WO2020063797A1 - 配置时隙格式的方法和通信装置 - Google Patents

配置时隙格式的方法和通信装置 Download PDF

Info

Publication number
WO2020063797A1
WO2020063797A1 PCT/CN2019/108341 CN2019108341W WO2020063797A1 WO 2020063797 A1 WO2020063797 A1 WO 2020063797A1 CN 2019108341 W CN2019108341 W CN 2019108341W WO 2020063797 A1 WO2020063797 A1 WO 2020063797A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
time slot
symbol
configuration information
slot format
Prior art date
Application number
PCT/CN2019/108341
Other languages
English (en)
French (fr)
Inventor
刘凤威
陈磊
邱晶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19866477.3A priority Critical patent/EP3823388A4/en
Priority to BR112021002383-6A priority patent/BR112021002383A2/pt
Publication of WO2020063797A1 publication Critical patent/WO2020063797A1/zh
Priority to US17/213,287 priority patent/US11916663B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and a communication apparatus for configuring a time slot format.
  • a relay node communicates with a higher-level node through an upper-level backhaul link, and communicates with a lower-level terminal device through an access link or communicates with a lower-level relay node through a lower-level backhaul link.
  • In-band relay is a relay scheme in which the upper-level backhaul link and the access link or the upper-level backhaul link and the lower-level backhaul link share the same frequency band. In-band relays generally have a half-duplex constraint. Specifically, a relay node cannot send downlink signals to its lower-level nodes (including lower-level terminal equipment and lower-level relay nodes) when receiving a downlink signal sent by its upper-level node. The relay node cannot send an uplink signal to its superior node when receiving the upstream signal sent by its subordinate node.
  • IAB node The new wireless (NR) in-band relay scheme is called integrated access and backhaul (IAB), and the relay node is called IAB node (node).
  • IAB nodes can be divided into two parts: user equipment (UE) functions and base station functions. Among them, the UE function is responsible for the communication between the IAB node and the superior node, and the base station function is responsible for the communication between the IAB node and the lower node. If the base station function of the IAB node needs to communicate normally with the lower-level node, it is necessary to configure the slot format of the base station function of the IAB node to communicate with the lower-level node. However, the current technology does not yet involve a solution on how to configure a base station function of an IAB node to communicate with a lower-level node in a time slot format.
  • This application provides a method for configuring a time slot format.
  • the method can configure a time slot format used for communication between an IAB node and a lower node, thereby providing a basis for normal communication between the IAB node and the lower node.
  • a method for configuring a time slot format includes: a first node receiving first configuration information sent by a second node, where the second node is an upper node of the first node;
  • the first node determines, according to the first configuration information, a time slot format of each time slot in a first set, where the first set includes one or more cycles for the first node and the third node to perform A time slot for communication, the third node is a subordinate IAB node of the first node or a terminal device served by the first node, and the time slot format indicates the type of each symbol in a time slot, and the symbol The type includes at least an uplink symbol and a downlink symbol;
  • the first node modifies a time slot format of a partial time slot in the first set, and obtains a modified time slot format of the partial time slot.
  • the method for configuring a time slot format is that the first node first configures the time slot format of each time slot used for communication between the first node and a lower node, and then the first node modifies a part of the configured time slot format It enables the first node to determine the actual time slot format of each time slot that communicates with the lower node, so that the first node can communicate with the lower node according to the actual time slot format of each time slot that communicates with the lower node.
  • the second node may be an IAB node or a host node.
  • the second node may first determine the first configuration information, and then directly send the first configuration information to the first node without passing through other nodes; or, the second node may first determine the first configuration information The configuration information, and then send the first configuration information to the host node, and then the host node directly sends the first configuration information to the first node; or, the second node may first send the first configuration information to the host node, and then the host node sends the first configuration information to the first node.
  • the two nodes send the first configuration information, and finally the second node sends the first configuration information to the first node.
  • the second node may directly send the first configuration information to the first node.
  • the first configuration information may be at least one index value, and the multiple index values correspond one-to-one with at least one time slot included in the first set, and each index value is used to indicate a corresponding time slot. Slot time slot format.
  • the first configuration information may be semi-static signaling, for example, the first configuration information may be an RRC message (or signaling), or the first configuration information may pass through the interface between the second node and the base station function of the first node Or, the host node transmits the interface with the base station function of the first node, for example, the F1-AP interface.
  • F1 is an interface between a centralized unit (CU) and a distributed unit (DU).
  • the uplink symbol is a symbol used for uplink communication.
  • the third node can perform uplink communication.
  • the downlink symbol is a symbol used for downlink communication.
  • the first node can perform downlink communication.
  • the type of the symbol may further include one or two of a symbol whose transmission direction is to be determined and a symbol which is not used for the first node to communicate with the third node.
  • the symbol whose transmission direction is to be determined is referred to as: a flexible symbol
  • the symbol that is not used for the first node to communicate with the third node is referred to as a silent symbol.
  • the partial time slot may be a specific number of time slots, for example, several time slots specified by a protocol or several time slots indicated by the second node.
  • the partial time slot may include a flexible time slot configured by the first configuration information.
  • the time slot may be called a flexible time slot.
  • the time slot is called a flexible time slot. For example, if a time slot includes 14 symbols, only 1 of the 14 symbols is a flexible symbol. No matter what type of other symbols, this time slot can be called flexible time slot.
  • the flexible time slot configured by the first configuration information may be modified into an uplink time slot, a downlink time slot, a silent time slot, or a flexible time slot, or some flexible symbols in the flexible time slot configured by the first configuration information may be modified. It is an up symbol, a down symbol, a silent symbol, or a flexible symbol.
  • the time slot that is still a flexible time slot after the time slot format is modified by the first node may determine the transmission direction by the first node.
  • the time slot that is still a flexible time slot after the time slot format is modified by the first node may be used as a silent time slot.
  • the uplink time slot refers to a time slot in which each symbol in the time slot is an uplink symbol.
  • the downlink time slot refers to a time slot in which each symbol in the time slot is a downlink symbol.
  • the time slot may be referred to as a silent time slot.
  • the time slot is called a silent time slot.
  • the flexible / quiet time slot configured by the first configuration information is a return time slot between the second node and the first node, that is, a time slot used for communication between the second node and the first node.
  • the method before the first node modifies a slot format of a part of the slots in the first set, the method further includes:
  • the modifying, by the first node, a slot format of some slots in the first set includes:
  • the first node modifies a time slot format of the partial time slot according to the second configuration information.
  • the second configuration information can be determined by the second node and then sent to the first node, or it can be determined by the second node and then sent to the host node first, and then the host node Send to the second node, and then send the second node to the first node.
  • the second configuration information may also be determined autonomously by the host node, and then sent to the first node through the second node.
  • the second configuration information may modify the flexible time slot configured by the first configuration information to an uplink time slot, a downlink time slot, a quiet time slot, or a flexible time slot, or a flexible time slot configured by the first configuration information.
  • Some of the flexible symbols can be modified into uplink symbols, downlink symbols, silent symbols, or flexible symbols.
  • the first node does not communicate with the third node, that is, the flexible time slot / symbol configured by the second configuration information is equivalent to a silent time slot .
  • the second configuration information may be dynamic signaling, which may be, for example, downlink control information (DCI) or media access control control element (MAC CE), or other Dynamic signaling.
  • DCI downlink control information
  • MAC CE media access control control element
  • the DCI may be a DCI format 2-0 or other DCI formats.
  • Sending the second configuration information through dynamic signaling can enable the first node to modify the time slot format of the partial time slot in time.
  • the time slot format of the partial time slot indicated by the second configuration information may be cross-cycle, so that the first node can modify the time slot format of the partial time slot in time.
  • the method further includes:
  • the first node sends a demand report message to the second node, where the demand report message is used to indicate an uplink-downlink ratio that the first node desires to communicate with the third node.
  • the first node may send a demand report message to the second node.
  • the second node may determine the second configuration information according to the uplink-downlink ratio expected by the first node to communicate with the third node, so that the slot format of the partial time slot meets the requirements of the second node.
  • the first node may modify a time slot format of the partial time slot by itself.
  • the method further includes:
  • the first node sends first indication information to the second node, where the first indication information is used to indicate a modified slot format of the partial timeslot.
  • the first node may send the first instruction information to the second node after modifying the slot format of the partial slot by itself, so that the second node learns the modified slot format of the partial slot.
  • the second node communicates with the first node or other nodes, by referring to the modified slot format in which the first node communicates with the third node after modification, interference can be avoided or reduced as much as possible.
  • the method further includes: the method further includes:
  • the first node sends third configuration information to the third node, and the third configuration information is used to configure a slot format of the third node.
  • the method further includes:
  • the first node communicates with the third node according to the time slot format of the third node and the modified time slot format of the first node communicating with the third node.
  • the first node may trigger or prohibit space division multiplexing according to the slot format of the third node and the modified slot format of the first node communicating with the third node.
  • a method for configuring a time slot format including:
  • the second node determines a time slot format of each time slot in the first set, where the first set includes time slots for communication between the first node and a third node in one or more cycles, and the third node For the lower-level integrated access of the first node to return the IAB node or the terminal equipment served by the first node, the slot format indicates the type of each symbol in a slot, and the type of the symbol includes at least Up symbol and down symbol;
  • the second node sends first configuration information to the first node, where the first configuration information is used to indicate a slot format of each slot in the first set.
  • the second node can configure the slot format of each slot in which the first node communicates with the lower node through the first configuration information, thereby providing a basis for normal communication between the IAB node and the lower node.
  • the method further includes:
  • the second node sends second configuration information to the first node, where the second configuration information is used to modify a slot format of a part of the slots in the first set.
  • the method before the second node sends the second configuration information to the first node, the method further includes:
  • the method further includes:
  • the symbol type further includes one or two of a flexible symbol and a silent symbol, wherein the flexible symbol configured by the first configuration information indicates The symbol of the transmission direction is not determined, and the first node does not communicate with the third node within the silence symbol.
  • the partial time slot is a time slot format of a time slot in which the flexible symbol configured by the first configuration information is located, and the Flexible symbols refer to symbols whose transmission direction is not determined.
  • a communication device includes a unit for performing each step of the method in any one of the foregoing implementation aspects of the first aspect and the second aspect.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (for example, an IAB node), and the communication chip may include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • the communication chip may include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a communication device which includes a unit for performing each step of the second aspect and the method in any implementation manner of the second aspect.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (for example, an IAB node or a host node (such as a base station)).
  • the communication chip may include a transmitter for sending information or data, and a transmitter for receiving information or data. Receiver.
  • a network device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the terminal device executes the first aspect or any possible implementation manner of the first aspect Method, or the second aspect or the method in any one of the possible implementation manners of the second aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory is separately provided from the processor.
  • the foregoing processor may be used to perform, for example, but not limited to, baseband related processing, and the receiver and the transmitter may be respectively used to perform, such as, but not limited to, radio frequency transceiver.
  • the above devices may be provided on separate chips, or at least partly or entirely on the same chip.
  • the receiver and the transmitter may be provided on the receiver chip and the transmitter chip which are independent of each other. It can be integrated into a transceiver and then set on the transceiver chip.
  • the processor may be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor and the transceiver may be integrated on the same chip, and the digital baseband processor may be provided on a separate chip.
  • digital baseband processors can be used with multiple application processors (such as, but not limited to, graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as, but not limited to, graphics processors, multimedia processors, etc.
  • Such a chip may be referred to as a system chip. Whether each device is independently set on a different chip or integrated on one or more chips often depends on the specific needs of the product design. The embodiment of the present application does not limit the specific implementation form of the device.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes any one of the first aspect to the second aspect and any possible implementation manner of the first aspect to the second aspect.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • An input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • a signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuits may be the same circuit, which are used as input circuits and output circuits respectively at different times.
  • the embodiments of the present application do not limit specific implementations of the processor and various circuits.
  • a processing device including: a memory and a processor.
  • the processor is configured to read an instruction stored in the memory, and can receive a signal through a receiver and transmit a signal through a transmitter to execute any one of the first aspect to the second aspect and the first aspect to the second aspect.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory is separately provided from the processor.
  • the memory may be a non-transitory memory, such as a read-only memory (ROM), which may be integrated on the same chip as the processor, or may be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the way of setting the memory and the processor.
  • ROM read-only memory
  • a chip including a processor and a memory, where the memory is used to store a computer program, the processor is used to call and run the computer program from the memory, and the computer program is used to implement the first aspect to the second Aspect and the method in any one of the possible implementation manners from the first aspect to the second aspect.
  • a computer program product includes a computer program (also referred to as code or instructions), and when the computer program is executed, causes a computer to execute the first aspect to the first aspect.
  • a computer-readable medium stores a computer program (also referred to as code, or instructions), which when executed on a computer, causes the computer to execute the first aspect to the first aspect.
  • a computer program also referred to as code, or instructions
  • FIG. 1 is a schematic diagram of an IAB system applicable to the present application.
  • FIG. 2 is a schematic diagram of dividing a UE function and a base station function of an IAB node.
  • FIG. 3 is a schematic flowchart of a method for configuring a slot format according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a time slot format configuration.
  • FIG. 5 is a schematic flowchart of a specific example of a method for configuring a slot format according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another specific example of a method for configuring a slot format according to an embodiment of the present application.
  • FIG. 7 is a frame structure according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a slot format configuration of a third node, a UE function of the first node, and a base station function of the first node.
  • FIG. 9 is a schematic diagram of a slot format configuration of a third node, a UE function of a first node, and a base station function of a first node.
  • 11 is a schematic diagram of a slot format configuration of a third node, a UE function of a first node, and a base station function of a first node.
  • FIG. 12 is a schematic diagram of a slot format configuration of a third node, a UE function of the first node, and a base station function of the first node.
  • FIG. 13 is a schematic diagram of a slot format configuration of a third node, a UE function of a first node, and a base station function of a first node.
  • FIG. 14 is a schematic block diagram of an example of a communication device of the present application.
  • FIG. 15 is a schematic block diagram of an example of a network device of the present application.
  • the technical solutions in the embodiments of the present application can be applied to a 5th generation (5th generation) system, a new radio (NR), and a future communication system.
  • 5th generation 5th generation
  • NR new radio
  • the technical solution of the embodiment of the present application may be applied to an in-band relay system (that is, an IAB system).
  • the IAB system may include a donor node, several IAB nodes, and several terminal devices.
  • the IAB node is connected to the upper node through a wireless link, and the IAB node can provide services to its lower node.
  • the upper node can be a base station (such as gNB in NR) or another IAB node; the lower node can be an ordinary terminal device or another IAB node.
  • the host node may be a base station (for example, gNodeB) or a relay transmission receiving point (relaying transmission and reception point, rTRP). When the host node is a gNodeB, the host node may be abbreviated as DgNB.
  • the link that the IAB node communicates with the superior node is called the parent backhaul (parent BH) link
  • the link that communicates with the lower-level terminal equipment is called the access (AC) link
  • the lower-level IAB The link that the nodes communicate with is called the child backhaul link (child backhaul, child BH).
  • the link that an IAB node communicates with an upper node is called a backhaul link
  • the link that communicates with a lower node is called an access link (whether the lower node is a terminal device or an IAB node).
  • the link that the IAB node communicates with the superior node is referred to as the upper-level backhaul link
  • the link that the IAB node communicates with the lower-level terminal equipment is referred to as the access link
  • the IAB node and the lower-level IAB are uniformly referred to in this application.
  • the link that the nodes communicate with is called the lower-level backhaul link.
  • Figure 1 shows a schematic diagram of an IAB system. As shown in FIG. 1, the system includes an IAB node 101, an IAB node 102, an IAB node 103, a host node 104, a terminal device 105, and a terminal device 106.
  • the IAB node 103 and the terminal device 106 are subordinate nodes (also called child nodes or downstream nodes) of the IAB node 101.
  • the IAB node 101 communicates with the IAB node 103 through the lower-level backhaul link 11 and the IAB node 101 communicates with The inbound link 16 provides services to the terminal device 106.
  • the IAB node 102 provides services to the terminal device 105 through the access link 15.
  • the parent node (or parent or upstream node) of the IAB node 101 is the host node 104, and the IAB node 101 can directly communicate with the host node 104 through the superior backhaul link 13 without going through other IAB node.
  • the upper node of the IAB node 101 is the IAB node 102, and the IAB node 101 can communicate with the host node 104 through the intermediate IAB node.
  • the IAB node 101 can communicate with the IAB node 102 first. The communication is performed, and the communication between the IAB node 102 and the host node is implemented to communicate with the host node 104.
  • the IAB node 104 communicates with the IAB node 102 through the superior backhaul link 12, and the IAB node 102 communicates with the host node 104 through the superior backhaul link 14.
  • the lower-level node when a lower-level node of an IAB node is an IAB node, the lower-level node may be referred to as a lower-level IAB node (or a child IAB node or a downstream IAB node) of the IAB node, and accordingly, the IAB node may be referred to as Is an upper-level IAB node (or a parent IAB node or an upstream IAB node) of the lower-level node, for example, the IAB node 103 may be referred to as a lower-level IAB node of the IAB node 101.
  • a terminal device such as terminal device 105 or terminal device 106, may also be referred to as a UE, a mobile station, an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a terminal, a wireless Communication equipment, user agents, or user devices, etc., which may specifically be stations (ST), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loops in a WLAN , WLL) stations, personal digital processing (PDA), handheld devices with wireless communication functions, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks And any terminal equipment in the PLMN network that is evolving in the future.
  • stations ST
  • SIP session initiation protocol
  • WLAN wireless local loops in a WLAN , WLL
  • PDA personal digital processing
  • handheld devices with wireless communication functions
  • computing devices other processing devices connected to wireless modems
  • the functions of the IAB node can be divided into two parts: a UE function and a base station function.
  • the UE function is responsible for the communication between the IAB node and the superior node
  • the base station function is responsible for the IAB node and Communication of subordinate nodes.
  • the functions of IAB nodes facing higher-level nodes and lower-level nodes are different.
  • a part / function in which the IAB node accesses the upper node through the upper backhaul link may be referred to as a mobile-termination (MT), and this part may perform a function similar to that of the UE in the NR.
  • the part / function that the IAB node provides access to the lower-level nodes through the access link may be referred to as a distributed unit (DU), and this part may perform a function similar to a base station in an NR.
  • DU distributed unit
  • the IAB node (or the base station function of the IAB node) needs to communicate normally with the lower-level node, it needs to configure the slot format or transmission direction of the IAB node to communicate with the lower-level node, that is, the base station function of the IAB node needs to be configured Slot format.
  • the current technology has not yet provided a solution for configuring a time slot format in which an IAB node communicates with a lower node.
  • this application provides a method for configuring a time slot format.
  • the method can configure a time slot format for communication between an IAB node and a lower node, thereby providing a basis for normal communication between the IAB node and the lower node.
  • the method of the time slot format provided in this application is described in detail.
  • FIG. 3 is a method for configuring a time slot format according to an embodiment of the present application. The following detailed descriptions are combined with each step.
  • the second node sends the first configuration information to the first node. Accordingly, the second node receives the first configuration information sent by the first node.
  • the first configuration information is used to configure a time slot format of each time slot used for communication between the first node and the third node in one or more periods.
  • the first node is a lower node of the second node, or the second node is a higher node of the first node; the third node is a lower node of the first node, or the first node is a higher node of the third node.
  • the first node may be an IAB node; the third node may be an IAB node or a terminal device, that is, the third node may be a subordinate IAB node of the first node or a terminal device served by the first node; the second node may be IAB nodes can also be host nodes.
  • the first node is the IAB node 101 in the figure
  • the second node is the IAB node 102 or the host node 104 in the figure
  • the third node is the IAB node 103 or the terminal device 106 in the figure.
  • the second node may first determine the first configuration information, and then directly send the first configuration information to the first node without passing through other nodes; or, the second node may first determine the first configuration information The configuration information, and then send the first configuration information to the host node, and then the host node directly sends the first configuration information to the first node; or, the second node may first send the first configuration information to the host node, and then the host node sends the first configuration information to the The two nodes send the first configuration information, and finally the second node sends the first configuration information to the first node. In the case where the second node is the host node, the second node may directly send the first configuration information to the first node.
  • the first configuration information may be semi-static signaling, for example, the first configuration information may be an RRC message (or signaling), or the first configuration information may be through the interface between the second node and the base station function of the first node or the host node and The base station functions the interface transfer of the first node, for example, the F1-AP interface.
  • This application does not limit the signaling or interface that carries the first configuration.
  • the first configuration information may configure a time slot format for communication between the first node and the third node.
  • the first configuration information may configure a base station function of the first node or a time slot of the base station function link of the first node. format.
  • the first configuration information may configure a time slot format of each time slot used for communication between the first node and the third node in one or more periods.
  • the multiple cycles may be multiple cycles (for example, double cycles), and multiple cycles may be understood as one large cycle formed by multiple single cycles. For example, referring to FIG. 4, when the period length of the first period is P1 and the period length of the second period is P2, the period formed by the first period and the second period is double period, and P1 and P2 can be equal It may also be different.
  • the slot format of the first cycle and the slot format of the second cycle may be the same or different, which is not limited in this application.
  • a single cycle can be understood as a cycle in the ordinary sense.
  • the cycle length of a single cycle or multiple cycles can be configured by the second node or the host node.
  • the first configuration information may also be directed to multiple single cycles or multiple multiple cycles.
  • the meaning here is that the first configuration information may explicitly indicate a time slot format of each time slot in multiple single cycles or multiple multiple cycles (for example, multiple double cycles).
  • the first configuration information only configures the time slot format of each time slot in a single cycle or a multiple cycle, the first node does not receive any other time for configuring the first node to communicate with the third node.
  • the slot format of each slot used for the first node to communicate with the third node was considered to follow the slot format configured by the first configuration information.
  • the set formed by each time slot used for communication between the first node and the third node in one or more cycles is referred to as: the first set. It is easy to understand that the first configuration information is used to configure a slot format of the first set or the first configuration information is used to configure a slot format of each slot in the first set.
  • the slot format indicates the types of symbols in a slot, and the types of the symbols include at least two types of uplink symbols and downlink symbols. It is easy to understand that the uplink symbol is a symbol used for uplink communication, and within the uplink symbol, the third node can perform uplink communication.
  • the downlink symbol is a symbol used for downlink communication. Within the downlink symbol, the first node can perform downlink communication.
  • the type of the symbol may further include one or two of a symbol whose transmission direction is to be determined and a symbol which is not used for the first node to communicate with the third node.
  • the symbol whose transmission direction is to be determined is referred to as a flexible symbol
  • the symbol that is not used for the first node to communicate with the third node is referred to as a silent symbol.
  • the symbols of the transmission direction to be determined may also have other names, and this application does not limit how to designate the symbols of the transmission direction to be determined.
  • the symbols that are not used for the first node to communicate with the third node may also have other names, for example, reserved symbols. This application does not limit how to call the symbols that are not used for the first node to communicate with the third node. .
  • Uplink slot A slot in which each symbol in the slot is an uplink symbol.
  • Downlink slot a slot in which each symbol in the slot is a downlink symbol.
  • Time slot In one understanding, if each symbol in a time slot is a flexible symbol, the time slot can be called a flexible time slot. In another understanding, as long as a time slot includes flexible symbols, the time slot is called a flexible time slot. For example, if a time slot includes 14 symbols, only 1 of the 14 symbols is a flexible symbol. No matter what type of other symbols, this time slot can be called flexible time slot.
  • Silent time slot In one understanding, if each symbol in a time slot is a silent symbol, the time slot can be called a silent time slot. In another understanding, if a time slot includes a silence symbol, the time slot is called a silent time slot.
  • U represents an uplink symbol / time slot
  • D represents a downlink symbol / time slot
  • F represents a flexible symbol / time slot
  • time slots 0 to 9 in the first cycle are configured by the first configuration information as: downlink time slot (time slot 0-2), flexible time slot (time slot 3) -6), uplink time slots (time slots 7-9); time slots 0 to 9 in the second cycle are configured by the first configuration information as: downlink time slots (time slots 0-3), flexible time slots (Time slot 4-5), uplink time slot (time slot 6-9).
  • the transmission direction of the symbol whose transmission direction is to be determined may be configured through dynamic signaling (for example, the second configuration information described below), or may be configured by the first node itself.
  • the two configuration modes can be distinguished by assigning different names or identifiers to the symbols whose transmission directions are to be determined.
  • the symbol of the transmission direction to be determined may also be referred to as a reserved symbol or “E”.
  • the symbol of the transmission direction to be determined may be referred to as a pending symbol. Or recorded as "S”.
  • the above two configuration modes can be distinguished by the time slot format. For example, when the time slot format is "1" and "2", it means that all symbols in the time slot are all flexible symbols, but when the time slot format is "1" , The transmission direction of the flexible symbol is configured by dynamic signaling, but when the slot format is "2", the transmission direction of the flexible symbol is configured by the first node.
  • the flexible / quiet time slot configured by the first configuration information is a backhaul time slot between the second node and the first node, that is, when the second node communicates with the first node. Gap.
  • the first node determines a slot format of each slot in the first set according to the first configuration information.
  • the first node determines the time slot format of each time slot in the first set according to the first configuration information, which can be understood as a process in which the first node decodes the first configuration information. For details on how to decode the first configuration information, reference may be made to a decoding method in the prior art, and details are not described herein again. After decoding the first configuration information, the first node can learn the time slot format of each time slot in the first set.
  • the first node modifies a time slot format of a part of the time slots in the first set, and obtains a modified time slot format of the part of the time slots.
  • the first node may modify the time slot format of the flexible time slot configured by the first configuration information.
  • the first node may also modify the remaining time slot format configured by the first configuration information.
  • this application does not limit that the first node must modify the time slot format of the flexible time slot. .
  • the first node may modify the flexible time slot into an uplink time slot, a downlink time slot, a silent time slot, or a flexible time slot, or the first node may modify some flexible symbols in the flexible time slot into uplink symbols, downlink Symbol, silent symbol, or flexible symbol.
  • the time slot that is still a flexible time slot after the time slot format is modified by the first node may determine the transmission direction by the first node.
  • the time slot that is still a flexible time slot after the time slot format is modified by the first node may be used as a silent time slot.
  • the partial time slot may be a specific number of time slots, for example, several time slots specified by a protocol or several time slots indicated by the second node.
  • the first node first configures the time slot format of each time slot for communication between the first node and the lower node, and then the first node modifies the configured part of the time slot format,
  • the first node can determine the actual time slot format of each time slot that communicates with the lower node, so that the first node can communicate with the lower node according to the actual time slot format of each time slot that communicates with the lower node.
  • the timeslot format of each timeslot in the first set obtained before modifying the timeslot format of the partial timeslot is referred to as: Slot format; the slot format of each slot in the first set obtained after modifying the slot format of the partial slot is called: the actual slot format of the base station function of the first node.
  • S310 can be specifically implemented in two optional ways.
  • Manner 1 The first node may modify the time slot format of the partial time slot according to an instruction of the second node.
  • Manner 2 The first node autonomously or by itself modifies the slot format of the partial slot.
  • FIG. 5 illustrates a method for configuring a slot format.
  • the first node may modify the time slot format of the partial time slot according to the second configuration information sent by the second node.
  • the second node sends the first configuration information to the first node, and the first node determines a slot format of each slot in the first set according to the first configuration information.
  • the first configuration information e.g., a slot format of each slot in the first set according to the first configuration information.
  • the first node sends a demand report message to the second node. Accordingly, the second node receives the demand report message sent by the first node.
  • the demand report message is used to indicate an uplink-downlink ratio expected by the first node to communicate with the third node.
  • the demand report message may be specifically used to instruct the first node to request to increase an uplink time slot or increase a downlink time slot.
  • the demand report message may be reported through dynamic signaling such as UCI, or may be reported through RRC signaling or F1 interface information.
  • the second node sends the second configuration information to the first node. Accordingly, the first node receives the second configuration information sent by the second node.
  • the first node modifies a time slot format of the partial time slots in the first set according to the second configuration information.
  • time slot format in which the first node modifies part of the time slots can be understood as the first node decoding the second configuration information.
  • step S510 is an optional step. If S510 is executed, the second node needs to consider the demand report message when generating the second configuration information, that is, the second configuration information can be generated according to the demand report message, otherwise it is not required.
  • the second configuration information can be determined by the second node and then sent to the first node, or it can be determined by the second node and then sent to the host node first, and then the host node sends the Two nodes, and then the second node sends to the first node.
  • the second configuration information may also be determined autonomously by the host node, and then sent to the first node through the second node. If the second configuration information is determined autonomously by the host node, the second node needs to send a demand report message to the host node.
  • the second configuration information is used to indicate a time slot format of each time slot in the partial time slot.
  • the second configuration information used to indicate the time slot format of each time slot in the partial time slot may specifically be: (1)
  • the second configuration information directly indicates the time slot format of each time slot in the partial time slot.
  • (2) the second configuration information directly indicates a slot format used for the second node to communicate with the first node, and causes the first node to follow the slot format, for example, the first node may be instructed through a protocol agreement or signaling
  • the time slot format for communication with the third node needs to be the same as the time slot format used for communication between the second node and a subordinate node of the second node.
  • the first node does not communicate with the third node, that is, the flexible time slot / symbol configured by the second configuration information is equivalent In silent slots.
  • the second configuration information may be dynamic signaling, which may be, for example, DCI, MAC, CE, or other dynamic signaling.
  • the DCI may be a DCI format 2-0.
  • the base station can configure the slot format of the terminal device through the DCI format 2-0.
  • the DCI format 2-0 sent by the second node to the first node is used to indicate that the UE function of the first node is practical. Gap format.
  • the DCI format 2-0 may be used to indicate the actual slot format of the base station function of the first node. Therefore, the DCI format 2-0 in this application may be regarded as a special DCI format 2-0.
  • the second node While being configured with a special DCI format 2-0, the second node may also be configured with a normal DCI format 2-0, which is used to indicate the actual slot format of the UE function of the first node.
  • the first node needs to distinguish whether the DCI format 2-0 is used, that is, for the base station function or the UE function.
  • the second node may indicate its specific use when configuring the DCI format 2-0 for the first node. When two uses are configured at the same time, the two DCI formats 2-0 may use different RNTIs for CRC scrambling.
  • a new DCI format may be defined to indicate the actual slot format of the base station function of the first node.
  • the second configuration information may only indicate a slot format of the partial time slot and does not indicate a slot format of other time slots other than the partial time slot in the first set, or the second instruction information may Indicates the time slot format of all time slots in the first set.
  • the special DCI format 2-0 may indicate only the slot format of the partial time slot without indicating other than the partial time slot in the first set.
  • the slot format of the time slot indicates the actual slot format of the base station function of the first node, or the special DCI format 2-0 can indicate the base station of the first node by indicating the slot format of all slots in the first set. Functional actual time slot format.
  • the time slot format of the other time slots except the partial time slot indicated by the second configuration information is the same as the first configuration.
  • the information indicates the same slot format.
  • the slot format of slot 0 indicated by the first configuration information is "1"
  • slot 0 does not belong to the partial slot
  • the slot format of slot 0 indicated by the second configuration information is also " 1”.
  • the number of timeslots indicated by the second configuration information is greater than the total number of timeslots included in a single cycle or a multiple cycle, but this embodiment of the present application does not limit this.
  • the time slot format of the partial time slot indicated by the second configuration information may be for a single cycle or multiple cycles, or may be for multiple single cycles or multiple cycles.
  • the base station function of the first node may perform N (N is an integer greater than 1) periodic transmission and reception according to this configuration.
  • the base station function of the first node may continue to send and receive N cycles according to this configuration, until the first node receives again to modify several Signaling in the time slot format of a time slot.
  • the time slot format of the partial time slot indicated by the second configuration information may be cross-cycle, so that the first node can modify the time slot format of the partial time slot in time.
  • the cycle length of the second cycle is P1
  • the cycle length of the second cycle is P2
  • the cycle length of the second cycle is P2
  • the second node may send second configuration information in the first period, and the second configuration information is used to modify a slot format of a part of the slots in the second period.
  • the indication of the time slot format in FIG. 4 only spans one cycle. In specific implementation, the indication of the time slot format can span multiple cycles. The specific number of cross cycles can be configured by the second node or the host node.
  • the method may further include:
  • the first node sends third configuration information to a third node.
  • the third node receives the third configuration information sent by the first node.
  • the third configuration information is used to configure a slot format of the third node.
  • Step S522 may be executed after S526, or may be executed before S506, S518, which is not limited in this application.
  • the third node determines a timeslot format of the third node according to the third configuration information.
  • the manner in which the first node sends the third configuration information may be broadcast or unicast.
  • the broadcast message can be sent in any of the following three ways:
  • the host node of the first node directly decides (or determines) and sends it to the first node, and then the first node broadcasts to the subordinate terminal device or the third node.
  • the first node decides, then the first node requests the host node to encapsulate the RRC message and send it to the first node, and finally the first node broadcasts it.
  • the first node decides and broadcasts.
  • the initial slot format of the base station function of the first node or the actual slot format of the base station function of the first node and the slot format of the third node configured by the third configuration information may be different.
  • the initial slot format of the base station function of the first node or the actual slot format of the base station function of the first node is hereinafter referred to as: configuration A
  • the time of the third node configured by the third configuration information Gap format, called: Configuration B the time of the third node configured by the third configuration information Gap format
  • the transmission direction of the access link of the first node (that is, the link between the first node and the lower-level terminal device) needs to satisfy both configuration A and configuration B, or when the lower-level terminal device of the first node communicates with the first node.
  • the first node needs to consider both configuration A and configuration B; and the lower-level backhaul link of the first node must at least meet configuration A, that is, in some scenarios, the lower-level backhaul link of the first node may not satisfy configuration B.
  • the time slot format configuration in the first cycle in FIG. 4 is taken as an example for description.
  • time slot 2 in the first cycle shown in Figure 4 if configuration B indicates a downlink time slot, it is impossible for the terminal device to schedule uplink data in this time slot; but for lower-level backhaul links, this time slot may be Down or Up.
  • the second configuration information only modifies the flexible time slot, if the configuration A indicates that the time slot is downlink, the lower-level return link is also downlink; if the configuration A indicates that the time slot is uplink, the lower-level back link Uplink transmission is possible; if configuration A indicates that this time slot is a flexible time slot, both cases can be supported.
  • configuration A is visible only to the first node, while configuration B is visible to both the first and third nodes.
  • the first node may send the configuration in Part A to the third node through unicast RRC, or may not send it.
  • the first node receives only one set of configuration A at the same time, and the first node can determine which time slots in configuration A can be applied to the access link and the lower-level backhaul link at the same time according to configuration B, and when Slots can only be applied to lower-level backhaul links.
  • the access link of the first node for the base station function and the lower-level backhaul link have different configurations A, that is, the first node may have different configurations when communicating with the terminal device and the lower-level IAB node.
  • configuration A and configuration B use the same periodic configuration.
  • the quiet / flexible time slot in the configuration A represents a time slot occupied by an upper-level backhaul link of the first node.
  • the base station function of the first node may have multiple different cells, sectors, or transceiver panels. At this time, different cells, sectors, or transceiver panels may have different configurations A and Configuration B.
  • the embodiments of the present application are described only with respect to one cell, sector, or transceiver panel of the base station function of the first node, but all embodiments can be extended to the case of multiple cells, sectors, or transceiver panels.
  • FIG. 6 illustrates another method for configuring a slot format.
  • the first node may modify the time slot format of the partial time slot on its own.
  • the second node sends the first configuration information to the first node, and the first node determines a slot format of each slot in the first set according to the first configuration information.
  • the first node determines a slot format of each slot in the first set according to the first configuration information.
  • the first node modifies a slot format of a part of the slots in the first set by itself.
  • S614 The first node sends the first indication information to the second node.
  • the second node receives the first indication information sent by the first node.
  • the first indication information is used to indicate a modified slot format of the partial timeslot. Further, the first indication information may further include a slot format of an unmodified slot.
  • the second node may obtain the actual slot format of the base station function of the first node according to the first instruction information sent by the first node.
  • the second node may also send the first instruction information to the host node after receiving the first instruction information, but the embodiment of the present application This is not limited.
  • the first indication information may be carried by uplink control information (uplink control information) (UCI). Therefore, the second node can know the time slot format of the partial time slot modified by the first node in time.
  • uplink control information uplink control information
  • the first node may send the first indication information across the cycle, which means that the time slot format indicated by the first instruction information is The slot format of other periods after the current period (the period in which the first indication information is transmitted).
  • the first node may send the first indication information in a time slot before the time slot configured by the first configuration information, but this application does not exclude sending the first indication information after the time slot configured by the first configuration information).
  • the second node may cover the time slot format of the partial time slot that is modified by the first node by itself through the dynamic signaling # 1 above.
  • the method may further include:
  • the first node sends third configuration information to the third node, and the third node determines a slot format according to the third configuration information.
  • the third node determines a slot format according to the third configuration information.
  • the slot format configuration of the base station function of the first node may need to consider the slot format configuration of the UE function of the first node.
  • the first set may include time slots for the upper-level backhaul link, or may not include time slots for the upper-level backhaul link, which is not limited in this embodiment of the present application.
  • the frame structure of the first node is divided into two parts, that is, the slot format of the UE function of the first node and the slot format of the base station function of the first node (ie, configuration A above). See, for example, the frame structure shown in FIG.
  • the frame structure in FIG. 7 is divided into two parts, the upper part is the slot format of the UE function of the first node, and the lower part is the slot format of the base station function of the first node.
  • time slot format of some time slots is illustrated in the figure.
  • time slot format For the base station function of the first node, at least the non-upper-level backhaul time slot (that is, the time slot not used for the upper-level backhaul link) should be configured with a time slot format. It should be noted that although timeslots 1, 3, and 8 shown in FIG. 7 are configured as superior backhaul timeslots, they may still have the slot format configuration of a base station function, that is, the first set may include timeslot 1 One or more time slots of, 3, and 8. The time slot indicated as "X" in FIG.
  • time slot 1 may be a downlink time slot or a flexible time slot
  • time slot 8 may be an uplink time slot or a flexible time slot.
  • the first node when it is not scheduled to transmit a downlink back to the superior in time slot 1, it may send downlink data to the third node; or the base station function of time slot 1 may be configured as an uplink time slot, indicating that In this time slot, the first node can receive the uplink of the third node while receiving the downlink of the upper node, that is, perform space division multiplexing.
  • slot format configuration, configuration A, and configuration B of the UE function of the first node are shown in FIG. 8, respectively.
  • Slots 1 and 8 shown in FIG. 7 are configured as an upper-level return slot and a lower-level return slot, respectively.
  • both the upper and lower backhaul links are downlink, so the base station functional link of the first node in this time slot does not work (when the upper backhaul slot is scheduled), or to the terminal
  • the device sends a downlink signal (when the upper-layer backhaul slot is not scheduled).
  • time slot 8 the situation is similar to time slot 1.
  • the base station function of the first node does not work in this time slot, or receives uplink signals from the terminal device.
  • the second node may trigger or disable air separation by performing time slot configuration on the base station function of the first node.
  • the third node is a terminal device, that is, the space division multiplexing of the superior backhaul link and the access link.
  • the time slot configuration of the superior backhaul link and the time slot configuration indicated by configuration B are in the same direction, so for the terminal device, these two time slots cannot be spaced apart. Reuse.
  • configuration B indicates a flexible time slot, so the actual transmission time slot is variable.
  • the first node can schedule the terminal device to perform uplink transmission to achieve receiving end air separation. Multiplexing; see FIG. 10, when the superior backhaul link is uplink and the base station function of the first node is configured as downlink in this time slot, the first node can schedule terminal equipment to perform downlink reception to achieve originating space division multiplexing.
  • the base station function of the first node is configured to be flexible in this time slot, and the first node may perform sending or receiving space division multiplexing according to the scheduling of the superior backhaul link.
  • the second node can disable the space division multiplexing by configuring the base station function of the first node, as shown in FIG. 11 and FIG. 12.
  • the direction of the return link is the same, so the first node cannot perform space division multiplexing.
  • the second node when the second node configures the backhaul slot of the first node in reverse (or different direction) from the access slot, it means that space division multiplexing can be performed; or when the second node configures the backhaul of the first node When the time slot is in the same direction (or not reversed) as the access time slot, it means that space division multiplexing cannot be performed.
  • the second node does not perform any form of space division multiplexing by configuring the base station function of the first node. For example, as shown in FIGS. 11 and 12, F is configured in slot 3, Indicates that no space division multiplexing is allowed.
  • the third node is an IAB node
  • the above mechanism may also be adopted, but the configuration of the lower-level IAB node may not be limited to the broadcast configuration of the base station function.
  • time slot 1 is configured as downlink by the first node's broadcast signaling
  • the base station function of the first node can be configured as uplink in this time slot, indicating that the upstream backhaul link is downlink and the lower backhaul chain.
  • the uplink can be used for space division multiplexing.
  • Time slot 8 is the same.
  • FIG. 14 is a schematic diagram of a communication device 30 according to an embodiment of the present application.
  • the device 30 may be an IAB node or a host node, and may also be a chip or a circuit, such as a chip or a circuit that can be provided in the IAB node or the host node.
  • the device 30 may include a processing unit 31 and a storage unit 32.
  • the storage unit 32 is configured to store instructions
  • the processing unit 31 is configured to execute the instructions stored by the storage unit 32, so that the device 30 implements the steps performed by the IAB node or the host node in the foregoing method.
  • the device 30 may further include an input port 33 (that is, an example of a receiving unit (for example, a first receiving unit or a second receiving unit)) and an output port 33 (that is, another example of a processing unit).
  • an input port 33 that is, an example of a receiving unit (for example, a first receiving unit or a second receiving unit)
  • an output port 33 that is, another example of a processing unit.
  • processing unit 31, the storage unit 32, the input port 33, and the output port 34 can communicate with each other through an internal connection path and pass Control and / or data signals.
  • a general-purpose computer may be considered to implement the communication device provided in the embodiment of the present application.
  • the program code that is to implement the functions of the processing unit 31, the input port 33, and the output port 34 is stored in a storage unit, and the general-purpose processing unit implements the functions of the processing unit 31, input port 33, and output port 34 by executing the code in the storage unit.
  • the storage unit 32 is configured to store a computer program.
  • the processing unit 31 may be configured to call and run the computing program from the storage unit 32 to control the input port 33 to receive the first configuration information sent by the second node, and the second node Is a superior node of the communication device.
  • the time slot format of each time slot in the first set is determined according to the first configuration information, and the first set includes time slots for the communication device to communicate with the third node in one or more periods.
  • the third node is a lower-level integrated access backhaul IAB node of the communication device or a terminal device served by the communication device, and the time slot format indicates the type of each symbol in a time slot, and the symbol The type includes at least an uplink symbol and a downlink symbol; and modifying a slot format of a part of the time slots in the first set to obtain a modified slot format of the part of the time slots.
  • the processing unit 31 may further control the input port 33 to receive second configuration information sent by the second node, where the second configuration information is used to reconfigure a time slot format of the partial time slot.
  • the processing unit 31 may modify a time slot format of the partial time slot according to the second configuration information.
  • the second configuration information is dynamic signaling.
  • the processing unit 31 may also control the output port 34 to send a demand report message to the second node, where the demand report message is used to indicate the uplink and downlink that the communication device desires to communicate with the third node. Matching.
  • the processing unit 31 may further control the output port 34 to send the first instruction information to the second node, where the first instruction information is used to indicate a modified slot format of the partial timeslot.
  • the type of the symbol further includes one or two of a flexible symbol and a silent symbol, wherein the flexible symbol configured by the first configuration information refers to a symbol whose transmission direction is not determined, and the communication device is at There is no communication with the third node within the silence symbol.
  • processing unit 31 is specifically configured to:
  • modules or units in the device 30 listed above are only exemplary descriptions, and the modules or units in the device 30 may be used to perform actions or processes performed by the first node in the foregoing method.
  • the modules or units in the device 30 may be used to perform actions or processes performed by the first node in the foregoing method.
  • detailed descriptions are omitted.
  • the processing unit 31 may be configured to determine a time slot format of each time slot in the first set, where the first set includes one or more cycles for the first node and the third node.
  • a time slot for communication between the nodes, the third node is a lower-level integrated access backhaul IAB node of the first node or a terminal device served by the first node, and the time slot format represents a time slot
  • the type of each symbol which includes at least an uplink symbol and a downlink symbol; and can be used to call and run the calculator program from the storage unit 32 to control the output port 34 to send to the first node First configuration information, where the first configuration information is used to indicate a slot format of each slot in the first set.
  • the processing unit 31 may further control the output port 34 to send second configuration information to the first node, where the second configuration information is used to modify a time slot format of some time slots in the first set.
  • the processing unit 31 may further control the input port 33 to receive a demand report message sent by the first node, where the demand report message is used to indicate that the first node desires to perform a request with the third node. Communication uplink and downlink ratio.
  • the processing unit 31 may further control the input port 33 to receive first indication information sent by the first node, where the first indication information is used to indicate a part of time slots in the first set after modification. Slot format.
  • the partial time slot is a time slot format of a time slot in which the flexible symbol configured by the first configuration information is located, and the flexible symbol configured by the first configuration information refers to a symbol whose transmission direction is not determined.
  • each module or unit in the device 30 listed above is only exemplary descriptions, and each module or unit in the device 30 may be used to perform each action or process performed by the second node in the foregoing method.
  • each module or unit in the device 30 may be used to perform each action or process performed by the second node in the foregoing method.
  • detailed descriptions are omitted.
  • FIG. 15 is a schematic structural diagram of a network device 40 according to an embodiment of the present application, which may be used to implement functions of a first node or a second node in the foregoing method.
  • the network device 40 includes one or more radio frequency units, such as a remote radio unit (RRU) 401 and one or more baseband units (BBU) (also referred to as a digital unit, DU). 402.
  • RRU 401 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 4011 and a radio frequency unit 4012.
  • the RRU 401 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending a signaling message described in the foregoing embodiment to a terminal device.
  • the BBU 402 part is mainly used for baseband processing and controlling base stations.
  • the RRU 401 and the BBU 402 may be physically located together or physically separated, that is, a distributed base station.
  • the BBU 402 is a control center of a base station, and may also be referred to as a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU (Processing Unit) 402 may be used to control the base station 40 to execute the operation process related to the first node or the second node in the foregoing method embodiment.
  • the BBU 402 may be composed of one or more boards, and multiple boards may jointly support a single access system wireless access network (such as an LTE system or a 5G system), or may support different Access standard wireless access network.
  • the BBU 402 further includes a memory 4021 and a processor 4022.
  • the memory 4021 is used to store necessary instructions and data.
  • the memory 4021 stores the codebook and the like in the foregoing embodiment.
  • the processor 4022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation procedure on the first node or the second node in the foregoing method embodiment.
  • the memory 4021 and the processor 4022 may serve one or more single boards. That is, the memory and processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • SoC system-on-chip
  • all or part of the functions of part 402 and part 401 may be implemented by SoC technology, for example, a base station function chip
  • the base station function chip integrates a processor, a memory, an antenna interface and other devices.
  • a program of the base station related functions is stored in the memory, and the processor executes the program to realize the base station related functions.
  • the base station function chip can also read a memory external to the chip to implement related functions of the base station.
  • FIG. 15 is only one possible form, and should not be construed as any limitation in the embodiments of the present application. This application does not exclude the possibility of other forms of base station structures that may appear in the future.
  • the embodiment of the present application further provides a communication system including the foregoing first node, second node, and third node.
  • a host node may also be included.
  • the processor may be a central processing unit (CPU), and the processor may also be another general-purpose processor, digital signal processor (DSP), or special-purpose integration.
  • Circuit application specific integrated circuit, ASIC
  • ready-made programmable gate array field programmable gate array, FPGA
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access Access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct RAMbus RAM direct RAMbus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like, including one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit. If the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了配置时隙格式的方法,该方法能够配置用于IAB节点与下级节点进行通信的时隙格式,从而为IAB节点与下级节点的正常通信提供基础。该方法包括:第二节点向第一节点发送第一配置信息,第二节点为第一节点的上级节点;第一节点根据第一配置信息,确定第一集合中各时隙的时隙格式,第一集合包括一个或者多个周期内用于第一节点与第三节点进行通信的时隙,第三节点为第一节点的下级IAB节点或者第一节点所服务的终端设备;第一节点修改第一集合中部分时隙的时隙格式,得到修改后的部分时隙的时隙格式。

Description

配置时隙格式的方法和通信装置
本申请要求于2018年09月28日提交中国专利局、申请号为201811138766.0、申请名称为“配置时隙格式的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种配置时隙格式的方法和通信装置。
背景技术
中继网络中,中继节点(relay node,RN)通过上级回传链路与上级节点通信,同时通过接入链路与下级终端设备通信或者通过下级回传链路与下级中继节点进行通信。带内中继是上级回传链路与接入链路或者上级回传链路与下级回传链路共享相同频段的中继方案。带内中继一般具有半双工的约束,具体地,中继节点在接收其上级节点发送的下行信号时不能向其下级节点(包括下级终端设备和下级中继节点)发送下行信号,而中继节点在接收其下级节点发送的上行信号时不能向其上级节点发送上行信号。
新无线(new radio,NR)的带内中继方案被称为一体化接入回传(integrated access and backhaul,IAB),而中继节点被称为IAB节点(node)。IAB节点的功能可以分为用户设备(user equipment,UE)功能和基站功能两部分,其中,UE功能负责IAB节点与上级节点之间的通信,而基站功能负责IAB节点与下级节点的通信。IAB节点的基站功能若要与下级节点进行正常的通信,需要配置IAB节点的基站功能与下级节点进行通信的时隙格式。然而,当前技术还并未涉及如何配置IAB节点的基站功能与下级节点进行通信的时隙格式的方案。
发明内容
本申请提供一种配置时隙格式的方法,该方法能够配置用于IAB节点与下级节点进行通信的时隙格式,从而为IAB节点与下级节点的正常通信提供基础。
第一方面,提供了一种配置时隙格式的方法,该方法包括:第一节点接收第二节点发送的第一配置信息,所述第二节点为所述第一节点的上级节点;
所述第一节点根据所述第一配置信息,确定第一集合中各时隙的时隙格式,所述第一集合包括一个或者多个周期内用于所述第一节点与第三节点进行通信的时隙,所述第三节点为所述第一节点的下级IAB节点或者所述第一节点所服务的终端设备,所述时隙格式表示一个时隙内各符号的类型,所述符号的类型至少包括上行符号和下行符号;
所述第一节点修改所述第一集合中部分时隙的时隙格式,得到修改后的所述部分时隙的时隙格式。
本申请提供的配置时隙格式的方法,通过第一节点先配置用于第一节点与下级节点进 行通信的各时隙的时隙格式,再由第一节点修改所配置的部分时隙格式,使得第一节点可以确定与下级节点进行通信的各时隙的实际时隙格式,从而第一节点可以根据与下级节点进行通信的各时隙的实际时隙格式,与下级节点进行通信。
本申请中,第二节点可以是IAB节点也可以是宿主节点。
在第二节点为IAB节点的情况下,第二节点可以先确定第一配置信息,然后直接向第一节点发送第一配置信息而不经由其他的节点;或者,第二节点可以先确定第一配置信息,然后向宿主节点发送第一配置信息,再由宿主节点直接向第一节点发送第一配置信息;或者,第二节点可以先向宿主节点发送第一配置信息,然后宿主节点再向第二节点发送第一配置信息,最后再由第二节点向第一节点发送第一配置信息。在第二节点为宿主节点的情况下,第二节点可以直接向第一节点发送第一配置信息。
可选地,第一配置信息可以是至少一个索引值,所述多个索引值与所述第一集合所包括的至少一个时隙一一对应,每个索引值用于指示其所对应的时隙的时隙格式。
可选地,第一配置信息可以是半静态信令,例如第一配置信息可以是RRC消息(或信令),或者,第一配置信息可以通过第二节点与第一节点的基站功能的接口或宿主节点与第一节点的基站功能的接口传递,例如,F1-AP接口。F1为集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)之间的接口。
本申请中,上行符号为用于上行通信的符号,在上行符号内,第三节点可以进行上行通信。下行符号为用于下行通信的符号,在下行符号内,第一节点可以进行下行通信。
可选地,符号的类型还可以包括待确定传输方向的符号和不用于第一节点不与第三节点进行通信的符号中的一种或者两种。本文中,将待确定传输方向的符号称为:灵活符号,将不用于第一节点不与第三节点进行通信的符号称为:静默符号。
可选地,所述部分时隙可以是特定的若干时隙,比如可以是协议规定的若干时隙或者第二节点所指示的若干时隙。
可选地,所述部分时隙可以包括第一配置信息所配置的灵活时隙。
在一种理解中,若一个时隙内各符号均为灵活符号,可以将该时隙称为灵活时隙。在另一种理解中,一个时隙内只要包括灵活符号,则将该时隙称为灵活时隙,比如,若一个时隙包括14个符号,14个符号中只要有1个符号为灵活符号,无论其他符号是何类型,都可以将该时隙称为灵活时隙。
第一配置信息所配置的灵活时隙可以被修改为上行时隙、下行时隙、静默时隙或者灵活时隙,或者第第一配置信息所配置的灵活时隙内的部分灵活符号可以被修改为上行符号、下行符号、静默符号或者灵活符号。在一种可能的实现方式中,第一节点修改时隙格式后仍为灵活时隙的时隙,可以由第一节点自行确定传输方向。在另一种可能的实现方式中,第一节点修改时隙格式后仍为灵活时隙的时隙,可以作为静默时隙。
上述中,上行时隙指时隙内各符号均为上行符号的时隙。下行时隙指时隙内各符号均为下行符号的时隙。在一种理解中,若一个时隙内各符号均为静默符号,可以将该时隙称为静默时隙。在另一种理解中,若一个时隙内只要包括静默符号,则将该时隙称为静默时隙。
可选地,第一配置信息所配置的灵活/静默时隙为第二节点与第一节点之间的回传时隙,即用于第二节点与第一节点进行通信的时隙。
结合第一方面,在第一方面的某些实现方式中,在所述第一节点修改所述第一集合中部分时隙的时隙格式之前,所述方法还包括:
所述第一节点接收所述第二节点发送的第二配置信息,所述第二配置信息用于重新配置所述部分时隙的时隙格式;
其中,所述第一节点修改所述第一集合中部分时隙的时隙格式,包括:
所述第一节点根据所述第二配置信息,修改所述部分时隙的时隙格式。
可以理解,与第一配置信息的发送方式类似,第二配置信息可以由第二节点自主确定后发送给第一节点,也可以由第二节点自主确定后先发送给宿主节点,再由宿主节点发送给第二节点,然后第二节点发送给第一节点。第二配置信息也可以由宿主节点自主确定,然后通过第二节点发送给第一节点。
可选地,第二配置信息可以将第一配置信息所配置的灵活时隙修改为上行时隙、下行时隙、静默时隙或者灵活时隙,或者第第一配置信息所配置的灵活时隙内的部分灵活符号可以被修改为上行符号、下行符号、静默符号或者灵活符号。
可选地,在第二配置信息所配置的灵活时隙或者灵活符号内,第一节点不与第三节点进行通信,即第二配置信息所配置的灵活时隙/符号等价于静默时隙。
可选地,第二配置信息可以是动态信令,该动态信令例如可以是下行控制信息(downlink control information,DCI)或者媒体接入控制控制单元(media access control control element,MAC CE)或者其他的动态信令。进一步地,DCI可以是DCI格式(format)2-0或者其他的DCI格式。
通过动态信令发送第二配置信息,可以使第一节点及时修改所述部分时隙的时隙格式。
可选地,第二配置信息所指示的所述部分时隙的时隙格式可以是跨周期的,这样第一节点可及时修改所述部分时隙的时隙格式。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述第一节点向所述第二节点发送需求报告消息,所述需求报告消息用于指示所述第一节点期望的与所述第三节点进行通信的上下行配比。
具体来讲,在第二节点发送第二配置信息之前,所述第一节点可以向所述第二节点发送需求报告消息。这样,第二节点可以根据第一节点期望的与所述第三节点进行通信的上下行配比,确定第二配置信息,以使所述部分时隙的时隙格式满足第二节点的需求。
结合第一方面,在第一方面的某些实现方式中,第一节点可以自行修改所述部分时隙的时隙格式。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述第一节点向所述第二节点发送第一指示信息,所述第一指示信息用于指示修改后的所述部分时隙的时隙格式。
比如,第一节点可以在自行修改所述部分时隙的时隙格式后,向第二节点发送第一指示信息,以使第二节点获知修改后的所述部分时隙的时隙格式。这样,第二节点在与第一节点或其他节点进行通信时,通过参考修改后的修改后的所述第一节点与第三节点进行通信的时隙格式,能够尽可能避免或者降低干扰。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述方法还包括:
所述第一节点向所述第三节点发送第三配置信息,所述第三配置信息用于配置所述第三节点的时隙格式。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述第一节点根据所述第三节点时隙格式和修改后的所述第一节点与第三节点进行通信的时隙格式,与所述第三节点进行通信。
进一步地,所述第一节点可以根据所述第三节点时隙格式和修改后的所述第一节点与第三节点进行通信的时隙格式,触发或者禁止空分复用。
第二方面,提供了一种配置时隙格式的方法,包括:
第二节点确定第一集合中各时隙的时隙格式,所述第一集合包括一个或者多个周期内用于所述第一节点与第三节点进行通信的时隙,所述第三节点为所述第一节点的下级一体化接入回传IAB节点或者所述第一节点所服务的终端设备,所述时隙格式表示一个时隙内各符号的类型,所述符号的类型至少包括上行符号和下行符号;
所述第二节点向所述第一节点发送第一配置信息,所述第一配置信息用于指示所述第一集合中各时隙的时隙格式。
本申请提供的配置时隙格式的方法,第二节点可以通过第一配置信息配置第一节点与下级节点进行通信的各时隙的时隙格式,从而为IAB节点与下级节点的正常通信提供基础。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述第二节点向所述第一节点发送第二配置信息,所述第二配置信息用于修改所述第一集合中部分时隙的时隙格式。
结合第二方面,在第二方面的某些实现方式中,在所述第二节点向所述第一节点发送第二配置信息之前,所述方法还包括:
所述第二节点接收所述第一节点发送的需求报告消息,所述需求报告消息用于指示所述第一节点期望的与所述第三节点进行通信的上下行配比。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述第二节点接收所述第一节点发送的第一指示信息,所述第一指示信息用于指示修改后的所述第一集合中部分时隙的时隙格式。
结合第二方面,在第二方面的某些实现方式中,所述符号的类型还包括灵活符号和静默符号中的一种或两种,其中,所述第一配置信息所配置的灵活符号指未确定传输方向的符号,所述第一节点在所述静默符号内不与所述第三节点进行通信。
结合第二方面,在第二方面的某些实现方式中,所述部分时隙为所述第一配置信息配置的灵活符号所在的时隙的时隙格式,所述第一配置信息所配置的灵活符号指未确定传输方向的符号。
第二方面的上述上述实现方式中的任一实现方式可以参照对第一方面对应的实现方式的说明,这里不再赘述。
第三方面,提供了一种通信装置,包括用于执行上述第一方面及第二方面中任一实现方式中的方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为通信设备(例如,IAB节点),通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第四方面,提供了一种通信装置,包括用于执行上述第二方面及第二方面中任一实现方式中的方法的各步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为通信设备(例如,IAB节点或者宿主节点(如基站)),通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第五方面,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行第一方面或第一方面任一种可能实现方式中的方法、或者第二方面或第二方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,上述处理器可用于进行,例如但不限于,基带相关处理,接收器和发射器可分别用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上,例如,接收器和发射器可以设置在彼此独立的接收器芯片和发射器芯片上,也可以整合为收发器继而设置在收发器芯片上。又例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
第六方面,提供一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第二方面以及第一方面至第二方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第七方面,提供一种处理装置,包括:存储器和处理器。所述处理器用于读取所述存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第二方面以及第一方面至第二方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第八方面,提供了一种芯片,包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,该计算机程序用于实现第一方面至第二方面以及第一方面至第二方面任一种可能实现方式中的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第二方面以及第一方面至第额方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
附图说明
图1是适用于本申请的一种IAB系统的示意图。
图2是对IAB节点的UE功能和基站功能进行划分的示意图。
图3是本申请实施例提供的一种配置时隙格式的方法的示意性流程图。
图4是一种时隙格式配置示意图。
图5是根据本申请实施例提供的配置时隙格式的方法的一个具体示例的示意性流程图。
图6是根据本申请实施例提供的配置时隙格式的方法的另一具体示例的示意性流程图。
图7是根据本申请实施例的一种帧结构。
图8是一种第三节点、第一节点的UE功能和第一节点的基站功能的时隙格式配置示意图。
图9是一种第三节点、第一节点的UE功能和第一节点的基站功能的时隙格式配置示意图。
图10是一种第三节点、第一节点的UE功能和第一节点的基站功能的时隙格式配置示意图。
图11是一种第三节点、第一节点的UE功能和第一节点的基站功能的时隙格式配置示意图。
图12是一种第三节点、第一节点的UE功能和第一节点的基站功能的时隙格式配置示意图。
图13是一种第三节点、第一节点的UE功能和第一节点的基站功能的时隙格式配置示意图。
图14是本申请的通信装置的一例的示意性框图。
图15是本申请的网络设备的一例的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于第五代(5th generation,5G)系统或新无线(new radio,NR)以及未来的通信系统等。
在一种实现方式中,本申请实施例的技术方案可以应用于带内中继系统(即,IAB系统)中。IAB系统可以包括宿主(donor)节点、若干IAB节点和若干终端设备。IAB节点通过无线链路与上级节点连接,同时IAB节点可为其下级节点提供服务。上级节点可以是基站(例如NR中的gNB),也可以是另一个IAB节点;下级节点可以是普通的终端设备,也可以是另一个IAB节点。宿主节点可以是基站(例如,gNodeB)或者中继传输接收点(relaying transmission and reception point,rTRP),当宿主节点为gNodeB时,可以将宿主节点简记为DgNB。
IAB节点与上级节点通信的链路被称为上级回传(parent backhaul,parent BH)链路,与下级终端设备通信的链路被称为接入(access,AC)链路,而与下级IAB节点通信的链路被称为下级回传链路(child backhaul,child BH)。有时,IAB节点与上级节点通信的链路被称为回传链路,而与下级节点通信的链路被称为接入链路(无论下级节点为终端设备还是IAB节点)。为了便于理解,本申请中统一将IAB节点与上级节点通信的链路称为上级回传链路,将IAB节点与下级终端设备通信的链路称为接入链路,将IAB节点与下级IAB节点通信的链路称为下级回传链路。
图1示出了一种IAB系统的示意图。如图1所示,该系统包括IAB节点101、IAB节点102、IAB节点103、宿主节点104、终端设备105和终端设备106。
参见图1,IAB节点103和终端设备106为IAB节点101的下级节点(或者称子节点或者下游节点),IAB节点101通过下级回传链路11与IAB节点103进行通信,IAB节点101通过接入链路16为终端设备106提供服务。IAB节点102通过接入链路15为终端设备105提供服务。在一种网络拓扑中,IAB节点101的上级节点(或者称父节点或者上游节点)为宿主节点104,IAB节点101可以直接通过上级回传链路13与宿主节点104进行通信而不经过其他的IAB节点。在另一种网络拓扑中,IAB节点101的上级节点为IAB节点102,IAB节点101可以通过中间IAB节点与宿主节点104进行通信,如图1所示,IAB节点101可以通过先与IAB节点102进行通信,再由IAB节点102与宿主节点进行通信的方式实现与宿主节点104之间的通信。其中,IAB节点104通过上级回传链路12与IAB节点102进行通信,IAB节点102通过上级回传链路14与宿主节点104进行通信。在一些描述中,当某一IAB节点的下级节点为IAB节点时,该下级节点可以称为该IAB节点的下级IAB节点(或者子IAB节点或者下游IAB节点),相应地,该IAB节点可以称为该下级节点的上级IAB节点(或者父IAB节点或者上游IAB节点),例如,IAB节点103可以称为IAB节点101的下级IAB节点。
本申请中,终端设备,例如终端设备105或终端设备106,也可以称为UE、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理或用户装置等,其具体可以是WLAN中的站点(station,ST)、蜂窝电 话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的PLMN网络中的终端设备等中的任意一种。
如图2所示,IAB节点(例如,IAB节点101)的功能可以分为UE功能和基站功能两部分,其中,UE功能负责IAB节点与上级节点之间的通信,而基站功能负责IAB节点与下级节点的通信。具体来讲,IAB节点面向上级节点和面向下级节点的功能有所差异。在一种可能的实现方式中,IAB节点通过上级回传链路接入上级节点的部分/功能可以称为移动终端(mobile-termination,MT),该部分可以执行类似NR中UE的功能。IAB节点通过接入链路为下级节点提供接入的部分/功能可以称为分布式单元(distributed unit,DU),该部分可以执行类似NR中基站的功能。
可以理解,IAB节点(或者IAB节点的基站功能)若要与下级节点进行正常的通信,需要配置IAB节点与下级节点进行通信的时隙格式或者说传输方向,即,需要配置IAB节点的基站功能的时隙格式。然而当前技术还未提供配置IAB节点与下级节点进行通信的时隙格式的方案。
为此,本申请提供了一种配置时隙格式的方法,该方法能够配置用于IAB节点与下级节点进行通信的时隙格式,从而为IAB节点与下级节点的正常通信提供基础。以下,对本申请提供的时隙格式的方法进行详细说明。
应理解,下文中在具体描述本申请提供的方法时,为了便于理解,一些步骤是以第一节点为执行主体进行描述的,然而实际上这些步骤也可以由第一节点的部件(例如芯片或者电路)实现。类似地,另一些步骤是以第二节点或第三节点或终端设备为执行主体进行描述的,相应地,实际上这些步骤也可以由第二节点的部件(例如芯片或者电路)或者第三节点的部件(例如芯片或者电路)或者终端设备的部件(例如芯片或者电路)实现。
图3是本申请实施例提供的一种配置时隙格式的方法。下面结合各步骤进行详细说明。
S302,第二节点向第一节点发送第一配置信息。相应地,第二节点接收第一节点发送的第一配置信息。其中,第一配置信息用于配置一个或者多个周期内用于第一节点与第三节点进行通信的各时隙的时隙格式。
第一节点为第二节点的下级节点,或者说,第二节点为第一节点的上级节点;第三节点为第一节点的下级节点,或者说,第一节点为第三节点的上级节点。第一节点可以是IAB节点;第三节点可以是IAB节点或者终端设备,也就是说,第三节点可以是第一节点的下级IAB节点或者第一节点所服务的终端设备;第二节点可以是IAB节点也可以是宿主节点。结合图1来说,第一节点为图中的IAB节点101,第二节点为图中的IAB节点102或者宿主节点104,第三节点为图中的IAB节点103或者终端设备106。
在第二节点为IAB节点的情况下,第二节点可以先确定第一配置信息,然后直接向第一节点发送第一配置信息而不经由其他的节点;或者,第二节点可以先确定第一配置信息,然后向宿主节点发送第一配置信息,再由宿主节点直接向第一节点发送第一配置信息;或者,第二节点可以先向宿主节点发送第一配置信息,然后宿主节点再向第二节点发送第一配置信息,最后再由第二节点向第一节点发送第一配置信息。在第二节点为宿主节点的情 况下,第二节点可以直接向第一节点发送第一配置信息。
第一配置信息可以是半静态信令,例如第一配置信息可以是RRC消息(或信令),或者,第一配置信息可以通过第二节点与第一节点的基站功能的接口或宿主节点与第一节点的基站功能的接口传递,例如,F1-AP接口等。本申请不对承载第一配置的信令或接口加以限制。
第一配置信息可以配置用于第一节点与第三节点进行通信的时隙格式,换句话说,第一配置信息可以配置第一节点的基站功能或者第一节点的基站功能链路的时隙格式。具体来说,第一配置信息可以配置一个或者多个周期内用于第一节点与第三节点进行通信的各时隙的时隙格式。多个周期可以是多周期(例如,双周期),多周期可以理解为多个单周期构成的一个大的周期。比如,参见图4,当第一个周期的周期长度为P1,第二个周期的周期长度为P2时,由第一个周期和第二个周期构成的周期为双周期,P1与P2可以相等,也可以不等,第一个周期的时隙格式和第二个周期的时隙格式可以相同也可以不同,本申请对此不作限定。单周期可以理解为普通意义上的一个周期。单周期或者多周期的周期长度可以由第二节点或者宿主节点配置。
在一种可能的实现方式中,第一配置信息也可以是针对多个单周期或者多个多周期的。这里的意思是,第一配置信息可以显式指示多个单个周期或者多个多周期(例如,多个双周期)内各时隙的时隙格式。或者,第一配置信息虽然只配置了一个单周期或者一个多周期中各时隙的时隙格式,但第一节点在没有接收到其他用于配置第一节点与第三节点进行通信的各时隙的时隙格式的半静态信令之前,认为用于第一节点与第三节点进行通信的各时隙的时隙格式遵循第一配置信息所配置的时隙格式。
本文中,为了便于理解和描述,将一个或者多个周期内用于第一节点与第三节点进行通信的各时隙所构成的集合称为:第一集合。容易理解,第一配置信息用于配置第一集合的时隙格式或者说第一配置信息用于配置第一集合中各时隙的时隙格式。
时隙格式表示一个时隙内各符号的类型,所述符号的类型至少包括上行符号和下行符号两种类型。容易理解,上行符号为用于上行通信的符号,在上行符号内,第三节点可以进行上行通信。下行符号为用于下行通信的符号,在下行符号内,第一节点可以进行下行通信。
符号的类型还可以包括待确定传输方向的符号和不用于第一节点不与第三节点进行通信的符号中的一种或者两种。本文中为了便于理解和描述,将待确定传输方向的符号称为灵活符号,将不用于第一节点不与第三节点进行通信的符号称为静默符号。本领域技术人员可以理解,待确定传输方向的符号也可以有其他的名称,本申请对如何称谓待确定传输方向的符号不作限定。类似地,不用于第一节点不与第三节点进行通信的符号也可以有其他的名称,比如,保留符号,本申请对如何称谓不用于第一节点不与第三节点进行通信的符号不作限定。
另外,为使本领域技术人员更好地理解本申请,本申请作如下定义:
(1)上行时隙:时隙内各符号均为上行符号的时隙。
(2)下行时隙:时隙内各符号均为下行符号的时隙。
(3)灵活时隙:在一种理解中,若一个时隙内各符号均为灵活符号,可以将该时隙称为灵活时隙。在另一种理解中,一个时隙内只要包括灵活符号,则将该时隙称为灵活时 隙,比如,若一个时隙包括14个符号,14个符号中只要有1个符号为灵活符号,无论其他符号是何类型,都可以将该时隙称为灵活时隙。
(4)静默时隙:在一种理解中,若一个时隙内各符号均为静默符号,可以将该时隙称为静默时隙。在另一种理解中,若一个时隙内只要包括静默符号,则将该时隙称为静默时隙。
在本申请提供的附图以及实施例中,用“U”表示上行符号/时隙,用“D”表示下行符号/时隙,用“F”表示灵活符号/时隙。
参见图4所示的时隙格式配置,第一个周期中的时隙0至时隙9被第一配置信息配置为:下行时隙(时隙0-2)、灵活时隙(时隙3-6)、上行时隙(时隙7-9);第二个周期中的时隙0至时隙9被第一配置信息配置为:下行时隙(时隙0-3)、灵活时隙(时隙4-5)、上行时隙(时隙6-9)。
本申请中,待确定传输方向的符号的传输方向可以通过动态信令(例如,下文中描述的第二配置信息)配置,或者,可以由第一节点自行配置。
进一步地,可以通过对待确定传输方向的符号赋予不同的名称或者标识来区分这两种配置方式。比如,在一种配置方式下,待确定传输方向的符号也可以称为预留符号,或者记作“E”,在另一种配置方式下,待确定传输方向的符号可以称为待定符号,或者记作“S”。或者,可以通过时隙格式对上述两种配置方式进行区分,比如,时隙格式为“1”和“2”均表示该时隙中各符号全部为灵活符号,但当时隙格式为“1”时,表示灵活符号的传输方向通过动态信令配置,但当时隙格式为“2”时,表示灵活符号的传输方向由第一节点自行配置。
在一种可能的实现中,第一配置信息所配置的灵活/静默时隙为第二节点与第一节点之间的回传时隙,即用于第二节点与第一节点进行通信的时隙。
S306,第一节点根据第一配置信息,确定第一集合中各时隙的时隙格式。
第一节点根据第一配置信息确定第一集合中各时隙的时隙格式,可以理解为第一节点解码第一配置信息的过程。具体如何解码第一配置信息可以参考现有技术的解码方式,这里不再赘述。解码第一配置信息后,第一节点可以获知第一集合中各时隙的时隙格式。
S310,第一节点修改第一集合中部分时隙的时隙格式,得到修改后的所述部分时隙的时隙格式。
在S310中,第一节点可以修改第一配置信息配置的灵活时隙的时隙格式。另外,第一节点还可以修改第一配置信息配置的其余时隙格式。此外,本申请并不限定第一节点一定要修改灵活时隙的时隙格式。。
示例性的,第一节点可以将灵活时隙修改为上行时隙、下行时隙、静默时隙或者灵活时隙,或者第一节点可以将灵活时隙内的部分灵活符号修改为上行符号、下行符号、静默符号或者灵活符号。在一种可能的实现方式中,第一节点修改时隙格式后仍为灵活时隙的时隙,可以由第一节点自行确定传输方向。在另一种可能的实现方式中,第一节点修改时隙格式后仍为灵活时隙的时隙,可以作为静默时隙。
可选地,所述部分时隙可以是特定的若干时隙,比如可以是协议规定的若干时隙或者第二节点所指示的若干时隙。
综上,本申请实施例的方法,通过第一节点先配置用于第一节点与下级节点进行通信的各时隙的时隙格式,再由第一节点修改所配置的部分时隙格式,使得第一节点可以确定 与下级节点进行通信的各时隙的实际时隙格式,从而第一节点可以根据与下级节点进行通信的各时隙的实际时隙格式,与下级节点进行通信。
需要说明的是,为了便于理解和描述,本文中将修改所述部分时隙的时隙格式前,得到的第一集合中各时隙的时隙格式称为:第一节点的基站功能初始时隙格式;将修改所述部分时隙的时隙格式后,得到的第一集合中各时隙的时隙格式称为:第一节点的基站功能实际时隙格式。
S310具体可以通过两种可选方式实现。方式一:第一节点可以根据第二节点的指示修改所述部分时隙的时隙格式。方式二:第一节点自主或者自行修改所述部分时隙的时隙格式。下面将结合图5和图6对这两种方式进行详细说明。
参见图5,图5示出了一种配置时隙格式的方法。在该方法中,第一节点可以根据第二节点发送的第二配置信息修改所述部分时隙的时隙格式。下面结合附图进行详细说明。
S502~S506,第二节点向第一节点发送第一配置信息,第一节点根据第一配置信息确定第一集合中各时隙的时隙格式。具体地可以参照上文中对图3所示的方法中的步骤S302和S306所作的说明,这里不再赘述。
S510,第一节点向第二节点发送需求报告消息。相应地,第二节点接收第一节点发送的需求报告消息。
需求报告消息用于指示所述第一节点期望的与所述第三节点进行通信的上下行配比。例如,需求报告消息具体可以用于指示第一节点请求增加上行时隙或者增加下行时隙。需求报告消息可通过UCI等动态信令上报,也可以通过RRC信令或者F1接口信息上报。
S514,第二节点向第一节点发送第二配置信息。相应地,第一节点接收第二节点发送的第二配置信息。
S518,第一节点根据第二配置信息,修改第一集合中所述部分时隙的时隙格式。
应理解,第一节点修改部分时隙的时隙格式可以理解为第一节点解码第二配置信息。
上述中,步骤S510为可选步骤。若S510被执行,第二节点在生成第二配置信息时需要考虑需求报告消息,也就是说第二配置信息可以根据需求报告消息生成,否则不需要。
与第一配置信息的发送方式类似,第二配置信息可以由第二节点自主确定后发送给第一节点,也可以由第二节点自主确定后先发送给宿主节点,再由宿主节点发送给第二节点,然后第二节点发送给第一节点。第二配置信息也可以由宿主节点自主确定,然后通过第二节点发送给第一节点。若第二配置信息由宿主节点自主确定,第二节点需要将需求报告消息发送给宿主节点。
第二配置信息用于指示所述部分时隙中各时隙的时隙格式。第二配置信息用于指示所述部分时隙中各时隙的时隙格式具体可以是:(1)第二配置信息直接指示所述部分时隙中各时隙的时隙格式。或者,(2)第二配置信息直接指示用于第二节点与第一节点进行通信的时隙格式,并令第一节点跟随此时隙格式,比如可以通过协议约定或者信令指示第一节点与第三节点进行通信的时隙格式需与用于第二节点与第二节点的下级节点进行通信的时隙格式相同。
在一种可能的实现中,在第二配置信息所配置的灵活时隙或者灵活符号内,第一节点不与第三节点进行通信,即第二配置信息所配置的灵活时隙/符号等价于静默时隙。
可选地,第二配置信息可以是动态信令,该动态信令例如可以是DCI或者MAC CE 或者其他的动态信令。进一步地,DCI可以是DCI格式(format)2-0。
当前技术中,基站可以通过DCI格式2-0配置终端设备的时隙格式,根据现有技术,第二节点向第一节点发送的DCI格式2-0应用于指示第一节点的UE功能实际时隙格式。而本申请中,可以采用DCI格式2-0指示第一节点的基站功能实际时隙格式,因此,本申请中的DCI格式2-0可视作一种特殊的DCI格式2-0。在被配置了特殊DCI格式2-0的同时,第二节点还可被配置普通的DCI格式2-0,用于指示第一节点的UE功能实际时隙格式。第一节点需要区分DCI格式2-0是用于哪种用途,即用于基站功能还是UE功能。第二节点可在为第一节点配置DCI格式2-0时指示其具体用途,当两种用途被同时配置时,两个DCI格式2-0可采用不同的RNTI进行CRC加扰。在另一种实现中,可以定义一种新的DCI格式用于指示第一节点的基站功能实际时隙格式。
本申请中,第二配置信息可以仅指示所述部分时隙的时隙格式而不指示第一集合中除所述部分时隙以外的其他时隙的时隙格式,或者,第二指示信息可以指示第一集合中全部时隙的时隙格式。以第二配置信息为特殊DCI格式2-0为例,特殊DCI格式2-0可以通过仅指示所述部分时隙的时隙格式而不指示第一集合中除所述部分时隙以外的其他时隙的时隙格式,来指示第一节点的基站功能实际时隙格式,或者,特殊DCI格式2-0可以通过指示第一集合中全部时隙的时隙格式,来指示第一节点的基站功能实际时隙格式。容易理解,在第二配置信息用于指示第一集合中全部时隙的时隙格式时,第二配置信息所指示的除所述部分时隙以外的其他时隙的时隙格式与第一配置信息所指示的时隙格式相同。比如,第一配置信息所指示的时隙0的时隙格式为“1”,在时隙0不属于所述部分时隙,第二配置信息所指示的时隙0的时隙格式也为“1”。一般地,第二配置信息所指示的时隙个数大于一个单周期或者一个多周期所包括的时隙总数,但本申请实施例对此不作限定。
通过第二配置信息所指示的所述部分时隙的时隙格式可以是针对一个单周期或者多周期的,也可以是针对多个单周期或者多周期的。例如,在第一节点接收到第二配置信息后,第一节点的基站功能可以按照此配置进行N(N为大于1的整数)个周期的发送和接收。又例如,在第一节点接收到第二配置信息后,第一节点的基站功能可以按照此配置持续进行N个周期的发送和接收,直到第一节点重新接收到用于修改第一集合中若干时隙的时隙格式的信令。
通过第二配置信息所指示的所述部分时隙的时隙格式可以是跨周期的,这样第一节点可及时修改所述部分时隙的时隙格式。例如,同样参见图4,当第二个周期的周期长度为P1时,表示时隙格式采用单周期进行配置。当第二个周期的周期长度为P2时,表示时隙格式采用双周期进行配置。第二节点可以在第一个周期中发送第二配置信息,所述第二配置信息用于修改第二周期中部分时隙的时隙格式。图4中时隙格式的指示仅跨越了一个周期,在具体实现时,时隙格式的指示可跨越多个周期,具体的跨周期数目可由第二节点或者宿主节点配置。
作为本申请一个实施例,该方法还可以包括:
S522,第一节点向第三节点发送第三配置信息。
相应地,第三节点接收第一节点发送的第三配置信息。其中,第三配置信息用于配置第三节点的时隙格式。
步骤S522可以在S526之后执行,也可以在S506,S518之前执行,本申请对此不作 限定。
S526,第三节点根据第三配置信息,确定第三节点的时隙格式。
在S522中,第一节点发送第三配置信息的方式可以是广播或者单播。以第三配置信息广播消息为例,该广播消息可以通过以下三种方式中的任一种发送:
(1)由第一节点的宿主节点直接决策(或者说确定)并发送至第一节点,然后由第一节点向下属终端设备或第三节点广播。
(2)由第一节点决策,然后第一节点请求宿主节点封装为广播RRC消息并发送至第一节点,最后由第一节点广播。
(3)由第一节点决策并广播。
第一节点的基站功能初始时隙格式或者第一节点的基站功能实际时隙格式和第三配置信息所配置的第三节点的时隙格式可以不相同。为了便于理解和描述,下文中将第一节点的基站功能初始时隙格式或者第一节点的基站功能实际时隙格式,称为:配置A,将第三配置信息所配置的第三节点的时隙格式,称为:配置B。
第一节点的接入链路(即第一节点与下级终端设备之间的链路)传输方向需要同时满足配置A和配置B,或者说第一节点的下级终端设备与第一节点进行通信时,第一节点需要同时考虑配置A和配置B;而第一节点的下级回传链路至少需满足配置A,即在某些场景下,第一节点的下级回传链路可不满足配置B。
以图4中的第一个周期中的时隙格式配置为例进行说明。对于图4所示的第一个周期中的时隙2,配置B指示为下行时隙,则终端设备不可能在此时隙被调度上行数据;但对于下级回传链路,此时隙可能为下行或上行。在第二配置信息仅修改灵活时隙的情况下,若配置A指示此时隙为下行,则下级回传链路也为下行;若配置A指示此时隙为上行,则下级回传链路可以进行上行传;若配置A指示此时隙为灵活时隙,则两种情况都可被支持。
需注意,配置A仅第一节点可见,而配置B是第一节点和第三节点都可见的。第一节点可通过单播RRC将部分配置A中的配置发送给第三节点,也可以不发送。
在上述描述中,第一节点同一时刻仅接收一套配置A,而第一节点可根据配置B判断配置A中哪些时隙可同时应用于接入链路和下级回传链路,而哪些时隙仅可应用于下级回传链路。
在一种可能的实现中,第一节点针对基站功能的接入链路和下级回传链路具有不同的配置A,即第一节点在与终端设备和下级IAB节点通信时可以具有不同的配置A。
在一种可能的实现中,配置A和配置B采用相同的周期配置。
在一种可能的实现中,配置A中的静默/灵活时隙表示了第一节点的上级回传链路所占用时隙。
在一种可能的实现中,第一节点的基站功能可具有多个不同的小区、扇区或收发面板(panel),此时,不同的小区、扇区或收发面板可能具有不同的配置A和配置B。本申请实施例仅针对第一节点的基站功能的一个小区、扇区或收发面板进行描述,但所有实施例均可扩展至多小区、扇区或收发面板的情况。
参见图6,图6示出了另一种配置时隙格式的方法。在该方法中,第一节点可以根据自行修改所述部分时隙的时隙格式。下面结合附图进行详细说明。
S602~S606,第二节点向第一节点发送第一配置信息,第一节点根据第一配置信息确定第一集合中各时隙的时隙格式。具体地可以参照上文中对图3所示的方法中的步骤S302和S306所作的说明,这里不再赘述。
S610,第一节点自行修改第一集合中所述部分时隙的时隙格式。
S614,第一节点向第二节点发送第一指示信息。相应地,第二节点接收第一节点发送的第一指示信息。
其中,第一指示信息用于指示修改后的所述部分时隙的时隙格式。进一步地,第一指示信息还可以包括未修改的时隙的时隙格式。第二节点根据第一节点发送的第一指示信息,可以获知第一节点基站功能实际时隙格式。
应理解,若第一配置信息为宿主节点通过第二节点向第一节点发送的,第二节点在接收到第一指示信息后,还可以向宿主节点发送第一指示信息,但本申请实施例对此不作限定。
可选地,第一指示信息可以通过上行控制信息(uplink control information,UCI)携带。从而,第二节点可以及时获知第一节点所修改的部分时隙的时隙格式。
可选地,与第二配置信息跨周期指示所述部分时隙的时隙格式类似,第一节点可以跨周期发送第一指示信息,这里的意思是第一指示信息所指示的时隙格式是当前周期(发送第一指示信息的周期)之后的其他周期的时隙格式。一般地,第一节点可以在第一配置信息所配置的时隙之前的时隙发送第一指示信息,但本申请并不排除在第一配置信息所配置时隙之后发送第一指示信息)。当第一指示信息在第一配置信息所配置的时隙之前发送时,第二节点可通过上文中的动态信令#1覆盖第一节点的自行修改的所述部分时隙的时隙格式。
作为本申请一个实施例,该方法还可以包括:
S618~S622,第一节点向第三节点发送第三配置信息,第三节点根据第三配置信息,确定时隙格式。具体地可以参照上文中对图5所示的方法中的步骤S522和S526所作的说明,这里不再赘述。
本申请中,由于第一节点包括基站功能和UE功能两部分,因此第一节点的基站功能的时隙格式配置可能需要考虑第一节点的UE功能的时隙格式配置。
具体来讲,第一集合可以包括用于上级回传链路的时隙,也可以不包括用于上级回传链路的时隙,本申请实施例对此不作限定。具体来讲,第一节点的帧结构分为两部分,即第一节点的UE功能的时隙格式和第一节点的基站功能的时隙格式(即,上文中的配置A)。例如,参见图7所示的帧结构。图7中的帧结构分为两部分,上部分为第一节点的UE功能的时隙格式,下部分第一节点的基站功能的时隙格式。对于第一节点的UE功能,由于不是所有时隙都会被配置为回传时隙(即,用于回传链路的时隙),因此图中仅示意了部分时隙的时隙格式。对于第一节点的基站功能,至少非上级回传时隙(即,不用于上级回传链路的时隙)应被配置时隙格式。应注意,图7所示的时隙1、3和8虽然被配置为上级回传时隙,但其仍可能具有基站功能的时隙格式配置,也就是说,第一集合可以包括时隙1、3和8中的一个或者多个时隙。图7中表示为“X”的时隙表示该时隙存在多种配置的可能。比如,时隙1可以是下行时隙也可以是灵活时隙,时隙8可以是上行时隙也可以是灵活时隙。示例性地,当第一节点在时隙1未被调度上级回传下行链路时,其可向第三节 点发送下行数据;或者时隙1的基站功能可被配置为上行时隙,表示在此时隙,第一节点可在接收上级节点的下行链路的同时接收第三节点的上行链路,即进行空分复用。
下面,将结合几个示例说明上级回传时隙和下级回传时隙重复的场景。
参见图8,图8中分别示出了第一节点的UE功能的时隙格式配置、配置A以及配置B。图7中所示的时隙1和时隙8分别被配置为上级回传时隙和下级传回时隙。
对于时隙1,上级回传链路和下级回传链路均为下行,因此第一节点在此时隙的基站功能链路不工作(当上级回传时隙被调度时),或对终端设备发送下行信号(当上级回传时隙未被调度时)。
对于时隙8,情况与时隙1类似,第一节点的基站功能在此时隙不工作,或接收终端设备的上行信号。
第二节点可通过对第一节点的基站功能进行时隙配置来触发或禁止空分。
首先考虑第三节点为终端设备的情况,即上级回传链路和接入链路的空分复用。参见图9和图10,对于时隙1和8,上级回传链路的时隙配置和配置B指示的时隙配置同向,因此对于终端设备来说,这两个时隙无法进行空分复用。
而对于时隙3,配置B指示为灵活时隙,因此实际传输的时隙是可变的。例如,如图9所示,当上级回传链路为下行,第一节点的基站功能在此时隙被配置为上行时,则第一节点可调度终端设备进行上行传输,实现收端空分复用;参见图10,当上级回传链路为上行,第一节点的基站功能在此时隙被配置为下行时,第一节点可调度终端设备进行下行接收,实现发端空分复用。在一种可能的实现中,第一节点的基站功能在此时隙被配置为灵活,第一节点可根据上级回传链路的调度进行发端或收端空分复用。
由上可知,第二节点可通过对第一节点基站功能的配置来禁止空分复用,如图11和图12所示,若第三节点为第一节点基站功能配置的时隙格式与上级回传链路的方向相同,则第一节点不能进行空分复用。
综上,当第二节点配置第一节点的回传时隙与接入时隙反向(或不同向)时,表示可进行空分复用;或者当第二节点配置第一节点的回传时隙与接入时隙同向(或不反向)时,表示不可进行空分复用。
在另外一种可能的实现中,第二节点通过对第一节点的基站功能的配置实现不进行任何形式的空分复用,例如,参见图11和12所示,在时隙3配置F,表示任何空分复用均不被允许。
当第三节点为IAB节点时,上述机制也可被采用,但下级IAB节点的配置可不受限于基站功能的广播配置。如图13所示,虽然时隙1被第一节点的广播信令配置为下行,但第一节点的基站功能可在此时隙配置为上行,表示上级回传链路下行和下级回传链路上行可进行空分复用。时隙8同理。
根据前述方法,图14为本申请实施例提供的通信装置30的示意图。该装置30可以为IAB节点或者宿主节点,也可以为芯片或电路,如可设置于IAB节点或者宿主节点内的芯片或电路。
该装置30可以包括处理单元31和存储单元32。该存储单元32用于存储指令,该处理单元31用于执行该存储单元32存储的指令,以使该装置30实现前述方法中IAB节点或者宿主节点执行的步骤。
进一步的,该装置30还可以包括输入口33(即,接收单元(例如,第一接收单元或者第二接收单元)的一例)和输出口33(即,处理单元的另一例)。
再进一步的,该处理单元31、存储单元32、输入口33和输出口34(即,发送单元(例如,第一发送单元或者第二发送单元)的一例)可以通过内部连接通路互相通信,传递控制和/或数据信号。
另外,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信装置。即将实现处理单元31、输入口33和输出口34功能的程序代码存储在存储单元中,通用处理单元通过执行存储单元中的代码来实现处理单元31、输入口33和输出口34的功能。
该存储单元32用于存储计算机程序。
在一种实现方式中,该处理单元31可以用于从该存储单元32中调用并运行该计算计程序,以控制该输入口33接收第二节点发送的第一配置信息,所述第二节点为所述通信装置的上级节点。并且,根据所述第一配置信息,确定第一集合中各时隙的时隙格式,所述第一集合包括一个或者多个周期内用于所述通信装置与第三节点进行通信的时隙,所述第三节点为所述通信装置的下级一体化接入回传IAB节点或者所述通信装置所服务的终端设备,所述时隙格式表示一个时隙内各符号的类型,所述符号的类型至少包括上行符号和下行符号;以及,修改所述第一集合中部分时隙的时隙格式,得到修改后的所述部分时隙的时隙格式。
可选地,该处理单元31还可以控制该输入口33接收所述第二节点发送的第二配置信息,所述第二配置信息用于重新配置所述部分时隙的时隙格式。该处理单元31可以根据所述第二配置信息,修改所述部分时隙的时隙格式。
可选地,所述第二配置信息为动态信令。
可选地,处理单元31还可以控制该输出口34向所述第二节点发送需求报告消息,所述需求报告消息用于指示所述通信装置期望的与所述第三节点进行通信的上下行配比。
可选地,处理单元31还可以控制该输出口34向所述第二节点发送第一指示信息,所述第一指示信息用于指示修改后的所述部分时隙的时隙格式。
可选地,所述符号的类型还包括灵活符号和静默符号中的一种或两种,其中,所述第一配置信息所配置的灵活符号指未确定传输方向的符号,所述通信装置在所述静默符号内不与所述第三节点进行通信。
可选地,处理单元31具体用于:
修改所述第一配置信息配置的灵活符号所在的时隙的时隙格式,所述第一配置信息所配置的灵活符号指未确定传输方向的符号。
其中,以上列举的装置30中各模块或单元的功能和动作仅为示例性说明,装置30中各模块或单元可以用于执行上述方法中第一节点所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在另一种实现方式中,该处理单元31可以用于确定第一集合中各时隙的时隙格式,所述第一集合包括一个或者多个周期内用于所述第一节点与第三节点进行通信的时隙,所述第三节点为所述第一节点的下级一体化接入回传IAB节点或者所述第一节点所服务的终端设备,所述时隙格式表示一个时隙内各符号的类型,所述符号的类型至少包括上行符号和下行符号;并且,可以用于从该存储单元32中调用并运行该计算计程序,以控制该 输出口34向所述第一节点发送第一配置信息,所述第一配置信息用于指示所述第一集合中各时隙的时隙格式。
可选地,该处理单元31还可以控制该输出口34向所述第一节点发送第二配置信息,所述第二配置信息用于修改所述第一集合中部分时隙的时隙格式。
可选地,该处理单元31还可以控制该该输入口33接收所述第一节点发送的需求报告消息,所述需求报告消息用于指示所述第一节点期望的与所述第三节点进行通信的上下行配比。
可选地,该处理单元31还可以控制该该输入口33接收所述第一节点发送的第一指示信息,所述第一指示信息用于指示修改后的所述第一集合中部分时隙的时隙格式。
可选地,所述部分时隙为所述第一配置信息配置的灵活符号所在的时隙的时隙格式,所述第一配置信息所配置的灵活符号指未确定传输方向的符号。
其中,以上列举的装置30中各模块或单元的功能和动作仅为示例性说明,装置30中各模块或单元可以用于执行上述方法中第二节点所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图15为本申请实施例提供的一种网络设备40的结构示意图,可以用于实现上述方法中的第一节点或者第二节点的功能。网络设备40包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)402。所述RRU 401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线4011和射频单元4012。所述RRU 401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 402部分主要用于进行基带处理,对基站进行控制等。所述RRU 401与BBU 402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)402可以用于控制基站40执行上述方法实施例中关于第一节点或者第二节点的操作流程。
在一个示例中,所述BBU 402可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU 402还包括存储器4021和处理器4022。所述存储器4021用以存储必要的指令和数据。例如存储器4021存储上述实施例中的码本等。所述处理器4022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于第一节点或者第二节点的操作流程。所述存储器4021和处理器4022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(system-on-chip,SoC)技术的发展,可以将402部分和401部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储 在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
应理解,图15示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的第一节点、第二节点和第三节点。可选地,还可以包括宿主节点。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种配置时隙格式的方法,其特征在于,包括:
    第一节点接收第二节点发送的第一配置信息,所述第二节点为所述第一节点的上级节点;
    所述第一节点根据所述第一配置信息,确定第一集合中各时隙的时隙格式,所述第一集合包括一个或者多个周期内用于所述第一节点与第三节点进行通信的时隙,所述第三节点为所述第一节点的下级一体化接入回传IAB节点或者所述第一节点所服务的终端设备,所述时隙格式表示一个时隙内各符号的类型,所述符号的类型至少包括上行符号和下行符号;
    所述第一节点修改所述第一集合中部分时隙的时隙格式,得到修改后的所述部分时隙的时隙格式。
  2. 如权利要求1所述的方法,其特征在于,在所述第一节点修改所述第一集合中部分时隙的时隙格式之前,所述方法还包括:
    所述第一节点接收所述第二节点发送的第二配置信息,所述第二配置信息用于重新配置所述部分时隙的时隙格式;
    其中,所述第一节点修改所述第一集合中部分时隙的时隙格式,包括:
    所述第一节点根据所述第二配置信息,修改所述部分时隙的时隙格式。
  3. 如权利要求2所述的方法,其特征在于,所述第二配置信息为动态信令。
  4. 如权利要求2或3所述的方法,其特征在,所述方法还包括:
    所述第一节点向所述第二节点发送需求报告消息,所述需求报告消息用于指示所述第一节点期望的与所述第三节点进行通信的上下行配比。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点向所述第二节点发送第一指示信息,所述第一指示信息用于指示修改后的所述部分时隙的时隙格式。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述符号的类型还包括灵活符号和静默符号中的一种或两种,其中,所述第一配置信息所配置的灵活符号指未确定传输方向的符号,所述第一节点在所述静默符号内不与所述第三节点进行通信。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述第一节点修改所述第一集合中部分时隙的时隙格式,包括:
    所述第一节点修改所述第一配置信息配置的灵活符号所在的时隙的时隙格式,所述第一配置信息所配置的灵活符号指未确定传输方向的符号。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点向所述第三节点发送第三配置信息,所述第三配置信息用于配置所述第三节点的时隙格式。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一节点根据所述第三节点时隙格式和修改后的所述第一节点与第三节点进行通信的时隙格式,与所述第三节点进行通信。
  10. 一种配置时隙格式的方法,其特征在于,包括:
    第二节点确定第一集合中各时隙的时隙格式,所述第一集合包括一个或者多个周期内用于所述第一节点与第三节点进行通信的时隙,所述第三节点为所述第一节点的下级一体化接入回传IAB节点或者所述第一节点所服务的终端设备,所述时隙格式表示一个时隙内各符号的类型,所述符号的类型至少包括上行符号和下行符号;
    所述第二节点向所述第一节点发送第一配置信息,所述第一配置信息用于指示所述第一集合中各时隙的时隙格式。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第二节点向所述第一节点发送第二配置信息,所述第二配置信息用于修改所述第一集合中部分时隙的时隙格式。
  12. 如权利要求10或11所述的方法,其特征在于,在所述第二节点向所述第一节点发送第二配置信息之前,所述方法还包括:
    所述第二节点接收所述第一节点发送的需求报告消息,所述需求报告消息用于指示所述第一节点期望的与所述第三节点进行通信的上下行配比。
  13. 如权利要求10至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点接收所述第一节点发送的第一指示信息,所述第一指示信息用于指示修改后的所述第一集合中部分时隙的时隙格式。
  14. 如权利要求10至13中任一项所述的方法,其特征在于,所述符号的类型还包括灵活符号和静默符号中的一种或两种,其中,所述第一配置信息所配置的灵活符号指未确定传输方向的符号,所述第一节点在所述静默符号内不与所述第三节点进行通信。
  15. 如权利要求11或13所述的方法,其特征在于,所述部分时隙为所述第一配置信息配置的灵活符号所在的时隙的时隙格式,所述第一配置信息所配置的灵活符号指未确定传输方向的符号。
  16. 一种通信装置,其特征在于,包括:
    接收单元,用于接收第二节点发送的第一配置信息,所述第二节点为所述通信装置的上级节点;
    处理单元,用于根据所述第一配置信息,确定第一集合中各时隙的时隙格式,所述第一集合包括一个或者多个周期内用于所述通信装置与第三节点进行通信的时隙,所述第三节点为所述通信装置的下级一体化接入回传IAB节点或者所述通信装置所服务的终端设备,所述时隙格式表示一个时隙内各符号的类型,所述符号的类型至少包括上行符号和下行符号;
    所述处理单元还用于,修改所述第一集合中部分时隙的时隙格式,得到修改后的所述部分时隙的时隙格式。
  17. 如权利要求16所述的通信装置,其特征在于,所述接收单元还用于:
    接收所述第二节点发送的第二配置信息,所述第二配置信息用于重新配置所述部分时隙的时隙格式;
    其中,所述处理单元具体用于:
    根据所述第二配置信息,修改所述部分时隙的时隙格式。
  18. 如权利要求17所述的通信装置,其特征在于,所述第二配置信息为动态信令。
  19. 如权利要求17或18所述的通信装置,其特征在,所述通信装置还包括:
    第一发送单元,用于向所述第二节点发送需求报告消息,所述需求报告消息用于指示所述通信装置期望的与所述第三节点进行通信的上下行配比。
  20. 如权利要求16至19中任一项所述的通信装置,其特征在于,所述通信装置还包括:
    第二发送单元,用于向所述第二节点发送第一指示信息,所述第一指示信息用于指示修改后的所述部分时隙的时隙格式。
  21. 如权利要求16至20中任一项所述的通信装置,其特征在于,所述符号的类型还包括灵活符号和静默符号中的一种或两种,其中,所述第一配置信息所配置的灵活符号指未确定传输方向的符号,所述通信装置在所述静默符号内不与所述第三节点进行通信。
  22. 如权利要求16至21中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
    修改所述第一配置信息配置的灵活符号所在的时隙的时隙格式,所述第一配置信息所配置的灵活符号指未确定传输方向的符号。
  23. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一集合中各时隙的时隙格式,所述第一集合包括一个或者多个周期内用于所述第一节点与第三节点进行通信的时隙,所述第三节点为所述第一节点的下级一体化接入回传IAB节点或者所述第一节点所服务的终端设备,所述时隙格式表示一个时隙内各符号的类型,所述符号的类型至少包括上行符号和下行符号;
    发送单元,用于向所述第一节点发送第一配置信息,所述第一配置信息用于指示所述第一集合中各时隙的时隙格式。
  24. 如权利要求23所述的通信装置,其特征在于,所述发送单元还用于:
    向所述第一节点发送第二配置信息,所述第二配置信息用于修改所述第一集合中部分时隙的时隙格式。
  25. 如权利要求23或24所述的通信装置,其特征在于,所述通信装置还包括:
    第一接收单元,用于接收所述第一节点发送的需求报告消息,所述需求报告消息用于指示所述第一节点期望的与所述第三节点进行通信的上下行配比。
  26. 如权利要求23至25中任一项所述的通信装置,其特征在于,所述通信装置还包括:第二接收单元,用于接收所述第一节点发送的第一指示信息,所述第一指示信息用于指示修改后的所述第一集合中部分时隙的时隙格式。
  27. 如权利要求24或26所述的通信装置,其特征在于,所述部分时隙为所述第一配置信息配置的灵活符号所在的时隙的时隙格式,所述第一配置信息所配置的灵活符号指未确定传输方向的符号。
  28. 一种通信设备,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信设备执行权利要求1至15中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至15中任意一项所述的方法。
  30. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行如权利要求1至15中任意一项所述的方法。
PCT/CN2019/108341 2018-09-28 2019-09-27 配置时隙格式的方法和通信装置 WO2020063797A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19866477.3A EP3823388A4 (en) 2018-09-28 2019-09-27 PROCEDURE FOR CONFIGURING THE TIME SLOT FORMAT AND COMMUNICATION DEVICE
BR112021002383-6A BR112021002383A2 (pt) 2018-09-28 2019-09-27 método de configuração de formato de slot e aparelho de comunicações
US17/213,287 US11916663B2 (en) 2018-09-28 2021-03-26 Slot format configuration method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811138766.0 2018-09-28
CN201811138766.0A CN110972266B (zh) 2018-09-28 2018-09-28 配置时隙格式的方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/213,287 Continuation US11916663B2 (en) 2018-09-28 2021-03-26 Slot format configuration method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020063797A1 true WO2020063797A1 (zh) 2020-04-02

Family

ID=69953355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108341 WO2020063797A1 (zh) 2018-09-28 2019-09-27 配置时隙格式的方法和通信装置

Country Status (5)

Country Link
US (1) US11916663B2 (zh)
EP (1) EP3823388A4 (zh)
CN (1) CN110972266B (zh)
BR (1) BR112021002383A2 (zh)
WO (1) WO2020063797A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020125992A1 (en) * 2018-12-20 2020-06-25 Nokia Technologies Oy Relay operations in a communication system
US20220078751A1 (en) * 2019-01-10 2022-03-10 Sony Group Corporation Communication control device, communication control method, and computer program
CN112350811A (zh) * 2019-08-07 2021-02-09 华为技术有限公司 资源配置的方法以及装置
EP4213559A4 (en) * 2020-10-23 2023-10-25 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
US11871440B2 (en) * 2021-06-24 2024-01-09 Qualcomm Incorporated Dynamic slot format configuration
CN117223245A (zh) * 2021-07-05 2023-12-12 中兴通讯股份有限公司 用于确定由无线设备转发的信号的特性的技术
WO2023137721A1 (en) * 2022-01-21 2023-07-27 Nec Corporation Methods, devices, and computer readable medium for communication
WO2023168591A1 (en) * 2022-03-08 2023-09-14 Lenovo (Beijing) Limited Methods and apparatuses for determining slot format

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363597A (zh) * 2010-08-24 2015-02-18 华为技术有限公司 频谱资源的配置调整方法和装置及系统
US20180035435A1 (en) * 2016-07-27 2018-02-01 Qualcomm Incorporated Mechanisms for interference management of multi-tti sidelink-centric subframes in wireless communication
CN108111281A (zh) * 2017-09-12 2018-06-01 中兴通讯股份有限公司 数据信道参数配置方法及装置
CN108365936A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种通信方法,装置及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9078270B2 (en) * 2008-07-03 2015-07-07 Qualcomm Incorporated Opportunistic relay scheduling in wireless communications
KR101412051B1 (ko) * 2009-04-24 2014-06-26 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 Tdd시스템 백홀링크 통신 방법, 기기 및 시스템
WO2011052037A1 (ja) * 2009-10-27 2011-05-05 富士通株式会社 中継局、基地局および無線通信方法
CN102143594B (zh) * 2010-01-28 2014-03-12 华为技术有限公司 一种中继链路的传输控制方法和系统
US10477540B2 (en) * 2016-03-11 2019-11-12 Qualcomm Incorporated Relay for enhanced machine type communication and narrow band-internet of things
US10506586B2 (en) * 2017-03-24 2019-12-10 Qualcomm Incorporated Slot format indicator (SFI) and slot aggregation level indication in group common PDCCH and SFI conflict handling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363597A (zh) * 2010-08-24 2015-02-18 华为技术有限公司 频谱资源的配置调整方法和装置及系统
US20180035435A1 (en) * 2016-07-27 2018-02-01 Qualcomm Incorporated Mechanisms for interference management of multi-tti sidelink-centric subframes in wireless communication
CN108365936A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种通信方法,装置及系统
CN108111281A (zh) * 2017-09-12 2018-06-01 中兴通讯股份有限公司 数据信道参数配置方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LENOVO ET AL.: "Discussion on resource partitioning for IAB network", 3GPP TSG RAN WG1 MEETING #94, 24 August 2018 (2018-08-24), XP051517984 *
See also references of EP3823388A4

Also Published As

Publication number Publication date
US20210218494A1 (en) 2021-07-15
EP3823388A1 (en) 2021-05-19
US11916663B2 (en) 2024-02-27
BR112021002383A2 (pt) 2021-05-11
CN110972266B (zh) 2022-12-30
EP3823388A4 (en) 2021-10-27
CN110972266A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020063797A1 (zh) 配置时隙格式的方法和通信装置
WO2020143828A1 (zh) 资源配置的方法和装置
WO2021020350A1 (en) Power management for integrated access and backhaul networks
WO2020200078A1 (zh) 传输上行信息的方法和通信装置
WO2020224306A1 (zh) 一种通信的方法和装置
US11387892B2 (en) Method, system and apparatus for resource allocation in multi-hop systems
CN111656852A (zh) 用于5g网络中的回程的方法和装置
WO2020221021A1 (zh) 通信方法和通信装置
WO2020001607A1 (zh) 数据加扰方法及相关设备
CN104380645A (zh) 灵活的harq ack/nack传输
US20220141686A1 (en) Selective reference signal measurements
WO2019214559A1 (zh) 通信的方法和通信装置
CN112584518A (zh) 一种资源确定方法及装置
WO2021017611A1 (zh) 数据传输方法和装置
CN113950856A (zh) 一种通信方法、通信装置和系统
WO2021134616A1 (zh) 一种资源配置方法和装置
WO2021192570A1 (en) Power reporting for integrated access and backhaul networks
WO2018196632A1 (zh) 一种上行传输的调度方法、终端和基站
WO2020233370A1 (zh) 一种通信方法及设备
CN111385880B (zh) 一种时域资源的确定方法及装置
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
US20230007682A1 (en) Data transmission method, terminal device and network device
WO2019157982A1 (zh) 一种中继传输方法及装置
WO2021226851A1 (zh) Harq-ack码本的反馈方法、终端设备和网络设备
WO2020221011A1 (zh) 数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019866477

Country of ref document: EP

Effective date: 20210215

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021002383

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021002383

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210208