WO2021008499A1 - 基于位姿自适应的双动力源隧道灯具清洁车 - Google Patents

基于位姿自适应的双动力源隧道灯具清洁车 Download PDF

Info

Publication number
WO2021008499A1
WO2021008499A1 PCT/CN2020/101716 CN2020101716W WO2021008499A1 WO 2021008499 A1 WO2021008499 A1 WO 2021008499A1 CN 2020101716 W CN2020101716 W CN 2020101716W WO 2021008499 A1 WO2021008499 A1 WO 2021008499A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
vehicle
tunnel
robot arm
tunnel lamp
Prior art date
Application number
PCT/CN2020/101716
Other languages
English (en)
French (fr)
Inventor
胡居义
李文锋
罗斌
李科
廖强
陈建忠
须民健
廖志鹏
马非
Original Assignee
招商局重庆交通科研设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910649835.2A external-priority patent/CN110302992A/zh
Priority claimed from CN201910649825.9A external-priority patent/CN110273400A/zh
Priority claimed from CN201910668325.XA external-priority patent/CN110369434A/zh
Priority claimed from CN201910668343.8A external-priority patent/CN110378956A/zh
Priority claimed from CN201910669641.9A external-priority patent/CN110252699A/zh
Application filed by 招商局重庆交通科研设计院有限公司 filed Critical 招商局重庆交通科研设计院有限公司
Publication of WO2021008499A1 publication Critical patent/WO2021008499A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools

Definitions

  • the invention belongs to the technical field of lamp cleaning, and relates to a dual-power source tunnel lamp cleaning vehicle based on posture adaptation.
  • Tunnel lamps are special lamps used for tunnel lighting to solve the "black hole effect” or “white hole effect” caused by sudden changes in brightness when vehicles enter or exit the tunnel.
  • the tunnel space is relatively sealed, so the exhaust gas and dust in the tunnel.
  • the content is high, the surface of the lampshade of the tunnel lamp is easy to accumulate solid particles, which affects the light transmittance of the lampshade, and then affects the lighting effect, resulting in insufficient light in the tunnel and affecting safe passage. Therefore, the lampshade of the tunnel lamp needs to be cleaned;
  • wet cleaning is manual use of elevators to climb the heights, high-pressure water guns, and long-handled brushes for scrubbing.
  • the scrubbing efficiency of this method is less than
  • sewage drips randomly and pollutes the tunnel environment In the prior art, large mechanical brushes and high-pressure water are also used for scrubbing.
  • This method also causes sewage to pollute the tunnel environment, and the wet cleaning method is likely to cause short-circuit failures such as tunnel lamps;
  • Contact dry cleaning mainly uses a high-pressure air knife to impact the surface of the tunnel luminaire through high-pressure air flow.
  • the structure of the air knife has a greater impact on the surface of the tunnel luminaire and is easy to damage the tunnel luminaire. Moreover, there are more solid particles in the car exhaust in the tunnel. The adhesion force of particles attached to the tunnel lamps is relatively large. The air knife cleaning method is difficult to effectively clean the solid particles, and the cleaning effect is not good. Moreover, the cleaned solid particles are easily diffused into the tunnel environment by the wind flow, which is harmful to the tunnel environment. Cause secondary pollution.
  • the tunnel lamp cleaning device can sequentially clean the tunnel lamps during the walking process of the vehicle platform.
  • the cleaning method is contact dry cleaning, which has a good cleaning effect and is cleaned by negative pressure air flow.
  • the recovered solid particles have high cleaning efficiency, no pollution to the tunnel environment, reduced manual labor, and avoided safety hazards caused by manual climbing operations.
  • the purpose of the present invention is to provide a dual-power source tunnel lamp cleaning vehicle based on posture adaptation.
  • the present invention provides the following technical solutions:
  • a dual-power source tunnel lamp cleaning vehicle based on posture adaptation including a vehicle-mounted platform, a lifting platform installed on the vehicle-mounted platform, and a cleaning device installed on the lifting platform.
  • the lifting platform is connected in a way that can be raised and lowered and can change orientation
  • the cleaning device includes an outer cover with a top opening for covering the tunnel lamp upwards, a dry cleaning component installed in the outer cover for cleaning the surface of the tunnel lamp, and a negative pressure forming device connected to the inner cavity of the outer cover, so A negative pressure hole is opened on the side wall of the outer cover, and the negative pressure hole is connected to a negative pressure forming device so that the inner cavity of the outer cover forms a negative pressure environment;
  • the vehicle-mounted platform includes two sets of power sources, namely a high-speed power source and a low-speed power source.
  • a switching device is provided between the high-speed power source and the low-speed power source for switching the power source to achieve normal driving of the vehicle-mounted platform and when cleaning lamps. Driving at a low speed.
  • the vehicle-mounted platform includes an installation platform, a cab connected to the head of the installation platform, a drive wheel installed on the installation platform and the bottom of the cab, and a power assembly that drives the drive wheel to rotate, the installation platform and/or The bottom of the cab is also connected with a body stabilizing structure for controlling the vertical turbulence of the vehicle platform.
  • a rotating platform is provided on the vehicle-mounted platform to be horizontally rotatable, and the lifting platform is eccentrically connected to the rotating platform.
  • the outer cover includes an outer layer and an inner layer located in the outer layer, a negative pressure interlayer is formed between the inner and outer layers, and the negative pressure hole is opened on the outer layer and penetrates the negative pressure interlayer.
  • the outer layer forms a circumferentially closed dust suction port at the open end of the outer cover, the negative pressure interlayer gradually narrows toward the dust suction port side so that the dust suction port forms a gradually narrowing port, and a connecting plate is passed between the inner and outer layers connection.
  • the body stabilizing structure is a number of sets of rigid stabilizing wheels that can be raised and lowered on the installation platform and/or the bottom of the cab and located on the left and right sides of the vehicle platform.
  • the stabilizer wheels are higher than the driving wheels so that the vehicle platform can run normally.
  • the stabilizer wheel moves vertically downward with the vehicle-mounted platform to contact the ground for controlling the vertical bump amplitude of the vehicle-mounted platform.
  • the dry cleaning assembly includes a plurality of brush assemblies that are rotatably fitted in the outer cover and arranged in the front and rear direction, a sponge roller arranged in parallel with the brush assembly in the front and rear direction, and a device that drives the brush and sponge roller to rotate
  • the brush assembly and the sponge roller have the same axial direction, and the brush assembly and the sponge roller are used to stick to the surface of the tunnel lamp and rotate to clean the surface of the tunnel lamp.
  • the brush assembly and the sponge roller are hinged on the mounting seat so that both ends of the axial direction can swing axially, and the bottom of the mounting seat is connected to the outer cover through an elastic member, and the elastic member has a brush or sponge.
  • the brush assembly includes a brush roller, and long and short brushes connected to the outer surface of the brush roller.
  • the long and short brushes are staggered in the circumferential direction of the brush roller.
  • the outer contour of the sponge roller is a wavy structure extending in the circumferential direction.
  • the elastic member is a cylinder.
  • the cleaning device further includes a dust storage device, the dust storage device is provided with an air inlet and an air outlet, the air inlet is connected to the negative pressure hole, and the air outlet is connected to the negative pressure forming device, so A dust filter is arranged at the air outlet.
  • the high-speed power source is an electric motor or an internal combustion engine
  • the low-speed power source is a hydraulic motor
  • the cleaning system includes the following steps when positioning:
  • the distance sensor collects the current distance between the cleaning vehicle and the two side walls of the tunnel
  • S5. Determine the deviation parameter of the control end of the robot arm according to the deviation distance of the installation point of the robot arm, and control the action of the robot arm according to the deviation parameter of the control end of the robot arm, and control the cleaning device installed at the end of the robot arm to clean the lamp alignment.
  • the cleaning system includes the following steps when positioning:
  • step S3 the deviation angle between the cleaning vehicle and the lane line is determined by the following method:
  • is the deviation angle of the cleaning vehicle body from the preset operation track
  • L is the width of the tunnel
  • L c is the width of the cleaning vehicle itself
  • L lf is the distance between the left front side of the cleaning vehicle and the side wall of the left tunnel of the cleaning vehicle
  • L rf is the distance between the front right side of the cleaning vehicle and the side wall of the tunnel on the right side of the cleaning vehicle.
  • step S4 the deviation distance of the cleaning vehicle is determined according to the following method:
  • L 2 is the vertical distance between the line between the two sensors on the rear side of the cleaning vehicle and the installation point of the robot arm
  • L 1 is the line between the two sensors on the front side of the cleaning vehicle and the installation point of the robot arm the vertical distance from the tunnel sidewall preset work trajectory L 0 of the clean car
  • S P is a cleaning job with a preset vehicle track offset distance.
  • the deviation distance of the installation point of the robot arm of the cleaning vehicle is determined according to the following method:
  • I the deviation distance of the installation point of the robot arm of the cleaning vehicle
  • V c the formal speed of the cleaning vehicle
  • k the speed correction coefficient
  • the deviation parameter of the control end of the robotic arm includes a lateral deviation parameter in a preset trajectory direction and a longitudinal deviation parameter in a direction perpendicular to the preset trajectory, where:
  • t is the time in the form of a cleaning vehicle
  • M is the conversion matrix between the coordinates of the robot arm installation point and the coordinates of the control end of the robot arm.
  • the cleaning system includes the following steps in the lamp positioning method:
  • the position parameters of the execution end of the robotic arm in the three-dimensional coordinate system are determined according to the following mathematical model:
  • ⁇ e ⁇ 2 + ⁇ 3 + ⁇ 4 ;
  • Xe, Ye, and Ze are the coordinate values of the robot arm's execution end in the X, Y, and Z directions of the three-dimensional coordinate system
  • ⁇ e is the posture angle of the robot arm's execution end
  • m, n, and ⁇ are intermediate variables, respectively. among them:
  • n s 1 (L 4 s 234 +L 3 s 23 +L 2 c 2 +L1)
  • the rotation angle ⁇ ′ 1 of the first joint axis on the XOY plane of the three-dimensional coordinate system is determined according to the following method:
  • step S3 the rotation angle ⁇ ′ 2 of the second joint axis is determined according to the following method:
  • the rotation angle ⁇ ′ 3 of the third joint axis is determined according to the following method:
  • ⁇ '3 arctan2 (nL 3 s 2, mL 3 c 2) - ⁇ 2.
  • the rotation angle ⁇ ′ 4 of the fourth joint axis is determined according to the following method:
  • ⁇ ′ 4 ⁇ e -( ⁇ ′ 2 + ⁇ ′ 3 ).
  • the lamp cleaning system further includes a binocular camera, a camera, a distance sensor, and a controller;
  • the binocular camera is set on the cleaning vehicle and is used to collect the first image information of the tunnel lamp and output it to the controller;
  • the camera is arranged at the cleaning device and used for the second image information of the tunnel lamp
  • the angle sensor is set at the joint point of the mechanical arm, and is used to detect the joint point of each joint axis of the mechanical arm, and is used to detect the actual angle of each joint axis;
  • the distance sensor is set at the cleaning device to collect the actual distance between the cleaning device and the tunnel lamp and transmit the distance information to the controller;
  • the controller is used to receive the information output by the binocular camera, the camera, and the distance sensor, and use the position of the binocular camera as the coordinate origin as the coordinate system, determine the position information of the lamp through the first image information, and determine the position information of the lamp according to the output of the angle sensor
  • the angle information determines the position parameter of the execution end of the robot arm, and then determines the rotation angle of each joint point of the robot arm according to the position parameter of the execution end of the robot arm and controls the rotation of each joint point of the robot arm to make the cleaning device reach the position of the tunnel lamp.
  • the controller determines the position parameter of the execution end of the robotic arm according to the following method:
  • ⁇ e ⁇ 2 + ⁇ 3 + ⁇ 4 ;
  • Xe, Ye, and Ze are the coordinate values of the robot arm's execution end in the X, Y, and Z directions of the three-dimensional coordinate system
  • ⁇ e is the posture angle of the robot arm's execution end
  • m, n, and ⁇ are intermediate variables, respectively. among them:
  • n s 1 (L 4 s 234 +L 3 s 23 +L 2 c 2 +L1)
  • the controller controls the rotation angle of the joint points of each mechanical arm according to the following method:
  • ⁇ ′ 3 arctan2(nL 3 s 2 , mL 3 c 2 )- ⁇ 2 ;
  • ⁇ ′ 4 ⁇ e -( ⁇ ′ 2 + ⁇ ′ 3 ).
  • a mounting frame is detachably connected to the inside of the outer cover, and the cleaning assembly and the sponge roller are mounted on the mounting frame.
  • the cleaning device of the present invention is provided with two sets of power sources, namely a high-speed power source and a low-speed power source.
  • the power source can be switched through the switching device, which can meet the normal driving requirements of the vehicle-mounted platform and the low-speed stable driving when cleaning the lamp; the tunnel lamp
  • the cleaning device can continuously clean the tunnel lamps during the running process of the vehicle platform, without frequent start and stop, which improves the cleaning efficiency;
  • the low-speed power source uses a hydraulic motor, and the driving speed is controlled by the rotation speed of the hydraulic motor, which can be achieved during operation
  • Large-range stepless speed regulation its transmission is relatively high, and the speed regulation performance is not limited by the size of the power, and it is easy to realize load control, speed control and direction control, smooth transmission, labor-saving operation, fast response, and can start and run at high speed. Frequent commutation, low motion inertia, fast response speed, and good low-speed stability;
  • the invention provides a body stabilization structure to reduce the amplitude of bumps and improve the stability of the cleaning device; the body stabilization structure selects a liftable hard stabilizing wheel, and the height of the stabilizing wheel can be adjusted to adapt to the tire pressure of the driving wheel and different working conditions
  • the turbulence of the vehicle-mounted platform exceeds the distance between the stabilizer wheel and the ground, the contact between the stabilizer wheel and the ground can prevent further turbulence of the vehicle platform.
  • the stabilizer wheel forms a rolling contact with the ground to reduce the friction between the stabilizer wheel and the ground.
  • the invention can realize the orientation conversion of multiple degrees of freedom of the cleaning device through the lifting platform and the rotary platform.
  • the lifting platform is eccentrically connected to the rotary platform.
  • the lifting platform and the cleaning device can move in a wide range in the inner width direction of the tunnel.
  • the lifting platform and the cleaning device can be adapted to the position of the lamps arranged in the width direction of the tunnel, which is convenient for cleaning the lamps arranged in the width direction of the tunnel.
  • the range of changing directions and conversion of the lifting platform can be reduced by the rotating platform.
  • the degree of freedom requirements can simplify the structure of the lifting platform, effectively improve the center of gravity of the lifting device, and improve the stability of the lifting device;
  • the cleaning device of the present invention adopts a contact-type dry cleaning method.
  • a contact-type dry cleaning method Through the contact-type cleaning of brushes and sponge rollers, it is easy to clean the tail gas discharged solid particles attached to the surface of the tunnel lamp, and this method avoids the crossflow of sewage on the tunnel environment in wet cleaning. Pollution, and avoid the short circuit of tunnel lamps caused by wet cleaning, and contact with tunnel lamps through brushes and sponge rollers, the surface of tunnel lamps receives less force, avoiding the impact of wind knife cleaning on the surface of tunnel lamps, and effectively protects Tunnel lamps are not damaged;
  • the cleaning device of the present invention has an outer cover, the outer cover is covered on the tunnel lamp, and the cleaning component cleans the tunnel lamp inside the outer cover.
  • the cleaned solid particles are enclosed in the outer cover cavity for easy discharge with the wind flow.
  • the sandwich structure of the outer cover forms an opening around the outer cover A circumferentially closed dust suction port formed at the end, which sucks air inward, forming a circumferentially closed wind wall around the outer cover, which can effectively prevent the solid particles in the outer cover from leaking out and improve the recovery rate of solid particles. Effectively ensure that the tunnel environment is not polluted by solid particles.
  • the device has high cleaning efficiency, reduces the amount of manual labor, and avoids hidden safety hazards caused by manual climbing operations.
  • the sandwich structure is easy to arrange the air duct and makes the outer cover structure compact;
  • the invention uses a plurality of brush components to perform multiple cleanings.
  • the solid particles on the surface of the tunnel lamp can be removed efficiently and thoroughly, and finally the solid particles on the surface of the tunnel lamp can be removed through the sponge roller. Clean the solid particles remaining on the surface of the tunnel lamp. Through this step, the cleaning efficiency is high and the cleaning effect is good.
  • the brush assembly has staggered long and short brushes.
  • the outer contour of the sponge roller is a wavy structure, which can be adapted to The uneven surface of the tunnel luminaire is easy to clean the recessed area in the tunnel luminaire and improves its cleaning effect.
  • the brush assembly and the sponge roller are floating on the outer cover. This structure makes the brush assembly and the sponge roller adapt to the position of the tunnel luminaire. And the angle can ensure that the brush assembly and the sponge roller are completely attached to the surface of the tunnel lamp and improve the cleaning effect.
  • the present invention it can be detected in real time whether the cleaning vehicle deviates from the preset operation track, and the posture state of the control end of the robotic arm can be adaptively adjusted after the deviation occurs, so that the cleaning device can always be aligned with the lamp to be cleaned Status, so as to effectively ensure the cleaning efficiency and cleaning effect of the tunnel lamps, and there will be no leakage of cleaning due to the deviation of the cleaning vehicle from the preset trajectory.
  • the cleaning device can be aligned with the position of the tunnel lamps under the condition that the cleaning vehicle is not stopped, and then the cleaning is completed without manual intervention in the whole process, which can effectively improve the cleaning efficiency of the tunnel lamps and will not cause major traffic flow. Interference, and can avoid the hidden dangers of traditional technology.
  • Figure 1 is a schematic structural diagram of the present invention in a clean state
  • Figure 2 is a schematic diagram of the overall structure of the present invention.
  • Figure 3 is a schematic diagram of the structure of the lifting platform
  • Figure 4 is a schematic diagram of the structure of the cleaning device (with a cover);
  • Figure 5 is a schematic view of the top structure of the outer cover
  • Figure 6 is a schematic sectional view of the outer cover
  • Figure 7 is a schematic diagram of the structure of the cleaning device (without cover).
  • Figure 8 is a schematic diagram of the installation structure of the brush assembly
  • Figure 9 is a schematic diagram of the structure of the brush assembly and the sponge roller
  • Figure 10 is a schematic diagram of the dual power source switching structure
  • Figure 11 is a schematic diagram of a pose adaptive positioning method
  • Figure 12 is a schematic structural diagram of the lamp positioning system of the present invention.
  • Figure 13 is a schematic diagram of the lamp positioning system of the present invention.
  • Figure 1 is a schematic diagram of the structure of the present invention in a clean state
  • Figure 2 is a schematic diagram of the overall structure of the present invention
  • Figure 3 is a schematic diagram of the structure of the lifting platform
  • Figure 4 is a schematic diagram of the structure of the cleaning device (with an outer cover)
  • Figure 5 is a schematic view of the top structure of the outer cover
  • Fig. 7 is a schematic diagram of the structure of the cleaning device (without cover)
  • Fig. 8 is a schematic diagram of the installation structure of the brush assembly
  • Fig. 9 is a schematic diagram of the structure of the brush assembly and sponge roller
  • Fig. 10 is a schematic diagram of the dual power source switching structure
  • Figure 11 is a schematic diagram of a posture adaptive positioning method
  • Figure 12 is a schematic structural diagram of the lamp positioning system of the present invention
  • Figure 13 is a schematic diagram of the lamp positioning system of the present invention.
  • the dual power source vehicle-mounted tunnel lamp cleaning system of this embodiment includes a vehicle-mounted platform 10, a lifting platform 20 installed on the vehicle-mounted platform, and a cleaning device 30 installed on the lifting platform.
  • the lifting platform 20 can be It is connected to the vehicle-mounted platform in a manner capable of lifting and changing directions.
  • the vehicle-mounted platform includes two sets of power sources, namely a high-speed power source 40 and a low-speed power source 50. Between the high-speed power source 40 and the low-speed power source 50 is set The switching device is used to switch the power source to realize the normal driving of the vehicle-mounted platform and low-speed driving when cleaning the lamps.
  • the head position or forward direction is the side facing the direction of travel of the vehicle-mounted platform
  • the tail position is the side relative to the head position
  • the left and right directions are the left and right directions corresponding to the front facing the seat in the cab;
  • the device walks in the tunnel 80.
  • a number of tunnel lamps 90 are installed inside the tunnel.
  • the vehicle-mounted platform is composed of engineering vehicles, counterweights and installation platforms to realize the load-bearing and movement of the entire system;
  • the lifting platform can be Vertical lifting is formed by hydraulic power, screw nut pair or scissor lifting structure, and the vertical lifting structure cooperates with the mechanical arm to change the position to drive the cleaning device to adapt to the position of the tunnel lamp.
  • the mechanical arm can be a spherical coordinate mechanical arm or joint machine
  • the structure of the arm or the Cartesian coordinate manipulator arm, etc., the specific structure of the manipulator arm is selected according to the required degree of freedom.
  • the lifting platform is a crank arm lifting structure, and a plurality of rotationally matched crank arms 21 and control adjacent bending
  • the arm rotation angle is composed of an electric push rod 22, and the control accuracy of the crank arm is improved by the electric push rod.
  • the rotation angle of adjacent crank arms can also be controlled by a hydraulic cylinder, and the details are not repeated; the cleaning device is installed on the uppermost curve
  • the crank arm structure can realize multiple degrees of freedom and azimuth conversion.
  • the crank arm structure can be extended to adapt to the height of the tunnel lamp, and can also be folded to reduce storage or avoid obstacles. This structure is convenient to adapt to the height of the tunnel lamp And location; considering the effectiveness of cleaning, the cleaning device is required to stay on the surface of each lamp for at least 2s.
  • the residence time requirement of the cleaning device can be met when the vehicle running speed is 1-3km/h.
  • the current project The commonly used power system of vehicles is an internal combustion engine.
  • the stability of the power system is poor when running at low speeds, especially when the speed is 1-3km/h.
  • Two sets of power sources are set up as a high-speed power source 40 and a low-speed power source 50.
  • the power source can be a power system commonly used in construction vehicles for daily walking, and an independent low-speed power source is used for construction vehicles to achieve low-speed driving when cleaning lamps.
  • the high-speed power source outputs power to the high-speed gear 41
  • the low-speed power source outputs power to the low-speed gear 51
  • the high-speed gear is matched with the gear I42 for transmission
  • the low-speed gear is matched with the gear II 52 for transmission.
  • the gear I and the gear II are rotationally matched with the output shaft, and the output shaft is matched with a synchronizer 43.
  • the synchronizer is used as a switching device.
  • the transmission and separation from gear I and gear II are realized by shifting the synchronizer through the shift fork, and the power switching is realized by the synchronizer.
  • This structure can meet the normal driving requirements of the vehicle platform and also meet the cleaning
  • the low-speed driving of the lamp and the low-speed power source facilitates the stability of the low-speed operation of the vehicle-mounted platform.
  • a rotating platform 60 is horizontally rotatable on the vehicle-mounted platform, and the lifting platform 20 is eccentrically connected to the rotating platform 60; as shown in FIGS. 2 and 3, the rotating platform has a disc-shaped structure
  • the slewing platform can be installed horizontally on the vehicle-mounted platform.
  • the slewing platform can be driven by a hydraulic motor, motor or internal combustion engine to rotate, or can be converted into a rotary motion of the slewing platform through rack and pinion coordination, or through a worm gear Realize the slewing drive of the slewing platform, and the details will not be repeated; the lifting platform is eccentrically connected to the slewing platform.
  • the lifting platform and the cleaning device can move in the width direction of the tunnel in a large range.
  • Rotation can make the lifting platform and the cleaning device adapt to the position of the lamps arranged in the width direction of the tunnel, which is convenient for cleaning the lamps arranged in the width direction of the tunnel.
  • the lifting platform is driven by the rotating platform to move in a large range in the horizontal direction, which can reduce the lift
  • the range of the platform's conversion orientation and the requirements of the conversion degree of freedom can simplify the structure of the lifting platform, and effectively improve the center of gravity of the lifting device, and improve the stability of the lifting device;
  • the high-speed power source is an electric motor or an internal combustion engine
  • the low-speed power source is a hydraulic motor
  • the high-speed power source is a commonly used power source, and a gearbox and a differential structure can also be arranged between the power source and the high-speed gear 41.
  • This structure is the prior art and will not be detailed here;
  • the low-speed gear 51 is directly driven.
  • the low-speed power source is a hydraulic motor.
  • the shift lever maintains gear 1
  • the driving speed depends on the internal combustion engine to drive and shift gears.
  • the shift lever is shifted to position 2
  • the driving speed is controlled by the rotational speed of the hydraulic motor, which can realize a wide range of stepless speed regulation during operation.
  • the transmission is relatively high, and the speed regulation performance is not limited by the power size, and is easy Realize load control, speed control and direction control, can carry out centralized control, remote control and realize automatic control, smooth transmission, labor-saving operation, fast response, high-speed start and frequent reversing, low motion inertia, fast response speed, low-speed stability it is good.
  • the vehicle-mounted platform 10 includes an installation platform 11, a cab 12 connected to the head of the installation platform, a drive wheel 13 installed on the installation platform and the bottom of the cab, and a power assembly that drives the drive wheel to rotate.
  • the installation platform and/or the bottom of the cab is also connected with a body stabilizing structure for controlling the vertical turbulence of the vehicle-mounted platform.
  • the installation platform and the cab constitute a common engineering vehicle.
  • the driving wheels are usually rubber wheels, which have greater elasticity and poor stability, resulting in greater turbulence. A slight turbulence on the vehicle platform can lead to cleaning.
  • the device 30 swings greatly, so a body stabilization structure is added to the installation platform and/or the bottom of the cab. This structure stabilizes the body to reduce the turbulence of the on-board platform and improve the stability of the cleaning device during operation.
  • the body stabilization structure is installed in the installation
  • the platform and/or the bottom of the cab means that the body stabilizing structure can be installed separately on the installation platform or the bottom of the cab, and can also be installed on the installation platform and the bottom of the cab at the same time.
  • the body stabilizing structure can be a structure of multiple sets of driving wheels.
  • the driving wheel forms a good support performance to reduce the bump amplitude
  • the body stability structure can also be an elastic member.
  • the elastic member contacts the ground to form a reverse elastic force to reduce the bump amplitude. The details are not repeated here;
  • the body stabilizing structure is a number of sets of rigid stabilizing wheels 70 that can be lifted and installed on the installation platform and/or the bottom of the cab and located on the left and right sides of the vehicle platform.
  • the stabilizer wheels are higher than the driving wheels so that the vehicle platform During normal driving, the stabilizer wheel is suspended on the ground, and when the vehicle-mounted platform is vertically bumped, the stabilizer wheel moves vertically downward with the vehicle-mounted platform to contact the ground for controlling the vertical bumping amplitude of the vehicle-mounted platform.
  • a stabilizing wheel can be equipped on the front and rear side of each driving wheel.
  • the stabilizing wheel can be made of metal or plastic. In order to reduce the impact of the stabilizing wheel on the road surface, plastic material is preferred in this embodiment.
  • the stabilizer wheel includes two stabilizer wheels mounted on the same bracket. The bracket can be connected to the bottom of the vehicle platform through a hydraulic cylinder. The height of the stabilizer wheel can be adjusted by lifting to adapt to the tire pressure of the driving wheel and different working conditions.
  • the stabilizer wheel contacts the ground to form a support to prevent further bumps of the vehicle platform.
  • the stabilizer wheel forms rolling contact with the ground to lower the stabilizer wheel The friction with the ground ensures reliable and stable driving of the vehicle-mounted platform at a constant speed.
  • the cleaning device 30 includes an outer cover 31 with a top opening for covering the tunnel lamp upwards, a dry cleaning assembly installed in the outer cover for cleaning the surface of the tunnel lamp, and a negative pressure forming device connected to the inner cavity of the outer cover A negative pressure hole 311 is formed on the side wall of the outer cover, and the negative pressure hole is connected to the negative pressure forming device so that the inner cavity of the outer cover forms a negative pressure environment.
  • the negative pressure forming device can be a water ring vacuum pump or a screw
  • the vacuum pump or fan sucks out the air in the inner cavity of the outer cover through a negative pressure forming device to form a negative pressure environment inside.
  • the external air circulates into the inner cavity of the outer cover. This structure prevents the cleaned solid particles from entering the tunnel environment. Diffusion to ensure that solid particles flow through the negative pressure hole to the preset position along with the wind flow.
  • the dirty air flowing out through the negative pressure hole can be directly transported to the electrostatic dust removal device to absorb the solid particles, or the dirty air can be directly transported into the liquid and passed through The liquid absorbs the solid particles, and it can also transport the waste air through the pipeline to the outside of the tunnel for discharge.
  • the details will not be repeated; the cleaning method is dry cleaning, and the cleaned solid particles are recovered through negative pressure.
  • the cleaning efficiency is high.
  • the tunnel environment is pollution-free, reduces the amount of manual labor, and avoids safety hazards caused by manual climbing operations.
  • the cleaning device 30 further includes a dust storage device 32, the dust storage device 32 is provided with an air inlet and an air outlet, the air inlet is connected to the negative pressure hole, and the air outlet is connected to the negative pressure
  • a dust filter is arranged at the air outlet.
  • the dust storage device 32 is a boxed structure.
  • the dust storage device 32 and the negative pressure forming device are installed on the vehicle-mounted platform.
  • the air outlet, air inlet, filter and negative pressure forming device of the dust storage device are not shown in the drawings.
  • the air inlet of the dust storage device 32 is connected by a pipe 38, and the waste air is transported to the dust storage device 32 through the pipe.
  • the solid particles are filtered through the filter to prevent solid particles from entering the negative pressure forming device and adhering to its parts.
  • the equipment is damaged and the service life of the negative pressure forming device is increased.
  • the outer cover 31 includes an outer layer 312 and an inner layer 313 located in the outer layer.
  • a negative pressure interlayer 314 is formed between the inner and outer layers.
  • the negative pressure holes are opened on the outer layer and penetrate through the negative pressure.
  • the inner and outer layers form a circumferentially closed dust suction port 315 at the open end of the outer cover, and the inner and outer layers are connected by a connecting plate.
  • the sandwich structure forms a circumferentially closed dust suction port formed around the open end of the outer cover.
  • the dust suction port sucks air inward, so that a circumferentially closed wind wall is formed around the outer cover, which can effectively Prevent leakage of solid particles in the outer cover, improve the recovery rate of solid particles, and effectively ensure that the tunnel environment is not polluted by solid particles.
  • the sandwich structure is easy to arrange the air ducts, making the outer cover compact.
  • the open end of the outer cover has a rectangular structure. The specific shape of the lamp can be adjusted according to the actual shape of the tunnel lamp, and the details will not be repeated;
  • the dry cleaning assembly includes a plurality of brush assemblies 33 that are rotatably fitted in the outer cover 31 and arranged in the front and rear direction, a sponge roller 34 arranged in parallel with the brush assembly in the front and rear direction, and a driving brush and
  • the cleaning driving device 39 for rotating the sponge roller, the brush assembly and the sponge roller have the same axial direction, and the brush assembly and the sponge roller are used to stick to the surface of the tunnel lamp and rotate to clean the surface of the tunnel lamp.
  • two brush assemblies are provided in this embodiment.
  • the brushes are set on a soft brush roller with an outer diameter of 300mm and a sponge roller with an outer diameter of 300mm. Make sure that the brush assembly is located in front of the sponge roller, and the brush hardness of the brush assembly decreases from front to back.
  • the brush hardness of the frontmost brush assembly is greater than that of the brush located at the back. It will pass the hardness first when driving with the vehicle platform.
  • the larger brush cleans the surface of the tunnel luminaire, so that the solid particles with greater adhesion on the surface of the tunnel luminaire fall off or loose, and then the brush with less hardness performs a secondary cleaning on the surface of the tunnel luminaire, causing most of the solid particles to fall off.
  • the cleaning drive device 39 Motor drive is selected.
  • the brush assembly 33 and the sponge roller 34 can be driven synchronously through a motor with a transmission structure.
  • each brush assembly 33 and sponge roller 34 is equipped with a drive motor for independent driving, which can be independently driven during cleaning.
  • the rotation direction of each brush assembly is controlled so that the rotation directions of adjacent brush assemblies are opposite or the same. In this embodiment, it is preferable that the rotation directions of adjacent brush assemblies are opposite, so that the surface of the tunnel lamp can be thoroughly and efficiently cleaned by different cleaning directions.
  • the drive motor is matched with the brush assembly or the sponge roller through a coupling.
  • the two ends of the brush assembly or the sponge roller are provided with a bearing seat 301.
  • the bearing seat is equipped with bearings.
  • the two The end forms a rotational fit with the corresponding bearing seat, wherein the bearing seat and the mounting seat 35 form a hinged connection through a hinge;
  • the negative pressure interlayer gradually narrows toward the dust suction opening 315 so that the suction opening forms a gradually narrowing opening.
  • the suction force at the place is increased, the air flow velocity at the dust suction port is increased, and the force of the wind wall is increased, which can effectively restrict the flow of solid particles inside the outer cover and make the inside of the outer cover form a strong suction Wind, enhance the dust collection effect.
  • the brush assembly 33 and the sponge roller 34 are hinged on the mounting seat 35 so that both ends of the axial direction can swing axially.
  • the bottom of the mounting seat is connected to the outer cover 31 by an elastic member 36.
  • the elastic member It has the elastic force to press the brush or sponge roller on the surface of the tunnel lamp.
  • the mounting seat is an inverted T-shaped structure.
  • two independent mounting seats are provided to fit the two ends of the brush assembly 33 respectively.
  • the sponge roller 34 adopts the same structure.
  • the mounting seat in other embodiments can be an integrated structure, that is, the two ends of the brush assembly 33 are fixed on the same mounting seat, and the details are not repeated here;
  • the vertical beam of the mounting seat and the bearing seat 301 They are hinged through a hinge, the elastic member is connected to the bottom of the beam of the mounting seat, the brush assembly 33 and the sponge roller 34 can swing in the vertical plane where the axial direction is located, and the axial ends of the brush assembly 33 and the sponge roller 34 can be
  • the structure makes the brush assembly 33 and the sponge roller 34 adapt to the position and angle of the tunnel lamp, which can ensure that the brush assembly 33 and the sponge roller 34 are completely attached to the tunnel lamp.
  • the surface improves the cleaning effect.
  • the elastic member can be a cylindrical spiral spring or an elastic sleeve.
  • the elastic member is not limited to a steel spring, and it can use the compression performance of air to provide elastic force, and the details are not repeated here;
  • the elastic member is a cylinder.
  • a mounting plate 38 is installed inside the outer cover.
  • the cylinder block is fixedly connected to the mounting plate.
  • the output shaft of the cylinder passes through the mounting plate and is connected to the bottom of the mounting seat beam.
  • a guide is provided at the bottom of the mounting seat beam.
  • the guide shaft runs through the mounting plate to form a guide; the elastic force of the cylinder is controllable, and it can be used for active floating adjustment or passive floating adjustment; when the cylinder stretches out and the air pressure is adjusted to a certain degree, the drum maintains balance; At this time, the air cylinder can contract to make the brush assembly 33 and the sponge roller 34 move or offset vertically, thereby ensuring the floating adjustment function of the brush assembly 33 and the sponge roller 34.
  • the brush assembly 33 includes a brush drum 331, and a long brush 332 and a short brush 333 connected to the outer surface of the brush drum.
  • the long brush and the short brush are arranged in the circumferential direction of the brush drum. Staggered settings.
  • a number of rows of shaft brushes are arranged on the outer circle of the brush cylinder, and each row of brushes extends axially, and each row of brushes is circumferentially distributed on the outer circle of the brush cylinder, and adjacent rows of brushes are respectively long Hair brushes and short hair brushes, long hair brush rows and short hair brush rows alternately arranged circumferentially; according to the surface flatness of tunnel lamps, they can be divided into flat glass lamps and LED lamp beads.
  • the tunnel lamps are LED lamp beads
  • the surface of the lamp is uneven, and the long and short brushes adapt to its uneven surface, which can improve the cleaning coverage of the lamp and improve the cleaning efficiency.
  • the outer contour of the sponge roller 34 is a wavy structure extending in the circumferential direction.
  • the outer circle of the sponge roller 34 is also a wavy concave-convex structure.
  • the convex structure of the outer circle of the sponge roller can also be adapted to tunnel lamps with uneven surfaces, and it is easy to clean the recessed area in the tunnel lamps and improve its cleaning effect.
  • a mounting frame 37 is detachably connected to the inside of the outer cover 31, and the cleaning assembly and the sponge roller 34 are mounted on the mounting frame.
  • the mounting frame has a frame structure.
  • the outer contour of the mounting frame is adapted to the inner cavity of the outer cover.
  • a mounting plate 38 is fixedly connected to the mounting frame.
  • the cylinder is fixed on the mounting plate.
  • 101 is the installation point of the robotic arm on the cleaning vehicle
  • 102 is the distance sensor
  • 103 is the cleaning vehicle
  • the dashed line represents the preset operation track
  • the solid arrow represents the driving direction.
  • This clean car attitude adaptive positioning method includes the following steps:
  • the distance sensor collects the current distance between the cleaning vehicle and the two side walls of the tunnel
  • S3. Determine the deviation angle of the cleaning vehicle from the preset work track according to the distance information output by the distance sensor; wherein the preset work track is determined according to the distribution of lamps in the tunnel, for example, there is only one row of lights in the tunnel and it is located on the top wall of the tunnel In the middle, then the operation track is the corresponding lane directly below the tunnel lights or the adjacent lane under the lane that least affects traffic flow;
  • S5. Determine the deviation parameter of the control end of the robot arm according to the deviation distance of the installation point of the robot arm, and control the action of the robot arm according to the deviation parameter of the control end of the robot arm, and control the cleaning device installed at the end of the robot arm to clean the lamp Alignment.
  • the present invention it can be detected in real time whether the cleaning vehicle deviates from the preset operation track, and the posture state of the control end of the robotic arm can be adaptively adjusted after the deviation occurs, so that the cleaning device can always be with the cleaning lamp. It is in the aligned state, so as to effectively ensure the cleaning efficiency and cleaning effect of the tunnel lamps, and there will be no leakage of cleaning due to the deviation of the cleaning vehicle from the preset trajectory.
  • step S3 the deviation angle between the cleaning vehicle and the lane line is determined by the following method:
  • is the deviation angle of the cleaning vehicle body from the preset operation track
  • L is the width of the tunnel
  • L c is the width of the cleaning vehicle itself
  • L lf is the distance between the left front side of the cleaning vehicle and the side wall of the left tunnel of the cleaning vehicle
  • L rf is the distance between the right front side of the cleaning vehicle and the side wall of the tunnel on the right side of the cleaning vehicle.
  • step S4 the deviation distance of the cleaning vehicle is determined according to the following method:
  • L 2 is the vertical distance between the line between the two sensors on the rear side of the cleaning vehicle and the installation point of the robot arm
  • L 1 is the line between the two sensors on the front side of the cleaning vehicle and the installation point of the robot arm the vertical distance from the tunnel sidewall preset work trajectory L 0 of the clean car
  • S P is a cleaning job with a preset vehicle track offset distance.
  • the deviation distance of the installation point of the robot arm of the cleaning vehicle is determined according to the following method:
  • V c is the formal speed of the cleaning vehicle
  • k is the speed correction coefficient.
  • the speed correction coefficient is obtained by looking up the table. Generally, the travel speed of the cleaning vehicle and the correction coefficient are established. In the comparison table between the two, the real-time speed of the cleaning vehicle is monitored in real time, and then the speed correction coefficient is obtained by looking up the table.
  • the deviation parameter of the control end of the robot arm includes a lateral deviation parameter in a preset trajectory direction and a longitudinal deviation parameter in a direction perpendicular to the preset trajectory, where:
  • Longitudinal offset parameter Y P is the time in the form of a cleaning vehicle
  • M is the conversion matrix between the coordinates of the robot arm installation point and the coordinates of the control end of the robot arm.
  • the matrix M is obtained by the existing DH coordinate conversion algorithm, which belongs to the prior art and will not be added here.
  • 201 is a binocular camera
  • 202 is a cleaning vehicle
  • 203 is the first joint point
  • 204 is the second joint point
  • 205 is the joint axis of the robotic arm
  • 207 is the third joint point
  • 206 is the fourth joint point
  • 208 It is a cleaning device
  • 209 is a distance sensor
  • 210 is a camera
  • 211 is a tunnel light
  • 212 is an angle sensor
  • 213 is a steering gear used to install the first joint point of the robotic arm.
  • the present invention provides a tunnel lamp positioning method for tunnel lamp cleaning, including a cleaning vehicle 202, a robotic arm provided on the cleaning vehicle 202, and a cleaning device 208 provided at the end of the robotic arm.
  • the tunnel lamp positioning method includes the following step:
  • the robotic arm uses the robotic arm shown in Figure 1 with four joint points, that is, each joint axis of the robotic arm rotates around the joint point.
  • the first joint point 203 of the binocular camera and the robotic arm On the same horizontal plane, ensure that the XOY plane of the three-dimensional coordinate system established with the binocular camera as the origin of the coordinate contains the first joint, which facilitates subsequent processing and analysis.
  • the binocular camera is used for positioning.
  • the cleaning device can be aligned with the tunnel lamp position without the cleaning vehicle stopping to complete the cleaning without manual intervention in the whole process, which can effectively improve the cleaning efficiency of the tunnel lamp , Will not cause major interference to traffic, and can avoid the hidden dangers in traditional technology.
  • the cleaning vehicle is equipped with a steering gear 213, and the rotation of the first joint is driven by the steering gear to control the first joint to be horizontal Direction rotation, the rotation of the second joint point, the third joint point, and the fourth joint point are realized by existing driving mechanisms, such as electric cylinders and motors.
  • step S2 the position parameters of the robot arm execution end in the three-dimensional coordinate system are determined according to the following mathematical model:
  • ⁇ e ⁇ 2 + ⁇ 3 + ⁇ 4 ;
  • Xe, Ye, and Ze are the coordinate values of the robot arm's execution end in the X, Y, and Z directions of the three-dimensional coordinate system
  • ⁇ e is the posture angle of the robot arm's execution end
  • m, n, and ⁇ are intermediate variables, respectively. among them:
  • n s 1 (L 4 s 234 +L 3 s 23 +L 2 c 2 +L1)
  • step S3 the rotation angle ⁇ ′ 1 of the first joint axis on the XOY plane of the three-dimensional coordinate system is determined according to the following method:
  • step S3 the rotation angle ⁇ ′ 3 of the third joint axis is determined according to the following method:
  • ⁇ '3 arctan2 (nL 3 s 2, mL 3 c 2) - ⁇ 2.
  • step S3 the rotation angle ⁇ ′ 4 of the fourth joint axis is determined according to the following method:
  • ⁇ ′ 4 ⁇ e -( ⁇ ′ 2 + ⁇ ′ 3 ), where ⁇ ′ 2 , ⁇ ′ 3 and ⁇ ′ 4 are the rotations of the second joint point, the third joint point and the fourth joint point in the numerical direction Angle, through the above method, the rotation angle of each joint can be accurately obtained, so that the robot arm can be controlled to accurately send the cleaning device to the position of the lamp.
  • the present invention also provides a tunnel lamp positioning system for tunnel lamp cleaning, including a binocular camera, a camera, a distance sensor and a controller;
  • the binocular camera 201 is set on the cleaning vehicle and is used to collect the first image information of the tunnel lamp and output it to the controller;
  • the camera 210 is set at the cleaning device and is used for the second image information of the tunnel lamp;
  • the angle sensor 212 is arranged at the joint point of the mechanical arm, and is used to detect the joint point of each joint axis of the mechanical arm, and is used to detect the actual angle of each joint axis;
  • the distance sensor 209 is arranged at the cleaning device and is used to collect the actual distance between the cleaning device and the tunnel lamp and transmit the distance information to the controller;
  • the controller is used to receive the information output by the binocular camera, the camera, and the distance sensor, and use the position of the binocular camera as the coordinate origin as the coordinate system, determine the position information of the lamp through the first image information, and determine the position information of the lamp according to the output of the angle sensor
  • the angle information determines the position parameter of the execution end of the robot arm, and then determines the rotation angle of each joint point of the robot arm according to the position parameter of the execution end of the robot arm, and controls the rotation of each joint point of the robot arm to make the cleaning device reach the position of the tunnel lamp.
  • the controller determines the position parameter of the execution end of the robotic arm according to the following method:
  • ⁇ e ⁇ 2 + ⁇ 3 + ⁇ 4 ;
  • Xe, Ye, and Ze are the coordinate values of the robot arm's execution end in the X, Y, and Z directions of the three-dimensional coordinate system
  • ⁇ e is the posture angle of the robot arm's execution end
  • m, n, and ⁇ are intermediate variables, respectively. among them:
  • n s 1 (L 4 s 234 +L 3 s 23 +L 2 c 2 +L1)
  • the controller controls the rotation angle of the joint points of each manipulator according to the following method:
  • ⁇ ′ 3 arctan2(nL 3 s 2 , mL 3 c 2 )- ⁇ 2 ;
  • ⁇ ′ 4 ⁇ e -( ⁇ ′ 2 + ⁇ ′ 3 ).
  • the further positional relationship between the cleaning device and the lamp is sensed through the first camera and the distance sensor, and an electric drive is installed in the cleaning device.
  • the rotation mechanism of the cleaning device is controlled by a controller to fine-tune the rotation mechanism in real time.
  • the driving mechanism of the rotation of the cleaning device can be articulated by a ball hinge device, and then an electric cylinder or motor is used to drive the ball hinge to rotate.
  • the controller performs cleaning according to the distance sensor and the image device
  • the rotation control of the device can use the existing algorithm, which will not be repeated, so that the cleaning part of the cleaning device can be accurately fitted to the surface of the lamp.
  • the cleaning device can use the existing cleaning device, such as an electric brush.

Landscapes

  • Cleaning In General (AREA)

Abstract

本发明涉及一种基于位姿自适应的双动力源隧道灯具清洁车,属于灯具清洁技术领域。包括车载平台、安装于车载平台上的升降平台以及安装于升降平台上的清洁装置,所述升降平台以可升降并可转换方位的方式连接于车载平台上,所述清洁装置包括顶部开口用于向上罩于隧道灯具的外罩、安装于外罩内用于清洁隧道灯具表面的干式清洁组件以及连通于外罩内腔的负压形成装置,所述外罩侧壁开有负压孔,所述负压孔连接于负压形成装置使得外罩内腔形成负压环境;本发明隧道灯具清洁装置可随车载平台行走过程中依次对隧道灯具进行清洁,该清洁方式为干式清洁,并通过负压将清洁下来的固体颗粒回收,其清洁效率高,对隧道环境无污染,并避免了登高作业的安全隐患。

Description

基于位姿自适应的双动力源隧道灯具清洁车 技术领域
本发明属于灯具清洁技术领域,涉及基于位姿自适应的双动力源隧道灯具清洁车。
背景技术
隧道灯具是为解决车辆驶入或驶出隧道时亮度的突变使视觉产生的“黑洞效应”或“白洞效应”,用于隧道照明的特殊灯具,隧道空间相对密封,故隧道内尾气和粉尘含量较高,隧道灯的灯罩表面容易积聚固体颗粒,影响灯罩的透光度,进而影响照明效果,造成隧道内光亮不足,影响安全通行,因此需要对隧道灯的灯罩进行清洁;
目前常用的清洁方式主要有两种方式,分别为湿式清洁以及非接触式干式清洁;其中湿式清洁为人工利用升降机登高作业,进行高压水枪冲洗,采用长柄刷进行刷洗,该方式刷洗效率抵,另外污水随意滴落,污染隧道环境,现有技术中也有采用大型机械毛刷并配合高压水进行刷洗,该方式同样造成污水污染隧道环境,而且湿式清洁方式容易造成隧道灯具短路等故障;非接触式干式清洁主要利用高压风刀,通过高压风流冲击隧道灯具表面,该结构风刀对隧道灯具表面冲击力较大,容易损坏隧道灯具,而且隧道中汽车尾气中固体颗粒较多,该固体颗粒附着于隧道灯具上的粘附力较大,该风刀清洁方式难以有效对该固体颗粒清洁,清洗效果不好,而且清洁下来的固体颗粒受风流吹动易向隧道环境中扩散,对隧道环境造成二次污染。
因此需要一种隧道灯具清洁车,该隧道灯具清洁装置可随车载平台行走过程中依次对隧道灯具进行清洁,该清洁方式为接触式干式清洁,其清洁效果好,并通过负压风流将清洁下来的固体颗粒回收,其清洁效率高,对隧道环境无污染,降低了人工劳动量,并避免了人工登高作业造成的安全隐患。
发明内容
有鉴于此,本发明的目的在于提供一种基于位姿自适应的双动力源隧道灯具清洁车。
为达到上述目的,本发明提供如下技术方案:
基于位姿自适应的双动力源隧道灯具清洁车,包括车载平台、安装于车载平台上的升降平台以及安装于升降平台上的清洁装置,所述升降平台以可升降并可转换方位的方式连接于车载平台上,所述清洁装置包括顶部开口用于向上罩于隧道灯具的外罩、安装于外罩内用于清洁隧道灯具表面的干式清洁组件以及连通于外罩内腔的负压形成装置,所述外罩侧壁开有 负压孔,所述负压孔连接于负压形成装置使得外罩内腔形成负压环境;
所述车载平台包括两套动力源,分别为高速动力源以及低速动力源,所述高速动力源和低速动力源之间设置有切换装置用于切换动力源实现车载平台的正常行驶以及清洁灯具时的低速行驶。
可选的,所述车载平台包括安装平台、连接于安装平台头部的驾驶室、安装于安装平台和驾驶室底部的驱动轮以及驱动驱动轮转动的动力总成,所述安装平台和/或驾驶室底部还连接有用于控制车载平台竖向颠簸幅度的车身稳定结构。
可选的,所述车载平台上可水平转动的设置有回转平台,所述升降平台偏心连接于回转平台上。
可选的,所述外罩包括外层以及位于外层内的内层,所述内外层之间形成负压夹层,所述负压孔开设于外层上并贯通于负压夹层,所述内、外层在外罩开口端形成周向闭合的吸尘口,所述负压夹层向吸尘口侧逐渐收窄使得吸尘口形成渐变收窄口,所述内、外层之间通过连接板连接。
可选的,所述车身稳定结构为可升降安装于安装平台和/或驾驶室底部并位于车载平台左右两侧的若干组硬质稳定轮,所述稳定轮高于驱动轮使得车载平台正常行驶时稳定轮悬空于地面,所述车载平台竖向颠簸时,稳定轮随车载平台竖向向下移动接触于地面用于控制车载平台的竖向颠簸幅度。
可选的,所述干式清洁组件包括转动配合安装于外罩内并在前后向依次排列的若干个毛刷组件、与毛刷组件前后向并列设置的海绵滚筒以及驱动毛刷和海绵滚筒转动的清洗驱动装置,所述毛刷组件与海绵滚筒的轴向相同,所述毛刷组件与海绵滚筒用于贴于隧道灯具表面并转动对隧道灯具表面进行清洁。
可选的,所述毛刷组件以及海绵滚筒轴向两端可轴向摆动的铰接于安装座上,所述安装座底部通过弹性件连接于外罩内,所述弹性件具有将毛刷或者海绵滚筒压于隧道灯具表面的弹性力。
可选的,所述毛刷组件包括毛刷滚筒以及连接于毛刷滚筒外表面的长毛刷以及短毛刷,所述长毛刷和短毛刷在毛刷滚筒周向交错设置,所述海绵滚筒外轮廓为沿周向延伸的波浪形结构。
可选的,所述弹性件为气缸。
可选的,所述清洁装置还包括储尘装置,所述储尘装置上设置有进风口和出风口,所述进风口连通于负压孔,所述出风口连通于负压形成装置,所述出风口处设置有灰尘过滤网。
可选的,所述高速动力源为电机或者内燃机,所述低速动力源为液压马达。
可选的,所述清洁系统在定位时,包括如下步骤:
S1.在清洁车的车头两侧以及车位两侧分别设置一个距离传感器,且位于清洁车头的两个距离传感器位于同一直线上,位于清洁车为的两个距离传感器位于同一直线上;
S2.距离传感器采集当前清洁车与隧道两侧壁的距离;
S3.根据距离传感器输出的距离信息确定出清洁车与预设作业轨迹的偏离角度;
S4.根据清洁车的偏离角度确定出清洁车的偏离距离,并且根据清洁车的偏离距离计算安装于清洁车的机械臂的安装点的偏离距离;
S5.根据机械臂的安装点的偏离距离确定出机械臂的控制末端的偏离参数,并根据机械臂的控制末端的偏离参数控制机械臂动作,控制安装于机械臂末端的清洁装置对于被清洁灯具对准。
可选的,所述清洁系统在定位时,包括如下步骤:
步骤S3中,清洁车与行车车道线的偏离角度通过如下方法确定:
Figure PCTCN2020101716-appb-000001
其中,θ为清洁车车身与预设作业轨迹的偏离角度,L为隧道的宽度,L c为清洁车自身的宽度,L lf为清洁车左前侧与清洁车左侧隧道侧壁的距离,L rf为清洁车右前侧与清洁车右侧隧道侧壁的距离。
可选的,步骤S4中,根据如下方法确定出清洁车的偏离距离:
Figure PCTCN2020101716-appb-000002
其中,L 2为位于清洁车后侧的两个传感器之间的连线与机械臂安装点的垂直距离,L 1为位于清洁车前侧的两个传感器之间的连线与机械臂安装点的垂直距离,L 0为清洁车的预设作业轨迹与隧道侧壁的距离,S P为清洁车与预设作业轨迹的偏离距离。
可选的,所述步骤S4中,根据如下方法确定出清洁车的机械臂的安装点的偏离距离:
Figure PCTCN2020101716-appb-000003
其中,
Figure PCTCN2020101716-appb-000004
为清洁车的机械臂的安装点的偏离距离,V c为清洁车的形式速度,k为速度修正系数。
可选的,步骤S5中,机械臂的控制末端的偏离参数包括在预设轨迹方向上的横向偏移参数和在垂直于预设轨迹方向上的纵向偏移参数,其中:
横向偏移参数X P:X P=V c·t;
纵向偏移参数Y P
Figure PCTCN2020101716-appb-000005
其中,t为清洁车形式时间,M为机械臂安装点坐标与机械臂的控制末端坐标的转换矩阵。
可选的,所述清洁系统在灯具定位方法时,包括如下步骤:
S1.以设置在清洁车的双目摄像机采集隧道灯具的第一图像信息,并以双目摄像机所在位置为坐标原点建立三维直角坐标系,根据第一图像信息获取隧道灯具在三维坐标系中的坐标位置;
S2.采集机械臂的各关节点的实际角度,并根据各机械臂的实际角度确定出机械臂的执行末端在三维坐标系中的位置参数;
S3.根据隧道灯具在三维坐标系中的位置以及机械臂的执行末端的位置参数,根据该位置参数确定出机械臂的各关节点的旋转角度,根据旋转角度控制机械臂关节点的旋转将清洁装置与隧道灯具对准。
可选的,所述步骤S2中,根据如下数学模型确定机械臂执行末端在三维坐标系的位置参数:
Xe=m
Ye=n
Ze=α
β e=θ 234
其中,Xe、Ye以及Ze分别为机械臂的执行末端在三维坐标系的X、Y和Z方向的坐标值,β e为机械臂执行末端的姿态角,m、n和α分别为中间变量,其中:
m=c 1(L 4c 234+L 3c 23+L 2c 2+L1);
n=s 1(L 4s 234+L 3s 23+L 2c 2+L1)
α=L 4s 234+L 3s 23+L 2s 2;其中,c 234=cos(α 234),c 23=cos(θ 23),c 2=cosθ 2, s 1=sinθ 1,s 234=sin(α 234),s 23=sin(θ 23),c 1=cosθ 1,s 2=sinθ 2;其中,θ 1为机械臂的第一关节轴三维坐标系的XY平面的实际角度,θ 2为第二关节轴与第一关节轴之间的实际角度,θ 3为第二关节轴与第三关节轴之间的实际角度,θ 4为第四关节轴与第三关节轴之间的实际角度;α 2=0。
可选的,所述步骤S3中,根据如下方法确定第一关节轴在三维坐标系的XOY平面上的转动角度θ′ 1
将隧道灯具以及第一关节轴垂直投影到三维直角坐标系的XOY平面上,并以第一关节点为原点,第一关节轴的投影为横坐标建立直角坐标系(x'o'y'),根据隧道灯具在直角坐标系(x'o'y')的坐标计算第一关节点的转动角度
Figure PCTCN2020101716-appb-000006
可选的,步骤S3中,根据如下方法确定出第二关节轴的旋转角度θ′ 2
Figure PCTCN2020101716-appb-000007
可选的,所述步骤S3中,根据如下方法确定出第三关节轴的旋转角度θ′ 3
θ′ 3=arctan2(n-L 3s 2,m-L 3c 2)-θ 2
可选的,所述步骤S3中,根据如下方法确定出第四关节轴的旋转角度θ′ 4
θ′ 4=β e-(θ′ 2+θ′ 3)。
可选的,所述灯具清洁系统还包括双目摄像机、摄像机、距离传感器以及控制器;
所述双目摄像机,设置于清洁车上,用于采集隧道灯具的第一图像信息并输出至控制器中;
所述摄像机,设置于清洁装置处,用于隧道灯具的第二图像信息;
角度传感器,设置于机械臂的关节点处,用于检测机械臂的各关节轴的关节点处,用于检测各关节轴的实际角度;
距离传感器,设置于清洁装置处,用于采集清洁装置与隧道灯具的实际距离并距离信息传输至控制器中;
所述控制器,用于接收双目摄像机、摄像机以及距离传感器输出的信息,并以双目摄像机所在位置为坐标原点为坐标系,通过第一图像信息确定灯具的位置信息,根据角度传感器 输出的角度信息确定出机械臂的执行末端的位置参数,然后根据机械臂执行末端的位置参数确定出机械臂各关节点转动角度并控制机械臂各关节点转动使清洁装置到达隧道灯具位置。
可选的,所述控制器根据如下方法确定出机械臂执行末端的位置参数:
Xe=m
Ye=n
Ze=α
β e=θ 234
其中,Xe、Ye以及Ze分别为机械臂的执行末端在三维坐标系的X、Y和Z方向的坐标值,β e为机械臂执行末端的姿态角,m、n和α分别为中间变量,其中:
m=c 1(L 4c 234+L 3c 23+L 2c 2+L1);
n=s 1(L 4s 234+L 3s 23+L 2c 2+L1)
α=L 4s 234+L 3s 23+L 2s 2;其中,c 234=cos(α 234),c 23=cos(θ 23),c 2=cosθ 2,s 1=sinθ 1,s 234=sin(α 234),s 23=sin(θ 23),c 1=cosθ 1,s 2=sinθ 2;其中,θ 1为机械臂的第一关节轴三维坐标系的XY平面的实际角度,θ 2为第二关节轴与第一关节轴之间的实际角度,θ 3为第二关节轴与第三关节轴之间的实际角度,θ 4为第四关节轴与第三关节轴之间的实际角度;α 2=0。
可选的,所述控制器根据如下方法控制各机械臂关节点的转动角度:
第一关节轴在三维坐标系的XOY平面上的转动角度θ′ 1
将隧道灯具以及第一关节轴垂直投影到三维直角坐标系的XOY平面上,并以第一关节点为原点,第一关节轴的投影为横坐标建立直角坐标系(x'o'y'),根据隧道灯具在直角坐标系(x'o'y')的坐标计算第一关节点的转动角度
Figure PCTCN2020101716-appb-000008
第二关节轴的旋转角度θ′ 2
Figure PCTCN2020101716-appb-000009
第三关节轴的旋转角度θ′ 3
θ′ 3=arctan2(n-L 3s 2,m-L 3c 2)-θ 2
第四关节轴的旋转角度θ′ 4
θ′ 4=β e-(θ′ 2+θ′ 3)。
可选的,所述外罩内部可拆卸连接有安装架,所述清洁组件和海绵滚筒安装于安装架上。
本发明的有益效果在于:
本发明清洁装置设置两套动力源分别为高速动力源和低速动力源,通过切换装置可切换动力源,即可满足车载平台的正常行驶要求也可满足清洁灯具时的低速稳定行驶;该隧道灯具清洁装置可随车载平台行走过程中持续对隧道灯具进行清洁,无需频繁的启停,提高了清洁效率;低速动力源选用液压马达,行驶速度依靠液压马达的转速来控制,可以在运行过程中实现大范围的无级调速,其传动比较高,且调速性能不受功率大小的限制,并易于实现载荷控制、速度控制和方向控制,传动平稳,操作省力,反应快,并能高速启动和频繁换向,运动惯性小,响应速度快,低速稳定性好;
本发明设置车身稳定结构以减少颠簸幅度,提高清洁装置运行的稳定性;车身稳定结构选用可升降的硬质稳定轮,可调节稳定轮的高度,以适配驱动轮的胎压以及不同工况的路面,当车载平台颠簸幅度超过稳定轮距离地面的距离时,稳定轮与地面接触形成支撑可防止车载平台的进一步颠簸,而且,稳定轮与地面形成滚动接触,降低稳定轮与地面的摩擦力,保证车载平台可靠、稳定的匀速行驶;
本发明通过升降平台配合回转平台可实现清洁装置多个自由度的方位转换,升降平台偏心连接于回转平台上,回转平台转动时可实现升降平台以及清洁装置在隧道内部宽度方向的大范围移动,通过回转平台的转动可使得升降平台以及清洁装置适配于隧道内宽度方向布置的灯具位置,便于对隧道内宽度方向布置的灯具进行清洁,通过回转平台可降低对升降平台转换方位的范围以及转换自由度的要求,可简化升降平台的结构,并有效改善了升降装置的重心,提高了升降装置的稳定性;
本发明清洁装置采用接触式干式清洁方式,通过毛刷以及海绵滚筒的接触式清洁,易于清洁附着于隧道灯具表面的尾气排放固体颗粒,而且该方式避免了湿式清洁中污水横流对隧道环境的污染,并避免了湿式清洁造成的隧道灯具短路,而且通过毛刷以及海绵滚筒与隧道灯具接触,隧道灯具表面受到的力较小,避免了风刀清洁方式对隧道灯具表面的冲击力,有效保护隧道灯具不被损坏;
本发明清洁装置具有外罩,外罩罩于隧道灯具上,清洁组件在外罩内部对隧道灯进行清 洁,清洁下的固体颗粒被封闭于外罩腔体内便于随风流排出,外罩的夹层结构形成了围绕外罩开口端形成的周向闭合的吸尘口,该吸尘口向内吸气,使得外罩周围形成周向闭合的风墙,可有效防止外罩内的固体颗粒外漏,提高了固体颗粒的回收率,有效保证隧道环境不被固体颗粒污染,该装置清洁效率高,降低了人工劳动量,并避免了人工登高作业造成的安全隐患,该夹层结构易于风道的布置,使得外罩结构紧凑;
本发明通过多个毛刷组件进行多次清洁,通过设定各个毛刷组件的毛刷硬度以及毛刷组件的转动方向可高效、彻底的对隧道灯具表面的固体颗粒进行清除,最后通过海绵滚筒清洁隧道灯具表面残留的固体颗粒,通过该步骤清洁效率高,清洁效果好,毛刷组件具有交错设置的长毛刷以及短毛刷,海绵滚筒外轮廓为波浪形结构,该结构可适配于凹凸不平的隧道灯具表面,易于对隧道灯具内凹陷区域进行清洁,提高其清洁效果,毛刷组件和海绵滚筒浮动设置于外罩上,通过该结构使得毛刷组件以及海绵滚筒自适应隧道灯具的位置和角度,可保证毛刷组件以及海绵滚筒完全贴合于隧道灯具的表面,提高清洁效果。
通过本发明,能够实时检测清洁车与预设作业轨迹是否发生偏离,而且能够在偏离发生后自适应调整机械臂的控制末端的位姿状态,从而使得清洁装置能够与被清洁灯具始终处于对准状态,从而有效确保隧道灯具的清洁效率以及清洁效果,不会因为清洁车与预设轨迹的偏离而出现漏清洁现象。
通过本发明,能够在清洁车不停车的条件下将清洁装置与隧道灯具位置进行对准,进而完成清洗,全程无需人工干预,能够有效提高隧道灯具的清洁效率,不会对交通通行造成大的干扰,而且能够避免传统技术中的安全隐患。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为本发明清洁状态结构示意图;
图2为本发明整体结构示意图;
图3为升降平台结构示意图;
图4为清洁装置结构示意图(带外罩);
图5为外罩俯视结构示意图;
图6为外罩剖视结构示意图;
图7为清洁装置结构示意图(不带外罩);
图8为毛刷组件安装结构示意图;
图9为毛刷组件和海绵滚筒结构示意图;
图10为双动力源切换结构示意图;
图11为位姿自适应定位方法示意图;
图12为本发明的灯具定位系统结构示意图;
图13为本发明的灯具定位系统示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
图1为本发明清洁状态结构示意图;图2为本发明整体结构示意图;图3为升降平台结构示意图;图4为清洁装置结构示意图(带外罩);图5为外罩俯视结构示意图;图6为外罩剖视结构示意图;图7为清洁装置结构示意图(不带外罩);图8为毛刷组件安装结构示意图;图9为毛刷组件和海绵滚筒结构示意图;图10为双动力源切换结构示意图;图11为位姿自适应定位方法示意图;图12为本发明的灯具定位系统结构示意图;图13为本发明的灯具定位系统示意图。
如图所示:本实施例双动力源车载式隧道灯具清洁系统,包括车载平台10、安装于车载平台上的升降平台20以及安装于升降平台上的清洁装置30,所述升降平台20以可升降并可转换方位的方式连接于车载平台上,所述车载平台包括两套动力源,分别为高速动力源40以及低速动力源50,所述高速动力源40和低速动力源50之间设置有切换装置用于切换动力源实现车载平台的正常行驶以及清洁灯具时的低速行驶。
本实施例中,头部位置或前向为朝向车载平台行驶方向的一侧,尾部位置为相对头部位置一侧,左、右方向为座于驾驶室内面朝前方对应的左右向;
如图1所示,该装置行走在隧道80内,隧道内部安设有多个隧道灯具90,车载平台由工程车辆、配重及安装平台等组成,实现整个系统的承重和移动;升降平台可通过液压动力、丝杆螺母副或者剪叉式升降等结构形成垂直升降,通过垂直升降结构配合机械臂转换方位驱动清洁装置适配隧道灯具的位置,其中机械臂可选用球坐标机械臂、关节机械臂或者直角坐标机械臂等结构,具体机械臂的结构形式依据所需要的自由度进行选择,本实施例中升降平台为曲臂升降结构,通过多个转动配合的曲臂21以及控制相邻曲臂转动夹角的电动推杆22组成,通过电动推杆提高曲臂的控制精度,当然相邻曲臂转动夹角还可通过液压缸控制,具体不在赘述;其中清洁装置安装于最上方的曲臂末端,通过该曲臂结构可实现多个方向的自由度方位转换,曲臂结构即可伸长适配隧道灯具的高度也可折叠降低收纳或避障,该结构便于适配隧道灯具的高度和位置;考虑到清洁的有效性,要求清洁装置在每盏灯具表面停留至少2s,依据隧道灯具的布置间距,车辆运行速度为1-3km/h时可满足清洁装置的停留时间要求,目前工程车辆常用的动力系统为内燃机,动力系统在低速运行时尤其在速度为1-3km/h时其稳定性较差,设置两套动力源分别为高速动力源40和低速动力源50,其中高速动力源可以为工程车辆常用的动力系统用于日常的行走,为工程车辆配合独立的低速动力源用于实现清洁灯具时的低速行驶,如图10所示,高速动力源将动力输出至高速齿轮41,低速动力源将动力输出至低速齿轮51,高速齿轮与齿轮Ⅰ42传动配合,低速齿轮与齿轮Ⅱ52传动配合,其中齿轮Ⅰ和齿轮Ⅱ转动配合于输出轴上,其中输出轴传动配合有同步器43,同步器作为切换装置使用,通过拨叉拨动同步器实现与齿轮Ⅰ和齿轮Ⅱ的传动与分离,通过同步器实现动力切换,通过该结构即可满足车载平台的正常行驶要求也可满足清洁灯具时的低速行驶,并通过低速动力源便于提高车载平台低速运行的稳定性。
本实施例中,所述车载平台上可水平转动的设置有回转平台60,所述升降平台20偏心连接于回转平台60上;结合图2和图3所示,该回转平台为圆盘状结构,回转平台可水平转动的安装于车载平台上,其中回转平台可通过液压马达、电机或者内燃机驱动转动,或者可 通过齿轮齿条配合将直线运动转化为回转平台的回转运动,也可通过蜗轮蜗杆实现回转平台的回转驱动,具体不在赘述;升降平台偏心连接于回转平台上,结合图所示,回转平台转动时可实现升降平台以及清洁装置在隧道内部宽度方向的大范围移动,通过回转平台的转动可使得升降平台以及清洁装置适配于隧道内宽度方向布置的灯具位置,便于对隧道内宽度方向布置的灯具进行清洁,通过回转平台带动升降平台实现在水平方向大范围移动,可降低对升降平台转换方位的范围以及转换自由度的要求,可简化升降平台的结构,并有效改善了升降装置的重心,提高了升降装置的稳定性;
本实施例中,所述高速动力源为电机或者内燃机,所述低速动力源为液压马达。
结合图10所示,高速动力源为常用的动力源,该动力源与高速齿轮41之间还可设置变速箱以及差速器等结构,该结构为现有技术,具体不在赘述;低速动力源直接驱动低速齿轮51,采用内燃机时,车载平台最低行驶速度为怠速,稳定性较差,因此低速动力源为液压马达,换挡拨杆保持档位1时,行车速度依靠内燃机驱动行驶,换挡拨杆换档位2时,行驶速度依靠液压马达的转速来控制,可以在运行过程中实现大范围的无级调速,其传动比较高,且调速性能不受功率大小的限制,并易于实现载荷控制、速度控制和方向控制,可以进行集中控制、遥控和实现自动控制,传动平稳,操作省力,反应快,并能高速启动和频繁换向,运动惯性小,响应速度快,低速稳定性好。
本实施例中,所述车载平台10包括安装平台11、连接于安装平台头部的驾驶室12、安装于安装平台和驾驶室底部的驱动轮13以及驱动驱动轮转动的动力总成,所述安装平台和/或驾驶室底部还连接有用于控制车载平台竖向颠簸幅度的车身稳定结构。
结合图2所示,安装平台、驾驶室构成了常用的工程车辆,驱动轮通常采用橡胶轮,其弹性较大,稳定性较差,导致颠簸幅度较大,车载平台轻微的颠簸即可导致清洁装置30的大幅度摆动,故在安装平台和/或驾驶室底部增设车身稳定结构,通过该结构稳定车身降低车载平台的颠簸幅度,提高清洁装置作业时的稳定性,其中车身稳定结构安装于安装平台和/或驾驶室底部其含义为车身稳定结构可单独安装于安装平台或驾驶室底部,也可同时安装于安装平台和驾驶室底部,车身稳定结构可以为多组驱动轮结构,通过多组驱动轮形成良好的支撑性能以减少颠簸幅度,或者车身稳定结构也可以为弹性件,在车载平台颠簸时,弹性件接触地面形成反向弹性力,以减小颠簸幅度,具体不在赘述;
本实施例中,所述车身稳定结构为可升降安装于安装平台和/或驾驶室底部并位于车载平台左右两侧的若干组硬质稳定轮70,所述稳定轮高于驱动轮使得车载平台正常行驶时稳定轮悬空于地面,所述车载平台竖向颠簸时,稳定轮随车载平台竖向向下移动接触于地面用于控 制车载平台的竖向颠簸幅度。
可在每个驱动轮的前后向的侧部配备一个稳定轮,稳定轮可采用金属材质或塑料材质,为降低稳定轮对路面的冲击,本实施例中优选塑料材质,本实施例中每组稳定轮中包括两个安装于同一支架上的稳定轮,该支架通过液压缸可升降连接于车载平台底部,通过升降调节可调节稳定轮的高度,以适配驱动轮的胎压以及不同工况的路面,当车载平台竖向颠簸时,颠簸幅度超过稳定轮距离地面的距离时,稳定轮与地面接触形成支撑可防止车载平台的进一步颠簸,而且,稳定轮与地面形成滚动接触,降低稳定轮与地面的摩擦力,保证车载平台可靠、稳定的匀速行驶。
本实施例中,所述清洁装置30包括顶部开口用于向上罩于隧道灯具的外罩31、安装于外罩内用于清洁隧道灯具表面的干式清洁组件以及连通于外罩内腔的负压形成装置,所述外罩侧壁开有负压孔311,所述负压孔连接于负压形成装置使得外罩内腔形成负压环境。
清洁时,外罩罩于隧道灯具上,清洁组件在外罩内部对隧道灯进行清洁,清洁下的固体颗粒被封闭于外罩腔体内便于随风流排出,该负压形成装置可以为水环式真空泵、螺杆式真空泵或者风机,通过负压形成装置将外罩内腔中的空气向外吸出使其内部形成负压环境,外部的空气向外罩内腔流通,通过该结构防止清洁下来的固体颗粒向隧道环境中扩散,保证固体颗粒随风流经过负压孔流动至预设位置,其中经过负压孔流出的污风可直接输送至静电除尘装置中将固体颗粒吸附,也可直接将污风输送至液体内通过液体将固体颗粒吸附,其也可以将污风通过管道输送至隧道外部排放,具体不在赘述;该清洁方式为干式清洁,并通过负压将清洁下来的固体颗粒回收,其清洁效率高,对隧道环境无污染,降低了人工劳动量,并避免了人工登高作业造成的安全隐患。
本实施例中,所述清洁装置30还包括储尘装置32,所述储尘装置32上设置有进风口和出风口,所述进风口连通于负压孔,所述出风口连通于负压形成装置,所述出风口处设置有灰尘过滤网。
储尘装置32为盒装结构,储尘装置32和负压形成装置安装于车载平台上,储尘装置的出风口、进风口、过滤网以及负压形成装置附图中未示出,结合图2所示,储尘装置32进风口通过管道38相连,污风通过管道输送至储尘装置32内,通过过滤网过滤固体颗粒,防止固体颗粒进入至负压形成装置内粘附其零部件上损坏设备,提高了负压形成装置的使用寿命。
本实施例中,所述外罩31包括外层312以及位于外层内的内层313,所述内外层之间形成负压夹层314,所述负压孔开设于外层上并贯通于负压夹层,所述内、外层在外罩开口端形成周向闭合的吸尘口315,所述内、外层之间通过连接板连接。
结合图5和图6所示,该夹层结构形成了围绕外罩开口端形成的周向闭合的吸尘口,该吸尘口向内吸气,使得外罩周围形成周向闭合的风墙,可有效防止外罩内的固体颗粒外漏,提高了固体颗粒的回收率,有效保证隧道环境不被固体颗粒污染,该夹层结构易于风道的布置,使得外罩结构紧凑,外罩的开口端为矩形结构,外罩的具体形状可依据实际的隧道灯形状做适应性的调整,具体不在赘述;
本实施例中,所述干式清洁组件包括转动配合安装于外罩31内并在前后向依次排列的若干个毛刷组件33、与毛刷组件前后向并列设置的海绵滚筒34以及驱动毛刷和海绵滚筒转动的清洗驱动装置39,所述毛刷组件与海绵滚筒的轴向相同,所述毛刷组件与海绵滚筒用于贴于隧道灯具表面并转动对隧道灯具表面进行清洁。
结合图7至图9所示,本实施例中设置有两个毛刷组件,毛刷设置于外径为300mm的软毛刷滚筒和一个外径为300mm海绵滚筒,在清洁时,通过方位转换保证毛刷组件位于海绵滚筒之前,毛刷组件的毛刷硬度从前向后依次降低,最前侧的毛刷组件其毛刷硬度大于位于后侧毛刷组件的毛刷,随车载平台行驶首先通过硬度较大的毛刷对隧道灯具表面进行清洁,使得隧道灯具表面附着力较大的固体颗粒脱落或松动,而后硬度较小的毛刷对隧道灯具表面进行二次清洁,使得大部分固体颗粒脱落,再通过海绵滚筒进行清洗,清洁隧道灯具表面残留的固体颗粒,当然,可依据不同地区不同环境的隧道对毛刷组件的数量进行相适应的调整,具体不在赘述,本实施例中清洗驱动装置39选用电机驱动,可通过一个电机配合传动结构同步驱动毛刷组件33和海绵滚筒34,本实施例中为每个毛刷组件33和海绵滚筒34配备一个驱动电机进行独立驱动,在清洁时可独立控制各个毛刷组件的转动方向,使得相邻的毛刷组件转动方向相反或相同,本实施例中优选相邻毛刷组件的转动方向相反,通过不同的清洁方向对隧道灯具表面进行彻底高效的清洁,驱动电机通过联轴器与毛刷组件或者海绵滚筒传动配合,其中毛刷组件或者海绵滚筒两端设置有轴承座301,轴承座内安装有轴承,通过轴承使得毛刷组件或者海绵滚筒两端与相应的轴承座形成转动配合,其中轴承座与安装座35通过铰链形成铰接;
本实施例中,所述负压夹层向吸尘口315侧逐渐收窄使得吸尘口形成渐变收窄口。
通过收窄的吸尘口,增大该处的吸力,提高吸尘口处风流的流速,提高风墙的作用力,可有效限制外罩内部固体颗粒向外的流动,并使得外罩内部形成强力吸风,增强吸尘效果。
本实施例中,所述毛刷组件33以及海绵滚筒34轴向两端可轴向摆动的铰接于安装座35上,所述安装座底部通过弹性件36连接于外罩31内,所述弹性件具有将毛刷或者海绵滚筒压于隧道灯具表面的弹性力。
结合图8所示,安装座为倒置T形结构,为提高毛刷组件33以及海绵滚筒34的灵活性,本实施例中设置两个独立的安装座分别适配于毛刷组件33的两端,海绵滚筒34采用同样结构,当然,其他实施例中安装座可以为一体式结构,即毛刷组件33的两端固定于同一安装座上,具体不在赘述;安装座的竖梁与轴承座301之间通过铰链铰接,弹性件连接于安装座的横梁底部,毛刷组件33以及海绵滚筒34可在轴向所在的竖向平面内摆动,且毛刷组件33以及海绵滚筒34轴向两端可随着弹性件的弹力大小竖向移动摆动,通过该结构使得毛刷组件33以及海绵滚筒34自适应隧道灯具的位置和角度,可保证毛刷组件33以及海绵滚筒34完全贴合于隧道灯具的表面,提高清洁效果,该弹性件可以为圆柱螺旋弹簧或者弹性套筒,弹性件并不限于钢制弹簧,其可以利用空气的压缩性能提供弹性力,具体不在赘述;
本实施例中,所述弹性件为气缸。
外罩内部安装有安装板38,气缸缸体固定连接于安装板上,气缸的输出轴穿过安装板连接于安装座横梁底部,为保证安装座在预定方向内移动,在安装座横梁底部设置导向轴,该导向轴贯穿于安装板上形成导向;气缸其弹力可控,既可进行主动浮动调节,也可进行被动浮动调节;当气缸伸出气压调节至一定程度时,滚筒保持平衡;受外力时,气缸可收缩使得毛刷组件33以及海绵滚筒34竖向移动或者偏移,从而保证毛刷组件33以及海绵滚筒34的浮动调整功能。
本实施例中,所述毛刷组件33包括毛刷滚筒331以及连接于毛刷滚筒外表面的长毛刷332以及短毛刷333,所述长毛刷和短毛刷在毛刷滚筒周向交错设置。
结合图9所示,在毛刷滚筒外圆设置有若干行轴毛刷,每行毛刷轴向延伸,各行毛刷周向分布于毛刷滚筒的外圆,相邻毛刷行分别为长毛刷和短毛刷,长毛刷行与短毛刷行周向交替设置;按隧道灯具表面平整性可以分为平面玻璃类灯具和LED灯珠类灯具,当隧道灯具为LED灯珠类时,灯具表面凹凸不平,通过长短毛刷适应其凹凸不平的表面,可提高对灯具表明的清洁覆盖面,提高清洁效率。
本实施例中,海绵滚筒34外轮廓为沿周向延伸的波浪形结构。
结合图9所示,海绵滚筒34外圆也为波浪形的凹凸结构,通过海绵的弹性变形能力,便于海绵滚筒外圆凸起结构伸入至隧道灯具表面的凹陷区域内对其进行清洁,该结构同样可适应表面凹凸不平的隧道灯具,易于对隧道灯具内凹陷区域进行清洁,提高其清洁效果。
本实施例中,外罩31内部可拆卸连接有安装架37,所述清洁组件和海绵滚筒34安装于安装架上。
结合图7所示,该安装架为框架结构,安装架的外轮廓与外罩内腔相适配,在安装架上 固定连接有安装板38,气缸固定于该安装板上,通过该安装架便于清洁组件和海绵滚筒34的安装,清洁组件和海绵滚筒34以及安装架可独立装配并作为一个整体与外罩装配,清洁组件和海绵滚筒34以及安装架装配时不受限于外罩内腔的空间,易于装配。
图11中,101为机械臂在清洁车上的安装点,102为距离传感器,103为清洁车,虚线表示预设作业轨迹,实心箭头表示行车方向。
本清洁车位姿自适应定位方法,包括如下步骤:
S1.在清洁车的车头两侧以及车位两侧分别设置一个距离传感器,且位于清洁车头的两个距离传感器位于同一直线上,位于清洁车为的两个距离传感器位于同一直线上;
S2.距离传感器采集当前清洁车与隧道两侧壁的距离;
S3.根据距离传感器输出的距离信息确定出清洁车与预设作业轨迹的偏离角度;其中,预设作业轨迹根据隧道内的灯具分布状态确定,比如,隧道中只有一列灯,并且位于隧道顶壁正中,那么作业轨迹就为隧道灯正下方对应的车道或者为该车道下最不影响交通通行的相邻车道;
S4.根据清洁车的偏离角度确定出清洁车的偏离距离,并且根据清洁车的偏离距离计算安装于清洁车的机械臂的安装点的偏离距离;
S5.根据机械臂的安装点的偏离距离确定出机械臂的控制末端的偏离参数,并根据机械臂的控制末端的偏离参数控制机械臂动作,控制安装于机械臂末端的清洁装置对于被清洁灯具对准,通过本发明,能够实时检测清洁车与预设作业轨迹是否发生偏离,而且能够在偏离发生后自适应调整机械臂的控制末端的位姿状态,从而使得清洁装置能够与被清洁灯具始终处于对准状态,从而有效确保隧道灯具的清洁效率以及清洁效果,不会因为清洁车与预设轨迹的偏离而出现漏清洁现象。
本实施例中,步骤S3中,清洁车与行车车道线的偏离角度通过如下方法确定:
Figure PCTCN2020101716-appb-000010
其中,θ为清洁车车身与预设作业轨迹的偏离角度,L为隧道的宽度,L c为清洁车自身的宽度,L lf为清洁车左前侧与清洁车左侧隧道侧壁的距离,L rf为清洁车右前侧与清洁车右侧隧道侧壁的距离,通过上述方法,能够准确确定出清洁车的实时偏离角度。
本实施例中,步骤S4中,根据如下方法确定出清洁车的偏离距离:
Figure PCTCN2020101716-appb-000011
其中,L 2为位于清洁车后侧的两个传感器之间的连线与机械臂安装点的垂直距离,L 1为位于清洁车前侧的两个传感器之间的连线与机械臂安装点的垂直距离,L 0为清洁车的预设作业轨迹与隧道侧壁的距离,S P为清洁车与预设作业轨迹的偏离距离。
所述步骤S4中,根据如下方法确定出清洁车的机械臂的安装点的偏离距离:
Figure PCTCN2020101716-appb-000012
其中,
Figure PCTCN2020101716-appb-000013
为清洁车的机械臂的安装点的偏离距离,V c为清洁车的形式速度,k为速度修正系数,其中,速度修正系数通过查表获得,一般会建立清洁车的行驶速度与修正系数之间的对照表,通过实时监测清洁车的实时速度,然后通过查表获得速度修正系数。
步骤S5中,机械臂的控制末端的偏离参数包括在预设轨迹方向上的横向偏移参数和在垂直于预设轨迹方向上的纵向偏移参数,其中:
横向偏移参数X P:X P=V c·t;
纵向偏移参数Y P
Figure PCTCN2020101716-appb-000014
其中,t为清洁车形式时间,M为机械臂安装点坐标与机械臂的控制末端坐标的转换矩阵,其中,矩阵M通过现有的D-H坐标转换算法获得,属于现有技术,在此不加以赘述,通过上述方法,能够准确的确定出机械臂的控制末端的偏离参数,并且,获得上述参数后,控制器获得上述参数后,根据现有的算法确定出各个关节点的运动量,从而补偿因为清洁车行驶偏离导致的清洁装置的位置偏离,从而能够自适应调整清洁装置的位置,确保清洁效率。
其中,201为双目摄像机,202为清洁车,203为第一关节点,204为第二关节点,205为机械臂的关节轴,207为第三关节点,206为第四关节点,208为清洁装置,209为距离传感器,210为摄像机,211为隧道灯具,212为角度传感器,213为用于安装机械臂第一关节点的舵机。
本发明提供的一种用于隧道灯清洁的隧道灯具定位方法,包括清洁车202、设置于清洁车202的机械臂以及设置于机械臂执行末端的清洁装置208,所述隧道灯具定位方法包括如下步骤:
S1.以设置在清洁车的双目摄像机201采集隧道灯具211的第一图像信息,并以双目摄像机所在位置为坐标原点建立三维直角坐标系,根据第一图像信息获取隧道灯具在三维坐标系中的坐标位置;
S2.采集机械臂的各关节点的实际角度,并根据各机械臂的实际角度确定出机械臂的执行末端在三维坐标系中的位置参数;
S3.根据隧道灯具在三维坐标系中的位置以及机械臂的执行末端的位置参数,根据该位置参数确定出机械臂的各关节点的旋转角度,根据旋转角度控制机械臂关节点的旋转将清洁装置与隧道灯具对准。其中,机械臂采用如图1所示的机械臂,具有四个关节点,即机械臂的各关节轴绕着该关节点转动,在实际中,双目摄像机与机械臂的第一关节点203处于同一水平面上,保证以双目摄像机为坐标原点建立的三维坐标系的XOY平面将第一关节包含在其中,从而利于后续的处理分析,双目摄像机用于定位,另一方面,还可以对前方的障碍物进行检测,通过本发明的方法,能够在清洁车不停车的条件下将清洁装置与隧道灯具位置进行对准,进而完成清洗,全程无需人工干预,能够有效提高隧道灯具的清洁效率,不会对交通通行造成大的干扰,而且能够避免传统技术中的安全隐患,当然,清洁车上设置有舵机213,第一关节点的转动由舵机驱动,控制第一关节点在水平方向转动,第二关节点、第三关节点以及第四关节点的转动采用现有的驱动机构,比如电动气缸、电动机实现。
为了实现对隧道灯具的准确定位以及将清洁装置对准灯具,在步骤S2中,根据如下数学模型确定机械臂执行末端在三维坐标系的位置参数:
Xe=m
Ye=n
Ze=α
β e=θ 234
其中,Xe、Ye以及Ze分别为机械臂的执行末端在三维坐标系的X、Y和Z方向的坐标值,β e为机械臂执行末端的姿态角,m、n和α分别为中间变量,其中:
m=c 1(L 4c 234+L 3c 23+L 2c 2+L1);
n=s 1(L 4s 234+L 3s 23+L 2c 2+L1)
α=L 4s 234+L 3s 23+L 2s 2;其中,c 234=cos(α 234),c 23=cos(θ 23),c 2=cosθ 2,s 1=sinθ 1,s 234=sin(α 234),s 23=sin(θ 23),c 1=cosθ 1,s 2=sinθ 2;其中,θ 1为机械 臂的第一关节轴三维坐标系的XY平面的实际角度,θ 2为第二关节轴与第一关节轴之间的实际角度,θ 3为第二关节轴与第三关节轴之间的实际角度,θ 4为第四关节轴与第三关节轴之间的实际角度;α 2=0,其中L 1为第一关节轴14的长度,L 2为第二节轴205的长度,L 3为第三关节轴215的长度,L 4为第四关节轴216的长度,通过上述的方法,能够准确地计算出机械臂的执行末端的位置参数,其中,机械臂执行末端指的是用于安装清洁装置的端部。
本实施例中,步骤S3中,根据如下方法确定第一关节轴在三维坐标系的XOY平面上的转动角度θ′ 1
将隧道灯具以及第一关节轴垂直投影到三维直角坐标系的XOY平面上,并以第一关节点为原点,第一关节轴的投影为横坐标建立直角坐标系(x'o'y'),根据隧道灯具在直角坐标系(x'o'y')的坐标计算第一关节点的转动角度
Figure PCTCN2020101716-appb-000015
根据如下方法确定出第二关节轴的旋转角度θ′ 2
Figure PCTCN2020101716-appb-000016
步骤S3中,根据如下方法确定出第三关节轴的旋转角度θ′ 3
θ′ 3=arctan2(n-L 3s 2,m-L 3c 2)-θ 2
步骤S3中,根据如下方法确定出第四关节轴的旋转角度θ′ 4
θ′ 4=β e-(θ′ 2+θ′ 3),其中,θ′ 2、θ′ 3和θ′ 4为第二关节点、第三关节点和第四关节点在数值方向的转动角,通过上述方法,能够准确得出各个关节点的转动角度,从而控制机械臂能够准确地将清洁装置送至灯具位置处。
相应地,本发明还提供了一种用于隧道灯清洁的隧道灯具定位系统,包括双目摄像机、摄像机、距离传感器以及控制器;
所述双目摄像机201,设置于清洁车上,用于采集隧道灯具的第一图像信息并输出至控制器中;
所述摄像机210,设置于清洁装置处,用于隧道灯具的第二图像信息;
角度传感器212,设置于机械臂的关节点处,用于检测机械臂的各关节轴的关节点处,用于检测各关节轴的实际角度;
距离传感器209,设置于清洁装置处,用于采集清洁装置与隧道灯具的实际距离并距离信息传输至控制器中;
所述控制器,用于接收双目摄像机、摄像机以及距离传感器输出的信息,并以双目摄像机所在位置为坐标原点为坐标系,通过第一图像信息确定灯具的位置信息,根据角度传感器输出的角度信息确定出机械臂的执行末端的位置参数,然后根据机械臂执行末端的位置参数确定出机械臂各关节点转动角度并控制机械臂各关节点转动使清洁装置到达隧道灯具位置,通过上述装置,能够在清洁车不停车的条件下将清洁装置与隧道灯具位置进行对准,进而完成清洗,全程无需人工干预,能够有效提高隧道灯具的清洁效率,不会对交通通行造成大的干扰,而且能够避免传统技术中的安全隐患。
本实施例中,所述控制器根据如下方法确定出机械臂执行末端的位置参数:
Xe=m
Ye=n
Ze=α
β e=θ 234
其中,Xe、Ye以及Ze分别为机械臂的执行末端在三维坐标系的X、Y和Z方向的坐标值,β e为机械臂执行末端的姿态角,m、n和α分别为中间变量,其中:
m=c 1(L 4c 234+L 3c 23+L 2c 2+L1);
n=s 1(L 4s 234+L 3s 23+L 2c 2+L1)
α=L 4s 234+L 3s 23+L 2s 2;其中,c 234=cos(α 234),c 23=cos(θ 23),c 2=cosθ 2,s 1=sinθ 1,s 234=sin(α 234),s 23=sin(θ 23),c 1=cosθ 1,s 2=sinθ 2;其中,θ 1为机械臂的第一关节轴三维坐标系的XY平面的实际角度,θ 2为第二关节轴与第一关节轴之间的实际角度,θ 3为第二关节轴与第三关节轴之间的实际角度,θ 4为第四关节轴与第三关节轴之间的实际角度;α 2=0。
具体地:控制器根据如下方法控制各机械臂关节点的转动角度:
第一关节轴在三维坐标系的XOY平面上的转动角度θ′ 1
将隧道灯具以及第一关节轴垂直投影到三维直角坐标系的XOY平面上,并以第一关节点为原点,第一关节轴的投影为横坐标建立直角坐标系(x'o'y'),根据隧道灯具在直角坐标系(x'o'y')的坐标计算第一关节点的转动角度
Figure PCTCN2020101716-appb-000017
第二关节轴的旋转角度θ′ 2
Figure PCTCN2020101716-appb-000018
第三关节轴的旋转角度θ′ 3
θ′ 3=arctan2(n-L 3s 2,m-L 3c 2)-θ 2
第四关节轴的旋转角度θ′ 4
θ′ 4=β e-(θ′ 2+θ′ 3)。通过上述方法,能够准确地控制第一关节点的水平转动、第二关节点、第三关节点以及第四关节点在竖直方向的转动,从而准确地控制清洁装置到达隧道的灯具位置处,并且,在车辆的行进过程中,上述的角度会一直处于动态调整中,虽然,上述装置能够准确第将清洁装置送至灯具位置处,由于隧道中的灯具表面的位姿不会完全统一,也就是说,隧道灯具有可能会倾斜设置,比如当隧道中以两侧的方式安装灯具,那么,通过第摄像机以及距离传感器感知清洁装置与灯具的进一步的位置关系,在清洁装置中设置有电驱动的转动机构,有控制器控制该转动机构实时微调,清洁装置的转动的驱动机构可以采用球铰接装置进行铰接,然后采用电动气缸或者电动机驱动球铰链转动,控制器根据距离传感器以及图像装置对清洁装置的转动控制采用现有的算法即可,在不加以赘述,从而使得清洁装置的清洁部位与灯具的表面准确贴合,其中,清洁装置可以采用现有的清洁装置,比如电动刷的方式。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (26)

  1. 基于位姿自适应的双动力源隧道灯具清洁车,其特征在于:包括车载平台、安装于车载平台上的升降平台以及安装于升降平台上的清洁装置,所述升降平台以可升降并可转换方位的方式连接于车载平台上,所述清洁装置包括顶部开口用于向上罩于隧道灯具的外罩、安装于外罩内用于清洁隧道灯具表面的干式清洁组件以及连通于外罩内腔的负压形成装置,所述外罩侧壁开有负压孔,所述负压孔连接于负压形成装置使得外罩内腔形成负压环境;
    所述车载平台包括两套动力源,分别为高速动力源以及低速动力源,所述高速动力源和低速动力源之间设置有切换装置用于切换动力源实现车载平台的正常行驶以及清洁灯具时的低速行驶。
  2. 根据权利要求1所述的隧道灯具清洁车,其特征在于:所述车载平台包括安装平台、连接于安装平台头部的驾驶室、安装于安装平台和驾驶室底部的驱动轮以及驱动驱动轮转动的动力总成,所述安装平台和/或驾驶室底部还连接有用于控制车载平台竖向颠簸幅度的车身稳定结构。
  3. 根据权利要求1所述的隧道灯具清洁车,其特征在于:所述车载平台上可水平转动的设置有回转平台,所述升降平台偏心连接于回转平台上。
  4. 根据权利要求1所述的隧道灯具清洁车,其特征在于:所述外罩包括外层以及位于外层内的内层,所述内外层之间形成负压夹层,所述负压孔开设于外层上并贯通于负压夹层,所述内、外层在外罩开口端形成周向闭合的吸尘口,所述负压夹层向吸尘口侧逐渐收窄使得吸尘口形成渐变收窄口,所述内、外层之间通过连接板连接。
  5. 根据权利要求2所述的隧道灯具清洁车,其特征在于:所述车身稳定结构为可升降安装于安装平台和/或驾驶室底部并位于车载平台左右两侧的若干组硬质稳定轮,所述稳定轮高于驱动轮使得车载平台正常行驶时稳定轮悬空于地面,所述车载平台竖向颠簸时,稳定轮随车载平台竖向向下移动接触于地面用于控制车载平台的竖向颠簸幅度。
  6. 根据权利要求1所述的隧道灯具清洁车,其特征在于:所述干式清洁组件包括转动配合安装于外罩内并在前后向依次排列的若干个毛刷组件、与毛刷组件前后向并列设置的海绵滚筒以及驱动毛刷和海绵滚筒转动的清洗驱动装置,所述毛刷组件与海绵滚筒的轴向相同,所述毛刷组件与海绵滚筒用于贴于隧道灯具表面并转动对隧道灯具表面进行清洁。
  7. 根据权利要求6所述的隧道灯具清洁车,其特征在于:所述毛刷组件以及海绵滚筒轴向两端可轴向摆动的铰接于安装座上,所述安装座底部通过弹性件连接于外罩内,所述弹性件具有将毛刷或者海绵滚筒压于隧道灯具表面的弹性力。
  8. 根据权利要求6所述的隧道灯具清洁车,其特征在于:所述毛刷组件包括毛刷滚筒以 及连接于毛刷滚筒外表面的长毛刷以及短毛刷,所述长毛刷和短毛刷在毛刷滚筒周向交错设置,所述海绵滚筒外轮廓为沿周向延伸的波浪形结构。
  9. 根据权利要求7所述的隧道灯具清洁车,其特征在于:所述弹性件为气缸。
  10. 根据权利要求1所述的隧道灯具清洁车,其特征在于:所述清洁装置还包括储尘装置,所述储尘装置上设置有进风口和出风口,所述进风口连通于负压孔,所述出风口连通于负压形成装置,所述出风口处设置有灰尘过滤网。
  11. 根据权利要求1所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述高速动力源为电机或者内燃机,所述低速动力源为液压马达。
  12. 根据权利要求1所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述清洁系统在定位时,包括如下步骤:
    S1.在清洁车的车头两侧以及车位两侧分别设置一个距离传感器,且位于清洁车头的两个距离传感器位于同一直线上,位于清洁车为的两个距离传感器位于同一直线上;
    S2.距离传感器采集当前清洁车与隧道两侧壁的距离;
    S3.根据距离传感器输出的距离信息确定出清洁车与预设作业轨迹的偏离角度;
    S4.根据清洁车的偏离角度确定出清洁车的偏离距离,并且根据清洁车的偏离距离计算安装于清洁车的机械臂的安装点的偏离距离;
    S5.根据机械臂的安装点的偏离距离确定出机械臂的控制末端的偏离参数,并根据机械臂的控制末端的偏离参数控制机械臂动作,控制安装于机械臂末端的清洁装置对于被清洁灯具对准。
  13. 根据权利要求12所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述清洁系统在定位时,包括如下步骤:
    步骤S3中,清洁车与行车车道线的偏离角度通过如下方法确定:
    Figure PCTCN2020101716-appb-100001
    其中,θ为清洁车车身与预设作业轨迹的偏离角度,L为隧道的宽度,L c为清洁车自身的宽度,L lf为清洁车左前侧与清洁车左侧隧道侧壁的距离,L rf为清洁车右前侧与清洁车右侧隧道侧壁的距离。
  14. 根据权利要求13所述的双动力源车载式隧道灯具清洁系统,其特征在于:步骤S4 中,根据如下方法确定出清洁车的偏离距离:
    Figure PCTCN2020101716-appb-100002
    其中,L 2为位于清洁车后侧的两个传感器之间的连线与机械臂安装点的垂直距离,L 1为位于清洁车前侧的两个传感器之间的连线与机械臂安装点的垂直距离,L 0为清洁车的预设作业轨迹与隧道侧壁的距离,S P为清洁车与预设作业轨迹的偏离距离。
  15. 根据权利要求14所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述步骤S4中,根据如下方法确定出清洁车的机械臂的安装点的偏离距离:
    Figure PCTCN2020101716-appb-100003
    其中,
    Figure PCTCN2020101716-appb-100004
    为清洁车的机械臂的安装点的偏离距离,V c为清洁车的形式速度,k为速度修正系数。
  16. 根据权利要求15所述的双动力源车载式隧道灯具清洁系统,其特征在于:步骤S5中,机械臂的控制末端的偏离参数包括在预设轨迹方向上的横向偏移参数和在垂直于预设轨迹方向上的纵向偏移参数,其中:
    横向偏移参数X P:X P=V c·t;
    纵向偏移参数Y P
    Figure PCTCN2020101716-appb-100005
    其中,t为清洁车形式时间,M为机械臂安装点坐标与机械臂的控制末端坐标的转换矩阵。
  17. 根据权利要求1所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述清洁系统在灯具定位方法时,包括如下步骤:
    S1.以设置在清洁车的双目摄像机采集隧道灯具的第一图像信息,并以双目摄像机所在位置为坐标原点建立三维直角坐标系,根据第一图像信息获取隧道灯具在三维坐标系中的坐标位置;
    S2.采集机械臂的各关节点的实际角度,并根据各机械臂的实际角度确定出机械臂的执行末端在三维坐标系中的位置参数;
    S3.根据隧道灯具在三维坐标系中的位置以及机械臂的执行末端的位置参数,根据该位置参数确定出机械臂的各关节点的旋转角度,根据旋转角度控制机械臂关节点的旋转将清洁装 置与隧道灯具对准。
  18. 根据权利要求17所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述步骤S2中,根据如下数学模型确定机械臂执行末端在三维坐标系的位置参数:
    Xe=m
    Ye=n
    Ze=α
    β e=θ 234
    其中,Xe、Ye以及Ze分别为机械臂的执行末端在三维坐标系的X、Y和Z方向的坐标值,β e为机械臂执行末端的姿态角,m、n和α分别为中间变量,其中:
    m=c 1(L 4c 234+L 3c 23+L 2c 2+L1);
    n=s 1(L 4s 234+L 3s 23+L 2c 2+L1)
    α=L 4s 234+L 3s 23+L 2s 2;其中,c 234=cos(α 234),c 23=cos(θ 23),c 2=cosθ 2,s 1=sinθ 1,s 234=sin(α 234),s 23=sin(θ 23),c 1=cosθ 1,s 2=sinθ 2;其中,θ 1为机械臂的第一关节轴三维坐标系的XY平面的实际角度,θ 2为第二关节轴与第一关节轴之间的实际角度,θ 3为第二关节轴与第三关节轴之间的实际角度,θ 4为第四关节轴与第三关节轴之间的实际角度;α 2=0。
  19. 根据权利要求18所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述步骤S3中,根据如下方法确定第一关节轴在三维坐标系的XOY平面上的转动角度θ′ 1
    将隧道灯具以及第一关节轴垂直投影到三维直角坐标系的XOY平面上,并以第一关节点为原点,第一关节轴的投影为横坐标建立直角坐标系(x'o'y'),根据隧道灯具在直角坐标系(x'o'y')的坐标计算第一关节点的转动角度
    Figure PCTCN2020101716-appb-100006
  20. 根据权利要求19所述的双动力源车载式隧道灯具清洁系统,其特征在于:步骤S3中,根据如下方法确定出第二关节轴的旋转角度θ′ 2
    Figure PCTCN2020101716-appb-100007
  21. 根据权利要求20所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述步骤 S3中,根据如下方法确定出第三关节轴的旋转角度θ′ 3
    θ′ 3=arctan2(n-L 3s 2,m-L 3c 2)-θ 2
  22. 根据权利要求21所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述步骤S3中,根据如下方法确定出第四关节轴的旋转角度θ′ 4
    θ′ 4=β e-(θ′ 2+θ′ 3)。
  23. 根据权利要求1所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述灯具清洁系统还包括双目摄像机、摄像机、距离传感器以及控制器;
    所述双目摄像机,设置于清洁车上,用于采集隧道灯具的第一图像信息并输出至控制器中;
    所述摄像机,设置于清洁装置处,用于隧道灯具的第二图像信息;
    角度传感器,设置于机械臂的关节点处,用于检测机械臂的各关节轴的关节点处,用于检测各关节轴的实际角度;
    距离传感器,设置于清洁装置处,用于采集清洁装置与隧道灯具的实际距离并距离信息传输至控制器中;
    所述控制器,用于接收双目摄像机、摄像机以及距离传感器输出的信息,并以双目摄像机所在位置为坐标原点为坐标系,通过第一图像信息确定灯具的位置信息,根据角度传感器输出的角度信息确定出机械臂的执行末端的位置参数,然后根据机械臂执行末端的位置参数确定出机械臂各关节点转动角度并控制机械臂各关节点转动使清洁装置到达隧道灯具位置。
  24. 根据权利要求23所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述控制器根据如下方法确定出机械臂执行末端的位置参数:
    Xe=m
    Ye=n
    Ze=α
    β e=θ 234
    其中,Xe、Ye以及Ze分别为机械臂的执行末端在三维坐标系的X、Y和Z方向的坐标值,β e为机械臂执行末端的姿态角,m、n和α分别为中间变量,其中:
    m=c 1(L 4c 234+L 3c 23+L 2c 2+L1);
    n=s 1(L 4s 234+L 3s 23+L 2c 2+L1)
    α=L 4s 234+L 3s 23+L 2s 2;其中,c 234=cos(α 234),c 23=cos(θ 23),c 2=cosθ 2,s 1=sinθ 1,s 234=sin(α 234),s 23=sin(θ 23),c 1=cosθ 1,s 2=sinθ 2;其中,θ 1为机械臂的第一关节轴三维坐标系的XY平面的实际角度,θ 2为第二关节轴与第一关节轴之间的实际角度,θ 3为第二关节轴与第三关节轴之间的实际角度,θ 4为第四关节轴与第三关节轴之间的实际角度;α 2=0。
  25. 根据权利要求24所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述控制器根据如下方法控制各机械臂关节点的转动角度:
    第一关节轴在三维坐标系的XOY平面上的转动角度θ′ 1
    将隧道灯具以及第一关节轴垂直投影到三维直角坐标系的XOY平面上,并以第一关节点为原点,第一关节轴的投影为横坐标建立直角坐标系(x'o'y'),根据隧道灯具在直角坐标系(x'o'y')的坐标计算第一关节点的转动角度
    Figure PCTCN2020101716-appb-100008
    第二关节轴的旋转角度θ′ 2
    Figure PCTCN2020101716-appb-100009
    第三关节轴的旋转角度θ′ 3
    θ′ 3=arctan2(n-L 3s 2,m-L 3c 2)-θ 2
    第四关节轴的旋转角度θ′ 4
    θ′ 4=β e-(θ′ 2+θ′ 3)。
  26. 根据权利要求1所述的双动力源车载式隧道灯具清洁系统,其特征在于:所述外罩内部可拆卸连接有安装架,所述清洁组件和海绵滚筒安装于安装架上。
PCT/CN2020/101716 2019-07-18 2020-07-13 基于位姿自适应的双动力源隧道灯具清洁车 WO2021008499A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201910649835.2 2019-07-18
CN201910649825.9 2019-07-18
CN201910649835.2A CN110302992A (zh) 2019-07-18 2019-07-18 隧道灯具清洁机构
CN201910649825.9A CN110273400A (zh) 2019-07-18 2019-07-18 双动力源车载式隧道灯具清洁系统
CN201910668325.XA CN110369434A (zh) 2019-07-23 2019-07-23 隧道灯具清洁系统位姿自适应定位方法
CN201910668325.X 2019-07-23
CN201910668343.8 2019-07-23
CN201910668343.8A CN110378956A (zh) 2019-07-23 2019-07-23 用于隧道灯清洁的隧道灯具定位方法及系统
CN201910669641.9 2019-07-24
CN201910669641.9A CN110252699A (zh) 2019-07-18 2019-07-24 智能隧道灯具清洁车

Publications (1)

Publication Number Publication Date
WO2021008499A1 true WO2021008499A1 (zh) 2021-01-21

Family

ID=74209699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101716 WO2021008499A1 (zh) 2019-07-18 2020-07-13 基于位姿自适应的双动力源隧道灯具清洁车

Country Status (1)

Country Link
WO (1) WO2021008499A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106733749A (zh) * 2016-12-13 2017-05-31 国网青海省电力公司海西供电公司 一种变电站球形摄像头清洁工具
CN110252699A (zh) * 2019-07-18 2019-09-20 招商局重庆交通科研设计院有限公司 智能隧道灯具清洁车
CN110302992A (zh) * 2019-07-18 2019-10-08 招商局重庆交通科研设计院有限公司 隧道灯具清洁机构
CN112656230A (zh) * 2021-01-28 2021-04-16 重庆电子工程职业学院 一种智能饮水机的清洁系统
CN113286031A (zh) * 2021-05-22 2021-08-20 深圳市长荣科机电设备有限公司 一种用于清洁手机屏幕的机械手
CN113346406A (zh) * 2021-05-28 2021-09-03 江苏苏电产业管理有限公司 电力检测高空接线装置
CN114825168A (zh) * 2022-04-25 2022-07-29 北京航天长城卫星导航科技有限公司 铁路电力安全监控装置
CN116781002A (zh) * 2023-06-15 2023-09-19 中国科学院自动化研究所 自适应姿态光伏面板清扫装置
CN116902161A (zh) * 2023-08-31 2023-10-20 舟山中远海运重工有限公司 一种坞底车用角度调整机构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004105848A (ja) * 2002-09-18 2004-04-08 Seiko Epson Corp 基板洗浄装置とその洗浄方法
CN104174603A (zh) * 2014-09-03 2014-12-03 天津中环真美声学技术有限公司 一种环形磁体清洁装置及方法
CN204747000U (zh) * 2015-06-30 2015-11-11 南京工程学院 路灯清洗机
CN108080349A (zh) * 2017-12-15 2018-05-29 高元琴 一种水晶灯的旋转式清洁装置及其清洁方法
CN110252699A (zh) * 2019-07-18 2019-09-20 招商局重庆交通科研设计院有限公司 智能隧道灯具清洁车
CN110273400A (zh) * 2019-07-18 2019-09-24 招商局重庆交通科研设计院有限公司 双动力源车载式隧道灯具清洁系统
CN110302992A (zh) * 2019-07-18 2019-10-08 招商局重庆交通科研设计院有限公司 隧道灯具清洁机构
CN110378956A (zh) * 2019-07-23 2019-10-25 招商局重庆交通科研设计院有限公司 用于隧道灯清洁的隧道灯具定位方法及系统
CN110369434A (zh) * 2019-07-23 2019-10-25 招商局重庆交通科研设计院有限公司 隧道灯具清洁系统位姿自适应定位方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004105848A (ja) * 2002-09-18 2004-04-08 Seiko Epson Corp 基板洗浄装置とその洗浄方法
CN104174603A (zh) * 2014-09-03 2014-12-03 天津中环真美声学技术有限公司 一种环形磁体清洁装置及方法
CN204747000U (zh) * 2015-06-30 2015-11-11 南京工程学院 路灯清洗机
CN108080349A (zh) * 2017-12-15 2018-05-29 高元琴 一种水晶灯的旋转式清洁装置及其清洁方法
CN110252699A (zh) * 2019-07-18 2019-09-20 招商局重庆交通科研设计院有限公司 智能隧道灯具清洁车
CN110273400A (zh) * 2019-07-18 2019-09-24 招商局重庆交通科研设计院有限公司 双动力源车载式隧道灯具清洁系统
CN110302992A (zh) * 2019-07-18 2019-10-08 招商局重庆交通科研设计院有限公司 隧道灯具清洁机构
CN110378956A (zh) * 2019-07-23 2019-10-25 招商局重庆交通科研设计院有限公司 用于隧道灯清洁的隧道灯具定位方法及系统
CN110369434A (zh) * 2019-07-23 2019-10-25 招商局重庆交通科研设计院有限公司 隧道灯具清洁系统位姿自适应定位方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106733749A (zh) * 2016-12-13 2017-05-31 国网青海省电力公司海西供电公司 一种变电站球形摄像头清洁工具
CN110252699A (zh) * 2019-07-18 2019-09-20 招商局重庆交通科研设计院有限公司 智能隧道灯具清洁车
CN110302992A (zh) * 2019-07-18 2019-10-08 招商局重庆交通科研设计院有限公司 隧道灯具清洁机构
CN112656230A (zh) * 2021-01-28 2021-04-16 重庆电子工程职业学院 一种智能饮水机的清洁系统
CN113286031A (zh) * 2021-05-22 2021-08-20 深圳市长荣科机电设备有限公司 一种用于清洁手机屏幕的机械手
CN113286031B (zh) * 2021-05-22 2024-01-09 深圳市长荣科机电设备有限公司 一种用于清洁手机屏幕的机械手
CN113346406A (zh) * 2021-05-28 2021-09-03 江苏苏电产业管理有限公司 电力检测高空接线装置
CN114825168A (zh) * 2022-04-25 2022-07-29 北京航天长城卫星导航科技有限公司 铁路电力安全监控装置
CN116781002A (zh) * 2023-06-15 2023-09-19 中国科学院自动化研究所 自适应姿态光伏面板清扫装置
CN116781002B (zh) * 2023-06-15 2024-03-01 中国科学院自动化研究所 自适应姿态光伏面板清扫装置
CN116902161A (zh) * 2023-08-31 2023-10-20 舟山中远海运重工有限公司 一种坞底车用角度调整机构
CN116902161B (zh) * 2023-08-31 2024-03-22 舟山中远海运重工有限公司 一种坞底车用角度调整机构

Similar Documents

Publication Publication Date Title
WO2021008499A1 (zh) 基于位姿自适应的双动力源隧道灯具清洁车
CN108275215B (zh) 一种爬壁车及基于该爬壁车的检测机器人
CN210288227U (zh) 双动力源车载式隧道灯具清洁系统
JP3230329U (ja) スマートトンネル灯具清掃車
CN105962855A (zh) 一种可越障的玻璃幕墙清洁机器人
CN110252699A (zh) 智能隧道灯具清洁车
WO2021135754A1 (zh) 打磨机器人
CN210788311U (zh) 隧道灯具清洁机构
CN110925521B (zh) 一种管道清灰机器人
KR20160033615A (ko) 태양광 패널용 세척 로봇 및 이를 이용한 태양광 패널의 세척방법
CN110876578A (zh) 一种自动翻面和跨越障碍的玻璃清洁机器人及其工作方法
CN110273400A (zh) 双动力源车载式隧道灯具清洁系统
CN105030144A (zh) 使用壁面吸附运动机构的幕墙清洗机器人
CN110302992A (zh) 隧道灯具清洁机构
CN102167101A (zh) 多盘非接触吸附式爬墙机器人
CN107140151A (zh) 船体清洗爬壁机器人
CN111345726B (zh) 一种可自动越障玻璃幕墙清洁机器人及其使用方法
JP2018167692A (ja) 作業車
CN210936037U (zh) 智能隧道灯具清洁车
CN111345750A (zh) 一种玻璃幕墙清洗机器人及其使用方法
CN106192833A (zh) 一种扫刷装置和电动地面清扫机
CN109717786A (zh) 一种玻璃幕墙清洗机器人系统
CN1068302A (zh) 全方位壁面行走机构
CN2692201Y (zh) 无排尘高效能道路清扫车
CN215198810U (zh) 一种吸盘履带驱动机构及光伏面板清扫机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840783

Country of ref document: EP

Kind code of ref document: A1