WO2021008365A1 - 数据传输方法和设备 - Google Patents

数据传输方法和设备 Download PDF

Info

Publication number
WO2021008365A1
WO2021008365A1 PCT/CN2020/099666 CN2020099666W WO2021008365A1 WO 2021008365 A1 WO2021008365 A1 WO 2021008365A1 CN 2020099666 W CN2020099666 W CN 2020099666W WO 2021008365 A1 WO2021008365 A1 WO 2021008365A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
resource
transmission opportunity
uplink
opportunity
Prior art date
Application number
PCT/CN2020/099666
Other languages
English (en)
French (fr)
Inventor
花梦
焦淑蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20840107.5A priority Critical patent/EP3993545A4/en
Publication of WO2021008365A1 publication Critical patent/WO2021008365A1/zh
Priority to US17/575,642 priority patent/US20220141854A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a data transmission method and device.
  • CG configured grant
  • NR system new generation wireless communication system
  • the terminal device can directly use the CG resource to send the physical uplink shared channel (PUSCH) that carries the uplink data when there is uplink data to send, without waiting for the network Dynamic scheduling of the PUSCH by the device.
  • PUSCH physical uplink shared channel
  • CG resources are semi-static resources separately configured by network equipment for terminal equipment, they may conflict with the resources configured by the upper layer of the cell in which the terminal equipment is located, or conflict with the dynamically scheduled resources of the network equipment, resulting in PUSCH transmission Blocked.
  • Ultra-reliable and low latency communications (URLLC) service is an important service in the NR system, and very high reliability and very short delay are required for transmission.
  • a terminal device uses CG resources to send uplink data of the URLLC service, if it encounters a scenario where PUSCH transmission is blocked, the transmission delay of the URLLC service will increase, and it may not meet the delay requirement of the URLLC service.
  • the prior art proposes the following two solutions: The first solution: network equipment through scheduling try to avoid the aforementioned PUSCH transmission blocked scenario, but this solution will affect the flexibility of network equipment scheduling Sex.
  • the second solution the network device configures multiple CG resources for the terminal device.
  • the network device when there is no scenario where PUSCH transmission is blocked on multiple CG resources, the network device is not sure which CG resource uplink transmission opportunity the terminal device will use to send uplink data. Therefore, the network device needs to use the multiple CG resources. Detecting uplink data from terminal equipment increases the complexity of network equipment detection. In addition, due to the limited uplink resources, the solution of configuring multiple CG resources for the terminal device will result in a relatively large uplink resource overhead. When the number of terminal devices is large, the dynamically scheduled PUSCH may be blocked due to too few uplink resources that can be dynamically scheduled.
  • the embodiments of the present application provide a data transmission method and device, which are used to solve how to reduce the delay in transmitting the uplink data of the URLLC service without affecting the scheduling flexibility of the network device, the detection complexity, and the uplink resource overhead.
  • an embodiment of the present application provides a data transmission method.
  • the method can be applied to a terminal device, which includes a terminal (for example, a mobile phone) or a chip applied to the terminal.
  • a terminal device for example, a mobile phone
  • the terminal device can obtain the first resource and the second resource.
  • the first resource is configured with at least one first uplink transmission opportunity
  • the second resource is configured with a second uplink transmission opportunity.
  • the first uplink transmission opportunity includes X repeated first uplink transmission resources
  • the second uplink transmission opportunity includes Y repeated second uplink transmission resources
  • both X and Y are greater than or equal to 1. Integer.
  • the terminal device uses the second uplink transmission opportunity to send uplink data to the network device. If at least one of the first uplink transmission opportunities in the last N first uplink transmission opportunities before the second uplink transmission opportunity is not blocked, the terminal device determines that the second uplink transmission opportunity cannot be used to send uplink data . At this time, the second resource can be scheduled by the network device for use by other terminal devices.
  • the aforementioned N is an integer greater than or equal to 1. Exemplarily, the N is preset.
  • the method further includes: the terminal device receives second indication information from the network device, where the second indication information indicates the N.
  • the above method configures the first resource as the primary resource and the second resource as the backup resource for the terminal device, so that when the first resource as the primary resource encounters the aforementioned scenario where PUSCH transmission is blocked, the terminal device can use the backup resource
  • the second resource sends uplink data to ensure the delay of the uplink data.
  • the network device may schedule the second resource for use by other terminal devices.
  • the above-mentioned first uplink transmission opportunity transmission blocked may include, for example: X repeated first uplink transmission resources in the first uplink transmission opportunity are blocked from transmission; or The number of first uplink transmission resources whose transmission is blocked in the first uplink transmission opportunity is greater than or equal to a first preset threshold, and the first preset threshold is less than or equal to X.
  • the blocking of the transmission of the first uplink transmission resource may include: at least one symbol in the first uplink transmission resource is a non-uplink symbol; or, the terminal device uses at least one of the first uplink transmission resources A non-uplink symbol sends uplink data.
  • the first preset threshold is preset.
  • the first preset threshold is determined according to a first configuration parameter and/or a second configuration parameter of the first resource.
  • the first configuration parameter is used to configure the X
  • the second configuration parameter is used to configure the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity.
  • the method further includes: the terminal device receives first indication information from the network device, where the first indication information indicates the first preset threshold.
  • a second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain; or, so A second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain and is the same in the frequency domain.
  • the first resource and the second resource involved in the embodiment of the present application may be preset to the terminal device, or may be configured by the network device to the terminal device through high-level signaling or physical layer signaling.
  • acquiring the first resource and the second resource by the terminal device includes: the terminal device receiving high-layer signaling from the network device.
  • the high-layer signaling indicates the first resource and the second resource.
  • the high-level signaling includes: a first information domain and a second information domain.
  • the first information field includes a first information subfield and/or a second information subfield, the first information subfield indicates time-frequency information of the first resource, and the second information subfield indicates the first information subfield.
  • the transmission parameter of the first resource includes at least one of the following: the X, the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity, and two adjacent second A time interval between uplink transmission opportunities.
  • the second information domain includes a third information subdomain and/or a fourth information subdomain.
  • the third information subfield indicates time-frequency information of the second resource
  • the fourth information subfield indicates a transmission parameter corresponding to the second resource.
  • the transmission parameter of the second resource includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities. 2.
  • the time interval of uplink transmission opportunities includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities.
  • each set of resources includes: a first resource and a second resource corresponding to the first resource. Then the first information subdomain and/or the second information subdomain further indicate the identity of the group where the first resource is located; the third information subdomain and/or the fourth information subdomain also indicate The identifier of the group where the second resource belongs.
  • the first information subdomain and/or the second information subdomain further indicate the type of the first resource; and/or, the third information subdomain and/or the The fourth information subfield also indicates the type of the second resource.
  • the method further includes: the terminal device receives the control information from the network device, The control information is used to activate or deactivate resources.
  • control information further indicates the type of resource to be activated or deactivated; and/or, the first information subfield and/or the second information subfield further indicate the The type of the first resource; and/or, the third information subfield and/or the fourth information subfield further indicate the type of the second resource.
  • each set of authorized resources includes: a first resource and a second resource corresponding to the first resource. Then the control information also indicates the identification of the group where the activated or deactivated resource belongs.
  • the network device can configure the first resource as the primary resource and the second resource as the backup resource for the terminal device, so that the terminal device can use the first resource as the primary resource when encountering the aforementioned scenario where PUSCH transmission is blocked.
  • the second resource which is the backup resource, sends uplink data to ensure the time delay of the uplink data.
  • the network device may schedule the second resource for use by other terminal devices.
  • an embodiment of the present application provides a data transmission method.
  • the method can be applied to a network side device, and the network side network includes a network device (for example, gNB) or a chip applied to the network device.
  • the network device can obtain the first resource and the second resource configured for the terminal device.
  • the first resource is configured with at least one first uplink transmission opportunity
  • the second resource is configured with a second uplink transmission opportunity.
  • the first uplink transmission opportunity includes X repeated first uplink transmission resources
  • the second uplink transmission opportunity includes Y repeated second uplink transmission resources
  • both X and Y are greater than or equal to 1. Integer.
  • the network device detects the uplink data from the terminal device on the second uplink transmission opportunity. If at least one of the first uplink transmission opportunities in the last N first uplink transmission opportunities before the second uplink transmission opportunity is not blocked, the network device determines that the second uplink transmission opportunity cannot be used to send uplink data . At this time, the second resource can be scheduled by the network device for use by other terminal devices.
  • the aforementioned N is an integer greater than or equal to 1. Exemplarily, the N is preset.
  • the method further includes: the network device sends second indication information to the terminal device, where the second indication information indicates the N.
  • the above-mentioned first uplink transmission opportunity transmission blocked may include, for example: X repeated first uplink transmission resources in the first uplink transmission opportunity are blocked from transmission; or The number of first uplink transmission resources whose transmission is blocked in the first uplink transmission opportunity is greater than or equal to a first preset threshold, and the first preset threshold is less than or equal to X.
  • the blocking of the transmission of the first uplink transmission resource may include: at least one symbol in the first uplink transmission resource is a non-uplink symbol; or, the terminal device uses at least one of the first uplink transmission resources A non-uplink symbol sends uplink data.
  • the first preset threshold is preset.
  • the first preset threshold is determined according to a first configuration parameter and/or a second configuration parameter of the first resource.
  • the first configuration parameter is used to configure the X
  • the second configuration parameter is used to configure the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity.
  • the method further includes: the network device sends first indication information to the terminal device, the first indication information indicating the first preset threshold.
  • a second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain; or, so A second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain and is the same in the frequency domain.
  • the first resource and the second resource involved in the embodiment of the present application may be preset to the terminal device, or may be configured by the network device to the terminal device through high-level signaling or physical layer signaling.
  • the above method further includes: the network device sends high-level signaling to the terminal device.
  • the high-layer signaling indicates the first resource and the second resource.
  • the high-level signaling includes: a first information domain and a second information domain.
  • the first information field includes a first information subfield and/or a second information subfield, the first information subfield indicates time-frequency information of the first resource, and the second information subfield indicates the first information subfield.
  • the transmission parameter of the first resource includes at least one of the following: the X, the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity, and two adjacent second A time interval between uplink transmission opportunities.
  • the second information domain includes a third information subdomain and/or a fourth information subdomain.
  • the third information subfield indicates time-frequency information of the second resource
  • the fourth information subfield indicates a transmission parameter corresponding to the second resource.
  • the transmission parameter of the second resource includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities. 2.
  • the time interval of uplink transmission opportunities includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities.
  • each set of resources includes: a first resource and a second resource corresponding to the first resource. Then the first information subdomain and/or the second information subdomain further indicate the identity of the group where the first resource is located; the third information subdomain and/or the fourth information subdomain also indicate The identifier of the group where the second resource belongs.
  • the first information subdomain and/or the second information subdomain further indicate the type of the first resource; and/or, the third information subdomain and/or the The fourth information subfield also indicates the type of the second resource.
  • the method further includes: the network device sends control information to the terminal device, so The control information is used to activate or deactivate resources.
  • control information further indicates the type of resource to be activated or deactivated; and/or, the first information subfield and/or the second information subfield further indicate the The type of the first resource; and/or, the third information subfield and/or the fourth information subfield further indicate the type of the second resource.
  • each set of authorized resources includes: a first resource and a second resource corresponding to the first resource. Then the control information also indicates the identification of the group where the activated or deactivated resource belongs.
  • an embodiment of the present application provides a terminal device.
  • the terminal equipment includes: a processing module and a sending module.
  • the terminal device may further include a receiving module.
  • the processing module is used to obtain the first resource and the second resource.
  • the first resource is configured with at least one first uplink transmission opportunity
  • the second resource is configured with a second uplink transmission opportunity.
  • the first uplink transmission opportunity includes X repeated first uplink transmission resources
  • the second uplink transmission opportunity includes Y repeated second uplink transmission resources
  • both X and Y are greater than or equal to 1. Integer.
  • a sending module configured to use the second uplink transmission opportunity to send uplink data to the network device when the transmission of the N first uplink transmission opportunities before the second uplink transmission opportunity is blocked, where N is greater than or equal to 1 The integer.
  • the N is preset.
  • the receiving module is configured to receive second indication information from the network device, where the second indication information indicates the N.
  • the processing module is further configured to determine that when at least one of the first uplink transmission opportunities in the N first uplink transmission opportunities before the second uplink transmission opportunity is not blocked, The second uplink transmission opportunity cannot be used to send uplink data.
  • the above-mentioned first uplink transmission opportunity transmission blocked may include, for example: X repeated first uplink transmission resources in the first uplink transmission opportunity are blocked from transmission; or The number of first uplink transmission resources whose transmission is blocked in the first uplink transmission opportunity is greater than or equal to a first preset threshold, and the first preset threshold is less than or equal to X.
  • the blocking of the transmission of the first uplink transmission resource may include: at least one symbol in the first uplink transmission resource is a non-uplink symbol; or, the terminal device uses at least one of the first uplink transmission resources A non-uplink symbol sends uplink data.
  • the first preset threshold is preset.
  • the first preset threshold is determined according to a first configuration parameter and/or a second configuration parameter of the first resource.
  • the first configuration parameter is used to configure the X
  • the second configuration parameter is used to configure the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity.
  • the receiving module is configured to receive first indication information from the network device, where the first indication information indicates the first preset threshold.
  • a second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain; or, so A second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain and is the same in the frequency domain.
  • the first resource and the second resource involved in the embodiment of the present application may be preset to the terminal device, or may be configured by the network device to the terminal device through high-level signaling or physical layer signaling.
  • the processing module is specifically configured to receive high-level signaling from the network device through the receiving module, where the high-level signaling indicates the first resource and the second resource.
  • the high-level signaling includes: a first information domain and a second information domain.
  • the first information field includes a first information subfield and/or a second information subfield, the first information subfield indicates time-frequency information of the first resource, and the second information subfield indicates the first information subfield.
  • the transmission parameter of the first resource includes at least one of the following: the X, the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity, and two adjacent second A time interval between uplink transmission opportunities.
  • the second information domain includes a third information subdomain and/or a fourth information subdomain.
  • the third information subfield indicates time-frequency information of the second resource
  • the fourth information subfield indicates a transmission parameter corresponding to the second resource.
  • the transmission parameter of the second resource includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities. 2.
  • the time interval of uplink transmission opportunities includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities.
  • each set of resources includes: a first resource and a second resource corresponding to the first resource. Then the first information subdomain and/or the second information subdomain further indicate the identity of the group where the first resource is located; the third information subdomain and/or the fourth information subdomain also indicate The identifier of the group where the second resource belongs.
  • the first information subdomain and/or the second information subdomain further indicate the type of the first resource; and/or, the third information subdomain and/or the The fourth information subfield also indicates the type of the second resource.
  • the receiving module is also used to receive control information from the network device, the control The information is used to activate or deactivate resources.
  • control information further indicates the type of resource to be activated or deactivated; and/or, the first information subfield and/or the second information subfield further indicate the The type of the first resource; and/or, the third information subfield and/or the fourth information subfield further indicate the type of the second resource.
  • each set of authorized resources includes: a first resource and a second resource corresponding to the first resource. Then the control information also indicates the identification of the group where the activated or deactivated resource belongs.
  • an embodiment of the present application provides a network device.
  • the network device includes: a processing module.
  • the network device may further include a sending module.
  • the processing module is used to obtain the first resource and the second resource configured for the terminal device.
  • the first resource is configured with at least one first uplink transmission opportunity
  • the second resource is configured with a second uplink transmission opportunity.
  • the first uplink transmission opportunity includes X repeated first uplink transmission resources
  • the second uplink transmission opportunity includes Y repeated second uplink transmission resources.
  • the X and the Y are both integers greater than or equal to 1, and the N is an integer greater than or equal to 1.
  • the processing module detects the uplink data from the terminal device on the second uplink transmission opportunity when the transmission of the last N first uplink transmission opportunities before the second uplink transmission opportunity is blocked. .
  • the processing module is further configured to determine that when at least one of the first uplink transmission opportunities in the N first uplink transmission opportunities before the second uplink transmission opportunity is not blocked, The second uplink transmission opportunity cannot be used to send uplink data.
  • the N is preset.
  • the sending module is configured to send second indication information to the terminal device, where the second indication information indicates the N.
  • the above-mentioned first uplink transmission opportunity transmission blocked may include, for example: X repeated first uplink transmission resources in the first uplink transmission opportunity are blocked from transmission; or The number of first uplink transmission resources whose transmission is blocked in the first uplink transmission opportunity is greater than or equal to a first preset threshold, and the first preset threshold is less than or equal to X.
  • the blocking of the transmission of the first uplink transmission resource may include: at least one symbol in the first uplink transmission resource is a non-uplink symbol; or, the terminal device uses at least one of the first uplink transmission resources A non-uplink symbol sends uplink data.
  • the first preset threshold is preset.
  • the first preset threshold is determined according to a first configuration parameter and/or a second configuration parameter of the first resource.
  • the first configuration parameter is used to configure the X
  • the second configuration parameter is used to configure the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity.
  • the sending module is configured to send first indication information to the terminal device, where the first indication information indicates the first preset threshold.
  • a second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain; or, so A second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain and is the same in the frequency domain.
  • the first resource and the second resource involved in the embodiment of the present application may be preset to the terminal device, or may be configured by the network device to the terminal device through high-level signaling or physical layer signaling.
  • the sending module is configured to send high-level signaling to the terminal device, where the high-level signaling indicates the first resource and the second resource.
  • the high-level signaling includes: a first information domain and a second information domain.
  • the first information field includes a first information subfield and/or a second information subfield, the first information subfield indicates time-frequency information of the first resource, and the second information subfield indicates the first information subfield.
  • the transmission parameter of the first resource includes at least one of the following: the X, the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity, and two adjacent second A time interval between uplink transmission opportunities.
  • the second information domain includes a third information subdomain and/or a fourth information subdomain.
  • the third information subfield indicates time-frequency information of the second resource
  • the fourth information subfield indicates a transmission parameter corresponding to the second resource.
  • the transmission parameter of the second resource includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities. 2.
  • the time interval of uplink transmission opportunities includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities.
  • each set of resources includes: a first resource and a second resource corresponding to the first resource. Then the first information subdomain and/or the second information subdomain further indicate the identity of the group where the first resource is located; the third information subdomain and/or the fourth information subdomain also indicate The identifier of the group where the second resource belongs.
  • the first information subdomain and/or the second information subdomain further indicate the type of the first resource; and/or, the third information subdomain and/or the The fourth information subfield also indicates the type of the second resource.
  • the sending module is also used to send control information to the terminal device, the control information Used to activate or deactivate resources.
  • control information further indicates the type of resource to be activated or deactivated; and/or, the first information subfield and/or the second information subfield further indicate the The type of the first resource; and/or, the third information subfield and/or the fourth information subfield further indicate the type of the second resource.
  • each set of authorized resources includes: a first resource and a second resource corresponding to the first resource. Then the control information also indicates the identification of the group where the activated or deactivated resource belongs.
  • an embodiment of the present application provides a terminal device.
  • the terminal device includes: a processor, a memory, a receiver, and a transmitter; both the receiver and the transmitter are coupled to the processor, and the The processor controls the receiving action of the receiver, and the processor controls the sending action of the transmitter;
  • the memory is used to store computer executable program code, and the program code includes instructions; when the processor executes the instructions, the instructions cause the terminal device to execute the method provided by the first aspect or each possible implementation of the first aspect.
  • an embodiment of the present application provides a network device, where the network device includes a processor and a memory;
  • the memory is used to store computer executable program code, and the program code includes instructions; when the processor executes the instructions, the instructions cause the network device to execute the method provided by the second aspect or each possible implementation manner of the second aspect.
  • an embodiment of the present application provides a communication device, which includes a unit, module, or circuit for executing the method provided in the foregoing first aspect or each possible implementation manner of the first aspect.
  • the communication device may be a terminal device or a module applied to the terminal device, for example, it may be a chip applied to the terminal device.
  • an embodiment of the present application provides a communication device, which includes a unit, module, or circuit for executing the method provided in the foregoing second aspect or each possible implementation manner of the second aspect.
  • the communication device may be a network device or a module applied to the network device, for example, it may be a chip applied to the network device.
  • an embodiment of the present application provides a chip with a computer program stored on the chip.
  • the computer program is executed by the chip, the implementation is as described in the first aspect or each possible implementation manner of the first aspect. Provided method.
  • an embodiment of the present application provides a chip on which a computer program is stored.
  • the implementation is as described in the second aspect or the possible implementation manners of the second aspect. Provided method.
  • an embodiment of the present application provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the above-mentioned first aspect or various possible implementation methods of the first aspect.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the above-mentioned second aspect or the method provided by each possible implementation of the second aspect.
  • embodiments of the present application provide a computer-readable storage medium that stores instructions in the computer-readable storage medium, which when run on a computer, cause the computer to execute the first aspect or the first aspect described above. Methods in various possible implementations.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer executes the second aspect or the second aspect described above.
  • the data transmission method and device provided in the embodiments of the present application configure the first resource as the primary resource and the second resource as the backup resource for the terminal device, so that the first resource as the primary resource encounters the aforementioned PUSCH transmission blocked scenario At this time, the terminal device can use the second resource as a backup resource to send uplink data to ensure the delay of the uplink data.
  • the network device may schedule the second resource for use by other terminal devices.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applied in an embodiment of the present application
  • Figure 2 is a schematic diagram of a CG resource
  • Figure 3 is a schematic diagram of the transmission of a URLLC service
  • FIG. 4 is a schematic flowchart of a data transmission method provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of resource distribution provided by an embodiment of this application.
  • Fig. 6 is a schematic diagram of another resource distribution provided by an embodiment of the application.
  • FIG. 7 is another schematic diagram of resource distribution provided by an embodiment of this application.
  • FIG. 8 is another schematic diagram of resource distribution provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of data transmission according to an embodiment of this application.
  • FIG. 10 is a schematic diagram of another data transmission provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applied in an embodiment of the present application.
  • the mobile communication system may include a core network device 110, a wireless access network device 120, and at least one terminal device (the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device 120 in a wireless manner
  • the wireless access network device 120 is connected to the core network device 110 in a wireless or wired manner.
  • the core network device 110 and the radio access network device 120 can be separate and different physical devices, or the functions of the core network device 110 and the logical functions of the radio access network device 120 can be integrated on the same physical device.
  • the terminal device can be a fixed location or movable.
  • FIG. 1 is only a schematic diagram.
  • the mobile communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1. This embodiment of the application does not limit the number of core network equipment 110, radio access network equipment 120, and terminal equipment included in the mobile communication system.
  • the radio access network device 120 is a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal device to the wireless network.
  • RAN nodes are: base station gNB, transmission reception point (TRP), evolved Node B (evolved Node B) in 5G mobile communication system or new radio (NR) communication system.
  • eNB radio network controller
  • Node B, NB node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g. , Home evolved NodeB, or home Node B, HNB
  • BBU wireless fidelity (Wifi) access point (AP), etc.
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the radio access network device 120.
  • the wireless access network device 120 is referred to as the network device. If there is no special description, in the embodiment of the present application, the network device refers to the wireless access network device 120.
  • 5G and NR may be equivalent.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • some examples of terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • the wireless access network device 120 and terminal devices can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airplanes, balloons, and satellites in the air.
  • the embodiment of the present application does not limit the application scenarios of the wireless access network device 120 and the terminal device.
  • the wireless access network device 120 and the terminal device may communicate through a licensed spectrum, or communicate through an unlicensed spectrum, or communicate through a licensed spectrum and an unlicensed spectrum at the same time.
  • the wireless access network device 120 and the terminal device can communicate through a spectrum below 6 gigahertz (gigahertz, GHz), or communicate through a spectrum above 6 GHz, and can also use a spectrum below 6 GHz and a spectrum above 6 GHz. To communicate.
  • the embodiment of the present application does not limit the spectrum resource used between the radio access network device 120 and the terminal device.
  • the terminal device can send the physical uplink shared channel to the network device in the following three ways , PUSCH):
  • Method 1 Use the network equipment to send the PUSCH for the resources dynamically scheduled by the terminal equipment. That is, the terminal device may send the PUSCH once every time it receives an uplink schedule from the network device.
  • Manner 2 Use the semi-statically configured configured grant (CG) resource of the network device to send the PUSCH. That is, when a terminal device needs to send a PUSCH, it does not need to wait for dynamic scheduling of the network device, and can directly use the CG resource to send the PUSCH.
  • CG semi-statically configured configured grant
  • the PUSCH mainly carries uplink data. Therefore, the terminal device sending the PUSCH to the network device can also be referred to as the terminal device sending the uplink data to the network device.
  • the terminal device sending the uplink data to the network device can also be referred to as the terminal device sending the uplink data to the network device.
  • PUSCH and uplink data are equivalent, and no distinction is made thereon.
  • the terminal equipment can use the aforementioned CG resources for initial transmission of uplink data. If the network device does not correctly receive the uplink data initially transmitted by the terminal device, the network device can subsequently dynamically schedule the resources for retransmitting the uplink data (referred to as retransmission scheduling), so that the terminal device can use the dynamically scheduled resources to retransmit the uplink data.
  • Uplink data (that is, retransmission of uplink data by way of one). If the terminal device does not receive the retransmission schedule of the network device after initially transmitting the uplink data, the terminal device determines that the network device correctly receives the uplink data that was initially transmitted.
  • CG resources are explained and introduced below.
  • CG resources are non-dynamically scheduled resources, which can include the following two types:
  • the first type of CG resource (i.e. configured grant Type 1): The network device semi-statically configures the time-frequency information of the first type of CG resource for the terminal device through high-level signaling radio resource control (radio resource control, RRC) signaling, And, the transmission parameter corresponding to the CG resource of the first type.
  • RRC radio resource control
  • the first type of CG resource is configured to the terminal device, when the terminal device has uplink data to send, it can directly use the first type of CG resource to send uplink data without waiting for the dynamic scheduling of the network device.
  • the first type of CG resources may also be referred to as configured uplink grant (that is, configured uplink grant), or grant free resources.
  • the second type of CG resource (that is, configured grant Type 2):
  • the network device semi-statically configures the transmission parameters corresponding to the second type of CG resource for the terminal device through RRC signaling. After the second type of CG resource is configured to the terminal device, if the network device subsequently activates the second type of CG resource through downlink control information (DCI) at the physical layer, and configures the second type of CG
  • DCI downlink control information
  • the time-frequency information of the resource when the terminal device has uplink data to send, it can directly use the second type of CG resource to send the uplink data without waiting for the dynamic scheduling of the network device.
  • the second type of CG resources may also be referred to as configured uplink grant based on L1 signaling (that is, configured uplink grant based on L1 signaling), or uplink semi-persistent scheduling (SPS) ) Resources, etc.
  • L1 signaling that is, configured uplink grant based on L1 signaling
  • SPS uplink semi-persistent scheduling
  • the network equipment can indicate whether the rrc-ConfiguredUplinkGrant parameter is included in the information element (IE) resource configuration (ie, configuredGrantConfig) of the RRC signaling to indicate the type of CG resource configured by the high-level signaling CG resources.
  • IE configuredGrantConfig of the RRC signaling includes the rrc-ConfiguredUplinkGrant parameter, it indicates that the CG resource configured by the RRC signaling is the first type of CG resource.
  • the parameter rrc-ConfiguredUplinkGrant is not included in the IE configuredGrantConfig of the RRC signaling, it indicates that the CG resource configured by the RRC signaling is the second type of CG resource.
  • FIG. 2 is a schematic diagram of a CG resource.
  • at least one uplink transmission opportunity is configured for either the first type of CG resource or the second type of CG resource, and each uplink transmission opportunity may include at least one For repeated uplink transmission resources, each uplink transmission resource can be used to transmit the uplink data once.
  • the uplink transmission resource can occupy at least one symbol in the time domain. In other words, as many uplink transmission resources are included in an uplink transmission opportunity, the uplink data can be repeatedly transmitted how many times.
  • Fig. 2 is a schematic diagram of an example in which CG resources are configured with 2 uplink transmission opportunities, and each uplink transmission opportunity includes 4 repeated uplink transmission resources. That is, one uplink transmission opportunity shown in FIG. 2 can repeatedly transmit one uplink data 4 times.
  • the uplink transmission opportunity mentioned here may also be referred to as a candidate uplink transmission opportunity, that is, the terminal device can use the uplink transmission opportunity to send uplink data.
  • the uplink transmission resources included in an uplink transmission opportunity may be uplink transmission resources that are continuous in time, or may be transmission resources that are repeated in continuous time units.
  • the time unit mentioned here may be, for example, a slot in the NR system.
  • the uplink transmission resource included in the uplink transmission opportunity is a transmission resource that is repeated on a continuous slot
  • the first uplink transmission resource of the uplink transmission opportunity For example, it may be located in slot n
  • the second uplink transmission resource may be located in slot n+1
  • the third uplink transmission resource may be located in slot n+2
  • the fourth uplink transmission resource may be located in slot n+3, for example.
  • the position of the transmission resource in the slot where it is located is the same (for example, both are on the second and third symbols in the slot).
  • the first uplink transmission resource of the uplink transmission opportunity may be located in the second and third slots of slot n, for example.
  • the second uplink transmission resource may be located on the fourth and fifth symbols of slot n, for example, the third uplink transmission resource may be located on the sixth and seventh symbols of slot n, for example, and the fourth uplink transmission resource may be located on the sixth and seventh symbols of slot n.
  • the resource may be located on the 8th and 9th symbols of slot n, for example.
  • Table 1 describes how the network equipment configures the time-frequency information of the first type of CG resources for the terminal equipment through high-level signaling, and the transmission parameters corresponding to the first type of CG resources.
  • the period (i.e. Period), the number of repetitions (i.e. repK), the redundant version of the uplink data allowed to be transmitted by each uplink transmission resource in the uplink transmission opportunity (i.e. repK-RV) are the transmission parameters, and the time domain offset, time domain Resource allocation and frequency domain resource allocation jointly indicate the time-frequency information of CG resources.
  • the foregoing description of the period (ie Period), the number of repetitions (ie repK), and the redundant version of the uplink data (ie repK-RV) allowed to be transmitted by each uplink transmission resource in the uplink transmission opportunity is referred to as a transmission parameter for the convenience of subsequent description. , Is not a limitation on the three parameters.
  • Periodicity abbreviated as P, representing the time interval between two adjacent transmission opportunities in the CG resource, 2 symbols ⁇ P ⁇ 5120 time units.
  • K for short, represents the number of repeated uplink transmission resources included in each uplink transmission opportunity. Generally, the value of K includes ⁇ 1,2,4,8 ⁇ . When P is less than or equal to 1 time unit, K takes the value 1.
  • the redundancy version (redundancy version, RV) of the uplink data allowed to be transmitted by each uplink transmission resource in the uplink transmission opportunity: repK-RV for short, represents the RV version pattern allowed for transmission of K repeated uplink transmission resources.
  • repK-RV has 4 situations: not configured, configured as ⁇ 0,2,3,1 ⁇ , configured as ⁇ 0,3,0,3 ⁇ , configured as ⁇ 0,0,0,0 ⁇ . It should be understood that when K is equal to 1, repK-RV is not configured, that is, the value of repK-RV is 0.
  • the RV version pattern allowed for transmission of the uplink transmission resource in the uplink transmission opportunity of the CG resource is the 0th RV version pattern in the RV sequence.
  • the repK-RV configuration is ⁇ 0,2,3,1 ⁇ .
  • the terminal device uses an uplink transmission opportunity of the first type of CG resource to transmit uplink data initially, the terminal device
  • the 0th RV version pattern of the uplink data can be transmitted on the first uplink transmission resource in the uplink transmission opportunity, and the second RV version of the uplink data can be transmitted on the second uplink transmission resource in the uplink transmission opportunity.
  • Version pattern, the third RV version pattern of the uplink data is transmitted on the third uplink transmission resource in the uplink transmission opportunity, and the first RV version pattern of the uplink data is transmitted on the fourth uplink transmission resource in the uplink transmission opportunity RV version pattern.
  • Time domain offset Indicates the offset of the CG resource relative to the "numbered 0" system frame in the time domain.
  • Time domain resource allocation indicates the mapping parameters of the PUSCH in the time domain, for example, the start symbol and time length of the mapping PUSCH.
  • Frequency domain resource allocation (ie, frequencyDomainAllocation): indicates the frequency domain resource mapping PUSCH.
  • Table 2 shows how the network equipment configures the transmission parameters corresponding to the second type of CG resources for the terminal equipment through high-level signaling, and activates the DCI of the second type of CG resources as the terminal equipment Configure the time-frequency information of the second type of CG resource for description:
  • the period i.e. Period
  • the number of repetitions i.e. repK
  • the redundancy version of the uplink data allowed to be transmitted by each uplink transmission resource in the uplink transmission opportunity i.e. repK-RV
  • transmission parameters time domain resource allocation, frequency domain resource
  • the allocation of the two together indicates the time-frequency information of the CG resource.
  • P, repK, and repK-RV please refer to the foregoing description, which will not be repeated here.
  • Time domain resource assignment (ie, time domain resource assignment): Represents the mapping parameters of the PUSCH in the time domain, for example, the starting symbol and time length of the mapping PUSCH.
  • Frequency domain resource assignment (ie frequency domain resource assignment): Represents the frequency domain resource mapping PUSCH.
  • the first type of CG resource is configured by higher layer signaling (ie RRC signaling)
  • the second type of CG resource is configured by higher layer signaling (ie RRC signaling) and activates the CG resource DCI (for example, DCI 0_0/DCI0_1) are configured together.
  • the following application documents all take CG resources as an example for description.
  • the CG resources may be a first type of CG resource or a second type of CG resource, which is not distinguished in this embodiment of the application.
  • the CG resource described above is configured by the network device to the terminal device, when the value of K is greater than 1, there may be a conflict with the high-level configuration of the cell where the terminal device is located, resulting in blockage of PUSCH transmission.
  • the following scenarios where PUSCH transmission is blocked can be included:
  • the first scenario the high-level signaling sends the PUSCH symbol (abbreviated as PUSCH symbol A) to the terminal device through CG resource configuration, and the high-level signaling related to the time unit configuration (such as tdd-UL-DL-ConfigurationCommon or tdd-UL- DL-ConfigurationDedicated) is configured as a downlink symbol.
  • PUSCH symbol A the PUSCH symbol
  • the high-level signaling related to the time unit configuration such as tdd-UL-DL-ConfigurationCommon or tdd-UL- DL-ConfigurationDedicated
  • the uplink transmission resource where the PUSCH symbol A is located cannot be used to send the PUSCH (or the PUSCH symbol A cannot be used to send the PUSCH).
  • the uplink transmission resource where the PUSCH symbol A is located can be regarded as transmission blocked.
  • the symbols contained in all the uplink transmission resources in each uplink transmission opportunity of the first type of CG resources may be referred to as PUSCH symbols A.
  • the symbols contained in all the uplink transmission resources can be referred to as PUSCH symbols A.
  • PUSCH symbol A is semi-statically configured as a flexible symbol by high-level signaling related to time unit configuration, or there is no high-level parameter for uplink and downlink semi-static configuration.
  • the network device indicates that the PUSCH symbol A is a downlink symbol through DCI (for example, DCI format 1_0/1_1/0_1).
  • the downlink signal may be used to send a physical downlink shared channel (PDSCH) or channel state information (CSI)-reference signal (RS).
  • PDSCH physical downlink shared channel
  • CSI channel state information-reference signal
  • the uplink transmission resource where the PUSCH symbol A is located cannot be used to send the PUSCH (or the PUSCH symbol A cannot be used to send the PUSCH), unless the PUSCH symbol A may be too late to cancel the PUSCH symbol.
  • the uplink transmission resource where the PUSCH symbol A is located can be regarded as transmission blocked.
  • the so-called symbols that may not have time to cancel PUSCH transmission here refer to N2 symbols after the last symbol of the DCI.
  • the N2 may be determined according to the PUSCH preparation time corresponding to the PUSCH timing capability (timing capability) of the terminal device.
  • the terminal device receives DCI on the third symbol of slot n, the PUSCH symbol A is the fifth symbol of slot n, and the terminal device is on the sixth symbol of slot n.
  • the DCI is analyzed for each symbol, and it is learned that the DCI indicates that the PUSCH symbol A is a downlink symbol.
  • the terminal device has already used the PUSCH symbol A to complete the transmission of uplink data, the PUSCH symbol A is a symbol that is too late to cancel the PUSCH transmission.
  • the uplink data sent by the terminal device using the PUSCH symbol A will be interfered with by the downlink data sent by the network device on the symbol, causing the uplink data transmission to fail.
  • the uplink transmission resource where the PUSCH symbol A is located can be regarded as transmission blocked.
  • PUSCH symbol A is semi-statically configured as a flexible symbol by high-level signaling related to time unit configuration, or there is no high-level parameter for uplink and downlink semi-static configuration.
  • the terminal device is configured to detect DCI for time unit format indication, and DCI is detected.
  • DCI indicates that PUSCH symbol A is a downlink symbol or a flexible symbol.
  • the DCI may be, for example, a DCI used for slot format indicator (SFI), such as DCI format 2_0.
  • SFI slot format indicator
  • the uplink transmission resource where the PUSCH symbol A is located cannot be used to send the PUSCH (or the PUSCH symbol A cannot be used to send the PUSCH), unless the PUSCH symbol A may be too late to cancel the PUSCH symbol.
  • the uplink transmission resource where the PUSCH symbol A is located can be regarded as transmission blocked.
  • PUSCH symbol A is semi-statically configured as a flexible symbol by high-level signaling related to time unit configuration, or there is no high-level parameter for uplink and downlink semi-static configuration.
  • the terminal device is configured to monitor the DCI used for time unit format indication, but does not monitor the DCI.
  • the uplink transmission resource where the PUSCH symbol A is located cannot be used to send the PUSCH (or the PUSCH symbol A cannot be used to send the PUSCH), unless the PUSCH symbol A may be too late to cancel the PUSCH symbol.
  • the uplink transmission resource where the PUSCH symbol A is located can be regarded as transmission blocked.
  • the fifth scenario For the second type of CG resource, the terminal device receives the symbol contained in the uplink transmission resource of the first uplink transmission opportunity after the DCI (for example, DCI format0_0 or 0_1) that activates the second type of CG resource (Abbreviation: PUSCH symbol B), configured as a downlink symbol by high-level signaling related to time unit configuration.
  • DCI for example, DCI format0_0 or 0_1
  • PUSCH symbol B Abbreviation: PUSCH symbol B
  • the uplink transmission resource where the PUSCH symbol B is located cannot be used to transmit PUSCH (or the PUSCH symbol B cannot be used to transmit PUSCH).
  • the uplink transmission resource where the PUSCH symbol B is located can be regarded as transmission blocked .
  • Ultra-reliable and low latency communications (URLLC) service is an important service in the NR system, and very high reliability and very short delay are required for transmission.
  • the terminal device uses CG resources to send the uplink data of the URLLC service, if it encounters the above-mentioned scenario where the PUSCH transmission is blocked, it will cause the transmission delay of the URLLC service to increase, and it may not meet the delay requirements of the URLLC service. .
  • Figure 3 is a schematic diagram of the transmission of a URLLC service.
  • the terminal device can directly use the first uplink transmission opportunity to send the uplink data of the URLLC service.
  • the delay of the URLLC service is delay 1. If the first uplink transmission opportunity after the time when the uplink data of the URLLC service arrives, the transmission is blocked, but the second uplink transmission opportunity is not blocked. At this time, the terminal device uses the second uplink transmission opportunity to send the uplink data of the URLLC service, which will increase the delay of the URLLC service to delay 2. If the delay 2 exceeds the maximum delay requirement of the URLLC service, the uplink data transmission cannot meet the delay requirement of the URLLC service. Refer to the subsequent description for the introduction of the transmission blockage of the uplink transmission opportunity.
  • the first solution the network device tries to avoid the aforementioned PUSCH transmission blocked scenario through scheduling, but this solution will affect the flexibility of the network device scheduling.
  • the second solution the network device configures multiple CG resources for the terminal device.
  • the network device when there is no scenario where PUSCH transmission is blocked on multiple CG resources, the network device is not sure which CG resource uplink transmission opportunity the terminal device will use to send uplink data. Therefore, the network device needs to use the multiple CG resources. Detecting uplink data from terminal equipment increases the complexity of network equipment detection. In addition, due to the limited uplink resources, the solution of configuring multiple CG resources for the terminal device will result in a relatively large uplink resource overhead. When the number of terminal devices is large, the dynamically scheduled PUSCH may be blocked due to too few uplink resources that can be dynamically scheduled.
  • the embodiments of the present application provide a data transmission method.
  • a terminal device By configuring a terminal device with a first resource as a primary resource and a second resource as a backup resource, the first resource as the primary resource encounters the above
  • the terminal device can use the second resource as a backup resource to send uplink data to ensure the delay of the uplink data.
  • the network device may schedule the second resource for use by other terminal devices.
  • the delay of transmitting the uplink data of the URLLC service can be reduced without affecting the scheduling flexibility of the network equipment, the complexity of detection and the uplink resource overhead.
  • the method provided by the embodiment of the present application includes but is not limited to the scenario of transmitting the uplink data of the URLLC service, and can be applied to any scenario of sending the uplink data, which will not be repeated here.
  • the method in the embodiment of the present application includes, but is not limited to, scenarios where uplink data is transmitted for the first time, and may also be applicable to scenarios where uplink data is retransmitted.
  • FIG. 4 is a schematic flowchart of a data transmission method provided by an embodiment of this application. As shown in Figure 4, the method may include:
  • the terminal device acquires a first resource and a second resource; wherein the first resource is configured with at least one first uplink transmission opportunity, the second resource is configured with a second uplink transmission opportunity, and the first uplink transmission opportunity It includes X repeated first uplink transmission resources, and the second uplink transmission opportunity includes Y repeated second uplink transmission resources, and both X and Y are integers greater than 1.
  • the terminal device uses the second uplink transmission opportunity to send uplink data to the network device, where N is greater than or equal to An integer of 1.
  • the terminal device is configured with a first resource configured as a primary resource and a second resource configured as a backup resource.
  • the first resource and the second resource may be the aforementioned semi-statically configured CG resources (that is, resources that are not dynamically scheduled), or may be resources dynamically scheduled by the network device for the terminal device.
  • both the first resource and the second resource are CG resources of a first type, or the first resource is a CG resource of a first type, and the second resource is a CG resource of a second type,
  • the first resource is a first type of CG resource
  • the second resource is a dynamically scheduled resource
  • the first resource and the second resource are both second type of CG resources, or
  • the first resource is a second type of CG resource
  • the second resource is a first type of CG resource
  • the first resource is a second type of CG resource
  • the second resource is dynamically scheduled Resources
  • both the first resource and the second resource are dynamically scheduled resources, or the first resource is a dynamically scheduled resource
  • the second resource is a first type of CG resource, or,
  • the first resource is a dynamically scheduled resource
  • the second resource is a second type of CG resource.
  • the foregoing second resource may be configured with at least one second uplink transmission opportunity, and the at least one second uplink transmission opportunity may occur periodically.
  • the period P of at least one first uplink transmission opportunity configured by the first resource and the period of at least one second uplink transmission opportunity configured by the second resource P can be the same or different. That is, the frequency of occurrence of the at least one first uplink transmission opportunity of the first resource configuration and the at least one second uplink transmission opportunity of the second resource configuration is the same or may be different.
  • the number X of repeated first uplink transmission resources included in a first uplink transmission opportunity may be equal to or different from the number Y of repeated second uplink transmission resources included in a second uplink transmission opportunity.
  • the first uplink transmission opportunity of the first resource configuration includes 4 repeated first uplink transmission resources
  • the second uplink transmission opportunity of the second resource configuration includes 3 repeated second uplink transmission resources as an example.
  • the relationship between the first resource and the second resource in the time domain and the frequency domain is illustrated by examples:
  • FIG. 5 is a schematic diagram of resource distribution provided by an embodiment of this application
  • FIG. 6 is a schematic diagram of another resource distribution provided by an embodiment of this application.
  • the relationship between the first uplink transmission opportunity of the first resource configuration and the second uplink transmission opportunity of the second resource configuration in the time domain may be as shown in FIG. 5 and FIG. 6, that is, one of the first uplink transmission opportunities in the at least one first uplink transmission opportunity A second uplink transmission opportunity after an uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain.
  • the first uplink transmission opportunity of the first resource configuration and the second uplink transmission opportunity of the second resource configuration may be in the same frequency band in the frequency domain, that is, the frequency domain is the same (for example, as shown in FIG. 6), or Located in different frequency bands, that is, different frequency domains (for example, as shown in Figure 5).
  • FIG. 7 is another schematic diagram of resource distribution provided by an embodiment of this application
  • FIG. 8 is another schematic diagram of resource distribution provided by an embodiment of this application.
  • the relationship between the first uplink transmission opportunity of the first resource configuration and the second uplink transmission opportunity of the second resource configuration in the time domain may be as shown in FIG. 7 and FIG. 8, that is, one of the first uplink transmission opportunities in the at least one first uplink transmission opportunity A second uplink transmission opportunity after an uplink transmission opportunity is not adjacent to the first uplink transmission opportunity in the time domain.
  • the first uplink transmission opportunity of the first resource configuration and the second uplink transmission opportunity of the second resource configuration may be located in the same frequency band in the frequency domain, that is, the frequency domain is the same (for example, as shown in FIG. 8), or Located in different frequency bands, that is, different frequency domains (for example, as shown in Figure 7).
  • FIG. 9 is a schematic diagram of data transmission according to an embodiment of the application.
  • the embodiment of the present application takes a second uplink transmission opportunity of the second resource configuration as an example for description.
  • the second uplink transmission opportunity may be, for example, that uplink data reaches the terminal device.
  • the terminal device can determine whether the transmission of the first N first uplink transmission opportunities before the second uplink transmission opportunity is blocked. If the transmission of the N first uplink transmission opportunities is blocked, it means that the first resource as the primary resource will affect the transmission of uplink data due to the blocking of transmission.
  • the terminal device can directly use the second uplink transmission of the second resource as the backup resource.
  • Opportunity to send upstream data That is, when the transmission of the primary resource is blocked, the terminal device can use the backup resource to send the uplink data as soon as possible. In this way, the transmission delay of the uplink data can be guaranteed, and the problem of large transmission delay of the uplink data caused by the transmission blockage can be avoided.
  • the terminal device can immediately use the second resource configuration when the transmission of the first resource as the primary resource is blocked
  • the second uplink transmission opportunity of this method sends the uplink data out, further shortening the transmission delay of the uplink data.
  • the N first uplink transmission opportunities mentioned here are part of the first uplink transmission opportunities in the at least one first uplink transmission opportunity of the first resource configuration, and the N first uplink transmission opportunities may be consecutive N The first uplink transmission opportunity.
  • Figure 9 is a schematic diagram of an example where N is 3.
  • the N may be preset, for example, the value of N may be predefined by the protocol.
  • the N may be sent by the network device to the terminal device through instruction information.
  • the network device sends second indication information to the terminal device, where the second indication information indicates the N.
  • the terminal device receives the second indication information, and obtains the N through the second indication information.
  • the second indication information may be carried in higher layer signaling or physical layer signaling. In other words, the higher layer signaling or physical layer signaling indicates the N.
  • the terminal device determines that the second uplink transmission opportunity cannot be used to send uplink data. That is, the terminal device determines not to use the second resource. In this scenario, the terminal device may, for example, use the first uplink transmission opportunity after the time when the uplink data arrives at the terminal device to send the uplink data.
  • the network device may use the aforementioned method to determine whether the transmission of the nearest N first uplink transmission opportunities before each second uplink transmission opportunity of the second resource is blocked. If the transmission of the N first uplink transmission opportunities is blocked, the network device detects whether there is uplink data from the terminal device on the second uplink transmission opportunity. If the N first uplink transmission opportunities are not blocked, the network device determines that the second uplink transmission opportunity cannot be used to send uplink data. At this time, the network device can continue to detect whether there is uplink data from the terminal device on the first uplink transmission opportunity. In this scenario, the network device may temporarily schedule the second resource for use by other terminal devices.
  • the second resource can be temporarily scheduled by the network device for use by other terminal devices.
  • the scheduling flexibility of network equipment can be guaranteed, the complexity of network equipment detection can be reduced, and the overhead of uplink resources can be reduced.
  • FIG. 10 is a schematic diagram of another data transmission provided by an embodiment of this application.
  • this embodiment takes two second uplink transmission opportunities (second uplink transmission opportunity 1 and second uplink transmission opportunity 2) of the second resource configuration as an example for description.
  • N is equal to 3.
  • the terminal device determines by the above method that the transmission of the last N first uplink transmission opportunities before the second uplink transmission opportunity 1 is blocked, and the second uplink transmission opportunity 2 The previous N first uplink transmission opportunities are also blocked. Then in this scenario, if the second uplink transmission opportunity 1 can be used to send uplink data, the second uplink transmission opportunity 2 cannot be used to send uplink data.
  • first uplink transmission opportunity transmission blocked mode may include the following two modes:
  • the first way when the transmission of X repeated first uplink transmission resources in a first uplink transmission opportunity is all blocked, it is determined that the transmission of the first uplink transmission opportunity is blocked.
  • the terminal device may determine that the first uplink transmission opportunity transmits Blocked. Conversely, when at least one first uplink transmission resource in a first uplink transmission opportunity is not blocked, that is, when at least one uplink transmission resource in the first uplink transmission opportunity can be used to send uplink data, the terminal device can determine the The first uplink transmission opportunity is not blocked.
  • transmission of a first uplink transmission resource may be blocked because at least one symbol in the first uplink transmission resource is a non-uplink symbol.
  • the at least one symbol is configured as a downlink symbol or a flexible symbol.
  • the transmission of a first uplink transmission resource may be blocked because at least one symbol in the first uplink transmission resource is too late to cancel the transmission of the PUSCH symbol. That is, the terminal device uses at least one non-uplink symbol in the first uplink transmission resource to send uplink data.
  • the terminal device uses at least one non-uplink symbol in the first uplink transmission resource to send uplink data.
  • the terminal device is configured to monitor the DCI used for SFI, but does not monitor the DCI, which results in the transmission of uplink transmission resources.
  • the second resource ie, the backup resource
  • the network device cannot learn that the terminal device has not monitored the DCI, and therefore, the network device cannot determine whether the transmission of the first N first uplink transmission opportunities before the second uplink transmission opportunity is blocked based on this scenario. Therefore, the network device still detects whether there is uplink data from the terminal device on the first resource. Therefore, in this scenario, in order to ensure the reliability of data transmission, the terminal device still uses the first resource to send uplink data.
  • the second way when the number of the first uplink transmission resources whose transmission is blocked in a first uplink transmission opportunity is greater than or equal to the first preset threshold, it is determined that the transmission of the first uplink transmission opportunity is blocked.
  • the first preset threshold may be less than or equal to the number X of first uplink transmission resources included in one first uplink transmission opportunity.
  • the first preset threshold value less than X when the number of first uplink transmission resources whose transmission is blocked in a first uplink transmission opportunity is greater than or equal to the first preset threshold value, it is determined that the transmission of the first uplink transmission opportunity is blocked. Otherwise, it is determined that the transmission of the first uplink transmission opportunity is not blocked.
  • the first preset threshold when the number of first uplink transmission resources whose transmission is blocked in a first uplink transmission opportunity is equal to the first preset threshold, it is determined that the transmission of the first uplink transmission opportunity is blocked. Otherwise, it is determined that the transmission of the first uplink transmission opportunity is not blocked.
  • the first preset threshold may be preset.
  • the value of the first preset threshold may be predefined by the protocol.
  • the first preset threshold may be sent by the network device to the terminal device through instruction information.
  • the network device sends first indication information to the terminal device, where the first indication information indicates the first preset threshold.
  • the terminal device receives the first indication information, and obtains the first preset threshold value through the first indication information.
  • the first indication information may be carried in higher layer signaling or physical layer signaling. In other words, the high-layer signaling or physical layer signaling indicates the first preset threshold.
  • the first preset threshold may be determined according to a first configuration parameter and/or a second configuration parameter of the first resource; wherein, the first configuration parameter is used to configure the X.
  • the second configuration parameter is used to configure the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity.
  • the first configuration parameter may be the aforementioned repK
  • the second configuration parameter may be the aforementioned repK-RV, for example.
  • the relationship between the first preset threshold and repK and/or repK-RV may be as shown in Table 3 below:
  • the terminal device can directly use the second uplink transmission opportunity as a backup resource.
  • the second uplink transmission opportunity of the second resource sends uplink data, so as to use the spare resource to send the uplink data as soon as possible. In this way, the transmission delay of the uplink data can be guaranteed, and the problem of large transmission delay of the uplink data caused by the transmission blockage can be avoided.
  • the first resource and the second resource involved in the embodiment of the present application may be preset to the terminal device, or may be configured by the network device to the terminal device through high-level signaling or physical layer signaling.
  • the foregoing terminal device acquiring the first resource and the second resource may be: the network device sends high-level signaling to the terminal device, where the high-level signaling indicates the first resource and the second resource .
  • the terminal device obtains the first resource and the second resource by receiving the high-level signaling.
  • the high-level signaling mentioned here may be, for example, RRC signaling.
  • the network device uses the high-level signaling to configure the first resource and the second resource for the terminal device:
  • the high-level signaling may include a first information domain and a second information domain.
  • the first information domain corresponds to the first resource
  • the second information domain corresponds to the second resource. It should be understood that the embodiment of the present application does not limit whether other information fields or parameters are included in the high-level signaling.
  • the first information domain includes a first information subdomain and/or a second information subdomain.
  • the first information subfield indicates time-frequency information of the first resource.
  • the first information subdomain may include at least one parameter of time domain offset (ie timeDomainOffset), time domain resource allocation (ie timeDomainAllocation), and frequency domain resource allocation (ie frequencyDomainAllocation) as shown in the foregoing Table 1, to The time-frequency information of the first resource is indicated by the at least one parameter.
  • the second information subfield indicates the transmission parameter of the first resource
  • the transmission parameter of the first resource may include at least one of the following: the X, each first uplink transmission in the first uplink transmission opportunity The redundancy version of the uplink data that the resource allows for transmission (for example, the repK-RV shown in Table 1 above), and the time interval between two adjacent first uplink transmission opportunities (for example, the period P shown in Table 1 above).
  • the second information subfield may indicate the transmission parameter of the first resource by including the at least one parameter. It should be understood that the parameters that are not indicated by the first information field and are related to configuring the first resource may be indicated in other positions in the higher layer signaling, or indicated by other signaling, or be preset values.
  • the second information domain includes a third information subdomain and/or a fourth information subdomain.
  • the third information subfield indicates time-frequency information of the second resource.
  • the third information sub-domain may include at least one parameter of time domain offset (ie timeDomainOffset), time domain resource allocation (ie timeDomainAllocation), and frequency domain resource allocation (ie frequencyDomainAllocation) as shown in Table 1 above, to The time-frequency information of the second resource is indicated by the at least one parameter.
  • the fourth information subfield indicates the transmission parameter of the second resource, and the transmission parameter of the second resource includes at least one of the following: the Y, each second uplink transmission resource in the second uplink transmission opportunity The redundancy version of the uplink data that is allowed to be transmitted (that is, the repK-RV shown in Table 1 above), and the time interval between two adjacent second uplink transmission opportunities (for example, the period P shown in Table 1 above).
  • the fourth information subfield may indicate the transmission parameter of the second resource by including the at least one parameter. It should be understood that the parameters that are not indicated by the second information field and are related to the configuration of the second resource may be indicated in other positions in the higher layer signaling, or indicated by other signaling, or be preset values.
  • any one of the above-mentioned first information sub-domain, second information sub-domain, third information sub-domain, and fourth information sub-domain may be packaged into one IE in high-level signaling.
  • the embodiment of the application does not limit the name of the IE.
  • these IEs are located in the IE ConfiguredGrantConfig of high-level signaling. It can also be said that the first information domain and the second information domain are located in the IE ConfiguredGrantConfig of the high-level signaling.
  • the first information subdomain and/or the second information subdomain further indicate the type of the first resource; and/or, the third information subdomain and/or the The fourth information subfield also indicates the type of the second resource.
  • the type of the first resource and the type of the second resource are used to distinguish which resource the information subdomain corresponds to.
  • the resource type can be indicated by carrying a resource type parameter in the above information subfield. For example, when the type parameter value is 1, it indicates that the resource is the first resource, and when the type parameter value is 0, it indicates that the resource is the second resource. Or, when the type parameter takes the value 0, it indicates that the resource is the first resource, and when the type parameter takes the value 1, it indicates that the resource is the second resource.
  • the terminal device is configured with multiple sets of resources, where each set of resources includes a first resource and a second resource corresponding to the first resource.
  • the first information subfield and/or the second information subfield also indicate the identity of the group where the first resource is located; the third information subfield and/or the fourth information subfield
  • the domain also indicates the identity of the group where the second resource is located.
  • the group identifier can be carried in the above information subdomain.
  • the group identifier mentioned here may be, for example, the ID of the group, the index of the group, and the like.
  • the information subfield corresponding to one of the resources can indicate the type of resource indicated by it, so that the group identification and The resource type distinguishes the resource indicated by the information subfield that does not indicate the resource type. In this way, the signaling overhead can be reduced on the basis of realizing the distinction between the two resources.
  • the second case the first resource and the second resource are both CG resources of the second type.
  • the high-level signaling may include a first information domain and a second information domain.
  • the first information domain corresponds to the first resource
  • the second information domain corresponds to the second resource. It should be understood that the embodiment of the present application does not limit whether other information fields or parameters are included in the high-level signaling.
  • the first information domain includes a first information subdomain and/or a second information subdomain.
  • the parameters that are not indicated by the first information field and are related to the configuration of the first resource may be indicated in other positions in the higher layer signaling, or indicated through other signaling, or are preset values.
  • the second information domain includes a third information subdomain and/or a fourth information subdomain.
  • the third information sub-field and the fourth information sub-field please refer to the description in the foregoing first case, which is not repeated here. It should be understood that the parameters that are not indicated by the second information field and are related to the configuration of the second resource may be indicated in other positions in the higher layer signaling, or indicated by other signaling, or be preset values.
  • any one of the above-mentioned first information sub-domain, second information sub-domain, third information sub-domain, and fourth information sub-domain may be packaged into one IE in high-level signaling.
  • the embodiment of the application does not limit the name of the IE.
  • these IEs are located in the IE ConfiguredGrantConfig of high-level signaling. It can also be said that the first information domain and the second information domain are located in the IE ConfiguredGrantConfig of the high-level signaling.
  • the network device can indicate that the CG resource configured by the high-level signaling is the second type of CG resource by not including the rrc-ConfiguredUplinkGrant parameter in the IE ConfiguredGrantConfig of the RRC signaling. . That is to say, in the embodiment of this application, if the first resource and the second resource are CG resources of the second type, the high-level signaling indicates the high-level signaling by not including the rrc-ConfiguredUplinkGrant parameter in IE ConfiguredGrantConfig The configured CG resources are the second type of CG resources.
  • the network device can activate or deactivate the first resource through DCI of the physical layer, and activate or deactivate the second resource through DCI.
  • the above-mentioned high-level signaling does not carry the above-mentioned first information subfield and/or the third information subfield. That is, the high-level signaling in the embodiments of the present application maintains the same manner as the existing high-level signaling, and only indicates the transmission parameters of the first resource and/or the transmission parameters of the second resource in the high-level signaling. In this way, when a network device activates or deactivates a resource through the DCI, the DC further indicates the time-frequency information of the resource. Taking the activation of the first resource as an example, the DCI may carry the aforementioned first information subfield to indicate the first resource.
  • the aforementioned DCI may also separately indicate the type of activated or deactivated resource, so that the terminal device can learn which resource is activated or deactivated.
  • the first information subfield and/or the second information subfield further indicate the type of the first resource; and/or, the third information subfield and/or the fourth information
  • the subfield also indicates the type of the second resource.
  • the description of the type please refer to the description in the first case above, which will not be repeated here.
  • the terminal device is configured with multiple sets of resources, where each set of resources includes a first resource and a second resource corresponding to the first resource.
  • the control information also indicates the identity of the group of the activated or deactivated resource.
  • the first information subfield and/or the second information subfield also indicate the identity of the group where the first resource is located.
  • the third information subfield and/or the fourth information subfield further indicate the identity of the group where the second resource is located.
  • control information when used to indicate the identification of the group of the resource to be activated or deactivated, the control information may be used only, or only the type of the resource may be indicated in the information subfield indicating the resource. In this way, the signaling overhead can be reduced on the basis of realizing the distinction between the two resources.
  • the two situations shown above are only an example.
  • the first resource is a CG resource of the first type and the second resource is a CG resource of the second type
  • the first situation may be adopted for the first resource.
  • the indication is performed in the manner shown, and the second resource may be indicated in the manner shown in the second case.
  • the first resource can be indicated in the manner shown in the second case, and the second resource can be The mode indication shown in the first case will not be repeated here.
  • the network device can configure the first resource as the primary resource and the second resource as the backup resource for the terminal device, so that the terminal device can use the first resource as the primary resource when encountering the aforementioned scenario where PUSCH transmission is blocked.
  • the second resource which is the backup resource, sends uplink data to ensure the time delay of the uplink data.
  • the network device may schedule the second resource for use by other terminal devices.
  • the data transmission method provided by the embodiments of the present application configures a first resource as a primary resource and a second resource as a backup resource for the terminal device, so that when the first resource as the primary resource encounters the above-mentioned scenario where PUSCH transmission is blocked, The terminal device can use the second resource as a backup resource to send uplink data to ensure the time delay of the uplink data.
  • the network device may schedule the second resource for use by other terminal devices.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of this application. As shown in FIG. 11, the terminal device includes: a processing module 11 and a sending module 12. In some embodiments, the terminal device may further include a receiving module 13. among them,
  • the processing module 11 is used to obtain the first resource and the second resource.
  • the first resource is configured with at least one first uplink transmission opportunity
  • the second resource is configured with a second uplink transmission opportunity.
  • the first uplink transmission opportunity includes X repeated first uplink transmission resources
  • the second uplink transmission opportunity includes Y repeated second uplink transmission resources
  • both X and Y are greater than or equal to 1. Integer.
  • the sending module 12 is configured to use the second uplink transmission opportunity to send uplink data to the network device when the transmission of the last N first uplink transmission opportunities before the second uplink transmission opportunity is blocked, where N is greater than or equal to An integer of 1.
  • the N is preset.
  • the receiving module 13 is configured to receive second indication information from the network device, where the second indication information indicates the N.
  • the processing module 11 is further configured to determine when at least one of the first uplink transmission opportunities in the N first uplink transmission opportunities before the second uplink transmission opportunity is not blocked. The second uplink transmission opportunity cannot be used to send uplink data.
  • the above-mentioned first uplink transmission opportunity transmission blocked may include, for example: X repeated first uplink transmission resources in the first uplink transmission opportunity are blocked from transmission; or The number of first uplink transmission resources whose transmission is blocked in the first uplink transmission opportunity is greater than or equal to a first preset threshold, and the first preset threshold is less than or equal to X.
  • the blocking of the transmission of the first uplink transmission resource may include: at least one symbol in the first uplink transmission resource is a non-uplink symbol; or, the terminal device uses at least one of the first uplink transmission resources A non-uplink symbol sends uplink data.
  • the first preset threshold is preset.
  • the first preset threshold is determined according to a first configuration parameter and/or a second configuration parameter of the first resource.
  • the first configuration parameter is used to configure the X
  • the second configuration parameter is used to configure the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity.
  • the receiving module 13 is configured to receive first indication information from the network device, where the first indication information indicates the first preset threshold.
  • a second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain; or, so A second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain and is the same in the frequency domain.
  • the first resource and the second resource involved in the embodiment of the present application may be preset to the terminal device, or may be configured by the network device to the terminal device through high-level signaling or physical layer signaling.
  • the processing module 11 is specifically configured to receive high-level signaling from the network device through the receiving module, where the high-level signaling indicates the first resource and the second resource.
  • the high-level signaling includes: a first information domain and a second information domain.
  • the first information field includes a first information subfield and/or a second information subfield, the first information subfield indicates time-frequency information of the first resource, and the second information subfield indicates the first information subfield.
  • the transmission parameter of the first resource includes at least one of the following: the X, the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity, and two adjacent second A time interval between uplink transmission opportunities.
  • the second information domain includes a third information subdomain and/or a fourth information subdomain.
  • the third information subfield indicates time-frequency information of the second resource
  • the fourth information subfield indicates a transmission parameter corresponding to the second resource.
  • the transmission parameter of the second resource includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities. 2.
  • the time interval of uplink transmission opportunities includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities.
  • each set of resources includes: a first resource and a second resource corresponding to the first resource. Then the first information subdomain and/or the second information subdomain further indicate the identity of the group where the first resource is located; the third information subdomain and/or the fourth information subdomain also indicate The identifier of the group where the second resource belongs.
  • the first information subdomain and/or the second information subdomain further indicate the type of the first resource; and/or, the third information subdomain and/or the The fourth information subfield also indicates the type of the second resource.
  • the receiving module 13 is further configured to receive control information from the network device, the Control information is used to activate or deactivate resources.
  • control information further indicates the type of resource to be activated or deactivated; and/or, the first information subfield and/or the second information subfield further indicate the The type of the first resource; and/or, the third information subfield and/or the fourth information subfield further indicate the type of the second resource.
  • each set of authorized resources includes: a first resource and a second resource corresponding to the first resource. Then the control information also indicates the identification of the group where the activated or deactivated resource belongs.
  • the terminal device provided in the embodiment of the present application can perform the actions of the terminal device in the foregoing method embodiment, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of this application. As shown in FIG. 12, the network device includes: a processing module 21. In some embodiments, the network device may further include a sending module 22.
  • the processing module 21 is configured to obtain the first resource and the second resource configured for the terminal device.
  • the first resource is configured with at least one first uplink transmission opportunity
  • the second resource is configured with a second uplink transmission opportunity.
  • the first uplink transmission opportunity includes X repeated first uplink transmission resources
  • the second uplink transmission opportunity includes Y repeated second uplink transmission resources.
  • the X and the Y are both integers greater than or equal to 1, and the N is an integer greater than or equal to 1.
  • the processing module 21 detects the uplink transmission from the terminal device on the second uplink transmission opportunity when the transmission of the last N first uplink transmission opportunities before the second uplink transmission opportunity is blocked. data.
  • the processing module 21 is further configured to determine when at least one of the first uplink transmission opportunities in the N first uplink transmission opportunities before the second uplink transmission opportunity is not blocked.
  • the second uplink transmission opportunity cannot be used to send uplink data.
  • the N is preset.
  • the sending module 22 is configured to send second indication information to the terminal device, where the second indication information indicates the N.
  • the above-mentioned first uplink transmission opportunity transmission blocked may include, for example: X repeated first uplink transmission resources in the first uplink transmission opportunity are blocked from transmission; or The number of first uplink transmission resources whose transmission is blocked in the first uplink transmission opportunity is greater than or equal to a first preset threshold, and the first preset threshold is less than or equal to X.
  • the blocking of the transmission of the first uplink transmission resource may include: at least one symbol in the first uplink transmission resource is a non-uplink symbol; or, the terminal device uses at least one of the first uplink transmission resources A non-uplink symbol sends uplink data.
  • the first preset threshold is preset.
  • the first preset threshold is determined according to a first configuration parameter and/or a second configuration parameter of the first resource.
  • the first configuration parameter is used to configure the X
  • the second configuration parameter is used to configure the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity.
  • the sending module 22 is configured to send first indication information to the terminal device, where the first indication information indicates the first preset threshold.
  • a second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain; or, so A second uplink transmission opportunity after a first uplink transmission opportunity in the at least one first uplink transmission opportunity is adjacent to the first uplink transmission opportunity in the time domain and is the same in the frequency domain.
  • the first resource and the second resource involved in the embodiment of the present application may be preset to the terminal device, or may be configured by the network device to the terminal device through high-level signaling or physical layer signaling.
  • the sending module 22 is configured to send high-level signaling to the terminal device, where the high-level signaling indicates the first resource and the second resource.
  • the high-level signaling includes: a first information domain and a second information domain.
  • the first information field includes a first information subfield and/or a second information subfield, the first information subfield indicates time-frequency information of the first resource, and the second information subfield indicates the first information subfield.
  • the transmission parameter of the first resource includes at least one of the following: the X, the redundancy version of the uplink data allowed to be transmitted by each first uplink transmission resource in the first uplink transmission opportunity, and two adjacent second A time interval between uplink transmission opportunities.
  • the second information domain includes a third information subdomain and/or a fourth information subdomain.
  • the third information subfield indicates time-frequency information of the second resource
  • the fourth information subfield indicates a transmission parameter corresponding to the second resource.
  • the transmission parameter of the second resource includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities. 2.
  • the time interval of uplink transmission opportunities includes at least one of the following: the Y, the redundancy version of the uplink data allowed to be transmitted by each second uplink transmission resource in the second uplink transmission opportunity, and two adjacent second uplink transmission opportunities.
  • each set of resources includes: a first resource and a second resource corresponding to the first resource. Then the first information subdomain and/or the second information subdomain further indicate the identity of the group where the first resource is located; the third information subdomain and/or the fourth information subdomain also indicate The identifier of the group where the second resource belongs.
  • the first information subdomain and/or the second information subdomain further indicate the type of the first resource; and/or, the third information subdomain and/or the The fourth information subfield also indicates the type of the second resource.
  • the sending module 22 is also used to send control information to the terminal device, and the control The information is used to activate or deactivate resources.
  • control information further indicates the type of resource to be activated or deactivated; and/or, the first information subfield and/or the second information subfield further indicate the The type of the first resource; and/or, the third information subfield and/or the fourth information subfield further indicate the type of the second resource.
  • each set of authorized resources includes: a first resource and a second resource corresponding to the first resource. Then the control information also indicates the identification of the group where the activated or deactivated resource belongs.
  • the network device provided in the embodiment of the present application can perform the actions of the network device in the foregoing method embodiment, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the above receiving module may be a receiver or a communication interface when actually implemented, and the sending module may be a transmitter or a communication interface when actually implemented.
  • the processing module can be implemented in the form of software calling through processing elements; it can also be implemented in the form of hardware.
  • the processing module may be a separately established processing element, or it may be integrated in a chip of the above-mentioned device for implementation.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device Call and execute the functions of the above processing module.
  • all or part of these modules can be integrated together or implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability. In the implementation process, each step of the above method or each of the above modules can be completed by hardware integrated logic circuits in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 13 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • the terminal device may include: a processor 31 (such as a CPU), a memory 32, a receiver 33, and a transmitter 34; the receiver 33 and the transmitter 34 are both coupled to the processor 31, and the processor 31 controls the receiving The receiving action of the transmitter 33 and the processor 31 controlling the sending action of the transmitter 34;
  • the memory 32 may include high-speed random-access memory (RAM), or may also include non-volatile memory (non-volatile memory, NVM), such as at least one disk storage.
  • the memory 32 can store various instructions for completing various processing functions and implementing the method steps of the present application.
  • the terminal device involved in the present application may further include: a power supply 35, a communication bus 36, and a communication port 37.
  • the receiver 33 and the transmitter 34 may be integrated in the transceiver of the terminal device, or may be independent transceiver antennas on the terminal device.
  • the communication bus 36 is used to implement communication connections between components.
  • the aforementioned communication port 37 is used to implement connection and communication between the terminal device and other peripherals.
  • the above-mentioned memory 32 is used to store computer executable program code, and the program code includes instructions; when the processor 31 executes the instructions, the instructions cause the terminal device to perform the actions of the terminal device in the above-mentioned method embodiment, and its implementation principle It is similar to the technical effect, so I won't repeat it here.
  • FIG. 14 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • the network device may include: a processor 41 (such as a CPU) and a memory 42; the memory 42 may include high-speed random-access memory (random-access memory, RAM), or may also include non-volatile memory (non-volatile memory, NVM), for example, at least one disk memory, and various instructions can be stored in the memory 42 for completing various processing functions and implementing the method steps of the present application.
  • the network device involved in the present application may further include: a power supply 43, a communication bus 44, and a communication port 45.
  • the communication bus 44 is used to implement communication connections between components.
  • the aforementioned communication port 45 is used to implement connection and communication between the network device and other peripherals.
  • the above-mentioned memory 42 is used to store computer executable program code, and the program code includes instructions; when the processor 41 executes the instructions, the instructions cause the network device to perform the actions of the network device in the foregoing method embodiment, and its implementation principle It is similar to the technical effect, so I won't repeat it here.
  • the processing module or processor
  • storage module or memory
  • transceiver module communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP, a digital signal processor (DSP), or an application specific integrated circuit (application integrated circuit).
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps and logic block diagrams disclosed in this application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. Combining the steps of the method disclosed in this application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the device may include multiple processors or the processor includes multiple processing modules.
  • the processor may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the memory is used to store computer instructions executed by the processor.
  • the memory can be a storage circuit or a memory.
  • the memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • the memory may be independent of the processor, or may be a storage module in the processor, which is not limited here. Although only one memory is shown in the figure, the device may also include multiple memories or the memory includes multiple storage modules.
  • the transceiver is used to implement content interaction between the processor and other modules or network elements.
  • the transceiver may be a communication interface of the device, a transceiver circuit or a communication module, or a transceiver.
  • the transceiver may also be a communication interface or a transceiver circuit of the processor.
  • the transceiver may be a transceiver chip.
  • the transceiver may also include a sending module and/or a receiving module.
  • the transceiver may include at least one communication interface.
  • the transceiver may also be a module implemented in the form of software.
  • the processor may interact with other modules or network elements through a transceiver. For example, the processor obtains or receives content from other network elements through the transceiver. If the processor and the transceiver are two physically separate components, the processor can interact with other modules of the device without going through the transceiver.
  • the processor, memory, and transceiver may be connected to each other through a bus.
  • the bus can be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the names of request messages, response messages, and other various messages are used.
  • these messages are merely examples to illustrate the content that needs to be carried or the functions implemented, and the specific name of the message does not limit the application, for example: the first message, the second message, the third message, etc.
  • These messages can be some specific messages, or some fields in the messages.
  • These messages can also represent various servicing operations.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • plural herein refers to two or more.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or” relationship; in the formula, the character "/" indicates that the associated objects before and after are in a "division" relationship.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输方法和设备,通过为终端设备配置作为主资源的第一资源和作为备用资源的第二资源,从而在作为主资源的第一资源遇到上述PUSCH发送受阻的场景时,终端设备可以使用作为备用资源的第二资源发送上行数据,以确保上行数据的时延。相应地,如果第一资源未遇到上述PUSCH发送受阻的场景,则网络设备可以将第二资源调度给其他终端设备使用。在通过该方式传输URLLC业务的上行数据时,可以在不影响网络设备的调度灵活性、检测的复杂度和上行资源开销的情况下,减小传输URLLC业务的上行数据的时延。

Description

数据传输方法和设备
本申请要求于2019年07月15日提交中国专利局、申请号为201910633800.X、申请名称为“数据传输方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种数据传输方法和设备。
背景技术
新一代无线(new radio,NR)通信系统(简称:NR系统)中引入了配置授权(configured grant,CG)的概念。网络设备为终端设备半静态配置CG资源后,终端设备在有上行数据需要发送时,可以直接使用该CG资源发送承载上行数据的物理上行共享信道(physical uplink shared channel,PUSCH),无需再等待网络设备的对PUSCH的动态调度。目前,由于CG资源是网络设备单独配置给终端设备的半静态资源,有可能会与终端设备所在的小区的高层配置的资源存在冲突,或和网络设备的动态调度的资源存在冲突,导致PUSCH发送受阻。
超可靠低延迟通信(ultra-reliable and low latency communications,URLLC)业务为NR系统中的一个重要的业务,传输时要求非常高的可靠性和非常短的时延。终端设备在使用CG资源发送URLLC业务的上行数据时,若遇到PUSCH发送受阻的场景,会导致URLLC业务的传输时延增大,可能出现无法满足URLLC业务的时延需求的情况。考虑到URLLC业务的时延需求,现有技术中提出如下两种解决方案:第一种方案:网络设备通过调度尽量避免上述的PUSCH发送受阻的场景出现,但是该方案会影响网络设备调度的灵活性。第二种方案:网络设备为终端设备配置多个CG资源。但是,当有多个CG资源都没有出现PUSCH发送受阻的场景时,因网络设备不确定终端设备会使用哪个CG资源的上行传输机会发送上行数据,因此,网络设备需要在该多个CG资源上检测来自终端设备的上行数据,增加了网络设备检测的复杂度。另外,因上行资源有限,采用为终端设备配置多个CG资源的方案会导致上行资源的开销较大。当终端设备的数量较多时,可能会因能够动态调度的上行资源过少,而阻塞动态调度的PUSCH发送。
故,如何在不影响网络设备的调度灵活性、检测的复杂度和上行资源开销的情况下,减小传输URLLC业务的上行数据的时延是一个亟待解决的问题。
发明内容
本申请实施例提供一种数据传输方法和设备,用于解如何在不影响网络设备的调度灵活性、检测的复杂度和上行资源开销的情况下,减小传输URLLC业务的上行数据的时延的 技术问题。
第一方面,本申请实施例提供一种数据传输方法。该方法可以应用于终端设备,该终端设备包括终端(例如移动电话)或应用于该终端中的芯片。下面以应用于终端设备为例对该方法进行描述,该方法中,终端设备可以获取第一资源和第二资源。其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有第二上行传输机会。所述第一上行传输机会包括X个重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源,所述X和所述Y均为大于或等于1的整数。
在该场景下,若所述第二上行传输机会之前的最近N个第一上行传输机会发送受阻,则所述终端设备使用所述第二上行传输机会向网络设备发送上行数据。若所述第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻,则所述终端设备确定所述第二上行传输机会不能用于发送上行数据。此时,该第二资源可以被网络设备调度给其他终端设备使用。上述N为大于或等于1的整数。示例性的,所述N为预设的。或者,所述方法还包括:所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述N。
上述方法通过为终端设备配置作为主资源的第一资源和作为备用资源的第二资源,从而在作为主资源的第一资源遇到上述PUSCH发送受阻的场景时,终端设备可以使用作为备用资源的第二资源发送上行数据,以确保上行数据的时延。相应地,如果第一资源未遇到上述PUSCH发送受阻的场景,则网络设备可以将第二资源调度给其他终端设备使用。在通过该方式传输URLLC业务的上行数据时,可以在不影响网络设备的调度灵活性、检测的复杂度和上行资源开销的情况下,减小传输URLLC业务的上行数据的时延。
作为一种可能的实现方式,上述所说的所述第一上行传输机会发送受阻例如可以包括:所述第一上行传输机会中的X个重复的第一上行传输资源均发送受阻;或者,所述第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值,所述第一预设阈值小于或等于所述X。示例性的,所述第一上行传输资源发送受阻可以包括:所述第一上行传输资源中有至少一个符号为非上行符号;或者,所述终端设备使用所述第一上行传输资源中的至少一个非上行符号发送上行数据。作为一种可能的实现方式,所述第一预设阈值为预设的。或者,所述第一预设阈值根据所述第一资源的第一配置参数和/或第二配置参数确定。其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本。或者,所述方法还包括:所述终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述第一预设阈值。
作为一种可能的实现方式,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻;或者,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻、且频域相同。通过该设置第一资源和第二资源的方式,在作为主资源的第一资源发送受阻时,终端设备可以立刻使用第二资源配置的第二上行传输机会将上行数据发送出去,进一步缩短了上行数据的传输时延。
本申请实施例所涉及的第一资源和第二资源可以为预设给终端设备的,也可以为网络设备通过高层信令或物理层信令配置给终端设备的。以高层信令为例,所述终端设备获取 第一资源和第二资源包括:所述终端设备接收来自所述网络设备的高层信令。所述高层信令指示所述第一资源和所述第二资源。所述高层信令包括:第一信息域和第二信息域。
所述第一信息域包括第一信息子域和/或第二信息子域,所述第一信息子域指示所述第一资源的时频信息,所述第二信息子域指示所述第一资源对应的传输参数。其中,所述第一资源的传输参数包括下述至少一项:所述X、所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本、相邻两个第一上行传输机会的时间间隔。
所述第二信息域包括第三信息子域和/或第四信息子域。所述第三信息子域指示所述第二资源的时频信息,所述第四信息子域指示所述第二资源对应的传输参数。其中,所述第二资源的传输参数包括下述至少一项:所述Y、所述第二上行传输机会中各第二上行传输资源允许传输的上行数据的冗余版本、相邻两个第二上行传输机会的时间间隔。
作为一种可能的实现方式,若所述终端设备配置有多组资源,其中,每组资源包括:一个第一资源、与该第一资源对应的第二资源。则所述第一信息子域和/或所述第二信息子域还指示所述第一资源所在组的标识;所述第三信息子域和/或所述第四信息子域还指示所述第二资源所在组的标识。
作为一种可能的实现方式,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
作为一种可能的实现方式,若所述高层信令的资源配置信息元素不包括无线资源控制配置上行授权参数;则所述方法还包括:所述终端设备接收来自所述网络设备的控制信息,所述控制信息用于激活或去激活资源。
在该实现方式下,可选的,所述控制信息还指示激活或去激活的资源的类型;和/或,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
在该实现方式下,可选的,若所述终端设备配置有多组资源,每组授权资源包括:一个第一资源、与该第一资源对应的第二资源。则所述控制信息还指示激活或去激活的资源所在组的标识。
通过上述方式,网络设备可以为终端设备配置作为主资源的第一资源和作为备用资源的第二资源,从而在作为主资源的第一资源遇到上述PUSCH发送受阻的场景时,终端设备可以使用作为备用资源的第二资源发送上行数据,以确保上行数据的时延。相应地,如果第一资源未遇到上述PUSCH发送受阻的场景,则网络设备可以将第二资源调度给其他终端设备使用。在通过该方式传输URLLC业务的上行数据时,可以在不影响网络设备的调度灵活性、检测的复杂度和上行资源开销的情况下,减小传输URLLC业务的上行数据的时延。
第二方面,本申请实施例提供一种数据传输方法。该方法可以应用于网络侧设备,该网络侧网络包括网络设备(例如gNB)或应用于该网络设备中的芯片。下面以应用于网络设备为例对该方法进行描述,该方法中,网络设备可以获取为终端设备配置的第一资源和第二资源。其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有第二上行传输机会。所述第一上行传输机会包括X个重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源,所述X和所述Y均为大于或等于1的 整数。
在该场景下,若所述第二上行传输机会之前的最近N个第一上行传输机会发送受阻,则所述网络设备在所述第二上行传输机会上检测来自所述终端设备的上行数据。若所述第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻,则所述网络设备确定所述第二上行传输机会不能用于发送上行数据。此时,该第二资源可以被网络设备调度给其他终端设备使用。上述N为大于或等于1的整数。示例性的,所述N为预设的。或者,所述方法还包括:所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息指示所述N。
作为一种可能的实现方式,上述所说的所述第一上行传输机会发送受阻例如可以包括:所述第一上行传输机会中的X个重复的第一上行传输资源均发送受阻;或者,所述第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值,所述第一预设阈值小于或等于所述X。示例性的,所述第一上行传输资源发送受阻可以包括:所述第一上行传输资源中有至少一个符号为非上行符号;或者,所述终端设备使用所述第一上行传输资源中的至少一个非上行符号发送上行数据。作为一种可能的实现方式,所述第一预设阈值为预设的。或者,所述第一预设阈值根据所述第一资源的第一配置参数和/或第二配置参数确定。其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本。或者,所述方法还包括:所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息指示所述第一预设阈值。
作为一种可能的实现方式,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻;或者,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻、且频域相同。
本申请实施例所涉及的第一资源和第二资源可以为预设给终端设备的,也可以为网络设备通过高层信令或物理层信令配置给终端设备的。以高层信令为例,上述方法还包括:所述网络设备向所述终端设备发送高层信令。所述高层信令指示所述第一资源和所述第二资源。所述高层信令包括:第一信息域和第二信息域。
所述第一信息域包括第一信息子域和/或第二信息子域,所述第一信息子域指示所述第一资源的时频信息,所述第二信息子域指示所述第一资源对应的传输参数。其中,所述第一资源的传输参数包括下述至少一项:所述X、所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本、相邻两个第一上行传输机会的时间间隔。
所述第二信息域包括第三信息子域和/或第四信息子域。所述第三信息子域指示所述第二资源的时频信息,所述第四信息子域指示所述第二资源对应的传输参数。其中,所述第二资源的传输参数包括下述至少一项:所述Y、所述第二上行传输机会中各第二上行传输资源允许传输的上行数据的冗余版本、相邻两个第二上行传输机会的时间间隔。
作为一种可能的实现方式,若所述终端设备配置有多组资源,其中,每组资源包括:一个第一资源、与该第一资源对应的第二资源。则所述第一信息子域和/或所述第二信息子域还指示所述第一资源所在组的标识;所述第三信息子域和/或所述第四信息子域还指示所述第二资源所在组的标识。
作为一种可能的实现方式,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
作为一种可能的实现方式,若所述高层信令的资源配置信息元素不包括无线资源控制配置上行授权参数;则所述方法还包括:所述网络设备向所述终端设备发送控制信息,所述控制信息用于激活或去激活资源。
在该实现方式下,可选的,所述控制信息还指示激活或去激活的资源的类型;和/或,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
在该实现方式下,可选的,若所述终端设备配置有多组资源,每组授权资源包括:一个第一资源、与该第一资源对应的第二资源。则所述控制信息还指示激活或去激活的资源所在组的标识。
上述第二方面和第二方面的各可能的实现方式所提供的数据传输方法,其有益效果可以参见上述第一方面和第一方面的各可能的实现方式所带来的有益效果,在此不加赘述。
第三方面,本申请实施例提供一种终端设备。该终端设备包括:处理模块和发送模块。在一些实施例中,终端设备还可以包括接收模块。
处理模块,用于获取第一资源和第二资源。其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有第二上行传输机会。所述第一上行传输机会包括X个重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源,所述X和所述Y均为大于或等于1的整数。
发送模块,用于在所述第二上行传输机会之前的最近N个第一上行传输机会发送受阻时,使用所述第二上行传输机会向网络设备发送上行数据,所述N为大于或等于1的整数。示例性的,所述N为预设的。或者,所述接收模块,用于接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述N。
作为一种可能的实现方式,所述处理模块,还用于在所述第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻时,确定所述第二上行传输机会不能用于发送上行数据。
作为一种可能的实现方式,上述所说的所述第一上行传输机会发送受阻例如可以包括:所述第一上行传输机会中的X个重复的第一上行传输资源均发送受阻;或者,所述第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值,所述第一预设阈值小于或等于所述X。示例性的,所述第一上行传输资源发送受阻可以包括:所述第一上行传输资源中有至少一个符号为非上行符号;或者,所述终端设备使用所述第一上行传输资源中的至少一个非上行符号发送上行数据。作为一种可能的实现方式,所述第一预设阈值为预设的。或者,所述第一预设阈值根据所述第一资源的第一配置参数和/或第二配置参数确定。其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本。或者,所述接收模块,用于接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述第一预设阈值。
作为一种可能的实现方式,所述至少一个第一上行传输机会中的一个第一上行传输机 会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻;或者,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻、且频域相同。
本申请实施例所涉及的第一资源和第二资源可以为预设给终端设备的,也可以为网络设备通过高层信令或物理层信令配置给终端设备的。以高层信令为例,所述处理模块,具体用于通过所述接收模块接收来自所述网络设备的高层信令,所述高层信令指示所述第一资源和所述第二资源。所述高层信令包括:第一信息域和第二信息域。
所述第一信息域包括第一信息子域和/或第二信息子域,所述第一信息子域指示所述第一资源的时频信息,所述第二信息子域指示所述第一资源对应的传输参数。其中,所述第一资源的传输参数包括下述至少一项:所述X、所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本、相邻两个第一上行传输机会的时间间隔。
所述第二信息域包括第三信息子域和/或第四信息子域。所述第三信息子域指示所述第二资源的时频信息,所述第四信息子域指示所述第二资源对应的传输参数。其中,所述第二资源的传输参数包括下述至少一项:所述Y、所述第二上行传输机会中各第二上行传输资源允许传输的上行数据的冗余版本、相邻两个第二上行传输机会的时间间隔。
作为一种可能的实现方式,若所述终端设备配置有多组资源,其中,每组资源包括:一个第一资源、与该第一资源对应的第二资源。则所述第一信息子域和/或所述第二信息子域还指示所述第一资源所在组的标识;所述第三信息子域和/或所述第四信息子域还指示所述第二资源所在组的标识。
作为一种可能的实现方式,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
作为一种可能的实现方式,若所述高层信令的资源配置信息元素不包括无线资源控制配置上行授权参数;所述接收模块,还用于接收来自所述网络设备的控制信息,所述控制信息用于激活或去激活资源。
在该实现方式下,可选的,所述控制信息还指示激活或去激活的资源的类型;和/或,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
在该实现方式下,可选的,若所述终端设备配置有多组资源,每组授权资源包括:一个第一资源、与该第一资源对应的第二资源。则所述控制信息还指示激活或去激活的资源所在组的标识。
上述第三方面和第三方面的各可能的实现方式所提供的终端设备,其有益效果可以参见上述第一方面和第一方面的各可能的实现方式所带来的有益效果,在此不加赘述。
第四方面,本申请实施例提供一种网络设备。该网络设备包括:处理模块。在一些实施例中,网络设备还可以包括发送模块。
处理模块,用于获取为终端设备配置的第一资源和第二资源。其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有第二上行传输机会。所述第一上行传输机会包括X个重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源。所述X和所述Y均为大于或等于1的整数,所述N为大于或等于1的整 数。
在该场景下,所述处理模块,在所述第二上行传输机会之前的最近N个第一上行传输机会发送受阻时,在所述第二上行传输机会上检测来自所述终端设备的上行数据。
作为一种可能的实现方式,所述处理模块,还用于在所述第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻时,确定所述第二上行传输机会不能用于发送上行数据。示例性的,所述N为预设的。或者,所述发送模块,用于向所述终端设备发送第二指示信息,所述第二指示信息指示所述N。
作为一种可能的实现方式,上述所说的所述第一上行传输机会发送受阻例如可以包括:所述第一上行传输机会中的X个重复的第一上行传输资源均发送受阻;或者,所述第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值,所述第一预设阈值小于或等于所述X。示例性的,所述第一上行传输资源发送受阻可以包括:所述第一上行传输资源中有至少一个符号为非上行符号;或者,所述终端设备使用所述第一上行传输资源中的至少一个非上行符号发送上行数据。作为一种可能的实现方式,所述第一预设阈值为预设的。或者,所述第一预设阈值根据所述第一资源的第一配置参数和/或第二配置参数确定。其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本。或者,所述发送模块,用于向所述终端设备发送第一指示信息,所述第一指示信息指示所述第一预设阈值。
作为一种可能的实现方式,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻;或者,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻、且频域相同。
本申请实施例所涉及的第一资源和第二资源可以为预设给终端设备的,也可以为网络设备通过高层信令或物理层信令配置给终端设备的。以高层信令为例,所述发送模块,用于向所述终端设备发送高层信令,所述高层信令指示所述第一资源和所述第二资源。所述高层信令包括:第一信息域和第二信息域。
所述第一信息域包括第一信息子域和/或第二信息子域,所述第一信息子域指示所述第一资源的时频信息,所述第二信息子域指示所述第一资源对应的传输参数。其中,所述第一资源的传输参数包括下述至少一项:所述X、所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本、相邻两个第一上行传输机会的时间间隔。
所述第二信息域包括第三信息子域和/或第四信息子域。所述第三信息子域指示所述第二资源的时频信息,所述第四信息子域指示所述第二资源对应的传输参数。其中,所述第二资源的传输参数包括下述至少一项:所述Y、所述第二上行传输机会中各第二上行传输资源允许传输的上行数据的冗余版本、相邻两个第二上行传输机会的时间间隔。
作为一种可能的实现方式,若所述终端设备配置有多组资源,其中,每组资源包括:一个第一资源、与该第一资源对应的第二资源。则所述第一信息子域和/或所述第二信息子域还指示所述第一资源所在组的标识;所述第三信息子域和/或所述第四信息子域还指示所述第二资源所在组的标识。
作为一种可能的实现方式,所述第一信息子域和/或所述第二信息子域还指示所述第一 资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
作为一种可能的实现方式,若所述高层信令的资源配置信息元素不包括无线资源控制配置上行授权参数;所述发送模块,还用于向所述终端设备发送控制信息,所述控制信息用于激活或去激活资源。
在该实现方式下,可选的,所述控制信息还指示激活或去激活的资源的类型;和/或,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
在该实现方式下,可选的,若所述终端设备配置有多组资源,每组授权资源包括:一个第一资源、与该第一资源对应的第二资源。则所述控制信息还指示激活或去激活的资源所在组的标识。
上述第四方面和第四方面的各可能的实现方式所提供的网络设备,其有益效果可以参见上述第一方面和第一方面的各可能的实现方式所带来的有益效果,在此不加赘述。
第五方面,本申请实施例提供一种终端设备,所述终端设备包括:处理器、存储器、接收器、发送器;所述接收器和所述发送器均耦合至所述处理器,所述处理器控制所述接收器的接收动作,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述终端设备执行如第一方面或第一方面的各可能的实现方式所提供的方法。
第六方面,本申请实施例提供一种网络设备,所述网络设备包括:处理器、存储器;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述网络设备执行如第二方面或第二方面的各可能的实现方式所提供的方法。
第七方面,本申请实施例提供一种通信装置,包括用于执行以上第一方面或第一方面各可能的实现方式所提供的方法的单元、模块或电路。该通信装置可以为终端设备,也可以为应用于终端设备的一个模块,例如,可以为应用于终端设备的芯片。
第八方面,本申请实施例提供一种通信装置,包括用于执行以上第二方面或第二方面各可能的实现方式所提供的方法的单元、模块或电路。该通信装置可以为网络设备,也可以为应用于网络设备的一个模块,例如,可以为应用于网络设备的芯片。
第九方面,本申请实施例提供一种芯片,所述芯片上存储有计算机程序,在所述计算机程序被所述芯片执行时,实现如第一方面或第一方面的各可能的实现方式所提供的方法。
第十方面,本申请实施例提供一种芯片,所述芯片上存储有计算机程序,在所述计算机程序被所述芯片执行时,实现如第二方面或第二方面的各可能的实现方式所提供的方法。
第十一方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各种可能的实现方式中的方法。
第十二方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的各可能的实现方式所提供的方法。
第十三方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各种可能的实现方式中的方法。
第十四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质 中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的各可能的实现方式所提供的方法。
本申请实施例提供的数据传输方法和设备,通过为终端设备配置作为主资源的第一资源和作为备用资源的第二资源,从而在作为主资源的第一资源遇到上述PUSCH发送受阻的场景时,终端设备可以使用作为备用资源的第二资源发送上行数据,以确保上行数据的时延。相应地,如果第一资源未遇到上述PUSCH发送受阻的场景,则网络设备可以将第二资源调度给其他终端设备使用。在通过该方式传输URLLC业务的上行数据时,可以在不影响网络设备的调度灵活性、检测的复杂度和上行资源开销的情况下,减小传输URLLC业务的上行数据的时延。
附图说明
图1是本申请实施例应用的移动通信系统的架构示意图;
图2为一种CG资源的示意图;
图3为一种URLLC业务的传输示意图;
图4为本申请实施例提供的一种数据传输方法的流程示意图;
图5为本申请实施例提供的一种资源分布示意图;
图6为本申请实施例提供的另一种资源分布示意图;
图7为本申请实施例提供的又一种资源分布示意图;
图8为本申请实施例提供的又一种资源分布示意图;
图9为本申请实施例提供的一种数据传输示意图;
图10为本申请实施例提供的另一种数据传输示意图;
图11为本申请实施例提供的一种终端设备的结构示意图;
图12为本申请实施例提供的一种网络设备的结构示意图;
图13为本申请实施例提供的另一种终端设备的结构示意图;
图14为本申请实施例提供的另一种网络设备的结构示意图。
具体实施方式
图1是本申请实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统可以包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备120相连,无线接入网设备120通过无线或有线方式与核心网设备110连接。核心网设备110与无线接入网设备120可以是独立的不同的物理设备,也可以是将核心网设备110的功能与无线接入网设备120的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备110的功能和部分的无线接入网设备120的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该移动通信系统中还可以包括其它网络设备,例如还可以包括无线中继设备和无线回传设备等,在图1中未画出。本申请实施例对该移动通信系统中包括的核心网设备110、无线接入网设备120和终端设备的数量不做限定。
无线接入网设备120是无线网络中的设备,例如将终端设备接入到无线网络的无线接 入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:5G移动通信系统或新一代无线(new radio,NR)通信系统中的基站gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备等。本申请实施例对无线接入网设备120所采用的具体技术和具体设备形态不做限定。在本申请实施例中,无线接入网设备120简称网络设备,如果无特殊说明,在本申请实施例中,网络设备均指无线接入网设备120。另外,在本申请实施例中,术语5G和NR可以等同。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
无线接入网设备120和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请实施例对无线接入网设备120和终端设备的应用场景不做限定。
无线接入网设备120和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备120和终端设备之间可以通过6吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请实施例对无线接入网设备120和终端设备之间所使用的频谱资源不做限定。
以上述图1所示的移动通信系统为NR移动通信系统(简称:NR系统)为例,在NR系统中,终端设备可以通过如下三种方式向网络设备发送物理上行共享信道(physical uplink shared channel,PUSCH):
方式一、使用网络设备为终端设备动态调度的资源发送PUSCH。即终端设备每接收到网络设备的一次上行调度,可以发送一次PUSCH。
方式二、使用网络设备半静态配置的配置授权(configured grant,CG)资源发送PUSCH。即,终端设备在有PUSCH需要发送时,无需再等待网络设备的动态调度,可以直接使用该CG资源发送PUSCH。
应理解,PUSCH主要承载的是上行数据,因此,终端设备向网络设备发送PUSCH也 可以称为终端设备向网络设备发送上行数据。在本申请实施例中,PUSCH和上行数据等同,对此不进行区分。
目前,终端设备可以使用上述CG资源进行上行数据的初传。若网络设备未正确接收到终端设备初传的上行数据,则网络设备后续可以动态的调度重传该上行数据的资源(简称:重传调度),以使终端设备使用动态调度的资源重传该上行数据(即采用方式一进行上行数据的重传)。若终端设备在初传该上行数据后,未接收到网络设备的重传调度,则终端设备确定网络设备正确接收到初传的上行数据。
下面对CG资源进行说明和介绍。在NR系统中,CG资源为非动态调度的资源,可以包括如下两种类型:
第一类型的CG资源(即configured grant Type 1):网络设备通过高层信令无线资源控制(radio resource control,RRC)信令为终端设备半静态的配置第一类型的CG资源的时频信息,以及,第一类型的CG资源对应的传输参数。该第一类型的CG资源在配置给终端设备后,终端设备在有上行数据需要发送时,可以直接使用该第一类型的CG资源发送上行数据,无需等待网络设备的动态调度。在一些实施例中,第一类型的CG资源也可以称为配置的上行链路授权(即configured uplink grant)、或者,免授权(grant free)资源等。
第二类型的CG资源(即configured grant Type 2):网络设备通过RRC信令为终端设备半静态的配置第二类型的CG资源对应的传输参数。该第二类型的CG资源在配置给终端设备后,若网络设备后续通过物理层的下行控制信息(downlink control information,DCI)激活该第二类型的CG资源,以及,配置该第二类型的CG资源的时频信息,则终端设备在有上行数据需要发送时,可以直接使用该第二类型的CG资源发送上行数据,无需等待网络设备的动态调度。若网络设备通过DCI去激活该第二类型的CG资源,或者,网络设备未激活该第二类型的CG资源,则终端设备不能使用该第二类型的CG资源发送上行数据。在一些实施例中,该第二类型的CG资源也可以称为基于L1信令的配置上行链路授权(即configured uplink grant based on L1signalling),或者,上行半静态调度(semi-persistent scheduling,SPS)资源等。
需要说明的是,网络设备可以通过RRC信令的信息元素(information element,IE)资源配置(即configuredGrantConfig)中是否包括rrc-ConfiguredUplinkGrant参数,来表示该高层信令所配置的CG资源是哪种类型的CG资源。当RRC信令的IE configuredGrantConfig中包括rrc-ConfiguredUplinkGrant参数时,说明该RRC信令配置的CG资源为第一类型的CG资源。当RRC信令的IE configuredGrantConfig中不包括rrc-ConfiguredUplinkGrant参数时,说明该RRC信令配置的CG资源为第二类型的CG资源。
图2为一种CG资源的示意图,如图2所示,不管是第一类型的CG资源还是第二类型的CG资源,均配置有至少一个上行传输机会,每个上行传输机会可以包括至少一个重复的上行传输资源,每个上行传输资源可以用于传输一次该上行数据。该上行传输资源在时域上可以占用至少一个符号。也就是说,一个上行传输机会包括多少个上行传输资源,就能重复传输该上行数据多少次。图2是以CG资源配置有2个上行传输机会,每个上行传输机会包括4个重复的上行传输资源为例的示意图。即,该图2所示的一个上行传输机会可以重复传输一个上行数据4次。应理解,这里所说的上行传输机会也可以称为候选上行传输机会,即,终端设备可以使用该上行传输机会发送上行数据。
需要说明的是,一个上行传输机会所包括的上行传输资源可以是在时间上连续的上行传输资源,也可以是在连续的时间单元上重复的传输资源。以NR系统为例,这里所说的时间单元例如可以为NR系统中的时隙(slot)。以图2所示的CG资源的一个上行传输机会为例,若该上行传输机会所包括的上行传输资源是在连续的slot上重复的传输资源,则该上行传输机会的第1个上行传输资源例如可以位于slot n,第2个上行传输资源例如可以位于slot n+1,第3个上行传输资源例如可以位于slot n+2,第4个上行传输资源例如可以位于slot n+3,各上行传输资源在自己所在的slot中的位置相同(例如均为slot中的第2和第3个符号上)。若该上行传输机会所包括的上行传输资源是在时间上连续的上行传输资源,以slot为例,则该上行传输机会的第1个上行传输资源例如可以位于slot n的第2和第3个符号上,第2个上行传输资源例如可以位于slot n的第4和第5个符号上,第3个上行传输资源例如可以位于slot n的第6和第7个符号上,第4个上行传输资源例如可以位于slot n的第8和第9个符号上。
下面结合图2所示的CG资源,通过表1对网络设备如何通过高层信令为终端设备配置第一类型的CG资源的时频信息,以及,第一类型的CG资源对应的传输参数进行说明:
表1
Figure PCTCN2020099666-appb-000001
其中,周期(即Periodicity)、重复次数(即repK)、上行传输机会中各上行传输资源允许传输的上行数据的冗余版本(即repK-RV)为传输参数,时域偏移量、时域资源分配、频域资源分配三者共同指示了CG资源的时频信息。应理解,上述将周期(即Periodicity)、重复次数(即repK)、上行传输机会中各上行传输资源允许传输的上行数据的冗余版本(即repK-RV)称为传输参数仅是便于后续描述,并非是对该三个参数的限定。
Periodicity:简称P,表示CG资源中相邻的两个传输机会的时间间隔,2个符号≤P≤5120个时间单元。
repK:简称K,表示每个上行传输机会包含的重复的上行传输资源的个数。通常的,K的取值包括{1,2,4,8}。当P小于等于1个时间单元时,K取值为1。
上行传输机会中各上行传输资源允许传输的上行数据的冗余版本(redundancy version,RV):简称repK-RV,表示K个重复的上行传输资源允许传输的RV版本图案。例如,针对K个重复的上行传输资源中第q个上行传输资源允许传输的RV版本图案为:RV序列中的第(mod(n-1,4)+1)个RV版本图案,其中q=1,2,…,K。
repK-RV有4种情况:不配置,配置为{0,2,3,1},配置为{0,3,0,3},配置为{0,0,0,0}。应理解,当K等于1时,不配置repK-RV,即,该repK-RV的取值为0。在该场景下,该CG资源的上行传输机会中的上行传输资源允许传输的RV版本图案为RV序列中第0个 RV版本图案。示例性的,以K等于4为例,repK-RV配置为{0,2,3,1},若终端设备使用该第一类型的CG资源的一个上行传输机会初传上行数据,则终端设备可以在该上行传输机会中的第一个上行传输资源上传输该上行数据的第0个RV版本图案,在该上行传输机会中的第二个上行传输资源上传输该上行数据的第2个RV版本图案,在该上行传输机会中的第三个上行传输资源上传输该上行数据的第3个RV版本图案,在该上行传输机会中的第四个上行传输资源上传输该上行数据的第1个RV版本图案。
时域偏移量(即timeDomainOffset):表示在时域上,CG资源相对于“编号为0”的系统帧的偏移量。
时域资源分配(即timeDomainAllocation):表示时域上PUSCH的映射参数,例如,映射PUSCH的起始符号和时间长度。
频域资源分配(即frequencyDomainAllocation):表示映射PUSCH的频域资源。
应理解,上述表1仅示出了RRC信令中与CG资源相关的参数,本申请实施例对RRC信令中所包括的其他参数不再赘述。
下面结合图2所示的CG资源,通过表2对网络设备如何通过高层信令为终端设备配置第二类型的CG资源对应的传输参数,通过激活该第二类型的CG资源的DCI为终端设备配置该第二类型的CG资源的时频信息进行说明:
表2
Figure PCTCN2020099666-appb-000002
其中,周期(即Periodicity)、重复次数(即repK)、上行传输机会中各上行传输资源允许传输的上行数据的冗余版本(即repK-RV)为传输参数,时域资源分配、频域资源分配两者共同指示了CG资源的时频信息。关于P、repK、repK-RV可以参见前述描述,在此不再赘述。
时域资源分配(即time domain resource assignment):表示时域上PUSCH的映射参数,例如,映射PUSCH的起始符号和时间长度。
频域资源分配(即frequency domain resource assignment):表示映射PUSCH的频域资源。
应理解,上述表2仅示出了RRC信令中和DCI中与CG资源相关的参数,本申请实施例对RRC信令中和DCI中所包括的其他参数不再赘述。
通过上述表1和表2可以看出,第一类型的CG资源由高层信令(即RRC信令)配置,第二类型的CG资源由高层信令(即RRC信令)和激活该CG资源的DCI(例如DCI 0_0/DCI0_1)共同配置。
下述申请文件均以CG资源为例进行说明,该CG资源可以是第一类型的CG资源, 也可以是第二类型的CG资源,本申请实施例对此不进行区分。
由于上述所描述的CG资源为网络设备配置给终端设备的,当K的取值大于1时,有可能会与终端设备所在的小区的高层配置存在冲突,导致PUSCH发送受阻。例如,可以包括如下几种PUSCH发送受阻的场景:
第一种场景:高层信令通过CG资源配置给终端设备发送PUSCH的符号(简称:PUSCH符号A),被时间单元配置相关的高层信令(例如tdd-UL-DL-ConfigurationCommon或者tdd-UL-DL-ConfigurationDedicated)配置为下行符号。
在该场景下,该PUSCH符号A所在的上行传输资源不能用于发送PUSCH(或者该PUSCH符号A不能用于发送PUSCH)。此时,该PUSCH符号A所在的上行传输资源可以视为发送受阻。
应理解,对于第一类型的CG资源来说,第一类型的CG资源的每个上行传输机会中的所有的上行传输资源中包含的符号都可以称为PUSCH符号A。对于第二类型的CG资源,除了接收到激活该第二类型的CG资源的DCI(例如DCI format0_0或0_1)之后的第一个上行传输机会之外,第二类型的CG资源的其它传输机会中的所有的上行传输资源中包含的符号都可以称为PUSCH符号A。
第二种场景:PUSCH符号A被时间单元配置相关的高层信令半静态配置为灵活的(flexible)符号,或者没有高层参数进行上下行的半静态配置。后续,网络设备通过DCI(例如DCI format 1_0/1_1/0_1)指示该PUSCH符号A为下行符号。该下行信号可以用于发送物理下行共享信道(physical downlink shared channel,PDSCH)或信道状态信息(channel state information,CSI)-参考信号(reference signal,RS)。
在该场景下,该PUSCH符号A所在的上行传输资源不能用于发送PUSCH(或者该PUSCH符号A不能用于发送PUSCH),除非该PUSCH符号A是可能来不及取消发送PUSCH的符号。此时,该PUSCH符号A所在的上行传输资源可以视为发送受阻。应理解,这里所谓可能来不及取消发送PUSCH的符号是指上述DCI的最后一个符号之后的N2个符号。该N2可以根据终端设备的PUSCH定时能力(timing capability)对应的PUSCH准备时间确定。
示例性的,以时间单元为NR系统的slot为例,终端设备在slot n的第3个符号上接收到DCI,PUSCH符号A为slot n的第5个符号,终端设备在slot n的第6个符号完成对DCI的解析,获知DCI指示该PUSCH符号A为下行符号。此时,若终端设备已经使用PUSCH符号A完成上行数据的发送,该PUSCH符号A即为来不及取消发送PUSCH的符号。终端设备使用PUSCH符号A所发送的上行数据会被网络设备在该符号上所发送的下行数据干扰,导致该上行数据发送失败。该场景下,该PUSCH符号A所在的上行传输资源可以视为发送受阻。
第三种场景:PUSCH符号A被时间单元配置相关的高层信令半静态配置为灵活的(flexible)符号,或者没有高层参数进行上下行的半静态配置。同时,终端设备被配置要检测用于进行时间单元格式指示的DCI、且检测到DCI。其中,DCI指示PUSCH符号A为下行符号或flexible符号。以时间单元为slot为例,则该DCI例如可以为用于进行时隙格式指示(slot format indicator,SFI)的DCI,例如DCI format 2_0。
在该场景下,该PUSCH符号A所在的上行传输资源不能用于发送PUSCH(或者该 PUSCH符号A不能用于发送PUSCH),除非该PUSCH符号A是可能来不及取消发送PUSCH的符号。此时,该PUSCH符号A所在的上行传输资源可以视为发送受阻。
关于来不及取消发送PUSCH的符号的描述可以参见前述第二种场景中的描述。
第四种场景:PUSCH符号A被时间单元配置相关的高层信令半静态配置为灵活的(flexible)符号,或者没有高层参数进行上下行的半静态配置。同时,终端设备被配置要监听用于进行时间单元格式指示的DCI、但是未监听到该DCI。
在该场景下,该PUSCH符号A所在的上行传输资源不能用于发送PUSCH(或者该PUSCH符号A不能用于发送PUSCH),除非该PUSCH符号A是可能来不及取消发送PUSCH的符号。此时,该PUSCH符号A所在的上行传输资源可以视为发送受阻。
关于来不及取消发送PUSCH的符号的描述可以参见前述第二种场景中的描述。
第五种场景:对于第二类型的CG资源,终端设备接收到激活该第二类型的CG资源的DCI(例如DCI format0_0或0_1)之后的第一个上行传输机会的上行传输资源中包含的符号(简称:PUSCH符号B),被时间单元配置相关的高层信令配置为下行符号。
在该场景下,该PUSCH符号B所在的上行传输资源不能用于发送PUSCH(或者说该PUSCH符号B不能用于发送PUSCH),此时,该PUSCH符号B所在的上行传输资源可以视为发送受阻。
超可靠低延迟通信(ultra-reliable and low latency communications,URLLC)业务为NR系统中的一个重要的业务,传输时要求非常高的可靠性和非常短的时延。终端设备在使用CG资源发送URLLC业务的上行数据时,若遇到上述所示的PUSCH发送受阻的场景,会导致URLLC业务的传输时延增大,可能出现无法满足URLLC业务的时延需求的情况。
图3为一种URLLC业务的传输示意图。如图3所示,若URLLC业务的上行数据到达的时刻之后的第一个上行传输机会未出现发送受阻的情况,则终端设备可以直接使用该第一个上行传输机会发送URLLC业务的上行数据。在该场景下,URLLC业务的时延是时延1。若URLLC业务的上行数据到达的时刻之后的第一个上行传输机会出现发送受阻的情况,但第二个上行传输机会未出现发送受阻。此时,终端设备使用该第二个上行传输机会发送URLLC业务的上行数据,会使URLLC业务的时延增大至时延2。若该时延2超出URLLC业务的最大时延需求,则该次上行数据的传输无法满足URLLC业务的时延需求。关于上行传输机会发送受阻的介绍可以参见后续描述。
考虑到URLLC业务的时延需求,传统技术中提出如下两种解决方案:
第一种方案:网络设备通过调度尽量避免上述的PUSCH发送受阻的场景出现,但是该方案会影响网络设备调度的灵活性。
第二种方案:网络设备为终端设备配置多个CG资源。
但是,当有多个CG资源都没有出现PUSCH发送受阻的场景时,因网络设备不确定终端设备会使用哪个CG资源的上行传输机会发送上行数据,因此,网络设备需要在该多个CG资源上检测来自终端设备的上行数据,增加了网络设备检测的复杂度。另外,因上行资源有限,采用为终端设备配置多个CG资源的方案会导致上行资源的开销较大。当终端设备的数量较多时,可能会因能够动态调度的上行资源过少,而阻塞动态调度的PUSCH发送。
故,如何在不影响网络设备的调度灵活性、检测的复杂度和上行资源开销的情况下, 减小传输URLLC业务的上行数据的时延是一个亟待解决的问题。
考虑到上述问题,本申请实施例提供了一种数据传输方法,通过为终端设备配置作为主资源的第一资源和作为备用资源的第二资源,从而在作为主资源的第一资源遇到上述PUSCH发送受阻的场景时,终端设备可以使用作为备用资源的第二资源发送上行数据,以确保上行数据的时延。相应地,如果第一资源未遇到上述PUSCH发送受阻的场景,则网络设备可以将第二资源调度给其他终端设备使用。在通过该方式传输URLLC业务的上行数据时,可以在不影响网络设备的调度灵活性、检测的复杂度和上行资源开销的情况下,减小传输URLLC业务的上行数据的时延。应理解,本申请实施例所提供的方法包括但不限于传输URLLC业务的上行数据的场景,可以适用于任意发送上行数据的场景,对此不再赘述。另外,本申请实施例的方法包括但不限于初次传输上行数据的场景,也可以适用于重传上行数据的场景。
下面通过一些实施例对本申请的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不加赘述。
图4为本申请实施例提供的一种数据传输方法的流程示意图。如图4所示,该方法可以包括:
S101、终端设备获取第一资源和第二资源;其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有第二上行传输机会,所述第一上行传输机会包括X个重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源,所述X和所述Y均为大于1的整数。
S102、若所述第二上行传输机会之前的最近N个第一上行传输机会发送受阻,则所述终端设备使用所述第二上行传输机会向网络设备发送上行数据,所述N为大于或等于1的整数。
在本实施例中,终端设备配置有配置作为主资源的第一资源和作为备用资源的第二资源。该第一资源和第二资源可以是前述所说的半静态配置的CG资源(即非动态调度的资源),也可以是网络设备动态为终端设备调度的资源。例如,所述第一资源和所述第二资源均为第一类型的CG资源,或者,所述第一资源为第一类型的CG资源、所述第二资源为第二类型的CG资源,或者,所述第一资源为第一类型的CG资源、所述第二资源为动态调度的资源,或者,所述第一资源和所述第二资源均为第二类型的CG资源,或者,所述第一资源为第二类型的CG资源、所述第二资源为第一类型的CG资源,或者,所述第一资源为第二类型的CG资源、所述第二资源为动态调度的资源,或者,所述第一资源和所述第二资源均为动态调度的资源,或者,所述第一资源为动态调度的资源、所述第二资源为第一类型的CG资源,或者,所述第一资源为动态调度的资源、所述第二资源为第二类型的CG资源等。
应理解,上述第二资源可以配置有至少一个第二上行传输机会,该至少一个第二上行传输机会可以周期性的出现。以第一资源和第二资源均为CG为例,则在示例下,第一资源配置的至少一个第一上行传输机会的周期P,与第二资源配置的至少一个第二上行传输机会的周期P可以相同,也可以不同。即,第一资源配置的至少一个第一上行传输机会与第二资源配置的至少一个第二上行传输机会出现的频率相同,也可以不同。相应地,一个第一上行传输机会包括的重复的第一上行传输资源的数量X,与一个第二上行传输机会包 括的重复的第二上行传输资源的数量Y可以相等,也可以不相等。
下面,以第一资源配置的第一上行传输机会包括4个重复的第一上行传输资源、以第二资源配置的第二上行传输机会包括3个重复的第二上行传输资源为例,对上述第一资源和第二资源在时域和频域上的关系进行示例说明:
图5为本申请实施例提供的一种资源分布示意图,图6为本申请实施例提供的另一种资源分布示意图。第一资源配置的第一上行传输机会与第二资源配置的第二上行传输机会在时域上的关系可以如图5和图6所示,即,至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻。在该示例下,第一资源配置的第一上行传输机会与第二资源配置的第二上行传输机会在频域上可以位于相同的频段,即频域相同(例如图6所示),也可以位于不同的频段,即频域不同(例如图5所示)。
图7为本申请实施例提供的又一种资源分布示意图,图8为本申请实施例提供的又一种资源分布示意图。第一资源配置的第一上行传输机会与第二资源配置的第二上行传输机会在时域上的关系可以如图7和图8所示,即,至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会不相邻。在该示例下,第一资源配置的第一上行传输机会与第二资源配置的第二上行传输机会在频域上可以位于相同的频段,即频域相同(例如图8所示),也可以位于不同的频段,即频域不同(例如图7所示)。
图9为本申请实施例提供的一种数据传输示意图。如图9所示,为了便于对本申请实施例的描述,本申请实施例以第二资源配置的一个第二上行传输机会为例进行说明,该第二上行传输机会例如可以为上行数据到达终端设备的时刻之后的第一个第二上行传输机会,即图9中所标记的第二上行传输机会。在本实施例中,当终端设备有上行数据需要发送时,终端设备可以判断该第二上行传输机会之前的最近N个第一上行传输机会是否发送受阻。若该N个第一上行传输机会发送受阻,说明作为主资源的第一资源会因为发送受阻影响上行数据的发送,因此,终端设备可以直接使用作为备用资源的第二资源的该第二上行传输机会发送上行数据。即,在主资源发送受阻时,终端设备可以尽快的使用备用资源将上行数据发送出去。通过该方式,可以保证上行数据的传输时延,避免因发送受阻导致上行数据传输时延较大的问题。
当第一资源配置的第一上行传输机会与第二资源配置的第二上行传输机会在时域上的关系可以如图5和图6所示时,即,至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻时,在作为主资源的第一资源发送受阻时,终端设备可以立刻使用第二资源配置的第二上行传输机会将上行数据发送出去,进一步缩短了上行数据的传输时延。
应理解,这里所说的最近N个第一上行传输机会是第一资源配置的至少一个第一上行传输机会中的部分第一上行传输机会,该N个第一上行传输机会可以为连续的N个第一上行传输机会。本实施例不限定上述N的取值。图9是以N为3为例的示意图。作为一种可能的实现方式,该N可以为预设的,例如,该N的取值可以为协议预定义的。或者,该N可以为网络设备通过指示信息发送给终端设备的。例如,网络设备向终端设备发送第二指示信息,该第二指示信息指示该N。相应地,终端设备接收该第二指示信息,并通过该第 二指示信息获取该N。可选的,该第二指示信息可以承载于高层信令或物理层信令中。或者说,所述高层信令或物理层信令指示该N。
若该第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻,说明作为主资源的第一资源可能不会因为发送受阻造成上行数据的发送延时过大,则终端设备确定第二上行传输机会不能用于发送上行数据。即,终端设备确定不使用第二资源。在该场景下,终端设备例如可以使用上行数据到达终端设备的时刻之后的第一个第一上行传输机会发送上行数据。
相应地,网络设备可以采用上述所说的方式判断第二资源的每个第二上行传输机会之前的最近N个第一上行传输机会是否发送受阻。若该N个第一上行传输机会发送受阻,则网络设备在该第二上行传输机会上检测是否有来自终端设备的上行数据。若该N个第一上行传输机会未发送受阻,则网络设备确定该第二上行传输机会不能用于发送上行数据。此时,网络设备可以继续在第一上行传输机会上检测是否有来自终端设备的上行数据。在该场景下,网络设备可以将第二资源暂时调度给其他终端设备使用。也就是说,在第一资源未因发送受阻影响上行数据发送时,第二资源可以被网络设备暂时调度给其他终端设备使用。通过这种方式,可以保证网络设备的调度灵活性,减少网络设备检测的复杂度,以及,降低上行资源的开销。
图10为本申请实施例提供的另一种数据传输示意图。如图10所示,本实施例以第二资源配置的两个第二上行传输机会(第二上行传输机会1和第二上行传输机会2)为例进行说明。假定N等于3。在本实施例中,当终端设备有上行数据需要发送时,终端设备通过上述方式判断得出第二上行传输机会1之前的最近N个第一上行传输机会发送受阻、且第二上行传输机会2之前的最近N个第一上行传输机会发送也受阻。则在该场景下,若第二上行传输机会1可以用于发送上行数据,则第二上行传输机会2不能用于发送上行数据。也就是说,在第二上行传输机会之前的最近N个第一上行传输机会发送受阻的情况下,还要观察该最近N个第一上行传输机会到该第二上行传输机会之间是否还有可用的第二上行传输机会。若有,则本次第二上行传输机会不能用于发送上行数据。若没有,则本次第二上行传输机会可以用于发送上行数据。
下面对如何界定一个第一上行传输机会发送受阻的方式进行详细说明,例如可以包括如下两种方式:
第一种方式:一个第一上行传输机会中的X个重复的第一上行传输资源均发送受阻时,确定该第一上行传输机会发送受阻。
当第一上行传输机会中的所有上行传输资源发送都受阻时,即该第一上行传输机会中的任何一个上行传输资源不能用于发送上行数据时,终端设备可以确定该第一上行传输机会发送受阻。反之,当一个第一上行传输机会中有至少一个第一上行传输资源发送不受阻时,即该第一上行传输机会中有至少一个上行传输资源可以用于发送上行数据时,终端设备可以确定该第一上行传输机会发送未受阻。
在本实施例中,一个第一上行传输资源发送受阻可以是该第一上行传输资源中有至少一个符号为非上行符号。例如,该至少一个符号被配置为下行符号或者flexible的符号,具体可以参见前述描述发送受阻的第一种场景、第二种场景、第三种场景和第五种场景。
或者,一个第一上行传输资源发送受阻可以是该第一上行传输资源中有至少一个符号 为来不及取消发送PUSCH的符号。即,终端设备使用该第一上行传输资源中的至少一个非上行符号发送上行数据,具体可以参见前述描述发送受阻的第二种场景和第三种场景。
需要说明的是,在本实施例中,对于前述描述发送受阻的第四场景(即,终端设备被配置要监听用于进行SFI的DCI、但是未监听到该DCI,而导致的上行传输资源发送受阻的场景),若终端设备基于该场景判断得到第二上行传输机会之前的最近N个第一上行传输机会发送受阻,也不会引起第二资源(即备用资源)的启用。即,终端设备也不会使用该第二上行传输机会发送上行数据,而是会使用后续发送未受阻的第一上行传输机会发送上行数据。这是因为网络设备无法获知终端设备没有监听到该DCI,因此,网络设备无法基于该场景判断得出第二上行传输机会之前的最近N个第一上行传输机会是否发送受阻的结论。因而,网络设备仍然会在第一资源上检测是否有来自终端设备的上行数据。所以,在该场景下,为了确保数据传输的可靠性,终端设备仍然使用第一资源发送上行数据。
第二种方式:一个第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值时,确定该第一上行传输机会发送受阻。其中,该第一预设阈值可以小于或等于一个第一上行传输机会所包括第一上行传输资源的数量X。关于第一上行传输资源发送受阻的判断方式可以参见第一种方式中的描述。
以第一预设阈值小于X为例,则当一个第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值时,确定该第一上行传输机会发送受阻。反之,则确定该第一上行传输机会发送未受阻。以第一预设阈值等于X为例,则当一个第一上行传输机会中发送受阻的第一上行传输资源的数量等于第一预设阈值时,确定该第一上行传输机会发送受阻。反之,则确定该第一上行传输机会发送未受阻。
本实施例不限定上述第一预设阈值的取值。作为一种可能的实现方式,该第一预设阈值可以为预设的,例如,该第一预设阈值的取值可以为协议预定义的。或者,该第一预设阈值可以为网络设备通过指示信息发送给终端设备的。例如,网络设备向终端设备发送第一指示信息,该第一指示信息指示该第一预设阈值。相应地,终端设备接收该第一指示信息,并通过该第一指示信息获取该第一预设阈值。可选的,该第一指示信息可以承载于高层信令或物理层信令中。或者说,所述高层信令或物理层信令指示该第一预设阈值。
作为另一种可能的实现方式,所述第一预设阈值可以根据所述第一资源的第一配置参数和/或第二配置参数确定;其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本。例如,该第一配置参数可以为前述所说的repK,第二配置参数例如可以为前述所说的repK-RV。
示例性的,第一预设阈值与repK和/或repK-RV的关系例如可以如下述表3所示:
表3
Figure PCTCN2020099666-appb-000003
通过上述任意一种方式,可以识别出一个第一上行传输机会是否受阻,进而当第二上行传输机会之前的最近N个第一上行传输机会发送受阻时,终端设备可以直接使用作为备用资源的第二资源的该第二上行传输机会发送上行数据,以尽快的使用备用资源将上行数据发送出去。通过该方式,可以保证上行数据的传输时延,避免因发送受阻导致上行数据传输时延较大的问题。
本申请实施例所涉及的第一资源和第二资源可以为预设给终端设备的,也可以为网络设备通过高层信令或物理层信令配置给终端设备的。例如,作为一种可能的实现方式,上述终端设备获取第一资源和第二资源可以为:网络设备向终端设备发送高层信令,其中,该高层信令指示该第一资源和该第二资源。相应地,终端设备通过接收该高层信令,获取该第一资源和第二资源。应理解,这里所说的高层信令例如可以为RRC信令。
下面以高层信令为例,假定第一资源和第二资源均为CG资源,对网络设备如何使用高层信令为终端设备配置第一资源和第二资源进行说明:
第一种情况:第一资源和第二资源均为第一类型的CG资源。
在示例下,高层信令可以包括第一信息域和第二信息域。其中,第一信息域与第一资源对应,第二信息域与第二资源对应。应理解,本申请实施例对高层信令中是否包括其他信息域或者参数不限定。
所述第一信息域包括第一信息子域和/或第二信息子域。其中,所述第一信息子域指示所述第一资源的时频信息。例如,第一信息子域可以包括如前述表1所示的时域偏移量(即timeDomainOffset)、时域资源分配(即timeDomainAllocation)、频域资源分配(即frequencyDomainAllocation)中至少一项参数,以通过该至少一项参数指示所述第一资源的时频信息。所述第二信息子域指示所述第一资源的传输参数,所述第一资源的传输参数可以包括下述至少一项:所述X、所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本(例如前述表1所示的repK-RV)、相邻两个第一上行传输机会的时间间隔(例如前述表1所示的周期P)。例如,第二信息子域可以通过包括该至少一项参数来指示所述第一资源的传输参数。应理解,对于第一信息域未指示的、且与配置第一资源有关的参数,可以在高层信令中的其他位置指示,或者,通过其他信令指示,或者,为预设值。
所述第二信息域包括第三信息子域和/或第四信息子域。其中,所述第三信息子域指示所述第二资源的时频信息。例如,第三信息子域可以包括如前述表1所示的时域偏移量(即timeDomainOffset)、时域资源分配(即timeDomainAllocation)、频域资源分配(即frequencyDomainAllocation)中至少一项参数,以通过该至少一项参数指示所述第二资源的时频信息。所述第四信息子域指示所述第二资源的传输参数,所述第二资源的传输参数包括下述至少一项:所述Y、所述第二上行传输机会中各第二上行传输资源允许传输的上行数据的冗余版本(即前述表1所示的repK-RV)、相邻两个第二上行传输机会的时间间隔(例如前述表1所示的周期P)。例如,第四信息子域可以通过包括该至少一项参数来指示所述第二资源的传输参数。应理解,对于第二信息域未指示的、且与配置第二资源有关的参数,可以在高层信令中的其他位置指示,或者,通过其他信令指示,或者,为预设值。
作为一种可能的实现方式,上述第一信息子域、第二信息子域、第三信息子域和第四信息子域中的任一信息子域在高层信令中可以打包成一个IE。当然,本申请实施例对IE 的名称不进行限定。例如,这些IE位于高层信令的IE ConfiguredGrantConfig中。也可以说,第一信息域和第二信息域位于高层信令的IE ConfiguredGrantConfig中。
作为一种可能的实现方式,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。该第一资源的类型和第二资源的类型用于区分该信息子域对应的是哪个资源。例如,可以通过在上述信息子域中携带资源类型参数,来指示资源的类型。例如,类型参数取值为1时,指示该资源为第一资源,类型参数取值为0时,指示该资源为第二资源。或者,类型参数取值为0时,指示该资源为第一资源,类型参数取值为1时,指示该资源为第二资源。
作为一种可能的实现方式,所述终端设备配置有多组资源,其中,每组资源包括一个第一资源,以及,与该第一资源对应的第二资源。在该场景下,所述第一信息子域和/或所述第二信息子域还指示所述第一资源所在组的标识;所述第三信息子域和/或所述第四信息子域还指示所述第二资源所在组的标识。例如,可以通过在上述信息子域中携带组标识。这里所说的组标识例如可以为组的ID、组的索引等。应理解,在使用上述信息子域指示属于同一组的第一资源和第二资源时,可以在其中一个资源对应的信息子域指示其所指示的资源的类型即可,从而可以通过组标识和该资源的类型,区分未指示资源类型的信息子域所指示的资源是什么资源。通过该方式,可以在实现区分两种资源的基础上,降低信令开销。
第二种情况:第一资源和第二资源均为第二类型的CG资源。
在示例下,高层信令可以包括第一信息域和第二信息域。其中,第一信息域与第一资源对应,第二信息域与第二资源对应。应理解,本申请实施例对高层信令中是否包括其他信息域或者参数不限定。
所述第一信息域包括第一信息子域和/或第二信息子域。关于第一信息子域和第二信息子域的描述可以参见前述第一种情况中的描述,在此不再赘述。对于第一信息域未指示的、且与配置第一资源有关的参数,可以在高层信令中的其他位置指示,或者,通过其他信令指示,或者,为预设值。
所述第二信息域包括第三信息子域和/或第四信息子域。关于第三信息子域和第四信息子域的描述可以参见前述第一种情况中的描述,在此不再赘述。应理解,对于第二信息域未指示的、且与配置第二资源有关的参数,可以在高层信令中的其他位置指示,或者,通过其他信令指示,或者,为预设值。
作为一种可能的实现方式,上述第一信息子域、第二信息子域、第三信息子域和第四信息子域中的任一信息子域在高层信令中可以打包成一个IE。当然,本申请实施例对IE的名称不进行限定。例如,这些IE位于高层信令的IE ConfiguredGrantConfig中。也可以说,第一信息域和第二信息域位于高层信令的IE ConfiguredGrantConfig中。
如前述所说,对于第二类型的CG来说,网络设备可以通过RRC信令的IE configuredGrantConfig中不包括rrc-ConfiguredUplinkGrant参数,来表示该高层信令所配置的CG资源是第二类型的CG资源。也就是说,在本申请实施例中,若第一资源和第二资源为第二类型的CG资源,则该高层信令通过在IE configuredGrantConfig中不包括rrc-ConfiguredUplinkGrant参数,来表示该高层信令所配置的CG资源是第二类型的CG资 源。
相应地,该第一资源和第二资源在配置给终端设备后,网络设备可以通过物理层的DCI激活或去激活该第一资源,以及,通过DCI激活或去激活第二资源。在一些实施例中,上述高层信令不携带上述第一信息子域和/或第三信息子域。即,本申请实施例的高层信令保持有现有的高层信令相同的方式,仅在高层信令中指示第一资源的传输参数和/或第二资源的传输参数。这样,当网络设备通过DCI激活或去激活某一资源时,通过该DC进一步指示该资源的时频信息。以激活第一资源为例,该DCI可以携带前述所说的第一信息子域来指示该第一资源。
作为一种可能的实现方式,上述DCI还可以单独指示激活或去激活的资源的类型,以使终端设备获知激活或去激活的资源是哪个资源。和/或,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。关于类型的描述可以参见前述第一种情况中的描述,在此不再赘述。
作为一种可能的实现方式,所述终端设备配置有多组资源,其中,每组资源包括一个第一资源,以及,与该第一资源对应的第二资源。在该场景下,所述控制信息还指示激活或去激活的资源所在组的标识。相应地,所述第一信息子域和/或所述第二信息子域还指示所述第一资源所在组的标识。所述第三信息子域和/或所述第四信息子域还指示所述第二资源所在组的标识。关于组的标识的描述可以参见前述第一种情况中的描述,在此不再赘述。应理解,在使用上控制信息指示激活或去激活的资源所在组的标识时,则可以仅通过控制信息,或者,仅通过指示该资源的信息子域中指示该资源的类型即可。通过该方式,可以在实现区分两种资源的基础上,降低信令开销。
应理解,上述所示的两种情况仅是一种示例,当第一资源为第一类型的CG资源、第二资源为第二类型的CG资源时,对于第一资源可以采用第一种情况所示的方式进行指示,对于第二资源可以采用第二种情况所示的方式指示。相应地,当第一资源为第二类型的CG资源、第二资源为第一类型的CG资源时,对于第一资源可以采用第二种情况所示的方式进行指示,对于第二资源可以采用第一种情况所示的方式指示,对此不再赘述。
通过上述方式,网络设备可以为终端设备配置作为主资源的第一资源和作为备用资源的第二资源,从而在作为主资源的第一资源遇到上述PUSCH发送受阻的场景时,终端设备可以使用作为备用资源的第二资源发送上行数据,以确保上行数据的时延。相应地,如果第一资源未遇到上述PUSCH发送受阻的场景,则网络设备可以将第二资源调度给其他终端设备使用。在通过该方式传输URLLC业务的上行数据时,可以在不影响网络设备的调度灵活性、检测的复杂度和上行资源开销的情况下,减小传输URLLC业务的上行数据的时延。
本申请实施例提供的数据传输方法,通过为终端设备配置作为主资源的第一资源和作为备用资源的第二资源,从而在作为主资源的第一资源遇到上述PUSCH发送受阻的场景时,终端设备可以使用作为备用资源的第二资源发送上行数据,以确保上行数据的时延。相应地,如果第一资源未遇到上述PUSCH发送受阻的场景,则网络设备可以将第二资源调度给其他终端设备使用。在通过该方式传输URLLC业务的上行数据时,可以在不影响网络设备的调度灵活性、检测的复杂度和上行资源开销的情况下,减小传输URLLC业务 的上行数据的时延。
图11为本申请实施例提供的一种终端设备的结构示意图。如图11所示,该终端设备包括:处理模块11和发送模块12。在一些实施例中,终端设备还可以包括接收模块13。其中,
处理模块11,用于获取第一资源和第二资源。其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有第二上行传输机会。所述第一上行传输机会包括X个重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源,所述X和所述Y均为大于或等于1的整数。
发送模块12,用于在所述第二上行传输机会之前的最近N个第一上行传输机会发送受阻时,使用所述第二上行传输机会向网络设备发送上行数据,所述N为大于或等于1的整数。示例性的,所述N为预设的。或者,所述接收模块13,用于接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述N。
作为一种可能的实现方式,所述处理模块11,还用于在所述第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻时,确定所述第二上行传输机会不能用于发送上行数据。
作为一种可能的实现方式,上述所说的所述第一上行传输机会发送受阻例如可以包括:所述第一上行传输机会中的X个重复的第一上行传输资源均发送受阻;或者,所述第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值,所述第一预设阈值小于或等于所述X。示例性的,所述第一上行传输资源发送受阻可以包括:所述第一上行传输资源中有至少一个符号为非上行符号;或者,所述终端设备使用所述第一上行传输资源中的至少一个非上行符号发送上行数据。作为一种可能的实现方式,所述第一预设阈值为预设的。或者,所述第一预设阈值根据所述第一资源的第一配置参数和/或第二配置参数确定。其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本。或者,所述接收模块13,用于接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述第一预设阈值。
作为一种可能的实现方式,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻;或者,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻、且频域相同。
本申请实施例所涉及的第一资源和第二资源可以为预设给终端设备的,也可以为网络设备通过高层信令或物理层信令配置给终端设备的。以高层信令为例,所述处理模块11,具体用于通过所述接收模块接收来自所述网络设备的高层信令,所述高层信令指示所述第一资源和所述第二资源。所述高层信令包括:第一信息域和第二信息域。
所述第一信息域包括第一信息子域和/或第二信息子域,所述第一信息子域指示所述第一资源的时频信息,所述第二信息子域指示所述第一资源对应的传输参数。其中,所述第一资源的传输参数包括下述至少一项:所述X、所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本、相邻两个第一上行传输机会的时间间隔。
所述第二信息域包括第三信息子域和/或第四信息子域。所述第三信息子域指示所述第 二资源的时频信息,所述第四信息子域指示所述第二资源对应的传输参数。其中,所述第二资源的传输参数包括下述至少一项:所述Y、所述第二上行传输机会中各第二上行传输资源允许传输的上行数据的冗余版本、相邻两个第二上行传输机会的时间间隔。
作为一种可能的实现方式,若所述终端设备配置有多组资源,其中,每组资源包括:一个第一资源、与该第一资源对应的第二资源。则所述第一信息子域和/或所述第二信息子域还指示所述第一资源所在组的标识;所述第三信息子域和/或所述第四信息子域还指示所述第二资源所在组的标识。
作为一种可能的实现方式,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
作为一种可能的实现方式,若所述高层信令的资源配置信息元素不包括无线资源控制配置上行授权参数;所述接收模块13,还用于接收来自所述网络设备的控制信息,所述控制信息用于激活或去激活资源。
在该实现方式下,可选的,所述控制信息还指示激活或去激活的资源的类型;和/或,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
在该实现方式下,可选的,若所述终端设备配置有多组资源,每组授权资源包括:一个第一资源、与该第一资源对应的第二资源。则所述控制信息还指示激活或去激活的资源所在组的标识。
本申请实施例提供的终端设备,可以执行上述方法实施例中终端设备的动作,其实现原理和技术效果类似,在此不再赘述。
图12为本申请实施例提供的一种网络设备的结构示意图。如图12所示,该网络设备包括:处理模块21。在一些实施例中,网络设备还可以包括发送模块22。
处理模块21,用于获取为终端设备配置的第一资源和第二资源。其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有第二上行传输机会。所述第一上行传输机会包括X个重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源。所述X和所述Y均为大于或等于1的整数,所述N为大于或等于1的整数。
在该场景下,所述处理模块21,在所述第二上行传输机会之前的最近N个第一上行传输机会发送受阻时,在所述第二上行传输机会上检测来自所述终端设备的上行数据。
作为一种可能的实现方式,所述处理模块21,还用于在所述第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻时,确定所述第二上行传输机会不能用于发送上行数据。示例性的,所述N为预设的。或者,所述发送模块22,用于向所述终端设备发送第二指示信息,所述第二指示信息指示所述N。
作为一种可能的实现方式,上述所说的所述第一上行传输机会发送受阻例如可以包括:所述第一上行传输机会中的X个重复的第一上行传输资源均发送受阻;或者,所述第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值,所述第一预设阈值小于或等于所述X。示例性的,所述第一上行传输资源发送受阻可以包括:所述第一上行传输资源中有至少一个符号为非上行符号;或者,所述终端设备使用所述第一上行 传输资源中的至少一个非上行符号发送上行数据。作为一种可能的实现方式,所述第一预设阈值为预设的。或者,所述第一预设阈值根据所述第一资源的第一配置参数和/或第二配置参数确定。其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本。或者,所述发送模块22,用于向所述终端设备发送第一指示信息,所述第一指示信息指示所述第一预设阈值。
作为一种可能的实现方式,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻;或者,所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻、且频域相同。
本申请实施例所涉及的第一资源和第二资源可以为预设给终端设备的,也可以为网络设备通过高层信令或物理层信令配置给终端设备的。以高层信令为例,所述发送模块22,用于向所述终端设备发送高层信令,所述高层信令指示所述第一资源和所述第二资源。所述高层信令包括:第一信息域和第二信息域。
所述第一信息域包括第一信息子域和/或第二信息子域,所述第一信息子域指示所述第一资源的时频信息,所述第二信息子域指示所述第一资源对应的传输参数。其中,所述第一资源的传输参数包括下述至少一项:所述X、所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本、相邻两个第一上行传输机会的时间间隔。
所述第二信息域包括第三信息子域和/或第四信息子域。所述第三信息子域指示所述第二资源的时频信息,所述第四信息子域指示所述第二资源对应的传输参数。其中,所述第二资源的传输参数包括下述至少一项:所述Y、所述第二上行传输机会中各第二上行传输资源允许传输的上行数据的冗余版本、相邻两个第二上行传输机会的时间间隔。
作为一种可能的实现方式,若所述终端设备配置有多组资源,其中,每组资源包括:一个第一资源、与该第一资源对应的第二资源。则所述第一信息子域和/或所述第二信息子域还指示所述第一资源所在组的标识;所述第三信息子域和/或所述第四信息子域还指示所述第二资源所在组的标识。
作为一种可能的实现方式,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
作为一种可能的实现方式,若所述高层信令的资源配置信息元素不包括无线资源控制配置上行授权参数;所述发送模块22,还用于向所述终端设备发送控制信息,所述控制信息用于激活或去激活资源。
在该实现方式下,可选的,所述控制信息还指示激活或去激活的资源的类型;和/或,所述第一信息子域和/或所述第二信息子域还指示所述第一资源的类型;和/或,所述第三信息子域和/或所述第四信息子域还指示所述第二资源的类型。
在该实现方式下,可选的,若所述终端设备配置有多组资源,每组授权资源包括:一个第一资源、与该第一资源对应的第二资源。则所述控制信息还指示激活或去激活的资源所在组的标识。
本申请实施例提供的网络设备,可以执行上述方法实施例中网络设备的动作,其实现 原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上接收模块实际实现时可以为接收器或通信接口、发送模块实际实现时可以为发送器或通信接口。而处理模块可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上处理模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图13为本申请实施例提供的另一种终端设备的结构示意图。如图13所示,该终端设备可以包括:处理器31(例如CPU)、存储器32、接收器33、发送器34;接收器33和发送器34均耦合至处理器31,处理器31控制接收器33的接收动作、处理器31控制发送器34的发送动作;存储器32可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器32中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的终端设备还可以包括:电源35、通信总线36以及通信端口37。接收器33和发送器34可以集成在终端设备的收发信机中,也可以为终端设备上独立的收发天线。通信总线36用于实现元件之间的通信连接。上述通信端口37用于实现终端设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器32用于存储计算机可执行程序代码,程序代码包括指令;当处理器31执行指令时,指令使终端设备执行上述方法实施例中终端设备的动作,其实现原理和技术效果类似,在此不再赘述。
图14为本申请实施例提供的另一种网络设备的结构示意图。如图14所示,该网络设备可以包括:处理器41(例如CPU)、存储器42;存储器42可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器42中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的网络设备还可以包括:电源43、通信总线44以及通信端口45。通信总线44用于实现元件之间的通信连接。上述通信端口45用于实现网络设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器42用于存储计算机可执行程序代码,程序代码包括指令;当处理器41执行指令时,指令使网络设备执行上述方法实施例中网络设备的动作,其实现原理和技术效果类似,在此不再赘述。
在本申请实施例图11-图14的设备中处理模块(或者处理器)、存储模块(或者存储器)和收发模块(收发器)之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。虽然图中仅仅示出了一个处理器,该设备可以包括多个处理器或者处理器包括多个处理模块。具体的,处理器可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。
存储器用于存储处理器执行的计算机指令。存储器可以是存储电路也可以是存储器。存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。存储器可以独立于处理器,也可以是处理器中的存储模块,在此不做限定。虽然图中仅仅示出了一个存储器,该设备也可以包括多个存储器或者存储器包括多个存储模块。
收发器用于实现处理器与其他模块或者网元的内容交互。具体的,收发器可以是该设备的通信接口,也可以是收发电路或者通信模块,还可以是收发信机。收发器还可以是处理器的通信接口或者收发电路。可选的,收发器可以是一个收发芯片。该收发器还可以包括发送模块和/或接收模块。在一种可能的实现方式中,该收发器可以包括至少一个通信接口。在另一种可能的实现方式中,该收发器也可以是以软件形式实现的模块。在本申请的各实施例中,处理器可以通过收发器与其他模块或者网元进行交互。例如:处理器通过该收发器获取或者接收来自其他网元的内容。若处理器与收发器是物理上分离的两个部件,处理器可以不经过收发器与该设备的其他模块进行内容交互。
一种可能的实现方式中,处理器、存储器以及收发器可以通过总线相互连接。总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为 比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的各实施例中,为了方面理解,进行了多种举例说明。然而,这些例子仅仅是一些举例,并不意味着是实现本申请的最佳实现方式。
在本申请的各实施例中,为了方便的描述,采用了请求消息,响应消息以及其他各种消息的名称。然而,这些消息仅仅是以举例方式说明需要携带的内容或者实现的功能,消息的具体名称并不对本申请的做出限定,例如:还可以是第一消息,第二消息,第三消息等。这些消息可以是具体的一些消息,可以是消息中的某些字段。这些消息还可以代表各种服务化操作。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (28)

  1. 一种数据传输方法,其特征在于,包括:
    终端设备获取第一资源和第二资源;其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有第二上行传输机会,所述第一上行传输机会包括X个重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源,所述X和所述Y均为大于或等于1的整数;
    若所述第二上行传输机会之前的最近N个第一上行传输机会发送受阻,则所述终端设备使用所述第二上行传输机会向网络设备发送上行数据,所述N为大于或等于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一上行传输机会发送受阻,包括:
    所述第一上行传输机会中的X个重复的第一上行传输资源均发送受阻;或者,
    所述第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值,所述第一预设阈值小于或等于所述X。
  3. 根据权利要求2所述的方法,其特征在于,所述第一上行传输资源发送受阻,包括:
    所述第一上行传输资源中有至少一个符号为非上行符号;或者,
    所述终端设备使用所述第一上行传输资源中的至少一个非上行符号发送上行数据。
  4. 根据权利要求2或3所述的方法,其特征在于:
    所述第一预设阈值为预设的;或者,
    所述第一预设阈值根据所述第一资源的第一配置参数和/或第二配置参数确定;其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本;或者,
    所述方法还包括:
    所述终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述第一预设阈值。
  5. 根据权利要求1-4任一项所述的方法,其特征在于:
    所述N为预设的;或者,
    所述方法还包括:
    所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述N。
  6. 根据权利要求1-5任一项所述的方法,其特征在于:
    所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻;或者,
    所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻、且频域相同。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    若所述第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻,则所述终端设备确定所述第二上行传输机会不能用于发送上行数据。
  8. 一种数据传输方法,其特征在于,包括:
    网络设备获取为终端设备配置的第一资源和第二资源;其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有第二上行传输机会,所述第一上行传输机会包括X个重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源,所述X和所述Y均为大于或等于1的整数;
    若所述第二上行传输机会之前的最近N个第一上行传输机会发送受阻,则所述网络设备在所述第二上行传输机会上检测来自所述终端设备的上行数据,所述N为大于或等于1的整数。
  9. 根据权利要求8所述的方法,其特征在于,所述第一上行传输机会发送受阻,包括:
    所述第一上行传输机会中的X个重复的第一上行传输资源均发送受阻;或者,
    所述第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值,所述第一预设阈值小于或等于所述X。
  10. 根据权利要求9所述的方法,其特征在于,所述第一上行传输资源发送受阻,包括:
    所述第一上行传输资源中有至少一个符号为非上行符号;或者,
    所述终端设备使用所述第一上行传输资源中的至少一个非上行符号发送上行数据。
  11. 根据权利要求9或10所述的方法,其特征在于:
    所述第一预设阈值为预设的;或者,
    所述第一预设阈值根据所述第一资源的第一配置参数和/或第二配置参数确定;其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本;或者,
    所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息指示所述第一预设阈值。
  12. 根据权利要求8-11任一项所述的方法,其特征在于:
    所述N为预设的;或者,
    所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息指示所述N。
  13. 根据权利要求8-12任一项所述的方法,其特征在于:
    所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻;或者,
    所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻、且频域相同。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述方法还包括:
    若所述第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻,则所述网络设备确定所述第二上行传输机会不能用于发送上行数据。
  15. 一种终端设备,其特征在于,包括:
    处理模块,用于获取第一资源和第二资源;其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有第二上行传输机会,所述第一上行传输机会包括X个 重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源,所述X和所述Y均为大于或等于1的整数;
    发送模块,用于在所述第二上行传输机会之前的最近N个第一上行传输机会发送受阻时,使用所述第二上行传输机会向网络设备发送上行数据,所述N为大于或等于1的整数。
  16. 根据权利要求15所述的设备,其特征在于,所述第一上行传输机会发送受阻,包括:
    所述第一上行传输机会中的X个重复的第一上行传输资源均发送受阻;或者,
    所述第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值,所述第一预设阈值小于或等于所述X。
  17. 根据权利要求16所述的设备,其特征在于,所述第一上行传输资源发送受阻,包括:
    所述第一上行传输资源中有至少一个符号为非上行符号;或者,
    所述终端设备使用所述第一上行传输资源中的至少一个非上行符号发送上行数据。
  18. 根据权利要求16或17所述的设备,其特征在于:
    所述第一预设阈值为预设的;或者,
    所述第一预设阈值根据所述第一资源的第一配置参数和/或第二配置参数确定;其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本;或者,
    所述终端设备,包括:
    接收模块,用于接收来自所述网络设备的第一指示信息,所述第一指示信息指示所述第一预设阈值。
  19. 根据权利要求15-18任一项所述的设备,其特征在于:
    所述N为预设的;或者,
    所述终端设备,还包括:
    接收模块,用于接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述N。
  20. 根据权利要求15-19任一项所述的设备,其特征在于:
    所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻;或者,
    所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻、且频域相同。
  21. 根据权利要求15-20任一项所述的设备,其特征在于:
    所述处理模块,还用于在所述第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻时,确定所述第二上行传输机会不能用于发送上行数据。
  22. 一种网络设备,其特征在于,包括:
    处理模块,用于获取为终端设备配置的第一资源和第二资源,并在第二上行传输机会之前的最近N个第一上行传输机会发送受阻时,在所述第二上行传输机会上检测来自所述终端设备的上行数据;
    其中,所述第一资源配置有至少一个第一上行传输机会,所述第二资源配置有所述第二上行传输机会,所述第一上行传输机会包括X个重复的第一上行传输资源,所述第二上行传输机会包括Y个重复的第二上行传输资源,所述X和所述Y均为大于或等于1的整数,所述N为大于或等于1的整数。
  23. 根据权利要求22所述的设备,其特征在于,所述第一上行传输机会发送受阻,包括:
    所述第一上行传输机会中的X个重复的第一上行传输资源均发送受阻;或者,
    所述第一上行传输机会中发送受阻的第一上行传输资源的数量大于或等于第一预设阈值,所述第一预设阈值小于或等于所述X。
  24. 根据权利要求23所述的设备,其特征在于,所述第一上行传输资源发送受阻,包括:
    所述第一上行传输资源中有至少一个符号为非上行符号;或者,
    所述终端设备使用所述第一上行传输资源中的至少一个非上行符号发送上行数据。
  25. 根据权利要求23或24所述的设备,其特征在于:
    所述第一预设阈值为预设的;或者,
    所述第一预设阈值根据所述第一资源的第一配置参数和/或第二配置参数确定;其中,所述第一配置参数用于配置所述X,所述第二配置参数用于配置所述第一上行传输机会中各第一上行传输资源允许传输的上行数据的冗余版本;或者,
    所述网络设备,还包括:
    发送模块,用于向所述终端设备发送第一指示信息,所述第一指示信息指示所述第一预设阈值。
  26. 根据权利要求22-25任一项所述的设备,其特征在于:
    所述N为预设的;或者,
    所述网络设备,还包括:
    发送模块,用于向所述终端设备发送第二指示信息,所述第二指示信息指示所述N。
  27. 根据权利要求22-26任一项所述的设备,其特征在于:
    所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻;或者,
    所述至少一个第一上行传输机会中的一个第一上行传输机会之后的一个第二上行传输机会在时域上与该第一上行传输机会相邻、且频域相同。
  28. 根据权利要求22-27任一项所述的设备,其特征在于:
    所述处理模块,还用于在所述第二上行传输机会之前的最近N个第一上行传输机会中至少有一个第一上行传输机会发送未受阻时,确定所述第二上行传输机会不能用于发送上行数据。
PCT/CN2020/099666 2019-07-15 2020-07-01 数据传输方法和设备 WO2021008365A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20840107.5A EP3993545A4 (en) 2019-07-15 2020-07-01 DATA TRANSMISSION DEVICE AND METHOD
US17/575,642 US20220141854A1 (en) 2019-07-15 2022-01-14 Data Transmission Method and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910633800.X 2019-07-15
CN201910633800.XA CN112235869B (zh) 2019-07-15 2019-07-15 数据传输方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/575,642 Continuation US20220141854A1 (en) 2019-07-15 2022-01-14 Data Transmission Method and Device

Publications (1)

Publication Number Publication Date
WO2021008365A1 true WO2021008365A1 (zh) 2021-01-21

Family

ID=74111650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099666 WO2021008365A1 (zh) 2019-07-15 2020-07-01 数据传输方法和设备

Country Status (4)

Country Link
US (1) US20220141854A1 (zh)
EP (1) EP3993545A4 (zh)
CN (1) CN112235869B (zh)
WO (1) WO2021008365A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886801A (zh) * 2016-04-01 2018-11-23 摩托罗拉移动有限责任公司 用于以减少的时延发送调度请求的方法和装置
CN108923890A (zh) * 2018-07-17 2018-11-30 北京北方烽火科技有限公司 一种数据传输方法、用户设备、基站及系统
US20190059093A1 (en) * 2017-08-18 2019-02-21 Fg Innovation Ip Company Limited Methods and devices for data transmission without grant during measurement gap
CN109496400A (zh) * 2018-10-16 2019-03-19 北京小米移动软件有限公司 重传信息的方法、装置、基站及终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9363803B2 (en) * 2012-07-03 2016-06-07 Lg Electronics Inc. Method and device for allocating resource for uplink control channel in wireless communication system
US10051617B2 (en) * 2015-03-17 2018-08-14 Motorola Mobility Llc Method and apparatus for scheduling user equipment uplink transmissions on an unlicensed carrier
US10461895B2 (en) * 2015-06-12 2019-10-29 Nokia Technologies Oy Transmission of uplink control information in unlicensed spectrum
CN106658742B (zh) * 2015-11-03 2020-07-03 中兴通讯股份有限公司 数据调度及传输的方法、装置及系统
WO2018130740A1 (en) * 2017-01-16 2018-07-19 Nokia Technologies Oy Harq feedback on grant-less ul
CN112867165A (zh) * 2017-07-06 2021-05-28 上海朗帛通信技术有限公司 一种被用于动态调度的用户设备、基站中的方法和装置
US11051175B2 (en) * 2017-08-18 2021-06-29 Qualcomm Incorporated Uplink transmission techniques in shared spectrum wireless communications
US10362593B2 (en) * 2017-09-01 2019-07-23 Huawei Technologies Co., Ltd. Grant-free uplink transmission in unlicensed spectrum
EP3701757A1 (en) * 2017-10-27 2020-09-02 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatus for scheduling in laa
US11641249B2 (en) * 2019-03-25 2023-05-02 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining a duration of a repetition of a transport block

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886801A (zh) * 2016-04-01 2018-11-23 摩托罗拉移动有限责任公司 用于以减少的时延发送调度请求的方法和装置
US20190059093A1 (en) * 2017-08-18 2019-02-21 Fg Innovation Ip Company Limited Methods and devices for data transmission without grant during measurement gap
CN108923890A (zh) * 2018-07-17 2018-11-30 北京北方烽火科技有限公司 一种数据传输方法、用户设备、基站及系统
CN109496400A (zh) * 2018-10-16 2019-03-19 北京小米移动软件有限公司 重传信息的方法、装置、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3993545A4

Also Published As

Publication number Publication date
US20220141854A1 (en) 2022-05-05
CN112235869B (zh) 2022-07-29
EP3993545A1 (en) 2022-05-04
CN112235869A (zh) 2021-01-15
EP3993545A4 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
CN110166182B (zh) 一种竞争窗管理的方法及发送设备
US20200296706A1 (en) Method for Preempting Resource to Transmit Data
WO2019233398A1 (zh) 数据传输方法、通信装置及存储介质
US11265903B2 (en) Uplink transmission method and apparatus
WO2021007759A1 (zh) 控制信道的传输方法、装置及存储介质
WO2019091488A1 (zh) 一种上行传输方法及终端
WO2019037695A1 (zh) 一种通信方法及装置
US11902185B2 (en) Sidelink information transmission method, communications device, and network device
WO2020063797A1 (zh) 配置时隙格式的方法和通信装置
WO2018233516A1 (zh) 资源分配方法、基站以及终端
US11405961B2 (en) Wireless communication method and apparatus
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2019158039A1 (zh) 通信方法和通信装置
JP2022516899A (ja) 無線通信方法及び装置
WO2021008378A1 (zh) 一种通信方法及装置
WO2019110011A1 (zh) 一种资源配置方法和装置
WO2021026836A1 (zh) 通信方法以及通信装置
WO2019157982A1 (zh) 一种中继传输方法及装置
WO2021088026A1 (zh) 一种确定数据传输反馈时延的方法及装置
WO2021008365A1 (zh) 数据传输方法和设备
WO2019191998A1 (zh) 数据传输方法、通信装置、存储介质及程序产品
WO2020143739A1 (zh) 通信方法和通信装置
WO2021208768A1 (zh) 数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020840107

Country of ref document: EP

Effective date: 20220128