WO2021004187A1 - 一种双曲弧形大跨度钢桁架及其制作方法 - Google Patents

一种双曲弧形大跨度钢桁架及其制作方法 Download PDF

Info

Publication number
WO2021004187A1
WO2021004187A1 PCT/CN2020/093082 CN2020093082W WO2021004187A1 WO 2021004187 A1 WO2021004187 A1 WO 2021004187A1 CN 2020093082 W CN2020093082 W CN 2020093082W WO 2021004187 A1 WO2021004187 A1 WO 2021004187A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
truss
bending
corbel
section
Prior art date
Application number
PCT/CN2020/093082
Other languages
English (en)
French (fr)
Inventor
王伟
方春生
陈韬
张瑜
周军红
李大壮
张银国
王海亮
栾公峰
殷健
仇峰
赵少锋
王卫民
Original Assignee
中建科工集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建科工集团有限公司 filed Critical 中建科工集团有限公司
Publication of WO2021004187A1 publication Critical patent/WO2021004187A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0452H- or I-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0486Truss like structures composed of separate truss elements

Definitions

  • the invention relates to a hyperbolic arc-shaped large-span steel truss and a manufacturing method thereof, and belongs to the technical field of building steel structures. Background technique
  • the roofs often consist of multiple parallel trusses, purlins, or secondary arches.
  • the common roof trusses are mainly inverted triangular tube trusses or vertical plane tube trusses. Most of them are plane arches, and the whole truss is supported by multiple steel columns.
  • the above structure cannot be handled well at the intersection of the roof and the facade.
  • the upper chord of a traditional truss is a round tube, which intersects with the roof steel beam or secondary arch, and the connection node processing is more complicated. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a hyperbolic arc-shaped large-span steel truss and a manufacturing method thereof for the above-mentioned prior art, which can achieve a better architectural effect, facilitate the connection between the main arch and the roof steel beam or secondary arch, and Improve the production efficiency and quality of the truss.
  • a hyperbolic arc-shaped long-span steel truss a plurality of support rods are arranged at the bottom of the truss, the support rods are used to transmit force to the lower frame
  • the truss includes two floor sections The Y-shaped column, the first truss and the second truss, the vertical planes where the Y-shaped columns of the two landing sections are located as the plane of symmetry, the first truss and the second truss are arranged symmetrically along the plane of symmetry, the first truss The ends on the same side as the second truss are respectively connected to the Y-shaped columns of the landing section on the same side.
  • the first and second trusses respectively include a single curved truss, a hyperbolic truss, and a transition section bending and torsion box. The two ends are connected to the hyperbolic truss and the transition section bending and torsion box in sequence outwards;
  • the landing section Y-shaped column includes two Y-shaped arc-shaped flange plates, two arc-shaped webs, V-shaped webs and a first round tube corbel, two Y-shaped arc-shaped flange plates, two arcs
  • the Y-shaped web and the V-shaped web are enclosed to form a Y-shaped column body, the first round tube corbel and the lower section of the Y-shaped column body are vertically fixed and arranged, and the Y-shaped column body is provided with a plurality of the first cross-shaped Corbel
  • the transition section bending and torsion box body includes an upward bending and twisting flange plate, a downward bending and twisting flange plate, two bending and twisting webs, an H-shaped corbel, a box-shaped corbel, an end round tube corbel, and a second round tube Corbel, the two bending and torsion flange plates are arranged up and down, the two bending and torsion webs are arranged between the two bending and torsion flange plates, and are enclosed to form a bending and torsion box body, and the inner cavity of the bending and torsion box body An I-shaped stiffening plate is arranged at the end, the second round tube corbel is arranged on the body of the torsion box and penetrates the inner cavity of the body of the torsion box, and one end of the second round tube corbel is connected to the I-shaped stiffener The board is fixedly connected, and the box-shaped corbel is arranged on the upper bending and twisting flange board, so The
  • the hyperbolic truss includes a third H-shaped upper chord, a third circular tube lower chord, a plurality of third web members and a third circular tube corbel, the third H-shaped upper chord and the third circular tube lower chord A plurality of third web rods are arranged in between, and both ends of the third web rod are fixedly connected to the third H-shaped upper chord and the third circular tube lower chord to form a hyperbolic truss body.
  • the third circular tube corbel It is fixedly connected with the third round tube lower chord, the bottom of the third round tube lower chord is fixed with a third pin trunnion, the third round tube corbel, the third web and the third pin trunnion form a cross node , A plurality of third cross corbels are provided on the third H-shaped upper chord;
  • the single-curved truss includes a fourth H-shaped upper chord, a fourth circular tube lower chord, a plurality of fourth web members, and a fourth circular tube corbel, one of the fourth H-shaped upper chord and the fourth circular tube lower chord A plurality of fourth web rods are arranged in between, and both ends of the fourth web rod are fixedly connected to the fourth H-shaped upper chord and the fourth circular tube lower chord to form a single-curved truss body.
  • the fourth circular tube lower chord A fourth round tube corbel is provided on the upper part, and a fourth cross corbel is provided on the fourth H-shaped upper chord of the single-curved truss body.
  • a first pin trunnion plate is provided on the inner side of the Y-shaped column body, the first pin trunnion plate penetrates the Y-shaped column body, and inner partitions are respectively provided on the lower side of the first pin trunnion plate, and
  • the inner partition is fixed in the Y-shaped column body) ⁇
  • the upper section of the Y-shaped column body is provided with a horizontal partition and a longitudinal partition in the V-shaped cavity in the upper section of the Y-shaped column body, and the horizontal partition is perpendicular to the Y-shaped arc flange plate,
  • the longitudinal partition is arranged at the center of the Y-shaped column body and is perpendicular to the transverse partition.
  • the V-shaped arc radius of the V-shaped web is 85-110 mm.
  • a plurality of vertical third stiffening plates are fixed on the inner side of the third H-shaped top chord, and the plurality of third stiffening plates are respectively arranged at the connection between the third web and the third H-shaped top chord.
  • a cross gusset plate is inserted on the lower chord of the third round bar at the cross node, the cross gusset plate is parallel to the center line of the lower chord of the third round bar, and the third pin trunnion plate is connected to the lower chord of the third round bar.
  • the included angle of the center line is 64°.
  • a method for manufacturing a hyperbolic arc-shaped large-span steel truss includes the following steps:
  • A. Y-shaped column of the landing section The body of the Y-shaped column of the landing section is divided into a straight line section and an arc V-shaped section. There is a space between the straight line section and the arc V-shaped section of the Y-shaped arc flange plate and the arc web. .
  • the inner Y-shaped arc flange plate is assembled, the inner diaphragm is welded, and the longitudinal diaphragm is assembled.
  • the partition Welding of the curved webs Complete the Y-shaped column of the landing section; Lower the tire after the Y-shaped column of the landing section is qualified in size;
  • B. Transition section bending and torsion box Position the upper flange plate by the ground sample coordinates. At this time, the upper flange plate is used as the bottom plate, and the upper flange plate is positioned and welded with parallel steel plates, and the two steel plates are welded obliquely.
  • the two steel plates and the diagonal bracing plates form an I-shaped node; coordinate the positioning of the second round tube corbel to complete the welding between the second round tube corbel and the I-shaped node; assemble the bent and twisted webs on both sides , Use the bottom plate's bending and torsion line type to match the jack to make the bending and torsion web bend in place, position welding, add a triangle plate to the tyre frame to fix the U-shaped wing web to assemble the lower flange plate, and use the lower flange plate as the cover
  • the lower flange plate corresponds to the slotted plug welding of the I-shaped node, the welding of the bending and torsion box body, and the re-measurement of the key control point coordinates of the bending and torsion box body; the tyre is lowered when the size of the transition section is qualified;
  • Hyperbolic truss manufacturing The H-shaped steel made of hot-rolled steel is firstly stretched and bent, and then bent laterally. Finally, the twisted parts at both ends are formed into the third H-shaped upper chord by flame diagonal heating correction. Place the third H-shaped upper chord on a special tire frame to re-measure the control point coordinates of the third H-shaped upper chord; the third round tube lower chord is formed by the top bending of the round tube, and the upper tire is subjected to the re-measurement of the three-dimensional coordinate after the forming, on the third round tube lower chord Open the slot and insert the cross gusset plate into the slot for welding; Position and assemble the third web member to complete the welding of the hyperbolic truss body; Lower the tire after the hyperbolic truss size is qualified;
  • the fourth H-shaped upper chord is made of hot emulsion finished H-shaped steel to be bent first, and the chord height is measured point by point to control the bending accuracy.
  • the fourth circular tube lower chord is formed by the top bending of the circular tube. Position the tire on the H-shaped upper chord and the fourth circular tube lower chord. After the retest is correct, position and assemble the fourth web to complete the assembly of the single-curved truss body; lower the tire after the single-curved truss size is qualified;
  • the lower chord of the hyperbolic truss is cross-cut to the circular pipe before the pipe is bent, and the vertical inner baffle is fixed in the circular pipe, and then the broken circular pipe is butt-connected and then integrally topped. bend.
  • the distance between the inner partition and the end of the round pipe is 380-420 mm.
  • the upper chord of the truss is made of hot-emulsion H-shaped steel, which makes the structure of the connection node between the roof purlin steel beam and the main truss simple, avoiding the complicated problem of the pipe truss node.
  • Two roof trusses are formed by the floor-type Y-shaped column bifurcation, which is matched with the bottom support.
  • the overall structure is simple, reducing the number of steel columns at both ends of the truss, increasing the spacing between the vertical columns, and facilitating the design of ribbons.
  • the method of adopting physical pre-assembly and simulated pre-assembly together for inspection, and then using simulated pre-assembly instead of physical pre-assembly, effectively guarantees the accuracy of manufacturing assembly, improves work efficiency, reduces costs, and provides protection for on-site installation and saves the overall construction period .
  • Figure 1 is a schematic diagram of a hyperbolic arc-shaped large-span steel truss according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of a Y-shaped column in the landing section of a hyperbolic arc-shaped large-span steel truss according to an embodiment of the present invention
  • Figure 3 is an internal schematic diagram of Figure 2;
  • Fig. 4 is a schematic diagram of a bending and torsion box in a hyperbolic arc-shaped large-span steel truss according to an embodiment of the present invention
  • Figure 5 is an internal schematic diagram of Figure 4.
  • Fig. 6 is a schematic diagram of a hyperbolic truss in a hyperbolic arc-shaped large-span steel truss according to an embodiment of the present invention
  • Fig. 7 is a schematic diagram of the cross node structure of Fig. 6;
  • FIG. 8 is a schematic diagram of a single-curved truss in a hyperbolic arc-shaped large-span steel truss according to an embodiment of the present invention
  • 1 landing section Y-shaped column 1.1 arc-shaped web, 1.2 Y-shaped arc flange plate, 1.3 V-shaped web, 1.4 first round tube corbel, 1.5 first cross-shaped corbel, 1.6 first pin Axle lug plate, 1.7 inner partition, 1.8 transverse partition, 1.9 longitudinal partition, 1.10 first insert plate, 2 transition section bending and torsion box, 2.1 upward bending and twisting flange plate, 2.2 downward bending and twisting flange plate, 2.3 Bent webs, 2.4 I-shaped stiffeners, 2.5 H-shaped corbels, 2.6 end round tube corbels, 2.7 second round tube corbels, 2.8 box-shaped corbels, 2.9 second cross-shaped corbels, 2.10 Two connecting plates, 3 hyperbolic truss, 3.1 third H-shaped upper chord, 3.2 third round tube lower chord, 3.3 third web member, 3.4 third round tube corbel, 3.5 third cross-shaped corbel, 3.6 third Pin trunnion plate,
  • a hyperbolic arc-shaped long-span steel truss is provided with a number of support rods at the bottom of the truss, and the support rods are used to transmit force to the lower frame.
  • the truss includes two landing sections Y-shaped column 1, a first truss and a second truss.
  • the vertical plane where the two landing section Y-shaped columns 1 are located serves as a plane of symmetry.
  • the first truss and the second truss are arranged symmetrically along the plane of symmetry.
  • first and second trusses include a single curved truss 4, a hyperbolic truss 3, and a transition section bending and torsion box 2, with the single curved truss 4 as the center. Transition section bending and torsion box 2 and hyperbolic truss 3 Between the single curved truss 4 and the transition section bending and torsion box 2 is provided.
  • the landing section Y-shaped column 1 includes two Y-shaped arc-shaped flange plates 1.2, two arc-shaped webs 1.1, V-shaped web 1.3 and the first round tube corbel 1.4, two Y-shaped arcs
  • the flange plate, the two arc-shaped webs 1.1 and the V-shaped web 1.3 are enclosed to form a Y-shaped column body, and the V-shaped arc radius of the V-shaped web 1.3 is 100mm.
  • the first round tube corbel 1.4 lies on the side of the lower section of the Y-shaped column body and is vertically fixed to the lower section of the Y-shaped column body by the first insert plate 1.10, which is used to connect the round tube streamers on both sides.
  • a number of first cross-shaped corbels 1.5 are fixed on the upper Y-shaped arc-shaped flange plate 1.2 of the Y-shaped column body; the bifurcated end of the upper Y-shaped arc-shaped flange plate 1.2 is provided with a connecting ear plate 5 for assembly Temporary connection.
  • the bending and torsion box 2 of the transition section includes an upward bending and twisting flange plate 2.1, a downward bending and twisting flange plate 2.2, two bending and twisting webs 2.3, an H-shaped corbel 2.5, and a box-shaped corbel 2.8.
  • the end round tube corbel 2.6 and the second round tube corbel 2.7 are set up and down on the two bend and torsion flange plates, and the two bend and torsion webs 2.3 are set between the two bend and torsion flange plates to form a bend and torsion box body.
  • the inner cavity of the torsion box body is provided with an I-shaped stiffening plate 2.4.
  • the second round tube corbel 2.7 is arranged on the body of the torsion box body and penetrates the inner cavity of the torsion box body. 2.7—The end is fixedly connected with the I-shaped stiffening plate 2.4 and parallel to the direction of the roof secondary truss.
  • the box-shaped corbel 2.8 is set on the upper bending and twisting flange plate 2.1, and is used to connect the roof box-shaped purlins on both sides.
  • the H-shaped corbel 2.5 is fixed to one end of the body of the torsion box, and the end round tube corbel 2.6 is set under the H-shaped corbel 25 and lies on one end of the body of the torsion box.
  • the end round tube corbel 2.6 and The H-shaped corbel 2.5 is connected to the lower chord and the upper chord of the hyperbolic truss respectively.
  • the second connecting plate 2.10 penetrates horizontally and longitudinally on the body of the torsion box, and the second connecting plate 2.10 is arranged above the second round tube corbel 2.7.
  • the upper bending and torsion flange plate 2.1 of the bending and torsion box body is provided with several second cross-shaped corbels 2.9, which are used to connect the roof purlin steel beams on both sides.
  • Connecting ear plates 5 are respectively provided at both ends of the body of the torsion box body for temporary connection during assembly.
  • the hyperbolic truss includes 3 third H-shaped upper chord 3.1, third circular tube lower chord 3.2, multiple third web members 3.3 and third circular tube corbel 3.4, third H-shaped upper chord A plurality of third webs 3.3 are provided between 3.1 and the third circular tube lower chord 3.2. The ends of the plurality of third webs 3.3 are respectively fixedly connected to the third H-shaped upper chord 3.1 and the third circular tube lower chord 3.2. Form the hyperbolic truss body.
  • the third round tube corbel 3.4 is fixedly connected to the third round tube lower chord 3.2, and the bottom of the third round tube lower chord 3.2 is fixed with the third pin trunnion 3.6, so that the third round tube corbel 3.4, the third web 3.3 and
  • the third pin trunnion plate 3.6 forms a cross node, and a cross gusset plate 3.7 is inserted on the third round rod lower chord 3.2 located at the cross node.
  • the cross gusset plate 3.7 is parallel to the center line of the third round rod lower chord 3.2, and the third pin shaft
  • the angle between the ear 3.6 plate and the center line of the third round rod lower chord 3.2 is 64°.
  • the third web rod 3.3 is inserted with a third insert plate 3.8, so that the third insert plate 3.8 and the third round rod lower chord 3.2 center line
  • the angle of the third H-shaped top chord 3.1 is 82°.
  • a number of vertical third stiffening plates 3.9 are fixed on the inner side of the third H-shaped top chord 3.1.
  • Several third stiffening plates 3.9 are respectively set on the third web member 3.3 and connected to the third H-shaped top chord 3.1. Place.
  • the third H-shaped upper chord 3.1 is provided with multiple third cross-shaped corbels 3.5; used to connect the roof purlin steel beams on both sides.
  • Connecting lugs 5 are respectively provided at both ends of the hyperbolic truss body for temporary connection during assembly.
  • the single-curved truss 4 includes a fourth H-shaped upper chord 4.1, a fourth circular tube lower chord 4.2, a plurality of fourth web members 4.3 and a fourth circular tube corbel 4.4, a fourth H-shaped upper chord 4.1 and There are multiple fourth webs 4.3 between the fourth circular tube lower chord 4.2, and the ends of the fourth web 4.3 are fixed to the fourth H-shaped upper chord 4.1 and the fourth circular tube lower chord 4.2.
  • the fourth round tube lower chord 4.2 is provided with a fourth round tube corbel 4.4
  • the fourth H-shaped upper chord 4.1 of the single-curved truss body is provided with a fourth cross corbel 4.5.
  • the fourth round tube corbel 4.4 is welded and connected to the fourth plug-in board through a slot.
  • the fourth connecting plate 4.7 is located on the fourth H-shaped upper chord 4.1, and the fourth connecting plate 4.7 and the fourth round tube corbel 4.4 are respectively connected to the upper and lower chords of the secondary truss.
  • the fourth cross-shaped corbel 4.5 is located on the fourth H-shaped upper chord 4.1 and is used to connect the roof purlin steel beams on both sides.
  • a number of vertical fourth stiffening plates 4.6 are fixed on the inner side of the fourth H-shaped top chord 4.1, and a number of fourth stiffening plates 4.6 are respectively provided at the connection between the fourth web member 4.3 and the fourth H-shaped top chord 4.1.
  • Connecting lugs 5 are respectively provided at both ends of the single-curved truss body for temporary connection during assembly.
  • a manufacturing method of a hyperbolic arc-shaped large-span steel truss includes the following steps:
  • the processing idea of first segmenting and manufacturing separately and then pre-assembling as a whole is adopted.
  • the pre-assembling adopts the combination of physical pre-assembly and 3D scanning computer-aided pre-assembly.
  • Step 1 Manufacture of the Y-shaped column of the landing section 1:
  • the Y-shaped column of the landing section is segmented at the boundary between the straight section and the arc V-shaped section.
  • the position of the section between the wings and the web is staggered by 200mm.
  • the manufacturing method is to first manufacture the lower straight section.
  • the assembly and welding of the bifurcated section of the Y-pillar are gradually completed to increase the manufacturing efficiency, reduce the total assembly height, and reduce safety risks.
  • Step 2 Perform U-shaped assembly on the straight section of Y-shaped column 1 of the landing section, and assemble the supporting node inner partition 1.7, the first pin trunnion plate 1.6 and the stiffening plate on both sides in sequence, and weld the stiffening plate and the first pin trunnion plate 1.6 ,
  • the bottom plate weld, the inner partition 1.7 adopts bilateral electroslag welding, the electroslag welding liner is milled out of the slope, and it is closely attached to the flange plate, and the gap is less than 0.5mm.
  • Step 3 Assemble the grooved flange plate on the inner side of the Y-shaped column, and complete the welding of the first pin lug plate 1.6 with the notch in turn, the main weld of the Y-shaped column, the oblique electroslag welding of the diaphragm, the main Weld fill and cover welding.
  • Step 4 According to the coordinate drawing of the component, draw a ground sample line on the steel plate platform, mark the key control points, and check that the control error is not more than 1mm. Set up the total tyre frame to control the elevation error of the tyre frame to no more than 1mm.
  • Step 5 Adjust the positioning of the straight section of the Y-shaped column. After the box body of the straight section and the tire frame are welded firmly, start to assemble the arc V-shaped section.
  • the arc flanges and webs of the arc V-shaped section are first pre-bent using a three-roller bending machine, and the outer flange plate, the V-shaped web 1.3 and the transverse partition 1.8 are positioned and assembled in sequence, and they are positioned and welded.
  • Step 6 Assemble the arc webs 1.1 on both sides. One web is disconnected at a distance of 200mm from the diaphragm. The upper half is to be assembled and closed after the inner diaphragm is welded.
  • Step 7 Assemble the inner arc-shaped flange plate, complete the four-sided welding of the inner partition 1.7, and assemble the longitudinal partition 1.9. After the longitudinal partition is welded, close the upper half of one side web to complete the Y-shaped column body welding .
  • Step 8 Position and weld the remaining external corbels, lugs, etc. in sequence according to the coordinates. The overall dimensions after welding are accepted and the tires are lowered.
  • Step 9 Manufacture of the bending and torsion box body 2 in the transition section: Draw the ground sample line on the steel plate platform, mark the key control points, and check that the control error is not more than 1mm. Set the fetal frame to control the elevation error of the fetal frame to no more than 1mm. Step 10. Prioritize the completion of the I-shaped node assembly welding in the box body, locate the upper bending and torsion flange plate 2.1 (as the bottom plate during manufacturing) through the ground sample coordinates, and complete the positioning welding of the I-shaped stiffening plate 2.4 and the bottom plate 2.1.
  • Step 11 Coordinate positioning of the second connecting plate 2.10 on both sides of the node, and complete the welding between the second connecting plate 2.10 and the node.
  • Step 12 Assemble the bent and twisted webs 2.3 on both sides, use the bent and twisted line type of the bottom plate 2.1 with jacks to bend and twist the webs in place, position and weld them, and add a triangle plate to the fetal frame to fix the U-shaped wing web.
  • Step 13 Bent and twist the flange plate 2.2 (the cover plate at the time of manufacture) under the cover.
  • the cover plate 2.2 corresponds to the node I-steel web with slotted plug welding. Complete the welding of the torsion box body, and re-measure the coordinates of the key control points of the body.
  • Step 14 Positioning and group welding external pin lugs, corbels, connecting lugs, etc. After the welding is completed, the entire size coordinates are received, and the tires can be removed only after passing the test.
  • Step 15 Hyperbolic truss 3 manufacturing: First, the upper and lower chords are bent. The upper chord is made of hot-rolled H-beam steel, and the upper chord is firstly stretched and bent, and then laterally bent. Finally, the twisted parts at both ends are subjected to flame alignment. Angle heating correction forming, after forming, placed on a special tire frame for re-measurement of the control point coordinates of the bending and torsion H-beams. The bending and torsion H-beams involved in different sections need to be combined and formed, and finally segmented according to the coordinates; lower chord hyperbolic circle The tube is formed by top bending, and the upper tire is subjected to three-dimensional coordinate re-measurement after forming.
  • the circular tube is blanked by intersecting line programming. When programming, it is partially fitted to a standard arc, and the cutting program of the cross notch in the node area is compiled. The notch is marked by the program only, and the semi-automatic flame cutting machine is used to cut the notch along the positioning line after the bend is completed.
  • Step 16 According to the hyperbolic truss component coordinate drawing, draw the hyperbolic truss ground sample line on the steel plate platform, mark the key control points, check that the control error is not more than 1mm, set the tire frame, and control the height error of the tire frame tooth plate to be not greater than 1mm Step 17. Firstly complete the positioning welding of the cross node of the lower chord. After the upper and lower chords are positioned on the upper tire, the lower chord will open two windows under the longitudinal slot of the node, and the cross node will be installed in the lower chord, and then the window will be closed.
  • Step 18 Position and assemble the web members to complete the assembly of the hyperbolic truss overall frame.
  • Step 19 Use coordinate positioning to assemble the remaining round tube corbels and cross corbels, stiffening plates and ear plates, etc., and set up on-site grooves. After the overall size of the truss is qualified, the tires are lowered.
  • Step 20 single-curved truss 4 manufacturing.
  • the hot-milk H-beam of the upper chord is bent and formed by stretching, and the chord height is measured point by point to control the bending accuracy;
  • the single-curved round tube of the lower chord is formed by top bending, due to the central setting of the pipe
  • the circular pipe Before bending the pipe, the circular pipe is disconnected at a position 400mm away from the baffle. After the inner baffle is positioned and welded, the circular pipes are butt-joined and bent as a whole to control the bending accuracy of the entire circular pipe.
  • Step 21 According to the single-curved truss processing drawing, draw the single-curved truss ground sample line on the steel plate platform, mark the key control points, check that the control error is not more than 1mm, set the tire frame, and control the elevation error of the tire frame Greater than lmm o
  • Step 22 Position the upper and lower chords on the upper tire. After the retest is correct, position and assemble the web members to complete the single-curve truss overall frame assembly.
  • Step 23 Position and assemble the remaining round tube corbels and cross corbels, stiffener plates and lug plates, etc., and set up the site slope mouth. After the overall size of the truss is qualified, the tires are lowered.
  • Step 24 After all the segments of the hyperbolic arc-shaped truss are manufactured, they are physically pre-assembled, and the total station is used to detect all key control points such as joints, corbels, and pin lugs.
  • Step 25 Use 3D scanning technology to scan the solid model of each segment component, and after data processing, use computer aids to simulate pre-assembly.
  • the scanned model is assembled and compared with the theoretical computer model to detect all key control points such as the counter interface, the corbel and the pin trunnion. After comparison, the error of the detection results of simulated pre-assembly and physical pre-assembly can be controlled within 2mm.
  • Using simulated pre-assembly instead of physical pre-assembly can save the manpower, material resources and construction period required for physical pre-assembly. Under the premise of ensuring accuracy, greatly Improve work efficiency.
  • the present invention also includes other implementation modes, and all technical solutions formed by equivalent transformations or equivalent substitutions shall fall within the protection scope of the claims of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

一种双曲弧形大跨度钢桁架及其制作方法,该桁架包括两落地段Y型柱(1)、第一桁架和第二桁架,两落地段Y型柱(1)所在的竖直面作为对称面,第一桁架、第二桁架沿对称面对称设置,第一桁架、第二桁架同侧端部分别与同侧的落地段Y型柱(1)连接,第一桁架、第二桁架分别包括单曲桁架(4)、双曲桁架(3)和过渡段弯扭箱体(2),单曲桁架(4)两端向外依次连接双曲桁架(3)和过渡段弯扭箱体(2)。该方法包括:分段制造准备;各段桁架制造完成后,进行实体预拼装;利用3D扫描技术对各段桁架的实体模型进行扫描,经数据处理后,利用计算机辅助,进行模拟预拼装;扫描所得模型拼装后与理论的计算机模型进行比对,模拟预拼装与实体预拼装检测结果误差在2mm以内,通过模拟预拼装对各段桁架进行拼装。该方式降低了安装难度、控制了焊接变形、提高了构件尺寸精度、保证了制造拼装精度、提高了工效。

Description

一种双曲弧形大跨度钢桁架及其制作方法
技术领域
本发明涉及一种双曲弧形大跨度钢桁架及其制作方法, 属于建筑钢结构技术领域。 背景技术
大跨度建筑, 如机场航站楼、 体育馆和会展场馆等, 屋面常用多道平行桁架、 檩条 或次拱的组合结构, 而屋面桁架常见的主要有倒三角管桁架或立式平面管桁架, 且多为 平面拱, 由多根钢柱支撑桁架整体。 但对于屋面和立面需要连贯形成整体弧形外观的航 站楼建筑设计, 在屋面与立面的相交处, 上述结构无法很好处理。 传统桁架上弦杆为圆 管, 与屋面钢梁或次拱相交, 其连接节点处理较为繁琐。 发明内容
本发明所要解决的技术问题是针对上述现有技术提供一种双曲弧形大跨度钢桁架 及其制作方法, 可以较好地实现建筑效果, 方便主拱与屋面钢梁或次拱连接, 并提高桁 架的制作效率和质量。
本发明解决上述问题所采用的技术方案为: 一种双曲弧形大跨度钢桁架, 所述桁架 底部设置若干根支撑杆, 支撑杆用于传力于下部框架, 所述桁架包括两落地段 Y型柱、 第一桁架和第二桁架, 两所述落地段 Y型柱所在的竖直面作为对称面, 所述第一桁架、 第二桁架沿对称面对称设置,所述第一桁架和第二桁架同侧端部分别于同侧的落地段 Y 型柱连接, 所述第一、 第二桁架分别包括单曲桁架、 双曲桁架和过渡段弯扭箱体, 所述 单曲桁架两端部向外依次连接双曲桁架和过渡段弯扭箱体;
所述落地段 Y型柱包括两 Y型弧形翼缘板、 两弧形腹板、 V型腹板和第一圆管牛 腿, 两所述 Y型弧形翼缘板、 两所述弧形腹板和 V型腹板围设成 Y型柱本体, 所述第 一圆管牛腿与 Y型柱本体下段垂直固定设置, 所述 Y型柱本体上设有若干所述第一十 字型牛腿;
所述过渡段弯扭箱体包括上弯扭翼缘板、 下弯扭翼缘板、 两弯扭腹板、 H型牛腿、 箱型牛腿、 端部圆管牛腿和第二圆管牛腿, 两所述弯扭翼缘板上下设置, 两所述弯扭腹 板设置在两弯扭翼缘板之间, 围设成弯扭箱体本体, 所述弯扭箱体本体内腔端部设置工 字型加劲板, 所述第二圆管牛腿设于弯扭箱体本体上, 且贯穿于弯扭箱本体内腔, 所述 第二圆管牛腿一端与工字型加劲板固定连接, 所述箱型牛腿设置在上弯扭翼缘板上, 所 述 H型牛腿固定于弯扭箱体本体一端部, 所述端部圆管牛腿设于 H型牛腿下方且横卧 于弯扭箱体本体一端部, 所述弯扭箱本体贯穿连接板, 所述连接板设于第二圆管牛腿上 方, 所述弯扭箱体本体上设有若干个第二十字型牛腿;
所述双曲桁架包括第三 H型上弦杆、第三圆管下弦杆、多根第三腹杆和第三圆管牛 腿,所述第三 H型上弦杆与第三圆管下弦杆之间设有多根第三腹杆,所述第三腹杆两端 分别于第三 H型上弦杆和第三圆管下弦杆固定连接,构成双曲桁架本体,所述第三圆管 牛腿与第三圆管下弦杆固定连接, 所述第三圆管下弦杆底部固定第三销轴耳板, 所述第 三圆管牛腿、第三腹杆和第三销轴耳板形成十字节点,所述第三 H型上弦杆上设置多个 第三十字牛腿;
所述单曲桁架包括第四 H型上弦杆、第四圆管下弦杆、多根第四腹杆和第四圆管牛 腿,所述第四 H型上弦杆和第四圆管下弦杆之间设有多根第四腹杆,所述第四腹杆两端 分别于第四 H型上弦杆和第四圆管下弦杆固定连接,构成单曲桁架本体,所述第四圆管 下弦杆上设有第四圆管牛腿,所述单曲桁架本体的第四 H型上弦杆上设置第四十字牛腿。
所述 Y型柱本体内侧设有第一销轴耳板, 所述第一销轴耳板贯穿于 Y型柱本体内, 所述第一销轴耳板上下侧分别设有内隔板, 所述内隔板固定于 Y型柱本体内) ^所述 Y 型柱本体上段 V型区内腔设有横向隔板和纵向隔板, 所述横向隔板垂直于 Y型弧形翼 缘板, 所述纵向隔板设于 Y型柱本体中心且垂直于横向隔板。
所述 V型腹板的 V型处圆弧半径为 85— 110mm。
所述第三 H型上弦杆的内侧固定设有若干竖向第三加劲板,若干所述第三加劲板分 别设于第三腹杆与第三 H型上弦杆连接处。
位于所述十字节点的第三圆杆下弦杆上插设十字节点板,所述十字节点板与第三圆 杆下弦杆中心线平行, 所述第三销轴耳板与第三圆杆下弦杆中心线的夹角为 64° 。
一种双曲弧形大跨度钢桁架的制作方法, 所述方法包括如下步骤:
( 1 ) 分段制造准备: 根据双曲弧形大跨度钢桁架的分段, 对落地段 Y型柱、 过渡 段弯扭箱体、 双曲桁架和单曲桁架进行单独制造;
A、 落地段 Y型柱: 落地段 Y型柱本体分直线段与弧线 V形段, Y型弧形翼缘板 和弧形腹板的直线段与弧形 V形段之间留有间距。 先将直线段进行 U型组立、 依次将 内隔板和加劲板焊接于 Y型柱本体直线段, 对 Y型柱本体直线段内侧 Y型翼缘板进行 开槽, 从槽口插入销轴耳板至 Y型柱本体直线段内部, 焊接销轴耳板及槽口, 将 Y型 柱直线段与胎架定位焊接后开始组装弧形 V形段; Y型弧形翼缘板分叉段、 弧形腹板弧 形分叉段分别使用三辊卷板机进行预弯, 依次定位并焊接外侧 Y型弧形翼缘板分叉段、 V形腹板和横隔板; 将一侧弧形腹板在距离横隔板 200mm处分割断, 待内隔板焊接完 成后, 组装内侧 Y型弧形翼缘板, 完成内隔板焊接, 组装纵向隔板, 待纵向隔板焊接完 成后, 隔断的弧形腹板进行焊接; 完成落地段 Y型柱; 落地段 Y型柱尺寸合格后下胎; B、 过渡段弯扭箱体: 通过地样坐标定位上翼缘板, 此时, 将上翼缘板作为底板, 上翼缘板上定位焊接平行设置钢板, 并在两钢板之间焊接倾斜设置的斜撑板, 两钢板与 斜撑板形成工字型节点; 坐标定位第二圆管牛腿, 完成第二圆管牛腿与工字型节点之间 的焊接; 组装两侧弯扭腹板, 利用底板的弯扭线型配合千斤顶使弯扭腹板弯扭到位, 定 位焊接, 在胎架牙板上加设三角板固定 U型翼腹板 组装下翼缘板, 将下翼缘板作为盖 板, 下翼缘板对应工字型节点处开槽塞焊, 成弯扭箱体本体焊接, 复测弯扭箱体本体关 键控制点坐标; 过渡段弯扭箱体尺寸合格后下胎;
C、 双曲桁架制造: 采用热乳成品 H型钢先进行正向拉弯, 再进行侧向顶弯, 最后 两端扭曲部分,采用火焰对角加热校正成型为第三 H型上弦杆,成型后置于专用胎架上 进行第三 H型上弦杆控制点坐标复测; 第三圆管下弦杆采用圆管顶弯成型, 成型后上胎 进行三维坐标复测, 在第三圆管下弦杆上开设槽口并将十字节点板插入槽口内焊接; 定 位组装第三腹杆, 完成双曲桁架本体的焊接; 双曲桁架尺寸验收合格后下胎;
D、 单曲桁架制造: 第四 H型上弦杆采用热乳成品 H型钢先进行拉弯, 通过逐点测 量弦高, 控制弯曲精度 第四圆管下弦杆采用圆管顶弯成型, 将第四 H型上弦杆、 第四 圆管下弦杆定位上胎, 经复测无误后, 定位组装第四腹杆, 完成单曲桁架本体组装; 单 曲桁架尺寸验收合格后下胎;
( 2) 各段桁架制造完成后, 进行实体预拼装, 利用全站仪对所有对接口、 牛腿和 销轴耳板关键控制点进行检测;
( 3 )利用 3D扫描技术对各段桁架的实体模型进行扫描, 经数据处理后, 利用计算 机辅助, 进行模拟预拼装; 扫描所得模型拼装后与理论的计算机模型进行比对, 模拟预 拼装与实体预拼装检测结果误差在 2mm以内, 通过模拟预拼装对各段桁架进行拼装。
所述步骤 ( 1 ) 中的双曲桁架下弦杆在弯管前, 对圆管进行横向切断, 并在圆管内 固定设置竖向内隔板, 再将断开的圆管进行对接后进行整体顶弯。
所述内隔板与圆管端部之间的间距为 380〜 420mm。
与现有技术相比, 本发明的优点在于:
1、桁架上弦杆采用热乳 H型钢,使得屋面檩条钢梁等与主桁架连接节点构造简单, 规避管桁架节点复杂的难题通过落地型 Y型柱分叉形成两条屋面桁架,配合底部支撑, 整体结构简单, 减少桁架两端钢柱数量, 增大立面柱间距, 便于飘带设计。 通过合理设 置桁架节段对接口和牛腿, 采用焊接或栓焊结合的对接方式, 便于现场安装精度控制, 降低安装难度。
2、 弯扭箱体腹板、 双曲桁架及单曲桁架等合理采用卷板机预弯与火焰局部校正相 结合、 拉弯与顶弯等冷弯技术相结合、 分段杆件合并弯曲再分段等技术有效提高的弯曲 加工的效率和精度, 为总拼制造提供了保障; 优化细部节点焊接坡口与顺序, 采用分部 组焊再总拼的思路, 有效控制了焊接变形, 提高了构件尺寸精度。 3、 采取实体预拼装与模拟预拼装共同检验, 而后使用模拟预拼装代替实体预拼装 的方法, 有效保证了制造拼装精度, 提高了工效, 降低了成本, 且为现场安装提供保障, 节约总体工期。
4、 将整体加工工序进行细化, 便于组织流水施工, 保证受力, 简化结构, 使得建 筑屋面与立面可平缓形成整体的弧形外观效果。 附图说明
图 1为本发明实施例一种双曲弧形大跨度钢桁架的示意图;
图 2为本发明实施例一种双曲弧形大跨度钢桁架中落地段 Y型柱的示意图; 图 3为图 2的内部示意图;
图 4为本发明实施例一种双曲弧形大跨度钢桁架中弯扭箱体的示意图;
图 5为图 4的内部示意图;
图 6为本发明实施例一种双曲弧形大跨度钢桁架中双曲桁架的示意图;
图 7为图 6的十字节点结构示意图;
图 8为本发明实施例一种双曲弧形大跨度钢桁架中单曲桁架的示意图;
图中 1 落地段 Y型柱、 1.1 弧形腹板、 1.2 Y型弧形翼缘板、 1.3 V型腹板、 1.4 第一圆管牛腿、 1.5 第一十字型牛腿、 1.6 第一销轴耳板、 1.7 内隔板、 1.8 横向隔板、 1.9 纵向隔板、 1.10 第一插板、 2 过渡段弯扭箱体、 2.1 上弯扭翼缘板、 2.2 下弯扭翼 缘板、 2.3 弯扭腹板、 2.4 工字型加劲板、 2.5 H型牛腿、 2.6 端部圆管牛腿、 2.7 第 二圆管牛腿、 2.8 箱型牛腿、 2.9 第二十字型牛腿、 2.10 第二连接板、 3 双曲桁架、 3.1 第三 H型上弦杆、 3.2 第三圆管下弦杆、 3.3 第三腹杆、 3.4 第三圆管牛腿、 3.5 第三 十字型牛腿、 3.6 第三销轴耳板、 3.7 十字节点板、 3.8 第三插板、 3.9 第三加劲板、
4 单曲桁架、 4.1 第四 H型上弦杆、 4.2 第四圆管下弦杆、 4.3 第四腹杆、 4.4 第四圆 管牛腿、 4.5 第四十字型牛腿、 4.6 第四加劲板、 4.7 第四连接板、 5 连接耳板。 具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
如图 1所示, 本实施例中的一种双曲弧形大跨度钢桁架, 该桁架底部设置若干根支 撑杆, 支撑杆用于传力于下部框架。 该桁架包括两落地段 Y型柱 1、 第一桁架和第二桁 架, 两落地段 Y型柱 1所在的竖直面作为对称面, 第一桁架、第二桁架沿对称面对称设 置,第一桁架和第二桁架同侧端部分别于同侧的落地段 Y型柱 1分叉端对应连接。其中, 第一、 第二桁架分别包括单曲桁架 4、 双曲桁架 3和过渡段弯扭箱体 2, 以单曲桁架 4 为中心, 单曲桁架 4两端分别对称设置双曲桁架 3和过渡段弯扭箱体 2, 且双曲桁架 3 设有单曲桁架 4和过渡段弯扭箱体 2之间。
图 2、 3所示, 落地段 Y型柱 1包括两 Y型弧形翼缘板 1.2、 两弧形腹板 1.1、 V型 腹板 1.3和第一圆管牛腿 1.4,两 Y型弧形翼缘板、两弧形腹板 1.1和 V型腹板 1.3围设 成 Y型柱本体, V型腹板 1.3的 V型处圆弧半径为 100mm。第一圆管牛腿 1.4横卧在 Y 型柱本体下段侧面并通过第一插板 1.10与 Y型柱本体下段垂直固定, 用于连接两侧圆 管飘带。在 Y型柱本体的上 Y型弧形翼缘板 1.2上固定若干第一十字型牛腿 1.5 ;在上 Y 型弧形翼缘板 1.2的分叉端设置连接耳板 5 , 用于拼装时临时连接。
图 4、 5所示, 过渡段弯扭箱体 2包括上弯扭翼缘板 2.1、 下弯扭翼缘板 2.2、 两弯 扭腹板 2.3、 H型牛腿 2.5、 箱型牛腿 2.8、 端部圆管牛腿 2.6和第二圆管牛腿 2.7, 两弯 扭翼缘板上下设置, 两弯扭腹板 2.3设置在两弯扭翼缘板之间, 围设成弯扭箱体本体。 弯扭箱体本体内腔端部设置工字型加劲板 2.4, 第二圆管牛腿 2.7设于弯扭箱体本体上, 且贯穿于弯扭箱本体内腔, 将第二圆管牛腿 2.7—端与工字型加劲板 2.4固定连接且平 行于屋面次桁架方向。 箱型牛腿 2.8设置在上弯扭翼缘板 2.1上, 用于连接两侧屋面箱 型檩条。 H型牛腿 2.5固定于弯扭箱体本体一端部,端部圆管牛腿 2.6设于 H型牛腿 25 下方且横卧于弯扭箱体本体一端部, 端部圆管牛腿 2.6和 H型牛腿 2.5分别与双曲桁架 的下弦杆和上弦杆对接。 弯扭箱本体上水平纵向贯穿第二连接板 2.10, 第二连接板 2.10 设于第二圆管牛腿 2.7上方。 弯扭箱体本体的上弯扭翼缘板 2.1上设有若干个第二十字 型牛腿 2.9, 用于连接两侧屋面檩条钢梁。在弯扭箱体本体两端分别设置连接耳板 5 , 用 于拼装时临时连接。
图 6、 7所示, 双曲桁架包括 3第三 H型上弦杆 3.1、 第三圆管下弦杆 3.2、 多根第 三腹杆 3.3和第三圆管牛腿 3.4, 第三 H型上弦杆 3.1与第三圆管下弦杆 3.2之间设有多 根第三腹杆 3.3 , 多根第三腹杆 3.3两端分别于第三 H型上弦杆 3.1和第三圆管下弦杆 3.2固定连接, 构成双曲桁架本体。 第三圆管牛腿 3.4与第三圆管下弦杆 3.2固定连接, 第三圆管下弦杆 3.2底部固定第三销轴耳板 3.6, 使得第三圆管牛腿 3.4、 第三腹杆 3.3 和第三销轴耳板 3.6形成十字节点, 位于十字节点的第三圆杆下弦杆 3.2上插设十字节 点板 3.7, 十字节点板 3.7与第三圆杆下弦杆 3.2中心线平行, 第三销轴耳 3.6板与第三 圆杆下弦杆 3.2中心线的夹角为 64° ,第三腹杆 3.3上插设第三插板 3.8,使得第三插板 3.8与第三圆杆下弦杆 3.2中心线的夹角为 82° 第三 H型上弦杆 3.1的内侧固定设有 若干竖向第三加劲板 3.9,若干第三加劲板 3.9分别设于第三腹杆 3.3与第三 H型上弦杆 3.1连接处。 第三 H型上弦杆 3.1上设置多个第三十字型牛腿 3.5 ; 用于连接两侧屋面檩 条钢梁。 在双曲桁架本体两端分别设置连接耳板 5 , 用于拼装时临时连接。
图 8所示, 单曲桁架 4包括第四 H型上弦杆 4.1、第四圆管下弦杆 4.2、多根第四腹 杆 4.3和第四圆管牛腿 4.4, 第四 H型上弦杆 4.1和第四圆管下弦杆 4.2之间设有多根第 四腹杆 4.3 , 第四腹杆 4.3两端分别于第四 H型上弦杆 4.1和第四圆管下弦杆 4.2固定连 接, 构成单曲桁架本体。所述第四圆管下弦杆 4.2上设有第四圆管牛腿 4.4, 所述单曲桁 架本体的第四 H型上弦杆 4.1上设置第四十字牛腿 4.5。在第四圆管下弦杆 4.2上开槽分 别插入内隔板和第四插板, 内隔板位于第四圆管下弦杆 4.2中间内部, 第四插板位于第 四圆管下弦杆 4.2中间外部。 第四圆管牛腿 4.4通过开槽与第四插板焊接连接。 第四连 接板 4.7位于第四 H型上弦杆 4.1, 第四连接板 4.7及第四圆管牛腿 4.4分别连接次桁架 的上、 下弦杆。 第四十字型牛腿 4.5位于第四 H型上弦杆 4.1上, 用于连接两侧屋面檩 条钢梁。 第四 H型上弦杆 4.1的内侧固定设有若干竖向第四加劲板 4.6, 若干第四加劲 板 4.6分别设于第四腹杆 4.3与第四 H型上弦杆 4.1连接处。 在单曲桁架本体两端分别 设置连接耳板 5 , 用于拼装时临时连接。
一种双曲弧形大跨度钢桁架的制作方法, 包括如下步骤:
根据双曲弧形桁架分段, 采取先分段单独制造, 后整体预拼的加工思路, 预拼装采 用实体预拼装与 3D扫描计算机辅助预拼装相结合。
步骤一、 落地段 Y型柱 1制造: 落地段 Y型柱在直线段与弧线 V形段分界处进行 分段, 翼、 腹板间分段位置错开 200mm, 其制造方法为先制造下部直段, 再上总拼胎 架, 逐步完成 Y型柱分叉段的装配和焊接, 以提高制造效率, 降低总拼高度, 减少安全 风险。
步骤二、 落地段 Y型柱 1直线段进行 U型组立, 依次装配支撑节点内隔板 1.7、 第 一销轴耳板 1.6和两侧加劲板, 焊接加劲板与第一销轴耳板 1.6、 底板焊缝, 内隔板 1.7 采用双边电渣焊, 电渣焊衬垫铣出斜坡, 与翼缘板密贴, 间隙小于 0.5mm。
步骤三、 装配 Y型柱内侧开槽翼缘板, 依次完成第一销轴耳板 1.6与槽口的一圈衬 垫焊接, Y型柱主焊缝打底, 隔板斜电渣焊, 主焊缝填充和盖面焊接。
步骤四、 根据构件坐标图, 在钢板平台上划出地样线, 标出关键控制点, 核对控制 误差不大于 1mm。 设置总拼胎架, 控制胎架牙板标高误差不大于 1mm。
步骤五、调整定位 Y型柱直线段,将直线段箱体与胎架定位焊接牢固后开始组装弧 线 V形段。 弧线 V形段的弧形翼缘、 腹板先使用三辊卷板机进行预弯, 依次定位组装 外侧翼缘板、 V形腹板 1.3和横向隔板 1.8, 定位焊接。
步骤六、 组装两侧弧形腹板 1.1, 一侧腹板在距离横隔板 200mm处断开, 上半部分 待内隔板焊接完成组装封闭。
步骤七、 组装内侧弧形翼缘板, 完成内隔板 1.7四面焊接, 组装纵向隔板 1.9, 待纵 向隔板焊接完成后, 再封闭一侧腹板的上半部分, 完成 Y型柱本体焊接。
步骤八、 根据坐标依次定位组装焊接剩余外部牛腿、 耳板等。 焊后总体尺寸验收合 格后下胎。
步骤九、 过渡段弯扭箱体 2制造: 在钢板平台上划出地样线, 标出关键控制点, 核 对控制误差不大于 1mm。 设置胎架, 控制胎架牙板标高误差不大于 1mm。 步骤十、 优先完成箱体内的工字型节点组焊, 通过地样坐标定位上弯扭翼缘板 2.1 (作为制造时的底板) , 完成工字型加劲板 2.4与底板 2.1的定位焊接。
步骤十一、坐标定位节点两侧第二连接板 2.10,完成第二连接板 2.10与节点之间的 焊接。
步骤十二、组装两侧弯扭腹板 2.3 ,利用底板 2.1的弯扭线型配合千斤顶使腹板弯扭 到位, 定位焊接, 并在胎架牙板上加设三角板固定 U型翼腹板。
步骤十三、 盖下弯扭翼缘板 2.2 (制造时的盖板), 盖板 2.2对应节点工字钢腹板处 开槽塞焊。 完成弯扭箱体本体焊接, 复测本体关键控制点坐标。
步骤十四、 定位组焊外部销轴耳板、 牛腿、 连接耳板等。 焊接完成后, 整体验收尺 寸坐标, 合格后方可下胎。
步骤十五、 双曲桁架 3制造: 首先完成上、 下弦杆弯曲加工, 上弦杆采用热乳成品 H型钢先进行正向拉弯, 再进行侧向顶弯, 最后两端扭曲部分, 采用火焰对角加热校正 成形,成形后置于专用胎架上进行弯扭 H型钢控制点坐标复测,涉及不同分段上的弯扭 H型钢需合并成形, 最后按坐标进行分段; 下弦杆双曲圆管采用顶弯成形, 成形后上胎 进行三维坐标复测, 圆管采用相贯线编程下料, 编程时局部拟合为标准圆弧, 编出节点 区十字槽口的切割程序, 下料时槽口仅利用程序进行划线, 带弯管完成后利用半自动火 焰切割机沿定位线进行槽口切割。
步骤十六、 根据双曲桁架构件坐标图, 在钢板平台上划出双曲桁架地样线, 标出关 键控制点, 核对控制误差不大于 1mm 设置胎架, 控制胎架牙板标高误差不大于 1mm 步骤十七、 优先完成下弦杆十字节点定位焊接, 上、 下弦杆定位上胎后, 下弦杆在 节点纵向槽口下方开 2个窗口, 将十字节点装入下弦杆, 再封闭窗口。
步骤十八、 定位组装腹杆, 完成双曲桁架整体框架组装。
步骤十九、 利用坐标定位组装剩余圆管牛腿和十字牛腿, 加劲板和耳板等, 并开设 现场坡口。 桁架整体尺寸验收合格后下胎。
步骤二十、 单曲桁架 4制造。 首先完成桁架上、 下弦杆弯曲加工, 上弦杆热乳 H型 钢采用拉弯进行弯曲成形, 通过逐点测量弦高, 控制弯曲精度; 下弦杆单曲圆管采用顶 弯成形, 由于圆管中间设置有一块内隔板, 在弯管前, 先在距离隔板 400mm位置断开 圆管, 完成内隔板定位焊接后再将圆管对接, 整体顶弯, 以控制整根圆管的弯曲精度。
步骤二十一、 根据单曲桁架构件加工图, 在钢板平台上划出单曲桁架地样线, 标出 关键控制点, 核对控制误差不大于 1mm 设置胎架, 控制胎架牙板标高误差不大于 lmm o
步骤二十二、 上、 下弦杆定位上胎, 经复测无误后, 定位组装腹杆, 完成单曲桁架 整体框架组装。
步骤二十三、 定位组装剩余圆管牛腿和十字牛腿, 加劲板和耳板等, 并开设现场坡 口。 桁架整体尺寸验收合格后下胎。
步骤二十四、 整榀双曲弧形桁架所有节段制造完成后, 进行实体预拼装, 利用全站 仪检测所有对接口、 牛腿和销轴耳板等关键控制点。
步骤二十五、 利用 3D扫描技术, 扫描各节段构件的实体模型, 经数据处理后, 利 用计算机辅助, 进行模拟预拼装。 扫描所得模型拼装后与理论的计算机模型进行比对, 检测所有对接口、 牛腿和销轴耳板等关键控制点。 经对比, 模拟预拼装与实体预拼装检 测结果误差可控制在 2mm以内, 采用模拟预拼装代替实体预拼装, 可节约实体预拼装 所需的人力、 物力及工期, 在保证精度的前提下, 大大提高了工效。
除上述实施例外, 本发明还包括有其他实施方式, 凡采用等同变换或者等效替换方 式形成的技术方案, 均应落入本发明权利要求的保护范围之内。

Claims

权 利 要 求 书
1、 一种双曲弧形大跨度钢桁架, 所述桁架底部设置若干根支撑杆, 支撑杆用于传 力于下部框架, 其特征在于: 所述桁架包括两落地段 Y型柱、 第一桁架和第二桁架, 两 所述落地段 Y型柱所在的竖直面作为对称面,所述第一桁架、第二桁架沿对称面对称设 置, 所述第一桁架和第二桁架同侧端部分别于同侧的落地段 Y型柱连接, 所述第一、第 二桁架分别包括单曲桁架、 双曲桁架和过渡段弯扭箱体, 所述单曲桁架两端部向外依次 连接双曲桁架和过渡段弯扭箱体;
所述落地段 Y型柱包括两 Y型弧形翼缘板、 两弧形腹板、 V型腹板和第一圆管牛 腿, 两所述 Y型弧形翼缘板、 两所述弧形腹板和 V型腹板围设成 Y型柱本体, 所述第 一圆管牛腿与 Y型柱本体下段垂直固定设置, 所述 Y型柱本体上设有若干第一十字型 牛腿;
所述过渡段弯扭箱体包括上弯扭翼缘板、 下弯扭翼缘板、 两弯扭腹板、 H型牛腿、 箱型牛腿、 端部圆管牛腿和第二圆管牛腿, 两所述弯扭翼缘板上下设置, 两所述弯扭腹 板设置在两弯扭翼缘板之间, 围设成弯扭箱体本体, 所述弯扭箱体本体内腔端部设置工 字型加劲板, 所述第二圆管牛腿设于弯扭箱体本体上, 且贯穿于弯扭箱本体内腔, 所述 第二圆管牛腿一端与工字型加劲板固定连接, 所述箱型牛腿设置在上弯扭翼缘板上, 所 述 H型牛腿固定于弯扭箱体本体一端部, 所述端部圆管牛腿设于 H型牛腿下方且横卧 于弯扭箱体本体一端部, 所述弯扭箱本体贯穿连接板, 所述连接板设于第二圆管牛腿上 方, 所述弯扭箱体本体上设有若干个第二十字型牛腿;
所述双曲桁架包括第三 H型上弦杆、第三圆管下弦杆、多根第三腹杆和第三圆管牛 腿,所述第三 H型上弦杆与第三圆管下弦杆之间设有多根第三腹杆,所述第三腹杆两端 分别于第三 H型上弦杆和第三圆管下弦杆固定连接,构成双曲桁架本体,所述第三圆管 牛腿与第三圆管下弦杆固定连接, 所述第三圆管下弦杆底部固定第三销轴耳板, 所述第 三圆管牛腿、第三腹杆和第三销轴耳板形成十字节点,所述第三 H型上弦杆上设置多个 第三十字牛腿;
所述单曲桁架包括第四 H型上弦杆、第四圆管下弦杆、多根第四腹杆和第四圆管牛 腿,所述第四 H型上弦杆和第四圆管下弦杆之间设有多根第四腹杆,所述第四腹杆两端 分别于第四 H型上弦杆和第四圆管下弦杆固定连接,构成单曲桁架本体,所述第四圆管 下弦杆上设有第四圆管牛腿,所述单曲桁架本体的第四 H型上弦杆上设置第四十字牛腿。
2、 根据权利要求 1所述的一种双曲弧形大跨度钢桁架, 其特征在于: 所述 Y型柱 本体内侧设有第一销轴耳板,所述第一销轴耳板贯穿于 Y型柱本体内,所述第一销轴耳 板上下侧分别设有内隔板,所述内隔板固定于 Y型柱本体内) ^所述 Y型柱本体上段 V 型区内腔设有横向隔板和纵向隔板,所述横向隔板垂直于 Y型弧形翼缘板,所述纵向隔 板设于 Y型柱本体中心且垂直于横向隔板。
3、 根据权利要求 1所述的一种双曲弧形大跨度钢桁架, 其特征在于: 所述 V型腹 板的 V型处圆弧半径为 85— 110mm。
4、 根据权利要求 1所述的一种双曲弧形大跨度钢桁架, 其特征在于: 所述第三 H 型上弦杆的内侧固定设有若干竖向第三加劲板,若干所述第三加劲板分别设于第三腹杆 与第三 H型上弦杆连接处。
5、 根据权利要求 1所述的一种双曲弧形大跨度钢桁架, 其特征在于: 位于所述十 字节点的第三圆杆下弦杆上插设十字节点板,所述十字节点板与第三圆杆下弦杆中心线 平行, 所述第三销轴耳板与第三圆杆下弦杆中心线的夹角为 64°。
6、 基于权利要求 1〜5中任一所述的一种双曲弧形大跨度钢桁架的制作方法, 其特 征在于: 所述方法包括如下步骤:
( 1 ) 分段制造准备: 根据双曲弧形大跨度钢桁架的分段, 对落地段 Y型柱、 过渡 段弯扭箱体、 双曲桁架和单曲桁架进行单独制造;
A、 落地段 Y型柱: 落地段 Y型柱本体分直线段与弧线 V形段, Y型弧形翼缘 板和弧形腹板的直线段与弧形 V形段之间留有间距。 先将直线段进行 U型组立、 依次 将内隔板和加劲板焊接于 Y型柱本体直线段, 对 Y型柱本体直线段内侧 Y型翼缘板进 行开槽, 从槽口插入销轴耳板至 Y型柱本体直线段内部, 焊接销轴耳板及槽口, 将 Y 型柱直线段与胎架定位焊接后开始组装弧形 V形段; Y型弧形翼缘板分叉段、 弧形腹板 弧形分叉段分别使用三辊卷板机进行预弯,依次定位并焊接外侧 Y型弧形翼缘板分叉段、 V形腹板和横隔板; 将一侧弧形腹板在距离横隔板 200mm处分割断, 待内隔板焊接完 成后, 组装内侧 Y型弧形翼缘板, 完成内隔板焊接, 组装纵向隔板, 待纵向隔板焊接完 成后, 隔断的弧形腹板进行焊接; 完成落地段 Y型柱; 落地段 Y型柱尺寸合格后下胎;
B、 过渡段弯扭箱体: 通过地样坐标定位上翼缘板, 此时, 将上翼缘板作为底板, 上翼缘板上定位焊接平行设置钢板, 并在两钢板之间焊接倾斜设置的斜撑板, 两钢板与 斜撑板形成工字型节点; 坐标定位第二圆管牛腿, 完成第二圆管牛腿与工字型节点之间 的焊接; 组装两侧弯扭腹板, 利用底板的弯扭线型配合千斤顶使弯扭腹板弯扭到位, 定 位焊接, 在胎架牙板上加设三角板固定 U型翼腹板 组装下翼缘板, 将下翼缘板作为盖 板, 下翼缘板对应工字型节点处开槽塞焊, 成弯扭箱体本体焊接, 复测弯扭箱体本体关 键控制点坐标; 过渡段弯扭箱体尺寸合格后下胎;
C、 双曲桁架制造: 采用热乳成品 H型钢先进行正向拉弯, 再进行侧向顶弯, 最后 两端扭曲部分,采用火焰对角加热校正成型为第三 H型上弦杆,成型后置于专用胎架上 进行第三 H型上弦杆控制点坐标复测; 第三圆管下弦杆采用圆管顶弯成型, 成型后上胎 进行三维坐标复测, 在第三圆管下弦杆上开设槽口并将十字节点板插入槽口内焊接; 定 位组装第三腹杆, 完成双曲桁架本体的焊接; 双曲桁架尺寸验收合格后下胎;
D、 单曲桁架制造: 第四 H型上弦杆采用热乳成品 H型钢先进行拉弯, 通过逐点测 量弦高, 控制弯曲精度 第四圆管下弦杆采用圆管顶弯成型, 将第四 H型上弦杆、 第四 圆管下弦杆定位上胎, 经复测无误后, 定位组装第四腹杆, 完成单曲桁架本体组装; 单 曲桁架尺寸验收合格后下胎;
( 2) 各段桁架制造完成后, 进行实体预拼装, 利用全站仪对所有对接口、 牛腿和 销轴耳板关键控制点进行检测;
( 3 )利用 3D扫描技术对各段桁架的实体模型进行扫描, 经数据处理后, 利用计算 机辅助, 进行模拟预拼装; 扫描所得模型拼装后与理论的计算机模型进行比对, 模拟预 拼装与实体预拼装检测结果误差在 2mm以内, 通过模拟预拼装对各段桁架进行拼装。
7、 根据权利要求 6所述的一种双曲弧形大跨度钢桁架的制作方法, 其特征在于: 步骤 1中的双曲桁架下弦杆在弯管前, 对圆管进行横向切断, 并在圆管内固定设置竖向 内隔板, 再将断开的圆管进行对接后进行整体顶弯。
8、 根据权利要求 7所述的一种双曲弧形大跨度钢桁架的制作方法, 其特征在于: 所述内隔板与圆管端部之间的间距为 380〜 420mm。
PCT/CN2020/093082 2019-07-10 2020-05-29 一种双曲弧形大跨度钢桁架及其制作方法 WO2021004187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910618315.5A CN110512796B (zh) 2019-07-10 2019-07-10 一种双曲弧形大跨度钢桁架及其制作方法
CN201910618315.5 2019-07-10

Publications (1)

Publication Number Publication Date
WO2021004187A1 true WO2021004187A1 (zh) 2021-01-14

Family

ID=68623215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093082 WO2021004187A1 (zh) 2019-07-10 2020-05-29 一种双曲弧形大跨度钢桁架及其制作方法

Country Status (2)

Country Link
CN (1) CN110512796B (zh)
WO (1) WO2021004187A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112222245A (zh) * 2020-08-28 2021-01-15 中冶(上海)钢结构科技有限公司 可调节钢构件弧形起拱装置及起拱方法
CN113919034A (zh) * 2021-10-20 2022-01-11 中国建筑第八工程局有限公司 用于变截面双曲梁的gh参数化建模方法及系统
CN114108923A (zh) * 2021-11-08 2022-03-01 中建钢构工程有限公司 管桁架的拼装方法
CN114310162A (zh) * 2021-12-15 2022-04-12 中铁宝桥集团有限公司 一种曲线钢箱梁大节段整孔制作方法
CN114515917A (zh) * 2022-01-30 2022-05-20 中冶(上海)钢结构科技有限公司 桁架层转角柱的装焊方法
CN114592607A (zh) * 2022-05-09 2022-06-07 中国航空规划设计研究总院有限公司 大跨度屋盖体系斜桁架下弦弯折相贯节点
CN114837341A (zh) * 2022-06-09 2022-08-02 江西建工第一建筑有限责任公司 张弦倒三角管桁架钢屋盖支撑系统
CN115012575A (zh) * 2022-07-02 2022-09-06 丁建 一种铁路站房双曲方管桁架屋盖分块提升施工工艺
CN115030047A (zh) * 2022-06-30 2022-09-09 中冶(上海)钢结构科技有限公司 大跨度法兰连接s型曲线起拱箱型栈桥的建造方法
CN115059308A (zh) * 2022-07-28 2022-09-16 九冶建设有限公司 大跨度双曲线变径倒三角管桁架拼装方法
CN115199051A (zh) * 2022-07-22 2022-10-18 中建八局新型建造工程有限公司 足球场大跨度罩棚的施工方法
CN115807481A (zh) * 2022-12-01 2023-03-17 上海创泫建筑服务有限公司 一种钢构枝杈支撑转折大跨铝合金网壳飘篷的安装方法
CN115847437A (zh) * 2022-12-12 2023-03-28 山东大学 一种相贯支管单边y形坡口机器人自动加工方法及系统
CN116623964A (zh) * 2023-07-25 2023-08-22 北京城建集团有限责任公司 一种大跨度变曲率屋盖的逆作施工方法
CN116791485A (zh) * 2023-07-12 2023-09-22 华南理工大学 一种钢箱梁节段预拼装的精度控制方法
CN117145215A (zh) * 2023-08-23 2023-12-01 中铁建设集团南方工程有限公司 一种用于高铁站的巨型开花状异型钢柱分段装配施工方法
CN115030047B (zh) * 2022-06-30 2024-06-04 中冶(上海)钢结构科技有限公司 大跨度法兰连接s型曲线起拱箱型栈桥的建造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110512796B (zh) * 2019-07-10 2021-03-02 中建钢构有限公司 一种双曲弧形大跨度钢桁架及其制作方法
CN113233324B (zh) * 2021-04-30 2023-02-28 上海振华重工(集团)股份有限公司 桁架式大梁的制作方法、桁架式大梁以及伸缩式岸桥
CN113605717A (zh) * 2021-08-05 2021-11-05 中国二十二冶集团有限公司 大口径弯扭钢管柱牛腿定位及组装方法
CN113664408B (zh) * 2021-08-26 2022-11-11 武汉一冶钢结构有限责任公司 一种大型低温风洞拐角段制作方法
CN114412027B (zh) * 2022-01-26 2022-12-30 中建二局安装工程有限公司 一种附墙式飘带桁架结构及其施工方法
CN115045560A (zh) * 2022-06-23 2022-09-13 中建钢构工程有限公司 异形高耸钢结构的预拼装方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219834A (ja) * 1997-02-05 1998-08-18 Taisei Corp ドーム屋根の支持構造
JP2000120165A (ja) * 1998-10-16 2000-04-25 Nippon Light Metal Co Ltd 骨組構造体
CN1510225A (zh) * 2002-12-23 2004-07-07 中国建筑第八工程局中南公司 Y型柱与悬挑大斜梁的施工方法
JP2006144482A (ja) * 2004-11-24 2006-06-08 Shimizu Corp 構造物の架構構造
JP4007185B2 (ja) * 2002-12-19 2007-11-14 株式会社大林組 可変形状構造物
US20160024811A1 (en) * 2014-06-27 2016-01-28 Shawn Nowling Grain storage structure
CN105401691A (zh) * 2015-11-23 2016-03-16 中建钢构有限公司 一种梭形空间桁架临时支撑装置及其拼装方法
CN206267310U (zh) * 2016-12-02 2017-06-20 上海轻杰重工设备工程有限公司 大跨度空间结构建筑体系
CN110512796A (zh) * 2019-07-10 2019-11-29 中建钢构有限公司 一种双曲弧形大跨度钢桁架及其制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219834A (ja) * 1997-02-05 1998-08-18 Taisei Corp ドーム屋根の支持構造
JP2000120165A (ja) * 1998-10-16 2000-04-25 Nippon Light Metal Co Ltd 骨組構造体
JP4007185B2 (ja) * 2002-12-19 2007-11-14 株式会社大林組 可変形状構造物
CN1510225A (zh) * 2002-12-23 2004-07-07 中国建筑第八工程局中南公司 Y型柱与悬挑大斜梁的施工方法
JP2006144482A (ja) * 2004-11-24 2006-06-08 Shimizu Corp 構造物の架構構造
US20160024811A1 (en) * 2014-06-27 2016-01-28 Shawn Nowling Grain storage structure
CN105401691A (zh) * 2015-11-23 2016-03-16 中建钢构有限公司 一种梭形空间桁架临时支撑装置及其拼装方法
CN206267310U (zh) * 2016-12-02 2017-06-20 上海轻杰重工设备工程有限公司 大跨度空间结构建筑体系
CN110512796A (zh) * 2019-07-10 2019-11-29 中建钢构有限公司 一种双曲弧形大跨度钢桁架及其制作方法

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112222245B (zh) * 2020-08-28 2023-03-03 中冶(上海)钢结构科技有限公司 可调节钢构件弧形起拱装置及起拱方法
CN112222245A (zh) * 2020-08-28 2021-01-15 中冶(上海)钢结构科技有限公司 可调节钢构件弧形起拱装置及起拱方法
CN113919034A (zh) * 2021-10-20 2022-01-11 中国建筑第八工程局有限公司 用于变截面双曲梁的gh参数化建模方法及系统
CN113919034B (zh) * 2021-10-20 2024-03-12 中国建筑第八工程局有限公司 用于变截面双曲梁的gh参数化建模方法及系统
CN114108923A (zh) * 2021-11-08 2022-03-01 中建钢构工程有限公司 管桁架的拼装方法
CN114108923B (zh) * 2021-11-08 2023-03-21 中建钢构工程有限公司 管桁架的拼装方法
CN114310162A (zh) * 2021-12-15 2022-04-12 中铁宝桥集团有限公司 一种曲线钢箱梁大节段整孔制作方法
CN114310162B (zh) * 2021-12-15 2023-08-22 中铁宝桥集团有限公司 一种曲线钢箱梁大节段整孔制作方法
CN114515917A (zh) * 2022-01-30 2022-05-20 中冶(上海)钢结构科技有限公司 桁架层转角柱的装焊方法
CN114515917B (zh) * 2022-01-30 2023-10-27 中冶(上海)钢结构科技有限公司 桁架层转角柱的装焊方法
CN114592607A (zh) * 2022-05-09 2022-06-07 中国航空规划设计研究总院有限公司 大跨度屋盖体系斜桁架下弦弯折相贯节点
CN114837341A (zh) * 2022-06-09 2022-08-02 江西建工第一建筑有限责任公司 张弦倒三角管桁架钢屋盖支撑系统
CN115030047A (zh) * 2022-06-30 2022-09-09 中冶(上海)钢结构科技有限公司 大跨度法兰连接s型曲线起拱箱型栈桥的建造方法
CN115030047B (zh) * 2022-06-30 2024-06-04 中冶(上海)钢结构科技有限公司 大跨度法兰连接s型曲线起拱箱型栈桥的建造方法
CN115012575A (zh) * 2022-07-02 2022-09-06 丁建 一种铁路站房双曲方管桁架屋盖分块提升施工工艺
CN115199051B (zh) * 2022-07-22 2024-04-16 中建八局新型建造工程有限公司 足球场大跨度罩棚的施工方法
CN115199051A (zh) * 2022-07-22 2022-10-18 中建八局新型建造工程有限公司 足球场大跨度罩棚的施工方法
CN115059308A (zh) * 2022-07-28 2022-09-16 九冶建设有限公司 大跨度双曲线变径倒三角管桁架拼装方法
CN115807481A (zh) * 2022-12-01 2023-03-17 上海创泫建筑服务有限公司 一种钢构枝杈支撑转折大跨铝合金网壳飘篷的安装方法
CN115807481B (zh) * 2022-12-01 2024-04-26 上海创泫建筑服务有限公司 一种钢构枝杈支撑转折大跨铝合金网壳飘篷的安装方法
CN115847437A (zh) * 2022-12-12 2023-03-28 山东大学 一种相贯支管单边y形坡口机器人自动加工方法及系统
CN116791485A (zh) * 2023-07-12 2023-09-22 华南理工大学 一种钢箱梁节段预拼装的精度控制方法
CN116791485B (zh) * 2023-07-12 2024-04-09 华南理工大学 一种钢箱梁节段预拼装的精度控制方法
CN116623964A (zh) * 2023-07-25 2023-08-22 北京城建集团有限责任公司 一种大跨度变曲率屋盖的逆作施工方法
CN116623964B (zh) * 2023-07-25 2023-11-28 北京城建集团有限责任公司 一种大跨度变曲率屋盖的逆作施工方法
CN117145215A (zh) * 2023-08-23 2023-12-01 中铁建设集团南方工程有限公司 一种用于高铁站的巨型开花状异型钢柱分段装配施工方法

Also Published As

Publication number Publication date
CN110512796B (zh) 2021-03-02
CN110512796A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2021004187A1 (zh) 一种双曲弧形大跨度钢桁架及其制作方法
CN111364615A (zh) 一种异形、曲面悬挂式钢结构体系的安装方法
CN110253167B (zh) 一种梁柱转换节点的制作方法
CN111636303B (zh) 一种用于曲线钢箱结构分块组拼制造的交叉基线控制方法
CN114775881B (zh) 一种穹顶结构吊装施工方法及安装连接结构
CN114033051A (zh) 一种基于钢结构球幕影院工程大跨度双曲桁架施工工艺
CN115059308A (zh) 大跨度双曲线变径倒三角管桁架拼装方法
CN110909399A (zh) 一种钢结构虚拟预拼装方法
CN107355009B (zh) 钢结构仿古建筑歇山屋面顶角柱梁相交节点结构
CN104196153B (zh) 一种厚板l形钢板剪力墙柱及其制作方法
CN111139971A (zh) 一种张弦梁结构及其施工方法
CN116628795A (zh) 基于bim建模技术的多曲面组合高大模板安装方法
CN212249076U (zh) 大规模空间弯曲形钢管桁架高空作业操作平台
CN114790695A (zh) 一种异形独塔配铰接钢桥墩体系斜拉景观钢桥的制造方法
CN114346596A (zh) 下凹型双曲线立体管桁架及双箱柱的制作方法
CN114059454A (zh) 一种大跨度钢桁架施工偏差调整方法
CN113737942A (zh) 一种全栓接的装配式钢结构及其施工方法
CN207998931U (zh) 可模块化空间扩展的快装活动房结构
CN111691682A (zh) 双层斜交斜放鼓节点网壳单元拼装方法
CN220336117U (zh) 一种中式屋面中悬挑钢梁与混凝土折梁、柱的构造节点
CN216195878U (zh) 一种双曲率屋面网壳结构
CN115977313B (zh) 大跨度钢桁架结构及吊装方法
CN204081140U (zh) 一种厚板l形钢板剪力墙柱
CN117418636B (zh) 一种钢结构顶部混凝土区弧形幕墙结构及其施工方法
CN220704755U (zh) 一种弧形箱型构件及钢结构场馆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837594

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837594

Country of ref document: EP

Kind code of ref document: A1