WO2021004448A1 - 冰分配组件和用于防止结块的方法 - Google Patents

冰分配组件和用于防止结块的方法 Download PDF

Info

Publication number
WO2021004448A1
WO2021004448A1 PCT/CN2020/100607 CN2020100607W WO2021004448A1 WO 2021004448 A1 WO2021004448 A1 WO 2021004448A1 CN 2020100607 W CN2020100607 W CN 2020100607W WO 2021004448 A1 WO2021004448 A1 WO 2021004448A1
Authority
WO
WIPO (PCT)
Prior art keywords
agitator
ice
rotatable
rotatable drum
bridge
Prior art date
Application number
PCT/CN2020/100607
Other languages
English (en)
French (fr)
Inventor
米勒·查尔斯·本杰明
Original Assignee
海尔智家股份有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to EP20837192.2A priority Critical patent/EP3998444B1/en
Priority to CN202080049087.5A priority patent/CN114072624B/zh
Publication of WO2021004448A1 publication Critical patent/WO2021004448A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/046Ice-crusher machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/22Distributing ice particularly adapted for household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/08Auxiliary features or devices for producing, working or handling ice for different type of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2500/00Problems to be solved
    • F25C2500/08Sticking or clogging of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor

Definitions

  • the present invention relates generally to ice dispensing assemblies such as those used in refrigeration appliances, and more specifically to ice dispensing assemblies and methods for preventing ice from caking before dispensing.
  • a refrigerator includes a freezer compartment and a food preservation compartment, which are separated from each other to store various foods at an appropriate low temperature.
  • An automatic ice maker/water dispenser is usually provided for refrigerators.
  • the freezer compartment is arranged to the side of the food preservation compartment
  • the ice maker is usually arranged in the freezer compartment so that the cold air in the freezer compartment can be used
  • the freezer compartment may include a refrigerator that is also arranged in the freezer compartment. Evaporator.
  • a “bottom freezer” type refrigerator where the freezer compartment is arranged below the top-mounted food preservation compartment, for convenience, the ice maker needs to be arranged in a sub-compartment (usually referred to as an "ice box"), which
  • the compartment is usually insulated and is constructed in one of the overhead food preservation compartment doors, and ice is conveyed through an opening in the door.
  • a pre-arrangement must be made to provide sufficient refrigeration for the ice box so that the ice maker can form and store ice.
  • An access door is usually provided on the ice box to allow consumers to enter the internal ice bucket and ice maker.
  • the ice maker delivers ice into a storage container or bucket, where the ice is kept until needed or desired (e.g., needed or desired by the user).
  • the front panel of the refrigerator allows the user to choose to dispense crushed ice or non-crushed ice.
  • ice is pushed by a screw feeder through a chute or channel equipped with one or more blades that are carried on a shaft and rotate with the shaft to contact and crush the ice. It is also possible to provide cold water by arranging the heat pipe road on the panel so that the water is cooled before reaching the distributor.
  • a common problem of ice making and ice delivery systems is, for example, the agglomeration of ice in storage containers.
  • ice will sublime in the storage container.
  • the ice cubes in contact sublimate they will stick together.
  • the ice dispensing assembly may not be able to dispense ice.
  • the user may have to discard the entire agglomerate, which may be difficult and wasteful.
  • sublimation and adhesion ie, agglomeration
  • Ice containers and dispensers consume a lot of space in the freezer or food preservation room. Space is not only consumed by the volume required for the production and storage of ice, but the mechanism for moving or crushing the ice also consumes space that the user may otherwise prefer for food storage.
  • the volume or space used to store ice may be limited by the agglomerated ice, which will often form inefficiently shaped blocks, which will prevent the continuous start/operation of the ice maker. For example, ice often accumulates in storage containers below the ice maker's drop point. When the ice reaches a certain cut-off level, the ice maker detects the full bucket and shuts down. Agglomerated ice will usually reach the cut-off level before effectively compacted uncaked ice.
  • an improved ice dispensing assembly for refrigeration appliances would be useful. More particularly, an ice dispensing assembly for refrigeration appliances that can prevent sublimation or agglomeration of ice in the storage container can be beneficial because it can provide a more effective and easier-to-use system. In addition, such a system that can hold a larger amount of ice can be beneficial.
  • an ice dispensing assembly may include a container, a rotatable drum, a motor, an agitator bridge, and a rotatable blade.
  • the container may have a bottom that defines an opening for passing ice from the container.
  • the rotatable drum may define a central axis and be disposed under the container at an opening defined by the bottom of the container.
  • the rotatable drum may have walls.
  • the rotatable drum may define an inner channel that extends circumferentially from the first arc point to the second arc point along the inner surface of the wall.
  • the motor may be mechanically connected to the rotatable drum, and is configured to selectively rotate the rotatable drum around the central axis.
  • the agitator bridge can extend above the wall and rotatably engage with the rotatable drum.
  • the rotatable blade can be housed in a rotatable drum under the agitator bridge.
  • the rotatable blade may be selectively rotatably engaged with the rotatable drum.
  • the rotatable blade may be defined in the circumferential direction by the first arc point and the second arc point.
  • the rotatable drum can move between the position of the crusher and the position of the agitator.
  • the location of the crusher may include the rotatable blade engaging the rotatable drum at the first arc point while being circumferentially spaced from the second arc point.
  • the position of the agitator may include the rotatable blade being engaged with the rotatable drum at the second arc point while being circumferentially spaced from the first arc point.
  • a method of operating an ice dispensing assembly may include the following steps: determining that the container of the ice dispensing assembly has reached a caked state. The method may further include the step of in response to determining that the agglomerated state is reached, directing the motor to rotate the rotatable drum of the ice dispensing assembly on a limited path between the crusher position and the agitator position.
  • the location of the crusher may include the rotatable blade engaging the rotatable drum at the first arc point while being circumferentially spaced from the second arc point.
  • the position of the agitator may include the rotatable blade being engaged with the rotatable drum at the second arc point while being circumferentially spaced from the first arc point.
  • Fig. 1 provides a front view of a refrigeration appliance according to an exemplary embodiment of the present invention.
  • Fig. 2 provides a front view of the exemplary refrigeration appliance of Fig. 1, wherein the door of the food preservation compartment is shown in an open position.
  • Figure 3 provides a perspective view of an ice storage container and a dispenser according to an exemplary embodiment of the present invention, in which a part of the storage container is removed for clarity.
  • Figure 4 provides a perspective view of a part of an ice dispensing assembly according to an exemplary embodiment of the present invention.
  • Figure 5 provides a perspective view of a part of an ice dispensing assembly according to an exemplary embodiment of the present invention.
  • Figure 6 provides a top perspective view of a part of an ice dispensing assembly according to an exemplary embodiment of the present invention.
  • Figure 7 provides a bottom perspective view of an ice storage container and a dispenser according to an exemplary embodiment of the present invention, in which a part of the storage container is removed for clarity.
  • Figure 8 provides a perspective view of a part of an ice dispensing assembly according to an exemplary embodiment of the present invention.
  • Figure 9 provides a cross-sectional view of a portion of an ice dispensing assembly according to an exemplary embodiment of the present invention.
  • FIG. 10 provides a flowchart illustrating a method of operating an ice dispensing assembly according to an exemplary embodiment of the present invention.
  • upstream refers to the relative direction of fluid flow in the fluid passage.
  • upstream refers to the direction of fluid flow
  • downstream refers to the direction of fluid flow.
  • or is generally intended to be inclusive (ie, "A or B” is intended to mean “A or B or both” unless otherwise indicated).
  • FIG. 1 provides a front view of a refrigerator 100 including a dispensing assembly (eg, ice dispensing assembly 110) for dispensing water or ice.
  • the ice dispensing assembly 110 includes a dispenser 114 provided or arranged on the exterior of the refrigerator 100.
  • the refrigerator 100 includes a housing 120 that defines an upper food preservation compartment 122 and a lower freezing compartment 124 arranged at the bottom of the refrigerator 100. Therefore, the refrigerator 100 is generally called a bottom-mounted refrigerator.
  • the housing 120 also defines a mechanical chamber (not shown) for receiving a sealed cooling system.
  • the refrigerating doors 126 and 128 are rotatably hinged to the edge of the housing 120 so as to enter the fresh food compartment 122.
  • a freezing door 130 is arranged below the refrigerating doors 126 and 128 so as to enter the freezing compartment 124.
  • the freezer door 130 is coupled to a freezer drawer (not shown) slidably coupled in the freezer compartment 124.
  • the dispenser 114 includes a drain 132 for obtaining ice and water.
  • a single paddle 134 may be installed under the discharge port 132 in order to operate the dispenser 114.
  • the user interface panel 136 is provided to control the operation mode.
  • the user interface panel 136 includes a water dispensing button (not labeled) and an ice dispensing button (not labeled), which are used to select a desired mode of operation, such as crushed ice or non-crushed ice.
  • the discharge port 132 and the paddle 134 are external parts of the dispenser 114 and are installed in a concave portion 138 defined in the outer surface of the refrigerator door 126.
  • the concave portion 138 is set or defined at a predetermined height, which is convenient for the user to take ice or water, so that the user can take ice without bending over and without entering the freezing compartment 124.
  • the concave portion 138 is positioned or defined at a position close to the level of the user's chest.
  • FIG. 2 provides a front view of the refrigerator 100 with doors 126, 128 in an open position to expose the inside of the fresh food compartment 122.
  • the distribution assembly 110 includes a heat insulation housing 142 installed in the refrigerating compartment 122 along the upper surface 144 of the refrigerating compartment 122 and along the side wall 146 of the refrigerating compartment 122.
  • the insulated housing 142 includes an insulated wall 148 that defines an insulated cavity (not shown). Due to the insulating material surrounding the insulating cavity, the temperature in the insulating cavity can be maintained at a different level from the ambient temperature in the surrounding food preservation compartment 122.
  • the insulated cavity is constructed and arranged to operate at a temperature conducive to the production and storage of ice. More specifically, the insulated cavity contains an ice maker for making ice and supplying ice to the container 200 installed on the refrigerating door 126. As shown in FIG. 2, the container 200 is placed in a vertical position on the refrigerating door 126 that allows ice to be received from the discharge port 162 located along the bottom edge 164 of the insulated housing 142. When the door 126 is closed or opened, the housing 200 is moved in and out of the position under the heat insulating housing 142.
  • the thermal insulation housing 142 and the ice maker may be directly positioned or arranged on the door 126.
  • the ice maker in the structure where the food preservation compartment and the freezing compartment are positioned side by side (as opposed to the up-and-down positioning shown in Figures 1 and 2), the ice maker may be located on the door of the freezer compartment and located Right above the container 200. Therefore, the use of a heat-insulating casing would be unnecessary.
  • Other configurations for positioning the ice container 200, the ice maker, or the insulated housing 142 may also be used.
  • the operation of the refrigeration appliance 100 including the motor 216 of the distribution assembly 110 may be adjusted by the controller 190, which is in operative communication (e.g., electrical communication) with, for example, the user interface panel 136 or various other components.
  • the user interface panel 136 provides a selection for the user to operate the operation of the refrigeration appliance 100, for example, a selection between whole ice or crushed ice, cold water, and other options.
  • the controller 190 may operate various components of the refrigeration appliance 100.
  • the controller 190 may include a memory and one or more microprocessors, CPUs, etc., such as general-purpose or special-purpose microprocessors, which are used to execute programming instructions or micro-control codes associated with the operation of the refrigeration appliance 100.
  • the memory may mean random access memory such as DRAM or read-only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be included in the processor.
  • the controller 190 can be constructed without using a microprocessor (for example, using a combination of discrete analog or digital logic circuits; such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) To perform control functions instead of relying on software.
  • the controller 190 may be arranged in various positions throughout the refrigeration appliance 100.
  • the controller 190 may be located in the control panel area of the door 126.
  • input/output (“I/O") signals can be transmitted between the controller 190 and various operating components of the refrigeration appliance 100 (such as the motor 216 or the sensors 192, 194), as will be described below Further described.
  • the control panel 136 may represent a general purpose I/O ("GPIO") device or functional block.
  • the user interface 136 may include input components, such as one or more of various electrical, mechanical, or electromechanical input devices including rotary dials, buttons, and touch pads.
  • the user interface 136 may include display components, such as digital or analog display devices designed to provide operational feedback to the user.
  • the user interface 136 may communicate with the controller 190 via one or more signal lines or a shared communication bus.
  • the controller 190 may communicate with various components of the distribution assembly 110 (including the motor 216), and may control the operation of the various components. For example, various valves, switches, etc. may be actuated based on commands from the controller 190. In this way, various operations may occur based on user input or automatically occur with instructions from the controller 190.
  • the controller 190 is configured to initiate an ice treatment cycle, which advantageously prevents or alleviates the agglomeration of ice within the storage container 200.
  • a water sensor 192 e.g., a conductivity sensor or any other suitable sensor configured to detect molten liquid water
  • the controller 190 e.g., Electrically or wirelessly
  • the water sensor 192 may be installed on or in the bottom of the storage container 200.
  • a recess may be formed in which a predetermined amount of liquid water may be collected.
  • the water sensor 192 may send a corresponding signal (for example, to the controller 190).
  • a temperature sensor 194 (e.g., a thermistor, thermocouple, or any other suitable sensor configured to detect temperature) is installed in the distribution assembly 110 and is operably ( For example, electrical or wireless communication.
  • the temperature sensor 194 may be installed on or adjacent to the storage container 200 (for example, installed in the heat-insulating housing 142). Based on the temperature detected at the housing 142, the temperature sensor 194 may send a corresponding signal (for example, to the controller 190).
  • FIGS. 3 to 8 various views of exemplary embodiments including an ice storage container 200 and an ice crushing mechanism that can be used with the ice dispensing assembly 110 are provided.
  • part of the storage container 200 or the cover 238 is not shown in some drawings.
  • the container 200 has a bottom 202 that defines an opening 204 by which ice can pass from the container 200 and enter the drum or rotatable cylinder 206.
  • the bottom 202 includes inclined walls 234 and 236 that help guide ice toward the opening 204.
  • the roller 206 is positioned or arranged under the container 200 and at the opening 204.
  • the drum 206 has a cylindrical outer wall 208 and defines an inner diameter D at the inner surface of the wall 208.
  • the inner surface 208 may generally face the central axis X with the inner diameter D spanning (eg, perpendicular to) the central axis.
  • One or more rotatable blades 210 are contained within the drum 206 (e.g., radially inward from the wall 208). In certain embodiments, the rotatable blade 210 extends along at least a portion of the diameter D. As will be described further, as the rotatable blade 210 rotates around the central axis X located in the middle of the drum 206, it can selectively rotate together with the drum 206. In the exemplary embodiment, the pin 212 extends along the central axis X in the drum 206. Optionally, the pin 212 may be rotatably fixed (e.g., not rotatable with the drum 206). The rotatable blade 210 may be rotatably attached to the pin 212.
  • the rotatable blade 210 defines an opening through which the pin 212 extends so that the blade 210 can freely rotate about the pin 212 in a clockwise or counterclockwise circumferential direction.
  • the housing 220 extends from the bottom 202 of the container 200. The housing 220 at least partially encloses the rotatable drum 206 and a part of the pin 212 extends into the housing 220.
  • one or more non-rotatable or fixed blades 214 are contained in the drum 206.
  • the fixed blade 214 can be rotatably fixed so that the fixed blade 214 cannot rotate around the central axis X.
  • the fixed blade 214 may be attached to the pin 212 and not directly connected to the wall 208 of the drum 206. Since the pin 212 is not rotatable, the fixed blade 214 is not rotatable in the drum 206 either. Thus, as the rotatable blade 210 moves around the central axis X and relative to the fixed blade 214, the fixed blade 214 can be maintained at a fixed position.
  • the blade 210 may include a cutting edge 244 having, for example, a plurality of teeth.
  • a plurality of teeth of the cutting edge 244 may be formed on one circumferential edge (for example, an edge facing a clockwise direction) of each blade 210.
  • a flat blade 246 eg, a flat blade extending parallel to the diameter D
  • the opposite circumferential edge eg, the edge facing in a counterclockwise direction
  • each blade 210 and 214 has cutting edges 244 and 248 oriented toward each other.
  • the cutting edges 244 and 248 move toward each other to crush the ice that has fallen into the position between the blades 210 and 214.
  • the cutting edges 244 and 248 move away from each other, so that the uncrushed ice or all ice passes through the drum 206 vertically under the action of gravity.
  • the wall 208 of the drum 206 has a top end 224 and a bottom end 226.
  • the blades 210 and 214 are received between the top end 224 and the bottom end 226.
  • one or more agitator bridges 230A, 230B extend at least partially above the top end 224 of the wall 208.
  • the blades 210, 214 are at least partially accommodated under the respective agitator bridge 230A or 230B.
  • the agitator bridges 230A, 230B extend substantially upward into the storage container 200. When assembled, the agitator bridge 230A or 230B may be rotationally engaged with the drum 206 or the wall 208.
  • the rotation of the drum 206 may be (eg, selectively) transferred to the agitator bridge 230A, 230B.
  • the agitator bridges 230A, 230B can be selectively rotated in the storage container 200 while contacting ice, thereby "fluidizing" the ice so that the ice can be stirred, prevented from sublimating, or allowed to be more easily Flow into the drum 206.
  • one or more agitator bridges 230A, 230B include an upper body 250 disposed above the top end 224.
  • the upper body 250 may extend from the top end 224 to the pin 212.
  • the upper body 250 may extend substantially vertically upward and radially inward from the top end 224 (ie, toward the central axis X).
  • the agitator bridge 230A or 230B is rotatably attached to the pin 212 and selectively rotates about the central axis X.
  • the agitator bridge 230A or 230B includes internal tabs 252 extending axially (eg, parallel to the central axis X) along the inner surface (eg, inner surface 242) of the drum 206 or wall 208 (For example, the first inner tab).
  • the inner tab 252 may extend axially downward at the top end 224 (eg, extend downward from the upper body 250).
  • the inner tab 252 is rotatably secured to the rotatable drum 206 (eg, by one or more adhesives, mechanical fasteners, etc.). Thereby, the rotatable drum 206 and the inner protrusion 252 (and the remainder of the agitator bridge 230A or 230B) can be rotated in tandem.
  • two or more agitator bridges 230A, 230B may be circumferentially separated from each other. Open (for example, the separation is greater than 15°, such as between 15° and 180°).
  • the inner tabs 252 of the first agitator bridge 230A may be circumferentially spaced from the inner tabs 252 of the second agitator bridge 230B, so that each of the inner tabs 252 is located in a discontinuous (eg, parallel) direction around the central axis X. )position.
  • each inner channel 254 may extend from the corresponding first arc point 260 to the corresponding second arc point 262 along the inner surface 242 of the wall 208.
  • the inner channel 254 may define a groove extending radially outward from another part of the drum 206 or the inner tab 252 and facing inward.
  • the inner channel 254 provides a gap that is defined radially outward from the innermost surface of the inner tab 252, and, for example, from the inner tab 252 circumferentially outward.
  • the inner tab 252 may define a second arc point 262.
  • One or more rotatable blades 210 may extend to and be disposed in the corresponding inner passage 254.
  • at least a portion of the rotatable blade 210 may be bounded by the first arc point 260 and the second arc point 262 (eg, bounded in the circumferential direction).
  • the end cover 256 of each rotatable blade 210 may be arranged in a separate corresponding inner channel 254. Between the first arc point 260 and the second arc point 262, the rotatable blade 210 can move freely relative to the drum 206.
  • the rotatable blade 210 may be rotationally engaged with the drum 206 (for example, in contact with a protrusion or protrusion of the drum 206, such as on the wall 208 or its At the bottom).
  • the drum 206 can be moved relative to the rotatable blade 210 between an agitator position (e.g., FIG. 5) and a crusher position (e.g., rotating about the central axis X).
  • the maximum circumferential length or distance 264 between the arc points 260, 262 and the corresponding rotatable blade 210 may vary based on the ratio of the remaining portion of the distribution assembly 110, the distance 264 may It is defined as the interval angle around the center axis X. In some embodiments, the separation angle is greater than or equal to 10°. In an additional or alternative embodiment, the separation angle is less than or equal to 170°. Thereby, the rotatable drum 206 can be forced to rotate (for example, in a clockwise or counterclockwise circumferential direction) through the maximum circumferential length 264 between the position of the agitator and the position of the crusher (for example, between 10° and 170°) ).
  • a portion of the rotatable blade 210 engages the drum 206 at the first arc point 260 (eg, directly or indirectly through a portion of the agitator bridge 230A or 230B). Moreover, at the crusher position, the rotatable blade 210 is circumferentially spaced from the second arc point 262. Thus, the rotation (for example, clockwise) of the drum 206 may be transmitted to the rotatable blade 210.
  • a portion of the rotatable blade 210 engages the drum 206 at the second arc point 262 (for example, directly or through the agitator bridge 230A or 230B). Part of indirect joint).
  • the rotatable blade 210 is circumferentially spaced from the first arc point 260.
  • the rotation (for example, counterclockwise) of the drum 206 may be transmitted to the rotatable blade 210.
  • the drum 206 can rotate relative to the rotatable blade 210, and the rotatable blade can remain stationary.
  • the first arc point 260 and the second arc point 262 of the single inner channel 254 are defined by agitator bridges 230A, 230B, respectively.
  • the first agitator bridge 230A defines a first arc point 260
  • the second agitator bridge 230B defines a second arc point 262.
  • first arc point 260 and the second arc point 262 of the single inner channel 254 are defined by a stirrer bridge 230A or 230B.
  • a single agitator bridge 230A or 230B may include a first inner tab 252A and a second inner tab 252B circumferentially spaced from the first inner tab 252A. Both the first inner tab 252A and the second inner tab 252B may extend from the corresponding upper body 250 (for example, axially and in parallel).
  • the end cap 256 of the rotatable blade 210 may be defined between the first inner tab 252A and the second inner tab 252B.
  • the first inner tab 252A may define a first arc point 260 and the second inner tab 252B may define a second arc point 262.
  • the cover 238 is positioned or arranged across at least a portion of the roller 206 (for example, at the top end 224).
  • the cover 238 is attached to the pin 212 and not directly attached to the drum 206.
  • the cover 238 may remain stationary so that it does not rotate with the drum 206.
  • the cover 238 may also define a first hole 240 through which the ice must pass in order to travel from the container 200 and through the drum 206.
  • the bottom end 226 of the drum 206 may be formed with a plurality of gear teeth 228 which are arranged or arranged along the circumference of the drum 206.
  • the motor 216 (FIG. 2) is arranged to be mechanically connected to the drum 206 (for example, through one or more gear teeth 228, gears 218, keys, gear trains, etc. connected to the motor 216).
  • the motor 216 may be selectively operated by the controller 190 described above. Based on whether the user of the appliance selects whole ice or crushed ice, the controller 190 may guide the rotation of the gear 218 through the motor 216 to control the rotation direction of the drum 206 to provide the selected ice.
  • the motor and gear configuration of FIG. 7 is provided by way of example only; a number of other configurations for rotating drum 206 may also be used.
  • the bottom end 226 of the housing 220 further includes a second hole 222 through which the ice must pass in order to leave the drum 206.
  • the positions of the first hole 240 and the second hole 222 may be offset with respect to the central axis X.
  • the first hole 240 may not be along the vertical direction V or directly above the second hole 222 with respect to the central axis X. In this way, as the ice travels through the drum 206, the ice entering the drum 206 may be forced to contact the blades 210 and 214.
  • ice may fall into the container 200 from the ice maker through the opening 162 in the insulating housing 142.
  • the inclined walls 234 and 236 can help guide the ice toward the first hole 240 so that the ice can move through the hole 240 and the opening 204 and into the drum 206 under the action of gravity.
  • the controller 190 may determine the rotation direction of the drum 206. This rotation may be activated based on, for example, the user pressing the paddle 134, so that the controller 190 receives a request for ice. The controller 190 can then activate the motor 216 appropriately.
  • Rotating the drum 206 by activating the motor 216 can also rotate the agitator bridge 230 to agitate the ice in the container 200 (for example, once the drum 206 reaches the agitator position or the crusher position). If the user chooses to crush ice, the drum 206 rotates so that the movement of the rotatable blade 210 relative to the non-rotating blade 214 will clamp and crush the ice between the cutting edges 244 and 248. As the ice travels vertically downward through the drum 206, as shown, a plurality of blades 210 and 214 may be provided to help ensure that the ice is sufficiently crushed.
  • the drum 206 rotates so that the movement of the rotatable blade 210 relative to the fixed blade 214 will avoid crushing ice between them.
  • the ice may exit through the second hole 222 and enter, for example, the user's cup or glass through the discharge port 132.
  • the controller 190 may direct the drum 206 (eg, via the motor 216) to initiate an ice treatment cycle.
  • This ice treatment cycle can advantageously agitate the ice in the storage container 200 without forcing any ice to reach or pass through the second hole 222.
  • FIG. 10 a flowchart of a method 300 according to an exemplary embodiment of the present invention is provided.
  • the method 300 provides a method of operating a refrigeration appliance (as part of an ice treatment cycle), such as the refrigeration appliance 100 including the ice dispensing assembly 110 as described above ( Figure 1).
  • the method 300 may be executed by the controller 190, for example.
  • the controller 190 may be in electrical communication with the motor 216, the sensors 192, 194, or the user control panel 136. During operation, the controller 190 may send and receive signals to and from the motor 216, the sensors 192, 194, or the user control panel 136. The controller 190 may also operatively communicate with other suitable components of the refrigeration appliance 100 to facilitate the operation of the refrigeration appliance 100.
  • the method 300 includes determining that an agglomerated state is reached.
  • the agglomerated state can be indicative of a state in the dispensing assembly or container that may reach sublimation or re-freezing of ice.
  • the clumping state may include the time since the previous motor event.
  • the method 300 may include the step of determining that a predetermined time interval (for example, in minutes or hours) has expired since the last (ie, most recent previous) motor event.
  • each motor event may trigger a timer configured to measure a predetermined time interval, and, for example, send or generate a signal that characterizes the moment when the predetermined time interval expires. If a new motor event occurs before the predetermined time interval expires, the timer can be restarted.
  • the motor event may generally correspond to the activation of the motor and the rotation of the drum, such as the activation of the motor and the rotation of the drum that occurred during a dispensing cycle, a crushing cycle, or a previous ice treatment cycle.
  • the agglomeration state includes receiving a sensor signal (e.g., a signal sent from a water sensor or temperature sensor as described above).
  • a sensor signal e.g., a signal sent from a water sensor or temperature sensor as described above.
  • the controller may receive a signal.
  • a predetermined temperature e.g, a maximum temperature limit
  • the controller may receive a signal. Based on the one or more received sensor signals, the controller can determine whether sublimation is possible or likely.
  • Subsequent steps may proceed in response to the determination at step 310 that the agglomerated state is reached.
  • the method 300 includes determining the previous motor event.
  • step 320 may include determining the direction of the most recent rotation of the motor. In other words, it can be determined whether the motor finally rotates the drum clockwise or counterclockwise.
  • step 320 may include determining whether the motor last rotated as part of an agitator cycle, a crusher cycle, or an ice treatment cycle. Additionally or alternatively, step 320 may include determining where the drum is located (e.g., agitator position, crusher position, etc.).
  • the method 300 includes: selecting the circumferential direction of the drum rotation according to the previous motor event at step 320. From the selected direction, the rotatable drum can rotate on a limited path between the crusher position and the agitator position. Specifically, if the previous motor event ends or includes (eg, as a final movement) rotating the drum in the first or clockwise circumferential direction, the method 300 may proceed to step 342. In contrast, if the previous motor event ended or included (eg, as a final movement) rotating the drum in a second or counterclockwise circumferential direction, the method 300 may proceed to step 344.
  • the method 300 includes rotating the rotatable drum in a second or counterclockwise circumferential direction.
  • the motor is activated to rotate the drum counterclockwise from the crusher position.
  • the drum can be rotated to the agitator position.
  • the rotation of the drum is stopped at or before the position of the agitator. Thereby, it is possible to prevent the drum from rotating, moving or advancing the rotatable blade.
  • the method 300 may proceed to step 352.
  • the method 300 includes rotating the rotatable drum in a first or clockwise circumferential direction.
  • the motor is activated to rotate the drum clockwise to the agitator position.
  • the drum and the rotatable blade can generally return to the same relative position that existed immediately before 310.
  • the method 300 includes rotating the rotatable drum in a first or clockwise circumferential direction. Specifically, at step 344, the motor is activated to rotate the drum clockwise from the agitator position. Optionally, the drum can be rotated to the crusher position. In some such embodiments, the rotation of the drum is stopped at or before the location of the crusher. Thereby, it is possible to prevent the drum from rotating, moving or advancing the rotatable blade. Upon reaching the crusher location, or alternatively, before reaching the crusher location, the method 300 may proceed to step 354.
  • the method 300 includes rotating the rotatable drum in a second or counterclockwise circumferential direction.
  • the motor is activated to rotate the drum counterclockwise to the crusher position.
  • the drum and the rotatable blade can generally return to the same relative position that existed immediately before 310.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Food-Manufacturing Devices (AREA)
  • Confectionery (AREA)

Abstract

一种冰分配组件,该分配组件包括容器(200)、可旋转滚筒(206)、马达(216)、搅拌器桥(230)以及可旋转叶片(210)。容器(200)可以限定用于通过冰的开口(204)。可旋转滚筒(206)可以设于容器(200)下方。可旋转滚筒(206)可以限定从第一弧点(260)到第二弧点(262)的内通道。可旋转叶片(210)可以容纳在第一弧点(260)与第二弧点(262)之间的可旋转滚筒(206)内。可旋转滚筒(206)可以在破碎机位置与搅拌器位置之间移动。破碎机位置可以包括可旋转叶片(210)在第一弧点(260)处与可旋转滚筒(206)接合,同时与第二弧点(262)沿周向隔开。搅拌器位置可以包括可旋转叶片(210)在第二弧点(262)处与可旋转滚筒(206)接合,同时与第一弧点(260)沿周向隔开。

Description

冰分配组件和用于防止结块的方法 技术领域
本发明总体涉及诸如用于制冷电器的冰分配组件,更具体地涉及冰分配组件和防止冰在分配之前结块的方法。
背景技术
通常,冰箱包括冷冻室和食物保鲜室,它们彼此分隔开,以将各种食物储存在适当的低温下。通常为冰箱提供自动制冰机/水分配器。在冷冻室布置到食物保鲜室侧面的“对开门”式冰箱中,制冰机通常布置在冷冻室中由此可以利用冷冻室中的冷空气,该冷冻室可以包括也布置在冷冻室中的蒸发器。
在冷冻室布置在顶置式食物保鲜室下方的“底置冷冻箱”式冰箱中,为了方便性,需要将制冰机布置在子间室(通常称为“冰盒”)中,该子间室通常隔热,并且被构造在顶置式食物保鲜室门中的一个中,冰通过门上的开口输送。在这种布置中,必须预作安排以为冰盒提供足够的制冷,以使制冰机能够形成并储存冰。通常在冰盒上设置进入门,以允许消费者进入内部冰桶和制冰机。
通常,制冰机将冰输送到储存容器或桶中,冰在其中一直保存到需要或期望(例如,用户需要或期望)为止。冰箱前部的面板可以允许用户选择分配碎冰或非碎冰。传统上,冰由螺旋送料器推动穿过配备有一个或多个叶片的斜槽或通道,这些叶片承载在轴上并与轴一起旋转,以接触并压碎冰。也可以通过将导热管道路设于面板上,使得水在到达分配器之前被冷却,从而可提供冷水。
制冰和送冰系统的一个共同问题是例如储存容器内的冰的结块。通常,冰会在储存容器内升华。随着接触的冰块升华,它们会粘合在一起。一旦粘合,冰分配组件就可能无法分配冰。用户可能必须丢弃整个结块,这可能是困难且浪费的。如果冰分配动作之间的时间段延长(例如,几个小时),则冰的升华和粘合(即,结块)是特别可能的。这种延长的时间段经常发生在正常使用期间,因为典型的用户不会每隔较短的一段时间就需要冰。
冰容器和分配器会消耗冷冻室或食物保鲜室的大量空间。空间不仅被冰的产生和储存所需的体积所消耗,而且用于移动或压碎冰的机构也会消耗用户可能另外更喜欢用于食物储存的空间。另外,用于储存冰的体积或空间可能受到结块冰的限 制,结块的冰将经常形成为低效形状的块,该块将阻止制冰机的持续启动/操作。例如,冰经常堆积在制冰机落点下方的储存容器中。当冰达到一定的截止料位时,制冰机检测到满桶并关闭。结块的冰通常将先于有效压实的未结块冰到达截止料位。
因此,一种改进的用于制冷电器的冰分配组件将是有用的。更特别地,一种可以防止储存容器内的冰升华或结块的用于制冷电器的冰分配组件可以是有益的,因为它可以提供更有效且更易于使用的系统。另外,这种可以容纳更大量的冰的系统可以是有益的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面中,提供了一种冰分配组件。所述冰分配组件可以包括容器、可旋转滚筒、马达、搅拌器桥以及可旋转叶片。所述容器可以具有底部,该底部限定用于使冰从容器通过的开口。可旋转滚筒可以限定中心轴线并且在由容器的底部限定的开口处设置在容器下方。可旋转滚筒可以具有壁。可旋转滚筒可以限定内通道,该内通道沿着壁的内表面从第一弧点沿周向延伸到第二弧点。马达可以与可旋转滚筒机械连接,并且被构造为选择性地使可旋转滚筒围绕中心轴线旋转。搅拌器桥可以在壁上方延伸并与可旋转滚筒旋转接合。可旋转叶片可以容纳在搅拌器桥下方的可旋转滚筒内。可旋转叶片可以与可旋转滚筒选择性地旋转接合。可旋转叶片可以由第一弧点和第二弧点沿周向界定。可旋转滚筒可在破碎机位置与搅拌器位置之间移动。破碎机位置可以包括可旋转叶片在第一弧点处与可旋转滚筒接合,同时与第二弧点沿周向隔开。搅拌器位置可以包括可旋转叶片在第二弧点处与可旋转滚筒接合,同时与第一弧点沿周向隔开。
在本发明的另一示例性方面中,提供了一种操作冰分配组件的方法。该方法可以包括以下步骤:确定冰分配组件的容器内达到结块状态。该方法还可以包括以下步骤:响应于确定达到结块状态,引导马达使冰分配组件的可旋转滚筒在破碎机位置与搅拌器位置之间的有限路径上旋转。破碎机位置可以包括可旋转叶片在第一弧点处与可旋转滚筒接合,同时与第二弧点沿周向隔开。搅拌器位置可以包括可旋转叶片在第二弧点处与可旋转滚筒接合,同时与第一弧点沿周向隔开。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优 点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的制冷电器的正视图。
图2提供了图1的示例性制冷电器的正视图,其中食物保鲜室的门被示出为处于打开位置。
图3提供了根据本发明的示例性实施方式的储冰容器和分配器的立体图,其中为了清楚起见,储存容器的一部分被去除。
图4提供了根据本发明的示例性实施方式的冰分配组件的一部分的立体图。
图5提供了根据本发明的示例性实施方式的冰分配组件的一部分的立体图。
图6提供了根据本发明的示例性实施方式的冰分配组件的一部分的顶部立体图。
图7提供了根据本发明的示例性实施方式的储冰容器和分配器的底部立体图,其中为了清楚起见,储存容器的一部分被去除。
图8提供了根据本发明的示例性实施方式的冰分配组件的一部分的立体图。
图9提供了根据本发明的示例性实施方式的冰分配组件的一部分的剖视图。
图10提供了示出了根据本发明的示例性实施方式的操作冰分配组件的方法的流程图。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术 语“上游”和“下游”是指相对于流体通路中的流体流动的相对方向。例如,“上游”是指流体流动的来向,而“下游”是指流体流动的去向。术语“或”通常旨在是包括的(即,“A或B”旨在意指“A或B或两者”,除非另外指示)。
现在转向附图,图1提供了包括用于分配水或冰的分配组件(例如,冰分配组件110)的冰箱100的正视图。在该示例性实施方式中,冰分配组件110包括设置或布置在冰箱100的外部上的分配器114。冰箱100包括壳体120,该壳体120限定了上部食物保鲜室122和布置在冰箱100底部的下部冷冻室124。由此可见,冰箱100通常被称为底置式冰箱。在示例性实施方式中,壳体120还限定了用于接收密封冷却系统的机械室(未示出)。虽然在底置式冰箱的背景下进行了描述,但应当认识到,本发明的益处适用于其他类型和样式的制冷电器,例如,顶置式制冷电器或对开门式制冷电器。因此,本文阐述的描述仅出于例示性目的,而无意于在任何方面限制任何特定的冰箱室构造。
冷藏门126、128可旋转地铰接到壳体120的边缘,以便进入食物保鲜室122。在冷藏门126、128的下方布置冷冻门130,以便进入冷冻室124。在示例性实施方式中,冷冻门130联接至可滑动地联接在冷冻室124内的冷冻抽屉(未示出)。
在某些实施方式中,分配器114包括用于获取冰和水的排放口132。单个拨片134可以安装在排放口132下方,以便操作分配器114。设置用户界面面板136,以便控制操作模式。例如,用户界面面板136包括水分配按钮(未标记)和冰分配按钮(未标记),这些按钮用于选择期望的操作模式,诸如碎冰或非碎冰。
排放口132和拨片134是分配器114的外部零件,并且安装在限定于冷藏门126的外表面中的凹形部138中。凹形部138设置或限定在预定高度处,该预定高度方便用户取冰或水,使得用户能够在不需要弯腰的情况下且在不需要进入冷冻室124的情况下取冰。在示例性实施方式中,凹形部138定位或限定在接近用户的胸部水平的位置处。
图2提供了具有门126、128的冰箱100的正视图,这些门处于打开位置,以露出食物保鲜室122的内部。由此,示出了冰分配组件110的该示例性实施方式的某些部件。分配组件110包括沿着冷藏室122的上表面144且沿着冷藏室122的侧壁146安装在冷藏室122内的隔热壳体142。隔热壳体142包括限定隔热腔(未示出)的隔热壁148。由于包围隔热腔的隔热材料,隔热腔内的温度可以被保持在与周围的食物保鲜室122中的环境温度不同的水平。
在一些实施方式中,隔热腔被构造并布置为在有利于产生和储存冰的温度下操 作。更特别地,隔热腔包含用于制冰并将冰供给到安装在冷藏门126上的容器200的制冰机。如图2所示,容器200放置在冷藏门126上的垂直位置,该位置允许从沿着隔热壳体142的底部边缘164定位的排出口162接收冰。当门126关闭或打开时,壳体200被移入和移出隔热壳体142下方的位置。可选地,在本发明的另一示例性实施方式中,隔热壳体142及其制冰机可以直接定位或布置在门126上。在本发明的又一实施方式中,在食物保鲜室和冷冻室并排定位(与如图1和图2所示的上下定位相反)的构造中,制冰机可以位于冷冻室的门上并位于容器200的正上方。由此,使用隔热壳体将是不必要的。也可以使用用于定位冰容器200、制冰机或隔热壳体142的其它构造。
包括分配组件110的马达216的制冷电器100的操作可以通过控制器190来调节,该控制器190与例如用户界面面板136或各种其它部件可操作地通信(例如,电气通信)。用户界面面板136提供用于用户对制冷电器100的运行的操作的选择,例如,在整冰或碎冰、冷水以及其他选项之间的选择。响应于用户对用户界面面板136的操作或一个或多个传感器信号,控制器190可以运行制冷电器100的各种部件。控制器190可以包括存储器和一个或多个微处理器、CPU等,诸如通用或专用微处理器,该微处理器用于执行与制冷电器100的运行关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。在一个实施方式中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包含在处理器内部。可选地,控制器190可以在不使用微处理器的情况下(例如,使用离散的模拟或数字逻辑电路的组合;诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。
控制器190可以布置在贯穿制冷电器100中的各种位置。在所示例的实施方式中,控制器190可以位于门126的控制面板区域内。在这种实施方式中,输入/输出(“I/O”)信号可以在控制器190与制冷电器100的各种操作部件(诸如马达216或传感器192、194)之间传输,如将在下面进一步描述的。在一些实施方式中,控制面板136可以表示通用I/O(“GPIO”)装置或功能块。在附加或可选实施方式中,用户界面136可以包括输入部件,诸如包括旋转拨号盘、按钮以及触摸板的各种电气、机械或机电输入装置中的一个或多个。用户界面136可以包括显示部件,诸如设计为向用户提供操作反馈的数字或模拟显示装置。用户界面136可以经由一条或多条信号线或共享的通信总线与控制器190通信。
如图例示,控制器190可以与分配组件110的各种部件(包括马达216)通信,并且可以控制各种部件的操作。例如,可以基于来自控制器190的命令来致动各种阀、开关等。由此,各种操作可以基于用户输入发生或借助控制器190指令自动发生。在一些这种实施方式中,控制器190被配置为启动冰处理周期,该冰处理周期有利地防止或减轻储存容器200内的冰的结块。
在可选的实施方式中,水传感器192(例如,电导率传感器或被配置为检测熔化的液态水的任何其他合适的传感器)安装在分配组件110内,与控制器190可操作地(例如,电气地或无线地)通信。比如,水传感器192可以安装在储存容器200的底部上或底部内。可选地,可以形成凹部,其中可以汇集预定量的液态水。响应于汇集有预定量的液态水,水传感器192可以发送对应的信号(例如,至控制器190)。
在附加或可选的实施方式中,温度传感器194(例如,热敏电阻、热电偶或被配置为检测温度的任何其他合适的传感器)安装在分配组件110内,与控制器190可操作地(例如,电气地或无线地)通信。比如,温度传感器194可以安装在储存容器200上或与其相邻(例如,安装在隔热壳体142内)。基于在壳体142处检测到的温度,温度传感器194可以发送对应的信号(例如,至控制器190)。
现在特别转向图3至图8,提供了包括储冰容器200和可以与冰分配组件110一起使用的碎冰机构的示例性实施方式的各种视图。为了露出某些内部部件,一些图中没有储存容器200的一部分或盖238。
通常,容器200具有限定开口204的底部202,凭借开口204,冰可以从容器200通过并进入到滚筒或可旋转圆筒206中。在一些实施方式中,底部202包括有助于将冰引向开口204的倾斜壁234和236。如图所示,滚筒206定位或布置在容器200下方且在开口204处。
在一些实施方式中,滚筒206具有圆柱形外壁208,并且在壁208的内表面处限定内径D。内表面208可以大体面向中心轴线X,内径D横跨(例如,垂直于)该中心轴线。
一个或多个可旋转叶片210容纳在滚筒206内(例如,从壁208径向向内)。在某些实施方式中,可旋转叶片210沿着直径D的至少一部分延伸。如将进一步描述的,随着可旋转叶片210围绕位于滚筒206中间的中心轴线X旋转,它可以选择性地与滚筒206一起旋转。在示例性实施方式中,销212沿着滚筒206内的中心轴线X延伸。可选地,销212可以旋转地固定(例如,不可与滚筒206一起旋转)。 可旋转叶片210可以可旋转地附接到销212。在一些这种实施方式中,可旋转叶片210限定开口,销212延伸穿过该开口,使得叶片210可以沿顺时针或逆时针周向围绕销212自由旋转。如图3和图7中最佳地示出,壳体220从容器200的底部202延伸。壳体220至少部分地封闭可旋转滚筒206,并且销212的一部分延伸到壳体220中。
在某些实施方式中,一个或多个不可旋转的或固定的叶片214容纳在滚筒206内。当组装时,固定叶片214可以旋转地固定,使得固定叶片214不可围绕中心轴线X旋转。比如,固定叶片214可以附接到销212并且不直接连接到滚筒206的壁208。由于销212不可旋转,所以固定叶片214在滚筒206内也不可旋转。由此,随着可旋转叶片210围绕中心轴线X并相对于固定叶片214移动,固定叶片214可以保持在固定位置。
如图所示,叶片210可以包括具有例如多个齿的切削刃244。具体地,切削刃244的多个齿可以形成在各个叶片210的一个周向边缘(例如,面向顺时针方向的边缘)上。在一些这种实施方式中,平刃246(例如,平行于直径D延伸的平面刃)设置在各个叶片210的相对周向边缘(例如,面向逆时针方向的边缘)上。
在某些实施方式中,各个叶片210和214均具有朝向彼此定向的切削刃244和248。由此,从图3和图6的角度,当滚筒206沿顺时针周向旋转时,切削刃244和248朝向彼此移动,以压碎已经落入叶片210和214之间的位置的冰。相反地,当滚筒206沿逆时针周向旋转时,切削刃244和248彼此远离,使得未压碎的冰或全部冰在重力作用下竖直地通过滚筒206。
滚筒206的壁208具有顶端224和底端226。叶片210、214容纳在顶端224与底端226之间。如图所示,一个或多个搅拌器桥230A、230B至少部分地在壁208的顶端224上方延伸。由此,叶片210、214至少部分地容纳在各个搅拌器桥230A或230B的下方。而且,搅拌器桥230A、230B大体向上延伸到储存容器200中。当组装时,搅拌器桥230A或230B可以与滚筒206或壁208旋转接合。由此,滚筒206的旋转可以被(例如,选择性地)传递到搅拌器桥230A、230B。虽然示出了两个搅拌器桥230A、230B,但本发明可以使用一个或多个搅拌器桥,并且其可以位于顶端224上的不同位置。如下面将描述的,搅拌器桥230A、230B可以在接触冰的同时在储存容器200内选择性地旋转,从而使冰“流体化”,使得冰可以被搅拌、被防止升华或允许更容易地流入滚筒206中。
在某些实施方式中,一个或多个搅拌器桥230A、230B包括布置在顶端224上方 的上主体250。可选地,上主体250可以从顶端224延伸到销212。如图所示,上主体250可以大体从顶端224竖直向上且径向向内(即,朝向中心轴线X)延伸。在一些实施方式中,搅拌器桥230A或230B可旋转地附接到销212,并且选择性地围绕中心轴线X旋转。
在附加或可选的实施方式中,搅拌器桥230A或230B包括沿滚筒206或壁208的内表面(例如,内表面242)轴向(例如,平行于中心轴线X)延伸的内部突片252(例如,第一内部突片)。内部突片252可以在顶端224处沿轴向向下延伸(例如,从上主体250向下延伸)。在某些实施方式中,内部突片252可旋转地固定到可旋转滚筒206(例如,通过一种或多种粘合剂、机械紧固件等)。由此,可旋转滚筒206和内部突片252(以及搅拌器桥230A或230B的剩余部分)可以一前一后地旋转。
在设置多个搅拌器桥230A、230B的实施方式中,两个或更多个搅拌器桥230A、230B(例如,第一搅拌器桥230A和第二搅拌器桥230B)可以彼此沿周向隔开(例如,隔开大于15°,诸如在15°至180°之间)。比如,第一搅拌器桥230A的内部突片252可以与第二搅拌器桥230B的内部突片252沿周向隔开,使得各个内部突片252位于围绕中心轴线X的不连续(例如,平行)位置。
如图所示,可旋转滚筒206限定围绕中心轴线X周向延伸的一个或多个内通道254。具体地,各个内通道254可以沿着壁208的内表面242从对应的第一弧点260延伸到对应的第二弧点262。比如,内通道254可以限定从滚筒206的另一部分或内部突片252径向向外延伸的,面向内侧的凹槽。在一些这种实施方式中,内通道254提供间隙,该间隙从内部突片252的最内表面径向向外限定,并且例如,从内部突片252周向向外限定。可选地,内部突片252可以限定第二弧点262。
一个或多个可旋转叶片210可以延伸到并且设置在对应的内通道254内。由此,可旋转叶片210的至少一部分可以由第一弧点260和第二弧点262界定(例如,沿周向界定)。比如,各个可旋转叶片210的端盖256可以布置在单独的对应内通道254内。在第一弧点260与第二弧点262之间,可旋转叶片210可以相对于滚筒206自由移动。相比之下,在第一弧点260和第二弧点262处,可旋转叶片210可以与滚筒206旋转地接合(例如,与滚筒206的凸起或突出部分接触,诸如在壁208或其底面处)。滚筒206可以相对于可旋转叶片210在搅拌器位置(例如,图5)与破碎机位置之间移动(例如,围绕中心轴线X旋转)。
虽然在弧点260、262及对应的可旋转叶片210(例如,在端盖256处)之间的最大周向长度或距离264可以基于分配组件110的剩余部分的比例而变化,但距离 264可以被限定为围绕中心轴线X的间隔角度。在一些实施方式中,间隔角度大于或等于10°。在附加或可选的实施方式中,间隔角度小于或等于170°。由此,可旋转滚筒206可以被迫旋转(例如,沿顺时针或逆时针周向)经过搅拌器位置与破碎机位置之间的最大周向长度264(例如,在10°与170°之间)。
在破碎机位置,可旋转叶片210的一部分,诸如端盖256的一侧,在第一弧点260处与滚筒206接合(例如,直接接合或通过搅拌器桥230A或230B的一部分间接接合)。而且,在破碎机位置,可旋转叶片210与第二弧点262沿周向隔开。由此,滚筒206的旋转(例如,顺时针)可以被传递到可旋转叶片210。相比之下,在搅拌器位置,可旋转叶片210的一部分,诸如端盖256的相对侧,在第二弧点262处与滚筒206接合(例如,直接接合或通过搅拌器桥230A或230B的一部分间接接合)。而且,在搅拌器位置,可旋转叶片210与第一弧点260沿周向隔开。由此,滚筒206的旋转(例如,逆时针)可以被传递到可旋转叶片210。在破碎机位置与搅拌器位置之间,滚筒206可以相对于可旋转叶片210旋转,可旋转叶片又可以保持静止。
在某些实施方式中,单个内通道254的第一弧点260和第二弧点262分别由搅拌器桥230A、230B限定。比如,如图5、图6以及图8所示,第一搅拌器桥230A限定第一弧点260,而第二搅拌器桥230B限定第二弧点262。
在可选的实施方式中,单个内通道254的第一弧点260和第二弧点262由一个搅拌器桥230A或230B限定。比如,如图9所示,单个搅拌器桥230A或230B可以包括第一内部突片252A和与第一内部突片252A沿周向隔开的第二内部突片252B。第一内部突片252A和第二内部突片252B都可以从共同对应的上主体250延伸(例如,沿轴向且平行地)。可旋转叶片210的端盖256可以被界定在第一内部突片252A与第二内部突片252B之间。第一内部突片252A可以限定第一弧点260,而第二内部突片252B限定第二弧点262。
如图3和图4所示,盖238跨滚筒206的至少一部分(例如,在顶端224处)定位或布置。在一些实施方式中,盖238附接到销212,而不直接附接到滚筒206。在使用期间,盖238可以保持静止,使得它不与滚筒206一起旋转。盖238还可以限定第一孔240,冰必须穿过该第一孔240以便从容器200行进并穿过滚筒206。
如图7所示,滚筒206的底端226可以形成有多个齿轮齿228,这些齿轮齿沿着滚筒206的周向设置或布置。马达216(图2)设置为与滚筒206机械连接(例如,通过与马达216连接的一个或多个齿轮齿228、齿轮218、键、齿轮系等)。以示例的方式,马达216可以由上述控制器190选择性地操作。基于电器的用户是选择整 冰还是碎冰,控制器190可以通过马达216引导齿轮218的旋转,从而控制滚筒206的旋转方向,以提供所选择的冰。图7的马达和齿轮构造仅以示例的方式提供;还可以使用用于旋转滚筒206的多个其他构造。
在一些实施方式中,壳体220的底端226还包括第二孔222,冰为了离开滚筒206而必须穿过该第二孔222。第一孔240和第二孔222的位置可以相对于中心轴线X偏移。换言之,第一孔240可以不沿着竖直方向V或相对于中心轴线X直接位于第二孔222上方。这样,随着冰行进穿过滚筒206,进入到滚筒206中的冰可以被迫与叶片210和214接触。
以冰分配组件110的冰分配操作的示例的方式,冰可以从制冰机穿过隔热壳体142中的开口162落入容器200中。倾斜壁234和236可以有助于将冰引向第一孔240,使得冰可以在重力作用下移动穿过孔240和开口204并进入到滚筒206中。根据用户使用界面面板136选择的是碎冰还是整冰,控制器190可以确定滚筒206的旋转方向。这种旋转可以基于比如用户压下拨片134而被启动,使得控制器190接收到对冰的请求。然后控制器190可以适当地启动马达216。
通过启动马达216使滚筒206旋转也可以使搅拌器桥230旋转,以便搅拌容器200中的冰(例如,一旦滚筒206到达搅拌器位置或破碎机位置)。如果用户选择碎冰,则滚筒206旋转,使得可旋转叶片210相对于非旋转叶片214的移动将在切削刃244和248之间夹紧并粉碎冰。随着冰垂直向下行进穿过滚筒206,如图所示,可以设置多个叶片210和214,以便帮助确保冰被充分地压碎。可选地,如果用户选择整冰或非碎冰,则滚筒206旋转,使得可旋转叶片210相对于固定叶片214的移动将避免压碎在它们之间的冰。在沿着滚筒206向下行进之后,冰可以通过第二孔222离开并且通过排放口132进入到例如用户的杯子或玻璃杯中。
在一些实施方式中,控制器190可以引导滚筒206(例如,经由马达216)发起冰处理周期。这种冰处理周期可以有利地搅拌储存容器200内的冰,而不迫使任何冰到达或穿过第二孔222。比如,现在转向图10,提供了根据本发明的示例性实施方式的方法300的流程图。通常,方法300提供了一种操作制冷电器(作为冰处理周期的一部分)的方法,该制冷电器诸如如上所述的包括冰分配组件110的制冷电器100(图1)。方法300可以例如由控制器190执行。例如,如所述,控制器190可以与马达216、传感器192、194或用户控制面板136电气通信。在操作期间,控制器190可以向马达216、传感器192、194或用户控制面板136发送信号和从其接收信号。控制器190通常还可以可操作地通信到制冷电器100的其他合适部件,以 促进制冷电器100的操作。
在步骤310处,方法300包括:确定达到结块状态。通常,结块状态可以表征分配组件或容器内的可能达到冰的升华或再次冻结的状态。
在某些实施方式中,结块状态可以包括从前一马达事件起的时间。换言之,方法300可以包括以下步骤:确定自从上一次(即,最近的前一次)马达事件以来,预定时间间隔(例如,以分钟或小时计)已到期。可选地,每个马达事件可以激起一个被配置为测量预定时间间隔的定时器,并且,比如发送或生成表征预定时间间隔到期的时刻的信号。如果在预定时间间隔到期之前发生新的马达事件,则可以重新启动定时器。马达事件通常可以对应于马达的启动和滚筒的旋转,诸如在分配周期、压碎周期或先前的冰处理周期期间发生的马达的启动和滚筒的旋转。
在附加或可选的实施方式中,结块状态包括接收到传感器信号(例如,从如上所述的水传感器或温度传感器发送的信号)。作为示例,响应于在分配组件内,诸如在容器内检测到预定量的水,控制器可以接收信号。作为附加或可选的示例,响应于在分配组件处,诸如在其壳体内检测到预定温度(例如,最大温度极限),控制器可以接收信号。基于一个或多个所接收的传感器信号,控制器可以确定升华是可能还是很可能的。
后续步骤(例如,320、330、342、344、352或354中的一个或全部)可以响应于在步骤310处确定达到结块状态而继续进行。
在步骤320处,方法300包括:确定前一次马达事件。特别地,步骤320可以包括确定马达最近一次旋转的方向。换言之,可以确定马达最后使滚筒沿顺时针周向旋转还是逆时针周向旋转。可选地,步骤320可以包括确定马达最后一次是作为搅拌器周期、破碎机周期还是冰处理周期的一部分而旋转。附加或可选地,步骤320可以包括确定滚筒处于什么位置(例如,搅拌器位置、破碎机位置等)。
在步骤330处,方法300包括:根据步骤320处的前一次马达事件选择滚筒旋转的周向。从选定的方向,可旋转滚筒可以在破碎机位置与搅拌器位置之间的有限路径上旋转。具体地,如果前一次马达事件结束或包括(例如,作为最终运动)使滚筒沿第一或顺时针周向旋转,则方法300可以进行到步骤342。相比之下,如果前一次马达事件结束或包括(例如,作为最终运动)使滚筒沿第二或逆时针周向旋转,则方法300可以进行到步骤344。
在步骤342处,方法300包括:使可旋转滚筒沿第二或逆时针周向旋转。具体地,在步骤342处,马达被启动以使滚筒从破碎机位置逆时针旋转。可选地,滚筒 可以旋转到搅拌器位置。在一些这种实施方式中,在搅拌器位置处或之前停止滚筒的旋转。由此,可以防止滚筒使可旋转叶片旋转、移动或前进。在到达搅拌器位置时,或者可选地,在到达搅拌器位置之前,方法300可以进行到步骤352。
在步骤352处,方法300包括:使可旋转滚筒沿第一或顺时针周向旋转。在一些实施方式中,在步骤352处,马达被启动以使滚筒顺时针旋转至搅拌器位置。由此,例如,滚筒和可旋转叶片通常可以返回到紧接在310之前存在的相同的相对位置。
返回到步骤330,如果选择第一或顺时针方向,则方法可以进行到步骤344。在步骤344处,方法300包括:使可旋转滚筒沿第一或顺时针周向旋转。具体地,在步骤344处,马达被启动以使滚筒从搅拌器位置顺时针旋转。可选地,滚筒可以旋转到破碎机位置。在一些这种实施方式中,在破碎机位置处或之前停止滚筒的旋转。由此,可以防止滚筒使可旋转叶片旋转、移动或前进。在到达破碎机位置时,或者可选地,在到达破碎机位置之前,方法300可以进行到步骤354。
在步骤354处,方法300包括:使可旋转滚筒沿第二或逆时针周向旋转。在一些实施方式中,在步骤354处,马达被启动以使滚筒逆时针旋转至破碎机位置。由此,例如,滚筒和可旋转叶片通常可以返回到紧接在310之前存在的相同的相对位置。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任何装置或系统并且执行所包含的任何方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (18)

  1. 一种用于电器的冰分配组件,其特征在于,所述冰分配组件包括:
    用于接收冰的容器,所述容器具有底部,所述底部限定用于使冰从所述容器通过的开口;
    可旋转滚筒,所述可旋转滚筒限定中心轴线,并且在由所述容器的底部限定的开口处设置在容器下方,所述可旋转滚筒具有壁,所述可旋转滚筒限定内通道,所述内通道沿着所述壁的内表面从第一弧点沿周向延伸到第二弧点;
    马达,所述马达与所述可旋转滚筒机械连接,并且被构造为选择性地使所述可旋转滚筒围绕所述中心轴线旋转;
    搅拌器桥,所述搅拌器桥在所述壁上方延伸并与所述可旋转滚筒旋转接合;以及
    可旋转叶片,所述可旋转叶片容纳在搅拌器桥下方的可旋转滚筒内,所述可旋转叶片与所述可旋转滚筒选择性地旋转接合,所述可旋转叶片由所述第一弧点和所述第二弧点沿周向界定,
    其中,所述可旋转滚筒在破碎机位置与搅拌器位置之间移动,所述破碎机位置包括所述可旋转叶片在所述第一弧点处与所述可旋转滚筒接合,同时与所述第二弧点沿周向隔开,并且所述搅拌器位置包括所述可旋转叶片在所述第二弧点处与所述可旋转滚筒接合,同时与所述第一弧点沿周向隔开。
  2. 根据权利要求1所述的冰分配组件,其特征在于,还包括容纳在所述搅拌器桥下方的可旋转滚筒内的固定叶片,所述固定叶片旋转地固定在所述可旋转滚筒内,以使固定叶片不可围绕所述中心轴线旋转。
  3. 根据权利要求1所述的冰分配组件,其特征在于,所述搅拌器桥是第一搅拌器桥,并且其中,所述冰分配组件还包括第二搅拌器桥,所述第二搅拌器桥在所述壁上方延伸并与所述可旋转滚筒旋转接合,所述第二搅拌器桥围绕所述中心轴线与所述第一搅拌器桥沿周向隔开。
  4. 根据权利要求1所述的冰分配组件,其特征在于,所述搅拌器桥包括上主体和第一内部突片,所述第一内部突片从所述上主体沿着所述可旋转滚筒的内表面轴向延伸,以限定所述第二弧点。
  5. 根据权利要求4所述的冰分配组件,其特征在于,所述搅拌器桥是第一搅拌 器桥,并且其中,所述冰分配组件还包括第二搅拌器桥,所述第二搅拌器桥在所述壁上方延伸并与所述可旋转滚筒旋转接合,所述第二搅拌器桥包括上主体和第一内部突片,所述第二搅拌器桥的第一内部突片围绕所述中心轴线与所述第一搅拌器桥的第一内部突片沿周向隔开,以限定所述第二弧点。
  6. 根据权利要求4所述的冰分配组件,其特征在于,所述搅拌器桥还包括第二内部突片,所述第二内部突片从所述上主体沿着所述可旋转滚筒的内表面轴向延伸,以限定所述第二弧点,所述第二内部突片围绕所述中心轴线与所述第一内部突片沿周向隔开。
  7. 根据权利要求1所述的冰分配组件,其特征在于,所述可旋转叶片包括在可旋转叶片的一个周向边缘上的多个齿,并且其中,所述可旋转叶片还包括在与所述多个齿相对的周向边缘上的平刃。
  8. 根据权利要求1所述的冰分配组件,其特征在于,还包括销,所述销沿着所述中心轴线延伸穿过所述可旋转滚筒,所述搅拌器桥在所述中心轴线处接合至所述销。
  9. 根据权利要求1所述的冰分配组件,其特征在于,还包括与所述马达电气通信的控制器,其中,所述控制器被配置为启动冰处理周期,该冰处理周期包括:
    确定达到结块状态;以及
    响应于确定达到结块状态,引导所述马达使所述可旋转滚筒在所述破碎机位置与所述搅拌器位置之间的有限路径上旋转。
  10. 根据权利要求9所述的冰分配组件,其特征在于,所述结块状态包括从前一马达事件起的时间。
  11. 根据权利要求9所述的冰分配组件,其特征在于,所述结块状态包括接收到传感器信号。
  12. 根据权利要求9所述的冰分配组件,其特征在于,所述冰处理周期还包括确定前一次马达事件,并且基于所述前一次马达事件选择滚筒旋转的周向。
  13. 根据权利要求12所述的冰分配组件,其特征在于,所述前一次马达事件包括使所述可旋转滚筒沿第一周向旋转,并且其中,选择所述周向包括选择与所述第一周向相反的第二周向。
  14. 一种操作冰分配组件的方法,所述冰分配组件包括:用于接收冰的容器;设于所述容器下方的所述可旋转滚筒,所述可旋转滚筒限定内通道,所述内通道从第一弧点沿周向延伸到第二弧点;与所述可旋转滚筒机械连接的马达;与所述可旋 转滚筒旋转接合的搅拌器桥;以及可旋转叶片,所述可旋转叶片容纳在所述搅拌器桥下方的可旋转滚筒内,所述可旋转叶片与所述可旋转滚筒选择性地旋转接合,所述可旋转叶片由所述第一弧点和第二弧点沿周向界定,其特征在于,所述方法包括以下步骤:
    确定所述容器内达到结块状态;以及
    响应于确定达到结块状态,引导所述马达使所述可旋转滚筒在破碎机位置与搅拌器位置之间的有限路径上旋转,所述破碎机位置包括所述可旋转叶片在所述第一弧点处与所述可旋转滚筒接合,同时与所述第二弧点沿周向隔开,并且所述搅拌器位置包括所述可旋转叶片在所述第二弧点处与所述可旋转滚筒接合,同时与所述第一弧点沿周向隔开。
  15. 根据权利要求14所述的方法,其特征在于,所述结块状态包括从前一马达事件起的时间。
  16. 根据权利要求14所述的方法,其特征在于,所述结块状态包括接收到传感器信号。
  17. 根据权利要求14所述的方法,其特征在于,所述冰处理周期还包括确定先前一次马达事件,并且基于所述前一次马达事件选择滚筒旋转的周向。
  18. 根据权利要求17所述的方法,其特征在于,所述前一次马达事件包括使所述可旋转滚筒沿第一周向旋转,并且其中,选择所述周向包括选择与所述第一周向相反的第二周向。
PCT/CN2020/100607 2019-07-08 2020-07-07 冰分配组件和用于防止结块的方法 WO2021004448A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20837192.2A EP3998444B1 (en) 2019-07-08 2020-07-07 Ice distribution assembly, and method for preventing clumping
CN202080049087.5A CN114072624B (zh) 2019-07-08 2020-07-07 冰分配组件和用于防止结块的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/504,637 US11067326B2 (en) 2019-07-08 2019-07-08 Ice dispensing assemblies and methods for preventing clumping
US16/504,637 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021004448A1 true WO2021004448A1 (zh) 2021-01-14

Family

ID=74101669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100607 WO2021004448A1 (zh) 2019-07-08 2020-07-07 冰分配组件和用于防止结块的方法

Country Status (4)

Country Link
US (1) US11067326B2 (zh)
EP (1) EP3998444B1 (zh)
CN (1) CN114072624B (zh)
WO (1) WO2021004448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023231916A1 (zh) * 2022-06-02 2023-12-07 重庆海尔制冷电器有限公司 制冰装置及具有其的冰箱

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759216B (zh) * 2018-05-21 2020-11-20 海尔智家股份有限公司 碎冰装置及冰箱
CN108759218B (zh) * 2018-05-21 2020-11-20 海尔智家股份有限公司 碎冰装置及冰箱
CN108800694B (zh) * 2018-05-21 2021-03-23 海尔智家股份有限公司 碎冰装置及冰箱
CN108759217B (zh) * 2018-05-21 2021-04-23 海尔智家股份有限公司 碎冰装置及冰箱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061407A (ja) * 1983-09-15 1985-04-09 Kaiken:Kk 鮮魚運搬船に於ける魚倉への投氷装置
JP2002321778A (ja) * 2001-04-24 2002-11-05 Iwatani Internatl Corp 粒状ドライアイスの定量取出し装置
CN1858524A (zh) * 2005-05-03 2006-11-08 三星电子株式会社 电冰箱
JP2008142017A (ja) * 2006-12-11 2008-06-26 Toshiba Corp アイスクリーマ、およびアイスクリーマを備えた冷蔵庫
CN102213519A (zh) * 2011-05-24 2011-10-12 合肥美的荣事达电冰箱有限公司 冰箱
CN203475379U (zh) * 2013-09-29 2014-03-12 黑龙江工程学院 一种滚筒式避障破冰装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3572053A (en) 1969-06-23 1971-03-23 Gen Electric Household refrigerator including through-the-door ice service
US3940116A (en) * 1974-04-24 1976-02-24 Mile High Equipment Company Ice dispenser
US4176527A (en) * 1978-07-13 1979-12-04 Whirlpool Corporation Ice crusher for refrigerator
JP4293652B2 (ja) * 1998-10-21 2009-07-08 ホシザキ電機株式会社 氷ディスペンサー
EP1491833A1 (en) * 2003-06-25 2004-12-29 Lg Electronics Inc. Ice bank of ice-making device for refrigerator
US7575185B2 (en) 2005-02-01 2009-08-18 Pepsico, Inc. Beverage and ice dispenser capable of selectively dispensing cubed or crushed ice
US7278275B2 (en) * 2005-03-15 2007-10-09 Whirlpool Corporation Mechanism for dispensing shaved ice from a refrigeration appliance
KR20060115073A (ko) * 2005-05-04 2006-11-08 삼성전자주식회사 얼음공급장치 및 이를 갖춘 냉장고
WO2007054166A1 (en) * 2005-11-11 2007-05-18 Electrolux Home Products Corporation N.V. Freezer ice dispenser system
DE102006061079A1 (de) * 2006-12-22 2008-06-26 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit Eisspender und Baugruppe dafür
US8387408B2 (en) 2006-12-28 2013-03-05 Lg Electronics Inc. Ice dispensing apparatus and refrigerator
NZ583283A (en) * 2007-07-30 2012-05-25 Akoona Llc Device for dispensing a measured amount of ice from an ice making machine using a rotating drum with an opening
US9003822B2 (en) * 2010-08-10 2015-04-14 General Electric Company Apparatus for breaking ice clumps
US8893523B2 (en) * 2010-11-22 2014-11-25 General Electric Company Method of operating a refrigerator
US9134060B2 (en) * 2010-12-17 2015-09-15 Kooler Ice, Inc. Ice and chilled water producing and dispensing machine
US8826683B2 (en) 2011-10-31 2014-09-09 General Electric Company Ice dispenser with crusher for a refrigerator appliance
US8955350B2 (en) * 2012-05-18 2015-02-17 General Electric Company Ice dispenser with crusher and shaver for a refrigerator appliance
US8959943B2 (en) * 2012-05-22 2015-02-24 Sub-Zero, Inc. Ice agitator
US20140033758A1 (en) * 2012-08-01 2014-02-06 Whirlpool Corporation Oscillating and gyrating stir stick for an ice container
DE102012223625A1 (de) * 2012-12-18 2014-06-18 BSH Bosch und Siemens Hausgeräte GmbH Eisausgabeanordnung
US9557089B2 (en) * 2013-08-28 2017-01-31 Whirlpool Corporation Stir stick and breaker walls for an ice container
US9733004B2 (en) * 2015-01-14 2017-08-15 Haier Us Appliance Solutions, Inc. Refrigerator appliances
KR101658553B1 (ko) * 2015-01-22 2016-09-21 엘지전자 주식회사 냉장고
KR101998570B1 (ko) * 2015-05-20 2019-07-10 삼성전자주식회사 냉장고
KR102465860B1 (ko) * 2015-12-24 2022-11-11 삼성전자주식회사 냉장고
US10287115B2 (en) * 2016-03-16 2019-05-14 The Coca-Cola Company Ice dispenser with reduced ice bridging therein
KR101798564B1 (ko) * 2016-04-08 2017-11-17 동부대우전자 주식회사 냉장고

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061407A (ja) * 1983-09-15 1985-04-09 Kaiken:Kk 鮮魚運搬船に於ける魚倉への投氷装置
JP2002321778A (ja) * 2001-04-24 2002-11-05 Iwatani Internatl Corp 粒状ドライアイスの定量取出し装置
CN1858524A (zh) * 2005-05-03 2006-11-08 三星电子株式会社 电冰箱
JP2008142017A (ja) * 2006-12-11 2008-06-26 Toshiba Corp アイスクリーマ、およびアイスクリーマを備えた冷蔵庫
CN102213519A (zh) * 2011-05-24 2011-10-12 合肥美的荣事达电冰箱有限公司 冰箱
CN203475379U (zh) * 2013-09-29 2014-03-12 黑龙江工程学院 一种滚筒式避障破冰装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023231916A1 (zh) * 2022-06-02 2023-12-07 重庆海尔制冷电器有限公司 制冰装置及具有其的冰箱

Also Published As

Publication number Publication date
EP3998444A4 (en) 2022-08-24
CN114072624B (zh) 2023-03-14
CN114072624A (zh) 2022-02-18
US11067326B2 (en) 2021-07-20
EP3998444B1 (en) 2023-10-25
EP3998444A1 (en) 2022-05-18
US20210010734A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2021004448A1 (zh) 冰分配组件和用于防止结块的方法
US8826683B2 (en) Ice dispenser with crusher for a refrigerator appliance
US8794023B2 (en) Ice dispenser with crusher for a refrigerator appliance
US6257009B1 (en) Ice dispenser
US8955350B2 (en) Ice dispenser with crusher and shaver for a refrigerator appliance
US10041719B2 (en) Water supply system for an ice making assembly
KR20090109417A (ko) 냉장고 제빙기의 만빙 감지 장치
KR20090115307A (ko) 냉장고 제빙기의 만빙 감지 장치 및 그 만빙 감지 방법
KR20090123338A (ko) 냉장고 제빙기의 만빙 감지 장치의 센서 히터 제어 방법
KR20120004976A (ko) 제빙기 제어 시스템 및 방법
KR20090109422A (ko) 냉장고 제빙기의 만빙 감지 장치
KR20090123337A (ko) 냉장고 제빙기의 만빙 감지 장치의 센서 히터 제어 방법
US9879895B2 (en) Ice maker assembly for a refrigerator appliance and a method for operating the same
US20170191723A1 (en) Method For Operating a Fan of a Nugget Ice Maker
KR20090109421A (ko) 냉장고 제빙기의 만빙 감지 장치
KR20190032898A (ko) 아이스메이커 및 이를 포함하는 냉장고
KR20090109418A (ko) 냉장고 제빙기의 만빙 감지 장치
WO2020228622A1 (zh) 具有可拆卸储冰盒的制冷电器
KR100539562B1 (ko) 냉장실의 도어구조
US8813509B2 (en) Ice making assembly with optimized harvesting and related refrigeration appliance
AU2018409162B2 (en) Ice making assembly coupling
KR20190032900A (ko) 아이스메이커 및 이를 포함하는 냉장고
KR100565616B1 (ko) 냉장고의 아이스 뱅크
KR20110096873A (ko) 제빙장치 및 이를 구비한 냉장고 및 이 냉장고의 얼음 공급 방법
KR20090128906A (ko) 냉장고 제빙기의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020837192

Country of ref document: EP

Effective date: 20220208