WO2021008306A1 - 信号处理方法、设备及装置 - Google Patents

信号处理方法、设备及装置 Download PDF

Info

Publication number
WO2021008306A1
WO2021008306A1 PCT/CN2020/097426 CN2020097426W WO2021008306A1 WO 2021008306 A1 WO2021008306 A1 WO 2021008306A1 CN 2020097426 W CN2020097426 W CN 2020097426W WO 2021008306 A1 WO2021008306 A1 WO 2021008306A1
Authority
WO
WIPO (PCT)
Prior art keywords
dft
network side
bandwidth
notified
dft bandwidth
Prior art date
Application number
PCT/CN2020/097426
Other languages
English (en)
French (fr)
Inventor
邢艳萍
缪德山
王磊
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021008306A1 publication Critical patent/WO2021008306A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a signal processing method, equipment and device.
  • the downlink (forward) link uses DFT-S-OFDM (Discrete-Fourier Transform Spread Orthogonal Frequency Domain Multiplex, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) waveform, which can Make full use of the flexibility of the OFDM (Orthogonal Frequency Division Multiplex) system for time-frequency resource allocation, and at the same time reduce the PAPR (Peak Average Power Ratio, peak-to-average ratio).
  • DFT-S-OFDM Discrete-Fourier Transform Spread Orthogonal Frequency Domain Multiplex, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing waveform
  • FIG. 1 is a schematic diagram of the sending process of the downlink DFT-S-OFDM waveform.
  • FFT is Fast Fourier Transform (Fast Fourier Transform).
  • the modulation symbols undergo serial-to-parallel conversion and undergo DFT (Discrete Fourier Transform).
  • DFT Discrete Fourier Transform
  • Fourier transform transform to the frequency domain, and then map to the corresponding frequency domain position.
  • the transmitter adopts the DFT transform
  • the signal is dispersed in the corresponding DFT bandwidth
  • the receiver must know the DFT bandwidth and perform the corresponding inverse transformation according to the DFT bandwidth, that is, IDFT/IFFT (Inverse Discrete Fourier Transform/Inverse Fast Fourier Transform) , Discrete Inverse Fourier Transform/Inverse Fast Fourier Transform).
  • IDFT/IFFT Inverse Discrete Fourier Transform/Inverse Fast Fourier Transform
  • Discrete Inverse Fourier Transform/Inverse Fast Fourier Transform Discrete Inverse Fourier Transform
  • all UEs User Equipment
  • the sender can use a DFT transformation on a symbol of the downlink, and the DFT bandwidth can be notified to the terminal in advance .
  • the downlink signals of multiple UEs are multiplexed on the same symbol, the signals of multiple UEs are first cascaded, and then DFT transformation is performed according to a unified DFT bandwidth.
  • all UEs perform inverse transformation according to a unified DFT bandwidth, and then extract their respective signals for post-processing.
  • the disadvantage of the related technology is that when UEs have different downlink reception bandwidth capabilities, when UEs with different capabilities are frequency-division multiplexed on the same symbol, the receiving and sending processing cannot be performed according to a unified DFT bandwidth. At this time, there is no solution for how to support UE frequency division multiplexing with different capabilities without changing the DFT-s-OFDM waveform.
  • the present disclosure provides a signal processing method, equipment and device, which are used to support UE frequency division multiplexing of different capabilities without changing the DFT-s-OFDM waveform.
  • An embodiment of the present disclosure provides a signal processing method, including:
  • the UE receives the DFT bandwidth division notified by the network side;
  • the UE performs IDFT on the received signal according to the DFT bandwidth division notified by the network side, or, when determining not to perform IDFT on the received signal according to the DFT bandwidth division notified by the network side, performs IDFT on the received signal according to a DFT bandwidth.
  • the UE when the UE performs IDFT on the received signal according to the DFT bandwidth notified by the network side, if the received signal is within a DFT bandwidth notified by the network side, the UE performs IDFT on the received signal according to the DFT bandwidth; if the received signal occupies the network side For the notified multiple DFT bandwidths, the UE performs IDFT on the received signal according to each DFT bandwidth.
  • the one DFT bandwidth is a pre-appointed DFT bandwidth or a DFT bandwidth notified by the network side.
  • the UE determines whether to perform IDFT on the signal according to the DFT bandwidth notified by the network side, it is determined according to a predefined rule or according to a notification from the network side.
  • the DFT bandwidth division notified by the network side received by the UE is notified by the network side in one of the following ways:
  • the network side informs the UE of a DFT bandwidth division semi-statically; or,
  • the network side informs the UE of a DFT bandwidth division set semi-statically, it dynamically informs the UE to select a DFT bandwidth division in the set; or,
  • the network side dynamically informs the UE of a DFT bandwidth division.
  • An embodiment of the present disclosure provides a signal processing method, including:
  • the network side notifies the UE of the DFT bandwidth division required when IDFT the signal
  • the network side When sending a signal to the UE, the network side performs DFT conversion on the transmitted signal according to the notified DFT bandwidth division, or when it is determined that the UE does not perform IDFT conversion on the transmission signal according to the DFT bandwidth division notified by the network side, according to a DFT bandwidth Perform DFT on the transmitted signal.
  • the network side when the network side performs DFT transformation on the transmitted signal according to the notified DFT bandwidth, if the transmitted signal is within a notified DFT bandwidth, DFT is performed on the signal according to the DFT bandwidth; if the transmitted signal occupies multiple notified DFT bandwidths , DFT the transmitted signal according to each DFT bandwidth.
  • it further includes:
  • the network side informs the UE of the required DFT bandwidth division when IDFT the signal in one of the following ways:
  • the network side informs the UE of a DFT bandwidth division semi-statically; or,
  • the network side informs the UE of a DFT bandwidth division set semi-statically, it dynamically informs the UE to select a DFT bandwidth division in the set; or,
  • the network side dynamically informs the UE of a DFT bandwidth division.
  • the one DFT bandwidth is a pre-appointed DFT bandwidth or a DFT bandwidth notified by the network side.
  • the UE does not perform DFT transformation on the transmitted signal according to the DFT bandwidth notified by the network side.
  • the UE determines not to perform the DFT conversion on the transmitted signal according to the DFT bandwidth notified by the network side according to a predefined rule or according to a notification from the network side. DFT transformed.
  • An embodiment of the present disclosure provides a user equipment, and the user equipment includes:
  • the processor is used to read the program in the memory and execute the following process:
  • IDFT is performed on the received signal according to the DFT bandwidth division notified by the network side, or, when it is determined not to perform IDFT on the received signal according to the DFT bandwidth division notified by the network side, according to a DFT bandwidth IDFT the received signal;
  • Transceiver used to receive and send data under the control of the processor.
  • IDFT is performed on the received signal according to the DFT bandwidth notified by the network side
  • IDFT is performed on the received signal according to the DFT bandwidth
  • IDFT is performed on the received signal according to each DFT bandwidth.
  • the one DFT bandwidth is a pre-appointed DFT bandwidth or a DFT bandwidth notified by the network side.
  • the DFT bandwidth division notified by the network side received by the UE is notified by the network side in one of the following ways:
  • the network side informs the UE of a DFT bandwidth division semi-statically; or,
  • the network side informs the UE of a DFT bandwidth division set semi-statically, it dynamically informs the UE to select a DFT bandwidth division in the set; or,
  • the network side dynamically informs the UE of a DFT bandwidth division.
  • An embodiment of the present disclosure provides a base station, and the base station includes:
  • the processor is used to read the program in the memory and execute the following process:
  • the transmitted signal is DFT transformed according to the notified DFT bandwidth division, or when it is determined that the UE does not follow the DFT notified by the network side Bandwidth division
  • Transceiver used to receive and send data under the control of the processor.
  • the transmitted signal when the transmitted signal is DFT transformed according to the notified DFT bandwidth, if the transmitted signal is within a notified DFT bandwidth, the signal is DFT performed according to the DFT bandwidth; if the transmitted signal occupies multiple notified DFT bandwidths, respectively Perform DFT on the transmitted signal according to each DFT bandwidth.
  • it further includes:
  • the network side informs the UE of the required DFT bandwidth division when IDFT the signal in one of the following ways:
  • the network side informs the UE of a DFT bandwidth division semi-statically; or,
  • the network side informs the UE of a DFT bandwidth division set semi-statically, it dynamically informs the UE to select a DFT bandwidth division in the set; or,
  • the network side dynamically informs the UE of a DFT bandwidth division.
  • the one DFT bandwidth is a pre-appointed DFT bandwidth or a DFT bandwidth notified by the network side.
  • the UE does not perform DFT transformation on the transmitted signal according to the DFT bandwidth notified by the network side.
  • the UE determines not to perform the DFT conversion on the transmitted signal according to the DFT bandwidth notified by the network side according to a predefined rule or according to a notification from the network side. DFT transformed.
  • An embodiment of the present disclosure provides a signal processing device, including:
  • the receiving module is used to receive the DFT bandwidth division notified by the network side;
  • the IDFT module is used to perform IDFT on the received signal according to the DFT bandwidth notified by the network side, or when it is determined not to perform IDFT on the received signal according to the DFT bandwidth notified by the network side, to perform IDFT on the received signal according to a DFT bandwidth.
  • An embodiment of the present disclosure provides a signal processing device, including:
  • the notification module is used to notify the UE of the DFT bandwidth division required when performing IDFT on the signal;
  • the DFT module is used to perform DFT conversion on the transmitted signal according to the notified DFT bandwidth division when sending a signal to the UE, or when it is determined that the UE does not perform DFT conversion on the transmitted signal according to the DFT bandwidth division notified by the network side, according to One DFT bandwidth performs DFT on the transmitted signal.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program for executing the above-mentioned signal processing method.
  • the network side will notify the UE of the required DFT bandwidth division when performing IDFT on the signal; then, the network side performs DFT conversion on the signal according to the notified DFT bandwidth division; the UE according to the notification by the network side DFT bandwidth division performs IDFT on the signal. Since DFT/IDFT can be divided according to DFT bandwidth, even when each UE has different downlink reception bandwidth capabilities, each UE can perform DFT/IDFT under several or one DFT bandwidth according to its own bandwidth. IDFT transform, so that the downlink signals of UEs with different downlink bandwidth capabilities can be multiplexed on the same symbol, and their respective downlink signals can be received correctly.
  • the downlink channels of UEs with different downlink reception bandwidth capabilities can still perform frequency division multiplexing on the same symbol under the premise of adopting the DFT-s-OFDM waveform.
  • FIG. 1 is a schematic diagram of the sending process of downlink DFT-S-OFDM waveforms in the background technology
  • Figure 2 is a schematic diagram of PDSCH1 and PDSCH2 bandwidth allocated to UE1 and UE2 in an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of an implementation flow of a signal processing method on the UE side in an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of an implementation flow of a signal processing method on the network side in an embodiment of the disclosure
  • 5 is a schematic diagram of the position of the downlink BWP configured for each UE in the carrier bandwidth in an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of DFT bandwidth division notified to each UE by the network side in an embodiment of the disclosure
  • FIG. 7 is a schematic diagram of the UE performing DFT according to each DFT bandwidth division in an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of performing DFT under each DFT bandwidth division in an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of a UE structure in an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of the structure of a base station in an embodiment of the disclosure.
  • the advantage of using DFT-s-OFDM waveforms in the downlink is that PAPR can be minimized.
  • an appropriate way is to use a unified DFT transform in the downlink.
  • the transmitting end cannot use only one DFT transformation.
  • Figure 2 is a schematic diagram of PDSCH1 and PDSCH2 bandwidth allocated to UE1 and UE2.
  • UE1 supports 100MHz bandwidth and UE2 supports 200MHz bandwidth.
  • PDSCH1 Physical Downlink Shared Channel
  • UE2 is allocated PDSCH2
  • PDSCH1 and PDSCH2 use frequency division multiplexing to occupy 200MHz bandwidth as shown in Figure 2.
  • the transmitting end cannot perform DFT transformation according to the 200MHz bandwidth, otherwise the signal of PDSCH1 will also be dispersed in the 200MHz bandwidth and UE1 does not support reception in a bandwidth exceeding 100MHz.
  • one solution is to determine the DFT bandwidth according to the frequency domain resource allocation of the PDSCH, that is, for multiple PDSCHs of frequency division multiplexing, DFT transformation is performed on each PDSCH independently. Since the transmitter must ensure that the frequency domain resource allocation of the PDSCH is within the receiving bandwidth capability of the UE, the DFT bandwidth of the PDSCH must also be within the receiving bandwidth capability of the UE.
  • the problem with this scheme is that on the same symbol, the number of DFT transforms is equal to the number of downlink channels of frequency division multiplexing. When there are more downlink channels, the number of DFT transforms is also more, which will be significant. Increasing PAPR violates the original intention of using DFT-s-OFDM waveforms in the downlink.
  • the embodiments of the present disclosure provide a signal processing solution for how to perform frequency division on the same symbol on the premise that the downlink channels of UEs with different downlink reception bandwidth capabilities adopt DFT-s-OFDM waveforms. Multiplexing.
  • the network side notifies the UE of the DFT bandwidth division within the bandwidth, and the UE performs IDFT in each DFT bandwidth according to the notified DFT bandwidth division.
  • IDFT conversion is performed according to the DFT bandwidth where it is located; when the received signal is within multiple DFT bandwidths, IDFT conversion is performed according to each DFT bandwidth.
  • Figure 3 is a schematic diagram of the implementation flow of the signal processing method on the UE side, as shown in the figure, including:
  • Step 301 The UE receives the DFT bandwidth division notified by the network side;
  • Step 302 The UE performs IDFT on the received signal according to the DFT bandwidth division notified by the network side, or, when it is determined not to perform IDFT on the received signal according to the DFT bandwidth division notified by the network side, performs IDFT on the received signal according to a DFT bandwidth.
  • the UE when the UE performs IDFT on the received signal according to the DFT bandwidth notified by the network side, if the received signal is within a DFT bandwidth notified by the network side, the UE performs IDFT on the received signal according to the DFT bandwidth; if the received signal occupies the network side For the notified multiple DFT bandwidths, the UE performs IDFT on the received signal according to each DFT bandwidth.
  • the one DFT bandwidth is a pre-appointed DFT bandwidth or a DFT bandwidth notified by the network side.
  • Figure 4 is a schematic diagram of the implementation process of the signal processing method on the network side, as shown in the figure, including:
  • Step 401 The network side notifies the UE of the DFT bandwidth division required when performing IDFT on the signal;
  • Step 402 When sending a signal to the UE, the network side performs DFT conversion on the transmission signal according to the notified DFT bandwidth division, or when it is determined that the UE does not perform DFT conversion on the transmission signal according to the DFT bandwidth division notified by the network side, according to One DFT bandwidth performs DFT on the transmitted signal.
  • the network side when the network side performs DFT transformation on the transmitted signal according to the notified DFT bandwidth, if the transmitted signal is within a notified DFT bandwidth, DFT is performed on the transmitted signal according to the DFT bandwidth; if the transmitted signal occupies multiple DFTs notified Bandwidth, DFT the transmitted signal according to each DFT bandwidth.
  • the one DFT bandwidth is a pre-appointed DFT bandwidth or a DFT bandwidth notified by the network side.
  • Figure 5 is a schematic diagram of the position of the downlink BWP configured for each UE in the carrier bandwidth.
  • the system downlink bandwidth is 400MHz
  • UE1 supports downlink 400MHz bandwidth
  • UE2 supports downlink 200MHz bandwidth
  • UE3 supports downlink 100MHz bandwidth.
  • the network side configures the downlink BWP (Bandwidth part) for UE1 as 264 RBs (resource block) (corresponding to 400MHz) according to the downlink bandwidth capabilities of each UE, and the downlink BWP of UE2 is 132 RBs (corresponding to 200MHz) ), the downlink BWP of UE3 is 66 RBs (corresponding to 100MHz), and the position within the carrier bandwidth is shown in Figure 5.
  • the network side notifies the terminal of the DFT bandwidth division within the bandwidth range.
  • the bandwidth may be the BWP bandwidth or system bandwidth configured for the UE on the network side.
  • FIG. 6 is a schematic diagram of the DFT bandwidth division notified to each UE by the network side.
  • the BWP notified by the network side to UE1 is divided into 3 DFT bandwidths, which are 66 RBs, 66 RBs and 132 RBs respectively;
  • the side notifies UE2 that the BWP is divided into 2 DFT bandwidths, which are 66 RBs respectively;
  • the network side notifies UE3 that there is only one DFT bandwidth of 66 RBs in the BWP, as shown in FIG. 6.
  • the network side When the network side transmits the downlink physical channel, it performs DFT conversion according to the DFT bandwidth notified to the UE, and the UE performs IDFT conversion according to the DFT bandwidth notified by the network side.
  • DFT/IDFT conversion When a downlink physical channel is in one DFT bandwidth, DFT/IDFT conversion is performed according to the DFT bandwidth where it is located; when a downlink physical channel is in multiple DFT bandwidths, DFT/IDFT conversion is performed according to each DFT bandwidth.
  • Figure 7 is a schematic diagram of the network side performing DFT according to the DFT bandwidth division.
  • the network side and UE respectively Perform DFT and IDFT conversion according to DFT bandwidth 1 (66 RBs); if the PDSCH on symbol n+k occupies RB#0 to RB#159 in the BWP, the network side and UE respectively follow DFT bandwidth 1 (66 RBs) , DFT bandwidth 2 (66 RBs) and DFT bandwidth 3 (132 RBs) perform DFT and IDFT conversion, as shown in Figure 7.
  • FIG. 8 is a schematic diagram of performing DFT under each DFT bandwidth division.
  • the downlink signals of UEs with different downlink bandwidth capabilities can be multiplexed on the same symbol.
  • the network side schedules PDSCH1, PDSCH2, and PDSCH3 for UE1, UE2, and UE3 in the same time slot, as shown in Figure 8, then:
  • the network side performs 3 DFT transformations on each symbol occupied by the PDSCH in the time slot according to the scheme shown in the figure to generate a transmission signal.
  • the UE performs IDFT according to the DFT bandwidth division notified by the network side. Specifically, for UE1, its PDSCH1 falls in the DFT bandwidth 2 and bandwidth 3 of UE1, so IDFT is performed according to the DFT bandwidth 2 (66RB) and bandwidth 3 (132RB) of UE1; for UE2, its PDSCH2 falls In UE2's DFT bandwidth 1 and bandwidth 2, IDFT is performed according to UE2's DFT bandwidth 1 (66RB) and bandwidth 2 (66RB) respectively; for UE3, its PDSCH3 completely falls in UE3's DFT bandwidth 1, so according to The DFT bandwidth 1 (66RB) of UE3 performs IDFT.
  • the PDSCH1, PDSCH2, and PDSCH3 in the frequency domain of DFT2 on the base station side, UE1, UE2, and UE3 perform IDFT based on the same DFT bandwidth assumption as the base station, so that their respective downlink signals can be correctly received.
  • the network side can also notify the terminal of the DFT bandwidth division within the system bandwidth.
  • the downlink carrier bandwidth is 400MHz, 264 RBs, and assuming that the network side informs the terminal that the 264 RBs are divided into 3 DFT bandwidths, which are 66 RBs, 66 RBs, and 132 RBs (the same as the DFT of UE1 in the above example Bandwidth division).
  • the network side performs DFT conversion according to the DFT bandwidth notified to the UE when transmitting the downlink physical channel, and the UE performs IDFT conversion according to the DFT bandwidth notified by the network side.
  • DFT/IDFT conversion is performed according to the DFT bandwidth where it is located; when a downlink physical channel is in multiple DFT bandwidths, DFT/IDFT conversion is performed according to each DFT bandwidth.
  • the DFT bandwidth division notified by the network side received by the UE is notified by the network side in one of the following ways:
  • the network side informs the UE of a DFT bandwidth division semi-statically; or,
  • the network side informs the UE of a DFT bandwidth division set semi-statically, it dynamically informs the UE to select a DFT bandwidth division in the set; or,
  • the network side dynamically informs the UE of a DFT bandwidth division.
  • the network side can notify a type of DFT semi-statically through RRC (Radio Resource Control) messages (including broadcast) Bandwidth division, that is, the network side semi-statically notifies the UE of a DFT bandwidth division; or semi-statically notifies a DFT bandwidth division set, and further dynamically informs one of the sets through DCI (Downlink Control Indicator)
  • RRC Radio Resource Control
  • a kind of DFT bandwidth division that is, after the network side notifies the UE of a DFT bandwidth division set semi-statically, it dynamically informs the UE to select a DFT bandwidth division in the set; or directly dynamically informs a DFT bandwidth division through DCI, also That is, the network side dynamically informs the UE of a DFT bandwidth division.
  • the latter two methods are more suitable for downlink data channels.
  • the network side semi-statically configures three DFT bandwidth divisions, the first is the same as the above embodiment (that is: 66 RBs, 66 RBs, and 132 RBs); the second is The DFT bandwidth is divided into two 132 RBs; the third is the DFT bandwidth divided into one 264 RB.
  • the network side can dynamically select the DFT bandwidth division method based on the multiplexing of the downlink channel of UE1 with other UEs. For example, if the current symbol has only the PDSCH of UE1, the network side can indicate the third DFT bandwidth division method; if the current symbol has both the PDSCH of UE1 and the PDSCH of UE2, it can indicate the second DFT bandwidth division method, etc.; If the current symbols have PDSCHs of UE1, UE2, and UE3, the first DFT bandwidth division method can be indicated.
  • the UE determines whether to perform IDFT on the signal according to the DFT bandwidth division notified by the network side, it is determined according to a predefined rule or according to a notification from the network side.
  • the network side may further include:
  • the UE does not perform DFT conversion on the transmitted signal according to the DFT bandwidth division notified by the network side, and the UE determines not to divide the transmission signal according to the DFT bandwidth division notified by the network side according to a predefined rule or according to a notification from the network side. Send the signal for DFT conversion.
  • IDFT is performed according to one DFT bandwidth, which is pre-appointed or notified by the network side.
  • an example of determining not to divide according to the DFT bandwidth notified by the network side according to a predefined rule is that when the UE determines that there is only one downlink physical channel on the current symbol, IDFT can be performed according to a DFT bandwidth, and the DFT bandwidth can be a predetermined Arranged or notified by the network side.
  • IDFT can be performed according to a DFT bandwidth
  • the DFT bandwidth can be a predetermined Arranged or notified by the network side.
  • all available methods can be used. For example, the UE judges that the downlink physical channel occupies all downlink frequency domain resources. Specifically, assume that the network side configures three DFT bandwidths for UE1 semi-statically, as shown in FIG. 6.
  • UE1 judges that its PDSCH occupies the entire downlink bandwidth according to the scheduling information, and does not perform three IDFT on the PDSCH according to the three DFT bandwidths configured on the network side, but performs IDFT according to one DFT bandwidth.
  • the DFT bandwidth may be agreed, for example, the system bandwidth or the bandwidth of the PDSCH, or may be notified by the network side, for example, notified in the scheduling information on the network side.
  • an example of determining not to divide the DFT bandwidth notified by the network side according to the network side notification is to consider the existence of UEs with different capabilities in the network, and the network side performs a DFT bandwidth measurement on the system bandwidth range according to the above embodiment. Divide, as shown in Figure 6, the DFT bandwidth division of UE1, and notify the UE through broadcast. However, at a certain moment, users who may be frequency division multiplexed all support a 400MHz bandwidth, then the network side can perform a DFT according to the 400MHz bandwidth at this time.
  • the network side may notify the terminal to perform IDFT not according to the previously notified DFT bandwidth division, but perform IDFT according to the pre-appointed 400MHz bandwidth, or perform IDFT according to a DFT bandwidth less than or equal to 400MHz notified by the network side.
  • the embodiments of the present disclosure also provide a UE, a base station, a signal processing device, and a storage medium. Since the principles of these devices to solve the problem are similar to the signal processing method, the implementation of these devices can refer to the implementation of the method. The repetition will not be repeated.
  • Figure 9 is a schematic diagram of the UE structure. As shown in the figure, the user equipment includes:
  • the processor 900 is configured to read a program in the memory 920 and execute the following process:
  • IDFT is performed on the received signal according to the DFT bandwidth division notified by the network side, or, when it is determined not to perform IDFT on the received signal according to the DFT bandwidth division notified by the network side, according to a DFT bandwidth IDFT the received signal;
  • the transceiver 910 is configured to receive and send data under the control of the processor 900.
  • IDFT is performed on the received signal according to the DFT bandwidth notified by the network side
  • IDFT is performed on the received signal according to the DFT bandwidth
  • IDFT is performed on the received signal according to each DFT bandwidth.
  • the one DFT bandwidth is a pre-appointed DFT bandwidth or a DFT bandwidth notified by the network side.
  • the DFT bandwidth division notified by the network side received by the UE is notified by the network side in one of the following ways:
  • the network side informs the UE of a DFT bandwidth division semi-statically; or,
  • the network side informs the UE of a DFT bandwidth division set semi-statically, it dynamically informs the UE to select a DFT bandwidth division in the set; or,
  • the network side dynamically informs the UE of a DFT bandwidth division.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 900 and various circuits of the memory represented by the memory 920 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 910 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 930 may also be an interface capable of connecting externally and internally with required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 can store data used by the processor 900 when performing operations.
  • FIG. 10 is a schematic diagram of the base station structure. As shown in the figure, the base station includes:
  • the processor 1000 is configured to read a program in the memory 1020 and execute the following process:
  • the transmitted signal is DFT transformed according to the notified DFT bandwidth division, or when it is determined that the UE does not follow the DFT notified by the network side Bandwidth division
  • the transceiver 1010 is used to receive and send data under the control of the processor 1000.
  • the transmitted signal when the transmitted signal is DFT transformed according to the notified DFT bandwidth, if the transmitted signal is within a notified DFT bandwidth, the signal is DFT performed according to the DFT bandwidth; if the transmitted signal occupies multiple notified DFT bandwidths, respectively Perform DFT on the transmitted signal according to each DFT bandwidth.
  • it further includes:
  • the network side informs the UE of the required DFT bandwidth division when IDFT the signal in one of the following ways:
  • the network side informs the UE of a DFT bandwidth division semi-statically; or,
  • the network side informs the UE of a DFT bandwidth division set semi-statically, it dynamically informs the UE to select a DFT bandwidth division in the set; or,
  • the network side dynamically informs the UE of a DFT bandwidth division.
  • the one DFT bandwidth is a pre-appointed DFT bandwidth or a DFT bandwidth notified by the network side.
  • the UE does not perform DFT transformation on the transmitted signal according to the DFT bandwidth notified by the network side.
  • the UE determines not to perform the DFT conversion on the transmitted signal according to the DFT bandwidth notified by the network side according to a predefined rule or according to a notification from the network side. DFT transformed.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1000 and various circuits of the memory represented by the memory 1020 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 1010 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 when performing operations.
  • the embodiment of the present disclosure also provides a signal processing device on the UE side, including:
  • the receiving module is used to receive the DFT bandwidth division notified by the network side;
  • the IDFT module is used to perform IDFT on the received signal according to the DFT bandwidth notified by the network side, or when it is determined not to perform IDFT on the received signal according to the DFT bandwidth notified by the network side, to perform IDFT on the received signal according to a DFT bandwidth.
  • the embodiment of the present disclosure also provides a signal processing device on the network side, including:
  • the notification module is used to notify the UE of the DFT bandwidth division required when performing IDFT on the signal;
  • the DFT module is used to perform DFT conversion on the transmitted signal according to the notified DFT bandwidth division when sending a signal to the UE, or when it is determined that the UE does not perform DFT conversion on the transmitted signal according to the DFT bandwidth division notified by the network side, according to One DFT bandwidth performs DFT on the transmitted signal.
  • each part of the above-mentioned device is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in the same or multiple software or hardware.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program for executing the above-mentioned signal processing method.
  • the UE receives the DFT bandwidth division notified by the network side, and the UE performs IDFT according to the DFT bandwidth division notified by the network side.
  • the UE performs IDFT according to the DFT bandwidth; if the downlink channel received by the UE crosses multiple DFT bandwidths notified by the network side, the UE performs IDFT according to each DFT bandwidth. Bandwidth performs IDFT.
  • the UE determines whether to perform IDFT according to the DFT bandwidth division notified by the network side before performing IDFT according to the DFT bandwidth division notified by the network side. If it is determined not to perform IDFT according to the DFT bandwidth division notified by the network side, IDFT is performed according to one DFT bandwidth.
  • a DFT bandwidth is pre-appointed or notified by the network side.
  • the UE determines whether to perform IDFT according to the DFT bandwidth notified by the network side according to a predefined rule or notification from the network side.
  • the downlink channels of UEs with different downlink reception bandwidth capabilities can still perform frequency division multiplexing on the same symbol under the premise that the DFT-s-OFDM waveform is adopted.
  • the embodiments of the present disclosure can be provided as methods, systems, or computer program products. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the division of the above modules is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned device for implementation.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, which is determined by a certain processing element of the above-mentioned device.
  • each step of the above method or each of the above modules can be completed by hardware integrated logic circuits in the processor element or instructions in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信号处理方法、设备及装置,包括:网络侧通知用户设备对信号进行离散傅里叶逆变换时所需的离散傅里叶变换带宽划分;网络侧在向所述用户设备发送信号时,按通知的离散傅里叶变换带宽划分对发送信号进行离散傅里叶变换变换。用户设备按网络侧通知的离散傅里叶变换带宽划分对接收信号进行离散傅里叶逆变换,或,在确定不按网络侧通知的离散傅里叶变换带宽划分对接收信号进行离散傅里叶逆变换时,按照一个离散傅里叶变换带宽对接收信号进行离散傅里叶逆变换。

Description

信号处理方法、设备及装置
相关申请的交叉引用
本申请主张在2019年7月16日在中国提交的中国专利申请号No.201910641217.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,特别涉及一种信号处理方法、设备及装置。
背景技术
在一种卫星通信系统中的下行(前向)链路采用了DFT-S-OFDM(Discrete-Fourier Transform Spread Orthogonal Frequency Domain Multiplex,离散傅里叶变换扩展正交频分复用)波形,从而可以充分的利用OFDM(Orthogonal Frequency Division Multiplex,正交频分复用)体制对时频资源分配的灵活性,同时,又降低PAPR(Peak Average Power Ratio,峰均比)。
图1为下行DFT-S-OFDM波形的发送流程示意图,图中FFT为快速傅里叶变换(Fast Fourier Transform)如图1所示,调制符号经过串并转换后经过DFT(Discrete Fourier Transform,离散傅里叶变换)变换到频域,再映射到对应的频域位置。由于发端采用了DFT变换,使得信号弥散在对应的DFT带宽上,因此接收端必须获知DFT带宽,并按照DFT带宽进行相应的逆变换,也即IDFT/IFFT(Inverse Discrete Fourier Transform/Inverse Fast Fourier Transform,离散傅里叶逆变换/快速傅里叶逆变换)。
如果所有的UE(User Equipment,用户设备)都具有相同的下行带宽接收能力,例如可以支持下行全带宽接收,则发送端可以在下行的一个符号上采用一个DFT变换,DFT带宽大小可以预先通知终端。当多个UE的下行信号复用在相同的符号上时,多个UE的信号首先进行级联,之后再按照一个统一的DFT带宽进行DFT变换。在接收端,所有的UE按照统一的DFT带宽进行逆变换,之后再提取各自的信号进行后处理。
在下行采用DFT-s-OFDM波形的好处是可以最小化PAPR。
然而,相关技术的不足在于:在UE具有不同的下行接收带宽能力时,当不同能力的UE频分复用在相同的符号时,无法按照统一的DFT带宽进行收发处理。此时,如何在不改变DFT-s-OFDM波形的前提下,支持不同能力的UE频分复用尚无解决方案。
发明内容
本公开提供了一种信号处理方法、设备及装置,用以在不改变DFT-s-OFDM波形的前提下,支持不同能力的UE频分复用。
本公开实施例中提供了一种信号处理方法,包括:
UE接收网络侧通知的DFT带宽划分;
UE按网络侧通知的DFT带宽划分对接收信号进行IDFT,或,在确定不按网络侧通知的DFT带宽划分对接收信号进行IDFT时,按照一个DFT带宽对接收信号进行IDFT。
实施中,在UE按网络侧通知的DFT带宽划分对接收信号进行IDFT时,若接收信号在网络侧通知的一个DFT带宽内,UE按照该DFT带宽对接收信号进行IDFT;若接收信号占用网络侧通知的多个DFT带宽,UE分别按照各个DFT带宽对接收信号进行IDFT。
实施中,在UE按照一个DFT带宽对接收信号进行IDFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
实施中,UE在确定是否按网络侧通知的DFT带宽划分对信号进行IDFT时,是根据预定义的规则或者根据网络侧的通知来确定的。
实施中,UE接收的网络侧通知的DFT带宽划分,是网络侧按以下方式之一通知的:
网络侧半静态的通知UE一种DFT带宽划分;或,
网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
网络侧动态通知UE一种DFT带宽划分。
本公开实施例中提供了一种信号处理方法,包括:
网络侧通知UE对信号进行IDFT时所需的DFT带宽划分;
网络侧在向所述UE发送信号时,按通知的DFT带宽划分对发送信号进行DFT变换,或,在确定UE不按网络侧通知的DFT带宽划分对发送信号进行IDFT变换时,按照一个DFT带宽对发送信号进行DFT。
实施中,在网络侧按通知的DFT带宽划分对发送信号进行DFT变换时,若发送信号在通知的一个DFT带宽内,按照该DFT带宽对信号进行DFT;若发送信号占用通知的多个DFT带宽,分别按照各个DFT带宽对发送信号进行DFT。
实施中,进一步包括:
通知UE是否按网络侧通知的DFT带宽划分对发送信号进行IDFT。
实施中,网络侧按以下方式之一通知UE对信号进行IDFT时所需的DFT带宽划分:
网络侧半静态的通知UE一种DFT带宽划分;或,
网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
网络侧动态通知UE一种DFT带宽划分。
实施中,在网络侧按照一个DFT带宽对发送信号进行DFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
实施中,所述UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换,UE是根据预定义的规则或者根据网络侧的通知来确定不按网络侧通知的DFT带宽划分对发送信号进行DFT变换的。
本公开实施例中提供了一种用户设备,用户设备包括:
处理器,用于读取存储器中的程序,执行下列过程:
在UE接收网络侧通知的DFT带宽划分后,按网络侧通知的DFT带宽划分对接收信号进行IDFT,或,在确定不按网络侧通知的DFT带宽划分对接收信号进行IDFT时,按照一个DFT带宽对接收信号进行IDFT;
收发机,用于在处理器的控制下接收和发送数据。
实施中,在UE按网络侧通知的DFT带宽划分对接收信号进行IDFT时,若接收信号在网络侧通知的一个DFT带宽内,按照该DFT带宽对接收信号 进行IDFT;若接收信号占用网络侧通知的多个DFT带宽,分别按照各个DFT带宽对接收信号进行IDFT。
实施中,在UE按照一个DFT带宽对接收信号进行IDFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
实施中,在确定是否按网络侧通知的DFT带宽划分对信号进行IDFT时,是根据预定义的规则或者根据网络侧的通知来确定的。
实施中,UE接收的网络侧通知的DFT带宽划分,是网络侧按以下方式之一通知的:
网络侧半静态的通知UE一种DFT带宽划分;或,
网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
网络侧动态通知UE一种DFT带宽划分。
本公开实施例中提供了一种基站,基站包括:
处理器,用于读取存储器中的程序,执行下列过程:
在通知UE对信号进行IDFT时所需的DFT带宽划分后,在向所述UE发送信号时,按通知的DFT带宽划分对发送信号进行DFT变换,或,在确定UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换时,按照一个DFT带宽对发送信号进行DFT;
收发机,用于在处理器的控制下接收和发送数据。
实施中,在按通知的DFT带宽划分对发送信号进行DFT变换时,若发送信号在通知的一个DFT带宽内,按照该DFT带宽对信号进行DFT;若发送信号占用通知的多个DFT带宽,分别按照各个DFT带宽对发送信号进行DFT。
实施中,进一步包括:
通知UE是否按通知的DFT带宽划分对发送信号进行IDFT。
实施中,
网络侧按以下方式之一通知UE对信号进行IDFT时所需的DFT带宽划分:
网络侧半静态的通知UE一种DFT带宽划分;或,
网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
网络侧动态通知UE一种DFT带宽划分。
实施中,在网络侧按照一个DFT带宽对发送信号进行DFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
实施中,所述UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换,UE是根据预定义的规则或者根据网络侧的通知来确定不按网络侧通知的DFT带宽划分对发送信号进行DFT变换的。
本公开实施例中提供了一种信号处理装置,包括:
接收模块,用于接收网络侧通知的DFT带宽划分;
IDFT模块,用于按网络侧通知的DFT带宽划分对接收信号进行IDFT,或,在确定不按网络侧通知的DFT带宽划分对接收信号进行IDFT时,按照一个DFT带宽对接收信号进行IDFT。
本公开实施例中提供了一种信号处理装置,包括:
通知模块,用于通知UE对信号进行IDFT时所需的DFT带宽划分;
DFT模块,用于在向所述UE发送信号时,按通知的DFT带宽划分对发送信号进行DFT变换,或,在确定UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换时,按照一个DFT带宽对发送信号进行DFT。
本公开实施例中提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述信号处理方法的计算机程序。
本公开有益效果如下:
在本公开实施例提供的技术方案中,网络侧会通知UE对信号进行IDFT时所需的DFT带宽划分;然后,网络侧按通知的DFT带宽划分对信号进行DFT变换;UE按网络侧通知的DFT带宽划分对信号进行IDFT。由于DFT/IDFT是可以按照DFT带宽划分进行的,因此即使是在各UE具有不同的下行接收带宽能力的情况下,针对每一个UE可以根据自身的带宽在几个或一个DFT带宽下进行DFT/IDFT变换,从而使得不同下行带宽能力的UE的下行信号可以复用在相同的符号上,并且能够正确接收到各自的下行信号。因此,采用本公开实施例提供的技术方案,可以实现不同下行接收带宽能力 的UE的下行信道在采用DFT-s-OFDM波形的前提下,仍然可以在同一个符号上进行频分复用。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为背景技术中下行DFT-S-OFDM波形的发送流程示意图;
图2为本公开实施例中为UE1、UE2分配的PDSCH1、PDSCH2带宽示意图;
图3为本公开实施例中UE侧的信号处理方法实施流程示意图;
图4为本公开实施例中网络侧的信号处理方法实施流程示意图;
图5为本公开实施例中为各UE配置的下行BWP在载波带宽内的位置示意图;
图6为本公开实施例中网络侧通知各UE的DFT带宽划分示意图;
图7为本公开实施例中UE按各DFT带宽划分进行DFT示意图;
图8为本公开实施例中在各DFT带宽划分下进行DFT示意图;
图9为本公开实施例中UE结构示意图;
图10为本公开实施例中基站结构示意图。
具体实施方式
发明人在发明过程中注意到:
在下行采用DFT-s-OFDM波形的好处是可以最小化PAPR。为了最小化PAPR,一种恰当的方式是,下行采用一个统一的DFT变换。
然而,如果不同的UE有不同的下行接收带宽能力,且信号复用在同一个符号上,则发送端不能还仅采用一个DFT变换。
图2为为UE1、UE2分配的PDSCH1、PDSCH2带宽示意图。例如,UE1支持100MHz带宽,UE2支持200MHz带宽,如果为UE1分配PDSCH1(Physical Downlink Shared Channel,物理下行链路共享信道),为UE2分配 PDSCH2,PDSCH1和PDSCH2采用频分复用占用200MHz带宽如图2所示,则发送端不能按照200MHz带宽进行DFT变换,否则PDSCH1的信号也弥散在200MHz带宽中而UE1不支持超过100MHz的带宽接收。
针对上述场景,一种解决方案是按照PDSCH的频域资源分配确定DFT带宽,即针对频分复用的多个PDSCH,对每一个PDSCH独立进行DFT变换。由于发送端一定会保证PDSCH的频域资源分配在UE接收带宽能力范围之内,因此,PDSCH的DFT带宽也一定在UE的接收带宽能力范围之内。然而,该方案的问题在于:在同一个符号上,DFT变换的个数等于频分复用的下行信道个数,当下行信道个数较多时,DFT变换的个数也较多,从而会显著增加PAPR,违背了下行采用DFT-s-OFDM波形的初衷。
基于此,本公开实施例中提供了一种信号处理方案,用于在不同下行接收带宽能力的UE的下行信道在采用DFT-s-OFDM波形的前提下,如何在同一个符号上进行频分复用。
下面结合附图对本公开的具体实施方式进行说明。
本公开提供的技术方案中,网络侧通知UE带宽范围内的DFT带宽划分,UE按照通知的DFT带宽划分在每个DFT带宽内分别进行IDFT。当接收信号在一个DFT带宽内时,按照其所在的DFT带宽进行IDFT变换;当接收信号在多个DFT带宽内时,分别按照各个DFT带宽进行IDFT变换。
在说明过程中,将分别从UE与网络侧的实施进行说明,然后还将给出二者配合实施的实例以更好地理解本公开实施例中给出的方案的实施。这样的说明方式并不意味着二者必须配合实施、或者必须单独实施,实际上,当UE与网络侧分开实施时,其也各自解决UE侧、网络侧的问题,而二者结合使用时,会获得更好的技术效果。
图3为UE侧的信号处理方法实施流程示意图,如图所示,包括:
步骤301、UE接收网络侧通知的DFT带宽划分;
步骤302、UE按网络侧通知的DFT带宽划分对接收信号进行IDFT,或,在确定不按网络侧通知的DFT带宽划分对接收信号进行IDFT时,按照一个DFT带宽对接收信号进行IDFT。
实施中,在UE按网络侧通知的DFT带宽划分对接收信号进行IDFT时, 若接收信号在网络侧通知的一个DFT带宽内,UE按照该DFT带宽对接收信号进行IDFT;若接收信号占用网络侧通知的多个DFT带宽,UE分别按照各个DFT带宽对接收信号进行IDFT。
实施中,在UE按照一个DFT带宽对接收信号进行IDFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
图4为网络侧的信号处理方法实施流程示意图,如图所示,包括:
步骤401、网络侧通知UE对信号进行IDFT时所需的DFT带宽划分;
步骤402、网络侧在向所述UE发送信号时,按通知的DFT带宽划分对发送信号进行DFT变换,或,在确定UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换时,按照一个DFT带宽对发送信号进行DFT。
实施中,在网络侧按通知的DFT带宽划分对发送信号进行DFT变换时,若发送信号在通知的一个DFT带宽内,按照该DFT带宽对发送信号进行DFT;若发送信号占用通知的多个DFT带宽,分别按照各个DFT带宽对发送信号进行DFT。
实施中,在网络侧按照一个DFT带宽对发送信号进行DFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
下面以实例进行说明。
图5为为各UE配置的下行BWP在载波带宽内的位置示意图,如图所示,假设系统下行带宽为400MHz,UE1支持下行400MHz带宽,UE2支持下行200MHz带宽,UE3支持下行100MHz带宽。假设网络侧按照各UE的下行带宽能力分别为UE1配置下行BWP(部分带宽,Bandwidth part)为264个RB(资源块,resource block)(对应400MHz),UE2的下行BWP为132个RB(对应200MHz),UE3的下行BWP为66个RB(对应100MHz),在载波带宽内的位置如图5所示。
实施中,网络侧通知终端在带宽范围内的DFT带宽划分。所述带宽可以为网络侧为UE配置的BWP带宽或者系统带宽。
下面先以网络侧通知终端在BWP内的DFT带宽划分为例具体说明本公开。图6为网络侧通知各UE的DFT带宽划分示意图,如图所示,例如,网络侧通知UE1的BWP内划分为3个DFT带宽,分别为66个RB、66个RB 以及132个RB;网络侧通知UE2的BWP内划分为2个DFT带宽,分别为66个RB;网络侧通知UE3的BWP内只有一个66个RB的DFT带宽,如图6所示。
网络侧在进行下行物理信道发送时,按照通知UE的DFT带宽进行DFT变换,UE按照网络侧通知的DFT带宽进行IDFT变换。当一个下行物理信道在一个DFT带宽内时,按照其所在的DFT带宽进行DFT/IDFT变换;当一个下行物理信道在多个DFT带宽内时,分别按照各个DFT带宽进行DFT/IDFT变换。
图7为网络侧按各DFT带宽划分进行DFT示意图,如图所示,以UE1的PDSCH为例,若符号n上的PDSCH占用BWP内的RB#0至RB#59,则网络侧和UE分别按照DFT带宽1(66个RB)进行DFT和IDFT变换;若符号n+k上的PDSCH占用BWP内的RB#0至RB#159,则网络侧和UE分别按照DFT带宽1(66个RB)、DFT带宽2(66个RB)和DFT带宽3(132个RB)进行DFT和IDFT变换,具体如图7所示。
图8为在各DFT带宽划分下进行DFT示意图,采用实施例提供的技术方案后,不同下行带宽能力的UE的下行信号可以复用在相同的符号上。例如,网络侧在同一个时隙中分别为UE1、UE2和UE3调度了PDSCH1、PDSCH2和PDSCH3,如图8所示,则:
网络侧按照图示的方案在该时隙PDSCH占用的每一个符号上分别进行3个DFT变换,生成发送信号。
在UE侧,UE按照网络侧通知的DFT带宽划分进行IDFT。具体地,对于UE1而言,其PDSCH1落在UE1的DFT带宽2和带宽3中,因此分别按照UE1的DFT带宽2(66RB)和带宽3(132RB)进行IDFT;对于UE2而言,其PDSCH2落在UE2的DFT带宽1和带宽2中,因此分别按照UE2的DFT带宽1(66RB)和带宽2(66RB)进行IDFT;对于UE3而言,其PDSCH3完全落在UE3在DFT带宽1中,因此按照UE3的DFT带宽1(66RB)进行IDFT。
可见,在基站侧DFT2的频域范围内的PDSCH1、PDSCH2和PDSCH3,UE1、UE2和UE3都是按照与基站相同的DFT带宽假设进行IDFT,从而能 够正确接收到各自的下行信号。
实施中,网络侧还可以通知终端在系统带宽范围内的DFT带宽划分。
仍然假设下行载波带宽为400MHz,264个RB,假设网络侧通知终端在264个RB中划分为3个DFT带宽,分别为66个RB、66个RB和132个RB(同上面示例中UE1的DFT带宽划分)。网络侧在进行下行物理信道发送时按照通知UE的DFT带宽进行DFT变换,UE按照网络侧通知的DFT带宽进行IDFT变换。当一个下行物理信道在一个DFT带宽内时,按照其所在的DFT带宽进行DFT/IDFT变换;当一个下行物理信道在多个DFT带宽内时,分别按照各个DFT带宽进行DFT/IDFT变换。
实施中,UE接收的网络侧通知的DFT带宽划分,是网络侧按以下方式之一通知的:
网络侧半静态的通知UE一种DFT带宽划分;或,
网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
网络侧动态通知UE一种DFT带宽划分。
具体的:
无论网络侧通知终端的是系统带宽范围内在DFT带宽划分还是配置的BWP内的DFT带宽划分,网络侧可以通过RRC(无线资源控制,Radio Resource Control)消息(包括广播)半静态的通知一种DFT带宽划分,也即,网络侧半静态的通知UE一种DFT带宽划分;或者半静态的通知一个DFT带宽划分集合,进一步通过DCI(下行控制指示,Downlink Control Indicator)动态通知所述集合中的一种DFT带宽划分,也即,网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或者直接通过DCI动态通知一种DFT带宽划分,也即,网络侧动态通知UE一种DFT带宽划分。其中,后两种方式更适用于下行数据信道。
下面举实例说明。
假设,对于上述实施例中的UE1,网络侧半静态的配置三种DFT带宽划分,第一种同上述实施例(也即:66个RB、66个RB以及132个RB);第二种为划分为两个132个RB的DFT带宽;第三种为划分为一个264个RB 的DFT带宽。
网络侧可以基于UE1的下行信道与其它UE的复用情况,动态选择DFT带宽划分方式。例如,若在当前符号只有UE1的PDSCH,则网络侧可以指示第三种DFT带宽划分方式;若当前符号既有UE1的PDSCH又有UE2的PDSCH,则可以指示第二种DFT带宽划分方式等;若当前符号有UE1、UE2和UE3的PDSCH,则可以指示第一种DFT带宽划分方式。
实施中,对于UE侧,UE在确定是否按网络侧通知的DFT带宽划分对信号进行IDFT时,是根据预定义的规则或者根据网络侧的通知来确定的。
相应的,对于网络侧,还可以进一步包括:
通知UE是否按网络侧通知的DFT带宽划分对信号进行IDFT。
相应的,实施中,所述UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换,UE是根据预定义的规则或者根据网络侧的通知来确定不按网络侧通知的DFT带宽划分对发送信号进行DFT变换的。
进一步地,具体实施中,若UE确定不按照网络侧通知的DFT带宽划分进行IDFT,则按照一个DFT带宽进行IDFT,所述DFT带宽是预先约定的或者是由网络侧通知的。
例如,一种根据预定义的规则确定不按网络侧通知的DFT带宽划分的实例为,UE确定当前符号上只有一个下行物理信道时,可以按照一个DFT带宽进行IDFT,所述DFT带宽可以是预先约定的或者是由网络侧通知的。在确定当前符号上只有一个下行物理信道时,可以采用可用的所有方式,例如,UE判断所述下行物理信道占用了全部的下行频域资源等。具体地,假设网络侧为UE1半静态的配置了三个DFT带宽,如图6所示。在某个时隙中,UE1根据调度信息判断其PDSCH占用了整个下行带宽,则不按照网络侧配置的三个DFT带宽对所述PDSCH进行三个IDFT,而是按照一个DFT带宽进行IDFT,所述一个DFT带宽可以是约定的,例如为系统带宽或者PDSCH的带宽,也可以是网络侧通知的,例如在网络侧在调度信息中通知。
例如,一种根据网络侧通知确定不按网络侧通知的DFT带宽划分的实例为考虑到网络中不同能力UE的存在,网络侧按照上面实施例的方式对系统带宽范围进行了一种DFT带宽的划分,如图6中UE1的DFT带宽划分,并 通过广播通知UE。但在特定时刻,可能频分复用的用户都支持400MHz带宽,则此时网络侧可以按照400MHz带宽进行一个DFT。此时,网络侧可以通知终端不按照先前通知的DFT带宽划分进行IDFT,而按照预先约定的400MHz带宽进行IDFT,或者按照网络侧通知的一个小于等于400MHz的DFT带宽进行IDFT。
基于同一发明构思,本公开实施例中还提供了一种UE、基站、信号处理装置、存储介质,由于这些设备解决问题的原理与信号处理方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
在实施本公开实施例提供的技术方案时,可以按如下方式实施。
图9为UE结构示意图,如图所示,用户设备包括:
处理器900,用于读取存储器920中的程序,执行下列过程:
在UE接收网络侧通知的DFT带宽划分后,按网络侧通知的DFT带宽划分对接收信号进行IDFT,或,在确定不按网络侧通知的DFT带宽划分对接收信号进行IDFT时,按照一个DFT带宽对接收信号进行IDFT;
收发机910,用于在处理器900的控制下接收和发送数据。
实施中,在UE按网络侧通知的DFT带宽划分对接收信号进行IDFT时,若接收信号在网络侧通知的一个DFT带宽内,按照该DFT带宽对接收信号进行IDFT;若接收信号占用网络侧通知的多个DFT带宽,分别按照各个DFT带宽对接收信号进行IDFT。
实施中,在UE按照一个DFT带宽对接收信号进行IDFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
实施中,在确定是否按网络侧通知的DFT带宽划分对信号进行IDFT时,是根据预定义的规则或者根据网络侧的通知来确定的。
实施中,UE接收的网络侧通知的DFT带宽划分,是网络侧按以下方式之一通知的:
网络侧半静态的通知UE一种DFT带宽划分;或,
网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
网络侧动态通知UE一种DFT带宽划分。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机910可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口930还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
图10为基站结构示意图,如图所示,基站中包括:
处理器1000,用于读取存储器1020中的程序,执行下列过程:
在通知UE对信号进行IDFT时所需的DFT带宽划分后,在向所述UE发送信号时,按通知的DFT带宽划分对发送信号进行DFT变换,或,在确定UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换时,按照一个DFT带宽对发送信号进行DFT;
收发机1010,用于在处理器1000的控制下接收和发送数据。
实施中,在按通知的DFT带宽划分对发送信号进行DFT变换时,若发送信号在通知的一个DFT带宽内,按照该DFT带宽对信号进行DFT;若发送信号占用通知的多个DFT带宽,分别按照各个DFT带宽对发送信号进行DFT。
实施中,进一步包括:
通知UE是否按通知的DFT带宽划分对发送信号进行IDFT。
实施中,
网络侧按以下方式之一通知UE对信号进行IDFT时所需的DFT带宽划分:
网络侧半静态的通知UE一种DFT带宽划分;或,
网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
网络侧动态通知UE一种DFT带宽划分。
实施中,在网络侧按照一个DFT带宽对发送信号进行DFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
实施中,所述UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换,UE是根据预定义的规则或者根据网络侧的通知来确定不按网络侧通知的DFT带宽划分对发送信号进行DFT变换的。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
本公开实施例中还提供了一种UE侧的信号处理装置,包括:
接收模块,用于接收网络侧通知的DFT带宽划分;
IDFT模块,用于按网络侧通知的DFT带宽划分对接收信号进行IDFT,或,在确定不按网络侧通知的DFT带宽划分对接收信号进行IDFT时,按照一个DFT带宽对接收信号进行IDFT。
本公开实施例中还提供了一种网络侧的信号处理装置,包括:
通知模块,用于通知UE对信号进行IDFT时所需的DFT带宽划分;
DFT模块,用于在向所述UE发送信号时,按通知的DFT带宽划分对发送信号进行DFT变换,或,在确定UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换时,按照一个DFT带宽对发送信号进行DFT。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本公开时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
本公开实施例中提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述信号处理方法的计算机程序。
具体实施是可以参见前述UE侧以及网络侧的信号处理方法实施。
综上所述,在本公开实施例提供的技术方案中,UE接收网络侧通知的DFT带宽划分,UE按网络侧通知的DFT带宽划分进行IDFT。
进一步的,若UE接收的下行信道在网络侧通知的一个DFT带宽内,则UE按照该DFT带宽进行IDFT;若UE接收的下行信道跨网络侧通知的多个DFT带宽,则UE分别按照各个DFT带宽进行IDFT。
UE在按网络侧通知的DFT带宽划分进行IDFT前确定是否按网络侧通知的DFT带宽划分进行IDFT,若确定不按网络侧通知的DFT带宽划分进行IDFT,则按照一个DFT带宽进行IDFT。
一个DFT带宽为预先约定的或者由网络侧通知的。
UE根据预定义的规则或者网络侧通知确定是否按网络侧通知的DFT带宽划分进行IDFT。
采用本公开实施例提供的技术方案,可以实现不同下行接收带宽能力的UE的下行信道在采用DFT-s-OFDM波形的前提下,仍然可以在同一个符号上进行频分复用。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在 这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (25)

  1. 一种信号处理方法,包括:
    用户设备UE接收网络侧通知的离散傅里叶变换DFT带宽划分;
    UE按网络侧通知的DFT带宽划分对接收信号进行IDFT,或,在确定不按网络侧通知的DFT带宽划分对接收信号进行IDFT时,按照一个DFT带宽对接收信号进行离散傅里叶逆变换IDFT。
  2. 如权利要求1所述的方法,其中,在UE按网络侧通知的DFT带宽划分对接收信号进行IDFT时,若接收信号在网络侧通知的一个DFT带宽内,UE按照该DFT带宽对接收信号进行IDFT;若接收信号占用网络侧通知的多个DFT带宽,UE分别按照各个DFT带宽对接收信号进行IDFT。
  3. 如权利要求1所述的方法,其中,在UE按照一个DFT带宽对接收信号进行IDFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
  4. 如权利要求1所述的方法,其中,UE在确定是否按网络侧通知的DFT带宽划分对信号进行IDFT时,是根据预定义的规则或者根据网络侧的通知来确定的。
  5. 如权利要求1所述的方法,其中,UE接收的网络侧通知的DFT带宽划分,是网络侧按以下方式之一通知的:
    网络侧半静态的通知UE一种DFT带宽划分;或,
    网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
    网络侧动态通知UE一种DFT带宽划分。
  6. 一种信号处理方法,包括:
    网络侧通知UE对信号进行IDFT时所需的DFT带宽划分;
    网络侧在向所述UE发送信号时,按通知的DFT带宽划分对发送信号进行DFT变换,或,在确定UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换时,按照一个DFT带宽对发送信号进行DFT。
  7. 如权利要求6所述的方法,其中,在网络侧按通知的DFT带宽划分 对发送信号进行DFT变换时,若发送信号在通知的一个DFT带宽内,按照该DFT带宽对信号进行DFT;若发送信号占用通知的多个DFT带宽,分别按照各个DFT带宽对发送信号进行DFT。
  8. 如权利要求6所述的方法,进一步包括:
    通知UE是否按网络侧通知的DFT带宽划分对发送信号进行IDFT。
  9. 如权利要求6所述的方法,其中,网络侧按以下方式之一通知UE对信号进行IDFT时所需的DFT带宽划分:
    网络侧半静态的通知UE一种DFT带宽划分;或,
    网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
    网络侧动态通知UE一种DFT带宽划分。
  10. 如权利要求6所述的方法,其中,在网络侧按照一个DFT带宽对发送信号进行DFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
  11. 如权利要求6所述的方法,其中,所述UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换,UE是根据预定义的规则或者根据网络侧的通知来确定不按网络侧通知的DFT带宽划分对发送信号进行DFT变换的。
  12. 一种用户设备,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    在UE接收网络侧通知的DFT带宽划分后,按网络侧通知的DFT带宽划分对接收信号进行IDFT,或,在确定不按网络侧通知的DFT带宽划分对接收信号进行IDFT时,按照一个DFT带宽对接收信号进行IDFT;
    收发机,用于在处理器的控制下接收和发送数据。
  13. 如权利要求12所述的用户设备,其中,在UE按网络侧通知的DFT带宽划分对接收信号进行IDFT时,若接收信号在网络侧通知的一个DFT带宽内,按照该DFT带宽对接收信号进行IDFT;若接收信号占用网络侧通知的多个DFT带宽,分别按照各个DFT带宽对接收信号进行IDFT。
  14. 如权利要求12所述的用户设备,其中,在UE按照一个DFT带宽对 接收信号进行IDFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
  15. 如权利要求12所述的用户设备,其中,在确定是否按网络侧通知的DFT带宽划分对信号进行IDFT时,是根据预定义的规则或者根据网络侧的通知来确定的。
  16. 如权利要求12所述的用户设备,其中,UE接收的网络侧通知的DFT带宽划分,是网络侧按以下方式之一通知的:
    网络侧半静态的通知UE一种DFT带宽划分;或,
    网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
    网络侧动态通知UE一种DFT带宽划分。
  17. 一种基站,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    在通知UE对信号进行IDFT时所需的DFT带宽划分后,在向所述UE发送信号时,按通知的DFT带宽划分对发送信号进行DFT变换,或,在确定UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换时,按照一个DFT带宽对发送信号进行DFT;
    收发机,用于在处理器的控制下接收和发送数据。
  18. 如权利要求17所述的基站,其中,在按通知的DFT带宽划分对发送信号进行DFT变换时,若发送信号在通知的一个DFT带宽内,按照该DFT带宽对信号进行DFT;若发送信号占用通知的多个DFT带宽,分别按照各个DFT带宽对发送信号进行DFT。
  19. 如权利要求17所述的基站,进一步包括:
    通知UE是否按通知的DFT带宽划分对发送信号进行IDFT。
  20. 如权利要求17所述的基站,其中,网络侧按以下方式之一通知UE对信号进行IDFT时所需的DFT带宽划分:
    网络侧半静态的通知UE一种DFT带宽划分;或,
    网络侧半静态的通知UE一个DFT带宽划分集合后,动态通知UE选择所述集合中的一种DFT带宽划分;或,
    网络侧动态通知UE一种DFT带宽划分。
  21. 如权利要求17所述的基站,其中,在网络侧按照一个DFT带宽对发送信号进行DFT时,所述一个DFT带宽是预先约定的DFT带宽,或者是由网络侧通知的DFT带宽。
  22. 如权利要求17所述的基站,其中,所述UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换,UE是根据预定义的规则或者根据网络侧的通知来确定不按网络侧通知的DFT带宽划分对发送信号进行DFT变换的。
  23. 一种信号处理装置,包括:
    接收模块,用于接收网络侧通知的DFT带宽划分;
    IDFT模块,用于按网络侧通知的DFT带宽划分对接收信号进行IDFT,或,在确定不按网络侧通知的DFT带宽划分对接收信号进行IDFT时,按照一个DFT带宽对接收信号进行IDFT。
  24. 一种信号处理装置,包括:
    通知模块,用于通知UE对信号进行IDFT时所需的DFT带宽划分;
    DFT模块,用于在向所述UE发送信号时,按通知的DFT带宽划分对发送信号进行DFT变换,或,在确定UE不按网络侧通知的DFT带宽划分对发送信号进行DFT变换时,按照一个DFT带宽对发送信号进行DFT。
  25. 一种计算机可读存储介质,所述计算机可读存储介质存储有执行权利要求1至11任一所述方法的计算机程序。
PCT/CN2020/097426 2019-07-16 2020-06-22 信号处理方法、设备及装置 WO2021008306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910641217.3A CN112243271B (zh) 2019-07-16 2019-07-16 一种信号处理方法、设备及装置
CN201910641217.3 2019-07-16

Publications (1)

Publication Number Publication Date
WO2021008306A1 true WO2021008306A1 (zh) 2021-01-21

Family

ID=74166980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097426 WO2021008306A1 (zh) 2019-07-16 2020-06-22 信号处理方法、设备及装置

Country Status (2)

Country Link
CN (1) CN112243271B (zh)
WO (1) WO2021008306A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988434A (zh) * 2005-12-19 2007-06-27 株式会社Ntt都科摩 正交频分多址系统中的导频子载波分组方法
CN102160310A (zh) * 2008-09-22 2011-08-17 松下电器产业株式会社 无线通信装置及信号分割方法
JP2012195754A (ja) * 2011-03-16 2012-10-11 Fujitsu Semiconductor Ltd スプリアス測定装置及びそれを利用した受信装置,通信システム
US20190020522A1 (en) * 2017-07-12 2019-01-17 Qualcomm Incorporated Waveform for millimeter wave new radio
CN109565903A (zh) * 2016-08-05 2019-04-02 诺基亚技术有限公司 用于前传接口的频域压缩

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954720B2 (ja) * 2007-01-09 2012-06-20 株式会社エヌ・ティ・ティ・ドコモ 基地局及びユーザ端末並びに受信チャネル品質測定用信号の送信制御方法
DK3504832T3 (da) * 2016-08-24 2020-10-19 Ericsson Telefon Ab L M Fremgangsmåder til effektiv signalering i V2X-kommunikation
EP3554110B1 (en) * 2016-12-28 2021-08-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information sending method, information receiving method, apparatus and system
KR102394225B1 (ko) * 2017-07-25 2022-05-04 삼성전자주식회사 무선 통신 시스템에서 대역폭을 결정하기 위한 장치 및 방법
WO2020244728A1 (en) * 2019-06-03 2020-12-10 Nokia Technologies Oy Dynamic discrete fourier transform or bandwidth size indication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1988434A (zh) * 2005-12-19 2007-06-27 株式会社Ntt都科摩 正交频分多址系统中的导频子载波分组方法
CN102160310A (zh) * 2008-09-22 2011-08-17 松下电器产业株式会社 无线通信装置及信号分割方法
JP2012195754A (ja) * 2011-03-16 2012-10-11 Fujitsu Semiconductor Ltd スプリアス測定装置及びそれを利用した受信装置,通信システム
CN109565903A (zh) * 2016-08-05 2019-04-02 诺基亚技术有限公司 用于前传接口的频域压缩
US20190020522A1 (en) * 2017-07-12 2019-01-17 Qualcomm Incorporated Waveform for millimeter wave new radio

Also Published As

Publication number Publication date
CN112243271A (zh) 2021-01-19
CN112243271B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
US11777683B2 (en) Method and apparatus for transmitting DMRS
CN110166209A (zh) 下行控制信息传输方法
WO2018228500A1 (zh) 一种调度信息传输方法及装置
TW201803382A (zh) 傳輸數據的方法、終端設備和網絡設備
CN109906645B (zh) 上行信号的传输方法和装置
US20150319771A1 (en) Scheduling for devices with limited signal processing capability
CN108667492B (zh) 一种预编码颗粒度的确定方法和装置
TW201803384A (zh) 傳輸數據的方法及裝置
WO2019047974A1 (zh) 资源指示方法、装置及存储介质
WO2020164461A1 (zh) 一种下行传输方法及其装置
WO2018228501A1 (zh) 通信方法及装置
WO2020052419A1 (zh) 参考信号及序列配置方法和装置
WO2021008306A1 (zh) 信号处理方法、设备及装置
WO2018127213A1 (zh) 一种上行传输方法、终端及基站
CN111294306B (zh) 一种参考信号的传输方法及装置
WO2023202667A1 (zh) 一种参考信号传输方法、装置及存储介质
WO2020200090A1 (zh) 数据信道传输带宽确定方法、装置、网络侧设备及终端
CN110710290A (zh) 用于传输数据的方法和终端设备
CN116887427A (zh) 一种波形确定方法及其装置
CN118785142A (zh) 一种通信方法及相关设备
TW201937897A (zh) 一種上行傳輸方法、終端及基地台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839745

Country of ref document: EP

Kind code of ref document: A1