008786 A1 WO2021008786 A1 WO 2021008786A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder head
intake
exchanger
arrangement according
wall
Prior art date
Application number
PCT/EP2020/066265
Other languages
English (en)
Inventor
Jean-Pierre Millon
William POMMERY
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to EP20732582.0A priority Critical patent/EP4031762A1/fr
Publication of WO2021008786A1 publication Critical patent/WO2021008786A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/1042Intake manifolds characterised by provisions to avoid mixture or air supply from one plenum chamber to two successively firing cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0462Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0475Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly the intake air cooler being combined with another device, e.g. heater, valve, compressor, filter or EGR cooler, or being assembled on a special engine location
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10052Plenum chambers special shapes or arrangements of plenum chambers; Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10262Flow guides, obstructions, deflectors or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10268Heating, cooling or thermal insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10288Air intakes combined with another engine part, e.g. cylinder head cover or being cast in one piece with the exhaust manifold, cylinder head or engine block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4235Shape or arrangement of intake or exhaust channels in cylinder heads of intake channels
    • F02F1/4242Shape or arrangement of intake or exhaust channels in cylinder heads of intake channels with a partition wall inside the channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine.
  • the present invention also relates to a motor vehicle equipped with a
  • heat engine with a device for indirect injection of gas or fuel into an air intake circuit of said engine.
  • the present invention relates more particularly to an arrangement for fixing an intake air distributor against a combustion engine cylinder head.
  • the vehicle equipped with a heat engine also called internal combustion comprises an engine compartment in which is housed a powertrain comprising the engine and its elements or accessories, the dimensions of which are increasingly reduced leading to research into 'improvements in terms of the compactness of the engine and its components or accessories.
  • a heat engine comprises, in a known manner, a cylinder block on which a cylinder head is mounted.
  • a cylinder head In the cylinder head are hollowed out air intake ducts which lead to the cylinders.
  • the cylinder head has a face called “intake” against which is fixed an intake distributor capable of directing air or intake gases towards the intake ducts hollowed out in the cylinder head and connected with the cylinders, and a face called “exhaust” against which is fixed an exhaust manifold to recover the burnt gases from combustion in the cylinders of the engine.
  • the air and / or the intake gases are directed to the intake manifold having been previously compressed when passing a compressor which is for example the compression stage of a turbocharger.
  • a cooler stage is installed in the air intake circuit upstream of the cylinder head according to the direction of circulation of the intake air.
  • This re-cooler stage comprises, for example, an air / water exchanger by which the hot compressed air transfers part of its heat to water or to a cooling liquid.
  • the heat exchanger is housed in a casing which is extended downstream by a flange fixing according to the direction of circulation of the intake air, forming a chamber with for example a recess in the cylinder head. Said chamber is part of an intake distributor plenum.
  • the casing is fixed against the intake face of the cylinder head with the flange.
  • the fixing of this casing must meet strong mechanical stresses which require parts of great rigidity in metallic material such as steel or steel alloy.
  • said housing is fixed in an oblique direction relative to the intake face of the cylinder head. Said intake face extends substantially in a vertical plane.
  • Indirect injection of liquid fuel or gas engines include a
  • Injection is generally carried out upstream of the engine cylinders into air intake ducts hollowed out in the cylinder head.
  • fuel or gas injection ducts are drilled from an inlet face of the cylinder head to open obliquely into an air inlet channel.
  • the fuel is thus mixed with the intake air before it is introduced into a combustion chamber at the opening of an access controlled by an intake valve.
  • Said combustion chamber is delimited by the longitudinal wall of the cylinder, a piston and a lower wall of the cylinder head.
  • the burnt gases in said chamber are expelled via exhaust ducts to an exhaust circuit. Access to the exhaust ducts is controlled by an exhaust valve.
  • the openings and closings of the accesses of the intake and exhaust ducts can cause backdrafts of the air flow at the intake. Said repressions are known under the name of “back-flow” in English. Said back-ups do not affect all of the intake ducts at the same time and can occur randomly in one of the intake ducts.
  • the publication FR2884875-A1 provides a scavenging duct opening into the combustion chamber and connected to the air intake circuit and controlled by a scavenging valve arranged upstream according to the direction of air flow from admission.
  • One drawback relates to the opening system of the purge valve and its arrangement.
  • the object of the invention to remedy these problems and the object of the invention is an arrangement for fixing a heat exchanger to an intake wall of a cylinder head of a heat engine with indirect injection fuel or gas, said exchanger is connected upstream to an air intake circuit and downstream to intake ducts hollowed out in the cylinder head, said arrangement allows aeraulic insulation of each of the intake ducts and to contain the gas discharges at the intake.
  • the present invention relates to an arrangement for fixing an air intake circuit to an intake wall of a cylinder head of a heat engine with indirect fuel injection.
  • the present injection relates more particularly to an arrangement for fixing the air intake circuit of a heat engine with indirect fuel injection
  • a cylinder head in which are hollowed out tubular intake ducts which open out on one side into a insertion of the intake wall of the cylinder head and on the opposite side into a combustion chamber delimited by a cylinder, a piston and the lower wall of the cylinder head, said cylinder head comprising at least one injection channel per cylinder capable of accommodating a fuel injector opening obliquely into an intake channel,
  • Said intake circuit comprising a heat exchanger fixed to the wall
  • the depression of the cylinder head is divided into cavities by an-minus a partition wall so that a combustion chamber communicates with a single cavity, and in that the exchanger is divided into compartments longitudinal, each of said compartments is connected with a single cavity of the cylinder head.
  • the depression of the cylinder head covered by the mounting flange and the heat exchanger forms an air intake chamber in the engine called the intake plenum.
  • this chamber is divided into at least one cavity which
  • each of the longitudinal compartments is connected with a single cavity and therefore with a single separate combustion chamber. This gives a separate air flow per station or per combustion chamber to isolate the risk of backflow per station and not impact neighboring stations.
  • the fixing flange has an air passage section divided into passage cells, each of said cells connecting a single longitudinal compartment of the exchanger to a single cavity of the cylinder head.
  • the fixing flange has an air passage section which is divided into at least one passage cell, each of said at-least one passage cell connecting a single distinct longitudinal compartment to a single distinct cavity of the cylinder head to form a continuity of the air flow.
  • the at-least one partition wall is driven into the recess of the cylinder head.
  • At least one partition wall is embedded in
  • the depression of the cylinder head and the shape of said partition wall is substantially complementary to the shape of the depression of the cylinder head to allow aeraulic insulation of the cavity.
  • the at-least one partition wall is connected to the wall of the depression of the
  • an expandable foam gasket is arranged between the edge of the partition wall and the depression of the cylinder head to improve the airtightness of the cavity.
  • the at least one partition wall is part of a single piece with the fixing flange.
  • the partition wall is part of a single piece with the fixing flange and allows ease of assembly of the whole.
  • -a peripheral seal is arranged between the fixing flange and the inlet wall of the cylinder head.
  • a peripheral seal is installed between the cylinder head and the mounting flange to form an aeraulic passage seal for the air flow passing through the passage cell of the mounting flange and the cylinder head cavity.
  • the fixing flange comprises an orifice passing through a bearing wall of said flange against the intake wall of the cylinder head, said orifice is vis-à-vis the injection duct of the cylinder head and suitable to house an injector.
  • the fixing flange comprises an orifice passing through a bearing wall of said flange against the intake wall of the cylinder head, said orifice is opposite the injection duct pierced in the cylinder head, in order to facilitate the fitting of the fuel injector.
  • the fixing flange has an air passage section divided into passage cells, each of said cells connecting a single longitudinal compartment of the exchanger to a single cavity of the cylinder head.
  • the fixing flange has a passage section
  • said section is divided into passage cells isolated aeraulically from each other by walls and each of the cells connecting a single longitudinal compartment to a single cavity in the cylinder head .
  • the passage is continuous and substantially rectilinear.
  • the intake channel and the cavity in the cylinder head, the passage cell of the flange of fixing, the longitudinal duct of the exchanger forms an air-insulated air intake duct and connected to a single combustion chamber.
  • the inlet channel and the cavity in the cylinder head as well as the passage cell of the flange and the longitudinal duct of the exchanger form a passage for an air flow along a substantially rectilinear axis from the upstream inlet of the exchanger j us that at an upstream end of the intake duct pierced in the cylinder head, said passage being ventilated from other neighboring passages.
  • the longitudinal compartment of the exchanger is extended upstream by boundary walls surrounding the entrance to said compartment.
  • the longitudinal compartment of the exchanger is extended upstream in the direction of air flow by boundary walls to increase the length of the intake duct.
  • Said boundary walls form an inlet flange of the exchanger fixed against said exchanger.
  • the walls and boundary form an attached part fixed upstream of the exchanger.
  • the boundary walls are part of an inlet gas inlet horn in the exchanger.
  • the boundary walls are part of an inlet horn covering the upstream part of the exchanger to facilitate the assembly of the air intake circuit.
  • the inlet duct and the cavity in the cylinder head, the passage cell of the fixing flange, the longitudinal duct of the exchanger and the boundary walls form an intake duct isolated aeraulically and connected to a single combustion chamber.
  • the air intake duct is therefore formed by the
  • the distance between the intersection of the axis of the injection duct with the median axis of the intake duct, and the upstream end of the intake duct is greater than a length threshold.
  • the length of the intake duct is greater than a length threshold to mitigate the effects of gas reflux and relate to only a single intake duct.
  • FIG.l is a schematic view of an air intake circuit attached to an engine cylinder head.
  • FIG.2 is a schematic cross-sectional view of a cylinder head with an exchanger attachment according to the invention.
  • FIG.3 is a schematic view of the cylinder head with a fixing flange of
  • FIG.4 is a schematic view of an exchanger according to the invention.
  • FIG.5 is a schematic view of an exchanger inlet horn according to the invention.
  • the vertical axis is an axis orthogonal to a horizontal plane which may be the plane of contact between the cylinder head and the cylinder block.
  • a vehicle heat engine is supplied with air by an intake circuit.
  • the air is captured from the front face of the vehicle and leads to an intake face of the engine, in particular of a cylinder head of said engine.
  • the air can pass, for example, through an air filter, through a compression stage which may be a compressor of a turbo-compressor.
  • a heat exchanger 11 generally of the water / air type by which the air transfers part of its heat to a water-based coolant.
  • the air is brought into an intake distributor 14 which is fixed against an intake wall 12 of the cylinder head of the engine, and which comprises a plenum or distribution chamber connected to combustion chambers 16 of the engine via intake channels 17 hollowed out in the cylinder head.
  • intake distributor 14 which is fixed against an intake wall 12 of the cylinder head of the engine, and which comprises a plenum or distribution chamber connected to combustion chambers 16 of the engine via intake channels 17 hollowed out in the cylinder head.
  • Each of said combustion chambers 16 is delimited by a cylinder hollowed out in a cylinder block, a piston which is movable in sliding along the axis of the cylinder and a lower face of the cylinder head.
  • Thermal engines with directional injection are known in which a fuel injector sprays fuel directly into the combustion chamber. This type of engine requires a high power fuel injector to cope with the high pressures in the combustion chamber.
  • Indirect injection heat engines are known in which an injector injects fuel into the upstream air intake circuit in the direction of air circulation of the combustion chamber. Fuel is not injected into the cylinder but upstream in an intake channel or in the distributor so that everything mixes homogeneously. This allows for better combustion and therefore less fine particles which is one of the problems of modern engines. The fuel vaporizes under the effect of heat and burns optimally when it reaches the combustion chamber.
  • Our invention relates to a heat engine with indirect injection.
  • the fuel is injected by an injector into an air intake channel 17, more precisely, the injector is housed in an injection channel which opens into an air intake channel of the cylinder head 15.
  • the axis XI of the injection channel is oblique with respect to the axis X2 of the intake channel, in particular at the intersection of said duct with said channel.
  • the plenum is formed by a depression 20 in the wall
  • Said indentation is divided by at-least one partition wall 18 into at-least one intake cavity 19 which is connected to a single combustion chamber 16 by the intake channels, said combustion chamber 16 n ' is connected to only one cavity 19.
  • the couple intake cavity, combustion chamber
  • the air intake for the other combustion chambers is done in a similar way.
  • the partition wall 18 is preferably of complementary shape to the profile of G recess 20 in the cylinder head.
  • An expandable foam gasket may be arranged between the edge of said partition wall 18 and the recess 20 in order to ensure air tightness.
  • the partition wall 18 extends parallel to a plane formed by the axis X3 of inlet air flow and a vertical axis. Said partition wall 18 is pressed into the recess 20 of the cylinder head.
  • Said fixing flange surrounds a substantially rectangular air passage section 51 by a lower wall 52, an upper wall 53 facing each other and two side walls 54 orthogonal to said lower and upper walls.
  • the side walls 54 are trapezoidal in shape to allow oblique fixing of the heat exchanger.
  • the top wall 53 is oblique relative to the bottom wall 52 forming a convergent to accelerate the flow of intake air.
  • the flange comprises a peripheral fixing sidewalk 55 which bears against the inlet wall 12 of the cylinder head.
  • the fixing sidewalk are arranged through holes to receive fixing screws which are driven into the wall cylinder head intake.
  • the fixing flange 50 comprises an orifice 59 passing through a wall supporting said flange against the intake wall 12 of the cylinder head said orifice is opposite the injection pipe of the cylinder head.
  • the orifice is intended to allow the attachment of an injector.
  • the flange comprises internal partitions 56 substantially parallel to the side walls, said partitions 56 are in the extension of the separation walls 18 sunk into the recess of the cylinder head.
  • the partition walls 18 are part of the flange of
  • the partition wall 18 sunk into the recess 20 and the partition wall 56 are made from one piece material. This makes it possible to reduce the number of parts to be assembled and to facilitate the assembly of the air intake circuit.
  • the internal partitions 56 separating the fixing flange divide the air passage space 70 into passage cells 71, each of said cells is connected to a single intake cavity 19 of the cylinder head and therefore to a single combustion chamber 16. More precisely, the intake cavity 19 of the cylinder head is in the substantially rectilinear extension of the passage cell 71 of the flange.
  • an aeraulic seal is disposed on the one hand between the fixing flange 50 and the intake wall 12 of the cylinder head 15. More precisely, the upstream edges and the downstream edges of the cells passage 71 are surrounded by an aeraulic seal (not shown) to ensure aeraulic tightness when the flange 50 passes.
  • the heat exchanger 11 is fixed to the fixing flange on the side opposite the cylinder head.
  • the heat exchanger is formed by a multitude of longitudinal air passage ducts 80 which extend parallel to the air flow axis X3.
  • Figure 4 shows the longitudinal ducts 81 whose passage section is triangular.
  • Said longitudinal conduits can also be tubular with a circular base.
  • the heat exchanger is divided into longitudinal compartments 81, for example by assigning a number of longitudinal ducts per compartment.
  • each longitudinal compartment 81 opens into a single passage cell 71 of the fixing flange.
  • the longitudinal compartment of the exchanger with the passage cell 71 associated with the fixing flange, the intake cavity 19 connected to said passage cell and the air intake channel 17 in the cylinder head form a duct of '' aeraulically isolated admission, in particular other neighboring intake ducts, and connected to a single combustion chamber 16.
  • the elements constituting said intake duct are in the extension along the substantially rectilinear axis X3 for air circulation.
  • each of the longitudinal compartments can be extended upstream by a boundary wall 82 to delimit the air passage section of said compartment 81.
  • Said boundary wall therefore surrounds the inlet section of the compartment 81.
  • the height of the boundary wall can be fixed to alleviate the gas discharge problems in the intake duct.
  • the intake duct is then composed successively of the elements which are the boundary wall 82, the longitudinal compartment 81 of the exchanger, the passage cell 71 of the fixing flange, the intake cavity 19 of the cylinder head and the intake channel 17 of the cylinder head, to bring the intake air from the inlet horn to the combustion chamber while providing ventilation insulation.
  • the boundary wall 82 can be fixed to the heat exchanger, for example by clipping.
  • the boundary wall is part of a horn
  • inlet 83 covering the overall inlet of the exchanger to facilitate the assembly of the air intake circuit.
  • an intake duct length greater than a length threshold depending on the characteristics of the engine and of the combustion chamber, said length is delimited downstream by the point of intersection of the axis of the injection duct with the median axis of the intake duct.
  • Said length threshold is of the order of 100 mm, in a range between 70 and 140 mm for certain known heat engines.
  • the distance between the intersection of the axis of the injection duct XI with the axis X2 of the intake channel, and G upstream end of the intake duct is greater than said length threshold .
  • the intake duct formed from the various elements of the intake circuit makes it possible to bring in the intake air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Agencement de fixation de circuit d'admission d'air de moteur thermique à injection indirecte de carburant comprenant une culasse (15) dans laquelle sont creusés des canaux d'admission (17) qui débouchent d'un côté dans un enfoncement (20) de la paroi d'admission (12) de la culasse et du côté opposé dans une chambre à combustion (16), ladite culasse comprenant au moins un canal d'injection par cylindre apte à loger un injecteur de carburant et débouchant de façon oblique dans un canal d' admission (17), Ledit circuit d'admission comportant un échangeur de chaleur (11) fixé à la paroi d'admission de la culasse de façon oblique grâce à une bride de fixation (50), Caractérisé en ce que l'enfoncement (20) de la culasse est divisé en cavités d'admission (19) par au-moins une paroi de séparation (18), chacune desdites cavités communiquant avec une unique chambre à combustion (16) et en ce que l'échangeur (11) est divisé en compartiments longitudinaux (81), chacun desdits compartiments est connecté avec une unique cavité d'admission (19) de la culasse.

Description

Description
Titre de G invention : Répartiteur avec séparation de flux intégrée
Domaine technique de l’invention
[0001] La présente invention concerne un moteur à combustion interne.
[0002] La présente invention concerne également un véhicule automobile équipé d’un
moteur thermique avec un dispositif d’injection indirecte de gaz ou de carburant dans un circuit d’admission d’air dudit moteur.
[0003] La présente invention concerne plus particulièrement un agencement de la fixation d’un répartiteur d’air d’admission contre une culasse de moteur thermique.
Etat de la technique
[0004] Un véhicule automobile connaît de plus en plus de contraintes de réduction
d’ encombrement de ses équipements pour des raisons d’esthétique ou de confort des passagers. En particulier, le véhicule équipé d’un moteur thermique appelé aussi à combustion interne comporte un compartiment moteur dans lequel est logé un groupe motopropulseur comprenant le moteur et ses éléments ou accessoires, dont les di mensions sont de plus en plus réduites entraînant des recherches d’ améliorations en termes de compacité du moteur et de ses éléments ou accessoires.
[0005] Ainsi il est prévu d’optimiser l’espace du compartiment moteur d’une part en
réduisant le volume du moteur et de ses éléments ou accessoires et d’ autre part en agençant de façon astucieuse le moteur et les accessoires entre eux.
[0006] Un moteur thermique comprend de manière connue un carter-cylindres sur lequel est monté une culasse. Dans ladite culasse sont creusés des conduits d’admission d’air qui mènent à des cylindres. La culasse présente une face dite « admission » contre laquelle est fixé un répartiteur d’admission apte à diriger de l’air ou des gaz d’amission vers les conduits d’admission creusés dans la culasse et connectés avec les cylindres, et une face dite « échappement » contre laquelle est fixé un collecteur d’échappement pour récupérer les gaz brûlés issus de la combustion dans les cylindres du moteur.
[0007] L’air et/ou les gaz d’admission sont dirigés vers le répartiteur d’admission en ayant été au préalable compressés au passage d’un compresseur qui est par exemple l’étage de compression d’un turbocompresseur. Afin d’améliorer l’efficacité et le rendement du moteur, l’air d’admission est refroidi avant son admission dans les cylindres du moteur. Ainsi un étage de refroidisseur est installé dans le circuit d’admission d’air en amont de la culasse selon le sens de circulation de l’air d’admission. Cet étage de re froidisseur comprend par exemple un échangeur air/eau par lequel l’air compressé chaud cède une partie de sa chaleur à de l’eau ou à un liquide de refroidissement. L’échangeur de chaleur est logé dans un carter qui est prolongé en aval par une bride de fixation selon le sens de circulation de l’air d’admission, formant une chambre avec par exemple un renfoncement de la culasse. Ladite chambre est partie d’un plénum de répartiteur d’ admission.
[0008] Pour réduire le poids du moteur, le carter est fixé contre la face d’ admission de la culasse grâce à la bride. La fixation de ce carter doit répondre à des contraintes mé caniques fortes qui nécessitent des pièces de grande rigidité en matériau métallique comme de l’acier ou d’ alliage d’ acier.
[0009] De plus, pour optimiser l’occupation de l’espace du compartiment moteur, ledit carter est fixé selon une direction oblique par rapport à la face d’ admission de la culasse. Ladite face d’admission s’étend sensiblement selon un plan vertical.
[0010] Les moteurs à injection indirecte de carburant liquide ou de gaz comportent un
conduit d’injection de carburant liquide ou de gaz dans le circuit d’admission d’ air. L’injection est généralement effectuée en amont des cylindres du moteur dans des conduits d’admission d’air creusés dans la culasse.
[0011] Ainsi des conduits d’injection de carburant ou de gaz sont percés depuis une face d’admission de la culasse pour déboucher de façon oblique dans un canal d’admission d’air. Le carburant est ainsi mélangé avec l’air d’admission avant son introduction dans une chambre de combustion à l’ouverture d’un accès contrôlé par une soupape d’admission. Ladite chambre à combustion est délimitée par la paroi longitudinale du cylindre, un piston et une paroi inférieure de la culasse.
[0012] Les gaz brûlés dans ladite chambre sont expulsés via des conduits d’échappement vers un circuit d’échappement, L’accès des conduits d’échappement est contrôlé par une soupape d’échappement.
[0013] Les ouvertures et fermetures des accès des conduits d’admission et d’échappement peuvent entraîner des refoulements des flux d’air à l’admission. Lesdits refoulements sont connus sous le nom de « back-flow » en anglais. Lesdits refoulements ne concernent pas l’ensemble des conduits d’admission en même temps et peuvent se produire de manière aléatoire dans une des conduits d’admission.
[0014] La publication FR2884875-A1 propose un conduit de balayage débouchant dans la chambre à combustion et connecté au circuit d’admission d’air et contrôlé par une soupape de balayage agencée en amont selon le sens de circulation de l’air d’admission.
[0015] Un inconvénient concerne le système d’ouverture de la soupape de balayage et son agencement.
[0016] Le but de l’invention de remédier à ces problèmes et l’objet de l’invention est un agencement de fixation d’un échangeur de chaleur à une paroi d’admission d’une culasse de moteur thermique avec une injection indirecte de carburant ou de gaz, ledit échangeur est connecté en amont à un circuit d’admission d’air et en aval à des conduits d’admission creusés dans la culasse, ledit agencement permet une isolation aéraulique de chacun des conduits d’ admission et de contenir les refoulements de gaz à l’admission.
Présentation de l’invention
[0017] La présente invention concerne un agencement de fixation d’un circuit d’admission d’air à une paroi d’admission d’une culasse d’un moteur thermique à injection indirecte de carburant.
[0018] La présente injection concerne plus particulièrement un Agencement de fixation de circuit d’admission d’air de moteur thermique à injection indirecte de carburant comprenant une culasse dans laquelle sont creusés des conduits tubulaires d’admission qui débouchent d’un côté dans un enfoncement de la paroi d’admission de la culasse et du côté opposé dans une chambre à combustion délimitée par un cylindre, un piston et la paroi in férieure de la culasse, ladite culasse comprenant au moins un canal d’injection par cylindre apte à loger un injecteur de carburant et débouchant de façon oblique dans un canal d’ admission,
[0019] Ledit circuit d’admission comportant un échangeur de chaleur fixé à la paroi
d’admission de la culasse grâce à une bride de fixation,
[0020] caractérisé en ce que l’enfoncement de la culasse est divisé en cavités par an-moins une paroi de séparation de manière qu’une chambre à combustion communique avec une unique cavité, et en ce que l’échangeur est divisé en compartiments longitudinaux, chacun desdits compartiments est connecté avec une unique cavité de la culasse.
[0021] De manière générale, l’enfoncement de la culasse recouverte par la bride de fixation et l’échangeur de chaleur forme une chambre d’admission d’air dans le moteur appelée plénum d’admission.
[0022] De manière avantageuse, cette chambre est divisée en au moins une cavité qui
communique avec une seule chambre à combustion spécifique, et distincte, une autre cavité est ainsi connectée à une chambre à combustion distincte, de même l’échangeur est divisé en au-moins un compartiment longitudinal, chacun des compartiments longi tudinaux est connecté avec une unique cavité et donc avec une unique chambre à combustion distincte. On obtient ainsi un flux d’ air distinct par poste ou par chambre à combustion afin d’isoler le risque de refoulement par poste et ne pas impacter les postes voisins.
[0023] Selon d’autres caractéristiques de l’invention :
[0024] -la bride de fixation comporte une section de passage d’air divisée en cellules de passage, chacune desdites cellules reliant un unique compartiment longitudinal de l’échangeur à une unique cavité de la culasse.
[0025] De manière avantageuse, la bride de fixation comporte une section de passage d’air qui est divisée en au-moins une cellule de passage, chacune desdites au-moins une cellule de passage reliant un unique compartiment longitudinal distinct à une unique cavité distincte de la culasse pour former une continuité du flux d’ air.
[0026] -la au-moins une paroi de séparation est enfoncée dans l’enfoncement de la culasse.
[0027] De manière avantageuse, au-moins une paroi de séparation est enfoncée dans
l’enfoncement de la culasse et la forme de ladite parois de séparation est sensiblement complémentaire à la forme de l’enfoncement de la culasse pour permettre une isolation aéraulique de la cavité.
[0028] -la au-moins une paroi de séparation est reliée à la paroi de l’enfoncement de la
culasse par un joint moussé et expansible.
[0029] De manière avantageuse, un joint de mousse expansible est disposé entre la bordure de la paroi de séparation et l’enfoncement de la culasse pour améliorer l’étanchéité aé raulique de la cavité.
[0030] -la au-moins une paroi de séparation est partie d’ une seule pièce avec la bride de fixation.
[0031] De manière avantageuse, la paroi de séparation est partie d’une seule pièce avec la bride de fixation et permet une facilité d’ assemblage de l’ensemble.
[0032] -un joint périphérique est disposé entre la bride de fixation et la paroi d’ admission de la culasse.
[0033] De manière avantageuse, un joint périphérique est installé entre la culasse et la bride de fixation pour former une étanchéité aéraulique de passage pour le flux d’air traversant la cellule de passage de la bride de fixation et la cavité de la culasse.
[0034] -la bride de fixation comprend un orifice traversant une paroi d’appui de ladite bride contre la paroi d’admission de la culasse, ledit orifice est en vis-à-vis avec le conduit d’injection de la culasse et apte à loger un injecteur.
[0035] De manière avantageuse, la bride de fixation comporte un orifice traversant une paroi d’appui de ladite bride contre la paroi d’admission de la culasse, ledit orifice est en vis- à-vis avec le conduit d’injection percé dans la culasse, afin de faciliter la mise en place de G injecteur de carburant.
[0036] -la bride de fixation comporte une section de passage d’air divisée en cellules de passage, chacune desdites cellules reliant un unique compartiment longitudinal de l’échangeur à une unique cavité de la culasse.
[0037] De manière avantageuse, la bride de fixation présente une section de passage
transversale orthogonale à la direction d’écoulement du flux d’ air, ladite section est partagée en cellules de passage isolées aérauliquement l’une de l’autre par des parois et chacune des cellules reliant un unique compartiment longitudinal à une unique cavité dans la culasse. Le passage est continu et sensiblement rectiligne.
[0038] -le canal d’admission et la cavité dans la culasse, la cellule de passage de la bride de fixation, le conduit longitudinal de l’échangeur forment un conduit d’admission d’air isolé aérauliquement et connecté à une unique chambre à combustion.
[0039] De manière avantageuse, le canal d’admission et la cavité dans la culasse ainsi que la cellule de passage de la bride et le conduit longitudinal de l’échangeur forment un passage d’un flux d’air selon un axe sensiblement rectiligne depuis l’entrée amont de 1’ échangeur j us qu’ à une extrémité amont du conduit d’admission percé dans la culasse, ledit passage étant isolé aérauliquement des autres passages voisins.
[0040] -le compartiment longitudinal de l’échangeur est prolongé en amont par des parois de bornage entourant l’entrée dudit compartiment.
[0041] De manière avantageuse, le compartiment longitudinal de l’échangeur est prolongé en amont selon le sens d’écoulement de l’air par des parois de bornage pour accroître la longueur du conduit d’admission.
[0042] -lesdites parois de bornage forment une bride d’entrée de l’échangeur fixée contre ledit échangeur.
[0043] De manière avantageuse, les parois e bornage forment une pièce rapportée fixée en amont de l’échangeur.
[0044] -les parois de bornage sont partie d’une corne d’entrée de gaz d’ admission dans l’échangeur.
[0045] De manière avantageuse, les parois de bornage sont partie d’une corne d’entrée re couvrant la partie amont de l’échangeur pour faciliter l’assemblage du circuit d’admission d’ air.
[0046] -le conduit d’ admission et la cavité dans la culasse, la cellule de passage de la bride de fixation, le conduit longitudinal de l’échangeur et les parois de bornage forment un conduit d’admission isolé aérauliquement et connecté à une unique chambre à combustion.
[0047] De manière avantageuse, le conduit d’admission d’air est donc formé par la
succession d’ amont en aval des parois de bornage, du compartiment longitudinal de l’échangeur, de la cellule de passage de la bride de fixation, de la cavité et du canal d’admission dans la culasse, augmentant ainsi la longueur du conduit d’admission.
[0048] -la distance entre l’intersection de l’axe du conduit d’injection avec l’axe médian du conduit d’admission, et l’extrémité amont du conduit d’admission est supérieure à un seuil de longueur.
[0049] De manière avantageuse, la longueur du conduit d’admission est supérieure à un seuil de longueur pour atténuer les effets d’un reflux de gaz et en concerner qu’un seul conduit d’admission.
Brève description des figures
[0050] D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés sur les dessins annexés, dans lesquels :
[0051] [fig.l] est une vue schématique de circuit d’admission d’air fixé à une culasse de moteur.
[0052] [fig.2] est une vue schématique de coupe transversale d’une culasse avec une fixation de l’échangeur selon l’invention.
[0053] [fig.3] est une vue schématique de la culasse avec une bride de fixation de
l’échangeur selon l’invention.
[0054] [fig.4] est une vue schématique d’un échangeur selon l’invention.
[0055] [fig.5] est une vue schématique d’une corne d’entrée d’échangeur selon l’invention.
Description détaillée des figures
[0056] Dans la description qui va suivre, des chiffres de référence identiques désignent des pièces identiques ou ayant des fonctions similaires.
[0057] L’axe vertical est un axe orthogonal à un plan horizontal qui peut être le plan de contact entre la culasse te le carter-cylindres.
[0058] De manière connue, un moteur thermique de véhicule est alimenté en air par un circuit d’admission. Ainsi de l’air est capté depuis la face avant du véhicule et conduit jusqu’à une face d’admission du moteur, notamment d’une culasse dudit moteur. L’air peut passer par exemple par un filtre à air, par un étage de compression qui peut-être un compresseur d’un turbo-compresseur.
[0059] Selon les figures 1 et 2, l’air d’admission est ensuite refroidi pour assurer une
meilleure efficacité du moteur, en passant par un échangeur de chaleur 1 1 géné ralement de type eau/air par lequel l’air transfère une partie de sa chaleur à un liquide de refroidissement à base d’eau.
[0060] En sortie de l’échangeur, l’air est amené dans un répartiteur d’admission 14 qui est fixé contre une paroi d’admission 12 de la culasse du moteur, et qui comprend un plénum ou chambre de répartition connecté à des chambres de combustion 16 du moteur via des canaux d’admission 17 creusés dans la culasse. Chacune desdites chambres de combustion 16 est délimitée par un cylindre creusé dans un carter- cylindres, un piston qui est mobile en coulissement selon l’axe du cylindre et une face inférieure de la culasse.
[0061] On connaît les moteurs thermiques à injection direction dans lesquels un injecteur de carburant pulvérise du carburant directement dans la chambre à combustion. Ce type de moteur nécessite un injecteur de carburant de forte puissance pour faire face aux pressions élevées dans la chambre à combustion.
[0062] On connaît les moteurs thermiques à injection indirecte dans lesquels un injecteur injecte du carburant dans le circuit d’admission d’air en amont selon le sens de cir culation d’air de la chambre à combustion. Le carburant n’est pas injecté dans le cylindre mais en amont dans un canal d’admission ou dans le répartiteur pour que le tout se mélange de manière homogène. Cela permet d'avoir une meilleure combustion et donc moins de particules fines qui est un des problèmes des moteurs modernes. Le carburant se vaporise sous l'effet de la chaleur et brûle de manière optimale une fois arrivé dans la chambre de combustion.
[0063] Notre invention concerne un moteur thermique à injection indirecte. Le carburant est injecté par un injecteur dans un canal d’admission d’air 17, plus précisément, l’injecteur est logé dans un canal d’injection qui débouche dans un canal d’admission d’air de la culasse 15. L’axe XI du canal d’injection est oblique par rapport à l’axe X2 du canal d’ admission, notamment à l’intersection dudit conduit avec ledit canal.
[0064] Selon l’invention, le plénum est formé par un enfoncement 20 de la paroi
d’admission 12 de la culasse 15 recouvert par le répartiteur d’admission. Les canaux d’admission 17 creusés dans la culasse débouchent donc dans renfoncement 20.
[0065] Ledit enfoncement est divisé par au-moins une paroi de séparation 18 en au-moins une cavité d’admission 19 qui est connectée à une unique chambre de combustion 16 par les canaux d’ admission, ladite chambre à combustion 16 n’est connectée qu’à une seule cavité 19. De façon claire, le couple (cavité d’admission, chambre à combustion) est unique.
[0066] Pour faciliter la compréhension, la description est faite sur une chambre à
combustion ainsi qu’au passage d’air menant à cette chambre à combustion.
L’admission en air pour les autres chambres à combustion est effectuée de manière semblable.
[0067] La paroi de séparation 18 est de manière préférentielle de forme complémentaire au profil de G enfoncement 20 dans la culasse. Un joint en mousse expansible peut être disposé entre la bordure de ladite paroi de séparation 18 et l’enfoncement 20 afin d’assurer une étanchéité aéraulique. La paroi de séparation 18 s’étend parallèlement à un plan formé par l’axe X3 d’écoulement de l’air d’admission et un axe vertical. Ladite paroi de séparation 18 est enfoncée dans l’enfoncement 20 de la culasse.
[0068] L’échangeur de chaleur llest fixé contre la face d’admission de la culasse par une bride de fixation 50. Ladite bride de fixation entoure une section de passage d’ air 51 sensiblement rectangulaire par une paroi inférieure 52, une paroi supérieure 53 en vis- à-vis et deux parois latérales orthogonales 54 auxdites parois inférieure et supérieure. Les parois latérales 54 sont en forme de trapèze pour permettre une fixation oblique de l’échangeur de chaleur. La paroi supérieure 53 est oblique par rapport à la paroi in férieure 52 formant un convergent pour accélérer le flux d’air d’admission.
[0069] La bride comprend un trottoir périphérique 55 de fixation qui est en appui contre la paroi d’ admission 12 de la culasse. Dans le trottoir de fixation sont aménagés des orifices traversant pour recevoir des vis de fixation qui sont enfoncées dans la paroi d’admission de la culasse.
[0070] La bride de fixation 50 comprend un orifice traversant 59 une paroi d’appui de ladite bride contre la paroi d’admission 12 de la culasse ledit orifice est en vis-à-vis avec le conduit d’injection de la culasse. L’orifice est destiné à permettre la fixation d’un injecteur.
[0071] La bride comprend des cloisons intérieures de séparation 56 sensiblement parallèles aux parois latérales, lesdites cloisons 56 sont dans le prolongement des parois de sé paration 18 enfoncées dans l’enfoncement de la culasse.
[0072] De manière préférentielle, les parois de séparation 18 sont parties de la bride de
fixation pour faciliter la mise en place et réduire le nombre de pièces. De manière claire, la paroi de séparation 18 enfoncée dans l’enfoncement 20 et la cloison de sé paration 56 sont issue de matière en une seule pièce. Cela permet de réduire le nombre de pièces à assembler et de faciliter le montage du circuit d’admission d’ air.
[0073] Les cloisons intérieures 56 de séparation de la bride de fixation divisent l’espace de passage 70 d’air en cellules de passage 71, chacune desdites cellules est connectée à une unique cavité d’ admission 19 de la culasse et donc à une unique chambre de combustion 16. Plus précisément la cavité d’admission 19 de la culasse est dans le pro longement sensiblement de façon rectiligne de la cellule de passage 71 de la bride.
[0074] De manière préférentielle, un joint d’étanchéité aéraulique est disposé d’une part entre la bride de fixation 50 et la paroi d’admission 12 de la culasse 15. Plus pré cisément, les bordures amont et les bordures aval des cellules de passage 71 sont entourées par un joint aéraulique (non présenté) pour assurer une étanchéité aéraulique au passage de la bride 50.
[0075] L’échangeur de chaleur 11 est fixé à la bride de fixation du côté opposé à la culasse.
L’échangeur de chaleur est formé par une multitude de conduits longitudinaux 80 de passage d’air qui s’étendent parallèlement à l’axe d’écoulement X3 de l’air.La figure 4 montre les conduits longitudinaux 81 dont la section de passage est triangulaire.
Lesdits conduits longitudinaux peuvent aussi être tubulaire de base circulaire.
[0076] Selon l’invention, l’échangeur de chaleur est divisé en compartiments longitudinaux 81, par exemple en affectant un nombre de conduits longitudinaux par compartiment. On peut par exemple agencer une cloison qui s’étend selon l’axe dudit échangeur 11 en amont ou en aval de l’échangeur pour partager le nombre de conduits longitudinaux 80 en compartiments longitudinaux 81.
[0077] De manière préférentielle, chaque compartiment longitudinal 81 débouche dans une unique cellule de passage 71 de la bride de fixation. Ainsi le compartiment longitudinal de l’échangeur avec la cellule de passage 71 associée de la bride de fixation, la cavité d’admission 19 connectée à ladite cellule de passage et le canal d’admission d’air 17 dans la culasse forment un conduit d’admission isolé aérauliquement notamment des autres conduits d’admission voisins, et connecté à une unique chambre de combustion 16. Les éléments constituant ledit conduit d’admission sont dans le prolongement selon l’axe X3 sensiblement rectiligne de circulation d’ air.
[0078] Selon un mode de réalisation, chacun des compartiments longitudinaux peut être prolongé en amont par une paroi de bornage 82 pour délimiter la section de passage d’air dudit compartiment 81. Ladite paroi de bornage entoure donc la section d’entrée du compartiment 81. La hauteur de la paroi de bornage peut être fixée pour pallier les problèmes de refoulement de gaz dans le conduit d’ admission.
[0079] Le conduit d’admission est alors composé successivement des éléments qui sont la paroi de bornage 82, le compartiment longitudinal 81 de l’échangeur, la cellule de passage 71 de la bride de fixation, la cavité d’admission 19 de la culasse et le canal d’admission 17 de la culasse, pour amener l’air d’admission depuis la corne d’entrée jusqu’à la chambre de combustion en assurant une isolation aéraulique.
[0080] La paroi de bornage 82 peut être fixée à l’échangeur de chaleur par exemple par clipsage.
[0081] Selon un autre mode de réalisation, la paroi de bornage est partie d’une corne
d’entrée 83 recouvrant l’entrée globale de l’échangeur pour faciliter l’assemblage du circuit d’admission d’air.
[0082] Pour atténuer les effets du refoulement de gaz dans le conduit d’ admission, il est connu de disposer d’une longueur de conduit d’admission supérieure à un seuil de longueur dépendant des caractéristiques du moteur et de la chambre à combustion, ladite longueur est délimitée en aval par le point d’intersection de l’axe du conduit d’injection avec l’axe médian du canal d’ admission. Ledit seuil de longueur est de l’ordre de 100 mm, dans une plage comprise entre 70 et 140 mm pour certains moteurs thermiques connus.
[0083] Selon l’invention, la distance entre l’intersection de l’axe du conduit d’injection XI avec l’axe X2 du canal d’admission, et G extrémité amont du conduit d’admission est supérieure audit seuil de longueur.
[0084] L’objectif est atteint :
[0085] Le conduit d’admission formé des différents éléments du circuit d’ admission permet d’amener de l’air d’admission
[0086] Comme il va de soi, l'invention ne se limite pas aux seules formes d'exécution de cette prise, décrites ci-dessus à titre d'exemples, elle en embrasse au contraire toutes les variantes.

Claims

Revendications
[Revendication 1] Agencement de fixation de circuit d’admission d’ air de moteur
thermique à injection indirecte de carburant comprenant une culasse
(15) dans laquelle sont creusés des canaux d’ admission (17) qui dé bouchent d’un côté dans un enfoncement (20) de la paroi d’admission (12) de la culasse et du côté opposé dans une chambre à combustion
(16), ladite culasse comprenant au moins un canal d’injection par cylindre apte à loger un injecteur de carburant et débouchant de façon oblique dans un canal d’ admission (17),
Ledit circuit d’admission comportant un échangeur de chaleur (11) fixé à la paroi d’admission de la culasse de façon oblique grâce à une bride de fixation (50),
Caractérisé en ce que l’enfoncement (20) de la culasse est divisé en cavités d’admission (19) par au-moins une paroi de séparation (18), chacune desdites cavités communiquant avec une unique chambre à combustion (16) et en ce que l’échangeur (1 1) est divisé en com partiments longitudinaux (81), chacun desdits compartiments est connecté avec une unique cavité d’admission (19) de la culasse.
[Revendication 2] Agencement selon la revendication 1, caractérisé en ce que la bride de fixation (50) comporte une section de passage d’air (70) divisée en cellules de passage (71) par aumoins une cloison intérieure (56) de sé paration , chacune desdites cellules (71) reliant un unique compartiment longitudinal (81) de l’échangeur à une unique cavité d’admission (19) de la culasse.
[Revendication 3] Agencement selon la revendication 1 ou 2, caractérisé en ce que la au moins une paroi de séparation (18) est enfoncée dans l’enfoncement (20) de la culasse.
[Revendication 4] Agencement selon l’une quelconque des revendications 1 à 3, ca
ractérisé en ce que la au-moins une paroi de séparation (18) est reliée à la paroi de l’enfoncement (20) de la culasse par un joint moussé et ex pansible.
[Revendication 5] Agencement selon l’une quelconque des revendications 1 à 4, ca
ractérisé en ce que la au-moins une paroi de séparation (18) est partie la cloison de séparation (56) de la bride de fixation (50) en une seule pièce.
[Revendication 6] Agencement selon l’une quelconque des revendications 1 à 5, ca
ractérisé en ce qu’un joint périphérique est disposé entre la bride de fixation (50) et la paroi d’admission (12) de la culasse. [Revendication 7] Agencement selon l’une quelconque des revendications 1 à 6, ca
ractérisé en ce que la bride de fixation (50) comprend un orifice traversant (59) une paroi d’appui de ladite bride contre la paroi d’admission (12) de la culasse, ledit orifice est en vis-à-vis avec le conduit d’injection de la culasse et apte à loger un injecteur.
[Revendication 8] Agencement selon l’une quelconque des revendications 1 à 7, ca
ractérisé en ce que la bride de fixation (50) comporte une section de passage (70) d’air divisée en cellules de passage (71), chacune desdites cellules reliant un unique compartiment longitudinal (81) de l’échangeur à une unique cavité d’admission (19) de la culasse.
[Revendication 9] Agencement selon l’une quelconque des revendications 1 à 8, ca
ractérisé en ce que le canal d’admission (17) et la cavité d’admission (19) dans la culasse, la cellule de passage (71) de la bride de fixation, le compartiment longitudinal (81) de l’échangeur (11) forment un conduit d’ admission d’ air isolé aérauliquement et connecté à une unique chambre à combustion (16).
[Revendication 10] Agencement selon l’une quelconque des revendications 1 à 5, ca
ractérisé en ce que le compartiment longitudinal (81) de l’échangeur est prolongé en amont par des parois de bornage (82) entourant l’entrée dudit compartiment.
[Revendication 11] Agencement selon la revendication 10, caractérisé en ce que lesdites parois de bornage (82) forment une bride d’entrée de l’échangeur fixée contre ledit échangeur.
[Revendication 12] Agencement selon la revendication 6 ou 7, caractérisé en ce que les parois de bornage (82) sont partie d’une corne d’entrée (83) d’air d’admission dans l’échangeur.
[Revendication 13] Agencement selon l’une quelconque des revendications 5 à 8, ca
ractérisé en ce que le canal d’admission (17), la cavité d’admission (19) dans la culasse (15), la cellule de passage (71) de la bride de fixation (50), le compartiment longitudinal (81) de l’échangeur et les parois de bornage (82) forment un conduit d’ admission isolé aérauliquement et connecté à une unique chambre à combustion (16).
[Revendication 14] Agencement selon la revendication 5 ou 9, caractérisé en ce que la distance entre l’intersection de l’axe du conduit d’injection (XI) avec l’axe (X2) du canal d’admission (17), et l’extrémité amont du conduit d’ admission est supérieure à un seuil de longueur.
PCT/EP2020/066265 2019-07-17 2020-06-12 Repartiteur avec separation de flux integree WO2021008786A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20732582.0A EP4031762A1 (fr) 2019-07-17 2020-06-12 Repartiteur avec separation de flux integree

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1908038 2019-07-17
FR1908038A FR3098865B1 (fr) 2019-07-17 2019-07-17 Repartiteur avec séparation de flux integrée

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/550,229 Continuation US11776230B2 (en) 2019-06-14 2021-12-14 Method for producing a segmented actual state model

Publications (1)

Publication Number Publication Date
WO2021008786A1 true WO2021008786A1 (fr) 2021-01-21

Family

ID=68654661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/066265 WO2021008786A1 (fr) 2019-07-17 2020-06-12 Repartiteur avec separation de flux integree

Country Status (3)

Country Link
EP (1) EP4031762A1 (fr)
FR (1) FR3098865B1 (fr)
WO (1) WO2021008786A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884875A1 (fr) 2005-04-21 2006-10-27 Renault Sas Systeme d'alimentation a balayage pour moteur essence suralimente a injection indirecte
JP4363176B2 (ja) * 2003-12-22 2009-11-11 マツダ株式会社 エンジンの排気還流装置
US20120255513A1 (en) * 2011-04-05 2012-10-11 Denso Corporation Air intake device
JP2014051907A (ja) * 2012-09-06 2014-03-20 Denso Corp 内燃機関の吸気装置
EP3306048A1 (fr) * 2016-10-05 2018-04-11 MANN+HUMMEL GmbH Agencement d'une pipe d'admission et refroidisseur

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363176B2 (ja) * 2003-12-22 2009-11-11 マツダ株式会社 エンジンの排気還流装置
FR2884875A1 (fr) 2005-04-21 2006-10-27 Renault Sas Systeme d'alimentation a balayage pour moteur essence suralimente a injection indirecte
US20120255513A1 (en) * 2011-04-05 2012-10-11 Denso Corporation Air intake device
JP2014051907A (ja) * 2012-09-06 2014-03-20 Denso Corp 内燃機関の吸気装置
EP3306048A1 (fr) * 2016-10-05 2018-04-11 MANN+HUMMEL GmbH Agencement d'une pipe d'admission et refroidisseur

Also Published As

Publication number Publication date
EP4031762A1 (fr) 2022-07-27
FR3098865B1 (fr) 2021-06-18
FR3098865A1 (fr) 2021-01-22

Similar Documents

Publication Publication Date Title
EP2012061B1 (fr) Déflecteur de fond de chambre, chambre de combustion le comportant et moteur à turbine à gaz en étant équipé
FR2931517A1 (fr) Dispositif d'admission de gaz
FR2908833A1 (fr) Dispositif d'admission de gaz
FR2908832A1 (fr) Carter pour echangeur de chaleur
FR2936572A1 (fr) Dispositif de support pour un faisceau d'echange d'un echangeur de chaleur et echangeur de chaleur comportant un tel dispositif
WO2012062715A1 (fr) Collecteur de repartition de gaz et module d'admission de gaz correspondant
EP1831535A1 (fr) Dispositif de captation d'air de combustion d'un moteur a combustion interne
EP3999731B1 (fr) Repartiteur avec separation de flux semi integree
WO2021008786A1 (fr) Repartiteur avec separation de flux integree
FR3098866A1 (fr) Repartiteur avec séparation des flux et conduits intégrés
EP3707365A1 (fr) Dispositif d'admission d'air pour moteur thermique
EP3839239B1 (fr) Moteur thermique avec répartiteur avec rampe retour de gaz de blowby intégrée
EP2469067B1 (fr) Carter pour module d'admission, notamment pour module d'admission de moteur thermique de véhicule automobile, et module d'admission comprenant un tel carter
FR3055151B1 (fr) Element d'obturation d'un logement d'une pompe a fluide caloporteur compris dans un moteur
FR2916233A1 (fr) Moteur de vehicule automobile comportant un circuit de refroidissement innovant
EP3976947B1 (fr) Entaille sur face d'admission de culasse pour la fixation en oblique sur culasse moteur
EP2469066B1 (fr) Collecteur de répartition de gaz dans des conduits d'admission d'un moteur thermique
FR3096406A1 (fr) bossage sur face d’admission de culasse pour la fixation en oblique sur culasse de carter
EP3877632B1 (fr) Dispositif de diffusion blow-by a l'entree de la culasse
FR3094783A1 (fr) Dispositif de fixation en oblique sur culasse
FR3082241A1 (fr) Repartiteur d'admission pour moteur thermique avec dispositif de melange de gaz recircules
EP3211193A1 (fr) Interfaces de refroidissement de moteur a combustion interne
FR3026788A3 (fr) Refroidissement du pontet d'echappement de culasse
FR3126454A1 (fr) Echangeur de chaleur eau-air optimisé
WO2021089630A1 (fr) Dispositif d'admission de gaz déshuilés à l'entrée d'une culasse avec des déflecteurs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20732582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020732582

Country of ref document: EP

Effective date: 20220419