WO2021008133A1 - 一种金属滑动构件及其制备方法 - Google Patents

一种金属滑动构件及其制备方法 Download PDF

Info

Publication number
WO2021008133A1
WO2021008133A1 PCT/CN2020/075565 CN2020075565W WO2021008133A1 WO 2021008133 A1 WO2021008133 A1 WO 2021008133A1 CN 2020075565 W CN2020075565 W CN 2020075565W WO 2021008133 A1 WO2021008133 A1 WO 2021008133A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface layer
sliding member
metal
layer
member according
Prior art date
Application number
PCT/CN2020/075565
Other languages
English (en)
French (fr)
Inventor
张国强
倪志伟
龚颖
Original Assignee
浙江中达精密部件股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江中达精密部件股份有限公司 filed Critical 浙江中达精密部件股份有限公司
Publication of WO2021008133A1 publication Critical patent/WO2021008133A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/125Details of bearing layers, i.e. the lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • F16C33/127Details of intermediate layers, e.g. nickel dams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/16Sliding surface consisting mainly of graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • F16C33/206Multilayer structures, e.g. sleeves comprising a plastic lining with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding
    • F16C2223/12Hardening, e.g. carburizing, carbo-nitriding with carburizing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding
    • F16C2223/14Hardening, e.g. carburizing, carbo-nitriding with nitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/42Coating surfaces by spraying the coating material, e.g. plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/60Coating surfaces by vapour deposition, e.g. PVD, CVD
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/42Application independent of particular apparatuses related to environment, i.e. operating conditions corrosive, i.e. with aggressive media or harsh conditions

Definitions

  • the present invention relates to a metal sliding member and a preparation method thereof.
  • the metal sliding member can be used as a sliding bearing, which is especially suitable for working under high-load difficult conditions and environments, as well as metals in abrasive environments and possible abrasive environmental conditions. Application of sliding components.
  • metal sliding bearings can be found in many technical fields, such as mining machinery, farm machinery, transportation vehicles, steel and non-ferrous metal manufacturing. Due to the requirements of the applied technical field, the bearing must have excellent friction and wear behavior characteristics. At the same time, the bearing should also allow a lower frequency of replenishing grease, and even allow only one application of grease during assembly.
  • metal bearings undergo a single surface treatment.
  • the surface treatment is, for example, phosphating treatment, vulcanization treatment, carburizing, nitriding, and carbonitriding methods.
  • phosphating treatment method it improves the lubrication effect by generating a surface layer of iron phosphate on the surface of the metal bearing.
  • the vulcanization treatment method is to obtain a ferrous sulfide (FeS) layer on the surface of the ferroalloy bearing, so that the processed parts have low friction, wear resistance and seizure resistance.
  • FeS ferrous sulfide
  • the surface treatment layer obtained by other surface treatment methods such as carburizing/nitriding/carbonitriding reduces the friction coefficient of the friction surface of the ferroalloy bearing to a certain extent, or the generated carbon/nitrogen compound increases the surface hardness of the ferroalloy and strengthens Improved wear resistance.
  • surface treatment methods such as carburizing/nitriding/carbonitriding reduces the friction coefficient of the friction surface of the ferroalloy bearing to a certain extent, or the generated carbon/nitrogen compound increases the surface hardness of the ferroalloy and strengthens Improved wear resistance.
  • there are still large friction coefficients and insufficient wear resistance resulting in excessive torque of machinery and equipment and even bearing lockup.
  • PVD physical deposition
  • CVD chemical vapor deposition
  • the surface layer materials formed by the above physical deposition (PVD) or chemical vapor deposition methods include transition metal sulfides, nitrides, carbides, and diamond-like films (DLC). This type of surface layer has been widely used in the field of low-load coating due to its extremely low coefficient of friction or high wear resistance. However, under high load conditions, the surface layer may flake off and cause the friction performance of the bearing to decrease sharply.
  • the purpose of the present invention is to provide a metal sliding member that can significantly reduce the friction coefficient, while having good wear resistance and better reliability.
  • the metal member includes a metal base layer and a first surface layer on the metal base layer.
  • the first surface layer is configured as a working surface of the metal sliding member.
  • the metal sliding member further includes a second surface layer located between the first surface layer and the metal base layer.
  • the first surface layer is made of a material with a low coefficient of friction or/and high wear resistance.
  • the material of the second surface layer contains the same elements as the material of the first surface layer, wherein the above-mentioned elements are selected from any one or more of sulfur, carbon, nitrogen, and fluorine.
  • the first surface layer has the characteristics of low friction coefficient or/and high wear resistance, so the metal sliding member has a low friction coefficient and good wear resistance.
  • the same element between the first surface layer and the second surface layer can ensure that the interface elements between the two are diffused to form a chemical bond, which facilitates the tight integration of the two and prevents the first surface layer from falling off.
  • the second surface layer is made of a material with a low friction coefficient and anti-seize.
  • the metal sliding member can still work normally for a certain period of time.
  • the second surface layer can also prevent the sliding member from locking with the shaft, ensuring that the shaft can continue to move under low friction conditions .
  • the second surface layer is formed by carburizing, nitriding, sulphurizing, phosphating or fluorinating on the metal base layer.
  • the second surface layer includes a permeable layer infiltrated into the metal base layer and a compound layer located on top of the permeable layer.
  • the main part of the compound layer is carbide, nitride, sulfide, phosphide or fluorine. Any one or more of the compounds.
  • the metal sliding member formed by carburizing treatment nitriding treatment, sulphurizing treatment, phosphating treatment or fluorination treatment
  • part of carbon, nitrogen, sulfur, phosphorus or fluorine will penetrate into the metal surface layer so that the metal surface layer
  • the metallographic structure at this location has changed significantly, providing effective support for the first surface layer; at the same time, carbides, nitrides, sulfides, phosphides formed by the infiltrated elements carbon, nitrogen, sulfur, phosphorus or fluorine and iron Or fluoride, the above-mentioned carbides and other materials have low friction coefficient and high seizure resistance.
  • the material of the first surface layer includes any one or more of metal sulfides, metal nitrides, metal carbides, and carbon-containing substances with carbon as the main component.
  • the main carbonaceous material includes any one or more of WC, SiC, DLC, diamond, graphene, graphite, or amorphous carbon.
  • the first surface layer includes polytetrafluoroethylene, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, fluorinated ethylene propylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene Any one or more of base ether copolymer, polyimide, polyether ether ketone, ultra-high molecular weight polyethylene, polyamide, polyoxymethylene or polyphenylene sulfide.
  • the metal sulfide is any one or more of MoS 2 , MnS, WS 2 , ZnS, CuS, FeS, PbS or AgS.
  • the metal nitride is any one or more of TiN, TiCN, CrN, and TiAlN.
  • the metal sliding member further includes a textured groove or a plurality of grooves for storing lubricating medium, wherein the groove extends from the first surface layer to the metal base
  • the bottom layer, and a plurality of the grooves are independent of each other or communicate with each other.
  • the reticulated groove refers to a network structure composed of grooves arranged in crisscross pattern. The grooves are communicated with each other, so that the working surface of the metal sliding member can be effectively lubricated.
  • the lubricating medium lubricating grease or lubricating oil
  • the lubricating medium is stored in the groove of the metal sliding member first, and then the corresponding shaft is assembled.
  • the grease or oil in the groove is squeezed or frictionally heated by the metal sliding member, which will form a lubricating film between the metal sliding member and the shaft.
  • the inventor also found that setting the depth of the groove to extend from the first surface layer to the metal base layer can provide sufficient and no excess grease on the basis of meeting the structural strength of the metal sliding member.
  • the thickness D1 of the first surface layer satisfies the condition: 1 ⁇ m ⁇ D1 ⁇ 20 ⁇ m.
  • the thickness D1 of the first surface layer satisfies the condition: 2 ⁇ m ⁇ D1 ⁇ 5 ⁇ m.
  • the thickness D2 of the permeable layer satisfies the condition: D2 ⁇ 20 ⁇ m.
  • the thickness D3 of the compound layer satisfies the condition: D3 ⁇ 1 ⁇ m.
  • the roughness Ra of the surface of the second surface layer facing the first surface layer satisfies the condition: Ra ⁇ 3.2 ⁇ m, more preferably, Ra ⁇ 0.8 ⁇ m.
  • the inventor also surprisingly found that if the second surface layer formed by carburizing, nitriding, sulphurizing, phosphating or fluorination treatment is subjected to secondary fine grinding, the surface roughness of the second surface layer is reduced. After the temperature, the probability of the first surface layer of the metal sliding member falling off will be further significantly reduced. Through further research, the inventor found that if the second surface layer is not finely ground, its rough surface may cause uneven surface pressure of the second surface layer and local overpressure.
  • the difference of the second surface layer The position produces significantly different amounts of deformation, and eventually causes the local first surface layer to produce excessive plastic deformation and fall off; in addition, the inventor also found that under the grease or oil lubrication state, the roughness of different positions of the second surface layer changes too much At this time, the oil film may be locally interrupted, so that the relative moving surfaces between the metal sliding member and the shaft in relative motion are not separated (adhered to each other), resulting in an increase in the friction coefficient, which may also cause the first surface layer to appear Another factor of shedding. Further experiments have proved that when the roughness Ra of the second surface layer is set to Ra ⁇ 3.2 ⁇ m, more preferably, Ra ⁇ 0.8 ⁇ m is sufficient to ensure the regular use of the metal sliding member.
  • the hardness of the second surface layer is not less than HRC45 and not more than HRC55. More preferably, the hardness of the second surface layer is not less than HRC48 and not more than HRC52.
  • the second surface layer can form an effective support for the first surface layer.
  • the second surface layer is formed by infiltrating the metal base layer in a form of solid, liquid or gas.
  • the cross section of the groove is circular, oval or polygonal.
  • the present invention also relates to a method for preparing each of the above-mentioned metal sliding members, which includes:
  • Step 1 Process grooves for storing lubricating medium on the surface of the metal base layer
  • Step 2 Carburizing, nitriding, sulphurizing, phosphating or fluorinating the surface of the metal base layer to form a second surface layer;
  • step three the first surface layer is formed by a deposition process or a spraying process on the surface of the second surface layer.
  • the preparation method further includes step 4 between step 2 and step 3.
  • step 4 the second surface layer formed is finished so that the second surface layer faces the first surface layer.
  • the surface roughness Ra satisfies the condition: Ra ⁇ 3.2 ⁇ m. More preferably, Ra ⁇ 0.83.2 ⁇ m.
  • the deposition process is physical deposition (PVD), chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PACVD).
  • the carburizing treatment adopts a low-temperature ion carburizing treatment process, wherein the treatment temperature T1 of the low-temperature ion carburizing treatment process is: 450°C ⁇ T1 ⁇ 550°C, and the treatment time P1 is: 1h ⁇ P1 ⁇ 8h.
  • the nitriding treatment adopts a low-temperature ion nitriding treatment process, wherein the treatment temperature T2 of the low-temperature ion nitriding treatment process is: 300°C ⁇ T2 ⁇ 450°C, and the treatment time P2 is: 1h ⁇ P2 ⁇ 8h.
  • the treatment temperature T3 of the sulfiding treatment is: 140°C ⁇ T3 ⁇ 300°C, and the treatment time P3 is: 1h ⁇ P3 ⁇ 4h.
  • the fluorination treatment includes:
  • the preliminary product with grooves is placed in fluoroferrite for soaking time P4, wherein the raw materials for preparing fluoroferrite contain KF, HNO 3 , (NH 4 )S 2 O 8 and FeCl 3 , and the fluoroferrite
  • the acid-base degree PH is: 1 ⁇ PH ⁇ 6
  • the soaking time P4 is: 1h ⁇ P3 ⁇ 4h
  • the soaking temperature T4 is: 10°C ⁇ T4 ⁇ 40°C.
  • the spraying process is selected from any one of the following:
  • the process temperature T7 of the deposition process is: 400°C ⁇ T7 ⁇ 600°C
  • the processing pressure P7 is: 900Mpa ⁇ P7 ⁇ 1200Mpa.
  • the metal sliding member and the manufacturing method thereof according to the invention.
  • the metal sliding member includes a metal base layer, a first surface layer on the metal base layer, and a second surface layer between the first surface layer and the metal base layer.
  • the first surface layer is made of a material with low friction coefficient or/and high wear resistance
  • the material of the second surface layer contains the same elements as the material of the first surface layer
  • the elements are selected from sulfur, carbon, and nitrogen. , Any one or more of fluorine.
  • the first surface layer has the characteristics of low friction coefficient and high wear resistance, and the first surface layer is not easy to fall off.
  • Fig. 1 is a schematic longitudinal sectional view of a metal sliding member according to the present invention
  • Figures 2-5 show grooves of different embodiments of the metal sliding member according to the present invention, which show grooves with different cross-sectional shapes;
  • Figure 6 shows the textured grooves of the metal sliding member according to the present invention, wherein the crisscrossed grooves communicate with each other;
  • Fig. 7 is an experimental data diagram of a metal sliding member according to a preferred embodiment of the present invention and a comparative example.
  • the sliding bearing is taken as an example for description below. It should be understood that the metal sliding member may also be in other forms of couplings, and the metal sliding member of the present invention is not only represented as a sliding bearing.
  • Fig. 1 is a schematic partial cross-sectional view showing a metal sliding member according to the present invention.
  • the sliding bearing When used as a sliding bearing, the sliding bearing should have a circular or substantially circular cross-section.
  • the screenshot direction of Fig. 1 and the screenshot direction of the above cross section are in a vertical relationship.
  • FIG. 1 only shows the lower half of the sliding bearing. It should be understood that the upper half of the sliding bearing 100, which is not shown, is in a symmetrical relationship with the lower half shown in FIG. 1.
  • the upper surface 101 shown in FIG. 1, that is, the first surface layer 101 is a working surface.
  • the first surface layer 101 of FIG. 1 (inside the sliding bearing 100) has a shaft (not shown) as a power transmission mechanism.
  • the shaft exerts a heavy load on the sliding bearing 100.
  • FIGS. 2-6 show the shapes of grooves and reticulated grooves according to different embodiments of the present invention in a viewing direction from the first surface layer 101 to the metal base layer 103. Although it is not shown further, it is understandable that the technical solution of selecting grooves and/or reticulated grooves of different structures shown in FIGS. 2-6 and combining them on the same sliding bearing 100 is also It is within the scope of the present invention.
  • the sliding bearing 100 can be prepared according to the following steps:
  • grooves 1A, 1B, 1C, 1D or reticulated grooves 1E for storing lubricating medium are processed as shown in FIGS. 2-6, respectively;
  • the first surface layer 101 is formed by a deposition process or a spraying process on the surface of the second surface layer 102.
  • the metal base layer 103 is actually a cylindrical structure with inner and outer diameters, which can usually be formed by a conventional semi-finishing lathe.
  • the grooves 1A, 1B, 1C, 1D and the textured groove 1E can be obtained by conventional processing methods in the art such as a milling machine. It can be understood that after the second surface layer 102 and the first surface layer 101 are formed, the grooves 1A, 1B, 1C, 1D and the textured groove 1E will not be completely filled up, but retain their function of storing lubricating medium.
  • the porosity of the second surface layer 102 of the present invention is much lower.
  • the hardness of the porous metal material layer is higher than that of the porous metal material layer. Therefore, in extreme cases such as the first surface layer 101 being worn out, even if the second surface layer 102 is exposed, the sliding bearing 100 can maintain good low friction and anti-heavy load characteristics for a long period of time. Obviously, the porous metal material layer does not have this function.
  • the sliding bearing 100 of the present invention there is at least one element between the first surface layer 101 and the second surface layer 102. Therefore, the element at the interface between the first surface layer 101 and the second surface layer 102 is easy to Diffusion can form good metallurgical bonding between the two.
  • any one or more of sulfur, carbon, nitrogen, and fluorine can be selected for the same element mentioned above.
  • the first surface layer 101 is preferably set to contain any one or more of MoS 2 , MnS 2 , WS 2 or polyphenylene sulfide.
  • the first surface layer 101 is preferably set to contain any one or more of TiN, CrN, TiAlN, polyimide or polyamide.
  • the second surface layer 102 is carburized to have carbides
  • the first surface layer 101 is preferably an amorphous carbon deposition layer.
  • the first surface layer 101 is preferably set to contain polytetrafluoroethylene, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, fluorinated ethylene propylene Any one or more of copolymers and tetrafluoroethylene-perfluoroalkoxy vinyl ether copolymers.
  • Examples 1-4 having the first surface layer 101, the second surface layer 102, and the metal base layer 103 according to the present invention and the corresponding comparative examples 1-7 were prepared as follows. Among them, the preparation methods and test data of Examples 1-4 and the corresponding Comparative Examples 1-7 are as follows in Table 1:
  • the metal base layer 103 material is made of grinding shaft 45# steel, with a hardness of HRC57; the test surface pressure is 50N/mm 2 ; the swing angle is ⁇ 45°C, the frequency is 0.25Hz; the initial grease lubrication; the test termination condition is friction coefficient ⁇ 0.3 or sliding
  • the bearing 100 is locked to the shaft or passes the 100h test time setting.
  • Embodiment 1 first, the 45# steel sliding bearing 100 that has been processed with the circular oil storage hole 1A as shown in FIG. 2 is subjected to low-temperature gas sulfurization. Among them, the vulcanization temperature is controlled at 200° C. and the time is 1 h, thereby forming a second surface layer 102 rich in FeS on the surface of the sliding bearing 100 (metal base layer 103). The sliding bearing 100 is then finished to the required dimensional accuracy and surface accuracy. Then, MoS 2 is deposited by spraying method, thereby forming the first surface layer 101 with a thickness of 2-5 ⁇ m on the second surface layer 102 of the sliding bearing 100.
  • Comparative Example 1 Compared with the foregoing embodiment 1, in Comparative Example 1, the surface of the circular oil storage hole 1A and the 45# steel sliding bearing 100 meeting the dimensional accuracy requirements was not further processed, that is, the sliding bearing 100 of Comparative Example 1. The first surface layer 101 and the second surface layer 102 are not included.
  • Comparative Example 2 a 45# steel bearing that has processed circular oil storage holes 1A and meets dimensional accuracy requirements was subjected to low-temperature gas sulfurization to form a second surface layer 102 rich in FeS. Among them, the vulcanization temperature is controlled at 200°C and the time is 1h. Compared with the aforementioned Example 1, the sliding bearing 100 of the Comparative Example 2 does not include the first surface layer 101.
  • Comparative Example 3 the 45# steel bearing with circular oil storage hole 1A is processed to the required dimensional accuracy, and MoS 2 is deposited on the surface by spraying method to form only the thickness on the surface of the sliding bearing 100 (metal base layer 103)
  • the first surface layer 101 is 2-5 ⁇ m.
  • the sliding bearing 100 of the Comparative Example 2 does not include the second surface layer 102.
  • Embodiment 2 first, a 20CrMo steel bearing with an elliptical oil storage hole 1B as shown in FIG. 3 on the working surface is subjected to low-temperature gas carburization to form the second surface layer 102.
  • the carburizing temperature is controlled at 500° C., and the time is 30 minutes; and the hardness of the second surface layer 102 is increased to above 800 HV.
  • the sliding bearing 100 is then finished to the required dimensional accuracy and surface accuracy.
  • a diamond-like film (DLC) deposition layer is deposited using the PACVD method to form the first surface layer 101.
  • the temperature of the process of forming the first surface layer 101 is controlled at 150° C., and the thickness of the first surface layer 101 formed on the second surface layer 102 is 2-5 ⁇ m, which is a diamond-like film (DLC).
  • DLC diamond-like film
  • the Comparative Example 4 does not have the first surface layer 101.
  • the second surface layer 102 formed is the same as that of the second embodiment, and the second surface layer 102 has also undergone finishing to achieve the required dimensional accuracy and surface accuracy.
  • the rest is the same as the embodiment 2.
  • Example 3 first, the 50# steel bearing with pentagonal oil storage holes as shown in FIG. 4 was processed for gas nitriding. Wherein, the nitriding temperature is controlled at 550° C., and the hardness of the formed nitriding layer is increased to above 750 HV to form the second surface layer 102. The sliding bearing 100 is then finished to the required dimensional accuracy and surface accuracy. Then, a TiCN deposition layer (first surface layer 101) is prepared by a CVD (vapor deposition) method.
  • CVD vapor deposition
  • the process temperature used in the CVD method is 550°C
  • reacting gas is introduced
  • the pressure in the furnace is 900-1200MPa
  • the holding time is 2h
  • the thickness of the TiCN deposition layer deposited on the second surface layer 102 is 2-5 ⁇ m .
  • Comparative Example 6 a 50# steel bearing with pentagonal oil storage holes on its surface was firstly subjected to gas nitriding to form the second surface layer 102. Among them, the nitriding temperature is controlled at 550°C, and the surface hardness is increased to above 750HV. Afterwards, the second surface layer 102 of the sliding bearing is finished to the required dimensional accuracy and surface accuracy. Compared with Example 3, this Comparative Example 6 does not have the first surface layer 101.
  • the rest is the same as the embodiment 3.
  • the surface roughness of the unfinished sliding bearing 100 is Ra6.4.
  • Example 4 first, the 35CrMo steel bearing (metal base layer 103) with the textured groove as shown in FIG. 6 was subjected to fluoroferrite conversion to form a conversion film (second surface layer 102).
  • the pH value of the fluoroferrite solution is 2
  • the conversion treatment time is 2h
  • the temperature used is room temperature.
  • the bearing is finished to the required dimensional accuracy and surface accuracy.
  • a spraying method is used to prepare the polytetrafluoroethylene coating to the required thickness of 2-5 ⁇ m, and it is sent to a high temperature furnace at 400° C. for 4 hours to form the first surface layer 101.
  • Example 4 successfully completed the 100h test.
  • the metal sliding member of the present invention has the following characteristics: low friction coefficient; high seizure resistance; between the first surface layer and the second surface layer There is a very good interface bond, the first surface layer is not easy to fall off; after the initial lubrication, the interval time for adding grease can be extended.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

一种金属滑动构件,包括金属基底层(103)以及位于所述金属基底层(103)之上的第一表面层(101)以及位于第一表面层(101)和金属基底层(103)之间的第二表面层(102),其中,第一表面层(101)由具有低摩擦系数和/或高耐磨性的材料制成,第二表面层(102)的材料中包含与第一表面层(101)的材料相同的元素,元素选自硫、碳、氮、氟中的任意一种或多种。第一表面层具有低摩擦系数和高耐磨的特性,且第一表面层不易脱落。

Description

一种金属滑动构件及其制备方法 技术领域
本发明涉及金属滑动构件及其制备方法,金属滑动构件可作为一种滑动轴承,其尤其适用于在高载荷的困难条件和环境下工作,以及在磨蚀环境以及可能出现的磨蚀环境条件下的金属滑动构件的应用。
背景技术
在许多技术领域都可以发现金属滑动轴承的应用,这些技术例如包括:矿山机械,农场机械,运输车辆,钢材和有色金属制造等。由于所应用的技术领域的需求,轴承必须具有优良的摩擦和磨损行为特性,与此同时,轴承还应允许较低的补充油脂的频率,甚至允许只在装配时涂抹一次油脂。
为保证滑动轴承的工作性能,现有技术通过以下方案对轴承进行特殊处理。在一种方法中,金属轴承进行单一的表面处理。该表面处理例如是磷化处理、硫化处理、渗碳、渗氮、碳氮共渗等方法。在磷化处理方法中,其通过在金属轴承表面产生磷酸铁表面层而改善润滑效果。硫化处理方法是通过在铁合金轴承的表面获得硫化亚铁(FeS)层,而使得被处理的部件具有低摩擦、耐磨损性和抗咬合性。诸如渗碳/渗氮/碳氮共渗等其他表面处理方法获得的表面处理层,在一定程度上降低了铁合金轴承摩擦表面的摩擦系数,或者生成的碳/氮化合物提高了铁合金表面硬度、增强了耐磨性能。但是,在高载荷条件下,仍然存在摩擦系数大、耐磨性不够,导致机器设备扭矩过大甚至轴承出现抱死现象。
此外,还可以通过物理沉积(PVD)或化学气相沉积(CVD)等方法在轴承表面形成表面层来改善轴承性能。通过以上物理沉积(PVD)或化学气相沉积等方法形成的表面层物质包括过渡金属硫化物、氮化物、碳化物以及类钻膜(DLC)等。这类表面层由于具有极 低的摩擦系数或高耐磨损性,在低载荷涂层领域得到大量应用。但在高载荷情况下,表面层可能出现鳞片化脱落而导致轴承摩擦性能急剧降低。
发明内容
针对根据现有技术的滑动轴承的上述缺陷,本发明的目的在于提供一种能够显著降低摩擦系数,同时具备良好的耐磨性能以及较佳可靠性的金属滑动构件。
该目的通过根据本发明的一种金属滑动构件来实现。该金属构件包括金属基底层以及位于金属基底层之上的第一表面层。其中,第一表面层被配置为金属滑动构件的工作表面。此外,金属滑动构件还包括位于第一表面层和金属基底层之间的第二表面层。第一表面层由具有低摩擦系数或/和高耐磨性的材料制成。第二表面层的材料中包含与第一表面层的材料相同的元素,其中,上述元素选自硫、碳、氮、氟中的任意一种或多种。
根据上述形式的金属滑动构件,第一表面层具有低摩擦系数或/和高耐磨性的特性,因此金属滑动构件的摩擦系数较小同时具有良好的耐磨性能。第一表面层和第二表面层之间所具有的同种元素可以保证二者之间的界面元素进行扩散形成化学结合,利于二者紧密地结合成一体,避免第一表面层出现脱落情况。
根据本发明的一种优选的技术方案,第二表面层由具有低摩擦系数且抗咬合的材料制成。由此,在金属滑动构件的整个使用寿命周期内,即使第一表面层被磨损殆尽而使得第二表面层裸露在外,亦能使得金属滑动构件正常工作一定时间。此外,在其他极端条件下,例如第一表面层因过载或磨蚀等原因产生全部或局部脱落后,第二表面层也可以防止滑动构件与轴抱死,保证轴能够在低摩擦条件下继续运动。
根据本发明的一种优选实施方式,第二表面层通过在金属基底层经过渗碳处理、渗氮处理、渗硫处理、磷化处理或氟化处理形成。
根据本发明的一种优选实施方式,第二表面层包括渗入金属基底层的渗透层和位于渗透层上部的化合物层,化合物层的主体部分为碳化物、氮化物、硫化物、磷化物或氟化物中的任意一种或多种。
有利的是,通过渗碳处理、渗氮处理、渗硫处理、磷化处理或氟化处理形成的金属滑动构件中,部分碳、氮、硫、磷或氟会渗入金属表面层使得金属表面层在该位置的金相结构发生显著变化,为第一表面层提供有效支撑;同时,渗入的元素碳、氮、硫、磷或氟与铁元素形成的碳化物、氮化物、硫化物、磷化物或氟化物,上述碳化物等材料本身具备低摩擦系数、高抗咬合特性。
根据本发明的一种优选实施方式,第一表面层的材料包含金属硫化物、金属氮化物、金属碳化物以及以碳元素为主体的含碳物质中的任意一种或多种,以碳元素为主体的含碳物质包括WC、SiC、DLC、金刚石、石墨烯、石墨或无定形碳中的任意一种或多种。
根据本发明的一种优选实施方式,第一表面层包括聚四氟乙烯、聚偏氟乙烯、乙烯-四氟乙烯共聚物、氟化乙烯丙烯共聚物、四氟乙烯-全氟烷氧基乙烯基醚共聚物、聚酰亚胺、聚醚醚酮、超高分子量聚乙烯、聚酰胺、聚甲醛或聚苯硫醚中的任意一种或多种。
根据本发明的一种优选实施方式,金属硫化物为MoS 2、MnS、WS 2、ZnS、CuS、FeS、PbS或AgS中的任意一种或多种。
根据本发明的一种优选实施方式,金属氮化物为TiN、TiCN、CrN、TiAlN中的任意一种或多种。
根据本发明的一种优选实施方式,金属滑动构件还包括用于存储润滑介质的网纹沟槽或多个凹槽,其中,所述凹槽从所述第一表面层延伸至所述金属基底层,而且多个所述凹槽彼此之间独立或相互连通。其中,网纹沟槽是指由纵横交错布置的沟槽组成的网状结构。各沟槽之间彼此连通,金属滑动构件的工作表面各处由此均可得到有效润滑。
使用时,先将润滑介质(润滑油脂或润滑油)存放于金属滑动构件的凹槽内,而后再装配对应的轴。凹槽内的油脂或油在金属滑动构 件受挤压或摩擦升温作用等,会在金属滑动构件和轴之间形成润滑膜。此外,发明人还发现,凹槽的深度设置成由第一表面层延伸至金属基底层可以在满足金属滑动构件的结构强度的基础上,提供足量且不多余的油脂。
根据本发明的一种优选实施方式,第一表面层的厚度D1满足条件:1μm≤D1≤20μm。
根据本发明的一种优选实施方式,第一表面层的厚度D1满足条件:2μm≤D1≤5μm。
根据本发明的一种优选实施方式,渗透层的厚度D2满足条件:D2≥20μm。
根据本发明的一种优选实施方式,化合物层的厚度D3满足条件:D3≥1μm。
根据本发明的一种优选实施方式,第二表面层朝向第一表面层的表面的粗糙度Ra满足条件:Ra≤3.2μm,更优选地,Ra≤0.8μm。
发明人此外还惊奇地发现,倘若对经过渗碳处理、渗氮处理、渗硫处理、磷化处理或氟化处理形成的第二表面层经过二次精磨,降低第二表面层的表面粗糙度以后,金属滑动构件的第一表面层脱落的几率会进一步显著降低。通过进一步研究,发明人发现,倘若未对第二表面层进行精磨,其粗糙的表面可能引起该第二表面层的表面压力不均,局部存在过压情况,因此,第二表面层的不同位置产生明显不同的变形量,并最终导致局部第一表面层产生过度塑性变形而脱落;此外,发明人还发现,在油脂或油润滑状态下,第二表面层不同位置的粗糙度变化太大时,可能会导致油膜局部中断,使得处于相对运动的金属滑动构件和轴之间的相对运动表面没有被分离(彼此粘连),从而导致摩擦系数升高,这亦是导致第一表面层可能出现脱落的另一因素。进一步实验证明,当将第二表面层的粗糙度Ra设置成Ra≤3.2μm,更优选地,Ra≤0.8μm则足以保证金属滑动构件的常规使用。
根据本发明的一种优选实施方式,第二表面层的硬度不小于HRC45且不大于HRC55。更优选地,第二表面层的硬度不小于HRC48 且不大于HRC52。由此,第二表面层能够形成对第一表面层的有效支撑。
根据本发明的一种优选实施方式,第二表面层通过以固体、液体或气体渗入金属基底层的形式形成。
根据本发明的一种优选实施方式,凹槽的横截面为圆形、椭圆形或多边形。
此外,本发明还涉及一种上述各金属滑动构件的制备方法,该制备方法包括:
步骤一,在金属基底层的表面加工出用于存储润滑介质的凹槽;
步骤二,对金属基底层的表面进行渗碳处理、渗氮处理、渗硫处理、磷化处理或氟化处理以形成第二表面层;
步骤三,对第二表面层的表面通过沉积工艺或喷涂工艺以形成第一表面层。
根据本发明的一种优选实施方式,制备方法还包括介于步骤二和步骤三之间的步骤四,步骤四对形成的第二表面层进行精加工以使得第二表面层朝向第一表面层的表面的粗糙度Ra满足条件:Ra≤3.2μm。更优选地,Ra≤0.83.2μm。
根据本发明的一种优选实施方式,沉积工艺为物理沉积(PVD)、化学气相沉积(CVD)或等离子体增强化学气相沉积(PACVD)。
根据本发明的一种优选实施方式,渗碳处理采用低温离子法渗碳处理工艺,其中,低温离子法渗碳处理工艺的处理温度T1为:450℃≤T1≤550℃,处理时间P1为:1h≤P1≤8h。
根据本发明的一种优选实施方式,渗氮处理采用低温离子法渗氮处理工艺,其中,低温离子法渗氮处理工艺的处理温度T2为:300℃≤T2≤450℃,处理时间P2为:1h≤P2≤8h。
根据本发明的一种优选实施方式,渗硫处理的处理温度T3为:140℃≤T3≤300℃,处理时间P3为:1h≤P3≤4h。
根据本发明的一种优选实施方式,氟化处理包括:
将具有凹槽的初成品放置于氟铁酸盐中浸泡时间P4,其中,氟 铁酸盐的制备原料含有KF、HNO 3、(NH 4)S 2O 8和FeCl 3,且氟铁酸盐的酸碱度PH为:1≤PH≤6,浸泡时间P4为:1h≤P3≤4h,浸泡的温度T4为:10℃≤T4≤40℃。
根据本发明的一种优选实施方式,喷涂选工艺自以下任意一种:
①.将MoS 2喷涂于第二表面层,再将金属滑动构件置于温度T5环境下烘烤时间P5,此后重复喷涂MoS 2和烘烤的步骤1次、2次或3次,其中T5为:100℃≤T5≤200℃,P5为:1h≤P5≤4h;
②.将聚四氟乙烯喷涂于第二表面层,再将金属滑动构件置于温度T6环境下维持时间P6,此后多次重复喷涂聚四氟乙烯和维持的步骤直至第二表面层的厚度D1满足条件:2μm≤D1≤5μm,其中T6为:100℃≤T6≤400℃,P6为:1h≤P6≤8h。
根据本发明的一种优选实施方式,当沉积工艺为化学气相沉积时,沉积工艺的工艺温度T7为:400℃≤T7≤600℃,处理压力P7为:900Mpa≤P7≤1200Mpa。
根据本发明的金属滑动构件及其制备方法。金属滑动构件含有金属基底层以及位于所述金属基底层之上的第一表面层以及位于第一表面层和金属基底层之间的第二表面层。其中,第一表面层由具有低摩擦系数或/和高耐磨性的材料制成,第二表面层的材料中包含与第一表面层的材料相同的元素,元素选自硫、碳、氮、氟中的任意一种或多种。第一表面层具有低摩擦系数和高耐磨的特性,且第一表面层不易脱落。
附图说明
为了更好地理解本发明的上述及其他目的、特征、优点和功能,可以参考附图中所示的优选实施方式。附图中相同的附图标记指代相同的部件。本领域技术人员应该理解,附图旨在示意性地阐明本发明的优选实施方式,对本发明的范围没有任何限制作用,图中各个部件并非按比例绘制。
图1是根据本发明的金属滑动构件的纵向截面示意图;
图2-5示出了根据本发明的金属滑动构件的不同实施方式的凹槽,其示出了具有不同横截面形状的凹槽;
图6示出了根据本发明的金属滑动构件的网纹沟槽,其中,纵横交错的各个沟槽之间彼此连通;
图7是根据本发明的一个优选实施方式的金属滑动构件与对比例的试验数据图。
具体实施方式
接下来将参照附图详细描述本发明的发明构思。这里所描述的仅仅是根据本发明的优选实施方式,本领域技术人员可以在所述优选实施方式的基础上想到能够实现本发明的其他方式,所述其他方式同样落入本发明的范围。在以下的具体描述中,例如“上”、“下”等方向性的术语,参考附图中描述的方向使用。本发明的实施例的部件可被置于多种不同的方向,方向性的术语是用于示例的目的而非限制性的。
为了便于结合说明,以下以滑动轴承为例进行说明,应当理解的是,金属滑动构件还可以其他形式的联接件,本发明的金属滑动构件并不仅仅表示为滑动轴承。
图1是表示根据本发明的金属滑动构件的部分截面示意图。在作为滑动轴承使用时,滑动轴承应具有圆形或基本上呈圆形的横截面。图1的截图方向与上述横截面的截图方向互成垂直关系。图1仅示出了滑动轴承的下半部分,应当理解的是,未示出的滑动轴承100的上半部分与图1所示的下半部分呈上下对称关系。
其中,图1所示的上表面101,也即第一表面层101,是工作表面。在使用状态下,图1的第一表面层101上(滑动轴承100内部)具有作为动力传送机构的轴(未示出)。系统工作过程中,轴会对滑动轴承100施加重载。
图2-6以从第一表面层101朝金属基底层103的视角方向示出了 根据本发明的不同实施方式的凹槽、网纹沟槽的形状。虽然未进一步示出,然而可以理解的是,选定图2-6所示的不同构造的凹槽和/或网纹沟槽,并将其组合式设置于同一滑动轴承100上的技术方案亦在本发明意图保护的范围内。
滑动轴承100可按照以下步骤制备而成:
在金属基底层103的表面加工出如图2-6分别示出的用于存储润滑介质的凹槽1A、1B、1C、1D或网纹沟槽1E;
对金属基底层103的表面进行渗碳处理、渗氮处理、渗硫处理、磷化处理或氟化处理以形成第二表面层102;
对第二表面层102的表面通过沉积工艺或喷涂工艺以形成第一表面层101。
金属基底层103事实上是具有内、外径的筒状结构,其通常可以通过常规的车床半精加工形成。凹槽1A、1B、1C、1D以及网纹沟槽1E可通过铣床等本领域的常规加工方法得到。可以理解的是,形成第二表面层102、第一表面层101后,凹槽1A、1B、1C、1D以及网纹沟槽1E不会被完全填埋,其保留其存储润滑介质的功能。
有别于现有技术中,通过将各类金属合金以烧结形成于金属基底层103之上且具有较高孔隙率的多孔质金属材料层,本发明的第二表面层102的孔隙率远低于多孔质金属材料层,其硬度高于多孔质金属材料层。因此,在出现第一表面层101被磨损殆尽等极端情况下,即使第二表面层102裸露在外,滑动轴承100亦可以在较长时间段内保持良好的低摩擦、抗重载的特性。显然地,多孔质金属材料层则不具备该功能。
根据本发明的滑动轴承100,第一表面层101和第二表面层102之间具有至少具有同一种元素,由此,第一表面层101和第二表面层102的界面之间的该元素易于扩散,二者之间可以形成良好的冶金结合性能。
优选的,上述的同一种元素可以选择硫、碳、氮、氟中的任意一种或多种。例如,当第二表面层102经过渗硫处理而含有FeS层时, 第一表面层101优选地设定为含有MoS 2、MnS 2、WS 2或聚苯硫醚中的任意一种或多种。当第二表面层102经过渗氮处理而具有氮化物时,第一表面层101优选地设定为含有TiN、CrN、TiAlN、聚酰亚胺或聚酰胺中的任意一种或多种。当第二表面层102经过渗碳处理而具有碳化物时,第一表面层101优选为不定形碳沉积层。当第二表面层102经过氟化处理而含有氟化铁时,第一表面层101优选地设定成含有聚四氟乙烯、聚偏氟乙烯、乙烯-四氟乙烯共聚物、氟化乙烯丙烯共聚物、四氟乙烯-全氟烷氧基乙烯基醚共聚物中的任意一种或多种。
以下结合具体实施方式和对应的实验数据说明根据本发明的滑动轴承100的性能。
实施例
如下制备了根据本发明的具有第一表面层101、第二表面层102以及金属基底层103的实施例1-4以及对应的对比例1-7。其中,实施例1-4以及对应的对比例1-7的制备方法和试验数据如下表1:
表1
Figure PCTCN2020075565-appb-000001
Figure PCTCN2020075565-appb-000002
其中,上表的所有试验数据都是采用模拟实际工况的摇摆台架测试。金属基底层103材料采用磨轴45#钢,硬度为HRC57;试验面压为50N/mm 2;摇摆角度为±45℃,频率0.25Hz;初始油脂润滑;试验终止条件为摩擦系数≥0.3或滑动轴承100与轴抱死或通过100h测试时间设定。
实施例1
在实施例1中,首先,将已经加工出如图2所示的圆形储油孔1A的45#钢滑动轴承100进行低温气体渗硫。其中,渗硫温度控制在200℃,时间为1h,由此在滑动轴承100(金属基底层103)的表面形成富含FeS的第二表面层102。之后将滑动轴承100精加工到所要求的尺寸精度和表面精度。然后,采用喷涂法沉积MoS 2,由此在滑动轴承100的第二表面层102之上形成厚度为2-5μm的第一表面层101。
对比例1
与上述实施例1相比,对比例1中未对已加工出圆形储油孔1A和符合尺度精度要求的45#钢滑动轴承100的表面进一步处理,也即该对比例1的滑动轴承100不含第一表面层101和第二表面层102。
对比例2
对比例2对已经加工出圆形储油孔1A和符合尺度精度要求的45#钢轴承进行低温气体渗硫以形成富含FeS的第二表面层102。其中,渗硫温度控制在200℃,时间为1h。与上述实施例1相比,该对比例2的滑动轴承100不含有第一表面层101。
对比例3
对比例3对加工出圆形储油孔1A的45#钢轴承加工到所要求的尺寸精度,表面采用喷涂法沉积MoS 2由此在滑动轴承100(金属基底层103)的表面上仅形成厚度为2-5μm的第一表面层101。与上述实施例1相比,该对比例2的滑动轴承100不含有第二表面层102。
采用上述的摇摆测试,结果如表1和图7所示。根据表1和图7,对比例1在此重力载荷条件下,滑动轴承100和轴之间的摩擦系数很快超过0.3,从而停止试验;对比例2和对比例3中,摩擦系数分别在不同时间超过0.3,从而停止试验;然而,实施例1在整个测试过程中摩擦系数仅约0.1,顺利完成了100h测试。在仅含第二表面层102的情况下,滑动轴承100维持正常工作的时间较长,而仅含第一表面层101的情况下,滑动轴承100维持正常工作的时间较短。
实施例2
在实施例2中,首先,将已经在工作表面加工出如图3所示的椭圆形储油孔1B的20CrMo钢轴承进行低温气体渗碳以形成第二表面层102。其中,渗碳温度控制在500℃,时间为30分钟;并且将第二表面层102的硬度提高到800HV以上。之后将滑动轴承100精加工到所要求的尺寸精度和表面精度。然后采用PACVD法沉积类钻膜(DLC)沉积层以形成第一表面层101。其中形成第一表面层101的工艺温度控制在150℃,在第二表面层102之上形成的第一表面层101的厚度2-5μm,其为类钻膜(DLC)。
对比例4
与上述实施例2相比,该对比例4不具有第一表面层101。形成的第二表面层102同实施例2相同,且第二表面层102亦经过精加工并达到所要求的尺寸精度和表面精度。
对比例5
与上述实施例2相比,除了第一表面层101的厚度为约30μm,其余与实施例2相同。
采用上述的摇摆测试,结果如表1所示,可见:对比例4初始启动,摩擦系数很快超过0.3而停机;对比例5在45小时后,轴承和轴出现力矩过大而抱死,进一步分析得知,在沉积层(第一表面层101)厚度较大的情况下,摩擦区的沉积层(第一表面层101)会很快全部脱落,渗碳层摩擦系数太大导致;实施例2顺利完成了100h测试。
实施例3
在实施例3中,首先,将表面加工了如图4所示的五边形储油孔的50#钢轴承进行气体渗氮。其中,渗氮温度控制在550℃,并保证形成的渗氮层的硬度提高到750HV以上形成第二表面层102。之后将滑动轴承100精加工到所要求的尺寸精度和表面精度。然后,采用CVD(气相沉积)法制备TiCN沉积层(第一表面层101)。其中,CVD法中采用的工艺温度是550℃,通入反应气体,炉内压力900-1200MPa,保温时间是2h,在第二表面层102上沉积而成的TiCN沉积层的厚度为2-5μm。
对比例6
该对比例6首先将表面加工了五边形储油孔的50#钢轴承进行气体渗氮以形成第二表面层102。其中,渗氮温度控制在550℃,且将该表面硬度提高到750HV以上。之后将滑动轴承的第二表面层102精加工到所要求的尺寸精度和表面精度。与实施例3相比,该对比例6不具有第一表面层101。
对比例7
与上述实施例3相比,除了滑动轴承100表面不做精加工,其余同于实施例3。其中未做精加工的滑动轴承100的表面粗糙度为Ra6.4。
采用上述的摇摆测试,结果如表1所示,可见:对比例6初始启动,摩擦系数很快超过0.3而停机;对比例7仅持续测试19h;实施例3顺利完成了100h测试。
实施例4
在实施例4中,首先对表面加工了如图6所示的网纹沟槽的35CrMo钢轴承(金属基底层103)进行氟铁酸盐转化,形成转化膜(第二表面层102)。其中,氟铁酸盐溶液的PH值为2,转化处理时间为2h,采用的温度为室温。之后将轴承精加工到所要求的尺寸精度和表面精度。然后采用喷涂法制备聚四氟乙烯涂层至所要求的2-5μm厚度,并送至400℃高温炉,保温4h以形成第一表面层101。
采用上述的摇摆测试,实施例4顺利完成了100h测试。
由本发明的说明和实例可以清楚地看到本发明相较于现有技术,本发明的金属滑动构件具备以下特性:低摩擦系数;高抗咬合性能;第一表面层与第二表面层之间有非常好的界面结合,第一表面层不易脱落;在初始润滑以后,可以延长补加油脂的间隔时间。
本发明的保护范围仅由权利要求限定。得益于本发明的教导,本领域技术人员容易认识到可将本发明所公开结构的替代结构作为可行的替代实施方式,并且可将本发明所公开的实施方式进行组合以产生新的实施方式,它们同样落入所附权利要求书的范围内。

Claims (21)

  1. 一种金属滑动构件,其包括金属基底层以及位于所述金属基底层之上的第一表面层,其中,所述第一表面层被配置为所述金属滑动构件的工作表面,其特征在于,
    所述金属滑动构件还包括位于所述第一表面层和所述金属基底层之间的第二表面层,
    其中,所述第一表面层由具有低摩擦系数或/和高耐磨性的材料制成,所述第二表面层的材料中包含与所述第一表面层的材料相同的元素,所述元素选自硫、碳、氮、氟中的任意一种或多种。
  2. 根据权利要求1所述的金属滑动构件,其特征在于,所述第二表面层由具有低摩擦系数且抗咬合的材料制成。
  3. 根据权利要求2所述的金属滑动构件,其特征在于,所述第一表面层的材料包含金属硫化物、金属氮化物、金属碳化物或以碳元素为主体的含碳物质中的任意一种或多种,所述含碳物质包括WC、SiC、DLC、金刚石、石墨烯、石墨或无定形碳中的任意一种或多种。
  4. 根据权利要求2所述的金属滑动构件,其特征在于,所述第一表面层包括聚四氟乙烯、聚偏氟乙烯、乙烯-四氟乙烯共聚物、氟化乙烯丙烯共聚物、四氟乙烯-全氟烷氧基乙烯基醚共聚物、聚酰亚胺、聚醚醚酮、超高分子量聚乙烯、聚酰胺、聚甲醛或聚苯硫醚中的任意一种或多种。
  5. 根据权利要求3所述的金属滑动构件,其特征在于,所述金属硫化物为MoS 2、MnS、WS 2、ZnS、CuS、FeS、PbS或AgS中的任意一种或多种。
  6. 根据权利要求3所述的金属滑动构件,其特征在于,所述金属氮化物为TiN、TiCN、CrN、TiAlN中的任意一种或多种。
  7. 根据权利要求1所述的金属滑动构件,其特征在于,所述金属滑动构件还包括用于存储润滑介质的网纹沟槽或多个凹槽,其中,所述凹槽从所述第一表面层延伸至所述金属基底层,而且多个所述凹槽 彼此之间独立或相互连通。
  8. 根据权利要求7所述的金属滑动构件,其特征在于,所述第一表面层的厚度D1满足条件:1μm≤D1≤20μm。
  9. 根据权利要求8所述的金属滑动构件,其特征在于,所述第一表面层的厚度D1满足条件:2μm≤D1≤5μm。
  10. 根据权利要求8所述的金属滑动构件,其特征在于,所述第二表面层通过在金属基底层经过渗碳处理、渗氮处理、渗硫处理、磷化处理或氟化处理形成。
  11. 根据权利要求10所述的金属滑动构件,其特征在于,所述第二表面层包括渗入所述金属基底层的渗透层和位于所述渗透层上部的化合物层,所述化合物层的主体部分为碳化物、氮化物、硫化物、磷化物或氟化物中的任意一种或多种。
  12. 根据权利要求11所述的金属滑动构件,其特征在于,渗透层的厚度D2满足条件:D2≥20μm。
  13. 根据权利要求12所述的金属滑动构件,其特征在于,所述化合物层的厚度D3满足条件:D3≥1μm。
  14. 根据权利要求12或13所述的金属滑动构件,其特征在于,所述第二表面层朝向所述第一表面层的表面的粗糙度Ra满足条件:Ra≤3.2μm。
  15. 根据权利要求14所述的金属滑动构件,其特征在于,所述第二表面层朝向所述第一表面层的表面的粗糙度Ra满足条件:Ra≤0.8μm。
  16. 根据权利要求1所述的金属滑动构件,其特征在于,所述第二表面层的硬度不小于HRC45且不大于HRC55。
  17. 根据权利要求16所述的金属滑动构件,其特征在于,所述第二表面层的硬度不小于HRC48且不大于HRC52。
  18. 根据权利要求10所述的金属滑动构件,其特征在于,所述第二表面层通过以固体、液体或气体渗入所述金属基底层的形式形成。
  19. 根据权利要求7所述的金属滑动构件,其特征在于,所述凹 槽的横截面为圆形、椭圆形或多边形。
  20. 一种如权利要求1-19中任一项所述的金属滑动构件的制备方法,其特征在于,所述制备方法包括:
    步骤一:在金属基底层的表面加工出用于存储润滑介质的凹槽;
    步骤二:对所述金属基底层的所述表面进行渗碳处理、渗氮处理、渗硫处理、磷化处理或氟化处理以形成第二表面层;
    步骤三:对所述第二表面层的表面通过沉积工艺或喷涂工艺以形成所述第一表面层。
  21. 一种如权利要求20的制备方法,其特征在于,所述制备方法还包括介于所述步骤二和步骤三之间的步骤四,所述步骤四对形成的所述第二表面层进行精加工以使得所述第二表面层朝向所述第一表面层的表面的粗糙度Ra满足条件:Ra≤3.2μm。
PCT/CN2020/075565 2019-07-17 2020-02-17 一种金属滑动构件及其制备方法 WO2021008133A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910647457.4A CN110296149A (zh) 2019-07-17 2019-07-17 一种金属滑动构件及其制备方法
CN201910647457.4 2019-07-17

Publications (1)

Publication Number Publication Date
WO2021008133A1 true WO2021008133A1 (zh) 2021-01-21

Family

ID=68031382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075565 WO2021008133A1 (zh) 2019-07-17 2020-02-17 一种金属滑动构件及其制备方法

Country Status (2)

Country Link
CN (1) CN110296149A (zh)
WO (1) WO2021008133A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296149A (zh) * 2019-07-17 2019-10-01 浙江中达精密部件股份有限公司 一种金属滑动构件及其制备方法
WO2021095592A1 (ja) * 2019-11-15 2021-05-20 イーグル工業株式会社 摺動部品
CN111609038A (zh) * 2020-04-26 2020-09-01 华泰汽车配件工业(南平)有限公司 一种石墨烯基轴瓦复合涂层及轴瓦
CN112126906B (zh) * 2020-09-25 2022-05-27 中国人民解放军陆军装甲兵学院 一种石墨烯/类金刚石润滑薄膜的制备方法
CN112453407B (zh) * 2020-11-05 2021-12-24 三阳纺织有限公司 滑动件的制作方法、滑动件及应用该滑动件的纺织机械
CN115388094B (zh) * 2022-08-24 2023-10-13 苏州鲁南紧固系统有限公司 一种光伏支架分体式行星轴承总成及装配方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1277508A (en) * 1968-12-19 1972-06-14 Schmidt Gmbh Karl A sliding contact bearing
US20020155304A1 (en) * 2001-02-19 2002-10-24 Daido Metal Company Ltd. Sliding bearing and method of manufacturing the same
JP2010159808A (ja) * 2009-01-07 2010-07-22 Ntn Corp 複層軸受
WO2012147781A1 (ja) * 2011-04-26 2012-11-01 千住金属工業株式会社 摺動部材
CN103182808A (zh) * 2011-12-28 2013-07-03 圣戈班高功能塑料集团 一种包括含氟聚合物表面层以及非氟聚合物过渡层的多层复合物
CN106521493A (zh) * 2016-10-27 2017-03-22 广州今泰科技股份有限公司 一种梯度结构类金刚石薄膜及其制备方法
CN109139705A (zh) * 2018-10-31 2019-01-04 福建龙溪轴承(集团)股份有限公司 一种轴承内圈及其制备工艺及自润滑关节轴承
CN110005705A (zh) * 2017-12-15 2019-07-12 千住金属工业株式会社 滑动构件和轴承
CN110296149A (zh) * 2019-07-17 2019-10-01 浙江中达精密部件股份有限公司 一种金属滑动构件及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081522A (ja) * 2006-09-26 2008-04-10 Hitachi Ltd 摺動部材
CN101126417B (zh) * 2007-09-11 2010-12-01 嘉兴中达自润轴承工业有限公司 自润滑滑动轴承材料
CN101413543B (zh) * 2008-12-01 2011-06-29 江苏希西维轴承有限公司 一种干摩擦自润滑滑动轴承
BRPI1005091A2 (pt) * 2010-12-03 2013-03-26 Whirlpool Sa par tribolàgico e processo de tratamento superficial em pares tribolàgicos
DE102011006294B4 (de) * 2011-03-29 2018-10-04 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung eines gehärteten, beschichteten Metallbauteils
CN203685863U (zh) * 2013-12-20 2014-07-02 嘉兴市中诚自润轴承有限公司 一种自润滑轴承衬套
US9624975B2 (en) * 2014-03-21 2017-04-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Sliding member and sliding machine
CN109666934A (zh) * 2017-10-16 2019-04-23 宋珊珊 一种涂覆TiAlN涂层的硬质合金
CN210919827U (zh) * 2019-07-17 2020-07-03 浙江中达精密部件股份有限公司 一种金属滑动构件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1277508A (en) * 1968-12-19 1972-06-14 Schmidt Gmbh Karl A sliding contact bearing
US20020155304A1 (en) * 2001-02-19 2002-10-24 Daido Metal Company Ltd. Sliding bearing and method of manufacturing the same
JP2010159808A (ja) * 2009-01-07 2010-07-22 Ntn Corp 複層軸受
WO2012147781A1 (ja) * 2011-04-26 2012-11-01 千住金属工業株式会社 摺動部材
CN103182808A (zh) * 2011-12-28 2013-07-03 圣戈班高功能塑料集团 一种包括含氟聚合物表面层以及非氟聚合物过渡层的多层复合物
CN106521493A (zh) * 2016-10-27 2017-03-22 广州今泰科技股份有限公司 一种梯度结构类金刚石薄膜及其制备方法
CN110005705A (zh) * 2017-12-15 2019-07-12 千住金属工业株式会社 滑动构件和轴承
CN109139705A (zh) * 2018-10-31 2019-01-04 福建龙溪轴承(集团)股份有限公司 一种轴承内圈及其制备工艺及自润滑关节轴承
CN110296149A (zh) * 2019-07-17 2019-10-01 浙江中达精密部件股份有限公司 一种金属滑动构件及其制备方法

Also Published As

Publication number Publication date
CN110296149A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2021008133A1 (zh) 一种金属滑动构件及其制备方法
US6994475B2 (en) Coated rolling element bearing cages
US8815407B2 (en) Sliding bearing having improved lubrication characteristics
US6471410B1 (en) Coated rolling element bearing
JP4244106B2 (ja) コーティングされているころがり軸受
US6447168B2 (en) Tapered roller bearings and gear shaft support devices
US8157446B2 (en) Cage for a roller bearing and method of producing the same
CN100504090C (zh) 滑动轴承
US8383239B2 (en) Bearing and method of producing the same
US10119567B2 (en) Metal-backed plain bearing
KR101729369B1 (ko) 강화된 트라이볼러지 특성을 갖는 표면의 제조방법
CN105814340A (zh) 行星轮支承装置
JPH08166014A (ja) スラスト針状コロ軸受、転がり軸受、およびスラスト針状コロ軸受の保持器
CN103814150A (zh) 硬质膜、硬质膜形成体及滚动轴承
US11318706B2 (en) Wear-resistant coating film, wear-resistant member, method for producing wear-resistant coating film, and sliding mechanism
US6234679B1 (en) Rolling bearing with coated element
JP7192125B2 (ja) 球面滑りベアリング
WO2000068587A1 (en) Rolling bearing
CN210919827U (zh) 一种金属滑动构件
JP4227897B2 (ja) セラミック製転がり要素及び鋼製内輪又は外輪を有する転がり軸受
CN112824693A (zh) 推力滚子轴承
JP2007327037A (ja) 転がり摺動部材およびこれを用いた転動装置
JP4487530B2 (ja) 転がり軸受用保持器及びその製造方法
JP2006112559A (ja) 円すいころ軸受
US20050183919A1 (en) Gearshift clutch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840966

Country of ref document: EP

Kind code of ref document: A1