WO2019157982A1 - 一种中继传输方法及装置 - Google Patents

一种中继传输方法及装置 Download PDF

Info

Publication number
WO2019157982A1
WO2019157982A1 PCT/CN2019/074342 CN2019074342W WO2019157982A1 WO 2019157982 A1 WO2019157982 A1 WO 2019157982A1 CN 2019074342 W CN2019074342 W CN 2019074342W WO 2019157982 A1 WO2019157982 A1 WO 2019157982A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
time slot
link
processing capability
transmission
Prior art date
Application number
PCT/CN2019/074342
Other languages
English (en)
French (fr)
Inventor
叶枫
唐小勇
毛祺琦
邱晶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810864403.9A external-priority patent/CN110167174B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019157982A1 publication Critical patent/WO2019157982A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a relay transmission method and apparatus.
  • FIG. 1a is a schematic diagram of a network topology of a relay transmission.
  • the link between the base station and the relay node is called a backhaul link, and the link between the relay node and the terminal is called an access link.
  • the receiving node receiving data from the base station may be regarded as a downlink backhaul transmission, and the relay node sending the data to the base station may be regarded as an uplink backhaul transmission.
  • the uplink backhaul transmission and the downlink backhaul transmission may be collectively referred to as backhaul transmission.
  • the relay node or the base station directly transmits data to the terminal, which can be regarded as a downlink access transmission, and the relay node or the base station directly receives data from the terminal and can be regarded as an uplink access transmission.
  • the uplink access transmission and the downlink access transmission may be collectively referred to as access transmission.
  • the relay node Due to the half-duplex constraint of the RF device, the relay node cannot receive at the same time when transmitting data, and cannot transmit at the same time when receiving data. We call this collision between signal transmission and reception a call collision.
  • the backhaul link and the access link of the relay node cannot be simultaneously transmitted.
  • the transmission from the base station to the relay node is transmitted in a predetermined multicast-broadcast single-frequency network (MBSFN) subframe in which there is no transmission of the access link.
  • MBSFN multicast-broadcast single-frequency network
  • the transmission from the relay node to the base station is transmitted in an uplink subframe of a relay node, in which the relay node does not transmit the uplink data of the access link. Therefore, it is possible to avoid the transmission and reception of collisions and to keep all the relay nodes synchronized with the base station.
  • both the downlink and uplink transmissions of the backhaul link achieve the purpose of exclusive resources, avoiding collisions with the access link. Since all the relay nodes are required to use the same mode (frame structure, TDM time slot) to transmit data with the base station, the problem of different bearer services between the relay nodes cannot be well solved, such as some relay nodes.
  • the uplink load is heavy and requires more uplink resources; some relay nodes have heavy downlink load and need more downlink resources;
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • SDM space division multiplexing
  • a relay node may need to multiplex its own backhaul and access links in the time domain, frequency domain, or airspace dimension. For example, for the TDM mode, if a relay node needs to perform backhaul transmission on a certain time slot, then it cannot simultaneously perform access transmission on the time slot, but if the relay node does not perform a backhaul chain on the time slot Road transmission, then it can be used for access transmission. For the SDM mode, if a relay node will use a certain part of the antenna resources for backhaul transmission on a certain time slot, it can use the remaining antenna resources for access transmission simultaneously on the time slot.
  • the embodiment of the present application provides a relay transmission method, which can avoid or reduce a collision between a backhaul transmission and an access transmission at a relay node.
  • the embodiment of the present application provides a relay transmission method, where the method includes: the second node reports processing capability information to the first node, where the processing capability information includes one or more services of the second node service. a processing capability of the third node, where the second node receives, from the first node, indication information that is obtained by the first node according to the processing capability information, where the indication information is used to indicate a first time slot, where the a time slot is a time slot in which downlink control information transmitted by the first link is located, the first link is a link between the first node and the second node; and the second node is in the The first time slot detects downlink control information of the first link transmission.
  • the processing capability information periodically reported by the second node; or the second node reporting the processing capability information after receiving the processing capability of the one or more third nodes.
  • the first node may be a base station
  • the second node may be a relay node
  • the third node may be a terminal.
  • whether the relay node performs backhaul transmission and backhaul transmission resources are all scheduled by the base station, and the access transmission between the relay node and the terminal is scheduled by the relay node to serve the terminal and allocated to the terminal. Resources. If there is no coordination between the backhaul link and the access link, it is easy to generate a collision.
  • the first node may be configured to consider the possible impact on the transmission between the second node and the third node when scheduling the second node to transmit, thereby avoiding or reducing the collision.
  • the second node receives processing capability of the one or more third nodes from the one or more third nodes.
  • the processing capability information reported by the second node includes: an equivalent processing capability obtained by processing processing capability of the one or more third nodes; or the one or more A collection of processing powers of a third node.
  • the equivalent processing capability reported by the second node can reduce its signaling overhead with the first node.
  • the second node directly reporting the processing power of each third node can provide more information to the first node to increase the probability of avoiding or reducing collisions.
  • the processing capability information reported by the second node further includes processing capability of the second node itself.
  • OFDM orthogonal frequency-division multiplexing
  • the processing capability of the second node is relatively strong, and the impact of the first node determining the first time slot is small, but the processing capability of reporting the second node can still provide more information to the first node to improve avoidance or Reduce the probability of conflict.
  • the downlink control information of the first link transmission is used to indicate resources required by the second node to perform the first link transmission in the second time slot.
  • the second node sends downlink control information of the second link transmission in a third time slot, where the second link is the one or more third nodes and the The link between the two nodes.
  • the downlink control information of the second link transmission is used to indicate resources required by the second node to perform the second link transmission in the second time slot.
  • the resource indicated by the downlink control information of the second link is the resource of the second time slot not indicated by the downlink control information of the first link transmission.
  • the first time slot and the third time slot are the same time slot, or the first time slot is before the third time slot.
  • the interval between the third time slot and the second time slot is related to the processing capability of the one or more third nodes.
  • a suitable time slot for transmitting scheduling information of the backhaul link can be determined.
  • the backhaul transmission consider how to implement multiplexing with access transmission or other backhaul transmission.
  • an embodiment of the present application provides a relay transmission method, where the method includes: a first node receives processing capability information from a second node, where the processing capability information includes one or more services of the second node service a processing capability of the third node, where the first node sends, to the second node, indication information that is obtained by the first node according to the processing capability information, where the indication information is used to indicate a first time slot, where the A time slot is a time slot in which downlink control information transmitted by the first link is located, and the first link is a link between the first node and the second node. Further, the first node sends downlink control information of the first link transmission in the first time slot. The processing capability information periodically reported by the second node; or the second node reporting the processing capability information after receiving the processing capability of the one or more third nodes.
  • the first node may be a base station
  • the second node may be a relay node
  • the third node may be a terminal.
  • whether the relay node performs backhaul transmission and backhaul transmission resources are all scheduled by the base station, and the access transmission between the relay node and the terminal is scheduled by the relay node to serve the terminal and allocated to the terminal. Resources. If there is no coordination between the backhaul link and the access link, it is easy to generate a collision.
  • the first node may be configured to consider the possible impact on the transmission between the second node and the third node when scheduling the second node to transmit, thereby avoiding or reducing the collision.
  • the processing capability information reported by the second node includes: an equivalent processing capability obtained by processing processing capability of the one or more third nodes; or the one or more A collection of processing powers of a third node.
  • the equivalent processing capability reported by the second node can reduce its signaling overhead with the first node.
  • the second node directly reporting the processing power of each third node can provide more information to the first node to increase the probability of avoiding or reducing collisions.
  • the processing capability information reported by the second node further includes processing capability of the second node itself.
  • the processing capability of the second node or the one or more third nodes and the processing capability of the second node itself are represented by the number of OFDM symbols or the number of time slots.
  • the processing capability of the second node is relatively strong, and the impact of the first node determining the first time slot is small, but the processing capability of reporting the second node can still provide more information to the first node to improve avoidance or reduction. The probability of a conflict.
  • the downlink control information of the first link transmission is used to indicate resources required by the second node to perform the first link transmission in the second time slot.
  • an embodiment of the present application provides a relay transmission method, where the method includes: a second node receives processing capability information of one or more third nodes served by a second node; and the second node sends the first node to the first node.
  • the reference timing information is obtained according to processing capability information received by the second node and/or processing capability of the second node, where the reference timing information is used to indicate between the first time slot and the second time slot.
  • the timing relationship is that the second node receives the indication information from the first node, where the indication information is used to indicate the time slot in which the downlink control information is actually transmitted between the second node and the first node.
  • the first time slot is used for transmitting downlink control information of the first link transmission
  • the second time slot is used for performing first link transmission and/or second link transmission.
  • the first link is a link between the first node and the second node; the second link is a chain between the second node and the one or more third nodes road.
  • an embodiment of the present application provides a relay transmission method, where the method includes: a first node receives reference timing information from a second node, where the reference timing information is one or more received according to the second node. Obtained by the processing capability information of the third node and/or the processing capability of the third node, the reference timing information is used to indicate a timing relationship between the first time slot and the second time slot; the first node is to the second node And transmitting the indication information, where the indication information is used to indicate a time slot in which downlink control information is actually transmitted between the second node and the first node.
  • the first time slot is used for transmitting downlink control information of the first link transmission
  • the second time slot is used for performing first link transmission and/or second link transmission.
  • the first link is a link between the first node and the second node; the second link is a chain between the second node and the one or more third nodes road.
  • the embodiment of the present application provides a relay transmission apparatus, where the apparatus includes: a sending module, configured to report processing capability information to a first node, where the processing capability information includes one or more services of the second node service a processing capability of the third node, the receiving module, configured to receive, from the first node, indication information that is obtained by the first node according to the processing capability information, where the indication information is used to indicate a first time slot, where the a time slot is a time slot in which downlink control information transmitted by the first link is located, the first link is a link between the first node and the second node, and a processing module is configured to The first time slot detects downlink control information of the first link transmission.
  • the relay transmission device can be a second node.
  • the first node may be a base station
  • the second node may be a relay node
  • the third node may be a terminal.
  • whether the relay node performs backhaul transmission and backhaul transmission resources are all scheduled by the base station, and the access transmission between the relay node and the terminal is scheduled by the relay node to serve the terminal and allocated to the terminal. Resources. If there is no coordination between the backhaul link and the access link, it is easy to generate a collision.
  • the first node may be configured to consider the possible impact on the transmission between the second node and the third node when scheduling the second node to transmit, thereby avoiding or reducing the collision.
  • the receiving module is further configured to receive processing capability of the one or more third nodes from the one or more third nodes.
  • the processing capability information reported by the second node includes: an equivalent processing capability obtained by processing processing capability of the one or more third nodes; or the one or more A collection of processing powers of a third node.
  • the equivalent processing capability reported by the second node can reduce its signaling overhead with the first node.
  • the second node directly reporting the processing power of each third node can provide more information to the first node to increase the probability of avoiding or reducing collisions.
  • the processing capability information reported by the second node further includes processing capability of the second node itself.
  • the processing capability of the second node or the one or more third nodes and the processing capability of the second node itself are represented by the number of OFDM symbols or the number of time slots.
  • the processing capability of the second node is relatively strong, and the impact of the first node determining the first time slot is small, but the processing capability of reporting the second node can still provide more information to the first node to improve avoidance or Reduce the probability of conflict.
  • the downlink control information of the first link transmission is used to indicate resources required by the second node to perform the first link transmission in the second time slot.
  • the sending module is further configured to send downlink control information of the second link transmission in a third time slot, where the second link is the one or more third nodes and The link between the second nodes.
  • the downlink control information of the second link transmission is used to indicate resources required by the second node to perform the second link transmission in the second time slot.
  • the resource indicated by the downlink control information of the second link is the resource of the second time slot not indicated by the downlink control information of the first link transmission.
  • the first time slot and the third time slot are the same time slot, or the first time slot is before the third time slot.
  • the interval between the third time slot and the second time slot is related to the processing capability of the one or more third nodes.
  • the embodiment of the present application provides a relay transmission apparatus, where the apparatus includes: a receiving module, configured to receive processing capability information from a second node, where the processing capability information includes one or And a sending module, configured to send, to the second node, indication information that is obtained by the first node according to the processing capability information, where the indication information is used to indicate a first time slot, where The first time slot is a time slot in which downlink control information transmitted by the first link is located, and the first link is a link between the first node and the second node. Further, the sending module is further configured to send downlink control information of the first link transmission in the first time slot.
  • the processing capability information periodically reported by the second node; or the second node reporting the processing capability information after receiving the processing capability of the one or more third nodes.
  • the device can be the first node.
  • the embodiment of the present application provides a relay transmission apparatus, where the apparatus includes: a receiving module, configured to receive processing capability information of one or more third nodes served by the second node; and a sending module, configured to The first node sends the reference timing information, where the reference timing information is obtained according to the processing capability information received by the second node and/or the processing capability of the second node, where the reference timing information is used to indicate the first time slot and the second time slot.
  • the timing relationship between the time slots; the receiving module is further configured to receive the indication information from the first node, where the indication information is used to indicate that the downlink control information when the second node and the first node actually transmit Gap.
  • the device can be a second node.
  • the first time slot is used for transmitting downlink control information of the first link transmission
  • the second time slot is used for performing first link transmission and/or second link transmission.
  • the first link is a link between the first node and the second node; the second link is a chain between the second node and the one or more third nodes road.
  • an embodiment of the present application provides a relay transmission apparatus, where the apparatus includes: a receiving module, configured to receive reference timing information from a second node, where the reference timing information is received according to the second node Or the processing capability information of the third node and/or the processing capability of the third node, the reference timing information is used to indicate a timing relationship between the first time slot and the second time slot; and the sending module is configured to The two nodes send indication information, where the indication information is used to indicate a time slot in which downlink control information is actually transmitted between the second node and the first node.
  • the device can be the first node.
  • the first time slot is used for transmitting downlink control information of the first link transmission
  • the second time slot is used for performing first link transmission and/or second link transmission.
  • the first link is a link between the first node and the second node; the second link is a chain between the second node and the one or more third nodes road.
  • an embodiment of the present application provides an apparatus, where the device includes a transceiver and a processor.
  • the memory is coupled to the processor.
  • the transceiver performs reception and/or transmission of a message.
  • the processor executes code in a memory such that the device performs the method of any of the first to fourth aspects.
  • the embodiment of the present application provides a readable storage medium, where the readable storage medium stores instructions, when the instructions stored in the readable storage medium are run on a device, causing the device to perform the first The method of any of the aspects to the fourth aspect.
  • the embodiment of the present application provides a computer program product, when the computer program product is run on a computer, causing the computer to perform the method of any one of the first aspect to the fourth aspect.
  • an embodiment of the present application provides a chip, where the chip includes a communication interface and a processor.
  • the communication interface performs reception and/or transmission of a message.
  • the processor runs code in the memory such that the chip performs the method of any of the first to fourth aspects.
  • the embodiment of the present application provides a system.
  • the system includes the first node, the second node, and/or the third node of any of the first to fourth aspects.
  • the embodiment of the present application reports the processing capability information of the lower node to the first node by using the second node, and the first node can perform the scheduling room to avoid or reduce the conflict between different links.
  • FIG. 1a is a schematic diagram of a network topology of a relay transmission
  • FIG. 1b is a schematic structural diagram of a next generation communication system
  • FIG. 3 is a schematic diagram of a multi-hop multi-connection network structure
  • FIG. 4 is a schematic diagram of a relay transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a network according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another network according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another network provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another network according to an embodiment of the present disclosure.
  • 10 is a timing diagram of determining a first time slot
  • 11 is a timing diagram for determining a first time slot
  • FIG. 12 is a schematic diagram of another relay transmission method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a first node or a second node according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a possible logical structure of a first node or a second node according to an embodiment of the present application.
  • FIG. 1b is a schematic diagram of the architecture of a next generation communication system.
  • the system includes a base station, a relay node, and a terminal.
  • the terminal can connect to the base station in a wireless manner and perform data transmission with the base station.
  • the terminal can also connect to the relay node wirelessly and perform data transmission with the relay node.
  • On the ingress link there is also an access link between the base station 1 and the terminal 2.
  • FIG. 1b there is also an access link between the base station 1 and the terminal 2.
  • next generation communication system is merely an illustrative illustration of a next generation communication system in which there may be more base stations, relay nodes, and terminals, which may have more backhaul links and access links.
  • the next generation communication system may be a new radio (NR) system or a 5G communication system.
  • NR new radio
  • the scheduling information sent by the base station to the terminal is carried on the resource in the control resource set (CORESET).
  • the specific slot position of the resource carrying the scheduling information is configurable, and the terminal only detects (or monitors) the scheduling information at the slot position configured by the base station.
  • the base station also follows a similar scheme for scheduling the relay node. For example, the relay node only detects the scheduling information at certain slot positions configured by the base station. If the relay node detects the scheduling information carried on the backhaul link control channel, the relay node performs backhaul transmission according to the indication of the scheduling information.
  • the scheduling information indicates a time slot in which the relay node performs backhaul transmission.
  • a terminal receives scheduling information to perform data transmission. That is, there is a certain time interval from the time slot in which the control channel containing the downlink control information is transmitted to the time slot in which the data channel is transmitted, which is referred to as the timing relationship between the control channel and the data channel in this application.
  • the terminal receives the downlink control information (DCI) carried by the physical downlink control channel (PDCCH) to perform a physical downlink shared channel (PDSCH) or a physical uplink shared channel (physical).
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the uplink shared channel (PUSCH) transmission requires a certain time interval. That is, the timing relationship between the PDCCH of the terminal and the PDSCH/PUSCH.
  • the time interval is used, for example, for the terminal to perform demodulation of scheduling information. For uplink transmission, this time interval is also used by the terminal to prepare possible transmission data. This time interval varies depending on the processing capabilities of each terminal.
  • the terminal reports its processing capability to the base station or relay node that provides services for the initial access.
  • the control channels described in the embodiments of the present application all refer to control channels including downlink control information (or scheduling information).
  • the base station needs to schedule a relay node for backhaul transmission, and there is a certain time interval between the time when the relay node receives the scheduling information sent by the base station and the time when the relay node performs the backhaul transmission.
  • This time interval is related to the processing capability of the relay node. The stronger the processing capability of the relay node, the shorter the time interval.
  • the relay node needs to schedule a terminal to perform access transmission, and there is a certain time interval between the time when the relay node sends the scheduling information to the terminal and the time when the terminal performs the access transmission.
  • FIG. 2 is a schematic diagram of scheduling conflicts. As shown in FIG. 2, the relay node schedules the terminal to perform uplink access transmission in the time slot C. If the relay node receives control information of the backhaul link from the base station in the time slot B, the control information indicates that the relay node performs uplink backhaul transmission in the time slot C, and the relay node needs to receive the terminal in the time slot C in the time slot C.
  • the transmitted uplink access transmission data transmits the uplink backhaul transmission data in the time slot C.
  • the relay node may cause a collision due to the previous scheduling in slot A and slot B. Even for the SDM mode, since the relay node may schedule all antenna ports in slot A, there may be no antenna ports available for backhaul transmission in slot C.
  • the relay node is a relay node that can only perform in-band relay, scheduling conflict may also occur.
  • the scheduling information of the base station's backhaul transmission for the time slot C will be delivered in the time slot B in advance, subject to the processing capability of the relay node. If access transmission is to be performed in slot C, limited by the processing capability of the terminal, the relay node needs to transmit control information of the access link in slot A. In this case, the scheduling of the relay node by the base station and the scheduling of the relay node to the terminal are performed in different time slots and are not coordinated with each other, and the transmission performed in the time slot C may collide.
  • the base station and the relay node must consider how to schedule these time slots. Avoid possible scheduling conflicts.
  • the priority of the backhaul transmission is higher than the priority of the access transmission. That is to say, when scheduling is implemented, for a time slot, the scheduling of the relay node by the base station precedes the scheduling of the terminal by the relay node. Therefore, it is first necessary to determine a suitable time slot for transmitting scheduling information of the backhaul link. On the basis of satisfying the backhaul transmission, it is considered as much as possible how to implement multiplexing with access transmission.
  • a relay transmission method is provided in the present application.
  • the backhaul transmission between the upper node and the local node is higher than the backhaul transmission between the relay node and the relay node.
  • the backhaul transmission between the base station 1 and the relay node 2 in FIG. 1b is higher than the backhaul transmission between the relay node 2 and the relay node 1. Therefore, the scheduling of the upper-level node to the local-level node must be prior to the scheduling of the lower-level node by the local-level node, so that conflicts that may occur at the local-level node can be avoided.
  • FIG. 3 is a schematic diagram of a multi-hop multi-connection network structure.
  • a relay node which may be referred to as a second node
  • the second node may provide services to other subordinate relay nodes or terminals (referred to as third nodes).
  • the second node can provide services to one or more third nodes.
  • the base station or other superior relay node (which may be referred to as the first node) may serve the second node.
  • the base station or the relay node serving the second node is referred to as the upper node (or the parent node, the master node) of the second node, and the terminal or the relay node served by the second node is referred to as the second node.
  • the link between the second node and the first node is referred to as the first link.
  • the first link can be a backhaul transmission link.
  • the link between the second node and the third node is referred to as a second link.
  • the second link may be an access link; when the third node is a relay node, the second link may also be a backhaul link.
  • the first link transmission may be considered to be a transmission on the first link, for example, a data transmission by the first node or the second node using the first link.
  • the second link transmission can be considered as a transmission on the second link, for example, a data transmission by the third node or the second node using the second link.
  • the multiplexing to be performed at the second node is the multiplexing of the first link transmission and the second link transmission of the second node.
  • the structure in FIG. 3 is only for convenience of subsequent description, and the application is not limited to the application and the structure in FIG.
  • the second node may have multiple upper nodes (corresponding to multiple first links) and/or multiple lower nodes (corresponding to multiple second links).
  • the base station in the embodiment of the present application is an access device that is connected to the wireless communication system by a terminal or a relay node, and may be an evolved base station, a base station in a next-generation communication system, or an access node in a WiFi system. Wait.
  • the relay node in the embodiment of the present application may be a node having a relay function.
  • the terminal in the embodiment of the present application may also be referred to as a terminal device, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal can be a mobile phone, a tablet, a computer with wireless transceiver function, and other terminals with wireless transceiver functions.
  • FIG. 4 is a schematic diagram of a relay transmission method according to an embodiment of the present application. As shown in Figure 4, the method includes the following steps. The following method can be understood with reference to the scenario shown in FIG.
  • Step 401 The second node reports processing capability information to the first node, where the processing capability information includes processing capability of the third node served by the second node.
  • the processing capability information indicates a time required by a certain node from receiving downlink control information to performing (uplink or downlink) data transmission. This time is usually expressed in OFDM symbols or time slots. Therefore, the processing capability information can be represented by an OFDM symbol or a time slot.
  • the processing capability information of the third node indicates the time required between the receipt of the control information by the third node and the ongoing (upstream or downstream) data transmission.
  • the processing capability of the terminal includes a minimum time interval from the downlink control channel for receiving the access transmission to the uplink data channel for transmitting the access transmission, and the downlink control of the terminal for receiving the access transmission. The minimum time interval from the channel to the downlink data channel receiving the access transmission.
  • the downlink control information in the embodiment of the present application is used to indicate resources (such as time, frequency, and air resources) used by the upper node and the lower layer for transmission (for example, data transmission).
  • the downlink control information is equivalent to the transmission resource that is instructed by the upper-level node for the lower-level node. Therefore, the downlink control information may also be referred to as scheduling information in this embodiment of the present application.
  • the third node serving the second node may have one or more.
  • the second node may first receive the processing capability of one or more third nodes before reporting the processing capability information of the third node.
  • the processing capabilities of the third node include equivalent processing capabilities obtained by processing the processing capabilities of one or more third nodes served by the second node; or processing of one or more third nodes served by the second node A collection of abilities.
  • the equivalent processing capability may be a maximum value, a minimum value, or an average value of processing capabilities of one or more third nodes.
  • the second node also reports its own processing capability information to the first node.
  • the processing capability information periodically reported by the second node; or the second node reports the processing capability information after receiving the processing capability of the one or more third nodes (including the processing capability of the second node and one or more third The processing power of the node).
  • the second node may first determine whether the processing capability of the third node served by the second node may affect the first link transmission and the second link transmission multiplexing. If affected, the second node reports processing capability information.
  • the first node After receiving the processing capability information reported by the second node, the first node determines, according to the processing capability information, a time slot in which the second node receives downlink control information transmitted by the first link.
  • the first node sends indication information indicating the time slot to the second node.
  • the manner in which the first node determines the time slot includes, but is not limited to, a time slot M before the time slot N scheduled for the first link data transmission as the time slot, and NM is equal to the processing capability of the second node.
  • the number of slots between the number of slots determined by the processing capability of the second node and the number of slots determined by the processing capability of the third node may satisfy the scheduling from the second node or the third node to the data.
  • the time requirement for transmission Adding 1 (equivalent to one time slot in advance) on this basis, the time slot can be used to complete the receiving (or parsing) of the downlink control information of the first link by the second node and/or receiving from the second node.
  • the status is converted to the send status.
  • Step 402 The second node receives the indication information from the first node.
  • the indication information is obtained by the first node according to the processing capability information reported by the second node, where the indication information is used to indicate the time slot in which the downlink control information of the first link is located.
  • Step 403 The second node detects downlink control information of the first link transmission in the time slot indicated by the indication information.
  • the time slot indicated by the indication information is referred to as a first time slot.
  • the second node may determine whether the first node sends downlink control information by detecting downlink control information of the first link transmission in the first time slot. If the first node sends downlink control information in the first time slot, the downlink control information indicates a first link transmission that the second node will perform in the second time slot (if the second time slot does not perform the first link transmission) , the corresponding downlink control information may not be sent in the first time slot).
  • the second time slot is a time slot reserved for the first link transmission. That is to say, in the second time slot, the second node preferentially performs the first link transmission.
  • the second link transmission can also be performed in the second slot. If the second time slot is not scheduled for the first link transmission in actual communication, it can be scheduled for the second link transmission. If the first node does not send downlink control information in the first time slot, it indicates that the first node does not schedule the second node to perform the first link transmission in the second time slot. That is, if the first node is to schedule the second time slot for the first link transmission, the first node sends the downlink control information for scheduling the second time slot for the first link transmission in the first time slot. This is the timing relationship required to transmit downlink control information when the first link transmission is performed in the second time slot.
  • the first node may determine the first time slot that is ultimately used in actual communication according to other information such as load information of the second node, and the specific determining process depends on the internal algorithm.
  • the first determined first time slot may be the same as the first time slot corresponding to the foregoing timing relationship, or different, for example, the finally determined first time slot is before the first time slot corresponding to the timing relationship.
  • the second node After parsing the scheduling result in the first time slot, the second node has sufficient time to perform scheduling of the access link and complete multiplexing of the first link transmission and the second link transmission in the second time slot.
  • FIG. 5 is a schematic structural diagram of a network according to an embodiment of the present application. As shown in FIG. 5, the base station provides services for one relay node, and the relay node provides services for three terminals.
  • FIG. 6 is a schematic structural diagram of another network provided by an embodiment of the present application.
  • the base station provides services for the relay node 1, and the relay node provides services for the relay node 2 and the relay node 3.
  • FIG. 7 is a schematic structural diagram of another network provided by an embodiment of the present application.
  • the relay node 1 provides services to the relay node 2, and the relay node 2 provides services for three terminals.
  • FIG. 8 is a schematic diagram of another network structure provided by an embodiment of the present application.
  • the relay node 1 provides service to the relay node 2, and the relay node 2 provides services for the relay node 3 and the relay node 4.
  • the network structure used by the solution provided by the embodiment of the present application includes, but is not limited to, the network structure in FIG. 5 to FIG.
  • the base station, the relay node, or the terminal in FIG. 5 to FIG. 8 can be extended to multiple, and only the relationship between the nodes in the uplink node or the relay relationship exists between the nodes, and the method provided in this embodiment can be applied.
  • the embodiments of the present application are further described below with reference to some scenarios in FIG. 5 to FIG.
  • the second node reports the equivalent processing capability of the third node to the first node.
  • the first node determines the first time slot according to the equivalent processing capability of the third node.
  • the second node can also report its processing capability to the first node.
  • the first node may also utilize the processing power of the second node when determining the first time slot.
  • the first node sends a second slot indication information to the second node.
  • the second node detects downlink control information sent by the first node in the first time slot.
  • the downlink control information indicates that the second node performs the first link transmission in the second time slot.
  • the second node may also schedule the third node to perform the second link transmission in the second time slot in the third time slot.
  • the multiplexing condition includes: in the case of time division multiplexing, the first link transmission and the second link transmission occupy different time units; in the case of frequency division multiplexing, the first link transmission and the second chain The path transmission occupies different frequency domain resources; in the case of space division multiplexing, the first link transmission and the second link transmission occupy different antenna ports of the second node.
  • the third time slot may be any time slot between the first time slot and the second time slot, or the third time slot may be the first time slot or the second time slot.
  • the following takes the first node as the base station, the second node as the relay node, and the third node as the terminal. Referring to the scenario shown in FIG. 5, the embodiment of the present application is further described.
  • the terminals served by the relay node report their respective processing capabilities to the relay node.
  • it is referred to as an uplink transmission processing capability and a downlink transmission processing capability, respectively.
  • the uplink transmission processing capability reported by the terminal 1, the terminal 2, and the terminal 3 is UN_1, UN_2, and UN_3, and the downlink transmission processing capability reported is DN_1, DN_2, and DN_3.
  • the relay node processes the processing capability of the received terminal to obtain an equivalent processing capability.
  • the equivalent processing capabilities of Terminal 1, Terminal 2, and Terminal 3 include an equivalent upstream transmission processing capability UN_eff, and an equivalent downlink transmission processing capability DN_eff.
  • UN_eff Max ⁇ UN_1, UN_2, UN_3 ⁇
  • DN_eff Max ⁇ DN_1, DN_2, DN_3 ⁇ .
  • the relay node reports the equivalent processing capability of the terminal to the base station.
  • the relay node may also report its own processing capability to the base station, wherein the processing capability of the relay node itself includes the uplink transmission processing capability UN_RN and the downlink transmission processing capability DN_RN of the relay node.
  • the relay node reports the UN_eff, DN_eff, UN_RN, and DN_RN to the base station.
  • the report here can be reported periodically or triggered according to the trigger.
  • the trigger condition may be triggered by a request from the base station or triggered by a new terminal accessing the relay node.
  • the base station After receiving the processing capability of the terminal reported by the relay node, the base station determines the first time slot.
  • the base station may also utilize the processing capabilities of the relay node when determining the first time slot.
  • the base station calculates, according to UN_eff, DN_eff, UN_RN, and DN_RN, between a time slot (ie, a first time slot) in which the relay node receives the downlink control information of the base station and a time slot in which the backhaul transmission is performed (ie, the second time slot). Timing relationship.
  • the second time slot is usually reserved and therefore may also be referred to as reserved time slots that are preferentially used for backhaul transmission.
  • the processing capability that the base station refers to when calculating the timing relationship for different second slots may be different.
  • the access link part it may refer to UN_eff or reference DN_ef.
  • the backhaul link part it may refer to UN_RN or reference DN_RN. Because the relay node can receive the downlink control channel for the backhaul transmission in the uplink subframe, the base station should also consider whether the determined time slot can be used to deliver the downlink control information when determining the first time slot. If not, the base station needs to consider other time slots that satisfy the condition as the first time slot.
  • a plurality of time slots for preferentially performing backhaul transmission may be reserved, that is, there are a plurality of second time slots.
  • a corresponding first time slot needs to be determined for each second time slot.
  • the first time slot determined by the base station may be different for different second time slots, but the determination method is similar.
  • FIG. 9 is a timing diagram for determining a first time slot.
  • time slot 7 be the reserved time slot preferentially used for backhaul transmission (that is, the second time slot is time slot 7), which is an uplink time slot on both the backhaul link and the access link.
  • the UN_eff 4slots reported by the relay node, that is, the downlink control channel of the access transmission and the transmission time of the uplink data channel of the access transmission need at least 4 time slots, and the terminal can complete the downlink control channel analysis and access of the access transmission. Data preparation for the transmitted upstream data channel.
  • the UN_RN 2slots reported by the relay node.
  • time slot 1 is the first time slot determined. This allows the relay node to successfully resolve the scheduling result and determine the scheduling of the access link in slot 3. If the relay node resolves to the uplink data transmission to be backhauled in the time slot 7 after receiving the downlink control information in the time slot 1, the uplink data reception in the time slot 7 cannot be performed in the time slot 7 based on the multiplexing principle of the TDM. . Therefore, the terminal served by the relay node is not scheduled in slot 3.
  • the relay node can perform uplink data reception of the access transmission in the time slot 7 based on the TDM multiplexing principle.
  • the relay node can schedule the terminal in slot 3, for example, send access control information to the terminal.
  • the relay node utilizes the time slot originally reserved for the backhaul transmission for access transmission, which saves system resources.
  • the base station needs to determine whether to transmit downlink control information in slot 1 to instruct the relay node to perform backhaul transmission in slot 7. If the base station does not transmit downlink control information for indicating backhaul transmission in time slot 1 in slot 1, it indicates that the base station does not schedule the relay node to perform backhaul transmission in time slot 7. That is, if the base station is to schedule slot 7 for backhaul transmission, the base station must transmit scheduling slot 7 for control information for backhaul data transmission in slot 1. This is the timing relationship between the control channel and the data channel of the backhaul transmission of slot 7. To determine the timing relationship, it is necessary to determine the first time slot corresponding to time slot 1.
  • the base station can obtain a timing relationship between the control channel and the data channel of the backhaul transmission corresponding to all the second time slots in a certain time range. That is to say, the base station can obtain the first time slot corresponding to all the second time slots in a certain time range.
  • the so-called certain time range here may be a system frame or a preset time interval.
  • the base station notifies the relay station of the finally determined first time slot, so that the relay node detects the downlink control information in the first time slot. For example, the base station notifies the relay node to detect downlink control information in slot 1.
  • the downlink control information carries the information of the second time slot. For example, the slot position where the data channel corresponding to the control channel of a certain backhaul transmission is located will be indicated in the downlink control information.
  • the second node reports the processing capability of each third node to the first node.
  • the first node determines the first time slot according to the processing capability of each third node.
  • the second node can also report its processing capability to the first node.
  • the first node may also utilize the processing power of the second node when determining the first time slot.
  • the first node sends a second slot indication information to the second node.
  • the second node detects downlink control information sent by the first node in the first time slot.
  • the downlink control information indicates that the second node performs the first link transmission in the second time slot.
  • the second node may also schedule the third node to perform the second link transmission in the second time slot in the third time slot.
  • the multiplexing condition includes: in the case of time division multiplexing, the first link transmission and the second link transmission occupy different time units; in the case of frequency division multiplexing, the first link transmission and the second chain The path transmission occupies different frequency bands; in the case of space division multiplexing, the first link transmission and the second link transmission occupy different antenna ports.
  • the third time slot may be any time slot between the first time slot and the second time slot, or the third time slot may be the first time slot or the second time slot.
  • the second embodiment is similar to the first embodiment.
  • the second node does not process the processing capability of the third node that is obtained by the second node, but directly reports it to the first node. Therefore, the connotation of the related features in the second embodiment can be obtained by referring to the foregoing embodiment, and details are not described herein again.
  • the following takes the first node as the base station, the second node as the relay node, and the third node as the terminal. Referring to the scenario shown in FIG. 5, the embodiment of the present application is further described.
  • the terminals served by the relay node report their respective processing capabilities to the relay node.
  • it is referred to as an uplink transmission processing capability and a downlink transmission processing capability, respectively.
  • the uplink transmission processing capability reported by the terminal 1, the terminal 2, and the terminal 3 is UN_1, UN_2, and UN_3, and the downlink transmission processing capability reported is DN_1, DN_2, and DN_3.
  • the relay node does not process the processing capability of the received terminal, but directly reports the processing capability of the terminal and/or the processing capability of the terminal to the base station. For example, the relay node directly reports ⁇ UN_1, UN_2, UN_3 ⁇ and ⁇ DN_1, DN_2, DN_3 ⁇ to the base station, and also reports its own processing capabilities UN_RN and DN_RN to the base station.
  • the report here can be reported periodically or triggered according to the trigger.
  • the trigger condition may be triggered by a request from the base station or triggered by a new terminal accessing the relay node.
  • the base station After receiving the processing capability of the terminal reported by the relay node, the base station determines the first time slot. The base station may also utilize the processing capabilities of the relay node when determining the first time slot. As an example, after receiving the processing capability of each terminal and the processing capability of the relay node reported by the relay node, the base station first calculates a reference relationship between the control channel and the data channel of the access transmission based on the processing capability of the terminal. . In the case of distinguishing between uplink and downlink transmission, the uplink timing relationship reference value is UN_AC_ref, and the downlink timing relationship reference value is DN_AC_ref. There are various calculation methods, including but not limited to, the maximum, minimum, or average value of the processing capability reported by the received terminal.
  • the base station determines the first time slot based on the processing capability of the relay node and the timing reference value. For example, the base station calculates a timing relationship between the control channel of the backhaul transmission and the data channel according to UN_RN, UN_AC_ref, DN_RN, and DN_AC_ref, thereby determining the first time slot.
  • FIG. 10 is a timing diagram for determining a first time slot.
  • time slot 7 be the reserved time slot preferentially used for backhaul transmission (that is, the second time slot is time slot 7), which is an uplink time slot on the backhaul link, and is on the access link.
  • the terminal can parse the received access control information and receive the downlink access data in one slot.
  • the UN_RN 4slots reported by the relay node.
  • the relay node After the relay node demodulates the downlink control information sent by the base station, it can determine whether the access transmission is performed in the time slot 7 according to the scheduling result therein, and the time when the base station sends the downlink control information should advance to the time slot 3. That is to say, time slot 3 is the first time slot determined. This allows the relay node to have sufficient time to complete the scheduling and transmission of the access link after successfully parsing the downlink control information to obtain the scheduling result. That is, the relay node can transmit access control information in time slot 7 and complete access transmission in time slot 7.
  • the relay node After receiving the downlink control information in the time slot 3, the relay node parses the downlink control information to obtain a scheduling result.
  • the scheduling result indicates that the relay node is to use the antenna port 1 and the antenna port 2 to transmit the uplink data of the backhaul transmission in the time slot 7.
  • the relay node when space-multiplexing of backhaul transmission and access transmission is performed in time slot 7, the relay node can no longer use antenna port 1 and antenna port 2 for access transmission, but can schedule and use the remaining antenna ports. To access the transmission.
  • the base station needs to re-determine a time slot that satisfies the condition before the time slot 3.
  • the condition is mainly to make the time interval between the first time slot and the second time slot large enough, so that the relay node has enough time to perform scheduling of the access link after parsing the scheduling result in the first time slot. And multiplexing of the backhaul link transmission and the access link transmission is completed in the second time slot.
  • the base station needs to determine whether to transmit downlink control information in slot 3 to instruct the relay node to perform backhaul transmission in slot 7. If the base station does not transmit downlink control information for indicating backhaul transmission in time slot 3 in slot 3, it indicates that the base station does not schedule the relay node to perform backhaul transmission in time slot 7. That is, if the base station is to schedule slot 7 for backhaul transmission, the base station must transmit scheduling slot 7 for control information for backhaul data transmission in slot 3. This is the timing relationship between the control channel and the data channel of the backhaul transmission of slot 7. To determine the timing relationship, it is necessary to determine the first time slot corresponding to time slot 3.
  • the base station can obtain a timing relationship between the control channel and the data channel of the backhaul transmission corresponding to all the second time slots in a certain time range. That is to say, the base station can obtain the first time slot corresponding to all the second time slots in a certain time range.
  • the so-called certain time range here may be a system frame or a preset time interval.
  • the base station notifies the relay station of the finally determined first time slot, so that the relay node detects the downlink control information in the first time slot. For example, the base station informs the relay node to detect downlink control information in slot 3.
  • the downlink control information carries the information of the second time slot. For example, the slot position where the data channel corresponding to the control channel of a certain backhaul transmission is located will be indicated in the downlink control information.
  • the following takes the first node as the base station, the second node as the relay node, and the third node as the relay node as an example. Referring to the scenario shown in FIG. 6, the embodiment of the present application is further described.
  • the base station is the upper node of the relay node 1, and the lower node of the relay node 1 is the relay node 2 and the relay node 3.
  • the link between the relay node 1 and the relay node 2, and the link between the relay node 1 and the relay node 3 belong to the backhaul link, and the functions thereof are to forward data between the base station and the terminal, where The indicated terminal is a lower node of the relay node 2 and the relay node 3.
  • the link between the relay node 1 and the base station is the first link
  • the link between the relay node 1 and the relay node 2 and the relay node 1 and the relay node 3 is the second link. link.
  • the transmissions on the first link and the transmissions on the second link may be multiplexed.
  • the relay node 2 and the relay node 3 are required to report their processing capabilities to the upper node, that is, the relay node 1.
  • the relay node 1 processes the processing capabilities of its lower-level nodes, that is, the relay node 2 and the relay node 3, to obtain equivalent processing capability and report it to the base station, or directly reports the relay node 2 and the node to the base station. 3 processing power.
  • the relay node 1 reports its own processing capability to the base station.
  • the base station After receiving the processing capability of the relay node 2 and the relay node 3 reported by the relay node 1 (or the equivalent processing capability of the two relay nodes) and the processing capability of the relay node 1 itself, the base station determines the first time slot.
  • the method of determining is the same as that of the first embodiment or the second embodiment.
  • Figure 11 is a timing diagram for determining a first time slot.
  • time slot 7 be the reserved time slot preferentially used for the first link transmission (that is, the second time slot is time slot 7), and the time slot is uplinked on both the first link and the second link.
  • the time slot, the first link and the second link are multiplexed by TDM.
  • the UN_eff 4slots reported by the relay node 1, that is, the downlink control information transmitted by the second link and the transmission time of the second link uplink data channel need to be at least 4 time slots, and the relay node 2 and the relay node 3 can be completed. Downlink control information analysis and data preparation of the uplink data channel.
  • the UN_RN 2slots reported by the relay node 1.
  • the relay node 1 After the relay node 1 demodulates the downlink control information sent by the base station, it can determine whether the second link transmission is performed in the time slot 7 according to the scheduling result therein, and the time when the base station sends the downlink control information should advance to the time slot. 1. That is to say, time slot 1 is the first time slot determined. This allows the relay node 1 to successfully resolve the scheduling result and determine the scheduling of the second link in slot 3. If the relay node 1 resolves to the uplink data transmission for which the first link transmission is to be performed in the slot 7 after receiving the downlink control information in the slot 1, the second chain cannot be performed in the slot 7 based on the multiplexing principle of the TDM. Uplink data reception for road transmission.
  • the relay node 2 and the relay node 3 are not scheduled in the slot 3. If the time slot 7 does not perform uplink data transmission for backhaul transmission, the relay node 1 can perform uplink data reception of the second link transmission in the time slot 7 based on the TDM multiplexing principle.
  • the relay node 1 can schedule the relay node 2 and the relay node 3 in time slot 3, for example, transmit access control information to the relay node 2 and the relay node 3. At this time, the relay node 1 utilizes the time slot originally reserved for transmission of the first link for the second link transmission, thereby saving system resources.
  • the base station can obtain the timing relationship between the downlink control information and the data channel of the first link transmission corresponding to all the second time slots in a certain time range. That is to say, the base station can obtain the first time slot corresponding to all the second time slots in a certain time range.
  • the so-called certain time range here may be a system frame or a preset time interval.
  • the base station may determine the first time slot that is ultimately used in actual communication according to other information such as load information of the second node, and the specific determining process depends on the internal algorithm, and the present application does not limited.
  • the finally determined first time slot may be the same as the first time slot corresponding to the foregoing timing relationship, or different, but may enable the relay node to have sufficient time to access the access link after parsing the scheduling result in the first time slot. Scheduling and multiplexing of backhaul link transmissions and access link transmissions in the second time slot.
  • the base station notifies the relay node 1 of the finally determined first time slot, so that the relay node 1 detects the downlink control information in the first time slot.
  • the solution in the third embodiment can also be adopted, and the processing capability reported by the relay node 1 according to the relay node 2 and the relay node 3, and the processing capability of the relay node 1 itself.
  • the control channel and data channel timing relationship of the backhaul transmission between itself and the base station is determined.
  • the relay node 1 reports the obtained timing relationship as reference timing information to the base station. After receiving the timing relationship reported by the relay node 1, the base station determines the time slot for transmitting the downlink control information to the relay node 1, and notifies the relay node 1.
  • FIG. 12 is a schematic diagram of another relay transmission method according to an embodiment of the present application. As shown in Figure 12, the method includes the following steps. The following method can be understood with reference to the scenario shown in FIG.
  • Step 1201 The second node receives processing capability information of one or more third nodes served by the second node.
  • Step 1202 The second node sends reference timing information to the first node, where the reference timing information is obtained according to processing capability information received by the second node and/or processing capability of the second node, where the reference timing information is used to indicate The timing relationship between the first time slot and the second time slot.
  • the first time slot is used for transmitting downlink control information of the first link transmission
  • the second time slot is used for performing first link transmission and/or second link transmission.
  • the first link is a link between the first node and the second node; the second link is a chain between the second node and the one or more third nodes road.
  • the reference timing information is used to indicate that the time slot in which the downlink control information of the first link transmission is located, that is, the first time slot, and the time slot in which the data channel corresponding to the downlink control information is located (ie, the second time) Timing relationship between gaps).
  • the time slot in which the downlink control information transmitted by the first link is located may be regarded as the first time slot, and the time slot in which the data channel corresponding to the downlink control information is located may be regarded as the second time slot. That is, the second node reports the timing relationship between the first time slot and the second time slot to the first node. There may be multiple second time slots within a certain time interval. Therefore, the first time slot determined by the second node should be the first time slot corresponding to the second time slot. When the second node reports the first time slot, it also needs to report the corresponding second time slot.
  • the timing relationship in step 1202 needs to be more clearly indicated to the second time slot corresponding to the first time slot than the timing relationship described above.
  • the first node determines the first time slot in actual communication according to the reference timing information.
  • the first node may also determine the first time slot in actual communication according to other information such as load information of the second node.
  • the first time slot determined by the first node may be different from the first time slot indicated in the reference timing information reported by the second node.
  • Step 1203 The second node receives indication information from the first node, where the indication information is used to indicate a time slot in which downlink control information is actually transmitted between the second node and the first node.
  • the second node determines a first time slot corresponding to the second time slot, and reports the first time slot to the first node.
  • the first time slot reported by the second node is provided to the first node for reference in determining the first time slot when the actual communication is determined.
  • the first node determines the first time slot in the actual communication according to the first time slot reported by the second node, and sends the indication information of the first time slot in the actual communication to the second node.
  • the second node detects downlink control information of the first link transmission in the first time slot indicated by the first node.
  • the following takes the first node as the base station, the second node as the relay node, and the third node as the terminal, which is further described in the embodiment of the present application. Specifically, the method shown in FIG. 12 will be further described with the scenario shown in FIG. 5.
  • the relay node maintains the time slot configuration of the backhaul link between it and the base station, that is, which time slots are reserved for backhaul transmission, and which time slots are time slots used by the base station for access transmission, and these times Whether the slot is for uplink transmission or for downlink transmission.
  • the relay node also saves the slot configuration of its own access link. For example, which time slots in the time slot of the relay node are used for uplink access transmission and which time slots are used for downlink access transmission.
  • the terminal reports the uplink and downlink processing capability to the relay node.
  • the relay node processes the processing capability of the received terminal to obtain the equivalent processing capability of the terminal.
  • the relay node determines the control channel and data channel timing relationship of the backhaul transmission between itself and the base station. At this time, the relay node needs to refer to the time slot configuration of the backhaul link between it and the base station and the time slot configuration of the access link between it and the terminal. The process of determining the timing relationship between the first time slot and the second time slot is similar to that in the first embodiment and the second embodiment, and is not described here. Finally, the relay node calculates the timing relationship corresponding to all the time slots reserved for the backhaul transmission, and the timing relationship is only a reference timing relationship, which is reported to the base station for reference by the base station.
  • the relay node reports the obtained timing relationship as reference timing information to the base station.
  • the manner of generating the reported content includes, but is not limited to, the following: the index number of the time slot reserved for the first link transmission in one system frame or one period and the first link transmission corresponding to the time slots respectively A list of index numbers of transmission time slots of the downlink control information, as shown in Table 1, and then converting the values in the table into binary bits and arranged in a certain order; or may reserve a system frame or a period The index number of the time slot used for the first link data transmission, and the number of time slots in advance for which the time slot is transmitted, respectively, the downlink transmission information of the first link transmission, forming a list, as shown in Table 2, and then the table The values in the numbers are converted to secondary bits and arranged in a certain order.
  • Table 1 Table of correspondence between time slots reserved for the first link transmission and time slots for transmitting the downlink control information transmitted by the first link
  • Table 2 Table of time slot reservations reserved for the time slot of the first link transmission and the downlink control information for transmitting the first link transmission
  • the base station After receiving the reference timing information reported by the relay node, the base station determines a time slot for transmitting the downlink control information (or the control channel of the backhaul transmission) to the relay node.
  • the base station determines that the time slot may refer to the load of the relay node, but the main determination process depends on the internal algorithm, which is not limited in this application.
  • the determined result may be consistent with the first time slot in the reference timing information reported by the relay node, or may be inconsistent.
  • the base station notifies the relay node of the time slot for transmitting the downlink control information (or the control channel of the backhaul transmission). That is, the base station notifies the relay node of the first time slot during actual communication, so that the relay node detects the downlink control information in the first time slot.
  • the downlink control information carries the information of the second time slot. For example, the slot position where the data channel corresponding to the control channel of a certain backhaul transmission is located will be indicated in the downlink control information.
  • the base station 1 is the upper node of the relay node 2
  • the relay node 2 is the upper node of the relay node 1
  • the terminal 1 accesses the relay node 1.
  • the base station 1, the relay node 2, the relay node 1, and the terminal 1 constitute a transmission path or a transmission chain between the base station 1 and the terminal 1.
  • the link between the relay node 1 and the relay node 2, and the link between the relay node 2 and the base station 1 belong to the backhaul link, and the link between the relay node 1 and the terminal 1 belongs to the access link.
  • one or more relay nodes may also exist between the relay node 2 and the base station 1.
  • the link between the relay node 2 and the relay node 1 is the first link
  • the link between the relay node 2 and the terminal 1 is the second link.
  • the transmissions on the first link and the transmissions on the second link may be multiplexed.
  • the relay node 1 reports the processing capability of its next-level node, that is, the terminal 1, to the base station 1. At the same time, the relay node 1 reports its own processing capability to the base station 1. In this manner, the base station 1 is the first node in the solution of the present application, and the relay node 1 is the second node. After receiving the processing capability of the terminal 1 and the relay node 1 reported by the relay node 1, the base station 1 determines the first time slot. The base station transmits indication information indicating the first time slot to the relay node 1.
  • the method for determining the first time slot by the base station 1 is the same as the method for determining the first time slot in the first embodiment or the second embodiment.
  • the relay node 1 may also determine the first time slot corresponding to the second time slot based on its own processing capability and the processing capability of the terminal 1.
  • the relay node 1 generates reference timing information and reports it to the base station 1.
  • the base station 1 determines the first time slot in the actual communication according to the reference timing information reported by the relay node 1, and sends the indication information indicating the first time slot to the relay node 1.
  • the technical features and other details of the first time slot and the second time slot may be referred to the foregoing embodiment, for example, the related description of steps 401-403, and details are not described herein again.
  • the processing capability information or the reference timing information reported by the relay node 1 to the base station 1 and the indication information indicating the first time slot sent by the base station 1 to the relay node 1 may be transmitted through an interface between the relay device and the base station device.
  • the processing capability information or the reference timing information reported by the relay node 1 to the base station 1 may be through an F1 interface between a distributed unit (DU) of the relay node 1 and a central unit (CU) of the base station 1. And/or transmitted by the relay node 1 to the base station 1 based on the F1-application protocol.
  • the processing capability information or the reference timing information may be carried in a message of the F1-AP protocol.
  • the indication information indicating the first time slot sent by the base station 1 to the relay node 1 may be adopted by the F1 interface between the central unit (CU) of the base station 1 and the distribution unit (DU) of the relay node 1, based on the F1-AP protocol.
  • the base station 1 transmits to the relay node 1.
  • the indication information indicating the first time slot may be carried in the message of the F1-AP protocol.
  • the downlink radio resource control transfer message ( ⁇ ⁇ X ⁇ ⁇ ) in the F1-AP protocol or in a newly defined message in the F1-AP protocol.
  • the processing capability information or the reference timing information reported by the relay node 1 to the base station 1 may also be transmitted by the relay node 1 to the base station 1 based on the RRC (Radio Resource Control) protocol.
  • the processing capability information or the reference timing information may be carried in a message of the RRC protocol, such as in a UECapabilityInformation message, or in a message newly defined in the RRC protocol.
  • the indication information indicating the first time slot transmitted by the base station 1 to the relay node 1 may be transmitted by the base station 1 to the relay node 1 based on the RRC protocol.
  • the indication information indicating the first time slot may be carried in a message of the RRC protocol, such as an RRCConnectionReconfiguration message, or in a message newly defined in the RRC protocol.
  • the processing capability information or reference timing information reported by the relay node 1 to the base station 1 and the indication first time slot sent by the base station 1 to the relay node 1 The indication information needs to be forwarded to the base station 1 through the relay node 2.
  • the relay node 2 transparently transmits the information, or the relay node forwards the information after the adaptation layer and/or the RRC layer resolves the information.
  • the relay node 1 reports processing capability information to the base station 1, the processing capability information including the processing capabilities of one or more third nodes (e.g., terminal 1 in Fig. 1b) served by the relay node 1.
  • the relay node 1 receives, from the base station 1, indication information obtained by the base station 1 based on the processing capability information.
  • the indication information is used to indicate a first time slot, where the first time slot is a time slot in which downlink control information transmitted by the first link is located.
  • the first link is a link between a higher level node of the relay node 1 (e.g., relay node 2 in Fig. 1b) and the relay node 1.
  • the base station 1 may be capable of transmitting control signaling or configuration signaling (for example, F1-AP-based control plane signaling or RRC protocol-based control plane signaling) to the relay node 1.
  • control signaling or configuration signaling for example, F1-AP-based control plane signaling or RRC protocol-based control plane signaling
  • Base station Other base stations that can implement the control or configuration of the relay node 1 can also be implemented by referring to the embodiments of the present application.
  • the relay node 1 can be made to multiplex the transmission on the first link and the transmission on the second link on the time slot reserved for backhaul transmission.
  • the relay node 1 detects downlink control information of the first link transmission in the first time slot.
  • the relay node 1 reports the processing capability of its lower-level node, that is, the terminal 1, to the relay node 2. At the same time, the relay node 1 reports its own processing capability to the relay node 2. In this manner, the relay node 2 is the first node in the solution of the present application, and the relay node 1 is the second node. After receiving the processing capability of the terminal 1 and the relay node 1 reported by the relay node 1, the relay node 2 determines the first time slot, and transmits indication information indicating the time slot to the relay node 1.
  • the method for the relay node 2 to determine the first time slot is the same as the method for determining the first time slot in the first embodiment or the second embodiment.
  • the relay node 1 may also determine the first time slot corresponding to the second time slot based on its own processing capability and the processing capability of the terminal 1.
  • the relay node 1 generates reference timing information and reports it to the relay node 2.
  • the relay node 2 determines the first time slot in actual communication according to the first time slot reported by the relay node 1.
  • the relay node 2 transmits the indication information of the first time slot in actual communication to the relay node 1.
  • the indication information may be delivered through an interface between the relay devices and carried in a specific signaling.
  • the processing capability information or the reference timing information reported by the relay node 1 to the relay node 2 may be transmitted from the relay node 1 to the relay node 2 based on the adaptation layer protocol.
  • the processing capability information or the reference timing information may be carried in a message of the adaptation layer protocol.
  • the indication information indicating the first time slot transmitted by the relay node 2 to the relay node 1 may be transmitted from the relay node 2 to the relay node 1 based on the adaptation layer protocol.
  • the indication information indicating the first time slot may be carried in a message of the adaptation layer protocol.
  • the processing capability information or the reference timing information reported by the relay node 1 to the relay node 2 may be transmitted by the relay node 1 to the relay node 2 based on the RRC protocol.
  • the processing capability information or the reference timing information may be carried in a specific message of the RRC protocol, such as a UECapabilityInformation message.
  • the indication information indicating the first time slot transmitted by the relay node 2 to the relay node 1 may be transmitted by the relay node 2 to the relay node 1 based on the RRC protocol.
  • the indication information indicating the first time slot may be carried in a message of the RRC protocol, such as an RRCConnectionReconfiguration message.
  • the relay node 1 may be the upper node of the relay node 2 corresponding to a certain path. And for another path, the relay node 2 may be a superior node of the relay node 1.
  • the relationship between the relay node 1 and the relay node 2 is clear and unique. Therefore, in this scenario, the solution in the embodiment of the present application is applicable, and the specific solution is applicable. Reference is made to the above embodiments, and details are not described herein again.
  • a suitable time slot for transmitting scheduling information of the backhaul link can be determined.
  • the backhaul transmission consider how to implement multiplexing with access transmission or other backhaul transmission.
  • the first node and the second node may divide the function modules according to the foregoing method embodiments.
  • each function module may be divided according to each function, or two or more functions may be integrated in the function.
  • a processing module In a processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 13 is a schematic diagram of a possible structure of a first node or a second node according to an embodiment of the present disclosure.
  • the first node or the second node includes: a sending module 1301 and a receiving module 1302.
  • the sending module 1301 is configured to support a related step of sending data or information by the first node or the second node in the method embodiment. For example, the first node sends the indication information or the second node sends the processing capability information to the first node.
  • the receiving module 1302 is configured to support a related step of the first node or the second node receiving data or information. For example, the first node receives processing capability information or the second node receives indication information.
  • the first node or the second node further includes: a processing module 1303, configured to support a related step of processing, by the first node or the second node, the received information or the information to be sent.
  • the second node detects downlink control information of the first link transmission in the first time slot.
  • the processing module 1303 may be a processor or a processing circuit, etc.; the sending module 1301 may be a transmitter or a transmitting circuit, etc., the receiving module 1302 may be a receiver or a receiving circuit, etc., the sending module 1301 and the receiving module 1302 may be Form a communication interface.
  • FIG. 14 is a schematic diagram of a possible logical structure of a first node or a second node according to an embodiment of the present application.
  • the first node or the second node includes a communication interface 1403.
  • the communication interface 1403 is configured to support the first node or the second node to communicate with other devices than itself.
  • the communication interface 1403 is configured to support the first node to send indication information or the second node sends processing capability information to the first node, the first node receives processing capability information, or the second node receives the indication information, and the like.
  • the first node or the second node may further include a memory 1401, a bus 1404, and a processor 1402.
  • the processor 1402 and the memory 1401 may be connected to each other through a bus 1404.
  • the processor 1402 may be configured to support a related step of the first node or the second node processing the received information or the information to be sent.
  • the memory 1401 is configured to store code and data of the first node or the second node.
  • the processor 1402 may be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. . It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, e.g., a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the bus 1404 can be a peripheral component interconnect standard PCI bus or an extended industry standard architecture EISA bus or the like. The bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • the third node may have a hardware structure similar to the first node or the second node.
  • each network element such as the first node, the second node, and the third node, in order to implement the above functions, includes hardware structures and/or software modules corresponding to the execution of the respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in conjunction with the network elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • a readable storage medium wherein the readable storage medium stores computer execution instructions, when a device (which may be a single chip microcomputer, a chip, etc.) or the processor can invoke the readable storage medium
  • a device which may be a single chip microcomputer, a chip, etc.
  • the processor can invoke the readable storage medium
  • a computer-executable instruction to perform the steps of the first node, the second node, or the third node of the method provided in FIG. 4 or FIG.
  • the aforementioned readable storage medium may include various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.
  • a computer program product comprising computer executed instructions stored in a computer readable storage medium; at least one processor of the device may be Reading the storage medium reads the computer execution instructions, and the at least one processor executing the computer execution instructions causes the apparatus to perform the steps of the first node, the second node, or the third node in the method provided in FIG. 4 or FIG.
  • a communication system including a plurality of devices including a first node and a second node.
  • the system can also include a third node.
  • the first node or the second may be the device provided in FIG. 13 or FIG.
  • the embodiment of the present application also provides a chip that implements the method described in the above embodiment (for example, FIG. 4 or FIG. 12).
  • the chip includes a processing circuit and a transceiver circuit.
  • the transceiver circuit can be, for example, an input/output interface, a pin or a circuit, or the like.
  • the processing circuit can execute computer executed instructions stored by the memory unit.
  • the chip may also include a memory unit.
  • the storage unit may be a register, a cache, or the like. Of course, it is also possible to provide an additional memory unit for the chip.
  • the storage unit may also be a storage unit located outside the chip in the terminal or the access device, such as a read-only memory (ROM) or other type of static storage device that can store static information and instructions. Random access memory (RAM), etc.
  • the chip can be applied to a base station, a relay node or a terminal.
  • Yet another aspect of the present application is directed to an apparatus that includes code in the processor running memory such that the apparatus performs the various methods described above.
  • the memory stores code and data.
  • the memory is located in the device, the memory being coupled to the processor.
  • the memory can also be located outside of the device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种中继传输方法,该方法包括:中继节点向基站上报处理能力信息,所述处理能力信息包括所述中继节点服务的一个或多个终端的处理能力;所述中继节点从所述基站接收所述基站根据所述处理能力信息得到的指示信息,所述指示信息用于指示第一时隙,所述第一时隙为第一链路传输的下行控制信息所在的时隙,所述第一链路为所述基站和所述中继节点之间的链路;所述中继点在所述第一时隙检测所述第一链路传输的下行控制信息。通常,中继节点回程传输使用的资源是由基站调度的,而中继节点与终端之间的接入传输是由中继节点对其服务的终端进行调度。通过上述方法在回程链路与接入链路的调度过程中进行协调,可以避免或减少冲突。

Description

一种中继传输方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种中继传输方法及装置
背景技术
LTE系统中引入了中继技术,通过在网络中部署中继节点(relay node,RN)来转发基站和终端之间的数据,达到增强网络容量,以及解决覆盖盲区的目的。图1a为一种中继传输的网络拓扑示意图。其中,基站和中继节点之间的链路叫做回程链路(backhaul link),中继节点和终端之间的链路叫做接入链路(access link)。其中,中继节点从基站接收数据可以认为是下行回程传输,中继节点向基站发送数据可以认为是上行回程传输。上行回程传输和下行回程传输可以统称回程传输。中继节点或基站直接向终端发送数据可以认为是下行接入传输,中继节点或基站直接从终端接收数据可以认为是上行接入传输。上行接入传输和下行接入传输可以统称接入传输。
由于射频器件的半双工约束,中继节点在进行数据的发送时无法同时进行接收,在进行数据的接收时无法同时进行发送。我们把这种信号发送和接收之间的冲突叫做收发冲突。为了避免收发冲突,在LTE的中继传输方案中,中继节点的回程链路和接入链路不能同时进行传输。基站到中继节点的传输在一个预定的多播-广播单频网(multicast-broadcast single-frequency network,MBSFN)子帧中传输,在这个子帧中没有接入链路的传输。而中继节点到基站的传输在一个中继节点的上行子帧发送,在这个子帧中中继节点不会传输接入链路的上行数据。因此可以避免收发冲突以及保持所有的中继节点与基站同步。
通过这套机制,回程链路的下行和上行传输都达到了独占资源的目的,避免了和接入链路的收发冲突。由于要求所有的中继节点都采用相同的模式(帧结构、TDM时隙)与基站进行数据传输,导致不能很好的解决中继节点之间承载业务的差异化问题,比如有的中继节点上行负载重,需要更多的上行资源;有的中继节点下行负载重,需要更多的下行资源;
在下一代通信系统中,针对回程链路和接入链路的复用方式引入了时分复用(time division multiplexing,TDM)、频分复用(frequency division multiplexing,FDM)、空分复用(space division multiplexing,SDM)等多种方式,以实现资源的灵活共享,从而达到提升系统容量的目的。
在某些场景中,一个中继节点可能需要在时域、频域或空域维度对自己的回程链路和接入链路进行复用传输。举例来说,针对TDM方式,如果在某个时隙上中继节点需要进行回程传输,那么在该时隙上它不能同时进行接入传输,但如果该时隙上中继节点不进行回程链路传输,那么它可以进行接入传输。针对SDM方式,如果在某个时隙上中继节点将使用某一部分天线资源进行回程传输,那么它可以在该时隙上同时使用剩余部分天线资源进行接入传输。
在下一代通信系统中,在相同的时、频、空资源上,在中继节点处很可能出现既调度了回程传输,又调度了接入传输,进而产生冲突,无法达到复用目的。
发明内容
本申请实施例提供了一种中继传输方法,能够避免或减少中继节点处回程传输与接入传输的冲突。
第一方面,本申请实施例提供了一种中继传输方法,该方法包括:第二节点向第一节点上报处理能力信息,所述处理能力信息包括所述第二节点服务的一个或多个第三节点的处理能力;所述第二节点从所述第一节点接收所述第一节点根据所述处理能力信息得到的指示信息,所述指示信息用于指示第一时隙,所述第一时隙为第一链路传输的下行控制信息所在的时隙,所述第一链路为所述第一节点和所述第二节点之间的链路;所述第二节点在所述第一时隙检测所述第一链路传输的下行控制信息。其中,所述第二节点周期性上报的处理能力信息;或所述第二节点在收到所述一个或多个第三节点的处理能力后上报处理能力信息。
其中,所述第一节点可以为基站,所述第二节点可以为中继节点,所述第三节点可以为终端。通常,中继节点是否进行回程传输、回程传输使用的资源都是由基站调度的,而中继节点与终端之间的接入传输是由中继节点对其服务的终端进行调度并为终端分配资源。如果在回程链路与接入链路的调度过程中没有相互协调,则很容易产生冲突。通过第二节点上报第三节点的处理能力,可以使得第一节点在调度第二节点进行传输时,考虑到可能对第二节点与第三节点间传输造成的影响,从而可以避免或减少冲突。
在一种可能的实现方式中,所述第二节点从所述一个或多个第三节点接收所述一个或多个第三节点的处理能力。
在一种可能的实现方式中,所述第二节点上报的处理能力信息包括:对所述一个或多个第三节点的处理能力进行处理后得到的等效处理能力;或所述一个或多个第三节点的处理能力的集合。
第二节点上报的等效处理能力可以减小其与第一节点的信令开销。第二节点直接上报每个第三节点的处理能力可以给第一节点提供更多信息,以提高避免或减少冲突的概率。
在一种可能的实现方式中,所述第二节点上报的处理能力信息还包括所述第二节点自身的处理能力。所述第二节点或所述一个或多个第三节点的处理能力以及所述第二节点自身的处理能力通过正交频分复用(orthogonal frequency-division multiplexing,OFDM)符号个数或时隙个数表征。
通常,第二节点的处理能力比较强,在第一节点确定第一时隙时的影响较小,但上报第二节点的处理能力仍可给第一节点提供更多信息,以以提高避免或减少冲突的概率。
在一种可能的实现方式中,所述第一链路传输的下行控制信息用于指示所述第二节点在第二时隙进行第一链路传输时所需的资源。
在一种可能的实现方式中,所述第二节点在第三时隙发送第二链路传输的下行控制信息,所述第二链路为所述一个或多个第三节点和所述第二节点之间的链路。
在一种可能的实现方式中,所述第二链路传输的下行控制信息用于指示所述第二节点在第二时隙进行第二链路传输时所需的资源。所述第二链路传输的下行控制信息所指示的资源为所述第一链路传输的下行控制信息未指示的所述第二时隙的资源。
在一种可能的实现方式中,所述第一时隙与所述第三时隙为同一时隙,或所述第一时 隙在所述第三时隙之前。其中,所述第三时隙与所述第二时隙之间的间隔与所述一个或多个第三节点的处理能力有关。
通过本申请实施例提供的方法,可以确定一个合适的发送回程链路的调度信息的时隙。在满足回程传输的基础上,尽可能考虑如何实现与接入传输或其他回程传输的复用。通过该方法可以避免产生回程传输与接入传输或其他回程传输的冲突,又可以充分利用资源提升接入链路或其他回程链路的容量。
第二方面,本申请实施例提供了一种中继传输方法,该方法包括:第一节点从第二节点接收处理能力信息,所述处理能力信息包括所述第二节点服务的一个或多个第三节点的处理能力;所述第一节点向所述第二节点发送所述第一节点根据所述处理能力信息得到的指示信息,所述指示信息用于指示第一时隙,所述第一时隙为第一链路传输的下行控制信息所在的时隙,所述第一链路为所述第一节点和所述第二节点之间的链路。进一步地,所述第一节点在所述第一时隙发送所述第一链路传输的下行控制信息。其中,所述第二节点周期性上报的处理能力信息;或所述第二节点在收到所述一个或多个第三节点的处理能力后上报处理能力信息。
其中,所述第一节点可以为基站,所述第二节点可以为中继节点,所述第三节点可以为终端。通常,中继节点是否进行回程传输、回程传输使用的资源都是由基站调度的,而中继节点与终端之间的接入传输是由中继节点对其服务的终端进行调度并为终端分配资源。如果在回程链路与接入链路的调度过程中没有相互协调,则很容易产生冲突。通过第二节点上报第三节点的处理能力,可以使得第一节点在调度第二节点进行传输时,考虑到可能对第二节点与第三节点间传输造成的影响,从而可以避免或减少冲突。
在一种可能的实现方式中,所述第二节点上报的处理能力信息包括:对所述一个或多个第三节点的处理能力进行处理后得到的等效处理能力;或所述一个或多个第三节点的处理能力的集合。
第二节点上报的等效处理能力可以减小其与第一节点的信令开销。第二节点直接上报每个第三节点的处理能力可以给第一节点提供更多信息,以提高避免或减少冲突的概率。
在一种可能的实现方式中,所述第二节点上报的处理能力信息还包括所述第二节点自身的处理能力。所述第二节点或所述一个或多个第三节点的处理能力以及所述第二节点自身的处理能力通过OFDM符号个数或时隙个数表征。
通常,第二节点的处理能力比较强,在第一节点确定第一时隙时的影响较小,但上报第二节点的处理能力仍可给第一节点提供更多信息,以提高避免或减少冲突的概率。
在一种可能的实现方式中,所述第一链路传输的下行控制信息用于指示所述第二节点在第二时隙进行第一链路传输时所需的资源。
第三方面,本申请实施例提供了一种中继传输方法,该方法包括:第二节点接收第二节点服务的一个或多个第三节点的处理能力信息;第二节点向第一节点发送参考定时信息,所述参考定时信息是根据所述第二节点接收的处理能力信息和/或自身的处理能力得到的,所述参考定时信息用于指示第一时隙与第二时隙之间的定时关系;所述第二节点从第一节点接收指示信息,所述指示信息用于指示第二节点与第一节点之间实际进行传输时的下行控制信息所在的时隙。
其中,第一时隙用于传输第一链路传输的下行控制信息,第二时隙用于进行第一链路 传输和/或第二链路传输。所述第一链路为所述第一节点和所述第二节点之间的链路;所述第二链路为所述第二节点和所述一个或多个第三节点之间的链路。
第四方面,本申请实施例提供了一种中继传输方法,该方法包括:第一节点从第二节点接收参考定时信息,所述参考定时信息是根据所述第二节点接收的一个或多个第三节点的处理能力信息和/或自身的处理能力得到的,所述参考定时信息用于指示第一时隙与第二时隙之间的定时关系;所述第一节点向第二节点发送指示信息,所述指示信息用于指示第二节点与第一节点之间实际进行传输时的下行控制信息所在的时隙。
其中,第一时隙用于传输第一链路传输的下行控制信息,第二时隙用于进行第一链路传输和/或第二链路传输。所述第一链路为所述第一节点和所述第二节点之间的链路;所述第二链路为所述第二节点和所述一个或多个第三节点之间的链路。
第五方面,本申请实施例提供了一种中继传输装置,该装置包括:发送模块,用于向第一节点上报处理能力信息,所述处理能力信息包括第二节点服务的一个或多个第三节点的处理能力;接收模块,用于从所述第一节点接收所述第一节点根据所述处理能力信息得到的指示信息,所述指示信息用于指示第一时隙,所述第一时隙为第一链路传输的下行控制信息所在的时隙,所述第一链路为所述第一节点和所述第二节点之间的链路;处理模块,用于在所述第一时隙检测所述第一链路传输的下行控制信息。该中继传输装置可以为第二节点。
其中,所述第一节点可以为基站,所述第二节点可以为中继节点,所述第三节点可以为终端。通常,中继节点是否进行回程传输、回程传输使用的资源都是由基站调度的,而中继节点与终端之间的接入传输是由中继节点对其服务的终端进行调度并为终端分配资源。如果在回程链路与接入链路的调度过程中没有相互协调,则很容易产生冲突。通过第二节点上报第三节点的处理能力,可以使得第一节点在调度第二节点进行传输时,考虑到可能对第二节点与第三节点间传输造成的影响,从而可以避免或减少冲突。
在一种可能的实现方式中,所述接收模块还用于从所述一个或多个第三节点接收所述一个或多个第三节点的处理能力。
在一种可能的实现方式中,所述第二节点上报的处理能力信息包括:对所述一个或多个第三节点的处理能力进行处理后得到的等效处理能力;或所述一个或多个第三节点的处理能力的集合。
第二节点上报的等效处理能力可以减小其与第一节点的信令开销。第二节点直接上报每个第三节点的处理能力可以给第一节点提供更多信息,以提高避免或减少冲突的概率。
在一种可能的实现方式中,所述第二节点上报的处理能力信息还包括所述第二节点自身的处理能力。所述第二节点或所述一个或多个第三节点的处理能力以及所述第二节点自身的处理能力通过OFDM符号个数或时隙个数表征。
通常,第二节点的处理能力比较强,在第一节点确定第一时隙时的影响较小,但上报第二节点的处理能力仍可给第一节点提供更多信息,以以提高避免或减少冲突的概率。
在一种可能的实现方式中,所述第一链路传输的下行控制信息用于指示所述第二节点在第二时隙进行第一链路传输时所需的资源。
在一种可能的实现方式中,所述发送模块还用于在第三时隙发送第二链路传输的下行控制信息,所述第二链路为所述一个或多个第三节点和所述第二节点之间的链路。
在一种可能的实现方式中,所述第二链路传输的下行控制信息用于指示所述第二节点在第二时隙进行第二链路传输时所需的资源。所述第二链路传输的下行控制信息所指示的资源为所述第一链路传输的下行控制信息未指示的所述第二时隙的资源。
在一种可能的实现方式中,所述第一时隙与所述第三时隙为同一时隙,或所述第一时隙在所述第三时隙之前。其中,所述第三时隙与所述第二时隙之间的间隔与所述一个或多个第三节点的处理能力有关。
第六方面,本申请实施例提供了一种中继传输装置,该装置包括:接收模块,用于从第二节点接收处理能力信息,所述处理能力信息包括所述第二节点服务的一个或多个第三节点的处理能力;发送模块,用于向所述第二节点发送所述第一节点根据所述处理能力信息得到的指示信息,所述指示信息用于指示第一时隙,所述第一时隙为第一链路传输的下行控制信息所在的时隙,所述第一链路为所述第一节点和所述第二节点之间的链路。进一步地,所述发送模块还用于在所述第一时隙发送所述第一链路传输的下行控制信息。其中,所述第二节点周期性上报的处理能力信息;或所述第二节点在收到所述一个或多个第三节点的处理能力后上报处理能力信息。该装置可以为第一节点。
第七方面,本申请实施例提供了一种中继传输装置,该装置包括:接收模块,用于接收第二节点服务的一个或多个第三节点的处理能力信息;发送模块,用于向第一节点发送参考定时信息,所述参考定时信息是根据所述第二节点接收的处理能力信息和/或自身的处理能力得到的,所述参考定时信息用于指示第一时隙与第二时隙之间的定时关系;所述接收模块还用于从第一节点接收指示信息,所述指示信息用于指示第二节点与第一节点之间实际进行传输时的下行控制信息所在的时隙。该装置可以为第二节点。
其中,第一时隙用于传输第一链路传输的下行控制信息,第二时隙用于进行第一链路传输和/或第二链路传输。所述第一链路为所述第一节点和所述第二节点之间的链路;所述第二链路为所述第二节点和所述一个或多个第三节点之间的链路。
第八方面,本申请实施例提供了一种中继传输装置,该装置包括:接收模块,用于从第二节点接收参考定时信息,所述参考定时信息是根据所述第二节点接收的一个或多个第三节点的处理能力信息和/或自身的处理能力得到的,所述参考定时信息用于指示第一时隙与第二时隙之间的定时关系;发送模块,用于向第二节点发送指示信息,所述指示信息用于指示第二节点与第一节点之间实际进行传输时的下行控制信息所在的时隙。该装置可以为第一节点。
其中,第一时隙用于传输第一链路传输的下行控制信息,第二时隙用于进行第一链路传输和/或第二链路传输。所述第一链路为所述第一节点和所述第二节点之间的链路;所述第二链路为所述第二节点和所述一个或多个第三节点之间的链路。
第九方面,本申请实施例提供一种设备,所述设备包括收发器和处理器。所述存储器与所述处理器耦合。所述收发器进行消息的接收和/或发送。所述处理器运行存储器中的代码使得所述设备执行第一方面至第四方面任一所述的方法。
第十方面,本申请实施例提供一种可读存储介质,所述可读存储介质中存储有指令,当所述可读存储介质中存储的指令在设备上运行时,使得所述设备执行第一方面至第四方面任一所述的方法。
第十一方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算 机上运行时,使得所述计算机执行第一方面至第四方面任一所述的方法。
第十二方面,本申请实施例提供一种芯片,所述芯片包括通信接口和处理器。所述通信接口进行消息的接收和/或发送。所述处理器运行存储器中的代码使得所述芯片执行第一方面至第四方面任一所述的方法。
第十三方面,本申请实施例提供一种系统。所述系统包括第一方面至第四方面中任一方面的第一节点、第二节点和/或第三节点。
本申请实施例通过第二节点将其下级节点的处理能力信息上报给第一节点,可以第一节点在进行调度室,避免或减少不同链路间的冲突。
附图说明
图1a为一种中继传输的网络拓扑示意图;
图1b为一种下一代通信系统的架构示意图;
图2为一种调度冲突示意图;
图3为一种多跳多连接的网络结构示意图;
图4为本申请实施例提供的中继传输方法的示意图;
图5为本申请实施例提供的一种网络结构示意图;
图6为本申请实施例提供的另一种网络结构示意图;
图7为本申请实施例提供的另一种网络结构示意图;
图8为本申请实施例提供的另一种网络结构示意图;
图9为一种确定第一时隙的时序示意图;
图10为一种确定第一时隙的时序示意图;
图11为一种确定第一时隙的时序示意图;
图12为本申请实施例提供的另一种中继传输方法的示意图;
图13为本申请实施例提供的第一节点或第二节点的一种可能的结构示意图;
图14为本申请实施例提供的第一节点或第二节点的一种可能的逻辑结构示意图。
具体实施方式
图1b为一种下一代通信系统的架构示意图。如图1b所示,该系统包括基站、中继节点以及终端。终端可以通过无线的方式与基站连接,并与基站进行数据传输。终端也可以通过无线的方式与中继节点连接,并与中继节点进行数据传输。图1b中基站1与中继节点2之间、中继节点1与基站2之间以及中继节点2与中继节点1之间存在回程链路,中继节点1与终端1之间存在接入链路,基站1与终端2之间也存在接入链路。图1b仅是对下一代通信系统进行示例性的说明,在下一代通信系统中可能存在更多基站、中继节点以及终端,它们可以存在更多的回程链路以及接入链路。该下一代通信系统可以是新空口(new radio,NR)系统或5G通信系统。
在下一代通信系统中,基站向终端发送的调度信息承载在控制资源集合(control resource set,CORESET)中的资源上。承载调度信息的资源的具体时隙位置是可配置的,终端只在基站配置的时隙位置去检测(或监听)调度信息。基站对中继节点的调度也遵循类似的方案。例如,中继节点只在基站配置的某些时隙位置才去检测调度信息。若中 继节点检测到承载在回程链路控制信道上的调度信息,则中继节点按照调度信息的指示进行回程传输。其中,该调度信息中会指示中继节点进行回程传输的时隙。
一个终端从收到调度信息到进行数据传输是需要一定时间间隔的。也就是说,从传输包含下行控制信息的控制信道的时隙到传输数据信道的时隙之间会有一定的时间间隔,这在本申请中被称为控制信道与数据信道之间的定时关系。例如,终端收到物理下行控制信道(physical downlink control channel,PDCCH)携带的下行控制信息(downlink control information,DCI)到进行物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)传输是需要一定时间间隔的。即终端的PDCCH与PDSCH/PUSCH之间的定时关系。该时间间隔例如用于终端进行调度信息的解调。对上行传输而言,该时间间隔还用于终端准备可能的发送数据。该时间间隔因为各个终端的处理能力不同而有所不同。终端会在初始接入时向为其提供服务的基站或中继节点上报其处理能力。本申请实施例中所描述的控制信道均指包含下行控制信息(或调度信息)的控制信道。
类似地,基站要调度一个中继节点进行回程传输,则中继节点接收基站发送的调度信息的时刻与中继节点进行回程传输的时刻之间有一定时间间隔。该时间间隔与中继节点的处理能力有关。中继节点的处理能力越强,则该时间间隔越短。中继节点要调度一个终端进行接入传输,则中继节点发送调度信息给终端的时刻与终端进行接入传输的时刻之间有一定时间间隔。
如果中继节点要在用于回程传输的时隙位置上进行回程链路与接入链路的复用,就必须协调两段链路的调度过程,避免出现冲突。在没有对两段链路的调度进行协调的情况下,可能会发生调度冲突。图2为一种调度冲突示意图。如图2所示,中继节点在时隙A调度终端在时隙C进行上行接入传输。若中继节点在时隙B从基站接收回程链路的控制信息,该控制信息指示中继节点在时隙C进行上行回程传输,则中继节点在时隙C既需要在时隙C接收终端发送的上行接入传输数据,又要在时隙C发送上行回程传输数据。对于TDM方式,中继节点会因为之前在时隙A和时隙B的调度而引起冲突。即便对于SDM方式,由于中继节点在时隙A可能调度了所有的天线端口,也有可能造成在时隙C没有天线端口可以用于回程传输。对于FDM方式,若该中继节点是只能进行带内中继的中继节点,则也可能出现调度冲突。
在图2中,受限于中继节点的处理能力,基站针对时隙C的回程传输的调度信息将提前在时隙B中下发。而如果要在时隙C中进行接入传输,受限于终端的处理能力,中继节点需要在时隙A发送接入链路的控制信息。在这种情况下,基站对中继节点的调度以及中继节点对终端的调度在不同时隙进行且没有相互协调,在时隙C中进行的传输便会出现冲突。
因此,在下一代通信系统中,回程传输与接入传输如果要在某些时隙进行TDM/FDM/SDM方式的复用,则基站和中继节点在对这些时隙进行调度时必须考虑如何避免可能的调度冲突。一般情况下,回程传输的优先级要比接入传输的优先级高。也就是说,在实施调度时,对于一个时隙,基站对中继节点的调度都先于中继节点对终端的调度。因此,首先需要确定一个合适的发送回程链路的调度信息的时隙。在满足回程传输的基础上,尽可能考虑如何实现与接入传输的复用。在本申请提供了一种中继传输方法。通过该方法 可以避免产生回程传输与接入传输的冲突,又可以充分利用资源提升接入链路的容量。进一步地,上级节点与本级节点之间的回程传输要比中继节点与中继节点之间的回程传输的优先级高。例如,图1b中基站1与中继节点2之间的回程传输要比中继节点2与中继节点1之间的回程传输优先级高。因此,上级节点对本级节点的调度都要先于本级节点对下级节点的调度,从而可以避免本级节点处可能产生的冲突。
图3为一种多跳多连接的网络结构示意图。在多跳多连接中继网络中,中继节点(可以称为第二节点)可以为其他的下级中继节点或终端(称为第三节点)提供服务。第二节点可以为一个或多个第三节点提供服务。而基站或其他的上级中继节点(可以称为第一节点)可以为第二节点提供服务。其中,为第二节点提供服务的基站或中继节点被称为第二节点的上级节点(或父节点、主节点),而被第二节点服务的终端或中继节点被称为第二节点的下级节点(或子节点、从节点)。第二节点与第一节点之间的链路称为第一链路。第一链路可以是回程传输链路。第二节点与第三节点之间的链路称为第二链路。当第三节点为终端时,第二链路可以是接入链路;当第三节点为中继节点时,第二链路也可以是回程链路。第一链路传输可以认为是在第一链路上进行的传输,例如,第一节点或第二节点利用第一链路进行的数据传输。第二链路传输可以认为是在第二链路上进行的传输,例如,第三节点或第二节点利用第二链路进行的数据传输。在第二节点处要进行的复用就是第二节点的第一链路传输与第二链路传输的复用。值得注意的是,图3中结构仅为了方便后续描述,本申请不限于应用与图3中结构。例如,第二节点可以有多个上级节点(对应多条第一链路)和/或多个下级节点(对应多条第二链路)。本申请实施例中的基站是终端或中继节点通过无线方式接入到该无线通信系统中的接入设备,可以是演进型基站、下一代通信系统中的基站或WiFi系统中的接入节点等。本申请实施例的中继节点可以是具有中继功能的节点。具体可以是基站、微基站或收发节点(transmission reception point,TRP)、用户驻地设备(customer premise equipment,CPE),用户设备。中继节点可以工作在低频段也可以工作在高频段。本申请实施例中的终端也可以称为终端设备、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、以及其他具有无线收发功能的终端等等。
图4为本申请实施例提供的中继传输方法的示意图。如图4所示,该方法包括以下几个步骤。可以参考图3所示的场景对下述方法进行理解。
步骤401:第二节点向第一节点上报处理能力信息,该处理能力信息包括第二节点服务的第三节点的处理能力。
其中,处理能力信息指示某个节点从接收下行控制信息到进行(上行或下行)数据传输之间所需的时间。该时间通常用OFDM符号或时隙表示。因此,处理能力信息可以用OFDM符号或时隙表示。例如,第三节点的处理能力信息指示第三节点从接收到控制信息到进行(上行或下行)数据传输之间所需的时间。再例如,当第三节点为终端时,终端的处理能力包括终端从接收接入传输的下行控制信道到发送接入传输的上行数据信道的最小时间间隔,以及终端从接收接入传输的下行控制信道到接收接入传输的下行数据信道的最小时间间隔。应注意,本申请实施例中的下行控制信息用于指示上级节点与下级进行传输(例如数据传输)所使用的资源(例如时、频、空资源)。该下行控制信息相当于指示了上级节点 为下级节点调度的传输资源,因此,本申请实施例中也可以将下行控制信息称为调度信息。
第二节点服务的第三节点可能有一个或多个,第二节点在上报第三节点的处理能力信息之前可能先接收一个或多个第三节点的处理能力。因此,第三节点的处理能力包括对第二节点服务的一个或多个第三节点的处理能力进行处理后得到的等效处理能力;或第二节点服务的一个或多个第三节点的处理能力的集合。其中,等效处理能力可以是一个或多个第三节点的处理能力的最大值、最小值或平均值。
进一步地,第二节点还向第一节点上报其自身的处理能力信息。
另外,第二节点周期性上报的处理能力信息;或第二节点在收到一个或多个第三节点的处理能力后上报处理能力信息(包括第二节点的处理能力和一个或多个第三节点的处理能力)。第二节点在收到第三节点的处理能力信息后,可以先判断其服务的第三节点的处理能力是否可能影响第一链路传输和第二链路传输复用。若影响,则第二节点上报处理能力信息。
第一节点接收到第二节点上报的处理能力信息后,根据该处理能力信息确定第二节点接收第一链路传输的下行控制信息的时隙。第一节点将指示该时隙的指示信息发送给第二节点。其中,第一节点确定该时隙的方式包括但不限于:在被调度用于第一链路数据传输的时隙N之前的时隙M作为该时隙,N-M等于由第二节点的处理能力确定的时隙个数与由第三节点的处理能力确定的时隙个数之和,或者两者之间的较大值加1。由第二节点的处理能力确定的时隙个数和由第三节点的处理能力确定的时隙个数之间较大的时隙个数可以满足第二节点或第三节点的从调度到数据传输的时间要求。在此基础上再加1(相当于再提前一个时隙),就可以利用该时隙完成第二节点对第一链路的下行控制信息的接收(或解析)和/或第二节点从接收状态转换为发送状态。
步骤402第二节点从第一节点接收指示信息。其中,该指示信息是第一节点根据第二节点上报的处理能力信息得到的,该指示信息用于指示第一链路传输的下行控制信息所在的时隙。
步骤403:第二节点在该指示信息指示的时隙检测第一链路传输的下行控制信息。
将在该指示信息指示的时隙称为第一时隙。第二节点通过在第一时隙检测第一链路传输的下行控制信息可以确定第一节点是否发送了下行控制信息。若第一节点在第一时隙发送下行控制信息,则该下行控制信息指示第二节点在第二时隙将进行的第一链路传输(如果第二时隙不会进行第一链路传输,则在第一时隙可以不会发送相应的下行控制信息)。其中,第二时隙是被预留用于第一链路传输的时隙。也就是说,在第二时隙,第二节点优先进行第一链路传输。当然,在满足复用条件的情况下,也可以在第二时隙进行第二链路传输。若第二时隙在实际通信中没有被调度用于第一链路传输,则其可以被调度用于第二链路传输。若第一节点没有在第一时隙发送下行控制信息,则表明第一节点没有调度第二节点在第二时隙进行第一链路传输。也就是说,如果第一节点要调度第二时隙进行第一链路传输,则第一节点在第一时隙发送调度第二时隙进行第一链路传输的下行控制信息。这就是在第二时隙进行第一链路传输时发送下行控制信息所要求的定时关系。
需要说明的是,第一节点在根据上述过程确定了定时关系后,可能根据第二节点的负载信息等其他信息确定实际通信时最终使用的第一时隙,具体的确定过程取决于内部算法,对此,本申请不做限定。最终确定的第一时隙可能和上述定时关系对应的第一时隙相同, 或者不同,例如最终确定的第一时隙在上述定时关系对应的第一时隙之前。第二节点在解析出第一时隙中的调度结果后,有足够时间进行接入链路的调度以及在第二时隙完成第一链路传输和第二链路传输的复用。
图5为本申请实施例提供的一种网络结构示意图。如图5所示,基站为一个中继节点提供服务,中继节点为三个终端提供服务。
图6为本申请实施例提供的另一种网络结构示意图。基站为中继节点1提供服务,中继节点为中继节点2和中继节点3提供服务。
图7为本申请实施例提供的另一种网络结构示意图。中继节点1为中继节点2提供服务,中继节点2为三个终端提供服务。
图8为本申请实施例提供的另一种网络结构示意图。中继节点1为中继节点2提供服务,中继节点2则为中继节点3和中继节点4提供服务。
本申请实施例提供的方案所使用的网络结构包括但不限于图5至图8中的网络结构。图5至图8中的基站、中继节点或终端均可扩展至多个,只有这些节点之间存在上行级节点的关系或存在中继关系,本申请实施例提供的方法就可以适用。下面以图5至图8中的某些场景对本申请实施例进一步说明。
实施例一
第二节点向第一节点上报第三节点的等效处理能力。第一节点根据第三节点的等效处理能力确定第一时隙。第二节点还可以向第一节点上报自身的处理能力。第一节点在确定第一时隙时还可能利用第二节点的处理能力。第一节点向第二节点发送用于指示第一时隙指示信息。第二节点在第一时隙检测第一节点发送的下行控制信息。该下行控制信息指示第二节点在第二时隙进行第一链路传输。在满足复用条件的情况下,第二节点还可以在第三时隙调度第三节点在第二时隙进行第二链路传输。若第一节点在第一时隙没有下发控制信息,则第二节点直接在第三时隙调度终端在第二时隙进行第二链路传输。其中,复用条件包括:在时分复用的情况下,第一链路传输和第二链路传输占用不同的时间单元;在频分复用的情况下,第一链路传输和第二链路传输占用不同的频域资源;在空分复用的情况下,第一链路传输和第二链路传输占用第二节点的不同的天线端口。第三时隙可以是位于第一时隙和第二时隙之间的任一时隙,或者,第三时隙可以是第一时隙或第二时隙。
下面以第一节点为基站,第二节点为中继节点,第三节点为终端为例,参照图5所示的场景,对本申请实施例进一步描述。
中继节点服务的终端(如图5中的终端1、终端2、终端3)向中继节点上报它们各自的处理能力。本发明中分别称之为上行传输处理能力和下行传输处理能力。例如终端1、终端2、终端3分别上报的上行传输处理能力为UN_1、UN_2、UN_3,上报的下行传输处理能力为DN_1、DN_2、DN_3。处理能力可以采用OFDM符号个数或者时隙个数来表征。例如UN_1=32symbols,又如UN1=3slots。或者处理能力采用绝对时间来表征。例如UN_1=0.5ms。如果有其他新的终端要接入中继节点,它也会在进行接入时向中继节点上报它的处理能力。
中继节点对收到的终端的处理能力进行处理,得到一个等效处理能力。这里的处理可以有多种方法,包括但不限于对收到的所有处理能力上报值取最大值、最小值或平均值。例如,终端1、终端2和终端3的等效处理能力包括等效的上行传输处理能力UN_eff,和 等效的下行传输处理能力DN_eff。作为一个示例,UN_eff=Max{UN_1,UN_2,UN_3},DN_eff=Max{DN_1,DN_2,DN_3}。
中继节点将终端的等效处理能力上报给基站。中继节点还可以上报自身的处理能力给基站,其中,中继节点自身的处理能力包括中继节点的上行传输处理能力UN_RN和下行传输处理能力DN_RN。中继节点将UN_eff、DN_eff、UN_RN和DN_RN上报给基站。这里的上报可以是周期性地上报,也可以根据触发上报。触发条件可以是由基站的请求触发或者由有新的终端接入该中继节点触发。
基站收到中继节点上报终端的处理能力后,确定第一时隙。基站在确定第一时隙时,还可能利用中继节点的处理能力。作为示例,基站根据UN_eff、DN_eff、UN_RN和DN_RN,计算中继节点接收基站的下行控制信息的时隙(即第一时隙)与进行回程传输的时隙(即第二时隙)之间的定时关系。第二时隙通常是预留的,因此也可称之为预留的优先用于回程传输的时隙。由于TDD系统子帧有上行子帧和下行子帧之分,基站在针对不同的第二时隙的计算定时关系时要参考的处理能力可能有所不同。对于接入链路部分,可能是参考UN_eff,也可能是参考DN_ef。对于回程链路部分,可能是参考UN_RN,也可能是参考DN_RN。因为中继节点在上行子帧无法进行回程传输的下行控制信道的接收,所以基站在确定第一时隙时还应考虑所确定的时隙是否可以用于下发下行控制信息。若不可以,则基站需考虑其他满足条件的时隙作为第一时隙。另外,在通信过程中,可以预留多个用于优先进行回程传输的时隙,也就是说,存在多个第二时隙。需要针对每个第二时隙确定对应的第一时隙。针对不同的第二时隙,基站确定的第一时隙可能有所不同,但是确定方法是类似的。
图9为一种确定第一时隙的时序示意图。设时隙7为预留的优先用于回程传输的时隙(也就是说第二时隙是时隙7),该时隙在回程链路和接入链路上都是上行时隙。中继节点上报的UN_eff=4slots,即接入传输的下行控制信道与接入传输的上行数据信道的传输时刻至少需要相差4个时隙,终端才能完成接入传输的下行控制信道解析和接入传输的上行数据信道的数据准备。中继节点上报的UN_RN=2slots。为了中继节点在解调出基站发送的下行控制信息后,能根据其中的调度结果,来确定是否在时隙7进行接入传输,基站发送下行控制信息的时间应该提前到时隙1。也就是说,时隙1即为确定出来的第一时隙。这使得中继节点可以成功解析出调度结果后,在时隙3确定接入链路的调度。如果在时隙1接收下行控制信息后,中继节点解析到在时隙7要进行回程传输的上行数据发送,则基于TDM的复用原则,在时隙7不能进行接入传输的上行数据接收。因此在时隙3不对中继节点服务的终端进行调度。如果时隙7不进行回程传输的上行数据发送,则基于TDM的复用原则,中继节点在时隙7可以进行接入传输的上行数据接收。中继节点可以在时隙3对终端的调度,例如,发送接入控制信息给终端。此时,中继节点利用了原本预留给回程传输的时隙进行接入传输,节约了系统资源。
对于时隙7来说,基站需要确定是否在时隙1发送下行控制信息指示中继节点在时隙7进行回程传输。若基站在时隙1没有发送用于指示在时隙7进行回程传输的下行控制信息,则表明基站没有调度中继节点在时隙7进行回程传输。也就是说,如果基站要调度时隙7进行回程传输,则基站必须在时隙1发送调度时隙7进行回程数据传输的控制信息。这就是时隙7的回程传输的控制信道与数据信道之间的定时关系。确定该定时关系,就需要确 定时隙1对应的第一时隙。类似的,基站可以得到在一定时间范围内所有第二时隙对应的回程传输的控制信道与数据信道之间的定时关系。也就是说,基站可以得到在一定时间范围内所有第二时隙对应的第一时隙。这里所谓的一定时间范围,可能是一个系统帧,也可能是预设的一段时间间隔。
基站将最终确定的第一时隙通知给中继节点,以使得中继节点在第一时隙检测下行控制信息。例如基站通知中继节点在时隙1检测下行控制信息。当中继节点在第一时隙检测到下行控制信息时,该下行控制信息会携带第二时隙的信息。例如,具体某个回程传输的控制信道对应的数据信道所在的时隙位置,将在该下行控制信息中指示。
实施例二
第二节点向第一节点上报每个第三节点的处理能力。第一节点根据每个第三节点的处理能力确定第一时隙。第二节点还可以向第一节点上报自身的处理能力。第一节点在确定第一时隙时还可能利用第二节点的处理能力。第一节点向第二节点发送用于指示第一时隙指示信息。第二节点在第一时隙检测第一节点发送的下行控制信息。该下行控制信息指示第二节点在第二时隙进行第一链路传输。在满足复用条件的情况下,第二节点还可以在第三时隙调度第三节点在第二时隙进行第二链路传输。若第一节点在第一时隙没有下发控制信息,则第二节点直接在第三时隙调度第三节点在第二时隙进行第二链路传输。其中,复用条件包括:在时分复用的情况下,第一链路传输和第二链路传输占用不同的时间单元;在频分复用的情况下,第一链路传输和第二链路传输占用不同的频段;在空分复用的情况下,第一链路传输和第二链路传输占用不同的天线端口。第三时隙可以是位于第一时隙和第二时隙之间的任一时隙,或者,第三时隙可以是第一时隙或第二时隙。实施例二与实施例一类似,主要的区别在于第二节点将其获得的第三节点的处理能力不做处理,而是直接上报给第一节点。因此,实施例二中相关特征的内涵可以参照上述实施例得到,在此不再赘述。
下面以第一节点为基站,第二节点为中继节点,第三节点为终端为例,参照图5所示的场景,对本申请实施例进一步描述。
中继节点服务的终端(如图5中的终端1、终端2、终端3)向中继节点上报它们各自的处理能力。本发明中分别称之为上行传输处理能力和下行传输处理能力。例如终端1、终端2、终端3分别上报的上行传输处理能力为UN_1、UN_2、UN_3,上报的下行传输处理能力为DN_1、DN_2、DN_3。处理能力可以采用OFDM符号个数或者时隙个数来表征。例如UN_1=32symbols,又如UN1=3slots。或者处理能力采用绝对时间来表征。例如UN_1=0.5ms。如果有其他新的终端要接入中继节点,它也会在进行接入时向中继节点上报它的处理能力。
中继节点不对收到的终端的处理能力进行处理,而直接将这些终端的处理能力和/或自身的处理能力上报给基站。例如,中继节点直接将{UN_1,UN_2,UN_3}和{DN_1,DN_2,DN_3}上报给基站,同时也上报自身的处理能力UN_RN和DN_RN给基站。这里的上报可以是周期性地上报,也可以根据触发上报。触发条件可以是由基站的请求触发或者由有新的终端接入该中继节点触发。
基站收到中继节点上报终端的处理能力后,确定第一时隙。基站在确定第一时隙时,还可能利用中继节点的处理能力。作为示例,基站收到中继节点上报的每个终端的处理能力和中继节点的处理能力后,先基于终端的处理能力计算出接入传输的控制信道与数据信 道之间的定时关系参考值。在区分上下行传输的情况下,上行定时关系参考值为UN_AC_ref,下行定时关系参考值为DN_AC_ref。计算方式可以有多种,包括但不限于对收到的终端的处理能力上报值取最大值、最小值或平均值。例如,UN_AC_ref=Max{UN_1,UN_2,UN_3},DN_AC_ref=Max{DN_1,DN_2,DN_3}。基站基于中继节点的处理能力和定时参考值,确定第一时隙。例如,基站根据UN_RN、UN_AC_ref、DN_RN和DN_AC_ref,计算回程传输的控制信道与数据信道之间的定时关系,从而确定第一时隙。
图10为一种确定第一时隙的时序示意图。设时隙7为预留的优先用于回程传输的时隙(也就是说第二时隙是时隙7),该时隙在回程链路上是上行时隙,在接入链路上是下行时隙。中继节点上报的终端的下行处理能力为{DN_1=0symbol,DN_2=0symbol,DN_3=1symbol}。在一个时隙包含多个符号的情况下,对收到的终端的处理能力上报值取最大值可以计算出DN_AC_ref=0slots。也就是说,终端对接收到的接入控制信息的解析与接收下行接入数据可以在一个slot内完成。中继节点上报的UN_RN=4slots。为了中继节点在解调出基站发送的下行控制信息后,能根据其中的调度结果,来确定是否在时隙7进行接入传输,基站发送下行控制信息的时间应该提前到时隙3。也就是说,时隙3即为确定出来的第一时隙。这使得中继节点可以在成功解析下行控制信息得出调度结果后,有足够时间完成接入链路的调度和传输。即中继节点可以在时隙7发送接入控制信息并在时隙7完成接入传输。例如中继节点在时隙3接收下行控制信息后,对该下行控制信息解析后得到调度结果。该调度结果指示中继节点在时隙7要使用天线端口1和天线端口2进行回程传输的上行数据的发送。根据SDM的要求,在时隙7进行回程传输与接入传输的空分复用时,中继节点不能再使用天线端口1和天线端口2进行接入传输,但可以调度并使用剩余的天线端口来进行接入传输。
需要说明的是,如果基站确定的时隙3不能用于发送下行控制信息,例如时隙3是用于上行回程传输的时隙,则基站需要在时隙3之前重新确定一个满足条件的时隙作为第一时隙。该条件主要是要使得第一时隙与第二时隙之间的时间间隔足够大,使得中继节点在解析出第一时隙中的调度结果后,有足够时间进行接入链路的调度以及在第二时隙完成回程链路传输和接入链路传输的复用。
对于时隙7来说,基站需要确定是否在时隙3发送下行控制信息指示中继节点在时隙7进行回程传输。若基站在时隙3没有发送用于指示在时隙7进行回程传输的下行控制信息,则表明基站没有调度中继节点在时隙7进行回程传输。也就是说,如果基站要调度时隙7进行回程传输,则基站必须在时隙3发送调度时隙7进行回程数据传输的控制信息。这就是时隙7的回程传输的控制信道与数据信道之间的定时关系。确定该定时关系,就需要确定时隙3对应的第一时隙。类似的,基站可以得到在一定时间范围内所有第二时隙对应的回程传输的控制信道与数据信道之间的定时关系。也就是说,基站可以得到在一定时间范围内所有第二时隙对应的第一时隙。这里所谓的一定时间范围,可能是一个系统帧,也可能是预设的一段时间间隔。
基站将最终确定的第一时隙通知给中继节点,以使得中继节点在第一时隙检测下行控制信息。例如基站通知中继节点在时隙3检测下行控制信息。当中继节点在第一时隙检测到下行控制信息时,该下行控制信息会携带第二时隙的信息。例如,具体某个回程传输的 控制信道对应的数据信道所在的时隙位置,将在该下行控制信息中指示。
实施例三
下面以第一节点为基站,第二节点为中继节点,第三节点为中继节点为例,参照图6所示的场景,对本申请实施例进一步描述。
在图6所示的网络结构中,基站是中继节点1的上级节点,中继节点1的下级节点则是中继节点2和中继节点3。中继节点1与中继节点2之间的链路,以及中继节点1和中继节点3之间的链路属于回程链路,其作用都是转发基站与终端之间的数据,此处所指终端是中继节点2和中继节点3的下级节点。在这种结构下,中继节点1与基站之间的链路为第一链路,中继节点1与中继节点2以及中继节点1和中继节点3之间的链路为第二链路。在预留用于回程传输的时隙上,可能对第一链路上的传输以及第二链路上的传输进行复用。
要达到两条链路复用的目的,中继节点2和中继节点3要向上级节点即中继节点1上报它们的处理能力。而中继节点1要将它的下级节点,即中继节点2和中继节点3的处理能力进行处理得到等效处理能力并将其上报给基站,或者直接向基站上报中继节点2和节点3的处理能力。同时,中继节点1要向基站上报它自己的处理能力。
基站收到中继节点1上报的中继节点2和中继节点3的处理能力(或两个中继节点的等效处理能力)和中继节点1自己的处理能力后,确定第一时隙,确定的方法与实施例一或实施例二相同。
图11为一种确定第一时隙的时序示意图。设时隙7为预留的优先用于第一链路传输的时隙(也就是说第二时隙是时隙7),该时隙在第一链路和第二链路上都是上行时隙,第一链路和第二链路采用TDM方式复用。中继节点1上报的UN_eff=4slots,即第二链路传输的下行控制信息与第二链路上行数据信道的传输时刻至少需要相差4个时隙,中继节点2和中继节点3才能完成下行控制信息解析和上行数据信道的数据准备。中继节点1上报的UN_RN=2slots。为了中继节点1在解调出基站发送的下行控制信息后,能根据其中的调度结果,来确定是否在时隙7进行第二链路传输,基站发送下行控制信息的时间应该提前到时隙1。也就是说,时隙1即为确定出来的第一时隙。这使得中继节点1可以成功解析出调度结果后,在时隙3确定第二链路的调度。如果在时隙1接收下行控制信息后,中继节点1解析到在时隙7要进行第一链路传输的上行数据发送,则基于TDM的复用原则,在时隙7不能进行第二链路传输的上行数据接收。因此在时隙3不对中继节点2和中继节点3进行调度。如果时隙7不进行回程传输的上行数据发送,则基于TDM的复用原则,中继节点1在时隙7可以进行第二链路传输的上行数据接收。中继节点1可以在时隙3对中继节点2和中继节点3进行调度,例如,发送接入控制信息给中继节点2和中继节点3。此时,中继节点1利用了原本预留给第一链路传输的时隙进行第二链路传输,节约了系统资源。
基站可以得到在一定时间范围内所有第二时隙对应的第一链路传输的下行控制信息与数据信道之间的定时关系。也就是说,基站可以得到在一定时间范围内所有第二时隙对应的第一时隙。这里所谓的一定时间范围,可能是一个系统帧,也可能是预设的一段时间间隔。
基站在根据上述过程确定了定时关系后,可能根据第二节点的负载信息等其他信息确 定实际通信时最终使用的第一时隙,具体的确定过程取决于内部算法,对此,本申请不做限定。最终确定的第一时隙可能和上述定时关系对应的第一时隙相同,或者不同,但可使得中继节点在解析出第一时隙中的调度结果后,有足够时间进行接入链路的调度以及在第二时隙完成回程链路传输和接入链路传输的复用。
基站将最终确定的第一时隙通知给中继节点1,以使得中继节点1在第一时隙检测下行控制信息。
在图6所示的网络结构下,也可以采用实施例三中的方案,由中继节点1根据中继节点2和中继节点3上报的处理能力,以及中继节点1自己的处理能力,结合时隙配置,确定自己与基站之间的回程传输的控制信道与数据信道定时关系。
中继节点1将得到的定时关系作为参考定时信息上报给基站。基站在收到中继节点1上报的定时关系后,确定对该中继节点1发送下行控制信息的时隙,并通知给中继节点1。
图12为本申请实施例提供的另一种中继传输方法的示意图。如图12所示,该方法包括以下几个步骤。可以参考图3所示的场景对下述方法进行理解。
步骤1201:第二节点接收所述第二节点服务的一个或多个第三节点的处理能力信息。
步骤1202:第二节点向第一节点发送参考定时信息,所述参考定时信息是根据所述第二节点接收的处理能力信息和/或自身的处理能力得到的,所述参考定时信息用于指示第一时隙与第二时隙之间的定时关系。
其中,第一时隙用于传输第一链路传输的下行控制信息,第二时隙用于进行第一链路传输和/或第二链路传输。所述第一链路为所述第一节点和所述第二节点之间的链路;所述第二链路为所述第二节点和所述一个或多个第三节点之间的链路。具体地,所述参考定时信息用于指示第一链路传输的下行控制信息所在的时隙(即第一时隙)与所述下行控制信息对应的数据信道所在的时隙(即第二时隙)之间的定时关系。
其中,第一链路传输的下行控制信息所在的时隙可以认为是第一时隙,下行控制信息对应的数据信道所在的时隙可以认为是第二时隙。也就是说,第二节点向第一节点上报第一时隙和第二时隙之间的定时关系。在一定时间间隔内,可能有多个第二时隙。因此,第二节点确定的第一时隙应当是与第二时隙对应的第一时隙。第二节点上报第一时隙时,也需要上报对应的第二时隙。步骤1202中的定时关系与上文所述的定时关系相比,需要更加明确的指出第一时隙对应的第二时隙。
第二节点上报该参考定时信息后,第一节点根据该参考定时信息确定实际通信时的第一时隙。第一节点还可能根据第二节点的负载信息等其他信息确定实际通信时的第一时隙。第一节点确定的第一时隙可能和第二节点上报的参考定时信息中指示的第一时隙不同。
步骤1203:第二节点从第一节点接收指示信息,所述指示信息用于指示第二节点与第一节点之间实际进行传输时的下行控制信息所在的时隙。
实施例四
第二节点确定与第二时隙对应的第一时隙,并上报给第一节点。第二节点上报的第一时隙是提供给第一节点在确定实际通信时的第一时隙做参考的。第一节点根据第二节点上报的第一时隙确定实际通信时的第一时隙,并将实际通信时的第一时隙的指示信息下发给第二节点。第二节点在第一节点指示的第一时隙检测第一链路传输的下行控制信息。下面 以第一节点为基站,第二节点为中继节点,第三节点为终端为例,对本申请实施例进一步描述。具体地,以图5所示的场景对图12所示的方法进一步进行说明。
中继节点保存了它与基站间回程链路的时隙配置,即在哪些时隙是预留用于回程传输的时隙,哪些时隙是基站用于接入传输的时隙,以及这些时隙是用于上行传输还是用于下行传输。同时中继节点也保存了自身接入链路的时隙配置。例如中继节点的时隙中哪些时隙是用于上行接入传输,哪些时隙是用于下行接入传输。
与实施例一和实施例二中相同的,终端向中继节点上报其上行、下行处理能力;
中继节点对收到的终端的处理能力进行处理,得到终端的等效处理能力。这里的处理可以有多种方法,包括但不限于对收到的所有的处理能力上报值取最大值、最小值或平均值。即UN_eff=Max{UN_1,UN_2,UN_3},DN_eff=Max{DN_1,DN_2,DN_3};
中继节点确定自己与基站之间的回程传输的控制信道与数据信道定时关系。此时中继节点需要参考它与基站间的回程链路的时隙配置以及它与终端之间接入链路的时隙配置。该确定过程与实施例一和实施例二中基站计算第一时隙与第二时隙之间的定时关系的过程类似,在此不再赘述。最终,中继节点计算出所有预留用于回程传输的时隙所对应的定时关系,该定时关系只是一个参考定时关系,上报给基站后供基站参考。
中继节点将得到的定时关系作为参考定时信息上报给基站。所上报内容的生成方式包括但不限于以下方式:将一个系统帧内或一个周期内预留用于第一链路传输的时隙的索引号以及这些时隙分别对应的第一链路传输的下行控制信息的传输时隙的索引号构成的列表,如表1所示,再将表格中的数值转化为二进制比特并按一定顺序排列;也可以是将一个系统帧内或一个周期内预留用于第一链路数据传输的时隙的索引号,以及对于这些时隙分别要提前多少个时隙传输第一链路传输的下行传输信息,构成列表,如表2所示,再将表格中的数值转化为二级制比特并按一定顺序排列。
表1预留用于第一链路传输的时隙与发送第一链路传输的下行控制信息的时隙的对应表
Figure PCTCN2019074342-appb-000001
表2预留用于第一链路传输的时隙与发送第一链路传输的下行控制信息的时隙提前量对应表
Figure PCTCN2019074342-appb-000002
基站在收到中继节点上报的参考定时信息后,确定对该中继节点发送下行控制信息(或回程传输的控制信道)的时隙。基站确定该时隙可能会参考中继节点的负载,但是主要的确定过程取决于内部算法,对此,本申请不做限定。确定的结果有可能跟中继节点上报的参考定时信息中的第一时隙一致,也可能不一致。基站将用于发送下行控制信息(或回程传输的控制信道)的时隙,通知给中继节点。也就是说,基站将实际通信时的第一时隙通知给中继节点,以使得中继节点在该第一时隙检测下行控制信息。当中继节点在该第一时 隙检测到下行控制信息时,该下行控制信息会携带第二时隙的信息。例如,具体某个回程传输的控制信道对应的数据信道所在的时隙位置,将在该下行控制信息中指示。
实施例五
在图1b所示的网络架构中,基站1是中继节点2的上级节点,中继节点2是中继节点1的上级节点,终端1接入中继节点1。基站1、中继节点2、中继节点1以及终端1构成基站1与终端1之间的传输路径或传输链。中继节点1与中继节点2之间的链路,以及中继节点2和基站1之间的链路属于回程链路,中继节点1与终端1之间的链路属于接入链路。进一步地,中继节点2和基站1之间还可以存在一个或多个中继节点。
对于中继节点1而言,中继节点2与中继节点1之间的链路为第一链路,中继节点2与终端1之间的链路为第二链路。在预留用于回程传输的时隙上,可能对第一链路上的传输以及第二链路上的传输进行复用。
要在中继节点1处达到第一链路和第二链路复用的目的,一种方式是中继节点1将它的下一级节点,即终端1的处理能力上报给基站1。同时,中继节点1要向基站1上报它自己的处理能力。在这种方式下,基站1为本申请方案中的第一节点,中继节点1为第二节点。基站1收到中继节点1上报的终端1和中继节点1的处理能力后,确定第一时隙。基站将指示该第一时隙的指示信息发送给中继节点1。基站1确定第一时隙的方法与实施例一或实施例二中确定第一时隙的方法相同。可选地,中继节点1也可以基于自己的处理能力和终端1的处理能力,确定与第二时隙对应的第一时隙。中继节点1生成参考定时信息并上报给基站1。基站1根据中继节点1上报的参考定时信息确定实际通信时的第一时隙,并将指示该第一时隙的指示信息下发给中继节点1。涉及第一时隙以及第二时隙等技术特征和其他更多细节可以参考上述实施例,例如步骤401-403的相关描述,在此不再赘述。
中继节点1向基站1上报的处理能力信息或参考定时信息,以及基站1向中继节点1发送的指示第一时隙的指示信息,可以通过中继设备与基站设备之间的接口传输。例如,中继节点1向基站1上报的处理能力信息或参考定时信息可以通过中继节点1的分布单元(distributed unit,DU)与基站1的集中单元(central unit,CU)之间的F1接口和/或基于F1-AP协议(F1application protocol)由中继节点1向基站1发送。进一步地,处理能力信息或参考定时信息可以承载在F1-AP协议的消息中。例如F1-AP协议中的上行无线资源控制转移消息(YΛ ΡΡX ΤΡΑΝΣΦΕΡ μεσσαγε)中,或者在F1-AP协议中新定义的一种消息中。基站1向中继节点1发送的指示第一时隙的指示信息可以通过基站1的集中单元(CU)与中继节点1的分布单元(DU)之间的F1接口、基于F1-AP协议由基站1向中继节点1发送。进一步地,指示第一时隙的指示信息可以承载在F1-AP协议的消息中。例如F1-AP协议中的下行无线资源控制转移消息(ΔΛ ΡΡX ΤΡΑΝΣΦΕΡ μεσσαγε)中,或者在F1-AP协议中新定义的一种消息中。再例如,中继节点1向基站1上报的处理能力信息或参考定时信息也可以基于RRC(Radio Resource Control)协议由中继节点1向基站1发送。可选地,处理能力信息或参考定时信息可以承载在RRC协议的消息中,例如UECapabilityInformation消息中,或者在RRC协议中新定义的一种消息中。基站1向中继节点1发送的指示第一时隙的指示信息可以基于RRC协议由基站1向中继节点1发送。可选地,指示第一时隙的指示信息可以承载在RRC协议的消息中,例如 RRCConnectionReconfiguration消息中,或者在RRC协议中新定义的一种消息中。由于中继节点1与基站1之间不存在直接的空口连接,因此中继节点1向基站1上报的处理能力信息或参考定时信息,以及基站1向中继节点1发送的指示第一时隙的指示信息,都需要通过中继节点2向基站1进行转发。例如,中继节点2透传这些信息,或者中继节点在适配层和/或RRC层解析这些信息后进行转发。也就是说,中继节点1向基站1上报处理能力信息,该处理能力信息包括中继节点1服务的一个或多个第三节点(例如图1b中的终端1)的处理能力。中继节点1从基站1接收基站1根据所述处理能力信息得到的指示信息。该指示信息用于指示第一时隙,该第一时隙为第一链路传输的下行控制信息所在的时隙。该第一链路为中继节点1的上一级节点(例如图1b中的中继节点2)和中继节点1之间的链路。当中继节点2与基站1之间还存在其他中继节点时,可以参考上述实施例,在此不再赘述。应理解,在图1b场景下,基站1可以是能够向中继节点1发送控制信令或配置信令(例如基于F1-AP的控制面信令,或者基于RRC协议的控制面信令)的基站。其他能够实现控制或配置中继节点1的基站也可以参照本申请实施例执行。从而可以使得中继节点1在预留用于回程传输的时隙上,可能对第一链路上的传输以及第二链路上的传输进行复用。
进一步地,中继节点1在第一时隙检测所述第一链路传输的下行控制信息。
要在中继节点1处达到第一链路和第二链路复用的目的,另一种方式是中继节点1将它的下级节点,即终端1的处理能力上报给中继节点2。同时,中继节点1要向中继节点2上报它自己的处理能力。在这种方式下,中继节点2为本申请方案中的第一节点,中继节点1为第二节点。中继节点2收到中继节点1上报的终端1和中继节点1的处理能力后,确定第一时隙,并将指示该时隙的指示信息发送给中继节点1。中继节点2确定第一时隙的方法与实施例一或实施例二中确定第一时隙的方法相同。可选地,中继节点1也可以基于自己的处理能力和终端1的处理能力,确定与第二时隙对应的第一时隙。中继节点1生成参考定时信息并上报给中继节点2。中继节点2根据中继节点1上报的第一时隙确定实际通信时的第一时隙。中继节点2将实际通信时的第一时隙的指示信息下发给中继节点1。更多细节参考上述实施例,在此不再赘述。中继节点1向中继节点2上报的处理能力信息或参考定时信息,以及中继节点2向中继节点1发送的指示第一时隙的指示信息。进一步地,该指示信息可以可以通过中继设备之间的接口并承载在特定的信令中进行传递。例如,中继节点1向中继节点2上报的处理能力信息或参考定时信息可以基于适配层协议由中继节点1向中继节点2发送。进一步地,处理能力信息或参考定时信息可以承载在适配层协议的消息中。中继节点2向中继节点1发送的指示第一时隙的指示信息可以基于适配层协议由中继节点2向中继节点1发送。进一步地,指示第一时隙的指示信息可以承载在适配层协议的消息中。再例如,中继节点1向中继节点2上报的处理能力信息或参考定时信息可以基于RRC协议由中继节点1向中继节点2发送。可选地,处理能力信息或参考定时信息可以承载在RRC协议的特定消息中,例如UECapabilityInformation消息中。中继节点2向中继节点1发送的指示第一时隙的指示信息可以基于RRC协议由中继节点2向中继节点1发送。可选地,指示第一时隙的指示信息可以承载在RRC协议的消息中,例如RRCConnectionReconfiguration消息中。
应理解,对于第一节点和第二节点均为中继节点的场景,例如图7或图8所示的场景,对应某一路径而言,中继节点1可能是中继节点2的上级节点,而对于另一路径而言,中继节点2可能是中继节点1的上级节点。但对于某一个确定的路径上的传输,中继节点1和中继节点2的上下级关系是明确且唯一的,因此在这种场景下,本申请实施例中的方案是适用的,具体方案参考上述实施例,在此不再赘述。
通过本申请实施例提供的方法,可以确定一个合适的发送回程链路的调度信息的时隙。在满足回程传输的基础上,尽可能考虑如何实现与接入传输或其他回程传输的复用。通过该方法可以避免产生回程传输与接入传输或其他回程传输的冲突,又可以充分利用资源提升接入链路或其他回程连理的容量。
相应于上述方法实施例,本申请实施例可以对第一节点和第二节点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图13为本申请实施例提供的第一节点或第二节点的一种可能的结构示意图。第一节点或第二节点包括:发送模块1301、接收模块1302。其中,发送模块1301用于支持方法实施例中第一节点或第二节点发送数据或信息的相关步骤。例如,第一节点发送指示信息或第二节点向第一节点发送处理能力信息。接收模块1302用于支持第一节点或第二节点接收数据或信息的相关步骤。例如,第一节点接收处理能力信息或第二节点接收指示信息。可选的,第一节点或第二节点还包括:处理模块1303,用于支持第一节点或第二节点对接收的信息或待发送的信息进行处理等的相关步骤。例如,第二节点在第一时隙检测所述第一链路传输的下行控制信息。
在硬件实现上,上述处理模块1303可以为处理器或者处理电路等;发送模块1301可以为发送器或者发送电路等,接收模块1302可以为接收器或者接收电路等,发送模块1301和接收模块1302可以构成通信接口。
图14为本申请实施例提供的第一节点或第二节点的一种可能的逻辑结构示意图。如图14所示,第一节点或第二节点包括:通信接口1403。在本申请的实施例中,通信接口1403用于支持该第一节点或第二节点与除其本身之外的其他设备进行通信。例如,通信接口1403用于支持第一节点发送指示信息或第二节点向第一节点发送处理能力信息、第一节点接收处理能力信息或第二节点接收指示信息等。可选的,第一节点或第二节点还可以包括存储器1401、总线1404和处理器1402。处理器1402以及存储器1401可以通过总线1404相互连接。其中,处理器1402可以用于支持第一节点或第二节点对接收的信息或待发送的信息进行处理等的相关步骤。其中,该存储器1401,该存储器用于存储第一节点或第二节点的代码和数据。
在具体实现中,处理器1402可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组 合,数字信号处理器和微处理器的组合等等。总线1404可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。其中,第三节点可以具有与第一节点或第二节点类似的硬件结构。可以理解的是,各个网元,例如第一节点、第二节点和第三节点为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器可以调用可读存储介质中存储有计算机执行指令来执行图4或图12所提供的方法中第一节点、第二节点或第三节点的步骤。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施图4或图12所提供的方法中第一节点、第二节点或者第三节点的步骤。
在本申请的另一实施例中,还提供一种通信系统,该通信系统包括多个设备,该多个设备包括第一节点和第二节点。可选地,该系统还可以包括第三节点。其中,第一节点或第二可以为图13或图14所提供的设备。
本申请实施例还提供了一种实现上述实施例(例如图4或图12)描述的方法的芯片。该芯片包括处理电路和收发电路。所述收发电路例如可以是输入/输出接口、管脚或电路等。该处理电路可执行存储单元存储的计算机执行指令。该芯片还可能包括存储单元。所述存储单元可以是寄存器、缓存等。当然,也可以为该芯片提供额外的存储单元。例如,存储单元还可以是终端或接入设备内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。该芯片可以应用与基站、中继节点或终端。
本申请的又一方面提了一种设备,所述设备包括所述处理器运行存储器中的代码使得所述设备执行前述的各种方法。该存储器中存储代码和数据。该存储器位于所述设备中,该所述存储器所述处理器耦合。该存储器也可以位于所述设备之外。
需要注意的是,装置实施例涉及的特征可以参考上述方法实施例得到。例如处理能力信息、指示信息等。这些特征在装置部分没有一一描述,但本领域技术人员可以很容易根据方法实施例的描述得到相应的装置。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围 之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上所述,以上仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种中继传输方法,其特征在于,所述方法包括:
    第二节点向第一节点上报处理能力信息,所述处理能力信息包括所述第二节点服务的一个或多个第三节点的处理能力;
    所述第二节点从所述第一节点接收所述第一节点根据所述处理能力信息得到的指示信息,所述指示信息用于指示第一时隙,所述第一时隙为第一链路传输的下行控制信息所在的时隙,所述第一链路为所述第一节点和所述第二节点之间的链路;
    所述第二节点在所述第一时隙检测所述第一链路传输的下行控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第二节点从所述一个或多个第三节点接收所述一个或多个第三节点的处理能力。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二节点上报的处理能力信息包括:
    对所述一个或多个第三节点的处理能力进行处理后得到的等效处理能力;或
    所述一个或多个第三节点的处理能力的集合。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第二节点上报的处理能力信息还包括所述第二节点自身的处理能力。
  5. 根据权利要求4所述的方法,其特征在于,所述第二节点或所述一个或多个第三节点的处理能力以及所述第二节点自身的处理能力通过正交频分复用OFDM符号个数或时隙个数表征。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,
    所述第一链路传输的下行控制信息用于指示所述第二节点在第二时隙进行第一链路传输时所需的资源。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点在第三时隙发送第二链路传输的下行控制信息,所述第二链路为所述一个或多个第三节点和所述第二节点之间的链路。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第二链路传输的下行控制信息用于指示所述第二节点在第二时隙进行第二链路传输时所需的资源。
  9. 根据权利要求7或8所述的方法,其特征在于,
    所述第一时隙与所述第三时隙为同一时隙,或所述第一时隙在所述第三时隙之前。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,
    所述第二链路传输的下行控制信息所指示的资源为所述第一链路传输的下行控制信息未指示的所述第二时隙的资源。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,
    所述第一节点为基站,所述第二节点为中继节点,所述第三节点为终端。
  12. 一种中继传输装置,其特征在于,所述装置包括:
    发送模块,用于向第一节点上报处理能力信息,所述处理能力信息包括第二节点服务的一个或多个第三节点的处理能力;
    接收模块,用于从所述第一节点接收所述第一节点根据所述处理能力信息得到的指示信息,所述指示信息用于指示第一时隙,所述第一时隙为第一链路传输的下行控制信息所在的时隙,所述第一链路为所述第一节点和所述第二节点之间的链路;
    处理模块,用于在所述第一时隙检测所述第一链路传输的下行控制信息。
  13. 根据权利要求12所述的装置,其特征在于,所述接收模块还用于从所述一个或多个第三节点接收所述一个或多个第三节点的处理能力。
  14. 根据权利要求12或13所述的装置,其特征在于,所述第二节点上报的处理能力信息包括:
    对所述一个或多个第三节点的处理能力进行处理后得到的等效处理能力;或
    所述一个或多个第三节点的处理能力的集合。
  15. 根据权利要求12-14任一项所述的装置,其特征在于,所述第二节点上报的处理能力信息还包括所述第二节点自身的处理能力。
  16. 根据权利要求15所述的装置,其特征在于,所述第二节点或所述一个或多个第三节点的处理能力以及所述第二节点自身的处理能力通过正交频分复用OFDM符号个数或时隙个数表征。
  17. 根据权利要求12-15任一项所述的装置,其特征在于,
    所述第一链路传输的下行控制信息用于指示所述第二节点在第二时隙进行第一链路传输时所需的资源。
  18. 根据权利要求12-17任一项所述的装置,其特征在于,所述发送模块还用于在第三时隙发送第二链路传输的下行控制信息,所述第二链路为所述一个或多个第三节点和所述第二节点之间的链路。
  19. 根据权利要求18所述的装置,其特征在于,
    所述第二链路传输的下行控制信息用于指示所述第二节点在第二时隙进行第二链路传输时所需的资源。
  20. 根据权利要求18或19所述的装置,其特征在于,
    所述第一时隙与所述第三时隙为同一时隙,或所述第一时隙在所述第三时隙之前。
  21. 根据权利要求18-20任一项所述的装置,其特征在于,
    所述第二链路传输的下行控制信息所指示的资源为所述第一链路传输的下行控制信息未指示的所述第二时隙的资源。
  22. 根据权利要求12-21任一项所述的装置,其特征在于,
    所述第一节点为基站,所述第二节点为中继节点,所述第三节点为终端。
PCT/CN2019/074342 2018-02-14 2019-02-01 一种中继传输方法及装置 WO2019157982A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810151275.3 2018-02-14
CN201810151275 2018-02-14
CN201810864403.9 2018-08-01
CN201810864403.9A CN110167174B (zh) 2018-02-14 2018-08-01 一种中继传输方法及装置

Publications (1)

Publication Number Publication Date
WO2019157982A1 true WO2019157982A1 (zh) 2019-08-22

Family

ID=67619159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074342 WO2019157982A1 (zh) 2018-02-14 2019-02-01 一种中继传输方法及装置

Country Status (1)

Country Link
WO (1) WO2019157982A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114303326A (zh) * 2019-09-05 2022-04-08 高通股份有限公司 具有可配置的操作模式的中继器
US11824620B2 (en) 2019-09-05 2023-11-21 Qualcomm Incorporated Remote unit with a configurable mode of operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228057A (zh) * 2013-05-08 2013-07-31 重庆金美通信有限责任公司 一种无线mesh网络的分布式资源分配方法
CN103379653A (zh) * 2012-04-27 2013-10-30 中兴通讯股份有限公司 指示td-lte终端接收下行导频时隙的方法和装置
CN106060949A (zh) * 2016-05-23 2016-10-26 西安电子科技大学 基于tdma的同时同频全双工无线链路调度方法
CN106658609A (zh) * 2015-11-03 2017-05-10 电信科学技术研究院 一种数据传输资源预约方法及装置
KR101734223B1 (ko) * 2015-10-30 2017-05-11 국방과학연구소 생체 모방 기반 분산형 무선 자원 할당 기법에서의 프레임 주기 동기화 및 충돌 회피 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379653A (zh) * 2012-04-27 2013-10-30 中兴通讯股份有限公司 指示td-lte终端接收下行导频时隙的方法和装置
CN103228057A (zh) * 2013-05-08 2013-07-31 重庆金美通信有限责任公司 一种无线mesh网络的分布式资源分配方法
KR101734223B1 (ko) * 2015-10-30 2017-05-11 국방과학연구소 생체 모방 기반 분산형 무선 자원 할당 기법에서의 프레임 주기 동기화 및 충돌 회피 방법
CN106658609A (zh) * 2015-11-03 2017-05-10 电信科学技术研究院 一种数据传输资源预约方法及装置
CN106060949A (zh) * 2016-05-23 2016-10-26 西安电子科技大学 基于tdma的同时同频全双工无线链路调度方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114303326A (zh) * 2019-09-05 2022-04-08 高通股份有限公司 具有可配置的操作模式的中继器
US11824620B2 (en) 2019-09-05 2023-11-21 Qualcomm Incorporated Remote unit with a configurable mode of operation
CN114303326B (zh) * 2019-09-05 2024-04-12 高通股份有限公司 具有可配置的操作模式的中继器

Similar Documents

Publication Publication Date Title
US20230180268A1 (en) Method for integrated access backhaul resource multiplexing
US11523388B2 (en) Method and apparatus for backhaul in 5G networks
WO2020248897A1 (zh) 功率配置方法及装置
US11329715B2 (en) Wireless relay operation on top of 5G frame structure
US11387892B2 (en) Method, system and apparatus for resource allocation in multi-hop systems
CN110167174B (zh) 一种中继传输方法及装置
US11528710B2 (en) Time domain resource indication method in relay network, network device, and user equipment
US20210345322A1 (en) Method and apparatus for resource allocation
CN117014019A (zh) 通信方法及装置
US20230049307A1 (en) Device-to-Device Based Resource Determining Method and Device
CN109842928B (zh) 一种信息接收方法及装置
CN112584518A (zh) 一种资源确定方法及装置
WO2019157982A1 (zh) 一种中继传输方法及装置
WO2019110011A1 (zh) 一种资源配置方法和装置
US10944625B2 (en) Bearer configuration method and related products
JPWO2020157962A1 (ja) ユーザ端末及び無線通信方法
US20180288791A1 (en) User equipment assisted coordination for scheduled wireless transmissions
US20230397241A1 (en) Delay information
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2021008365A1 (zh) 数据传输方法和设备
WO2024065762A1 (zh) 无线通信的方法及终端设备
US20240179727A1 (en) Communication method and communication apparatus
WO2023007682A1 (ja) 無線ノードおよび無線通信方法
EP4322652A1 (en) Radio communication node and radio communication method
CN117223347A (zh) 无线通信节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753647

Country of ref document: EP

Kind code of ref document: A1