WO2019091488A1 - 一种上行传输方法及终端 - Google Patents

一种上行传输方法及终端 Download PDF

Info

Publication number
WO2019091488A1
WO2019091488A1 PCT/CN2018/115228 CN2018115228W WO2019091488A1 WO 2019091488 A1 WO2019091488 A1 WO 2019091488A1 CN 2018115228 W CN2018115228 W CN 2018115228W WO 2019091488 A1 WO2019091488 A1 WO 2019091488A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
time domain
domain resource
terminal
uplink channel
Prior art date
Application number
PCT/CN2018/115228
Other languages
English (en)
French (fr)
Inventor
刘云
王键
王达
薛祎凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/763,402 priority Critical patent/US11510229B2/en
Publication of WO2019091488A1 publication Critical patent/WO2019091488A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an uplink transmission method and a terminal.
  • LTE Long Term Evolution
  • the UE when the user equipment (UE) has an uplink transmission requirement, the UE sends a Scheduling Request (SR) to the eNodeB to notify the eNodeB that the uplink data needs to be transmitted.
  • SR Scheduling Request
  • the base station receives the SR of the UE, the base station sends downlink control signaling to the UE at an appropriate time, and notifies the UE of the resource allocated to the UE for uplink transmission.
  • there are two types of SR transmission one is to transmit on the periodic SR resources allocated by the base station, and the other is to jointly encode the SR and other uplink control information when the UE feeds back other uplink control information to the base station. After the transfer.
  • the physical uplink control channel is a long-length PUCCH.
  • the SR can be separately carried in the long-length PUCCH, and the SR and other uplink control information can also be used.
  • the joint coding is carried in the PUCCH of long duration.
  • the long-term PUCCH occupies 4 to 14 consecutive Orthogonal Frequency Division Multiplexing (OFDM) symbols and is transmitted by frequency hopping.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the SR when the period of the SR is short, the SR is jointly encoded with other uplink control information and transmitted through the long-length PUCCH, and the transmission requirement of the SR with low delay cannot be supported. Therefore, a short-term PUCCH is generated in the 5G, and the SR can be carried in the short-length PUCCH, or the short SR and other uplink control information are jointly encoded and carried in the short-length PUCCH.
  • the short-term PUCCH occupies 1 to 2 OFDM symbols and is transmitted by frequency division multiplexing.
  • the short-length PUCCH that carries the SR separately will appear in any symbol, which will conflict with other uplink channels on the same time domain resource, that is, the transmission requirement of the SR on one symbol.
  • a specific solution has not been given in the prior art for the problem of signal transmission in the length of the collision time.
  • the present application provides a method and an apparatus for transmitting uplink control information, which are used to solve the problem of signal transmission when a short-term physical layer uplink control channel carrying a SR separately and other uplink channels collide on the same time domain resource.
  • the present application provides an uplink transmission method, where the method includes: a terminal transmits a first uplink channel on a first time domain resource by using a first transmission power, and the terminal uses a second transmission power in the first Transmitting a second uplink channel on the time domain resource; wherein the first uplink channel occupies the first time domain resource transmission call request SR, and the first time domain resource is the same as part of the time domain resource occupied by the second uplink channel Or the first time domain resource is the same as all time domain resources occupied by the second uplink channel.
  • the resource corresponding to the first time domain resource includes one resource unit or at least two consecutive resource units.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource and the physical layer uplink shared channel carry the time domain of the first demodulation reference signal DMRS
  • the first transmission power is not less than the transmission power required by the SR
  • the second transmission power is the total transmission power of the terminal on the first time domain resource and the first transmission power. The difference.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource is the same as the time domain resource carrying the second DMRS on the physical layer uplink shared channel
  • the second transmission power is the same as the transmission power of the first DMRS
  • the first transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the second transmission power. value.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource is the same as the time domain resource carrying data on the physical layer uplink shared channel
  • the bearer When the phase tracking reference signal PT-RS is also carried on the time domain resource of the data, the first transmission power is not less than the transmission power required by the SR, and the second transmission power is the terminal in the first time domain. The difference between the total transmission power on the resource and the first transmission power.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource is the same as the time domain resource carrying data on the physical layer uplink shared channel
  • the bearer The PT-RS is not carried on the time domain resource of the data
  • the second transmission power is the same as the transmission power of the time domain resource carrying the DMRS on the uplink shared channel of the physical layer, where the first transmission power is the terminal a difference between a total transmission power on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels
  • the second uplink signal uses an orthogonal cover code OCC
  • the first transmission power is not less than the transmission power required by the SR, and the second transmission power And a difference between a total transmission power of the terminal on the first time domain resource and the first transmission power.
  • both the first uplink channel and the second uplink channel are physical layer uplink control channels
  • the second uplink signal uses the OCC
  • the first time domain When the resource is the same as the time domain resource after the start time domain resource of the second uplink channel or the time domain resource after the start time domain resource of the frequency hopping, the second transmission power and the terminal are The transmission power on the initial time domain resource is the same, and the first transmission power is a difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels
  • the first transmission power required by the SR is not smaller
  • the second transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the first transmission power.
  • the first transmission power is not Less than the transmission power required by the first uplink channel.
  • the second transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the first transmission power.
  • the second transmission power is not The transmission power required by the second uplink channel is smaller than the difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are physical layer uplink control channels, and the second uplink channel uses frequency hopping transmission, the first transmission power and The second transmission power is equal.
  • the first uplink channel and the second uplink channel are physical layer uplink control channels, and the second uplink channel uses frequency hopping transmission, the first transmission power and The second transmission power allocates total power according to an information amount ratio of the uplink control information carried by the SR and the second uplink channel.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels, and the second uplink channel uses orthogonal cover code OCC, then the first When the time domain resource is the same as the first time domain resource of the second uplink channel, the first transmission power is not less than the transmission power required by the first uplink channel, and the second transmission power is that the terminal is a difference between a total transmission power of the first time domain resource and the first transmission power; or, the second transmission power is not less than a transmission power required by the second uplink channel, the first transmission power And a difference between a total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels, and the second uplink channel uses orthogonal cover code OCC, then the first Transmission of the second transmission power and the first time domain resource of the second uplink channel when the time domain resource is the same as the time domain resource of the second uplink channel after the first time domain resource The power is the same, and the first transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the terminal transmits the SR on the first time domain resource; or, if The first transmission power is smaller than the transmission power required by the first uplink channel, and the terminal transmits the second uplink channel on the first time domain resource.
  • the method further includes: if the second uplink channel is not transmitted on the time domain resource or the transmitted time domain resource includes respectively carrying the DMRS and the uplink Controlling the time domain resource of the information, the terminal transmitting the second uplink channel; or if the second uplink channel is not transmitted on the time domain resource or the transmitted time domain resource does not include the bearer DMRS and the uplink control The time domain resource of the information, the transmission power of the second uplink channel is 0.
  • the transmission power of the terminal on the time domain resource other than the first time domain resource in the time domain resource occupied by the second uplink channel is the same as the second transmission power, Or proportionally increase with respect to the second transmission power.
  • the application provides an uplink transmission method, where the method includes: a terminal sends information by using a first time domain resource and a first frequency domain resource; and the terminal sends by using a second time domain resource and a second frequency domain resource.
  • a request SR Invoking a request SR; the information and the SR are carried in a physical layer uplink shared channel PUSCH, the information including a demodulation reference signal DMRS and data; wherein all time domain resources of the second time domain resource are All or part of the time domain resources of the first time domain resource are the same, or part of the time domain resources of the second time domain resource are the same as all or part of the time domain resources of the first time domain resource.
  • all frequency domain resources of the second frequency domain resource are the same as all or part of the frequency domain resources of the first frequency domain resource, or part of the frequency domain of the second frequency domain resource
  • the resource is the same as all or part of the frequency domain resource of the first frequency domain resource.
  • the terminal uses the same time domain resource occupied by the DMRS and the SR.
  • the first sequence transmits the DMRS, and the terminal transmits the SR by using a second sequence, the first sequence being different from the second sequence.
  • the terminal on the same time domain resource that the DMRS and the SR occupy, the terminal sends the DMRS by using a first transmission power, and the terminal sends the SR by using a second transmission power.
  • the method further includes: when the terminal sends the SR by using the second time domain resource and the second frequency domain resource, the second transmission power is 0,
  • the first transmission power is not less than a transmission power required by the DMRS.
  • the DMRS is two; when the second time domain resource is the same as the time domain resource occupied by the first DMRS, the second transmission power is not less than required for transmitting the SR.
  • Transmission power the first transmission power being a difference between a total transmission power of the terminal on the second time domain resource and the second transmission power; or, when the second time domain resource and the second
  • the first transmission power is the same as the transmission power of the first DMRS
  • the second transmission power is the total transmission of the terminal on the second time domain resource. The difference between the power and the first transmission power.
  • the time domain resource occupied by the data is the same as the time domain resource occupied by the SR
  • the resource corresponding to the same time domain resource occupied by the SR The resources occupied by the data are different from the resources occupied by the SR.
  • the frequency of the resource occupied by the SR is greater than or equal to the minimum frequency of the resource occupied by the data, and the frequency of the resource occupied by the data is less than or equal to the maximum frequency of the resource occupied by the data.
  • the resources occupied by the SR include one or more resource groups, and each of the resource groups includes one resource unit or at least two consecutive resource units.
  • the resources occupied by the SR include multiple resource groups, at least one resource unit is separated between different resource groups.
  • the resource groups on adjacent time domain resources are located on different frequency domain resources.
  • the information further includes a phase tracking reference signal
  • at least one of the resource groups is adjacent to a frequency domain resource of the phase tracking reference signal.
  • the present application provides a terminal, including a memory, a transceiver, and a processor, wherein: the memory is used to store an instruction; the processor is configured to control the transceiver to perform signal reception and signal transmission according to an instruction to perform memory storage.
  • the terminal is configured to perform the method of any of the above first aspect or the first aspect when the processor executes the instruction stored in the memory.
  • the processor is configured to: transmit, by using a first transmission power, a first uplink channel on a first time domain resource, where the terminal uses a second transmission power to transmit a second uplink channel on the first time domain resource;
  • the first uplink channel occupies the first time domain resource transmission call request SR, and the first time domain resource is the same as the part of the time domain resource occupied by the second uplink channel, or the first time domain resource and All the time domain resources occupied by the second uplink channel are the same.
  • the first time domain resource corresponds to one resource unit or at least two consecutive resource units.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource and the physical layer uplink shared channel carry the time domain of the first demodulation reference signal DMRS
  • the first transmission power is not less than the transmission power required by the SR
  • the second transmission power is the total transmission power of the terminal on the first time domain resource and the first transmission power. The difference.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource is the same as the time domain resource carrying the second DMRS on the physical layer uplink shared channel
  • the second transmission power is the same as the transmission power of the first DMRS
  • the first transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the second transmission power. value.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource is the same as the time domain resource carrying data on the physical layer uplink shared channel
  • the bearer When the phase tracking reference signal PT-RS is also carried on the time domain resource of the data, the first transmission power is not less than the transmission power required by the SR, and the second transmission power is the terminal in the first time domain. The difference between the total transmission power on the resource and the first transmission power.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource is the same as the time domain resource carrying data on the physical layer uplink shared channel
  • the bearer The PT-RS is not carried on the time domain resource of the data
  • the second transmission power is the same as the transmission power of the time domain resource carrying the DMRS on the uplink shared channel of the physical layer, where the first transmission power is the terminal a difference between a total transmission power on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels
  • the second uplink signal uses an orthogonal cover code OCC
  • the first transmission power is not less than the transmission power required by the SR, and the second transmission power And a difference between a total transmission power of the terminal on the first time domain resource and the first transmission power.
  • both the first uplink channel and the second uplink channel are physical layer uplink control channels
  • the second uplink signal uses the OCC
  • the first time domain When the resource is the same as the time domain resource after the start time domain resource of the second uplink channel or the time domain resource after the start time domain resource of the frequency hopping, the second transmission power and the terminal are The transmission power on the initial time domain resource is the same, and the first transmission power is a difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels
  • the first transmission power required by the SR is not smaller
  • the second transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the first transmission power.
  • the first transmission power is not Less than the transmission power required by the first uplink channel.
  • the second transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the first transmission power.
  • the second transmission power is not The transmission power required by the second uplink channel is smaller than the difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are physical layer uplink control channels, and the second uplink channel uses frequency hopping transmission, the first transmission power and The second transmission power is equal.
  • the first uplink channel and the second uplink channel are physical layer uplink control channels, and the second uplink channel uses frequency hopping transmission, the first transmission power and The second transmission power allocates total power according to an information amount ratio of the uplink control information carried by the SR and the second uplink channel.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels, and the second uplink channel uses orthogonal cover code OCC, then the first When the time domain resource is the same as the first time domain resource of the second uplink channel, the first transmission power is not less than the transmission power required by the first uplink channel, and the second transmission power is that the terminal is a difference between a total transmission power of the first time domain resource and the first transmission power; or, the second transmission power is not less than a transmission power required by the second uplink channel, the first transmission power And a difference between a total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels, and the second uplink channel uses orthogonal cover code OCC, then the first Transmission of the second transmission power and the first time domain resource of the second uplink channel when the time domain resource is the same as the time domain resource of the second uplink channel after the first time domain resource The power is the same, and the first transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the processor is configured to: if the second transmission power is smaller than a transmission power required by the second uplink channel, transmit the SR on the first time domain resource; or And if the first transmission power is smaller than the transmission power required by the first uplink channel, transmitting the second uplink channel on the first time domain resource.
  • the processor is further configured to: after the SR transmission is completed, if the second uplink channel is not transmitted on the time domain resource or the transmitted time domain resource includes the DMRS respectively And transmitting, by the time domain resource of the uplink control information, the second uplink channel; or if the time domain resource that is not transmitted by the second uplink channel or the time domain resource that is transmitted does not include the bearer DMRS and the uplink control information.
  • the time domain resource, the transmission power of the second uplink channel is 0.
  • the transmission power of the terminal on the time domain resource other than the first time domain resource in the time domain resource occupied by the second uplink channel is the same as the second transmission power, Or proportionally increase with respect to the second transmission power.
  • the application provides a terminal, where the terminal includes: a memory, a transceiver, and a processor, wherein: the memory is used to store an instruction; the processor is configured to control the transceiver to perform signal reception according to an instruction to perform memory storage. Signaling, when the processor executes the instruction stored in the memory, the terminal is configured to perform the method of any of the above second aspect or the second aspect.
  • the processor is configured to: send information through the transceiver by using a first time domain resource and a first frequency domain resource; and send a call request SR by using the second time domain resource and the second frequency domain resource by using the second time domain resource and the second frequency domain resource;
  • the information and the SR are carried in a physical layer uplink shared channel PUSCH, where the information includes a demodulation reference signal DMRS and data; wherein all time domain resources of the second time domain resource and the first time All or part of the time domain resources of the domain resource are the same, or part of the time domain resources of the second time domain resource are the same as all or part of the time domain resources of the first time domain resource.
  • all frequency domain resources of the second frequency domain resource are the same as all or part of the frequency domain resources of the first frequency domain resource, or part of the frequency domain of the second frequency domain resource
  • the resource is the same as all or part of the frequency domain resource of the first frequency domain resource.
  • the processor is configured to: when the time domain resource occupied by the DMRS is the same as the time domain resource occupied by the SR, the same time domain resource occupied by the DMRS and the SR
  • the first sequence is used to send the DMRS
  • the second sequence is used to send the SR, the first sequence is different from the second sequence.
  • the processor is configured to: send the DMRS by using a first transmission power, and send the SR by using a second transmission power, on the same time domain resource that the DMRS and the SR occupy.
  • the processor when the processor does not use the second time domain resource and the second frequency domain resource to send the SR, the second transmission power is 0, the first transmission The power is not less than the transmission power required by the DMRS.
  • the DMRS is two, and when the second time domain resource is the same as the time domain resource occupied by the first DMRS, the second transmission power is not less than required for transmitting the SR.
  • Transmission power the first transmission power being a difference between a total transmission power of the terminal on the second time domain resource and the second transmission power; or, when the second time domain resource and the second When the time domain resources occupied by the DMRSs are the same, the first transmission power is the same as the transmission power of the first DMRS, and the second transmission power is the total transmission of the terminal on the second time domain resource. The difference between the power and the first transmission power.
  • the time domain resource occupied by the data is the same as the time domain resource occupied by the SR
  • the resource corresponding to the same time domain resource occupied by the SR The resources occupied by the data are different from the resources occupied by the SR.
  • the frequency of the resource occupied by the SR is greater than or equal to the minimum frequency of the resource occupied by the data, and the frequency of the resource occupied by the data is less than or equal to the maximum frequency of the resource occupied by the data.
  • the resources occupied by the SR include one or more resource groups, and each of the resource groups includes one resource unit or at least two consecutive resource units.
  • the resource occupied by the SR includes multiple resource groups to improve the transmission reliability of the SR.
  • the resources occupied by the SR include multiple resource groups, at least one resource unit is separated between different resource groups.
  • the resource groups on adjacent time domain resources are located on different frequency domain resources. In order to improve the transmission reliability of the SR.
  • the information further includes a phase tracking reference signal
  • at least one of the resource groups is adjacent to a frequency domain resource of the phase tracking reference signal.
  • the present application provides a circuit system including a chip or a system on a chip that provides a processor function, the chip or the system on chip being configured in a terminal such that the The terminal implements the first aspect or the second aspect or any of the possible implementations of the first aspect or the second aspect.
  • the present application provides a chip connected to a memory for reading and executing a software program stored in the memory to implement the first aspect or the second aspect or The method of any of the possible aspects of the first aspect or the second aspect.
  • FIG. 1 is a schematic structural diagram of a system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a PUSCH according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of power allocation on different time domain symbols on a PUSCH according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of power allocation on different time domain symbols on a PUSCH according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of power allocation on different time domain symbols on a PUSCH according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of power allocation on different time domain symbols on a PUSCH according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of power allocation on different time domain symbols on a PUSCH according to an embodiment of the present disclosure
  • FIG. 8 and FIG. 9 are schematic diagrams showing the structure of carrying an SR on a PUSCH according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of transmission of a PUCCH according to an embodiment of the present application.
  • FIG. 11 and FIG. 12 are schematic diagrams showing the structure of simultaneous transmission of a PUSCH and a PUCCH carrying only SRs according to an embodiment of the present disclosure
  • FIG. 13 , FIG. 14 , FIG. 15 and FIG. 16 are schematic diagrams showing the structure of carrying an SR on a PUSCH according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram of a long-term PUCCH conflicting with an SR-only PUCCH according to an embodiment of the present disclosure
  • FIG. 18 is a schematic structural diagram of a short-length PUCCH and an SR-only PUCCH conflict according to an embodiment of the present disclosure
  • FIG. 19 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 1 exemplarily illustrates a system architecture to which the present application is applicable.
  • the base station can be a device that can communicate with the terminal.
  • the base station can be any device having a wireless transceiving function. Including but not limited to: a base station (eg, a base station NodeB, an evolved base station eNodeB, a base station in a fifth generation (5G) communication system, a base station or network device in a future communication system, an access node in a WiFi system , wireless relay node, wireless backhaul node, etc.
  • the base station may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the base station may also be a network device in a 5G network or a network device in a future evolved network; or may be a wearable device or an in-vehicle device.
  • the base station may also be a small station, a transmission reference point (TRP), or the like. Of course, this application is not limited to this.
  • the terminal is a wireless transceiver function that can be deployed on land, indoors or outdoors, handheld, wearable or on-board; it can also be deployed on the water (such as ships); it can also be deployed in the air (such as airplanes, balloons, and Satellite, etc.).
  • the terminal may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial) Wireless terminal in control), wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • a terminal may also be referred to as a user equipment (UE), an access terminal device, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, a terminal device, and a wireless device.
  • UE user equipment
  • An access terminal device a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, a terminal device, and a wireless device.
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Multiple means two or more, and in view of this, "a plurality” may also be understood as “at least two” in the embodiment of the present invention.
  • the character “/” unless otherwise specified, generally indicates that the contextual object is an "or” relationship.
  • the terms “first”, “second” and the like are used only to distinguish the purpose of description, and are not to be understood as indicating or implying relative importance, nor as an indication. Or suggest the order.
  • Time domain resources in this application refer to one or more consecutive symbols distributed over the time domain.
  • the frequency domain resource in this application refers to one or more subcarriers distributed in the frequency domain, and the frequency domain resource unit in this application is a subcarrier.
  • the resource element (RE) in the present application refers to a resource defined by one symbol in the time domain and one subcarrier in the frequency domain.
  • the symbols in the present application include, but are not limited to, Orthogonal Frequency Division Multiplexing (OFDM) symbols, Sparse Code Multiplexing Access (SCMA) symbols, and filtered orthogonal frequency division.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SCMA Sparse Code Multiplexing Access
  • filtered orthogonal frequency division The (Filtered Orthogonal Frequency Division Multiplexing, F-OFDM) symbol and the non-orthogonal multiple access (NOMA) symbol can be determined according to actual conditions, and details are not described herein again.
  • the PUCCH in the present application is a channel used by the control terminal to send control signaling to the base station, and includes information related to control, such as acknowledgment or negative acknowledgement (ACK/NACK), or uplink transmission.
  • the physical layer uplink control channels are classified into two types, one is a long-length PUCCH, and the number of OFDM symbols is 4 to 14 consecutive times, which is transmitted by frequency hopping, demodulated reference signal (DMRS) and uplink.
  • DMRS demodulated reference signal
  • the control information (UCI) is carried by different symbols, and the orthogonal cover code can be used for spreading on each frequency hopping part to increase the capacity.
  • the other type is the short-length PUCCH, and the number of OFDM symbols is 1 to 2, in the frequency domain physical resource block (PRB), the sequence can carry information, or DMRS and uplink control information (UCI) respectively occupy different subcarriers, and frequency Transfer by means of points.
  • the PUCCH may be transmitted anywhere.
  • the SR in this application is the request signaling sent by the terminal to the base station when there is an uplink transmission requirement, to obtain the time-frequency domain resource allocated by the base station.
  • the base station configures the terminal to transmit the resources of the SR, and the resources are periodically repeated.
  • the base station receives the SR of the terminal, the base station sends downlink control signaling at an appropriate time, and carries the allocated resource information to the terminal. After that, the terminal performs uplink transmission on the resource allocated by the base station.
  • the scheduling request has two bearer modes, one is transmitted by the terminal on the periodic resource allocated by the base station, and the other is that when the terminal feeds back other uplink control information, the SR is combined with other uplink control information. Encoding for transmission.
  • the physical uplink shared channel (PUSCH) in the present application is a channel for transmitting data and partial control information on the terminal.
  • the structure currently agreed by the PUSCH is as shown in FIG. 2, and the DMRS is carried in the first 1 to 2 symbols of the PUSCH to support channel measurement of multiple ports.
  • PT-RS phase tracking reference signal
  • the signal is used to detect phase noise. Whether the PT-RS exists in the PUSCH is configured in advance.
  • the present application provides an uplink transmission method, which mainly includes the following steps:
  • Step 101 The terminal acquires the first transmission power and the second transmission power.
  • the first transmission power and the second transmission power are powers transmitted by the terminal on the first time domain resource allocated by the terminal for the first uplink channel and the second uplink channel, respectively.
  • the sum of the first transmission power and the second transmission power is equal to the total transmission power of the terminal on the first time domain resource.
  • the first uplink channel is a PUCCH that only carries the SR.
  • the second channel may be a PUCCH of a long duration, a PUCCH of a short duration, or a PUSCH. However, when the second uplink channel is a PUCCH of a short duration, the PUCCH of the short duration does not include a PUCCH of a short duration that only carries the SR.
  • the first uplink channel occupies the first time domain resource transmission SR.
  • the length of the first time domain resource is 1 symbol length or 2 symbol length, 1 symbol length is a length of time occupied by 1 symbol, and 2 symbol length is a length of time occupied by 2 consecutive symbols.
  • the first uplink channel is a PUCCH with a short duration, for example, the first uplink channel is a PUCCH of 1 symbol length, or a PUCCH of 2 symbol length.
  • the first time domain resource is the same as the part of the time domain resource or all the time domain resources occupied by the second uplink channel. In other words, the first time domain resource is included in the time domain resource occupied by the second uplink channel.
  • Step 102 The terminal transmits the first uplink channel on the first time domain resource by using the first transmission power, and the terminal transmits the second uplink channel on the first time domain resource by using the second transmission power.
  • the meaning of transmitting the second uplink channel on the first time domain resource is: transmitting information on the resource corresponding to the first time domain resource configured for the second uplink channel, where the information is the second uplink channel. Information carried on resources corresponding to a time domain resource.
  • the meaning of transmitting the first uplink channel on the first time domain resource is: transmitting the SR on the resource corresponding to the first time domain resource allocated for the first uplink channel. The resource corresponding to the first time domain resource configured for the second uplink channel and the resource corresponding to the first time domain resource configured for the first uplink channel are different.
  • the resource corresponding to the first time domain resource configured for the second uplink channel includes one or more resource units.
  • the resource unit corresponding to the first time domain resource configured for the second uplink channel is pre-configured by the base station or pre-configured in the terminal.
  • the resource corresponding to the first time domain resource configured for the first uplink channel includes one or more resource units.
  • the resource corresponding to the first time domain resource allocated for the first uplink channel is pre-configured by the base station or pre-configured in the terminal.
  • the terminal allocates the first transmission power and the second transmission power on the same time domain resource occupied by the first uplink channel and the second uplink channel, so that when the first uplink channel and the second uplink channel are at the same time
  • the first transmission power and the second transmission power are different according to the transmission characteristics of the same time domain resource in the time domain resource occupied by the second uplink channel, and the prior art is solved.
  • the signal that exists in the short-length PUCCH carrying only the SR and the other uplink channels colliding on the same time domain resource cannot simultaneously transmit the problem.
  • the second uplink channel is a PUSCH, and the length of the PUSCH is not limited.
  • the terminal since the function of the PUSCH is to transmit the DMRS and the data, according to different situations of the first time domain resource included in the time domain resource of the PUSCH, in step 102, the terminal adopts the second transmission power at the first Transmitting the second uplink channel on the time domain resource also includes different situations. For example, if the first time domain resource included in the time domain resource of the PUSCH includes only the DMRS symbol, the terminal transmits the first time domain resource by using the second transmission power.
  • the terminal transmits the data on the first time domain resource by using the second transmission power, if the first time domain resource included in the PUSCH
  • the time domain resource includes both the DMRS symbol and the data symbol, and the terminal transmits the DMRS and the data on the first time domain resource by using the second transmission power.
  • the first transmission power and the second transmission power also have different configurations according to different situations of the first time domain resource included in the time domain resource of the PUSCH.
  • the first transmission power is not less than the transmission power required by the SR, and the second transmission power is the terminal The difference between the total transmission power on the first time domain resource and the first transmission power.
  • the first uplink channel occupies a time domain resource transmission SR of 1 symbol length
  • the PUSCH occupies 1 symbol or 2 symbol length time domain resource transmission DMRS, and carries the symbol of the SR on the first uplink channel and carries the DMRS on the PUSCH.
  • the terminal When the first symbol in the time domain is the same, when the transmission power required by the DMRS is P0, the transmission power required by the SR is P1, and the total transmission power of the terminal on each symbol is P, the terminal will be in the same
  • the total transmission power P on the symbol is configured as a first transmission power P1 and a second transmission power (P-P1), wherein P1 can at least satisfy the transmission requirement of the SR carried by the first uplink channel.
  • the second transmission power (P-P1) the transmission requirement of the DMRS of the bearer of the PUSCH may be satisfied, or the transmission requirement of the DMRS of the bearer of the PUSCH may not be satisfied.
  • the second transmission power is the same as the transmission power of the first DMRS
  • the first transmission power is The difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first uplink channel occupies a time domain resource transmission SR of 1 symbol length
  • the PUSCH occupies 2 symbols length time domain resource transmission DMRS, when the symbol carrying the SR on the first uplink channel and the second DMRS carrying the PUSCH on the PUSCH
  • the symbols are the same in the time domain
  • the transmission power required by the DMRS is P0
  • the transmission power required by the SR is P1
  • the total transmission power of the terminal on each symbol is P
  • the terminal transmits the total transmission on the same symbol.
  • the power P is configured to be a first transmission power (P-P0) and a second transmission power (P0), where P0 is the transmission power on the first symbol carrying the DMRS on the PUSCH, and P0 can at least meet the transmission of the DMRS carried on the PUSCH. demand.
  • P-P0 the transmission requirement of the SR carried on the first uplink channel may be satisfied, or the transmission requirement of the SR carried on the first uplink channel may not be satisfied.
  • the first transmission power is not less than that required by the SR.
  • the transmission power is the difference between the total transmission power of the terminal on the first time domain resource and the first transmission power.
  • the change of the transmission power on the data symbol is obtained by comparing the change amount of the transmission power on the frequency domain resource occupied by the PT-RS on different data symbols.
  • the first uplink channel occupies a time domain resource transmission SR of one symbol length
  • the PUSCH occupies 2 to 13 symbol length time domain resource transmission data, when the symbol of the SR carried on the first uplink channel and the data carried on the PUSCH
  • a symbol coincides in the time domain
  • the transmission power required by the DMRS is P0
  • the transmission power required by the SR is P1
  • the total transmission power of the terminal on each symbol is P
  • the PUSCH occupies 2 to 13
  • the PT-RS is also carried on the time domain resource of the symbol length
  • the terminal configures the total transmission power P on the coincidence symbol to the first transmission power P1 and the second transmission power (P-P1).
  • the second transmission power (P-P1) the transmission requirement of the DMRS of the bearer of the PUSCH may be satisfied, and the transmission requirement of the DMRS carried by the PUSCH may not be satisfied.
  • the first time domain resource occupied by the first uplink channel is the same as the time domain resource of the data carried on the PUSCH, and the time domain resource carrying the data does not carry the PT-RS, the second transmission power and the DMRS carried on the PUSCH.
  • the transmission power of the time domain resource is the same, and the first transmission power is the difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the base station side since the transmission power on the data symbol is the same as the transmission power of the DMRS, the base station side does not decode the error regardless of whether or not it has the identification capability of the transmission power on the symbol, and the base station side can be prevented from being on different symbols on the PUSCH. Decoding errors caused by different transmission powers.
  • the first uplink channel occupies a time domain resource transmission SR of one symbol length
  • the PUSCH occupies 1 to 13 symbol lengths of time domain resource transmission data, when the symbol of the SR carrying the SR on the first uplink channel and the data carried on the PUSCH.
  • a symbol coincides in the time domain
  • the transmission power required by the DMRS is P0
  • the transmission power required by the SR is P1
  • the total transmission power of the terminal on each symbol if the PUSCH occupies 1 to 13
  • the PT-RS is not carried on the time domain resource of the symbol length
  • the terminal configures the total transmission power P on the coincidence symbol to the first transmission power (P-P0) and the second transmission power (P0).
  • the transmission requirement of the SR carried on the first uplink channel may be satisfied, or the transmission requirement of the SR carried on the first uplink channel may not be satisfied.
  • the symbol length of the time domain resource occupied by the PUSCH is not limited, and may be a long time length or a short time length.
  • the symbol length of the time domain resource occupied by the PUSCH may be pre-configured in the terminal, or may be a base station indication.
  • the period of the SR is short, and can be flexibly configured according to different services.
  • the period of the SR includes at least one symbol length, and the period of the SR can be pre-configured in the terminal, or can be indicated by the base station to the terminal.
  • the length of the time domain resource occupied by the PUSCH and the period of the SR can be flexibly configured. Therefore, it is possible that the symbol of the SR carried by the first uplink channel only coincides with the symbol of the DMRS carried on the PUSCH, and may be the first uplink.
  • the symbol of the channel bearer SR is only coincident with the symbol of the bearer data on the PUSCH. It is also possible that the symbol of the SR carried by the first uplink channel overlaps with the symbol of the DMRS carried on the PUSCH and the symbol of the bearer data. Therefore, in a specific implementation scenario, A configuration of the transmission power and the second transmission power may cover one of the foregoing several optional configurations, and may also cover any two or a combination of the three optional configurations.
  • the symbol carrying the SR on the first uplink channel overlaps with the symbol carrying the DMRS on the PUSCH in the time domain, and according to the period of the SR, a data symbol located after the DMRS symbol on the PUSCH
  • the signal of the SR carried by the first uplink channel in the next cycle does not coincide with the transmission power of the data carried on the data symbol after the DMRS symbol on the PUSCH:
  • the data transmitted on the data symbol has the same transmission power as the second transmission power.
  • the transmission power required by the DMRS is P0
  • the transmission power required by the SR is P1
  • the total transmission power of the terminal on each symbol is P.
  • the transmission power allocated for the SR may be P1
  • the transmission power allocated for the DMRS may be P-P1.
  • the transmission power of the data carried on the data symbols may be P-P1.
  • the transmission power of the first DMRS may be P0
  • the transmission power allocated for the SR may be P-P0.
  • the transmission power allocated for the DMRS may be P0
  • the transmission power of the data carried on the data symbol may be P0.
  • the transmission power of the data carried on each data symbol increases according to a set ratio with respect to the second transmission power.
  • the amount of increase in transmission power on the data symbol can be identified, or the amount of increase in transmission power on the data symbol can be obtained by comparing the amount of change in transmission power of the PT-RS and the DMRS on the same frequency domain resource.
  • the transmission power required by the DMRS is P0
  • the transmission power required by the SR is P1
  • the total transmission power of the terminal on each symbol is P.
  • the transmission power allocated for the SR may be P1
  • the transmission power allocated for the DMRS may be P-P1.
  • the transmission power of the data carried on the data symbols may be x*(P-P1) where x is greater than or equal to 1, and x is an integer or a non-integer.
  • the transmission power of the first DMRS may be P0
  • the transmission power allocated for the SR may be P- P0
  • the transmission power allocated for the DMRS may be P0
  • the transmission power of the data carried on the data symbol may be x*P0.
  • the transmission power of the data carried on the data symbol is maintained and the second The transmission power is the same.
  • a specific example can be referred to (1) in FIG. 3 or (2) in FIG. 3.
  • the symbol carrying the SR on the first uplink channel overlaps with the symbol carrying the DMRS on the PUSCH in the time domain, and according to the period of the SR, a data symbol located after the DMRS symbol on the PUSCH It may coincide with the symbol carrying the SR on the first uplink channel in the next period, and then the transmission power of the data carried on the data symbol located behind the DMRS symbol on the PUSCH has the following configuration:
  • the transmission power of the SR carried on the first uplink channel in the next cycle is The transmission power required by the SR, the transmission power on the same data symbol is the difference between the total transmission power of the terminal on the data symbol and the transmission power of the SR carried on the first uplink channel in the next cycle, and the data on the remaining data symbols.
  • the transmission power may be the same as the transmission power of the DMRS, or may be proportionally increased with respect to the transmission power of the DMRS.
  • the change of the transmission power on the data symbol can be obtained by comparing the change amount of the transmission power on the frequency domain resource occupied by the PT-RS on different data symbols.
  • the transmission power required by the DMRS is P0
  • the transmission power required by the SR is P1
  • the total transmission power of the terminal on each symbol is P.
  • the transmission power allocated to the SR on the first symbol may be P1, on the first symbol.
  • the transmission power allocated to the DMRS may be P-P1.
  • the transmission power of the PUCCH carrying the SR in the next period may be P1, and the data symbol The transmission power on the data may be P-P1, and the transmission power of data carried on the remaining data symbols may be P-P1.
  • the transmission power of the first DMRS may be P0
  • the transmission power allocated for the SR may be P-P0
  • the transmission power allocated to the DMRS may be P0.
  • the transmission power of the PUCCH carrying the SR in the next period may be P1, and the data symbol may be
  • the transmission power on the uplink may be P-P1
  • the transmission power of data carried on the remaining data symbols may be P0.
  • the base station cannot identify the change of the transmission power of the PUSCH on the data symbol, if the PT-RS is not carried on the data symbol after the coincidence symbol, the transmission power of the data carried by the data symbol remains as carried on the PUSCH.
  • the transmission power of the DMRS demand, the transmission power of the symbol carrying the SR on the first uplink channel of the next cycle is the difference between the total transmission power of the terminal on the data symbol and the transmission power on the coincident data symbol.
  • the transmission power required by the DMRS is P0 when the PUSCH and the PUCCH do not collide
  • the transmission power required by the SR is P1
  • the total transmission power of the terminal on each symbol is P.
  • the transmission power allocated to the SR on the first symbol may be P1, on the first symbol.
  • the transmission power allocated to the DMRS may be P-P1. If the PUCCH carrying the SR in the next period is repeated with one of the data symbols according to the period of the SR, the transmission power of the PUCCH carrying the SR in the next period may be P-P0, which is the same.
  • the transmission power on the data symbol may be P0, and the transmission power of the data carried on the remaining data symbols may be P-P1.
  • the transmission power of the first DMRS may be P0, and the transmission power allocated for the SR may be P-P0.
  • the transmission power allocated for the DMRS may be P0. If the PUCCH carrying the SR in the next period is repeated with one of the data symbols according to the period of the SR, the transmission power of the PUCCH carrying the SR in the next period may be P-P0, and the data may be P-P0.
  • the transmission power on the symbol may be P0, and the transmission power of the data carried on the remaining data symbols may be P0.
  • the base station can identify the change of the transmission power of the PUSCH on the data symbol, if the PT-RS is not carried on the data symbol after the coincidence symbol, the transmission of the SR on the first uplink channel in the next cycle is performed.
  • the power is the transmission power required by the SR
  • the transmission power on the data symbol is the difference between the total transmission power of the terminal on the data symbol and the transmission power of the SR carried on the first uplink channel in the next cycle.
  • the transmission power required by the DMRS is P0 when the PUSCH and the PUCCH do not collide
  • the transmission power required by the SR is P1
  • the total transmission power of the terminal on each symbol is P.
  • the transmission power allocated to the SR on the first symbol may be P1, on the first symbol.
  • the transmission power allocated for the DMRS may be P-P1.
  • the transmission power of the PUCCH carrying the SR in the next period may be P1, the same The transmission power on the data symbol may be P-P1, and the transmission power of the data carried on the remaining data symbols may be P-P1.
  • the transmission power of the first DMRS may be P0
  • the transmission power allocated for the SR may be P-P0
  • the transmission power allocated to the DMRS may be P0.
  • the transmission power of the PUCCH carrying the SR in the next period may be P1, and the same data.
  • the transmission power on the symbol may be P-P1
  • the transmission power of the data carried on the remaining data symbols may be P0.
  • the second uplink channel is a PUCCH
  • the second uplink channel may be a long-length PUCCH, as shown in FIG. 17, and may also be a short-term PUCCH, as shown in FIG. 18.
  • a long duration PUCCH is a PUCCH including 4 to 14 symbol lengths
  • a short duration PUCCH may be a 1 symbol length PUCCH, or a 2 symbol length PUCCH.
  • the terminal transmits the second uplink channel on the first time domain resource by using the second transmission power, where the terminal transmits the resource corresponding to the first time domain resource allocated for the second uplink channel.
  • the uplink control information carried by the second uplink channel on the first time domain resource is a PUCCH, and the second uplink channel may be a long-length PUCCH, as shown in FIG. 17, and may also be a short-term PUCCH, as shown in FIG. 18.
  • a long duration PUCCH is a PUCCH including 4 to 14 symbol lengths
  • a short duration PUCCH may
  • the long-term PUCCH bearer information may be uplink control information other than the SR, such as ACK/NACK, CQI, etc., and may also be the SR and the uplink control information, but the long-term PUCCH does not include only the SR. Case.
  • the short-term PUCCH bearer information may be uplink control information other than the SR, such as ACK/NACK, CQI, etc., and may also be the SR and the uplink control information. In this application, the short-term PUCCH does not include the SR-only. .
  • the long-term PUCCH is divided into two types: multi-user multiplexing and non-OCC using OCC.
  • OCC When using OCC, different users need to remove interference from other users through different codewords, so each symbol is carried. The transmission power requirements of the information do not change.
  • the short-term PUCCH is divided into three types: single symbol, two-symbol joint coding, and two-symbol enable OCC. Wherein, if the short-term PUCCH is two-symbol-enabled OCC, in order to avoid interference between multiple users, the transmission power requirement of information carried by each symbol does not change.
  • the terminal is the first uplink for different situations of the first time domain resource included in the time domain resource occupied by the second uplink channel.
  • the first transmission power and the second transmission power respectively allocated by the channel and the second uplink channel also have different configurations, as follows:
  • the first transmission power is not The transmission power required by the SR is smaller than the difference between the total transmission power of the terminal on the first time domain resource and the first transmission power.
  • the long-length PUCCH occupies 14 symbols, and the first uplink channel occupies 1 symbol. If the transmission power required by the SR is P1, the transmission power of the long-length PUCCH on each symbol is P2, and the terminal is long-term. The total transmission power on each symbol of the PUCCH is P.
  • the transmission power allocated for the SR may be P1, which is allocated for the uplink control information carried by the long-length PUCCH on the first symbol.
  • the transmission power may be P-P1, and the transmission power of the uplink control information carried on the second symbol to the seventh symbol may be the same as the transmission power of the information carried on the first symbol, and may be P-P1.
  • the transmission power allocated for the SR may be P1
  • the uplink control information allocated by the long-length PUCCH on the eighth symbol is allocated.
  • the transmission power may be P-P1, and the transmission power of the uplink control information carried on the ninth symbol to the 14th symbol is the same as the transmission power of the information carried on the eighth symbol, and may be P-P1.
  • the first time domain resource is the same as the time domain resource after the start time domain resource of the second uplink channel or the time domain resource after the start time domain resource of the frequency hopping
  • the second transmission power is the same as the transmission power of the terminal on the initial time domain resource, where the first transmission power is the difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • a long-length PUCCH occupies 14 symbols, and a first uplink channel occupies 1 symbol. If the transmission power required by the SR is P1, the transmission power of the long-length PUCCH on each symbol is P2, and the terminal is at each symbol. The total transmission power on is P.
  • the transmission power allocated for the SR may be P-P2, and the transmission power of information carried on all symbols of the long-length PUCCH may be P2.
  • the transmission power allocated for the SR may be P-P2, and the transmission power of information carried on all symbols of the long-length PUCCH may be For P2.
  • the first transmission power is not less than the transmission power required by the SR, and the second transmission power is a difference between the total transmission power of the terminal on the first time domain resource and the first transmission power.
  • a long-length PUCCH occupies 14 symbols, and a first uplink channel occupies 1 symbol. If the transmission power required by the SR is P1, the transmission power of the long-length PUCCH on each symbol is P2, and the terminal is at each symbol. The total transmission power on is P.
  • the transmission power allocated for the SR is at least P1, which is long-term.
  • the transmission power allocated by the uplink control information carried by the PUCCH on the repeated symbols is P-P1.
  • the transmission power of the long-length PUCCH on other symbols may be P2 or P-P1.
  • the period of the SR can be flexibly configured, it is possible that the first uplink channel and the long-length PUCCH collide once in the symbol length occupied by the PUCCH, and it is also possible that the first uplink channel and the long-length PUCCH are occupied by the PUCCH.
  • the symbol length conflicts multiple times. Therefore, in another implementation scenario, the case of the first time domain resource included in the time domain resource occupied by the second uplink channel may be any combination of the above several situations.
  • the repetition position of the symbol carrying the SR on the first uplink channel and the symbol of the PUCCH of the long duration may include the first symbol of the PUCCH of a long duration, the first symbol of the frequency hopping, the first symbol or the frequency hopping removal.
  • the configuration of the first transmission power and the second transmission function may cover one of the foregoing several optional configuration manners, and may also cover any combination of the foregoing several optional configuration manners.
  • the first transmission power and the second are different for the first time domain resource included in the time domain resource occupied by the second uplink channel.
  • the transmission power has different configurations as follows:
  • the first transmission power is not less than the transmission power required by the SR
  • the second transmission power is a difference between the total transmission power of the terminal on the first time domain resource and the first transmission power.
  • the second transmission power is not less than the transmission power required by the second uplink channel, where the first transmission power is a difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first transmission power and the second transmission power are equal, and the first transmission power and the second transmission power are that the terminal allocates the total transmission power of the terminal on the first time domain resource according to an average allocation principle.
  • the first transmission power and the second transmission power allocate the total power according to an information amount ratio of the uplink control information carried by the SR and the second uplink channel.
  • the second uplink channel is a short-term PUCCH (as shown in FIG. 18) and multi-user multiplexing is performed using the orthogonal cover code OCC
  • the second time channel is included in the time domain resource occupied by the second uplink channel.
  • the first transmission power and the second transmission power have different configurations, as follows:
  • the first transmission power is not less than the transmission power required by the first uplink channel, and the second transmission The power is the difference between the total transmission power of the terminal on the first time domain resource and the first transmission power; or the second transmission power is not less than the transmission power required by the second uplink channel, where the first transmission power is the first time of the terminal The difference between the total transmission power on the domain resource and the second transmission power.
  • the second transmission power and the second uplink channel are The transmission power of the first time domain resource is the same, and the first transmission power is the difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the time domain resource of the first uplink channel collides with the time domain resource occupied by the short-time PUCCH once, and the PUCCH of the first uplink channel and the short duration may also be possible.
  • the case where the first time domain resource included in the time domain resource occupied by the second uplink channel may be any combination of the foregoing situations may be caused by multiple times in the symbol length occupied by the PUCCH.
  • the configuration of the first transmission power and the second transmission power may cover one of the foregoing several optional configuration manners, and may also cover any combination of the foregoing several optional configuration manners.
  • the terminal is configured on the first time domain resource. Transfer SR.
  • the terminal transmits the second uplink channel, or the transmission power of the second uplink channel is 0.
  • the terminal transmits the SR on the first time domain resource, and after the SR transmission is completed, if the second uplink channel is not
  • the time domain resource on the transmitted time domain resource or the transmitted time domain resource includes time domain resources respectively carrying DMRS and uplink control information (such as UCI), and the terminal transmits the second uplink channel.
  • the transmission power of the second uplink channel is 0. .
  • the terminal is configured on the first time domain resource. Transmitting a second upstream channel.
  • any one of the first transmission power and the second transmission power in the foregoing implementation scenarios is configured on a time domain resource that is different from the first time domain resource of the first uplink channel on the second uplink channel.
  • the transmission power of the carried information is the same as the second transmission power.
  • the second uplink channel is different from the first time domain resource of the first uplink channel.
  • the transmission power of the bearer information is increased in proportion to the second transmission power.
  • the time domain resource of the first uplink channel collides with some or all of the time domain resources of the PUSCH, and the time domain resource of the first uplink channel and the long duration may be If some or all of the time domain resources of the PUCCH are in conflict, it is possible that the time domain resources of the first uplink channel collide with some or all of the time domain resources of the short-term PUCCH, and the time domain resources of the first uplink channel may be simultaneously associated with the PUSCH and the long duration.
  • the situation of the first time domain resource included in the time domain resource occupied by the second uplink channel may be any combination of different situations occurring in the foregoing real-time scenarios, and the configuration manner of the first transmission power and the second transmission function It may cover one of the configuration manners in the foregoing several implementation scenarios, and may also cover any combination of the configuration manners in the foregoing several real-time scenarios.
  • the present application further provides another uplink transmission method, which mainly includes the following steps:
  • Step 201 The terminal acquires the first time domain resource and the first frequency domain resource, and acquires the second time domain resource and the second frequency domain resource.
  • the first time domain resource and the second frequency domain resource are all included in the frequency domain resource configured by the base station for a certain PUSCH, and the second time domain resource is included in the first time domain resource.
  • the first frequency domain resource and the first time domain resource are used to transmit information carried by the PUSCH, and the second frequency domain resource and the second time domain resource are mapped.
  • the relationship, the second domain resource and the second time domain resource are used to send the SR.
  • Step 202 The terminal sends information by using the first time domain resource and the first frequency domain resource, where the information includes DMRS and/or data carried by the PUSCH.
  • the terminal sends the call request SR by using the second time domain resource and the second frequency domain resource.
  • the sending, by the terminal, the information by using the first frequency domain resource and the first time domain resource in step 202 includes the following situations:
  • the terminal sends the DMRS of the PUSCH by using the first frequency domain resource and the first time domain resource, or the terminal sends the data of the PUSCH by using the first frequency domain resource and the first time domain resource, or the terminal uses the first frequency domain resource and the first
  • the time domain resource transmits the DMRS and data of the PUSCH.
  • the relationship between the first time domain resource and the second time domain resource may be as follows:
  • All time domain resources of the second time domain resource are the same as all or part of the time domain resources of the first time domain resource, or part of the time domain resource of the second time domain resource and all or part of the time domain resource of the first time domain resource the same.
  • the length of the first time domain resource refers to the symbol length occupied by the PUCCH, which is pre-configured by the base station to the terminal or pre-stored in the terminal. It can be 1 symbol length, 2 symbol length, or more than 2 symbol length.
  • each SR occupies a symbol length of 1 symbol length or 2 symbol length.
  • the period of the SR can be flexibly configured, and the period of the SR is pre-configured by the base station to the terminal, or is pre-stored in the terminal.
  • the period of the SR may be 1 symbol length or greater than or equal to 2 symbol length. If the period of the SR is greater than or equal to the length of the first time domain resource, there may be one period for sending the SR within the length of the first time domain resource, and the length of the second time domain resource is occupied by one SR. Symbol length. If the period of the SR is smaller than the length of the first time domain resource, there may be multiple periods for sending the SR within the length of the first time domain resource, where the length of the second time domain resource is greater than 1 symbol length, or greater than 2 Symbol length.
  • the time domain resource of the DMRS in which the terminal sends the PUSCH may be the same as the time domain resource in which the terminal sends the SR in the time domain, or the time domain resource in which the data of the terminal sends the PUSCH may be in time with the time domain resource in which the terminal sends the SR.
  • the same time domain, or the time domain resource of the terminal transmitting the data of the PUSCH, and the time domain resource of the DMRS of the terminal transmitting the PUSCH may be the same as the time domain resource of the transmitting SR in the time domain.
  • the terminal may transmit the SR on one or more data symbols of the PUSCH in combination with the period of the SR, or the terminal may send the SR on one or two DMRS symbols of the PUSCH, or the terminal is in one
  • the SR is transmitted on one or more data symbols, and the SR is transmitted on one or two DMRS symbols.
  • all time domain resources of the second time domain resource are the same as all time domain resources of the first time domain resource, that is, the first time domain resource and the second time domain resource completely overlap in the time domain.
  • the period of the SR is 1 symbol length
  • the length of the symbol occupied by each SR is 1 symbol length or 2 symbol length.
  • the SR may be sent on each symbol of the PUSCH, and the length of the first time domain resource is The length of the first time domain resource will be the same.
  • all the time domain resources of the second time domain resource are the same as the partial time domain resources of the first time domain resource, that is, all the time domain resources of the second time domain resource and some time domain resources of the first time domain resource are The time domain coincides.
  • the period of the SR is 2 symbol lengths, and the period of the SR is smaller than the length of the first time domain resource.
  • the SR may be sent every two symbol lengths within the symbol length of the PUSCH, if each SR occupies a symbol length of 1. The symbol length, the SR will be sent on some symbols of the PUSCH, and all the time domain resources of the second time domain resource and the partial time domain resources of the first time domain resource overlap in the time domain.
  • part of the time domain resource of the second time domain resource is the same as the first time domain resource, that is, part of the time domain resource of the second time domain resource and all time domain resources of the first time domain resource are in the time domain.
  • the period of the SR is greater than the length of the first time domain resource
  • the second time domain resource is 2 symbol length
  • the length of the first time domain resource is 1 symbol length
  • the length of the first time domain resource is 1 symbol length and the first The 1 symbol length of the time domain resource coincides in the time domain.
  • part of the time domain resource of the second time domain resource is the same as the partial time domain resource of the first time domain resource, that is, part of the time domain resource of the second time domain resource and part of the time domain resource of the first time domain resource are The time domain coincides.
  • the period of the SR is 2 symbol lengths, and the period of the SR is smaller than the length of the first time domain resource.
  • the SR may be sent every two symbol lengths within the symbol length of the PUSCH, if each SR occupies a symbol length of 2
  • the length of the symbol, the second symbol of the second time domain resource and the first symbol of the first time domain resource overlap in the time domain, so that the SR is sent on some symbols of the PUSCH, and the second time domain resource exists.
  • Part of the time domain resource coincides with part of the time domain resource of the first time domain resource in the time domain.
  • the length of the second time domain resource is 2 symbol length
  • the length of the first time domain resource is greater than or equal to 2 symbol length
  • the second time domain resource One of the symbol lengths coincides with one of the first time domain resources in the time domain.
  • the second time domain resource and the second frequency domain resource that are sent by the SR are a part of resources reserved for the SR from the resources configured for the PUSCH, and when only the PUCCH carrying the SR occupies the same time domain resource as the PUSCH.
  • the SR bearer is transmitted in the PUSCH, and the problem of signal transmission when the short-length PUCCH carrying only the SR and the other uplink channels collide on the same time domain resource in the prior art is solved.
  • the relationship between the first frequency domain resource and the second frequency domain resource is different.
  • the first frequency domain resource when the terminal sends the DMRS of the PUSCH by using the first frequency domain resource and the first time domain resource, the first frequency domain resource includes a frequency domain resource occupied by the DMRS of the PUSCH, and the first time domain resource includes the DMRS occupied by the PUSCH.
  • Time domain resources all frequency domain resources of the second frequency domain resource are the same as all or part of the frequency domain resources of the first frequency domain resource, or part or all of the frequency domain resources of the second frequency domain resource and the first frequency domain resource.
  • the frequency domain resources are the same.
  • the frequency domain resources occupied by the SR may be the same as all the frequency domain resources occupied by the DMRS, or the frequency domain resources occupied by the SR may be part of the frequency domain occupied by the DMRS.
  • the resources are the same.
  • the frequency domain resources occupied by the SR are the same as the frequency domain resources occupied by the first DMRS or all the frequency domain resources, as shown in (3) of FIG. 8, the frequency occupied by the SR.
  • the domain resource is the same as some of the frequency domain resources or all frequency domain resources occupied by the second DMRS.
  • the first frequency domain resource when the terminal sends the data of the PUSCH by using the first frequency domain resource and the first time domain resource, the first frequency domain resource includes a frequency domain resource occupied by the data of the PUSCH, where the first time domain resource includes the data occupied by the PUSCH. Time domain resources. At this time, the first frequency domain resource is different from the second frequency domain resource.
  • the second frequency domain resource is a frequency domain resource reserved for transmitting an SR from a frequency domain resource configured by the base station for the PUCCH, and the remaining frequency domain resource is the first frequency domain resource. Therefore, the second frequency domain resource is different from the first frequency domain resource, and the first frequency domain resource and the second frequency domain resource are different in the frequency domain resource configured by the base station for the PUCCH.
  • the first frequency domain resource and the second frequency domain resource may be different from the frequency of use corresponding to the frequency domain resource, that is, the frequency of the second frequency domain resource is greater than or equal to the minimum frequency of the first frequency domain resource, and the second The frequency of the frequency resource is less than or equal to the maximum frequency of the first frequency domain resource.
  • the first frequency domain resource includes a frequency domain resource occupied by the DMRS of the PUSCH and a frequency domain resource occupied by the data of the PUSCH
  • the first time domain resource includes a time domain resource occupied by the DMRS of the PUSCH and a time domain resource occupied by the data of the PUSCH.
  • the first frequency domain resource and the second frequency domain resource may be partially the same.
  • the terminal uses the frequency domain resource corresponding to the same time domain resource to simultaneously send the DMRS and SR.
  • the time domain resources occupied by the DMRS are the same as the time domain resources occupied by the SR, and mainly include the following situations:
  • the symbol length occupied by one SR is 1 symbol length
  • the symbol length occupied by DMRS is 1 symbol length
  • the 1 symbol length occupied by DMRS is the same as the 1 symbol length occupied by SR in the time domain, then the same 1 symbol.
  • the frequency domain resources occupied by the DMRS may be the same as the frequency domain resources occupied by the SR, or part of the frequency domain resources occupied by the DMRS and the SR occupying the frequency domain resources.
  • both the SR and the DMRS are carried in the DMRS symbol of the PUSCH, and the DMRS symbol occupies 1 symbol length, and the frequency domain resources occupied by the SR and the DMRS are the same.
  • the symbol length occupied by one SR is 1 symbol length
  • the symbol length occupied by the DMRS is 2 symbol length
  • the 1 symbol length occupied by the SR and the symbol length of the first symbol occupied by the DMRS are the same in the time domain
  • part of the frequency domain resources occupied by the DMRS are the same as the frequency domain resources occupied by the SR.
  • the DMRS occupies 2 symbol lengths of the PUSCH, and both the SR and the DMRS are carried in the first DMRS symbol of the PUSCH, and the frequency domain resources occupied by the SR can be occupied with the first DMRS.
  • a part of the frequency domain resources are the same, and may be the same as all the frequency domain resources occupied by the first DMRS, and the second DMRS symbol only carries the DMRS.
  • the symbol length occupied by one SR is 1 symbol length
  • the symbol length occupied by the DMRS is 2 symbol length
  • the 1 symbol length occupied by the SR and the symbol length of the second symbol occupied by the DMRS are the same in the time domain
  • part of the frequency domain resources occupied by the DMRS are the same as the SR occupied frequency domain resources.
  • the DMRS occupies 2 symbol lengths of the PUSCH
  • the first DMRS symbol carries only the DMRS
  • the second DMRS symbol carries the SR and the DMRS
  • the frequency domain resources occupied by the SR can be the same.
  • the part of the frequency domain resources occupied by the two DMRSs are the same, and may be the same as all the frequency domain resources occupied by the second DMRS.
  • the symbol length occupied by one SR is 2 symbol length
  • the symbol length occupied by DMRS is 2 symbol length
  • the 2 symbol length occupied by SR and the 2 symbol length occupied by DMRS are the same in time domain
  • the same 2 symbols within the length the frequency domain resources occupied by the DMRS are the same as the SR occupied frequency domain resources. For example, as shown in (4) of FIG.
  • the DMRS occupies 2 symbol lengths of the PUSCH, the first DMRS symbol carries the SR and the DMRS, and the second DMRS symbol carries the SR and the DMRS, and the frequency domain resources occupied by the SR can be
  • the frequency domain resources occupied by the DMRS are the same, and may also be the same as some frequency domain resources occupied by the DMRS.
  • the symbol length occupied by one SR is 2 symbol length
  • the symbol length occupied by the DMRS is 2 symbol length
  • the symbol length of the first symbol occupied by the SR and the symbol length of the second symbol occupied by the DMRS are in the time domain.
  • the frequency domain resources occupied by the DMRS and the SR occupy the same frequency domain resources within the same 1 symbol length.
  • the DMRS occupies 2 symbol lengths of the PUSCH
  • the first DMRS symbol carries only the DMRS
  • the second DMRS symbol carries the SR and the DMRS
  • the frequency domain resources occupied by the SR can be the same.
  • the part of the frequency domain resources occupied by the two DMRSs are the same, and may be the same as all the frequency domain resources occupied by the second DMRS.
  • the first data symbol after the second DMRS symbol carries the data and the SR, but the data and the SR occupy the same.
  • the frequency domain resources are different.
  • the terminal when the time domain resource occupied by the DMRS is the same as the time domain resource occupied by the SR, on the same time domain resource, the terminal sends the DMRS by using the first sequence, and sends the SR by using the second sequence, the first sequence and the first The two sequences are different.
  • first timing and the second timing are orthogonal on the entire PUSCH. Or the first timing and the second timing are orthogonal on the repeated DMRS symbols.
  • the terminal when the time domain resource occupied by the DMRS is the same as the time domain resource occupied by the SR, the terminal sends the DMRS by using the first transmission power on the same time domain resource, and the terminal sends the SR by using the second transmission power.
  • the second transmission power is 0, and the first transmission power is not less than the The transmission power required by the DMRS.
  • the second transmission power is not less than the transmission power required by the transmission SR, and the first transmission power is the terminal. The difference between the total transmission power and the second transmission power on the second time domain resource.
  • the second transmission power is not less than the transmission power required by the transmission SR, and the first transmission power is the terminal is in the second.
  • the second time domain resource is the same as the time domain resource occupied by the second DMRS
  • the first transmission power is the same as the transmission power of the first DMRS
  • the second transmission power is the terminal The difference between the total transmission power on the second time domain resource and the first transmission power.
  • the transmission power required by the SR is P1
  • the transmission power required by the DMRS is P0
  • the total transmission power of the terminal in each symbol length is P.
  • the terminal is used on the DMRS symbol.
  • the second sequence sends an SR, and the terminal sends the DMRS on the DMRS symbol by using the first sequence, the transmission power of the transmitting SR is greater than or equal to P1, and the transmission power of the transmitting DMRS is less than or equal to P-P1.
  • the terminal transmits the SR using the second sequence on the first DMRS symbol, and the terminal transmits the first DMRS using the first sequence on the first DMRS symbol, and transmits the transmission of the SR.
  • the power is greater than or equal to P1, and the transmission power of the first DMRS is less than or equal to P-P1.
  • the terminal sends a second DMRS on the second DMRS symbol.
  • the transmission power of the second DMRS may be the same as the transmission power of the first DMRS.
  • the terminal transmits the first DMRS on the first DMRS symbol.
  • the transmission power of the first DMRS is at least P0.
  • the terminal sends the SR by using the second sequence on the second DMRS symbol, and the terminal sends the second DMRS by using the first sequence on the second DMRS symbol, and the transmission power of the transmitting SR is P-P0, and the transmission of the second DMRS is transmitted.
  • the power is the same as the transmission power of the first DMRS, which is P0.
  • the terminal transmits the SR using the second sequence on the first DMRS symbol and the second DMRS symbol, and the terminal uses the first DMRS symbol and the second DMRS symbol.
  • the terminal transmits the first DMRS on the first DMRS symbol.
  • the transmission power of the first DMRS is at least P0.
  • the terminal sends the SR by using the second sequence on the second DMRS symbol, and the terminal sends the second DMRS by using the first sequence on the second DMRS symbol, and the transmission power of the transmitting SR is P-P0, and the transmission of the second DMRS is transmitted.
  • the power is the same as the transmission power of the first DMRS, that is, P0, and the terminal also transmits the SR and the data on the data symbols after the second DMRS symbol, but the SR and the data occupy different frequency domain resources.
  • the terminal when some or all of the time domain resources of the terminal transmitting data are the same as the time domain resources of the terminal transmitting the SR in the time domain, the terminal sends the SR and the different resources on the same time domain resource respectively. data.
  • the resource occupied by the data in the resource corresponding to the same time domain resource occupied by the SR, the resource occupied by the data is different from the resource occupied by the SR.
  • the frequency of the resource occupied by the SR is greater than or equal to the minimum frequency of the resource occupied by the data, and the frequency of the resource occupied by the data is less than or equal to the maximum frequency of the resource occupied by the data.
  • the resources occupied by the SR in the resources corresponding to the same time domain resource occupied by the SR Includes one or more resource groups, each resource group including one RE or at least two consecutive REs.
  • the resource group carrying the data symbol and the resource group carrying the SR are located on different frequency domain resources in the resource corresponding to the data symbol.
  • the terminal carries the SR on at least 2 data symbols of the PUSCH, and the resources carrying the SR and the bearer data are different.
  • the resource carrying the SR may be set adjacent to the frequency domain resource occupied by the PT-RS, and may be set on the same side of the frequency domain resource occupied by the PT-RS, or may be set on different sides of the frequency domain resource occupied by the PT-RS.
  • the resource group carrying the SR may be two or more than two resources corresponding to the same symbol.
  • the frequency domain resource occupied by the SR includes multiple resource groups, at least one RE is separated between different resource groups.
  • the resource group carrying the SR in the resource corresponding to the data symbol is three, and at least one RE is separated between the three resource groups.
  • the frequency diversity mode may be adopted, that is, the resource groups that are reserved for the SR on the adjacent time domain resources are located in different frequency domain resources on the same time domain resource. on.
  • the terminal sends an SR on two consecutive data symbols on the PUSCH
  • the resource group carrying the SR on each data symbol is one
  • the resource groups carrying the SR on the two consecutive data symbols are located differently. On the frequency domain resources.
  • the terminal sends an SR on all data symbols on the PUSCH, if the resource group carrying the SR on each data symbol is one, the resource group carrying the SR on the adjacent two data symbols is located on different frequency domain resources. .
  • the terminal sends an SR on all data symbols on the PUSCH
  • the resource group carrying the SR on each data symbol is two
  • the four resource groups carrying the SR on the adjacent two data symbols are located in different frequency domains. Resources.
  • the information further includes a phase tracking reference signal
  • at least one of the resource groups carrying the SR is adjacent to a frequency domain resource occupied by the phase tracking reference signal.
  • phase tracking reference signal when a phase tracking reference signal is carried in a data symbol on a PUSCH, when the terminal transmits an SR on one or more data symbols of the PUSCH, one or more resource groups carrying the SR on each data symbol are close to the bearer phase tracking.
  • the frequency domain resource setting of the reference signal when the terminal transmits an SR on one or more data symbols of the PUSCH, one or more resource groups carrying the SR on each data symbol are close to the bearer phase tracking.
  • the multiple resource groups carrying the SR on each data symbol may be partially close to the bearer.
  • the frequency domain resource setting of the phase tracking reference signal is partially set close to the frequency domain resource with the smallest subcarrier number or the largest subcarrier number.
  • the foregoing embodiment describes an embodiment in which a terminal transmits an SR on one or two DMRS symbols of a PUSCH and an embodiment in which a terminal transmits an SR on one or more data symbols of a PUSCH.
  • the terminal since the SR period can be flexibly configured, when the SR bearer is transmitted in the PUSCH, the terminal can transmit the SR on one or more data symbols of the PUSCH according to the period of the SR, and the terminal can also be in the PUSCH. Or transmitting the SR on two DMRS symbols, the terminal may also send the SR on one or more data symbols and the SR on one or two DMRS symbols.
  • the solution may be a combination of the implementation manners adopted by the two real-time scenarios.
  • the terminal adopts a scheme of transmitting the SR in the PUSCH, and may cover one of the solutions of the foregoing two implementation scenarios. A combination of the two real-time scenarios described above can be covered.
  • the short-term PUCCH, PUSCH, and other PUCCH transmission modes carrying the SR are as follows:
  • the short-length PUCCH carrying the SR and the PUSCH capable of carrying a part of the uplink control information cannot be simultaneously transmitted.
  • the long-length control channel carrying the SR collides with the PUSCH, since the two channels occupy the same time domain resource, if the terminal capability supports, simultaneous transmission can be realized by allocating power on the same time domain resource.
  • the transmission power of the long-length PUCCH on each symbol is configured as P1
  • the transmission power of the PUSCH on each symbol is configured as P-P1.
  • the short-length PUCCH carrying the SR occupies only a part of the symbols, since the number of symbols occupied by the short-length PUCCH carrying only the SR can be flexibly changed, it is difficult to give an associated power allocation scheme.
  • the scheduling request there is only one configuration of the scheduling request. Since the LTE system supports only one service type, the service type only corresponds to the resource configuration of one scheduling request. Different from LTE, in a 5G system, a terminal can carry multiple service types. Therefore, in the current standard discussion, the NR can be configured with multiple service types, which can be carried by a long-length PUCCH or a short-time PUCCH, or Other bearers. Since these service types are different, the resources of the SR are also independently configured. Therefore, the scheduling request of one service may coincide with the time domain resources of other uplink channels, that is, there are both SR transmission requirements and other uplinks on one symbol. The transmission requirements of the channel.
  • the period of the SR can be configured to be 1 symbol, that is, it is possible to transmit the SR on each symbol.
  • how the terminal handles the scheduling request and the collision of other upstream channels is a problem to be solved by the present invention.
  • an existing PUCCH transmission mode scheduling method is shown in FIG.
  • the 0.5ms transmission is divided into two segments in the time domain, and the transmitted position is located on both sides of the entire frequency band to improve the effect of the hierarchical gain.
  • 1 ms contains 14 symbols, the first 7 symbols are transmitted on one side of the frequency band, and the last 7 symbols are transmitted on the other side of the frequency band.
  • a terminal-initiated SR generally has two forms, for two cases.
  • the terminal has resources for periodic scheduling requests allocated by the base station.
  • the terminal may send a scheduling request on a fixed time domain, frequency domain, and code domain resource in each cycle.
  • the terminal carries an uplink scheduling request when replying to the PUCCH.
  • the terminal may jointly encode the information of the uplink scheduling request and other information, and then send the information to the base station.
  • the PUCCH carrying the scheduling request can be transmitted simultaneously with the PUSCH, and this involves the problem of power allocation between the two.
  • a short-term PUCCH occurs in the 5G NR. Unlike the LTE, the short-term PUCCH may appear only on a part of the symbols, and the remaining symbols do not appear, so the power on different symbols of the PUSCH may change. The allocation plan is no longer applicable.
  • the PUSCH may feed back part of the uplink control information, including channel quality information or ACK/NACK information of the previous downlink transmission.
  • the scheduling request period may be short and may occur on each symbol. Therefore, the original method is no longer applicable for how to carry a scheduling request with a short period and an indeterminate position on the PUSCH. Further discussion, since only one type of service appears in LTE, corresponding to a scheduling request, the PUSCH is transmitted in the service type, so there is no need to provide a bearer scheduling request on the PUSCH.
  • the scheduling request can be jointly encoded with other uplink information and transmitted to the base station through the PUCCH.
  • the scheduling request period may be short, the delay requirement is relatively high, and the position is uncertain, it is impossible to jointly encode with other uplink information in advance.
  • the existing method in LTE cannot solve the problem that the short-cycle PUCCH encountered by the present invention collides with other channels.
  • the 5G NR can use the short-length PUCCH, that is, the PUSCH and the PUCCH are only present in some symbols, and the other symbols still only have the PUSCH, which is not conducive to detecting the PUSCH, and the original power allocation mode is no longer applicable;
  • the PUSCH bearer scheduling request is not involved in the original LTE because only one service is supported, and the 5G NR is configured with multiple service types and its period is flexibly configured. Therefore, the scheduling of another service is performed in the PUSCH of one service.
  • the request may also appear in any symbol, which is not considered in LTE; for the PUCCH bearer scheduling request and other UCI and joint coding, the joint coding scheme in LTE needs to acquire the scheduling request in advance to encode, A scheduling request with a low latency cannot be supported and cannot meet the requirements.
  • the present invention is to solve the problem that only the PUCCH carrying the scheduling request and the other uplink channels collide on the same time domain resource, the PUCCH carrying only the scheduling request is a short-time-length PUCCH, and the other uplink channels include a PUSCH and a PUCCH, wherein the PUCCH is further Further, the method includes a long-length PUCCH, a short-length PUCCH of one symbol, and a short-term PUCCH of two symbols.
  • the two cases are discussed.
  • the first one is the problem that two channels are simultaneously transmitted and the power is allocated, and the second is two.
  • the channel transmits only one type of channel, that is, only transmits the PUSCH and carries the scheduling request information in the PUSCH.
  • the short-term PUCCH carrying only the scheduling request and some other time-domain resources of the PUCCH overlap the same is also discussed in two cases.
  • the first is that two channels are simultaneously transmitted and power allocated, and the second is to transmit only one channel, and according to some conditions, it is determined whether only the PUCCH carrying only the scheduling request or only the other uplink channel is transmitted.
  • the present invention provides a method for transmitting a short-length PUCCH and a PUSCH jointly carrying a scheduling request, and involves simultaneous transmission of 1 to 2 DMRS symbols starting from the PUSCH and simultaneous transmission of symbols of the remaining bearer data, and Given the limits that can be transmitted simultaneously in those cases;
  • the present invention gives a PUSCH bearer scheduling request mode, and gives a method that can transmit in any symbol and gives a method for improving the reliability of the scheduling request by using frequency diversity.
  • the present invention provides a method of how to allocate power and what only one channel is transmitted under the condition that only the short-length PUCCH carrying the scheduling request collides with other PUCCHs.
  • the first processing solution provided by the present application is as follows:
  • the first processing scheme is a processing manner in which only a short duration PUCCH carrying a scheduling request is transmitted together with a PUSCH.
  • the terminal transmits the PUSCH, it is necessary to simultaneously transmit the scheduling request, and the short-length PUCCH only carries the scheduling request.
  • the terminal needs to allocate based on the configured power priority, preferentially allocate a part of power to one channel, and the remaining power is allocated to another channel for transmission.
  • the scheme for specifically allocating power should consider whether the DMRS symbol conflicts with the symbol carrying the SR or the symbol of the bearer data following the DMRS symbol.
  • the power is preferentially allocated to the short-term PUCCH of the scheduling request, and the remaining power is allocated to the DMRS.
  • the terminal can increase the transmission power of the data, and the transmission power of the data is increased in proportion to the transmission power of the DMRS.
  • the power increase amount can be identified, or the base station side can obtain the power increase amount by comparing the difference in power between the PT-RS and the DMRS on the same frequency domain resource.
  • the terminal can increase the transmission power of the data, and the transmission power of the data is increased relative to the transmission power of the DMRS.
  • the base station side can either identify the power increase, or the base station side can compare the PT-RS and the DMRS in the same The difference in power on the frequency domain resources to obtain an increase in power.
  • the PUSCH contains two DMRS symbols, and the scheduling request occurs in the second DMRS symbol, as shown in FIG. 11, a part of the power is allocated to the DMRS to ensure that the power of the second DMRS and the first DMRS are the same, and the remaining power allocation is performed.
  • One way to carry the symbols of the data later is to maintain the same transmission power as the DMRS portion. Since two DMRS symbols are used for channel measurement of multiple ports, if the powers on the two DMRS symbols are different, interference between multiple ports is caused.
  • the terminal can improve the transmission power of the data, and the transmission power of the data is transmitted relative to the DMRS.
  • the base station side can either identify the amount of power increase, or the base station side can obtain the power boost by comparing the difference in power between the PT-RS and the DMRS on the same frequency domain resource.
  • the power is preferentially allocated to the short-term PUCCH carrying the scheduling request, and the remaining power is allocated to the PUSCH.
  • the power can be identified, or the base station side can obtain the power of the PUSCH part on the symbol by comparing the power on the frequency domain resource carrying the PT-RS on different symbols before and after; if the PUSCH has no PT- RS, power is preferentially allocated to the PUSCH, and the remaining power is allocated to the short-term PUCCH carrying the scheduling request. If the power of the partial symbol of the PUSCH decreases, if the base station does not know the power-down value, it may cause a decoding error.
  • the power is preferentially allocated to the short-term PUCCH of the scheduling request, and the remaining power is allocated to the DMRS part. Since there is no PT-RS, the base station cannot accurately estimate the amount of improvement of the PUSCH power, so it maintains the same power as the DMRS on the symbol of the PUSCH bearer data. If there is a scheduling request on the symbol of the PUSCH bearer data, since the base station does not have the PT-RS estimated power variation, the power on the data symbol should be maintained as the power required by the PUSCH, and the remaining power is allocated to the short-time PUCCH carrying the scheduling request.
  • the terminal transmits The power is preferentially allocated to the short-term PUCCH carrying the scheduling request, and the remaining power is allocated to the PUSCH.
  • the second processing solution provided by the present application is as follows:
  • the second processing method is to transmit only one channel for two channels, that is, only the PUSCH is transmitted and the SR bearer is transmitted in the PUSCH.
  • the structure of the PUSCH includes 1 to 2 DMRS symbols and symbols that carry uplink data later, and the symbols that carry the uplink data may or may not be configured with the PT-RS.
  • the PUSCH needs to reserve a corresponding resource on each symbol. The following is respectively explained for the two parts of the PUSCH carrying the DMRS symbol and the symbol carrying the uplink data.
  • the terminal When the PUSCH has only one symbol of DMRS and there is a scheduling request on the symbol of the DMRS, the terminal carries the SR by using a sequence different from the transmission DMRS, and the SR sequence and the DMRS sequence are orthogonal to the frequency band of the entire PUSCH or the frequency bands covered by the two.
  • the terminal preferentially provides the power of the SR, and the remaining power is used for the transmission of the DMRS.
  • the symbol after the DMRS if there is a PT-RS configuration, the terminal can upgrade the power of the PUSCH to the power required by the PUSCH, if not PT-RS configuration, the subsequent PUSCH symbol maintains the transmission power consistent with the DMRS symbol;
  • the terminal When the PUSCH contains two symbols of DMRS and there is a scheduling request on the symbol of the DMRS, when there is an SR requirement on the first DMRS symbol, the terminal preferentially provides the power of the SR, and on the second symbol, the DMRS remains and the first symbol The same power; when the SR is required on the second DMRS symbol, the terminal preferentially guarantees that the power of the DMRS is the same as the first symbol, and the remaining power is allocated to the SR transmission; in the above two cases, the sequence adopted by the SR is different from the sequence of the DMRS. Or orthogonal.
  • resources are reserved on every X symbols, that is, every X symbols are reserved.
  • At least one resource element (RE) carries the SR.
  • the transmission power of the reserved resource is 0.
  • the transmission power of the reserved resource is not 0. Specifically, resources are reserved on every X symbols, and there are multiple ways of RE allocation.
  • the RE next to the PT-RS is assigned to the SR on a single symbol.
  • a scheduling request with a period of X symbols is carried on the symbol of the PUSCH bearer data.
  • one resource is reserved to carry the SR, and the reserved resources include one or at least two consecutive REs.
  • At least two resource bearer scheduling requests may be allocated.
  • the REs carrying the scheduling request may be located on one side of the PT-RS and on the side of the frequency band occupied by the PUSCH, respectively.
  • Manner 2 Allocating REs on both sides of the frequency band occupied by the PUSCH to the SR on a single symbol.
  • a scheduling request with a period of X symbols is carried on the symbol of the PUSCH bearer data.
  • one or more resources are reserved to carry the SR, and each resource reserved includes one or at least two consecutive REs.
  • the RE may be located on one or both sides of the frequency band occupied by the PUSCH.
  • the REs are located on both sides of the frequency band occupied by the PUSCH.
  • the RE is allocated to the SR on multiple symbols of the PUSCH, and the RE carrying the SR is located in different frequency domain resources on at least two adjacent symbols.
  • the resources reserved for the SR on a single symbol can be one or two.
  • the RE of the scheduling request is located on one side of the PT-RS, and is located on the other side of the PT-RS on the second symbol; as shown in (b) of FIG. 16, the RE carrying the scheduling request on the first symbol is located at the PT- One side of the RS is located on one side of the PUSCH on the second symbol; as shown in (c) of FIG. 16, the RE carrying the scheduling request on the first symbol is located on one side of the PUSCH, and is located on the PUSCH on the second symbol.
  • This scheduling mode still achieves the effect of diversity gain with less RE resources.
  • the third processing scheme provided by the present application is as follows:
  • the third processing scheme is a processing manner in which only the short-length PUCCH carrying the scheduling request is transmitted or selected together with other PUCCHs.
  • Case 1 The processing mode when only the PUCCH carrying the SR collides with the long-length PUCCH.
  • the short duration PUCCH and the long duration PUCCH that only carry the scheduling request occur at the same time.
  • the information carried by the long duration PUCCH may be information other than the scheduling request, such as ACK/NACK, channel quality indicator (channel quality indicator, The CQI), the CSI, and the like may also include scheduling requests and other information, such as ACK/NACK, CQI, and CSI, that is, the long-term PUCCH does not include the case of only carrying the scheduling request.
  • the long-term PUCCH is divided into two types: OCC for multi-user multiplexing and no OCC.
  • OCC When using OCC, the power requirements of each symbol do not change because different users need to remove interference from other users through different codewords.
  • the long-length PUCCH uses the OCC code of length greater than or equal to 2 to expand the symbols of the DMRS and the UCI, only the time domain resource of the short-length PUCCH carrying the SR and the start symbol of the long-length PUCCH or the PUCCH of the long duration are used.
  • the terminal When the start symbols of the hopping part are the same, the terminal simultaneously transmits the long-length PUCCH and the short-length PUCCH carrying only the SR, and preferentially allocates power to the short-length PUCCH carrying only the SR, and the remaining power (if any) is allocated to Long-term PUCCH use; optionally, the power of the long-term PUCCH in the current time slot or frequency hopping part and simultaneous transmission when the long-length PUCCH is transmitted after the end of the short-length PUCCH transmission carrying only the SR The transmission power of the PUCCH of the duration is kept unchanged.
  • the terminal is When the PUCCH power of the long duration is unchanged, the remaining power transmission is used to carry only the short-length PUCCH of the SR;
  • the terminal When the long-term PUCCH is not configured with the OCC, the terminal preferentially allocates power to ensure that only the short-length PUCCH of the SR is transmitted, and the remaining power is allocated to the long-time PUCCH; when the power of the terminal cannot satisfy the simultaneous transmission, the terminal terminates the transmission.
  • the long-length PUCCH that is, the two-channel time-domain coincident part transmits only the short-length PUCCH carrying only the SR; after transmitting the short-length PUCCH carrying only the SR, the terminal may use the long-length PUCCH residual symbol or the transmitted symbol.
  • the terminal has a DMRS symbol and a UCI symbol in the remaining symbols or transmitted symbols of the long-length PUCCH on a certain frequency domain resource. The transmission continues until the DMRS symbol and the UCI symbol in the same frequency domain resource are not transmitted.
  • the two channel time domain coincidence portions transmit only the short-term PUCCH carrying only the SR, and only the short-term PUCCH that carries the SR stops, such as the long-length PUCCH has been transmitted and There are DMRS and UCI symbols in the remaining symbols, and the PUCCH can be transmitted for a long time.
  • the two-channel time-domain coincidence portion transmits only a short-term PUCCH carrying only the SR, and after only the short-length PUCCH carrying the SR ends, if the entire time slot is not transmitted, Continue to transmit long-term PUCCH.
  • Case 2 The processing mode when only the PUCCH carrying the SR collides with the short-term PUCCH.
  • the short-length PUCCH and the short-duration PUCCH that only carry the scheduling request occur simultaneously, and the information of the short-length PUCCH bearer may be information other than the scheduling request, such as ACK/NACK, CSI, and CQI and so on.
  • the short-length PUCCH bearer information may also include scheduling requests and other control information, such as ACK/NACK, CSI, and CQI, that is, the short-term PUCCH does not include the case of only carrying the scheduling request.
  • the short-length PUCCH can be further divided into three types: single symbol, two-symbol joint coding, and two-symbol enable OCC.
  • the short-length PUCCH of the two-symbol-enabled OCC is separately analyzed because OCC is used for multi-user multiplexing, and if the energy of one of the symbols is affected by simultaneous transmission, multi-user interference is caused.
  • the power priority guarantees only the short-term PUCCH carrying the SR, and the remaining power (if any) is allocated to the short-term PUCCH carrying the CQI, that is, the SR has a higher priority.
  • the terminal preferentially allocates power to the channel of the high-priority SR according to the priority (service type, period size) of the SRs carried by the two channels. The remaining power (if any) is assigned to another channel.
  • the terminal allocates power equally to the two channels, or the terminal preferentially allocates power to the high according to the priorities of the ACK/NACK and the SR.
  • the channel of priority transmission, the remaining power (if any) is assigned to another channel.
  • the terminal may allocate power according to the information amount ratio of ACK/NACK and SR (recorded as 1 bit).
  • the short-length PUCCH-enabled OCC of two symbols when a short-length PUCCH carrying only SR is present on the first symbol of the short-length PUCCH of two symbols, the two channels are simultaneously transmitted, and are allocated according to the above four cases. Power, that is, power is preferentially allocated to a channel of high priority transmission, and residual power (if any) is allocated to other channels; when a short duration PUCCH carrying only SR occurs on a second symbol of a short duration PUCCH of two symbols, two The channels are simultaneously transmitted, and the second symbol of the short-length PUCCH of the two symbols is preferentially guaranteed to have the same power, and the extra power is allocated to the PUCCH of the short duration that only carries the SR.
  • An embodiment of the present application provides an uplink transmission apparatus.
  • the embodiment of the present application provides an uplink transmission method and device based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method may be referred to each other, and the repeated description is not repeated.
  • the present application provides a terminal as above, which is used to perform terminal-related method steps in various embodiments related to the present application.
  • the terminal includes a plurality of functional modules for performing the method steps associated with the terminal in the various embodiments involved in the present application.
  • the terminal 1000 includes a processing unit 1010 and a transceiver unit 1020. It should be noted that the operations performed by the processing unit 1010 or the transceiver unit 1020 can be regarded as the operation of the terminal 1000.
  • the structure of the terminal includes a processor and a transceiver, and the processor is configured to support the terminal to perform corresponding functions in the foregoing method embodiments.
  • the transceiver is configured to support communication between the terminal and the base station, and send information or instructions involved in the foregoing method embodiments to the base station.
  • the terminal may also include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • the processing unit 1010 in the terminal 1000 can be implemented by a processor in the terminal 1000, and the transceiver unit 1020 can be implemented by a transceiver in the terminal 1000.
  • the processing unit 1010 is configured to: transmit, by using a first transmission power, a first uplink channel on a first time domain resource, where the terminal uses a second transmission power in the first time domain resource. Transmitting a second uplink channel, where the first uplink channel occupies the first time domain resource transmission call request SR, and the first time domain resource is the same as part of the time domain resource occupied by the second uplink channel, or The first time domain resource is the same as all time domain resources occupied by the second uplink channel.
  • the first time domain resource corresponds to one resource unit or at least two consecutive resource units.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource and the physical layer uplink shared channel carry the time domain of the first demodulation reference signal DMRS
  • the first transmission power is not less than the transmission power required by the SR
  • the second transmission power is the total transmission power of the terminal on the first time domain resource and the first transmission power. The difference.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource is the same as the time domain resource carrying the second DMRS on the physical layer uplink shared channel
  • the second transmission power is the same as the transmission power of the first DMRS
  • the first transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the second transmission power. value.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource is the same as the time domain resource carrying data on the physical layer uplink shared channel
  • the bearer When the phase tracking reference signal PT-RS is also carried on the time domain resource of the data, the first transmission power is not less than the transmission power required by the SR, and the second transmission power is the terminal in the first time domain. The difference between the total transmission power on the resource and the first transmission power.
  • the second uplink channel is a physical layer uplink shared channel
  • the first time domain resource is the same as the time domain resource carrying data on the physical layer uplink shared channel
  • the bearer The PT-RS is not carried on the time domain resource of the data
  • the second transmission power is the same as the transmission power of the time domain resource carrying the DMRS on the uplink shared channel of the physical layer, where the first transmission power is the terminal a difference between a total transmission power on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels
  • the second uplink signal uses an orthogonal cover code OCC
  • the first transmission power is not less than the transmission power required by the SR, and the second transmission power And a difference between a total transmission power of the terminal on the first time domain resource and the first transmission power.
  • both the first uplink channel and the second uplink channel are physical layer uplink control channels
  • the second uplink signal uses the OCC
  • the first time domain When the resource is the same as the time domain resource after the start time domain resource of the second uplink channel or the time domain resource after the start time domain resource of the frequency hopping, the second transmission power and the terminal are The transmission power on the initial time domain resource is the same, and the first transmission power is a difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels
  • the first transmission power required by the SR is not smaller
  • the second transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the first transmission power.
  • the first transmission power is not Less than the transmission power required by the first uplink channel.
  • the second transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the first transmission power.
  • the second transmission power is not The transmission power required by the second uplink channel is smaller than the difference between the total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are physical layer uplink control channels, and the second uplink channel uses frequency hopping transmission, the first transmission power and The second transmission power is equal.
  • the first uplink channel and the second uplink channel are physical layer uplink control channels, and the second uplink channel uses frequency hopping transmission, the first transmission power and The second transmission power allocates total power according to an information amount ratio of the uplink control information carried by the SR and the second uplink channel.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels, and the second uplink channel uses orthogonal cover code OCC, then the first When the time domain resource is the same as the first time domain resource of the second uplink channel, the first transmission power is not less than the transmission power required by the first uplink channel, and the second transmission power is that the terminal is a difference between a total transmission power of the first time domain resource and the first transmission power; or, the second transmission power is not less than a transmission power required by the second uplink channel, the first transmission power And a difference between a total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the first uplink channel and the second uplink channel are both physical layer uplink control channels, and the second uplink channel uses orthogonal cover code OCC, then the first Transmission of the second transmission power and the first time domain resource of the second uplink channel when the time domain resource is the same as the time domain resource of the second uplink channel after the first time domain resource The power is the same, and the first transmission power is a difference between a total transmission power of the terminal on the first time domain resource and the second transmission power.
  • the processing unit 1010 is configured to: if the second transmission power is smaller than a transmission power required by the second uplink channel, transmit the SR on the first time domain resource; Or, if the first transmission power is smaller than the transmission power required by the first uplink channel, transmitting the second uplink channel on the first time domain resource.
  • the processing unit 1010 is further configured to: after the SR transmission is completed, if the second uplink channel is not transmitted on the time domain resource or the transmitted time domain resource includes separately carrying And transmitting, by the DMRS and the time domain resource of the uplink control information, the second uplink channel; or if the second uplink channel does not transmit the time domain resource or the transmitted time domain resource does not include the bearer DMRS and the uplink control The time domain resource of the information, the transmission power of the second uplink channel is 0.
  • the transmission power of the terminal on the time domain resource other than the first time domain resource in the time domain resource occupied by the second uplink channel is the same as the second transmission power, Or proportionally increase with respect to the second transmission power.
  • the processing unit 1010 is configured to: use the first time domain resource and the first frequency domain resource to send information through the transceiver unit 1020; use the second time domain resource and the second frequency domain resource to pass
  • the transceiver unit 1020 sends an invocation request SR; the information and the SR are carried in a physical layer uplink shared channel PUSCH, where the information includes a demodulation reference signal DMRS and data; wherein, the second time domain resource is all
  • the time domain resource is the same as all or part of the time domain resource of the first time domain resource, or part of the time domain resource of the second time domain resource is the same as all or part of the time domain resource of the first time domain resource .
  • all frequency domain resources of the second frequency domain resource are the same as all or part of the frequency domain resources of the first frequency domain resource, or part of the frequency domain of the second frequency domain resource
  • the resource is the same as all or part of the frequency domain resource of the first frequency domain resource.
  • the processing unit 1010 is configured to: when the time domain resource occupied by the DMRS is the same as the time domain resource occupied by the SR, when the DMRS is the same as the SR On the domain resource, the DMRS is sent using a first sequence, and the SR is sent using a second sequence, the first sequence being different from the second sequence.
  • the processing unit 1010 is configured to: send, by using the first transmission power, the DMRS on the same time domain resource that the DMRS and the SR occupy, and send the SR.
  • the processing unit 1010 when the processing unit 1010 does not use the second time domain resource and the second frequency domain resource to send the SR, the second transmission power is 0, the first The transmission power is not less than the transmission power required by the DMRS.
  • the DMRS is two, and when the second time domain resource is the same as the time domain resource occupied by the first DMRS, the second transmission power is not less than required for transmitting the SR.
  • Transmission power the first transmission power being a difference between a total transmission power of the terminal on the second time domain resource and the second transmission power; or, when the second time domain resource and the second When the time domain resources occupied by the DMRSs are the same, the first transmission power is the same as the transmission power of the first DMRS, and the second transmission power is the total transmission of the terminal on the second time domain resource. The difference between the power and the first transmission power.
  • the time domain resource occupied by the data is the same as the time domain resource occupied by the SR
  • the resource corresponding to the same time domain resource occupied by the SR The resources occupied by the data are different from the resources occupied by the SR.
  • the frequency of the resource occupied by the SR is greater than or equal to the minimum frequency of the resource occupied by the data, and the frequency of the resource occupied by the data is less than or equal to the maximum frequency of the resource occupied by the data.
  • the resources occupied by the SR include one or more resource groups, and each of the resource groups includes one resource unit or at least two consecutive resource units.
  • the resources occupied by the SR include multiple resource groups, at least one resource unit is separated between different resource groups.
  • the resource groups on adjacent time domain resources are located on different frequency domain resources.
  • the information further includes a phase tracking reference signal
  • at least one of the resource groups is adjacent to a frequency domain resource of the phase tracking reference signal.
  • the structure of the terminal includes a processor and a transceiver, and the processor is configured to support the terminal to perform corresponding functions in the foregoing method embodiments.
  • the transceiver is configured to support communication between the terminal and the base station, and send information or instructions involved in the foregoing method embodiments to the base station.
  • the terminal may also include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • the transceiver 1105 in FIG. 20 may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network communication interface, a cellular network communication interface, or a combination thereof.
  • the processor 1102 in the embodiment of the present application may be a central processing unit (English: central processing unit, abbreviated as CPU), a network processor (English: network processor, abbreviated as NP) or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the memory 1103 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 1103 may also include a non-volatile memory (English: non-volatile memory) ), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state Drive, abbreviation: SSD); the memory 1103 may also include a combination of the above types of memories.
  • a volatile memory such as a random access memory (English: random-access memory, abbreviation: RAM)
  • the memory 1103 may also include a non-volatile memory (English: non-volatile memory) ), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid
  • the embodiment of the present application may further include a bus system 1104, which may include any number of interconnected buses and bridges, and specifically, various circuit links of the memory represented by one or more processors 1102 and memory 1103 represented by the processor. Together.
  • the bus can also link various other circuits such as peripherals, voltage regulators, and power management circuits, and will not be further described in this application.
  • Transceiver 1105 provides a unit for communicating with various other devices on a transmission medium.
  • the processor 1102 is responsible for managing the bus architecture and general processing, and the memory 1103 can store data used by the processor 1102 in performing operations.
  • the embodiment of the present application further provides a chip, and the chip is connected to a memory, and is used for reading and executing a software program stored in the memory to implement the present application.
  • Method steps associated with the terminal in various embodiments.
  • FIG. 21 is a schematic structural diagram of a circuit system provided in an embodiment of the present invention (for example, an access point or a communication device such as a base station, a station, or a terminal, or the foregoing a chip in a communication device, etc.).
  • circuitry 1200 can be implemented by bus 1201 as a general bus architecture.
  • bus 1201 may include any number of interconnect buses and bridges.
  • Bus 1201 connects various circuits together, including processor 1202, storage medium 1203, and bus interface 1204.
  • circuitry 1200 connects network adapters 1205 and the like via bus 1201 using bus interface 1204.
  • the network adapter 1205 can be used to implement signal processing functions of the physical layer in the wireless communication network, and to implement transmission and reception of radio frequency signals through the antenna 1207.
  • the user interface 1206 can be connected to a user terminal such as a keyboard, a display, a mouse, or a joystick.
  • Bus 1201 can also be connected to various other circuits, such as timing sources, peripherals, voltage regulators, or power management circuits, etc., which are well known in the art and therefore will not be described in detail.
  • circuitry 1200 can also be configured as a system on a chip, generally referred to as a chip, including: one or more microprocessors that provide processor functionality; and an external memory that provides at least a portion of storage medium 1203, all of which pass The external bus architecture is connected to other support circuits.
  • circuitry 1200 can be implemented using an ASIC (application specific integrated circuit) having a processor 1202, a bus interface 1204, a user interface 1206, and at least a portion of a storage medium 1203 integrated in a single chip, or Circuitry 1200 can be implemented using one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, gate logic, discrete hardware components, any other suitable circuitry, Or any combination of circuits capable of performing the various functions described throughout the present invention.
  • ASIC application specific integrated circuit
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable circuitry, Or any combination of circuits capable of performing the various functions described throughout the present invention.
  • the processor 1202 is responsible for managing the bus and general processing (including executing software stored on the storage medium 1203).
  • Processor 1202 can be implemented using one or more general purpose processors and/or special purpose processors. Examples of processors include microprocessors, microcontrollers, DSP processors, and other circuits capable of executing software.
  • Software should be interpreted broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Storage medium 1203 is shown separated from processor 1202 in the following figures, however, those skilled in the art will readily appreciate that storage medium 1203, or any portion thereof, may be located external to circuitry 1200.
  • storage medium 1203 can include transmission lines, carrier waveforms modulated with data, and/or computer products separate from wireless nodes, all of which can be accessed by processor 1202 through bus interface 1204.
  • storage medium 1203, or any portion thereof, can be integrated into processor 1202, for example, can be a cache and/or a general purpose register.
  • the processor 1202 can perform the uplink transmission method in any of the foregoing embodiments of the present application, and details are not described herein again.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to execute the various embodiments and terminals involved in the present application Related method steps.
  • the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform various embodiments in accordance with the present application with a base station Related method steps.
  • the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the method steps associated with the terminal in various embodiments of the present application.
  • the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the method steps associated with the base station in various embodiments of the present application.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行传输方法及终端,应用于通信技术领域,用以解决仅承载SR的短时长物理层上行控制信道与其他的上行信道在同一时域资源上冲突时的信号传输问题。该方法包括:终端采用第一传输功率在第一时域资源上传输第一上行信道,终端采用第二传输功率在第一时域资源上传输第二上行信道;其中,第一上行信道占用第一时域资源传输调用请求SR,第一时域资源与第二上行信道占用的部分时域资源相同,或者第一时域资源与第二上行信道占用的全部时域资源相同。该方法能够实现仅承载SR的短时长物理层上行控制信道与其他的上行信道在同一时域资源上冲突时,能够按照终端为两个冲突的信道配置的传输功率在冲突的时域资源上同时传输。

Description

一种上行传输方法及终端 技术领域
本申请涉及通信技术领域,尤其涉及一种上行传输方法及终端。
背景技术
在长期演进(Long Term Evolution,LTE)中,如用户设备(user equipment,UE)有上行传输需求时,UE通过向eNodeB发送调度请求(Scheduling Request,SR)来通知eNodeB有上行数据需要传输。当基站收到UE的SR,基站在合适的时间向UE发送下行控制信令,将分配给UE进行上行传输的资源通知给UE。在LTE中,SR的发送方式有两种,一种是在基站分配的周期性的SR资源上传输,一种是当UE向基站反馈其他上行控制信息时,把SR和其他上行控制信息联合编码后进行传输。
在LTE中,物理层上行控制信道(physical uplink control channel,PUCCH)为长时长的PUCCH,SR的周期较长时,SR可以单独承载在长时长的PUCCH中,也可以将SR和其他上行控制信息联合编码后承载在长时长的PUCCH中。其中,长时长的PUCCH所占的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数为连续4到14个,采用跳频的方式传输。
在5G中,当SR的周期较短时,将SR与其他上行控制信息进行联合编码后通过长时长的PUCCH传输,不能支持时延较低的SR的传输需求。因此5G中出现了短时长的PUCCH,可以将SR承载在短时长的PUCCH中,或者将短SR和其他上行控制信息联合编码后承载在短时长的PUCCH中。其中,短时长的PUCCH所占的OFDM符号数为1到2个,采用频分复用的方式传输。
但是,当SR的周期可以灵活配置时,单独承载SR的短时长的PUCCH会在任何符号出现,这样会与其他的上行信道在同一时域资源上冲突,即一个符号上既有SR的传输需求也有其他的上行信道的传输需求。此时,针对冲突时间长度内的信号传输问题,现有技术中还没给出具体解决方案。
发明内容
本申请提供一种上行控制信息传输方法及装置,用以解决单独承载SR的短时长物理层上行控制信道与其他的上行信道在同一时域资源上冲突时的信号传输问题。
第一方面,本申请提供一种上行传输方法,所述方法包括:终端采用第一传输功率在第一时域资源上传输第一上行信道,所述终端采用第二传输功率在所述第一时域资源上传输第二上行信道;其中,所述第一上行信道占用所述第一时域资源传输调用请求SR,所述第一时域资源与第二上行信道占用的部分时域资源相同,或者所述第一时域资源与所述第二上行信道占用的全部时域资源相同。
在一种可能的设计中,所述第一时域资源对应的资源包括一个资源单元或至少两个连续的资源单元。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域 资源与所述物理层上行共享信道上承载第一个解调参考信号DMRS的时域资源相同时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载第二个DMRS的时域资源相同时,所述第二传输功率与所述第一个DMRS的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载数据的时域资源相同,且所述承载数据的时域资源上还承载相位跟踪参考信号PT-RS时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载数据的时域资源相同,且所述承载数据的时域资源上没有承载所述PT-RS,所述第二传输功率与所述物理层上行共享信道上承载DMRS的时域资源的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,则当所述第二上行信号使用正交覆盖码OCC,且所述第一时域资源与所述第二上行信道的起始时域资源或者跳频的起始时域资源相同时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,则当所述第二上行信号使用所述OCC,且所述第一时域资源与所述第二上行信道的起始时域资源之后的时域资源或者跳频的起始时域资源之后的时域资源相同时,所述第二传输功率与所述终端在所述起始时域资源上的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,则当所述第二上行信号不使用所述OCC,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第一传输功率不小于所述第一上行信道需要的传输功率。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第二传输功率不小于所述第二上行信道需要的传输功率,所述第一传输功率为所述终端在所述第一时域资源上的总传输功 率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第一传输功率和所述第二传输功率相等。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第一传输功率和所述第二传输功率按照所述SR与所述第二上行信道上承载的上行控制信息的信息量比值对总功率进行分配。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道使用正交覆盖码OCC,则当所述第一时域资源与所述第二上行信道的第一个时域资源相同时,所述第一传输功率不小于所述第一上行信道需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值;或者,所述第二传输功率不小于所述第二上行信道需要的传输功率,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道使用正交覆盖码OCC,则当所述第一时域资源与所述第二上行信道的位于所述第一个时域资源之后的时域资源相同时,所述第二传输功率与所述第二上行信道的第一个时域资源的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第二传输功率小于所述第二上行信道需要的传输功率,则所述终端在所述第一时域资源上传输所述SR;或者,若所述第一传输功率小于所述第一上行信道需要的传输功率,则所述终端在所述第一时域资源上传输所述第二上行信道。
在一种可能的设计中,在所述SR传输完成之后,所述方法还包括:若所述第二上行信道未传输的时域资源上或者已传输的时域资源上包括分别承载DMRS和上行控制信息的时域资源,则所述终端传输所述第二上行信道;或者,若所述第二上行信道未传输的时域资源上或者已传输的时域资源上不包括承载DMRS和上行控制信息的时域资源,则所述第二上行信道的传输功率为0。
在一种可能的设计中,所述终端在所述第二上行信道占用的时域资源中除所述第一时域资源以外的时域资源上的传输功率与所述第二传输功率相同,或者相对于所述第二传输功率等比例增加。
第二方面,本申请提供一种上行传输方法,所述方法包括:终端使用第一时域资源和第一频域资源发送信息;所述终端使用第二时域资源和第二频域资源发送调用请求SR;所述信息和所述SR承载在物理层上行共享信道PUSCH中,所述信息包括解调参考信号DMRS和数据;其中,所述第二时域资源的全部时域资源与所述第一时域资源的全部或部分时域资源相同,或者,所述第二时域资源的部分时域资源与所述第一时域资源的全部或部分时域资源相同。
在一种可能的设计中,所述第二频域资源的全部频域资源与所述第一频域资源的全部或部分频域资源相同,或者,所述第二频域资源的部分频域资源与第一频域资源的全部或部分频域资源相同。
在一种可能的设计中,当所述DMRS占用的时域资源与所述SR所占用的时域资源相 同时,在所述DMRS与所述SR占用的相同时域资源上,所述终端使用第一序列发送所述DMRS,所述终端使用第二序列发送所述SR,第一序列与第二序列不同。
在一种可能的设计中,在所述DMRS与所述SR占用的相同时域资源上,所述终端采用第一传输功率发送所述DMRS,所述终端采用第二传输功率发送所述SR。
在一种可能的设计中,所述方法还包括:在所述终端不使用所述第二时域资源和所述第二频域资源发送所述SR时,所述第二传输功率为0,所述第一传输功率不小于所述DMRS所需的传输功率。
在一种可能的设计中,所述DMRS为两个;当所述第二时域资源与第一个DMRS占用的时域资源相同时,所述第二传输功率不小于传输所述SR需要的传输功率,所述第一传输功率为所述终端在所述第二时域资源上的总传输功率与所述第二传输功率的差值;或者,当所述第二时域资源与第二个DMRS占用的时域资源相同时,所述第一传输功率与所述第一个DMRS的传输功率相同,所述第二传输功率为所述终端在所述第二时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,当所述数据占用的时域资源与所述SR所占用的时域资源相同时,在所述数据与所述SR占用的相同时域资源所对应的资源中,所述数据占用的资源与所述SR占用的资源不同。
在一种可能的设计中,所述SR占用的资源的频率大于或等于所述数据占用的资源的最小频率,且所述数据占用的资源的频率小于或等于所述数据占用的资源的最大频率。
在一种可能的设计中,所述SR占用的资源包括一个或多个资源组,每个所述资源组包括一个资源单元或至少两个连续的资源单元。
在一种可能的设计中,所述SR占用的资源包括多个资源组时,不同的所述资源组之间至少间隔一个资源单元。
在一种可能的设计中,相邻的时域资源上的所述资源组位于不同的频域资源上。
在一种可能的设计中,若所述信息还包括相位跟踪参考信号,则至少一个所述资源组与所述相位跟踪参考信号的频域资源相邻。
第三方面,本申请提供一种终端,包括存储器、收发器和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,终端用于执行上述第一方面或第一方面中任一种方法。
具体的,所述处理器用于:采用第一传输功率在第一时域资源上传输第一上行信道,所述终端采用第二传输功率在所述第一时域资源上传输第二上行信道;其中,所述第一上行信道占用所述第一时域资源传输调用请求SR,所述第一时域资源与第二上行信道占用的部分时域资源相同,或者所述第一时域资源与所述第二上行信道占用的全部时域资源相同。
在一种可能的设计中,所述第一时域资源对应一个资源单元或至少两个连续的资源单元。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载第一个解调参考信号DMRS的时域资源相同时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载第二个DMRS的时域资源相同时,所述第二传输功率与所述第一个DMRS的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载数据的时域资源相同,且所述承载数据的时域资源上还承载相位跟踪参考信号PT-RS时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载数据的时域资源相同,且所述承载数据的时域资源上没有承载所述PT-RS,所述第二传输功率与所述物理层上行共享信道上承载DMRS的时域资源的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,则当所述第二上行信号使用正交覆盖码OCC,且所述第一时域资源与所述第二上行信道的起始时域资源或者跳频的起始时域资源相同时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,则当所述第二上行信号使用所述OCC,且所述第一时域资源与所述第二上行信道的起始时域资源之后的时域资源或者跳频的起始时域资源之后的时域资源相同时,所述第二传输功率与所述终端在所述起始时域资源上的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,则当所述第二上行信号不使用所述OCC,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第一传输功率不小于所述第一上行信道需要的传输功率。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第二传输功率不小于所述第二上行信道需要的传输功率,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第一传输功率和所述第二传输功率 相等。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第一传输功率和所述第二传输功率按照所述SR与所述第二上行信道上承载的上行控制信息的信息量比值对总功率进行分配。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道使用正交覆盖码OCC,则当所述第一时域资源与所述第二上行信道的第一个时域资源相同时,所述第一传输功率不小于所述第一上行信道需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值;或者,所述第二传输功率不小于所述第二上行信道需要的传输功率,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道使用正交覆盖码OCC,则当所述第一时域资源与所述第二上行信道的位于所述第一个时域资源之后的时域资源相同时,所述第二传输功率与所述第二上行信道的第一个时域资源的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,所述处理器用于:若所述第二传输功率小于所述第二上行信道需要的传输功率,则在所述第一时域资源上传输所述SR;或者,若所述第一传输功率小于所述第一上行信道需要的传输功率,则在所述第一时域资源上传输所述第二上行信道。
在一种可能的设计中,所述处理器还用于:在所述SR传输完成之后,若所述第二上行信道未传输的时域资源上或者已传输的时域资源上包括分别承载DMRS和上行控制信息的时域资源,则传输所述第二上行信道;或者,若所述第二上行信道未传输的时域资源上或者已传输的时域资源上不包括承载DMRS和上行控制信息的时域资源,则所述第二上行信道的传输功率为0。
在一种可能的设计中,所述终端在所述第二上行信道占用的时域资源中除所述第一时域资源以外的时域资源上的传输功率与所述第二传输功率相同,或者相对于所述第二传输功率等比例增加。
第四方面,本申请提供一种终端,所述终端包括:存储器、收发器和处理器,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,并控制收发器进行信号接收和信号发送,当处理器执行存储器存储的指令时,终端用于执行上述第二方面或第二方面中任一种方法。
具体的,所述处理器用于:使用第一时域资源和第一频域资源通过所述收发器发送信息;使用第二时域资源和第二频域资源通过所述收发器发送调用请求SR;所述信息和所述SR承载在物理层上行共享信道PUSCH中,所述信息包括解调参考信号DMRS和数据;其中,所述第二时域资源的全部时域资源与所述第一时域资源的全部或部分时域资源相同,或者,所述第二时域资源的部分时域资源与所述第一时域资源的全部或部分时域资源相同。
在一种可能的设计中,所述第二频域资源的全部频域资源与所述第一频域资源的全部或部分频域资源相同,或者,所述第二频域资源的部分频域资源与第一频域资源的全 部或部分频域资源相同。
在一种可能的设计中,所述处理器用于:当所述DMRS占用的时域资源与所述SR所占用的时域资源相同时,在所述DMRS与所述SR占用的相同时域资源上,使用第一序列发送所述DMRS,使用第二序列发送所述SR,所述第一序列与所述第二序列不同。
在一种可能的设计中,所述处理器用于:在所述DMRS与所述SR占用的相同时域资源上,采用第一传输功率发送所述DMRS,采用第二传输功率发送所述SR。
在一种可能的设计中,在所述处理器不使用所述第二时域资源和所述第二频域资源发送所述SR时,所述第二传输功率为0,所述第一传输功率不小于所述DMRS所需的传输功率。
在一种可能的设计中,所述DMRS为两个,当所述第二时域资源与第一个DMRS占用的时域资源相同时,所述第二传输功率不小于传输所述SR需要的传输功率,所述第一传输功率为所述终端在所述第二时域资源上的总传输功率与所述第二传输功率的差值;或者,当所述第二时域资源与第二个DMRS占用的时域资源相同时,所述第一传输功率与所述第一个DMRS的传输功率相同,所述第二传输功率为所述终端在所述第二时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,当所述数据占用的时域资源与所述SR所占用的时域资源相同时,在所述数据与所述SR占用的相同时域资源所对应的资源中,所述数据占用的资源与所述SR占用的资源不同。
在一种可能的设计中,所述SR占用的资源的频率大于或等于所述数据占用的资源的最小频率,且所述数据占用的资源的频率小于或等于所述数据占用的资源的最大频率。
在一种可能的设计中,所述SR占用的资源包括一个或多个资源组,每个所述资源组包括一个资源单元或至少两个连续的资源单元。所述SR占用的资源包括多个资源组可以提高SR的传输可靠性。
在一种可能的设计中,所述SR占用的资源包括多个资源组时,不同的所述资源组之间至少间隔一个资源单元。
在一种可能的设计中,相邻的时域资源上的所述资源组位于不同的频域资源上。以实现提高SR的传输可靠性。
在一种可能的设计中,若所述信息还包括相位跟踪参考信号,则至少一个所述资源组与所述相位跟踪参考信号的频域资源相邻。
第五方面,为了实现上述发明目的,本申请提供一种电路系统,所述电路系统包括提供处理器功能的芯片或片上系统,所述芯片或所述片上系统被配置在终端中,使得所述终端实现上述第一方面或第二方面或第一方面或第二方面的任意可能的实现方式。
第六方面,为了实现上述发明目的,本申请提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面或第二方面或第一方面或第二方面中任意可能的设计中的方法。
附图说明
图1为本申请实施例提供的一种系统架构示意图;
图2为本申请实施例提供的一种PUSCH的结构示意图;
图3为本申请实施例提供的一种PUSCH上不同时域符号上的功率分配示意图;
图4为本申请实施例提供的一种PUSCH上不同时域符号上的功率分配示意图;
图5为本申请实施例提供的一种PUSCH上不同时域符号上的功率分配示意图;
图6为本申请实施例提供的一种PUSCH上不同时域符号上的功率分配示意图;
图7为本申请实施例提供的一种PUSCH上不同时域符号上的功率分配示意图;
图8和图9为本申请实施例提供的一种在PUSCH上承载SR的结构示意图;
图10为本申请实施例提供的一种PUCCH的传输示意图;
图11和图12为本申请实施例提供的一种PUSCH与仅承载SR的PUCCH同时传输的结构示意图;
图13、图14、图15和图16为本申请实施例提供的一种在PUSCH上承载SR的结构示意图;
图17为本申请实施例提供的一种长时长的PUCCH与仅承载SR的PUCCH冲突的结构示意图;
图18为本申请实施例提供的一种短时长的PUCCH与仅承载SR的PUCCH冲突的结构示意图;
图19为本申请实施例提供的一种终端的结构示意图;
图20为本申请实施例提供的一种终端的结构示意图;
图21为本申请实施例提供的一种数据传输装置的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
图1示例性的示意了本申请适用的一种系统架构。
基站可以是能和终端通信的设备。基站可以是可以是任意一种具有无线收发功能的设备。包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。基站还可以是5G网络中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。基站还可以是小站,传输节点(transmission reference point,TRP)等。当然本申请不限于此。
终端是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通 信设备、UE代理或UE装置等。
需要说明的是,本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
以下,对本申请中的部分用语进行解释说明,以便与本领域技术人员理解。
本申请中的时域资源是指在时域上分布的一个或多个连续的符号。
本申请中的频域资源是指在频域上分布的一个或多个子载波,本申请中的频域资源单元为子载波。
本申请中的资源单元(resource element,RE)是指时域上1个符号,频域上1个子载波所限定的资源。
本申请中所说的符号,包含但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号、非正交多址接入(Non-Orthogonal Multiple Access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
本申请中的PUCCH,为承载终端发给基站的控制信令使用的信道,其中包含了与控制有关的信息,比如回复应答或否定应答(acknowledge/negative acknowledge,ACK/NACK),或者传输上行的信道状态信息(channel state information,CSI),或者承载调度请求等。物理层上行控制信道分为两类,一类为长时长的PUCCH,所占OFDM符号数为连续4到14个,采用跳频的方式传输,解调参考信号(demodulated reference signal,DMRS)和上行控制信息(uplink control information,UCI)分别由不同的符号承载,在每个跳频部分上可采用正交覆盖码扩频以增加容量;另一类为短时长的PUCCH,所占OFDM符号数为1到2个,在频域物理资源块(Physical resource block,PRB)上,可以用序列承载信息,也可以有DMRS和上行控制信息(uplink control information,UCI)分别占用不同的子载波,进行频分的方式传输。在一个时隙上,PUCCH可能位于任何位置传输。
本申请中的SR,是终端在有上行传输需求时,向基站发送的请求信令,以获得基站分配的时频域资源。基站给终端配置传输SR的资源,该资源周期性重复。当基站收到终端的SR,基站在合适的时间发送下行控制信令,承载分配的资源信息给终端,之后,终端在基站分配的资源上进行上行传输。在LTE中,调度请求有两种承载方式,一种是在所述基站分配的周期性资源上由终端传输,一种是当终端反馈其他上行控制信息时,把SR通过和其他上行控制信息联合编码进行传输。
本申请中的物理层上行共享信道(Physical uplink shared channel,PUSCH),是终端上传输数据以及部分控制信息的信道。在新通信协议(New radio,NR)中,PUSCH目前同意的结构如图2,在PUSCH的起始1~2个符号承载DMRS,用于支持多个端口的信道测量。在PUSCH其余符号上承载数据或其他控制信息,在所述的其他符号上,有一固定的频域资源承载相位跟踪参考信号(phase tracking reference signal,PT-RS),在该符号上 终端传输相同的信号用于检测相位噪声。所述PT-RS在PUSCH是否存在是提前配置的。
为了解决冲突的时域资源上的信号传输问题,本申请提供一种上行传输方法,主要包括以下步骤:
步骤101,终端获取第一传输功率和第二传输功率。
其中,第一传输功率和第二传输功率分别是终端为第一上行信道和第二上行信道分配的在第一时域资源上传输的功率。第一传输功率与第二传输功率之和等于终端在第一时域资源上的总传输功率。
其中,第一上行信道是仅承载SR的PUCCH。第二信道可以是长时长的PUCCH,也可以是短时长的PUCCH,还可以是PUSCH,但是第二上行信道为短时长的PUCCH时,短时长的PUCCH不包括仅承载SR的短时长的PUCCH。
其中,第一上行信道占用第一时域资源传输SR。
可选的,第一时域资源的长度为1符号长度或2符号长度,1符号长度为1个符号占用的时间长度,2符号长度为2个连续的符号占用的时间长度。可选的,第一上行信道为短时长的PUCCH,例如,第一上行信道为1符号长度的PUCCH,或者2符号长度的PUCCH。
其中,第一时域资源与第二上行信道占用的部分时域资源或全部时域资源相同,换言之,第一时域资源包含在第二上行信道占用的时域资源中。
步骤102,终端采用第一传输功率在第一时域资源上传输第一上行信道,终端采用第二传输功率在第一时域资源上传输第二上行信道。
步骤102中,在第一时域资源上传输第二上行信道的含义为:在为第二上行信道配置的与第一时域资源对应的资源上传输信息,该信息为第二上行信道在第一时域资源所对应的资源上承载的信息。步骤102中,在第一时域资源上传输第一上行信道的含义为:在为第一上行信道分配的与第一时域资源对应的资源上传输SR。其中,为第二上行信道配置的与第一时域资源对应的资源和为第一上行信道配置的与第一时域资源对应的资源是不同的。
其中,为第二上行信道配置的与第一时域资源对应的资源包括一个或多个资源单元。为第二上行信道配置的与第一时域资源对应的资源单元是基站预先配置的,或者预先配置在终端中的。
其中,为第一上行信道配置的与第一时域资源对应的资源包括一个或多个资源单元。为第一上行信道分配的与第一时域资源对应的资源是基站预先配置的,或者预先配置在终端中的。
上述方法流程中,终端为第一上行信道和第二上行信道占用的相同的时域资源上分配第一传输功率和第二传输功率,使得在第一上行信道和第二上行信道在相同的时域资源上能够同时传输,并且根据相同的时域资源在第二上行信道占用的时域资源中具有的传输特点,配置的第一传输功率和第二传输功率有所不同,解决了现有技术中存在的仅承载SR的短时长PUCCH与其他的上行信道在同一时域资源上冲突时的信号无法同时传输问题。
在一种实施场景中,第二上行信道为PUSCH,PUSCH的长度不做限定。
在此实施场景中,由于PUSCH的功能是传输DMRS和数据,因此,根据包含在PUSCH的时域资源中的第一时域资源的不同情形,步骤102中,终端采用第二传输功率 在第一时域资源上传输第二上行信道也包括不同情形,例如,如果包含在PUSCH的时域资源中的第一时域资源只包括DMRS符号,终端采用第二传输功率在第一时域资源上传输DMRS,如果包含在PUSCH的时域资源中的第一时域资源只包括数据符号,终端采用第二传输功率在第一时域资源上传输数据,如果包含在PUSCH的时域资源中的第一时域资源既包括DMRS符号又包括数据符号,终端采用第二传输功率在第一时域资源上传输DMRS和数据。
在此实施场景中,根据包含在PUSCH的时域资源中的第一时域资源的不同情形,第一传输功率和第二传输功率也具有不同的配置。
可选的,当第一上行信道占用的第一时域资源与PUSCH上承载第一个DMRS的时域资源相同时,第一传输功率不小于SR需要的传输功率,第二传输功率为终端在第一时域资源上的总传输功率与第一传输功率的差值。
例如,第一上行信道占用1个符号长度的时域资源传输SR,PUSCH占用1个符号或2个符号长度的时域资源传输DMRS,当第一上行信道上承载SR的符号与PUSCH上承载DMRS的第一个符号在时域上相同时,当DMRS所需的传输功率为P0,SR所需的传输功率为P1,终端在每个符号上的总传输功率为P时,终端将在相同的符号上的总传输功率P配置成第一传输功率P1和第二传输功率(P-P1),其中,P1至少能够满足第一上行信道承载的SR的传输需求。对于第二传输功率(P-P1),可能满足PUSCH的承载的DMRS的传输需求,也可能不满足PUSCH的承载的DMRS的传输需求。
可选的,当第一上行信道占用的第一时域资源与PUSCH上承载第二个DMRS的时域资源相同时,第二传输功率与第一个DMRS的传输功率相同,第一传输功率为终端在第一时域资源上的总传输功率与第二传输功率的差值。
例如,第一上行信道占用1个符号长度的时域资源传输SR,PUSCH占用2个符号长度的时域资源传输DMRS,当第一上行信道上承载SR的符号与PUSCH上承载DMRS的第二个符号在时域上相同时,当DMRS所需的传输功率为P0,SR所需的传输功率为P1,终端在每个符号上的总传输功率为P时,终端将相同的符号上的总传输功率P配置成第一传输功率(P-P0)和第二传输功率(P0),其中,P0为PUSCH上承载DMRS的第一个符号上的传输功率,P0至少能够满足PUSCH上承载DMRS的传输需求。对于第一传输功率(P-P0),可能满足第一上行信道上承载SR的传输需求,也可能不满足第一上行信道上承载SR的传输需求。
可选的,当第一上行信道占用的第一时域资源与PUSCH上承载数据的时域资源相同,且承载数据的时域资源上承载PT-RS时,第一传输功率不小于SR需要的传输功率,第二传输功率为终端在第一时域资源上的总传输功率与第一传输功率的差值。对于基站来说,通过比较不同数据符号上PT-RS所占用的频域资源上的传输功率的变化量,来获取数据符号上传输功率的变化。
例如,第一上行信道占用1个符号长度的时域资源传输SR,PUSCH占用2~13个符号长度的时域资源传输数据,当第一上行信道上承载SR的符号与PUSCH上承载数据的其中一个符号在时域上重合时,当DMRS所需的传输功率为P0,SR所需的传输功率为P1,终端在每个符号上的总传输功率为P时,如果PUSCH占用的2~13个符号长度的时域资源上还承载PT-RS,终端将重合符号上的总传输功率P配置成第一传输功率P1和第二传输功率(P-P1)。对于第二传输功率(P-P1),可能满足PUSCH的承载的DMRS的传 输需求,也可能不满足PUSCH的承载的DMRS的传输需求。
可选的,当第一上行信道占用的第一时域资源与PUSCH上承载数据的时域资源相同,且承载数据的时域资源上没有承载PT-RS,第二传输功率与PUSCH上承载DMRS的时域资源的传输功率相同,第一传输功率为终端在第一时域资源上的总传输功率与第二传输功率的差值。这样,由于数据符号上的传输功率与DMRS的传输功率相同,对于基站侧来说,无论是否具有符号上传输功率的识别能力,都不会译码错误,可以避免基站侧因PUSCH上不同符号上的传输功率的不同而导致的译码错误。
例如,第一上行信道占用1个符号长度的时域资源传输SR,PUSCH占用1~13个符号长度的时域资源传输数据,当第一上行信道上承载SR的符号与PUSCH上承载数据的其中一个符号在时域上重合时,当DMRS所需的传输功率为P0,SR所需的传输功率为P1,终端在每个符号上的总传输功率为P时,如果PUSCH占用的1~13个符号长度的时域资源上没有承载PT-RS,终端将重合符号上的总传输功率P配置成第一传输功率(P-P0)和第二传输功率(P0)。对于第一传输功率(P-P0),可能满足第一上行信道上承载SR的传输需求,也可能不满足第一上行信道上承载SR的传输需求。
在5G系统中,PUSCH占用的时域资源的符号长度不做限制,可以是长时长,也可以是短时长,PUSCH占用的时域资源的符号长度可以在终端中预先配置,也可以是基站指示给终端。在5G系统中,SR的周期较短,并且可以根据不同的服务进行灵活配置,SR的周期包括至少一个符号长度,SR的周期可以在终端中预先配置,也可以是基站指示给终端。
在5G系统中,由于PUSCH占用的时域资源的长度和SR的周期都可灵活配置,因此,有可能第一上行信道承载SR的符号只与PUSCH上承载DMRS的符号重合,有可能第一上行信道承载SR的符号只与PUSCH上承载数据的符号重合,也有可能第一上行信道承载SR的符号与PUSCH上承载DMRS的符号和承载数据的符号都重合,因此,在具体的实施场景中,第一传输功率和第二传输功率的配置方式可以涵盖上述几种可选的配置方式中的其中一种,也可以涵盖上述几种可选的配置方式中的任意两种或者三种的组合。
对于上述几种可选的配置方式,如果第一上行信道上承载SR的符号与PUSCH上承载DMRS的符号在时域上重合,且按照SR的周期,PUSCH上位于DMRS符号之后的某个数据符号不会与第一上行信道在下一周期承载的SR的符号重合,那么对于PUSCH上位于DMRS符号之后的数据符号上所承载数据的传输功率有以下配置:
可选的,数据符号上承载的数据的传输功率与第二传输功率相同。
例如,假如DMRS所需的传输功率为P0,SR所需的传输功率为P1,终端在每个符号上的总传输功率为P。如图3中的(1)所示,承载的SR的PUCCH与PUSCH承载DMRS的第一个符号重复时,为SR分配的传输功率可以为P1,为DMRS分配的传输功率可以是P-P1,数据符号上承载的数据的传输功率可以为P-P1。如图3中的(2)所示,承载的SR的PUCCH与PUSCH承载DMRS的第二个符号重复时,第一个DMRS的传输功率可以为P0,为SR分配的传输功率可以为P-P0,为DMRS分配的传输功率可以为P0,数据符号上承载的数据的传输功率可以为P0。
可选的,如果PUSCH上位于重合符号之后的数据符号上承载有PT-RS,则每一数据符号上承载的数据的传输功率相对于第二传输功率按照设定比例增加。对于基站来说, 要么可以识别数据符号上传输功率的提高量,要么通过比较PT-RS和DMRS在相同频域资源上的传输功率的变化量,来获取数据符号上传输功率的提高量。
例如,假如DMRS所需的传输功率为P0,SR所需的传输功率为P1,终端在每个符号上的总传输功率为P。如图4中的(1)所示,承载的SR的PUCCH与PUSCH承载DMRS的第一个符号重复时,为SR分配的传输功率可以为P1,为DMRS分配的传输功率可以为P-P1,数据符号上承载的数据的传输功率可以为x*(P-P1)其中,x大于或等于1,x为整数或非整数。或者如图4中的(2)所示,承载的SR的PUCCH与PUSCH承载DMRS的第二个符号重复时,第一个DMRS的传输功率可以为P0,为SR分配的传输功率可以为P-P0,为DMRS分配的传输功率可以为P0,数据符号上承载的数据的传输功率可以为x*P0。
可选的,如果位于重合符号之后的数据符号上没有承载PT-RS,在基站不能识别PUSCH在数据符号上的传输功率的变化的前提下,数据符号上承载的数据的传输功率保持与第二传输功率相同。具体示例可以参见图3中的(1)或图3中的(2)。
对于上述几种可选的配置方式,如果第一上行信道上承载SR的符号与PUSCH上承载DMRS的符号在时域上重合,且按照SR的周期,PUSCH上位于DMRS符号之后的某个数据符号可能与下一周期内第一上行信道上承载SR的符号重合,那么对于PUSCH上位于DMRS符号之后的数据符号上所承载数据的传输功率有以下配置:
可选的,在基站不能识别PUSCH在数据符号上的传输功率的变化的前提下,如果位于重合符号之后的数据符号上承载PT-RS,下一周期第一上行信道上承载SR的传输功率为SR所需的传输功率,相同的数据符号上的传输功率为终端在数据符号上的总传输功率与下一周期第一上行信道上承载SR的传输功率的差值,其余数据符号上的数据的传输功率可以与DMRS的传输功率相同,也可以是相对于DMRS的传输功率等比例增加。对于基站来说,可以通过比较不同数据符号上PT-RS所占用的频域资源上的传输功率的变化量,来获取数据符号上传输功率的变化。
例如,假如DMRS所需的传输功率为P0,SR所需的传输功率为P1,终端在每个符号上的总传输功率为P。如图5中的(1)所示,承载的SR的PUCCH与PUSCH承载DMRS的第一个符号重复时,在第一个符号上为SR分配的传输功率可以为P1,在第一个符号上为DMRS分配的传输功率可以为P-P1,假如根据SR的周期,下一周期承载SR的PUCCH与其中一个数据符号重复时,下一周期承载SR的PUCCH的传输功率可以为P1,该数据符号上的传输功率可以为P-P1,其余的数据符号上承载的数据的传输功率可以为P-P1。如图5中的(2)所示,承载的SR的PUCCH与PUSCH承载DMRS的第二个符号重复时,第一个DMRS的传输功率可以为P0,为SR分配的传输功率可以为P-P0,为DMRS分配的传输功率是可以为P0,假如根据SR的周期,下一周期承载SR的PUCCH与其中一个数据符号重复时,下一周期承载SR的PUCCH的传输功率可以为P1,该数据符号上的传输功率可以为P-P1,其余的数据符号上承载的数据的传输功率可以为P0。
可选的,在基站不能识别PUSCH在数据符号上的传输功率的变化的前提下,如果位于重合符号之后的数据符号上没有承载PT-RS,数据符号承载的数据的传输功率保持为PUSCH上承载的DMRS需求的传输功率,下一周期第一上行信道上承载SR的符号的传输功率为终端在数据符号上的总传输功率与重合数据符号上的传输功率的差值。
例如,假如PUSCH与PUCCH无冲突时DMRS所需的传输功率为P0,SR所需的传输功率为P1,终端在每个符号上的总传输功率为P。如图6中的(1)所示,承载的SR的PUCCH与PUSCH承载DMRS的第一个符号重复时,在第一个符号上为SR分配的传输功率可以为P1,在第一个符号上为DMRS分配的传输功率可以P-P1,假如根据SR的周期,下一周期承载SR的PUCCH与其中一个数据符号重复时,下一周期承载SR的PUCCH的传输功率可以为P-P0,该相同的数据符号上的传输功率可以为P0,其余的数据符号上承载的数据的传输功率都可以为P-P1。如图6中的(2)所示,承载的SR的PUCCH与PUSCH承载DMRS的第二个符号重复时,第一个DMRS的传输功率可以为P0,为SR分配的传输功率可以为P-P0,为DMRS分配的传输功率可以为P0,假如根据SR的周期,下一周期承载SR的PUCCH与其中一个数据符号重复时,下一周期承载SR的PUCCH的传输功率可以为P-P0,该数据符号上的传输功率可以为P0,其余的数据符号上承载的数据的传输功率可以为P0。
可选的,在基站能够识别PUSCH在数据符号上的传输功率的变化的前提下,如果位于重合符号之后的数据符号上没有承载PT-RS,则下一周期第一上行信道上承载SR的传输功率为SR所需的传输功率,数据符号上的传输功率为终端在数据符号上的总传输功率与下一周期第一上行信道上承载SR的传输功率的差值。
例如,假如PUSCH与PUCCH无冲突时DMRS所需的传输功率为P0,SR所需的传输功率为P1,终端在每个符号上的总传输功率为P。如图7中的(1)所示,承载的SR的PUCCH与PUSCH承载DMRS的第一个符号重复时,在第一个符号上为SR分配的传输功率可以为P1,在第一个符号上为DMRS分配的传输功率可以为P-P1,假如根据SR的周期,下一周期承载SR的PUCCH与其中一个数据符号重复时,下一周期承载SR的PUCCH的传输功率可以为P1,该相同的数据符号上的传输功率可以为P-P1,其余的数据符号上承载的数据的传输功率可以为P-P1。如图7中的(2)所示,承载的SR的PUCCH与PUSCH承载DMRS的第二个符号重复时,第一个DMRS的传输功率可以为P0,为SR分配的传输功率可以为P-P0,为DMRS分配的传输功率可以为P0,假如根据SR的周期,下一周期承载SR的PUCCH与其中一个数据符号重复时,下一周期承载SR的PUCCH的传输功率可以为P1,该相同的数据符号上的传输功率可以为P-P1,其余的数据符号上承载的数据的传输功率可以为P0。
在另一种实施场景中,第二上行信道为PUCCH,第二上行信道可以是长时长的PUCCH,如图17所示,还可以是短时长的PUCCH,如图18所示。例如,长时长的PUCCH为包括4到14个符号长度的PUCCH,短时长的PUCCH可以是1符号长度的PUCCH,或者2符号长度的PUCCH。此种实施场景中,步骤102中终端采用第二传输功率在第一时域资源上传输第二上行信道,是指终端在为第二上行信道分配的与第一时域资源对应的资源上传输第二上行信道在第一时域资源上承载的上行控制信息。
需要说明的是,长时长的PUCCH承载的信息可以是除了SR以外的上行控制信息,如ACK/NACK、CQI等,也可以是SR和这些上行控制信息,但长时长的PUCCH不含仅承载SR的情况。短时长的PUCCH承载的信息可以是除了SR以外的上行控制信息,如ACK/NACK、CQI等,也可以是SR和这些上行控制信息,本申请中,短时长的PUCCH不含仅承载SR的情况。
需要说明的是,长时长的PUCCH分为使用OCC进行多用户复用和不使用OCC两种, 在使用OCC时,由于不同用户需要通过不同的码字去掉其他用户的干扰,所以各符号承载的信息的传输功率要求不改变。短时长的PUCCH分为单符号的、两符号联合编码的、两符号使能OCC三种。其中,短时长的PUCCH若为两符号使能OCC,为了避免多用户间的干扰,各符号承载的信息的传输功率要求不改变。
在第二上行信道是长时长的PUCCH(如图17所示)的实施场景中,针对包含在第二上行信道占用的时域资源中的第一时域资源的不同情形,终端为第一上行信道和第二上行信道分别分配的第一传输功率和第二传输功率也具有不同的配置,具体如下:
可选的,当第二上行信号使用正交覆盖码OCC,且第一时域资源与第二上行信道的起始时域资源或者跳频的起始时域资源相同时,第一传输功率不小于SR需要的传输功率,第二传输功率为终端在第一时域资源上的总传输功率与第一传输功率的差值。
例如,长时长的PUCCH占用14个符号,第一上行信道占用1个符号,假如SR所需的传输功率为P1,长时长的PUCCH在每个符号上的传输功率为P2,终端在长时长的PUCCH的每个符号上的总传输功率为P。当第一上行信道承载SR的符号与长时长的PUCCH的第1个符号重合时,为SR分配的传输功率可以为P1,为长时长的PUCCH在第1个符号上承载的上行控制信息分配的传输功率可以为P-P1,对于第2个符号至第7个符号上承载的上行控制信息的传输功率与第1个符号上承载的信息的传输功率相同,都可以为P-P1。或者当第一上行信道承载SR的符号与长时长的PUCCH的第8个符号重合时,为SR分配的传输功率可以为P1,为长时长的PUCCH在第8个符号上承载的上行控制信息分配的传输功率可以为P-P1,对于第9个符号至第14个符号上承载的上行控制信息的传输功率与第8个符号上承载的信息的传输功率相同,都可以为P-P1。
可选的,当第二上行信号使用OCC,且第一时域资源与第二上行信道的起始时域资源之后的时域资源或者跳频的起始时域资源之后的时域资源相同时,第二传输功率与终端在起始时域资源上的传输功率相同,第一传输功率为终端在第一时域资源上的总传输功率与第二传输功率的差值。
例如,长时长的PUCCH占用14个符号,第一上行信道占用1个符号,假如SR所需的传输功率为P1,长时长的PUCCH在每个符号上的传输功率为P2,终端在每个符号上的总传输功率为P。当第一上行信道承载SR的符号与长时长的PUCCH的第2个符号重合时,为SR分配的传输功率可以为P-P2,长时长的PUCCH的所有符号上承载的信息的传输功率可以为P2。或者当第一上行信道承载SR的符号与长时长的PUCCH的第9个符号重合时,为SR分配的传输功率可以为P-P2,长时长的PUCCH的所有符号上承载的信息的传输功率可以为P2。
可选的,当第二上行信号不使用OCC,第一传输功率不小于SR需要的传输功率,第二传输功率为终端在第一时域资源上的总传输功率与第一传输功率的差值。
例如,长时长的PUCCH占用14个符号,第一上行信道占用1个符号,假如SR所需的传输功率为P1,长时长的PUCCH在每个符号上的传输功率为P2,终端在每个符号上的总传输功率为P。当长时长的PUCCH不使用OCC进行多用户复用时,当第一上行信道承载SR的符号与长时长的PUCCH的某个符号重合时,为SR分配的传输功率至少为P1,为长时长的PUCCH在重复符号上承载的上行控制信息分配的传输功率为P-P1。可选的,长时长的PUCCH在其他符号上的传输功率可以是P2,也可以是P-P1。
在5G系统中,由于SR的周期可灵活配置,因此,有可能第一上行信道与长时长的 PUCCH在PUCCH占用的符号长度内冲突一次,也有可能第一上行信道与长时长的PUCCH在PUCCH占用的符号长度内冲突多次,因此,在另一实施场景中,包含在第二上行信道占用的时域资源中的第一时域资源的情形可能是上述几种情形的任意组合。例如,第一上行信道上承载SR的符号与长时长的PUCCH的符号的重复位置可能包括长时长的PUCCH的第一个符号、跳频的第一个符号、除第一个符号或者除跳频的第一个符号以外的某个符号中的一种或任意两种或三种的组合。那么第一传输功率和第二传输功的配置方式可以涵盖上述几种可选的配置方式中的其中一种,也可以涵盖上述几种可选的配置方式中的任意组合。
在第二上行信道是短时长的PUCCH且采用跳频传输的实施场景中,针对包含在第二上行信道占用的时域资源中的第一时域资源的不同情形,第一传输功率和第二传输功率具有不同的配置,具体如下:
可选的,第一传输功率不小于SR需要的传输功率,第二传输功率为终端在第一时域资源上的总传输功率与第一传输功率的差值。
可选的,第二传输功率不小于第二上行信道需要的传输功率,第一传输功率为终端在第一时域资源上的总传输功率与第二传输功率的差值。
可选的,第一传输功率和第二传输功率相等,第一传输功率和第二传输功率是终端按照平均分配的原则将终端在第一时域资源上的总传输功率进行分配。
可选的,第一传输功率和第二传输功率按照SR与第二上行信道上承载的上行控制信息的信息量比值对总功率进行分配。
在第二上行信道是短时长的PUCCH(如图18所示),且使用正交覆盖码OCC进行多用户复用的实施场景中,针对包含在第二上行信道占用的时域资源中的第一时域资源的不同情形,第一传输功率和第二传输功率具有不同的配置,具体如下:
可选的,当第一时域资源与第二上行信道的第一个时域资源(如第一个符号)相同时,第一传输功率不小于第一上行信道需要的传输功率,第二传输功率为终端在第一时域资源上的总传输功率与第一传输功率的差值;或者,第二传输功率不小于第二上行信道需要的传输功率,第一传输功率为终端在第一时域资源上的总传输功率与第二传输功率的差值。
可选的,当第一时域资源与第二上行信道的位于所述第一个时域资源之后的时域资源(如第二个符号)相同时,第二传输功率与第二上行信道的第一个时域资源的传输功率相同,第一传输功率为终端在第一时域资源上的总传输功率与第二传输功率的差值。
在5G系统中,由于SR的周期可灵活配置,因此,有可能第一上行信道的时域资源与短时长的PUCCH占用的时域资源内冲突一次,也有可能第一上行信道与短时长的PUCCH在PUCCH占用的符号长度内冲突多次,因此,在另一实施场景中,包含在第二上行信道占用的时域资源中的第一时域资源的情形可能是上述几种情形的任意组合,第一传输功率和第二传输功的配置方式可以涵盖上述几种可选的配置方式中的其中一种,也可以涵盖上述几种可选的配置方式中的任意组合。
可选的,对于上述几种实施场景中第一传输功率和第二传输功率的任意一种配置,若第二传输功率小于第二上行信道需要的传输功率,则终端在第一时域资源上传输SR。
可选的,在SR传输完成之后,终端传输第二上行信道,或者第二上行信道的传输功率为0。
例如,当第二上行信道为PUCCH时,若第二传输功率小于第二上行信道需要的传输功率,则终端在第一时域资源上传输SR,在SR传输完成之后,若第二上行信道未传输的时域资源上或者已传输的时域资源上同时包括分别承载DMRS和上行控制信息(如UCI)的时域资源,则终端传输第二上行信道。在SR传输完成之后,若第二上行信道未传输的时域资源上或者已传输的时域资源上不同时包括承载DMRS和上行控制信息的时域资源,则第二上行信道的传输功率为0。
可选的,对于上述几种实施场景中第一传输功率和第二传输功率的任意一种配置,若第一传输功率小于第一上行信道需要的传输功率,则终端在第一时域资源上传输第二上行信道。
可选的,对于上述几种实施场景中第一传输功率和第二传输功率的任意一种配置,对于第二上行信道上与第一上行信道的第一时域资源不相同的时域资源上所承载信息的传输功率与第二传输功率相同。
可选的,对于上述几种实施场景中第一传输功率和第二传输功率的任意一种配置,第二上行信道上与第一上行信道的第一时域资源不相同的时域资源上所承载信息的传输功率相对于第二传输功率等比例增加。
在5G系统中,由于SR的周期可灵活配置,因此,有可能第一上行信道的时域资源与PUSCH的部分或全部时域资源冲突,有可能第一上行信道的时域资源与长时长的PUCCH的部分或全部时域资源冲突,有可能第一上行信道的时域资源与短时长的PUCCH的部分或全部时域资源冲突,也有可能第一上行信道的时域资源同时与PUSCH、长时长的PUCCH或短时长的PUCCH中的一个或任意两个或任意三个冲突。因此,包含在第二上行信道占用的时域资源中的第一时域资源的情形可能是上述几种实时场景中出现的不同情形的任意组合,第一传输功率和第二传输功的配置方式可以涵盖上述几种实施场景中的配置方式中的其中一种,也可以涵盖上述几种实时场景中的配置方式中的任意组合。
为了解决冲突的时域资源上的信号传输问题,本申请还提供另一种上行传输方法,主要包括以下步骤:
步骤201,终端获取第一时域资源和第一频域资源,获取第二时域资源和第二频域资源。
第一频域资源和第二频域资源都包含在基站为某个PUSCH配置的频域资源内,第二时域资源包含在第一时域资源内。其中,第一频域资源与第一时域资源存在映射关系,第一频域资源与第一时域资源用于传输PUSCH所承载的信息,第二频域资源与第二时域资源存在映射关系,第二域资源与第二时域资源用于发送SR。
步骤202,终端使用第一时域资源和第一频域资源发送信息,此信息包括PUSCH所承载的DMRS和/或数据;终端使用第二时域资源和第二频域资源发送调用请求SR。
步骤202中终端使用第一频域资源和第一时域资源发送信息包括以下情形:
终端使用第一频域资源和第一时域资源发送PUSCH的DMRS,或者,终端使用第一频域资源和第一时域资源发送PUSCH的数据,或者,终端使用第一频域资源和第一时域资源发送PUSCH的DMRS和数据。
其中,第一时域资源与第二时域资源之间的可能满足的关系如下:
第二时域资源的全部时域资源与第一时域资源的全部或部分时域资源相同,或者, 第二时域资源的部分时域资源与第一时域资源的全部或部分时域资源相同。
需要指出的是,第一时域资源的长度是指PUCCH占用的符号长度,是基站预先配置给终端的,或者预先存储在终端内的。可以是1符号长度,也可以是2符号长度,也可以是大于2符号长度。
需要指出的是,SR是周期性发送的,第二时域资源的符号长度,与SR的周期和每个SR占用的符号长度有关。可选的,每个SR占用的符号长度为1符号长度或2符号长度。
本申请中,SR的周期可灵活配置,SR的周期是基站预先配置给终端的,或者预先存储在终端内的。例如,SR的周期可以是1符号长度,也可以是大于或等于2符号长度。如果SR的周期大于或者等于第一时域资源的长度,在第一时域资源的长度内,可能会有1个发送SR的周期,此时第二时域资源的长度为1个SR占用的符号长度。如果SR的周期小于第一时域资源的长度,在第一时域资源的长度内,可能会有多个发送SR的周期,此时第二时域资源的长度大于1符号长度,或者大于2符号长度。
本申请中,终端发送PUSCH的DMRS的时域资源可能与终端发送SR的时域资源在时域上相同,或者,终端发送PUSCH的数据的时域资源可能与终端发送SR的时域资源在时域上相同,或者终端发送PUSCH的数据的时域资源,以及终端发送PUSCH的DMRS的时域资源都有可能与发送SR的时域资源在时域上相同。将SR承载在PUSCH中传输时,结合SR的周期,终端可以在PUSCH的一个或多个数据符号上发送SR,或者终端可以在PUSCH的一个或两个DMRS符号上发送SR,或者终端既在一个或多个数据符号上发送SR,又在一个或两个DMRS符号上发送SR。
可选的,第二时域资源的全部时域资源与第一时域资源的全部时域资源相同,即第一时域资源和第二时域资源在时域上完全重合。例如,SR的周期为1个符号长度,无论每个SR占用的符号长度为1符号长度或2符号长度,可能在PUSCH的每个符号上都会发送SR,此时第一时域资源的长度与第一时域资源的长度都会相同。
可选的,第二时域资源的全部时域资源与第一时域资源的部分时域资源相同,即第二时域资源的全部时域资源与第一时域资源的部分时域资源在时域上重合。例如,SR的周期为2个符号长度,SR的周期小于第一时域资源的长度,可能在PUSCH的符号长度内每隔两个符号长度都会发送SR,如果每个SR占用的符号长度为1符号长度,SR会在PUSCH的某一些符号上发送,就会存在第二时域资源的全部时域资源与第一时域资源的部分时域资源在时域上重合。
可选的,第二时域资源的部分时域资源与第一时域资源的全部相同,即第二时域资源的部分时域资源与第一时域资源的全部时域资源在时域上重合。例如,SR的周期大于第一时域资源的长度,第二时域资源为2符号长度,第一时域资源的长度为1符号长度,并且第二时域资源的其中1符号长度和第一时域资源的1符号长度在时域上重合。
可选的,第二时域资源的部分时域资源与第一时域资源的部分时域资源相同,即第二时域资源的部分时域资源与第一时域资源的部分时域资源在时域上重合。
例如,SR的周期为2个符号长度,SR的周期小于第一时域资源的长度,可能在PUSCH的符号长度内每隔两个符号长度都会发送SR,如果每个SR占用的符号长度为2符号长度,第二时域资源的第二个符号和第一时域资源的第一个符号在时域上重合,这样SR会在PUSCH的某一些符号上发送,就会存在第二时域资源的部分时域资源与第一 时域资源的部分时域资源在时域上重合。再例如,如果SR的周期大于第一时域资源的长度,第二时域资源的长度为2符号长度,第一时域资源的长度为大于或等于2符号长度,并且第二时域资源的其中1个符号长度与第一时域资源的其中1符号长度在时域上重合。
需要说明的是,以上仅为举例,并不代表所有示例。
上述方法流程中,发送SR的第二时域资源和第二频域资源是从为PUSCH配置的资源中为SR预留的一部分资源,当仅承载SR的PUCCH与PUSCH占用相同的时域资源时,按照上述方法流程实现了将SR承载在PUSCH中传输,进而解决了现有技术中存在的仅承载SR的短时长PUCCH与其他的上行信道在同一时域资源上冲突时的信号传输问题。
根据步骤202中终端使用第一频域资源和第一时域资源发送信息不同情形,第一频域资源与第二频域资源的关系不同。
可选的,当终端使用第一频域资源和第一时域资源发送PUSCH的DMRS时,第一频域资源包括PUSCH的DMRS占用的频域资源,第一时域资源包括PUSCH的DMRS占用的时域资源。此时,第二频域资源的全部频域资源与第一频域资源的全部或部分频域资源相同,或者,第二频域资源的部分频域资源与第一频域资源的全部或部分频域资源相同。
例如,如图8中的(1)和(4)所示,SR占用的频域资源可以与DMRS占用的全部频域资源相同,或者,SR占用的频域资源可以与DMRS占用的部分频域资源相同。如图8中的(2)所示,SR占用的频域资源与第一个DMRS占用的部分频域资源或者全部频域资源相同,如图8中的(3)所示,SR占用的频域资源与第二个DMRS占用的部分频域资源或者全部频域资源相同。
可选的,当终端使用第一频域资源和第一时域资源发送PUSCH的数据时,第一频域资源包括PUSCH的数据占用的频域资源,第一时域资源包括PUSCH的数据占用的时域资源。此时,第一频域资源与第二频域资源不同。
其中,第二频域资源是从基站为PUCCH配置的频域资源中预留出的专门用来发送SR的频域资源,剩余的频域资源为第一频域资源。因此,第二频域资源与第一频域资源不同是指在基站为PUCCH配置的频域资源中,第一频域资源和第二频域资源不同。此外,还可从频域资源对应的使用频率上来理解第一频域资源和第二频域资源不同,即第二频域资源的频率大于或等于第一频域资源的最小频率,且第二频率资源的频率小于或等于第一频域资源的最大频率。
可选的,当终端使用第一频域资源和第一时域资源发送PUSCH的DMRS和数据时,第一频域资源包括PUSCH的DMRS占用的频域资源和PUSCH的数据占用的频域资源,第一时域资源包括PUSCH的DMRS占用的时域资源和PUSCH的数据占用的时域资源。此时第一频域资源和第二频域资源可以部分相同。
在一种实施场景中,当终端发送PUSCH的DMRS的时域资源与终端发送SR的时域资源在时域上相同时,终端使用相同的时域资源所对应的频域资源来同时发送DMRS和SR。
其中,DMRS占用的时域资源与SR所占用的时域资源相同,主要包括以下几种情况:
其一,假如一个SR占用的符号长度为1符号长度,DMRS占用的符号长度为1符号长度,DMRS占用的1符号长度与SR占用的1符号长度在时域上相同,则在相同的1符号长度内,DMRS占用的频域资源可以和SR占用频域资源相同,或者DMRS占用的部 分频域资源和SR占用频域资源相同。例如,如图8中的(1)所示,SR和DMRS都承载在PUSCH的DMRS符号中,DMRS符号占用1个符号长度,SR和DMRS占用的频域资源相同。
其二,假如一个SR占用的符号长度为1符号长度,DMRS占用的符号长度为2符号长度,并且SR占用的1符号长度和DMRS占用的第一个符号的符号长度在时域上相同,则在相同的1符号长度内,DMRS占用的部分频域资源和SR占用的频域资源相同。例如,如图8中的(2)所示,DMRS占用PUSCH的2个符号长度,SR和DMRS都承载在PUSCH的第一个DMRS符号中,SR占用的频域资源可以与第一个DMRS占用的一部分频域资源相同,也可以与第一个DMRS占用的全部频域资源相同,第二个DMRS符号只承载DMRS。
其三,假如一个SR占用的符号长度为1符号长度,DMRS占用的符号长度为2符号长度,并且SR占用的1符号长度和DMRS占用的第二个符号的符号长度在时域上相同,则在相同的1符号长度内,DMRS占用的部分频域资源和SR占用频域资源相同。例如,如图8中的(3)所示,DMRS占用PUSCH的2个符号长度,第一个DMRS符号只承载DMRS,第二个DMRS符号承载SR和DMRS,SR占用的频域资源可以与第二个DMRS占用的部分频域资源相同,也可以与第二个DMRS占用的全部频域资源相同。
其四,假如一个SR占用的符号长度为2符号长度,DMRS占用的符号长度为2符号长度,SR占用的2符号长度和DMRS占用的2符号长度在时域上相同,则在相同的2符号长度内,DMRS占用的频域资源和SR占用频域资源相同。例如,如图8中的(4)所示,DMRS占用PUSCH的2个符号长度,第一个DMRS符号承载SR和DMRS,第二个DMRS符号承载SR和DMRS,SR占用的频域资源可以和DMRS占用的频域资源相同,也可以和DMRS占用的部分频域资源相同。
其五,假如一个SR占用的符号长度为2符号长度,DMRS占用的符号长度为2符号长度,并且SR占用的第一个符号的符号长度和DMRS占用的第二个符号的符号长度在时域上相同,则在相同的1符号长度内,DMRS占用的频域资源和SR占用频域资源相同。例如,如图8中的(5)所示,DMRS占用PUSCH的2个符号长度,第一个DMRS符号只承载DMRS,第二个DMRS符号承载SR和DMRS,SR占用的频域资源可以与第二个DMRS占用的部分频域资源相同,也可以与第二个DMRS占用的全部频域资源相同,第二个DMRS符号之后的第一个数据符号上承载数据和SR,但是数据和SR占用的频域资源不同。
可选的,当DMRS占用的时域资源与SR所占用的时域资源相同时,在相同的时域资源上,终端使用第一序列发送DMRS,使用第二序列发送SR,第一序列与第二序列不同。
需要说明的是,第一时序和第二时序在整个PUSCH上正交。或者第一时序和第二时序在重复的DMRS符号上正交。
可选的,当DMRS占用的时域资源与SR所占用的时域资源相同时,在相同的时域资源上,终端采用第一传输功率发送DMRS,终端采用第二传输功率发送SR。
可选的,在所述终端不使用所述第二时域资源和所述第二频域资源发送所述SR时,所述第二传输功率为0,所述第一传输功率不小于所述DMRS所需的传输功率。
可选的,如果DMRS为1个,当第二时域资源与DMRS占用的第一个时域资源相同时,第二传输功率不小于传输SR需要的传输功率,第一传输功率为终端在第二时域资源 上的总传输功率与第二传输功率的差值。
可选的,如果DMRS为两个,当第二时域资源与第一个DMRS占用时域资源相同时,第二传输功率不小于传输SR需要的传输功率,第一传输功率为终端在第二时域资源上的总传输功率与第二传输功率的差值;或者,
可选的,如果DMRS为两个,当第二时域资源与第二个DMRS占用的时域资源相同时,第一传输功率与第一个DMRS的传输功率相同,第二传输功率为终端在第二时域资源上的总传输功率与第一传输功率的差值。
假如SR需要的传输功率为P1,DMRS需要的传输功率为P0,终端在每个符号长度上的总传输功率为P,对于如图8中(1)所示的情况,终端在DMRS符号上使用第二序列发送SR,终端在DMRS符号上使用第一序列发送DMRS,发送SR的传输功率大于或等于P1,发送DMRS的传输功率小于或等于P-P1。
对于如图8中(2)所示的情况,终端在第一个DMRS符号上使用第二序列发送SR,终端在第一个DMRS符号上使用第一序列发送第一个DMRS,发送SR的传输功率大于或等于P1,发送第一个DMRS的传输功率小于或等于P-P1。终端在第二个DMRS符号上发送第二个DMRS,可选的,发送第二个DMRS的传输功率可以和发送第一个DMRS的传输功率相同。
对于如图8中(3)所示的情况,终端在第一个DMRS符号上发送第一个DMRS,可选的,发送第一个DMRS的传输功率至少为P0。终端在第二个DMRS符号上使用第二序列发送SR,终端在第二个DMRS符号上使用第一序列发送第二个DMRS,发送SR的传输功率为P-P0,发送第二个DMRS的传输功率与发送第一个DMRS的传输功率相同,即为P0。
对于如图8中(4)所示的情况,终端在第一个DMRS符号和第二个DMRS符号上使用第二序列发送SR,终端在第一个DMRS符号和第二个DMRS符号上使用第一序列发送DMRS,发送SR的传输功率大于或等于P1,发送DMRS的传输功率小于或等于P-P1。
对于如图8中(5)所示的情况,终端在第一个DMRS符号上发送第一个DMRS,可选的,发送第一个DMRS的传输功率至少为P0。终端在第二个DMRS符号上使用第二序列发送SR,终端在第二个DMRS符号上使用第一序列发送第二个DMRS,发送SR的传输功率为P-P0,发送第二个DMRS的传输功率与发送第一个DMRS的传输功率相同,即为P0,终端还在第二个DMRS符号之后的数据符号上发送SR和数据,但是SR和数据占用的频域资源不同。
在另一种实施场景中,当终端发送数据的部分或全部时域资源与终端发送SR的时域资源在时域上相同时,终端在相同的时域资源上分别采用不同的资源发送SR和数据。换言之,在所述数据与所述SR占用的相同时域资源所对应的资源中,所述数据占用的资源与所述SR占用的资源不同。所述SR占用的资源的频率大于或等于所述数据占用的资源的最小频率,且所述数据占用的资源的频率小于或等于所述所述数据占用的资源的最大频率。
当终端发送数据的某些时域资源与终端发送SR的时域资源在时域上相同时,所述数据与所述SR占用的相同时域资源所对应的资源中,所述SR占用的资源包括一个或多个资源组,每个资源组包括一个RE或至少两个连续的RE。
其中,终端在PUSCH的某些数据符号上发送SR时,在该数据符号对应的资源中,承载数据符号的资源组和承载SR的资源组位于不同的频域资源上。如图9中的(1)和(2)所示,终端在PUSCH的至少2个数据符号上承载SR,并且承载SR和承载数据的资源不同。承载SR的资源可以与PT-RS占用的频域资源相邻设置,可以设置在PT-RS占用的频域资源的相同侧,也可以设置在PT-RS占用的频域资源的不同侧。
为了提高SR的传输可靠性,在同一符号对应的资源中,承载SR的资源组也可以是两个,或者两个以上。
可选的,所述SR占用的频域资源包括多个资源组时,不同的资源组之间至少间隔一个RE。
例如,终端在PUSCH的其中一个数据符号上发送SR时,在该数据符号对应的资源中承载SR的资源组为3个,这3个资源组之间至少间隔一个RE。
可选的,为了提高调度请求可靠性,可采用频率分集的方式,即在所述相同时域资源上,预留给SR的位于相邻的时域资源上的资源组位于不同的频域资源上。
例如,如果终端在PUSCH上的两个连续的数据符号上发送SR,如果每个数据符号上承载SR的资源组为1个,则这两个连续的数据符号上承载SR的资源组位于不同的频域资源上。
例如,如果终端在PUSCH上的所有数据符号上发送SR,如果每个数据符号上承载SR的资源组为1个,则相邻两个数据符号上承载SR的资源组位于不同的频域资源上。
例如,如果终端在PUSCH上的所有数据符号上发送SR,如果每个数据符号上承载SR的资源组为2个,则相邻两个数据符号上承载SR的4个资源组位于不同的频域资源上。
可选的,若所述信息还包括相位跟踪参考信号,则承载SR的至少一个所述资源组与所述相位跟踪参考信号占用的频域资源相邻。
例如,在PUSCH上的数据符号中承载相位跟踪参考信号,则终端在PUSCH的一个或或者多个数据符号上发送SR时,每个数据符号上承载SR的一个或者多个资源组靠近承载相位跟踪参考信号的频域资源设置。
可选的,在PUSCH上的数据符号中承载相位跟踪参考信号,则终端在PUSCH的一个或或者多个数据符号上发送SR时,每个数据符号上承载SR的多个资源组可以一部分靠近承载相位跟踪参考信号的频域资源设置,一部分靠近子载波编号最小或子载波编号最大的频域资源设置。
前述实施例介绍了终端在PUSCH的一个或两个DMRS符号上发送SR的实施方式和终端在PUSCH的一个或多个数据符号上发送SR的实施方式。在5G系统中,由于SR的周期可灵活配置,当把SR承载在PUSCH中传输时,根据SR的周期,终端可以在PUSCH的一个或多个数据符号上发送SR,终端也可以在PUSCH的一个或两个DMRS符号上发送SR,终端还可以既在一个或多个数据符号上发送SR,又在一个或两个DMRS符号上发送SR。对于终端既在一个或多个数据符号上发送SR,又在一个或两个DMRS符号上发送SR的实施场景,其方案可以是上述两种实时场景所采用的实施方式的组合。
因此,在解决仅承载SR的PUCCH与PUSCH在某一些时域资源上冲突的技术问题时,终端采用将SR承载在PUSCH中传输的方案,可以涵盖上述两种实施场景的方案其中一种,也可以涵盖上述两种实时场景的组合。
现有技术中,承载SR的短时长PUCCH,PUSCH,和其他PUCCH传输方式如下:
现有技术中,承载SR的短时长PUCCH和能够承载一部分上行控制信息的PUSCH不可以同时传输。虽然,在LTE中,当承载SR的长时长控制信道和PUSCH冲突时,由于这两个信道占用相同的时域资源,如果终端能力支持,通过在相同的时域资源上分配功率可实现同时传输,例如,将长时长的PUCCH在每个符号上的传输功率配置为P1,将PUSCH在每个符号上的传输功率配置为P-P1。但是,因为仅承载SR的短时长PUCCH只占用一部分符号,由于仅承载SR的短时长PUCCH占用的符号数可灵活变化,难以给出相关的功率分配方案。
在LTE中,只有一个调度请求的配置,由于LTE系统仅支持一种服务类型,该种服务类型仅对应一个调度请求的资源配置。与LTE不同,在5G系统中,终端可承载多种服务类型,所以目前标准讨论中规定NR可配置多种服务类型,这些服务类型可由长时长的PUCCH承载,也可由短时长的PUCCH承载,或其他承载方式。由于这些服务类型各不相同,其SR的资源也是独立配置的,因此一种服务的调度请求可能和其他的上行信道的时域资源重合,即一个符号上既有SR的传输需求也有其他的上行信道的传输需求。在时延要求极高的情况下,SR的周期可配置为1符号,即在每个符号上都有可能传输SR。在这种情况下,终端如何处理调度请求和其他上行信道的冲突是本发明要解决的问题。
在LTE系统中,现有的PUCCH传输方式调度方法如图10所示。1ms的子帧中在时域上分为两段各0.5ms传输,所传输的位置位于整个频带的两侧,以提高分级增益的效果。具体来讲,1ms包含14个符号,前7个符号在频带的一侧进行传输,后7个符号在频带的另一侧进行传输。
在LTE中,终端发起的SR一般有两种形式,针对两种情况。第一种情况,终端有基站分配的周期性调度请求的资源。在每个周期内,某一个固定的时域、频域和码域资源上,终端可以发送调度请求。第二种情况,终端在回复PUCCH时承载上行调度请求。当基站调度终端传输上行控制信息时,终端可以把上行调度请求的信息和其他信息进行联合编码,然后发送给基站。
在LTE中,如果终端能力支持,承载调度请求的PUCCH是可以和PUSCH同时传输的,此时涉及到两者功率分配的问题。然而,5G NR中出现了短时长PUCCH,与LTE中不同的是,该短时长PUCCH可能只在一部分符号上出现,其余符号上不出现,这样PUSCH不同符号上的功率可能会变化,原来的功率分配方案就不再适用了。
在LTE中,PUSCH可以反馈部分上行控制信息,包括信道质量信息或者之前下行传输的ACK/NACK信息。然而,在NR中,调度请求的周期可能很短,在每个符号上都有可能出现,因此对于PUSCH上如何承载周期短且出现位置不确定的调度请求,原有的方式不再适用。进一步讨论,由于在LTE中仅出现了一种服务类型,对应一种调度请求,所以在传输PUSCH是就是在服务这种服务类型,因此也就没有必要在PUSCH提供承载调度请求。
在LTE中,调度请求可以和其他上行信息联合编码并通过PUCCH传给基站。然而在NR中,由于调度请求的周期可能较短、时延要求比较高、出现位置不确定,因此不能够提前和其他上行信息联合编码。
如前所述,LTE中的现有方式不能解决本发明遇到的周期较短的PUCCH与其他信道冲突的问题。PUSCH和PUCCH同时传输时,由于5G NR可采用短时长PUCCH,即仅 在部分符号同时出现PUSCH和PUCCH,而其他符号仍仅有PUSCH,不利于检测PUSCH,原有的功率分配方式不再适用;在PUSCH承载调度请求在原有LTE中因仅支持一种服务而未有涉及,而5G NR由于引入了多种服务类型,其周期灵活配置,所以在一种服务的PUSCH时另一种服务的调度请求也可能在任何符号出现,这在LTE中是未有考虑的;对于PUCCH承载调度请求和其他UCI并进行联合编码的情况,LTE中联合编码的方案因为需要提前获取调度请求以进行编码,而不能支持时延较低的调度请求而无法满足要求。
本发明要解决仅承载调度请求的PUCCH和其他上行信道在同一时域资源上冲突的问题,所述的仅承载调度请求的PUCCH为短时长PUCCH,其他上行信道包括PUSCH、PUCCH,其中,PUCCH更进一步包括长时长PUCCH、一符号的短时长PUCCH、两符号的短时长PUCCH三种情况。
具体而言,当仅承载调度请求的短时长PUCCH与PUSCH有部分时域资源重合时,分两种情况讨论,第一种是两种信道同时传输并进行功率分配的问题,第二种是两种信道只传输一种信道,即只传输PUSCH并在PUSCH中承载调度请求的信息;当仅承载调度请求的短时长PUCCH与其他PUCCH有部分时域资源重合时,也同样分两种情况讨论,第一种是两种信道同时传输并进行功率分配,第二种是仅传输一种信道,根据一些条件确定是只传输仅承载调度请求的PUCCH,还是只传输其他上行信道。
本申请中,解决仅承载调度请求的短时长PUCCH和其他信道冲突的处理方式,包含以下两个部分:
1)首先,本发明给出了仅承载调度请求的短时长PUCCH与PUSCH共同传输的方式,涉及到和PUSCH起始的1~2个DMRS符号的同时传输和其余承载数据的符号同时传输,并给出了在那些情况下可以同时传输的限定;
2)其次,本发明给出了PUSCH承载调度请求的方式,给出了在任意符号均可传输的方式并给出了采用频率分集的方式提高调度请求可靠性的方法;
3)最后,本发明给出了仅承载调度请求的短时长PUCCH与其他PUCCH之间冲突时如何功率分配、什么条件下仅传输其中一个信道的方法。
针对仅承载调度请求的短时长PUCCH与其他信道出现时域资源重合的问题,本申请提供的第一种处理方案如下:
第一种处理方案为仅承载调度请求的短时长PUCCH与PUSCH共同传输的处理方式。
此种情形下,终端发送PUSCH的期间,需要同时传输调度请求,采用短时长PUCCH仅承载调度请求。此时,由于同时传输两个信道,终端需要基于配置的功率优先级进行分配,优先分配一部分功率给一个信道,其余的功率分配给另一个信道进行传输。具体分配功率的方案要考虑是与承载SR的符号冲突的是DMRS符号,还是DMRS符号后面的承载数据的符号。
当PUSCH中只含有一个DMRS符号,且调度请求在该符号出现时,功率优先分配给调度请求的短时长的PUCCH,其余功率在分配给DMRS。在之后承载数据的符号上,一种方式是,保持和DMRS部分相同的传输功率;另一种方式是,在之后承载数据的符号上,如果PUSCH配有PT-RS,且没有承载SR的短时长PUCCH冲突,则终端可提高数据的传输功率,数据的传输功率相对于DMRS的传输功率等比例提高。对于基站侧来说,要么可以识别功率的提高量,要么基站侧可以通过比较PT-RS和DMRS在相同频域资源 上的功率的差异来获取功率的提高量。
当PUSCH中含有两个DMRS符号,且调度请求在第一个DMRS符号出现时,将一部分功率分配给承载调度请求的短时长的PUCCH,其余功率在分配给DMRS,在第二个DMRS符号仍保持和第一个DMRS符号相同的功率。在之后承载数据的符号上,一种方式是,保持和DMRS部分相同的传输功率;另一种方式是,在之后承载数据的符号上,如果PUSCH配有PT-RS,且没有承载SR的短时长PUCCH冲突,则终端可提高数据的传输功率,数据的传输功率相对于DMRS的传输功率等比例提高,基站侧要么可以识别功率的提高量,要么基站侧可以通过比较PT-RS和DMRS在相同频域资源上的功率的差异来获取功率的提高量。
当PUSCH中含有两个DMRS符号,且调度请求在第二个DMRS符号出现时,如图11所示,将一部分功率分配给DMRS保证第二个DMRS和第一个DMRS的功率相同,其余功率分配给承载调度请求的短时长的PUCCH。在之后承载数据的符号上,一种方式是,保持和DMRS部分相同的传输功率。因为两个DMRS符号用于多个端口的信道测量,如果两个DMRS符号上的功率不相同,就会造成多个端口之间的干扰。另一种方式是,在之后承载数据的符号上,如果PUSCH配有PT-RS,且没有承载SR的短时长PUCCH冲突,则终端可提高数据的传输功率,数据的传输功率相对于DMRS的传输功率等比例提高,基站侧要么可以识别功率的提高量,要么基站侧可以通过比较PT-RS和DMRS在相同频域资源上的功率的差异来获取功率的提高量。
当调度请求与PUSCH上承载数据的符号上出现时,如图12所示,如果PUSCH配有PT-RS,则功率优先分配给承载调度请求的短时长的PUCCH,其余功率分配给PUSCH,对于基站侧来说,要么可以识别功率的大小,要么基站侧可以通过比较前后不同符号上的承载PT-RS的频域资源上的功率,获取在该符号上PUSCH部分的功率大小;如果PUSCH没有PT-RS,则功率优先分配给PUSCH,其余功率分配给承载调度请求的短时长的PUCCH,因为在PUSCH的部分符号的功率下降时,如果基站不知道功率下降值会造成译码错误。
对于PUSCH不含PT-RS的情况,如果在承载DMRS的第一个符号有调度请求出现,功率优先分配给调度请求的短时长的PUCCH,剩余功率分配给DMRS部分。由于没有PT-RS,基站不能准确估计PUSCH功率的提高量,所以在PUSCH承载数据的符号上,保持和DMRS具有相同的功率。如果在PUSCH承载数据的符号上有调度请求,由于基站没有PT-RS估计功率变化量,数据符号上的功率应保持为PUSCH所需的功率,其余功率分配给承载调度请求的短时长的PUCCH。
还有一种情况,如果基站有能力估计因与承载SR的短时长PUCCH同时传输而带来的PUSCH的功率变化量,即基站能力允许,当在PUSCH承载数据的符号上出现调度请求,终端传输时优先把功率分配给承载调度请求的短时长的PUCCH,其余功率分配给PUSCH。
针对仅承载调度请求的短时长PUCCH与其他信道出现时域资源重合的问题,本申请提供的第二种处理方案如下:
第二种处理方式是对于两种信道,只传输一种信道,即将仅传输PUSCH并将SR承载在PUSCH中传输。
PUSCH的结构中包含1~2个DMRS符号以及之后承载上行数据的符号,其中之后承 载上行数据的符号可能配置PT-RS也可能不配置PT-RS。为了支持调度请求可能出现在任何一个符号的情况,PUSCH需要在每个符号上都预留出相应的资源。下面分别针对PUSCH中承载DMRS符号和承载上行数据的符号两部分分别阐释。
当PUSCH只有一个符号的DMRS且DMRS所在符号上有调度请求时,终端采用与传输DMRS不同的序列承载SR,所述SR序列与DMRS序列在整个PUSCH的频带或者两者覆盖的频带上正交;可选的,终端优先提供SR的功率,剩余的功率再用于DMRS的传输,在DMRS之后的符号,如果有PT-RS配置,终端可将PUSCH的功率提升到PUSCH所需的功率,如果没有PT-RS配置,后续的PUSCH符号保持和DMRS符号一致的传输功率;
当PUSCH含有两符号的DMRS且DMRS所在符号上有调度请求时,在第一个DMRS符号上有SR需求时,终端优先提供SR的功率,在第二个符号上DMRS保持和第一个符号上相同的功率;在第二个DMRS符号上SR需求时,终端优先保证DMRS的功率和第一个符号相同,其余的功率分配给SR传输;以上两种情况,SR采用的序列与DMRS采用序列不同或正交。
当PUSCH含有上行数据的符号上有调度请求时,为支持周期为X个符号的SR(X≥1),要在每X个符号上都预留资源,即在每X个符号上,预留至少一个资源单元(resource element,RE)承载SR,当没有SR时,预留资源的传输功率为0,当有SR时预留资源的传输功率不为0。具体而言,在每X个符号上都预留资源,有多种RE分配的方式。
方式一,在单一符号上分配PT-RS旁边的RE给SR。
具体的在PUSCH承载数据的符号上承载周期为X个符号的调度请求。在每X个符号上,预留一个资源承载SR,预留的资源包括一个或至少两个连续的RE。
可选的,在有PT-RS配置时,所述RE可位于与PT-RS相邻的RE上,如图13所示,X=1,每个符号上都为SR预留一个资源。
可选的,进一步为了提高传输的可靠性,可分配至少两个资源承载调度请求。一种方式如图14中的(a)所示,SR的周期X=1,每个符号上都为SR预留两个资源,每个资源包括一个或至少两个连续的RE,其中,承载调度请求的RE位于承载PT-RS的频域资源的两侧。或者如图14中的(b)所示,承载调度请求的RE可分别位于PT-RS的一侧和PUSCH所占频带一侧。
方式二:在单一符号上分配PUSCH所占频带两侧的RE给SR。
具体的,在PUSCH承载数据的符号上承载周期为X个符号的调度请求。在每X个符号上,预留一个或多个资源承载SR,预留的每个资源包括一个或至少两个连续的RE。在无PT-RS配置时,所述RE可位于PUSCH所占频带的一侧或两侧。
如图15中的(a)所示,SR的周期X=1,每个符号上都为SR预留两个资源,每个资源包括一个或至少两个连续的RE,其中,承载调度请求的RE位于PUSCH所占频带的两侧。如图15中的(b)所示,SR的周期X=1,每个符号上都为SR预留1个资源,每个资源包括一个或至少两个连续的RE,承载调度请求的REPUSCH所占频带的一侧。
方式三:在多个符号上分配RE给SR。
具体的,根据SR的周期,在PUSCH的多个符号上分配RE给SR,承载SR的RE在相邻的至少两个符号上位于不同的频域资源。单个符号上为SR预留的资源可以是一个, 也可以是两个。
可选的,假如SR的周期X=1或2,每个符号上都为SR预留资源,如图16中的(a)所示,相邻的两个符号上,在第一符号上承载调度请求的RE位于PT-RS的一侧,在第二符号上位于PT-RS的另一侧;如图16中的(b)所示,在第一符号上承载调度请求的RE位于PT-RS的一侧,在第二符号上位于PUSCH的一侧;如图16中的(c)所示,在第一符号上承载调度请求的RE位于PUSCH的一侧,在第二符号上位于PUSCH的一侧。相对于方式二,这种调度方式在较少RE资源的情况下,仍然达到了分集增益的效果。
针对仅承载调度请求的短时长PUCCH与其他信道出现时域资源重合的问题,本申请提供的第三种处理方案如下:
第三种处理方案为仅承载调度请求的短时长PUCCH与其他PUCCH共同传输或选择其一传输的处理方式。
情况一:仅承载SR的PUCCH与长时长PUCCH冲突时的处理方式。
此情况是仅承载调度请求的短时长PUCCH和长时长PUCCH同时出现,此处所述长时长PUCCH承载的信息可以是除了调度请求以外的信息,如ACK/NACK、信道质量指示(channel quality indicator,CQI)和CSI等,也可以是包括调度请求和其他信息,如ACK/NACK、CQI和CSI等,即长时长PUCCH不含仅承载调度请求的情况。
如图17所示,长时长PUCCH的一个时域符号和仅承载SR的短时长的PUCCH在时域上重合。长时长的PUCCH分为使用OCC进行多用户复用和不使用OCC两种,在使用OCC时,由于不同用户需要通过不同的码字去掉其他用户的干扰,所以各符号的功率要求不改变。
当长时长的PUCCH采用长度大于或等于2的OCC码扩容DMRS和UCI的符号时,仅承载SR的短时长的PUCCH的时域资源与长时长的PUCCH的起始符号或长时长的PUCCH任何一个跳频部分的起始符号相同时,终端同时传输长时长的PUCCH和仅承载SR的短时长的PUCCH,并优先分配功率给仅承载SR的短时长的PUCCH,剩余的功率(如有)分配给长时长的PUCCH使用;可选的,在仅承载SR的短时长的PUCCH传输结束后,在继续传输长时长的PUCCH时,长时长的PUCCH在当前时隙或跳频部分的功率,与同时传输时长时长的PUCCH的传输功率保持不变。
当长时长的PUCCH采用长度大于或等于2的OCC码扩容DMRS和UCI的符号时,所述仅承载SR的短时长的PUCCH的时域资源与长时长的PUCCH的其他符号位置相同时,终端在保证长时长的PUCCH功率不变的情况下,采用剩余的功率传输仅承载SR的短时长的PUCCH;
当长时长的PUCCH未配置OCC时,终端优先分配功率保证仅承载SR的短时长的PUCCH的传输,剩余功率分配给长时长的PUCCH;当终端的功率不能满足两者同时传输时,终端终止传输长时长的PUCCH,即两信道时域重合的部分只传输仅承载SR的短时长的PUCCH;在传输仅承载SR的短时长的PUCCH结束之后,终端可根据长时长的PUCCH剩余符号或已传输符号上是否既有DMRS符号又有UCI符号的情况决定是否继续传输,具体的,终端在某个频域资源上的长时长的PUCCH中剩余符号或已传输符号上既有DMRS符号也有UCI符号的情况下才继续传输,对于没有同频域资源下的DMRS符号和UCI符号的不传。
例如:当长时长的PUCCH未配置OCC时,两个信道时域重合部分只传输仅承载SR的短时长的PUCCH,仅承载SR的短时长的PUCCH停止之后,如长时长的PUCCH上已传输和剩余符号中有DMRS和UCI符号,可继续传输长时长的PUCCH。
例如:对于多时隙长时长的PUCCH的情况,两个信道时域重合部分只传输仅承载SR的短时长的PUCCH,仅承载SR的短时长的PUCCH结束之后,如有整个时隙未传输,可继续传输长时长的PUCCH。
情况二:仅承载SR的PUCCH与短时长的PUCCH冲突时的处理方式。
如图18所示,此种情况是仅承载调度请求的短时长的PUCCH和短时长的PUCCH同时出现,短时长的PUCCH承载的信息可以是除了调度请求以外的信息,如ACK/NACK、CSI和CQI等。短时长的PUCCH承载的信息也可以是包括调度请求和其他控制信息,如ACK/NACK、CSI和CQI等,即短时长的PUCCH不含仅承载调度请求的情况。其中,短时长的PUCCH可进一步分为单符号的、两符号联合编码的、两符号使能OCC三种。在这里,两符号使能OCC的短时长的PUCCH要单独分析,因为OCC用于多用户复用,如果因为同时传输而影响了其中一个符号的能量,则会造成多用户间干扰。
对于单符号的短时长的PUCCH或两符号的短时长的PUCCH采用跳频传输的情况(在跳频传输时由于频域资源不同,不会使用OCC):
1)若所述短时长的PUCCH仅承载CQI信息,功率优先保证仅承载SR的短时长的PUCCH,剩余的功率(如有)分给承载CQI的短时长的PUCCH,即SR的优先级高于CQI。
2)若所述短时长的PUCCH也同时承载SR和其他信息,终端根据两个信道分别承载的SR的优先级(服务类型、周期大小)等,把功率优先分配给高优先级的SR的信道,剩余功率(如有)分配给另外一种信道。
3)若所述短时长的PUCCH承载ACK/NACK(或者ACK/NACK和CSI),终端把功率平均分配给两种信道,或者终端根据ACK/NACK和SR的优先级,把功率优先分配给高优先级传输的信道,剩余功率(如有)分配给另外一种信道。
4)若所述短时长的PUCCH承载ACK/NACK(或者ACK/NACK和CSI),终端可根据ACK/NACK和SR(记为1bit)的信息量比值分配功率。
对于两符号的短时长的PUCCH使能OCC的情况:当两符号的短时长的PUCCH的第一符号上出现仅承载SR的短时长的PUCCH时,两种信道同时传输,根据上述四种情况分配功率,即功率优先分配给高优先级传输的信道,剩余功率(如有)分配给其他信道;当两符号的短时长的PUCCH的第二符号上出现仅承载SR的短时长的PUCCH时,两种信道同时传输,优先保证两符号的短时长的PUCCH的第二个符号和第一个符号的功率相同,额外功率分配给仅承载SR的短时长的PUCCH。
本申请实施例提供一种上行传输装置。其中,本申请实施例提供一种上行传输方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
基于相同构思,本申请提供一种如上的终端,如上的终端用于执行本申请所涉及的各种实施例中与终端相关的方法步骤。在一种可能的设计中,该终端包括多个功能模块,用于执行本申请所涉及的各种实施例中与终端相关的方法步骤。
如图19所示,终端1000包括处理单元1010和收发单元1020。需要说明的是,处理单元1010或者收发单元1020所执行的操作都可以视为是终端1000的操作。
在一种可能的设计中,该终端的结构中包括处理器和收发机,处理器被配置为支持终端执行上述方法实施例中相应的功能。收发机用于支持终端与基站之间的通信,向基站发送上述方法实施例中所涉及的信息或者指令。终端中还可以包括存储器,存储器用于与处理器耦合,其保存终端必要的程序指令和数据。终端1000中的处理单元1010可以由终端1000中的处理器实现,收发单元1020可以由终端1000中的收发器实现。
在第一种实施例中,所述处理单元1010用于:采用第一传输功率在第一时域资源上传输第一上行信道,所述终端采用第二传输功率在所述第一时域资源上传输第二上行信道;其中,所述第一上行信道占用所述第一时域资源传输调用请求SR,所述第一时域资源与第二上行信道占用的部分时域资源相同,或者所述第一时域资源与所述第二上行信道占用的全部时域资源相同。
在一种可能的设计中,所述第一时域资源对应一个资源单元或至少两个连续的资源单元。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载第一个解调参考信号DMRS的时域资源相同时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载第二个DMRS的时域资源相同时,所述第二传输功率与所述第一个DMRS的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载数据的时域资源相同,且所述承载数据的时域资源上还承载相位跟踪参考信号PT-RS时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若第二上行信道为物理层上行共享信道,则当所述第一时域资源与所述物理层上行共享信道上承载数据的时域资源相同,且所述承载数据的时域资源上没有承载所述PT-RS,所述第二传输功率与所述物理层上行共享信道上承载DMRS的时域资源的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,则当所述第二上行信号使用正交覆盖码OCC,且所述第一时域资源与所述第二上行信道的起始时域资源或者跳频的起始时域资源相同时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,则当所述第二上行信号使用所述OCC,且所述第一时域资源与所述第二上行信道的起始时域资源之后的时域资源或者跳频的起始时域资源之后的时域资源相同时,所述第二传输功率与所述终端在所述起始时域资源上的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,则当所述第二上行信号不使用所述OCC,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第一传输功率不小于所述第一上行信道需要的传输功率。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第二传输功率不小于所述第二上行信道需要的传输功率,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第一传输功率和所述第二传输功率相等。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则所述第一传输功率和所述第二传输功率按照所述SR与所述第二上行信道上承载的上行控制信息的信息量比值对总功率进行分配。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道使用正交覆盖码OCC,则当所述第一时域资源与所述第二上行信道的第一个时域资源相同时,所述第一传输功率不小于所述第一上行信道需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值;或者,所述第二传输功率不小于所述第二上行信道需要的传输功率,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道使用正交覆盖码OCC,则当所述第一时域资源与所述第二上行信道的位于所述第一个时域资源之后的时域资源相同时,所述第二传输功率与所述第二上行信道的第一个时域资源的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
在一种可能的设计中,所述处理单元1010用于:若所述第二传输功率小于所述第二上行信道需要的传输功率,则在所述第一时域资源上传输所述SR;或者,若所述第一传输功率小于所述第一上行信道需要的传输功率,则在所述第一时域资源上传输所述第二上行信道。
在一种可能的设计中,所述处理单元1010还用于:在所述SR传输完成之后,若所述第二上行信道未传输的时域资源上或者已传输的时域资源上包括分别承载DMRS和上行控制信息的时域资源,则传输所述第二上行信道;或者,若所述第二上行信道未传输的时域资源上或者已传输的时域资源上不包括承载DMRS和上行控制信息的时域资源, 则所述第二上行信道的传输功率为0。
在一种可能的设计中,所述终端在所述第二上行信道占用的时域资源中除所述第一时域资源以外的时域资源上的传输功率与所述第二传输功率相同,或者相对于所述第二传输功率等比例增加。
在第二种实施例中,所述处理单元1010用于:使用第一时域资源和第一频域资源通过所述收发单元1020发送信息;使用第二时域资源和第二频域资源通过所述收发单元1020发送调用请求SR;所述信息和所述SR承载在物理层上行共享信道PUSCH中,所述信息包括解调参考信号DMRS和数据;其中,所述第二时域资源的全部时域资源与所述第一时域资源的全部或部分时域资源相同,或者,所述第二时域资源的部分时域资源与所述第一时域资源的全部或部分时域资源相同。
在一种可能的设计中,所述第二频域资源的全部频域资源与所述第一频域资源的全部或部分频域资源相同,或者,所述第二频域资源的部分频域资源与第一频域资源的全部或部分频域资源相同。
在一种可能的设计中,所述处理单元1010用于:当所述DMRS占用的时域资源与所述SR所占用的时域资源相同时,在所述DMRS与所述SR占用的相同时域资源上,使用第一序列发送所述DMRS,使用第二序列发送所述SR,所述第一序列与所述第二序列不同。
在一种可能的设计中,所述处理单元1010用于:在所述DMRS与所述SR占用的相同时域资源上,采用第一传输功率发送所述DMRS,采用第二传输功率发送所述SR。
在一种可能的设计中,在所述处理单元1010不使用所述第二时域资源和所述第二频域资源发送所述SR时,所述第二传输功率为0,所述第一传输功率不小于所述DMRS所需的传输功率。
在一种可能的设计中,所述DMRS为两个,当所述第二时域资源与第一个DMRS占用的时域资源相同时,所述第二传输功率不小于传输所述SR需要的传输功率,所述第一传输功率为所述终端在所述第二时域资源上的总传输功率与所述第二传输功率的差值;或者,当所述第二时域资源与第二个DMRS占用的时域资源相同时,所述第一传输功率与所述第一个DMRS的传输功率相同,所述第二传输功率为所述终端在所述第二时域资源上的总传输功率与所述第一传输功率的差值。
在一种可能的设计中,当所述数据占用的时域资源与所述SR所占用的时域资源相同时,在所述数据与所述SR占用的相同时域资源所对应的资源中,所述数据占用的资源与所述SR占用的资源不同。
在一种可能的设计中,所述SR占用的资源的频率大于或等于所述数据占用的资源的最小频率,且所述数据占用的资源的频率小于或等于所述数据占用的资源的最大频率。
在一种可能的设计中,所述SR占用的资源包括一个或多个资源组,每个所述资源组包括一个资源单元或至少两个连续的资源单元。
在一种可能的设计中,所述SR占用的资源包括多个资源组时,不同的所述资源组之间至少间隔一个资源单元。
在一种可能的设计中,相邻的时域资源上的所述资源组位于不同的频域资源上。
在一种可能的设计中,若所述信息还包括相位跟踪参考信号,则至少一个所述资源组与所述相位跟踪参考信号的频域资源相邻。
在一种可能的设计中,该终端的结构中包括处理器和收发机,处理器被配置为支持终端执行上述方法实施例中相应的功能。收发机用于支持终端与基站之间的通信,向基站发送上述方法实施例中所涉及的信息或者指令。终端中还可以包括存储器,存储器用于与处理器耦合,其保存终端必要的程序指令和数据。
需要说明的是,本申请实施例中上述终端包括的收发机、处理器、存储器以及总线系统的结构关系可参见图20。其中,图20中的收发机1105可以是有线收发机,无线收发机或其组合。有线收发机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发机例如可以为无线局域网通信接口,蜂窝网络通信接口或其组合。
本申请实施例中的处理器1102可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。存储器1103可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器1103也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器1103还可以包括上述种类的存储器的组合。
本申请实施例中还可以包括总线系统1104,总线系统1104可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器1102和存储器1103代表的存储器的各种电路链接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,本申请不再对其进行进一步描述。收发机1105提供用于在传输介质上与各种其他设备通信的单元。处理器1102负责管理总线架构和通常的处理,存储器1103可以存储处理器1102在执行操作时所使用的数据。
基于同一发明构思,为了实现上述发明目的,本申请实施例还提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现本申请所涉及的各种实施例中与终端相关的方法步骤。
基于同一发明构思,本申请实施例还提供了一种电路系统,图21为本发明实施方式中所提供的电路系统的结构示意图(例如接入点或基站、站点或者终端等通信装置,或者前述通信装置中的芯片等)。
如图21所示,电路系统1200可以由总线1201作一般性的总线体系结构来实现。根据电路系统1200的具体应用和整体设计约束条件,总线1201可以包括任意数量的互连总线和桥接。总线1201将各种电路连接在一起,这些电路包括处理器1202、存储介质1203和总线接口1204。可选的,电路系统1200使用总线接口1204将网络适配器1205等经由总线1201连接。网络适配器1205可用于实现无线通信网络中物理层的信号处理功能,并通过天线1207实现射频信号的发送和接收。用户接口1206可以连接用户终端,例如:键盘、显示器、鼠标或者操纵杆等。总线1201还可以连接各种其它电路,如定时源、外围 设备、电压调节器或者功率管理电路等,这些电路是本领域所熟知的,因此不再详述。
可以替换的,电路系统1200也可配置成片上系统,通称为芯片,包括:提供处理器功能的一个或多个微处理器;以及提供存储介质1203的至少一部分的外部存储器,所有这些都通过外部总线体系结构与其它支持电路连接在一起。
可替换的,电路系统1200可以使用下述来实现:具有处理器1202、总线接口1204、用户接口1206的ASIC(专用集成电路);以及集成在单个芯片中的存储介质1203的至少一部分,或者,电路系统1200可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本发明通篇所描述的各种功能的电路的任意组合。
其中,处理器1202负责管理总线和一般处理(包括执行存储在存储介质1203上的软件)。处理器1202可以使用一个或多个通用处理器和/或专用处理器来实现。处理器的例子包括微处理器、微控制器、DSP处理器和能够执行软件的其它电路。应当将软件广义地解释为表示指令、数据或其任意组合,而不论是将其称作为软件、固件、中间件、微代码、硬件描述语言还是其它。
在下图中存储介质1203被示为与处理器1202分离,然而,本领域技术人员很容易明白,存储介质1203或其任意部分可位于电路系统1200之外。举例来说,存储介质1203可以包括传输线、用数据调制的载波波形、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器1202通过总线接口1204来访问。可替换地,存储介质1203或其任意部分可以集成到处理器1202中,例如,可以是高速缓存和/或通用寄存器。
处理器1202可执行本申请上述任意实施例中的上行传输方法,具体内容在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
基于相同构思,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与终端相关的方法步骤。
基于相同构思,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与基站相关的方法步骤。
基于相同构思,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行 时,使得计算机执行本申请所涉及的各种实施例中与终端相关的方法步骤。
基于相同构思,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与基站相关的方法步骤。
本所属领域的技术人员可以清楚地了解到,本发明提供的各实施例的描述可以相互参照,为描述的方便和简洁,关于本发明实施例提供的各装置、设备的功能以及执行的步骤可以参照本发明方法实施例的相关描述,在此不做赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种上行传输方法,其特征在于,所述方法包括:
    终端采用第一传输功率在第一时域资源上传输第一上行信道,所述终端采用第二传输功率在所述第一时域资源上传输第二上行信道;
    其中,所述第一上行信道占用所述第一时域资源传输调用请求SR,所述第一时域资源与第二上行信道占用的部分时域资源相同,或者所述第一时域资源与所述第二上行信道占用的全部时域资源相同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时域资源对应的资源包括一个资源单元或至少两个连续的资源单元。
  3. 根据权利要求1或2所述的方法,其特征在于,若第二上行信道为物理层上行共享信道,则
    当所述第一时域资源与所述物理层上行共享信道上承载第一个解调参考信号DMRS的时域资源相同时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值;或者,
    当所述第一时域资源与所述物理层上行共享信道上承载第二个DMRS的时域资源相同时,所述第二传输功率与所述第一个DMRS的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值;或者,
    当所述第一时域资源与所述物理层上行共享信道上承载数据的时域资源相同,且所述承载数据的时域资源上还承载相位跟踪参考信号PT-RS时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值;或者,
    当所述第一时域资源与所述物理层上行共享信道上承载数据的时域资源相同,且所述承载数据的时域资源上没有承载所述PT-RS,所述第二传输功率与所述物理层上行共享信道上承载DMRS的时域资源的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,若所述第一上行信道和所述第二上行信道都为物理层上行控制信道,则
    当所述第二上行信号使用正交覆盖码OCC,且所述第一时域资源与所述第二上行信道的起始时域资源或者跳频的起始时域资源相同时,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值;或者,
    当所述第二上行信号使用所述OCC,且所述第一时域资源与所述第二上行信道的起始时域资源之后的时域资源或者跳频的起始时域资源之后的时域资源相同时,所述第二传输功率与所述终端在所述起始时域资源上的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值;或者,
    当所述第二上行信号不使用所述OCC,所述第一传输功率不小于所述SR需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,若所述第一上行信道和 所述第二上行信道都为物理层上行控制信道,且所述第二上行信道采用跳频传输,则
    所述第一传输功率不小于所述第一上行信道需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值;或者,
    所述第二传输功率不小于所述第二上行信道需要的传输功率,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值;或者,
    所述第一传输功率和所述第二传输功率相等,或者;
    所述第一传输功率和所述第二传输功率按照所述SR与所述第二上行信道上承载的上行控制信息的信息量比值对总功率进行分配。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一上行信道和所述第二上行信道都为物理层上行控制信道,且所述第二上行信道使用正交覆盖码OCC,则
    当所述第一时域资源与所述第二上行信道的第一个时域资源相同时,所述第一传输功率不小于所述第一上行信道需要的传输功率,所述第二传输功率为所述终端在所述第一时域资源上的总传输功率与所述第一传输功率的差值;或者,所述第二传输功率不小于所述第二上行信道需要的传输功率,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值;或者,
    当所述第一时域资源与所述第二上行信道的位于所述第一个时域资源之后的时域资源相同时,所述第二传输功率与所述第二上行信道的第一个时域资源的传输功率相同,所述第一传输功率为所述终端在所述第一时域资源上的总传输功率与所述第二传输功率的差值。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,
    若所述第二传输功率小于所述第二上行信道需要的传输功率,则所述终端在所述第一时域资源上传输所述SR;或者,
    若所述第一传输功率小于所述第一上行信道需要的传输功率,则所述终端在所述第一时域资源上传输所述第二上行信道。
  8. 根据权利要求7所述的方法,其特征在于,在所述SR传输完成之后,所述方法还包括:
    若所述第二上行信道未传输的时域资源上或者已传输的时域资源上包括分别承载DMRS和上行控制信息的时域资源,则所述终端传输所述第二上行信道;或者,
    若所述第二上行信道未传输的时域资源上或者已传输的时域资源上不包括承载DMRS和上行控制信息的时域资源,则所述第二上行信道的传输功率为0。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述终端在所述第二上行信道占用的时域资源中除所述第一时域资源以外的时域资源上的传输功率与所述第二传输功率相同,或者相对于所述第二传输功率等比例增加。
  10. 一种上行传输方法,其特征在于,所述方法包括:
    终端使用第一时域资源和第一频域资源发送信息;所述终端使用第二时域资源和第二频域资源发送调用请求SR;所述信息和所述SR承载在物理层上行共享信道PUSCH中,所述信息包括解调参考信号DMRS和数据;
    其中,所述第二时域资源的全部时域资源与所述第一时域资源的全部或部分时域资源相同,或者,所述第二时域资源的部分时域资源与所述第一时域资源的全部或部分时 域资源相同。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第二频域资源的全部频域资源与所述第一频域资源的全部或部分频域资源相同,或者,所述第二频域资源的部分频域资源与第一频域资源的全部或部分频域资源相同。
  12. 根据权利要求10或11所述的方法,其特征在于,当所述DMRS占用的时域资源与所述SR所占用的时域资源相同时,在所述DMRS与所述SR占用的相同时域资源上,
    所述终端使用第一序列发送所述DMRS,所述终端使用第二序列发送所述SR,第一序列与第二序列不同。
  13. 根据权利要求12所述的方法,其特征在于,
    在所述DMRS与所述SR占用的相同时域资源上,所述终端采用第一传输功率发送所述DMRS,所述终端采用第二传输功率发送所述SR。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    在所述终端不使用所述第二时域资源和所述第二频域资源发送所述SR时,所述第二传输功率为0,所述第一传输功率不小于所述DMRS所需的传输功率。
  15. 根据权利要求13所述的方法,其特征在于,所述DMRS为两个;
    当所述第二时域资源与第一个DMRS占用的时域资源相同时,所述第二传输功率不小于传输所述SR需要的传输功率,所述第一传输功率为所述终端在所述第二时域资源上的总传输功率与所述第二传输功率的差值;或者,
    当所述第二时域资源与第二个DMRS占用的时域资源相同时,所述第一传输功率与所述第一个DMRS的传输功率相同,所述第二传输功率为所述终端在所述第二时域资源上的总传输功率与所述第一传输功率的差值。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,当所述数据占用的时域资源与所述SR所占用的时域资源相同时,在所述数据与所述SR占用的相同时域资源所对应的资源中,所述数据占用的资源与所述SR占用的资源不同。
  17. 根据权利要求16所述的方法,其特征在于,所述SR占用的资源的频率大于或等于所述数据占用的资源的最小频率,且所述数据占用的资源的频率小于或等于所述数据占用的资源的最大频率。
  18. 根据权利要求16所述的方法,其特征在于,所述SR占用的资源包括一个或多个资源组,每个所述资源组包括一个资源单元或至少两个连续的资源单元。
  19. 根据权利要求18所述的方法,其特征在于,所述SR占用的资源包括多个资源组时,不同的所述资源组之间至少间隔一个资源单元。
  20. 根据权利要求18所述的方法,其特征在于,相邻的时域资源上的所述资源组位于不同的频域资源上。
  21. 根据权利要求15-19中任一项所述的方法,其特征在于,若所述信息还包括相位跟踪参考信号,则至少一个所述资源组与所述相位跟踪参考信号的频域资源相邻。
  22. 一种终端,其特征在于,包括:存储器和处理器,其中:
    所述存储器用于存储指令;
    所述处理器用于根据执行所述存储器存储的指令,当所述处理器执行所述存储器存储的指令时,所述终端用于执行如权利要求1-9中任一权利要求所述的方法。
  23. 一种终端,其特征在于,包括:存储器和处理器,其中:
    所述存储器用于存储指令;
    所述处理器用于根据执行所述存储器存储的指令,当所述处理器执行所述存储器存储的指令时,所述终端用于执行如权利要求10-21中任一权利要求所述的方法。
  24. 一种芯片,其特征在于,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1-9或者10-21中任一所述的方法。
  25. 一种电路,其特征在于,所述电路包括提供处理器功能的芯片或片上系统,所述芯片或所述片上系统被配置在终端中,使得所述终端实现如权利要求1-9或者10-21中任一所述的方法。
  26. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在电子设备上运行时,使得所述电子设备执行如权利要求1-9或者10-21中任一所述的方法。
PCT/CN2018/115228 2017-11-13 2018-11-13 一种上行传输方法及终端 WO2019091488A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/763,402 US11510229B2 (en) 2017-11-13 2018-11-13 Uplink transmission method and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711116323.7 2017-11-13
CN201711116323.7A CN109787728B (zh) 2017-11-13 2017-11-13 一种上行传输方法及终端

Publications (1)

Publication Number Publication Date
WO2019091488A1 true WO2019091488A1 (zh) 2019-05-16

Family

ID=66438232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115228 WO2019091488A1 (zh) 2017-11-13 2018-11-13 一种上行传输方法及终端

Country Status (3)

Country Link
US (1) US11510229B2 (zh)
CN (1) CN109787728B (zh)
WO (1) WO2019091488A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220045814A1 (en) * 2019-04-30 2022-02-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Dmrs configuration method and user equipment
CN114915391A (zh) * 2021-02-10 2022-08-16 维沃移动通信有限公司 冲突指示方法、装置及电子设备
RU2801736C1 (ru) * 2020-02-07 2023-08-15 ЗедТиИ КОРПОРЕЙШН Мультиплексирование каналов с несколькими приоритетами

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150444B (zh) * 2017-06-16 2022-01-11 华为技术有限公司 资源单元的设置、传输方法及装置
CN114885419A (zh) * 2018-01-12 2022-08-09 华为技术有限公司 一种上行控制信息的传输方法、接入网设备以及终端设备
WO2020091579A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템에서 물리 공유 채널 상에서 데이터를 전송하는 방법 및 이를 위한 장치
US20220279572A1 (en) * 2019-08-02 2022-09-01 Qualcomm Incorporated Techniques for carrier switching for two-step random access
CN112399583A (zh) * 2019-08-16 2021-02-23 大唐移动通信设备有限公司 一种资源传输方法、终端和网络设备
KR20220125299A (ko) * 2020-02-07 2022-09-14 지티이 코포레이션 다중 우선순위 채널 다중화
CN113473599B (zh) * 2020-03-30 2024-05-28 中国电信股份有限公司 信道资源映射方法和基站、终端及通信网络设备
CN113498209B (zh) * 2020-04-08 2023-07-04 维沃移动通信有限公司 一种冲突处理方法及装置
US11770473B2 (en) * 2020-05-01 2023-09-26 Qualcomm Incorporated Avoid and react to sudden possibility of damage to receiver in self-interference measurement
EP4150822A4 (en) * 2020-05-14 2024-04-10 Apple Inc. SYSTEM AND METHOD FOR PHASE NOISE SUPPRESSION IN A VERY HIGH FREQUENCY SPECTRUM
US20220217713A1 (en) * 2021-01-06 2022-07-07 Qualcomm Incorporated Latency reduction and coverage enhancement for extended reality

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017172490A1 (en) * 2016-04-01 2017-10-05 Motorola Mobility Llc Method and apparatus for uplink power control when uplink transmissions overlap in time for at least one symbol duration
WO2017172447A1 (en) * 2016-04-01 2017-10-05 Motorola Mobility Llc Method and apparatus for sending scheduling requests with reduced latency
WO2017172452A1 (en) * 2016-04-01 2017-10-05 Motorola Mobility Llc Method and apparatus for sending buffer status reports with reduced latency

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494002B1 (ko) 2007-06-11 2015-02-16 삼성전자주식회사 이동통신 시스템에서 자원 할당 및 그에 따른 수신 장치 및방법
CN102469466B (zh) * 2010-11-11 2015-05-06 华为技术有限公司 一种干扰处理方法与装置
CN102427396A (zh) * 2011-08-15 2012-04-25 中兴通讯股份有限公司 一种小区间上行解调参考信号的信息交互方法和基站
CN103037492B (zh) * 2011-10-09 2016-06-29 华为技术有限公司 上行发送功率确定方法及用户设备
WO2014156956A1 (ja) * 2013-03-28 2014-10-02 京セラ株式会社 無線通信装置及び信号処理方法
US10142945B2 (en) * 2014-06-05 2018-11-27 Samsung Electronics Co., Ltd. Power control for transmission of uplink control information on two cells in carrier aggregation
CN106358296A (zh) * 2015-07-14 2017-01-25 中兴通讯股份有限公司 在上行控制信道上发送信号的方法和装置
CN107241802B (zh) * 2016-03-29 2022-12-02 中兴通讯股份有限公司 上行控制信息uci的发送方法及装置
US11178665B2 (en) * 2017-03-07 2021-11-16 Lg Electronics Inc. Method for performing non-orthogonal multiple access scheme-based communication, and device therefor
US10873911B2 (en) * 2017-03-23 2020-12-22 Ofinno, LCC Uplink transmission power adjustment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017172490A1 (en) * 2016-04-01 2017-10-05 Motorola Mobility Llc Method and apparatus for uplink power control when uplink transmissions overlap in time for at least one symbol duration
WO2017172447A1 (en) * 2016-04-01 2017-10-05 Motorola Mobility Llc Method and apparatus for sending scheduling requests with reduced latency
WO2017172452A1 (en) * 2016-04-01 2017-10-05 Motorola Mobility Llc Method and apparatus for sending buffer status reports with reduced latency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220045814A1 (en) * 2019-04-30 2022-02-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Dmrs configuration method and user equipment
RU2801736C1 (ru) * 2020-02-07 2023-08-15 ЗедТиИ КОРПОРЕЙШН Мультиплексирование каналов с несколькими приоритетами
CN114915391A (zh) * 2021-02-10 2022-08-16 维沃移动通信有限公司 冲突指示方法、装置及电子设备

Also Published As

Publication number Publication date
US11510229B2 (en) 2022-11-22
CN109787728A (zh) 2019-05-21
CN109787728B (zh) 2020-10-23
US20210068130A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2019091488A1 (zh) 一种上行传输方法及终端
CN110035550B (zh) 上行控制信息传输方法和通信装置
WO2018188561A1 (zh) 上行信息发送方法、接收方法和装置
CN109995497A (zh) 下行控制信息传输方法
WO2019096004A1 (zh) 资源配置方法、装置和系统
WO2019037695A1 (zh) 一种通信方法及装置
WO2019110011A1 (zh) 一种资源配置方法和装置
WO2020048481A1 (zh) 通信方法及装置
CN110971369B (zh) 数据传输方法及装置
WO2019028771A1 (zh) 传输数据的方法和终端设备
CN111615861B (zh) 多比特调度请求
WO2019062560A1 (zh) 一种上行子带预编码矩阵的指示方法、终端及基站
WO2019137503A1 (zh) 一种上行控制信息的传输方法、接入网设备以及终端设备
WO2018201915A1 (zh) 数据处理方法和装置
CN114424654A (zh) 测量方法、装置及系统
WO2019061115A1 (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
KR20220100961A (ko) 취소를 표시하는 정보를 결정하기 위한 시스템들 및 방법들
WO2016127556A1 (zh) 一种基站、用户终端及载波调度指示方法
KR20230036997A (ko) 무선 네트워크의 트래픽을 수신하는 방법
WO2018137659A1 (zh) 一种资源调度方法、用户设备及接入网设备
CN111565093A (zh) 信息传输方法、终端设备及网络设备
WO2019029306A1 (zh) 传输下行控制信息的方法、装置和系统
CN111953458B (zh) 一种pucch资源确定方法和通信设备
JP2020504542A (ja) 受信ノード、送信ノード、及び伝送方法
WO2021035440A1 (zh) 收发控制信息的方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875987

Country of ref document: EP

Kind code of ref document: A1