WO2021004102A1 - 电机、动力总成和汽车 - Google Patents

电机、动力总成和汽车 Download PDF

Info

Publication number
WO2021004102A1
WO2021004102A1 PCT/CN2020/082615 CN2020082615W WO2021004102A1 WO 2021004102 A1 WO2021004102 A1 WO 2021004102A1 CN 2020082615 W CN2020082615 W CN 2020082615W WO 2021004102 A1 WO2021004102 A1 WO 2021004102A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil winding
housing
cooling
motor
bearing
Prior art date
Application number
PCT/CN2020/082615
Other languages
English (en)
French (fr)
Inventor
王健刚
李泉明
文俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20837233.4A priority Critical patent/EP3934070B1/en
Priority to JP2021566075A priority patent/JP7309916B2/ja
Priority to KR1020217037879A priority patent/KR20210144937A/ko
Publication of WO2021004102A1 publication Critical patent/WO2021004102A1/zh
Priority to US17/501,247 priority patent/US11575291B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/26Structural association of machines with devices for cleaning or drying cooling medium, e.g. with filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the embodiments of the present application relate to the field of motors, and in particular to a motor, a powertrain and an automobile with an oil-cooled coil end.
  • the motor is an electromagnetic device that realizes the conversion or transmission of electric energy according to the law of electromagnetic induction. Its main function is to generate driving torque. It is used as a power source for electrical appliances or various machines.
  • the motor mainly includes a housing and a front cover at both ends of the housing. Thick end cover, the inner wall of the shell, the front end cover and the back end cover encloses a cavity.
  • the cavity is provided with a stator, a rotor, a coil and a rotating shaft with one end extending from the front end cover and the other end connected to the back end cover for rotation.
  • the coil will generate a lot of heat. For this reason, cold water or oil cooling is often used to dissipate the motor.
  • Water-cooled motors have low power density, large link thermal resistance, and interface thermal resistance. Because of the high proportion, the need to fill the coil end with glue, and the high-speed oil seal without mass production, oil cooling is more and more widely used.
  • a metal pipe is provided in the housing of the motor, and the two ends of the metal pipe extend from the front end cover and the rear end cover to the end of the rotor.
  • the cooling oil in the metal pipe is sprayed from the opening to the stator, the coil end and the opening at both ends of the metal pipe to the end of the rotor under pressure, and the cooling oil covers the yoke of the stator from top to bottom by gravity. And the coil end, and finally flow from the oil collecting passage at the bottom to the reducer.
  • the centrifugal effect of the rotor during the rotation will splash the cooling oil to the end of the coil to enhance the cooling effect of the coil.
  • the embodiments of the application provide a motor, a powertrain, and an automobile, which reduce or avoid the kinetic energy loss of the oil-cooled motor at high speed, thereby solving the problem that the rotor in the existing motor sprays cooling oil to the end of the coil under the centrifugal action of the rotor Sometimes it causes the problem of rotor kinetic energy consumption.
  • An embodiment of the present application provides a motor, including a housing in which a rotating shaft, a rotor, and a stator are arranged in sequence, and a coil winding is wound on the stator.
  • the two ends of the rotating shaft are connected to each other through a bearing.
  • the two opposite side end faces of the shell are rotatably connected, where:
  • the housing has a cooling channel for cooling liquid to circulate and two ends extending to the end of the coil winding, and the cooling channel is connected to a first opening and a second opening respectively opened at the top and bottom ends of the housing
  • the cooling passage has a nozzle at a position close to the end of the coil winding, and the nozzle is used to spray the cooling liquid in the cooling passage to the end of the coil winding;
  • the barrier is located at least on the inner surface or the outer surface of the coil winding end, and the barrier is blocked between the spout and the rotor.
  • the motor provided by the embodiment of the present application has a cooling channel in the housing for cooling liquid to circulate and two ends extending to the end of the coil winding, and the cooling channel is opened with the top and bottom ends of the housing respectively
  • the first opening and the second opening are in communication with each other, and the cooling passage has a nozzle at a position close to the end of the coil winding, and the nozzle is used to spray the coolant in the cooling passage toward the end of the coil winding Part, and further comprising: at least one barrier, the barrier is located at least on the inner or outer surface of the coil winding end, the barrier is blocked between the nozzle and the rotor, so that the cooling channel When the cooling liquid is sprayed through the nozzle to dissipate the coil windings, the cooling liquid cannot contact the rotor under the blocking effect of the barrier.
  • the cooling liquid is guided to the area away from the rotor and the lower end area of the coil winding end by the barrier.
  • the motor provided in this embodiment prevents the coolant from leaking or overflowing from the ends of the coil windings Refers to the rotor area, which avoids the problem of kinetic energy consumption of the rotor due to contact with the coolant, and solves the problem of rotor kinetic energy consumption when the rotor sprays cooling oil to the end of the coil under the centrifugal effect of the existing motor.
  • a position on the barrier member close to the top end of the housing has a drainage portion, and the drainage portion is used to drain part of the cooling liquid on the barrier member to On the bearing, the cooling liquid flows to the end of the coil winding close to the bottom end of the housing after passing through the bearing.
  • part of the cooling liquid that penetrates the barrier is cooled along the two ends of the barrier toward the lower semicircular end of the coil winding, and part of the cooling liquid flows to the bearing along the drainage part to dissipate the bearing, and the cooling liquid passing through the bearing is
  • the effect of gravity flows to the lower end of the coil winding, thereby achieving the purpose of cooling the lower end of the coil winding.
  • the cooling liquid first passes through the upper end of the coil winding and then flows to the lower end of the coil winding.
  • the embodiment of the present application achieves the purpose of equalizing heat dissipation to the upper and lower ends of the coil winding.
  • the barrier is a semi-circular arc structure arranged at least around the inner surface or the outer surface of the upper semicircular end of the coil winding.
  • the semi-circular arc structure can block the cooling liquid on the upper semicircular end of the coil winding and prevent the coolant from leaking or overflowing to the rotor area.
  • the semicircular arc structure guides the cooling liquid to the lower semicircular end of the coil winding Moreover, in the embodiment of the present application, when the blocking member adopts a semi-circular arc structure, the material of the blocking member is saved and the weight of the blocking member is reduced on the premise that the coolant and the rotor cannot be contacted.
  • the barrier is a semi-circular-arc partition arranged around the inner surface of the upper semicircular end of the coil winding, and one end of the semi-circular-arc partition Connected to the inner wall of the casing, and a space for the upper semicircular end of the coil winding is formed between the arc surface of the semicircular arc partition and the inner wall of the casing, so that the The semicircular arc-shaped partition is located on the inner surface of the upper semicircular end of the coil winding.
  • the semi-circular arc partition When installing in this way, the semi-circular arc partition can be directly installed on the inner wall of the shell first. After installation, one end of the semi-circular arc partition extends into the inner surface of the upper semicircular end of the coil winding, so as to align the upper semicircular end of the coil winding. The cooling liquid that seeps or overflows on the part is blocked and drained, so that the cooling liquid cannot contact the rotor, thereby achieving the purpose of avoiding the consumption of kinetic energy of the rotor.
  • one end of the semi-circular arc-shaped partition connected to the housing has a connecting part, and the semi-circular arc-shaped partition is connected to the housing through the connecting part.
  • the inner walls of the body are connected.
  • the installation of the semi-circular arc type partition board and the inner wall of the housing is realized through the connecting part, and the purpose of convenient installation of the semi-circular arc type partition board is realized.
  • the drainage portion is a through hole opened at a position of the semicircular arc-shaped partition close to the connecting portion, and the projection of the through hole in the vertical direction The area is located on the bearing so that the coolant flows to the bearing through the through hole.
  • the barrier is a semi-circular arc-shaped plate arranged around the outer surface of the upper semicircular end of the coil winding, wherein the semi-circular arc-shaped plate and the The inner wall of the casing is connected, and a gap communicating with the nozzle of the cooling channel is formed between the semicircular arc shaped plate and the inner wall of the casing, so that the cooling liquid follows the semicircular arc The template flows toward the bearing and the lower semicircular end of the coil winding.
  • the coolant sprayed from the nozzle at the top of the cooling channel enters the gap, and the coolant flows along the semi-circular arc plate toward the lower semicircular end of the bearing and the coil winding, that is, the semicircular arc plate plays a role of diversion.
  • the contact between the coolant and the rotor is avoided, thereby avoiding the kinetic energy consumption of the rotor.
  • the semi-circular arc plate is located on the outer surface of the upper semi-circular end of the coil winding, the two ends of the semi-circular arc plate direct part of the coolant directly Guide the lower semicircular end of the coil winding to realize the cooling of the lower semicircular end of the coil winding.
  • the drainage portion is an outer edge formed by the semi-circular arc-shaped plate extending outward toward one end of the side end surface of the housing and inclined downward, and the The outer edge at least partially overlaps the bearing vertically, so that part of the cooling liquid in the gap flows to the bearing through the outer edge.
  • part of the cooling liquid is directly guided to the bearing along the outer edge of the semi-circular arc plate, so that the cooling liquid flowing to the bearing does not contact the end of the coil winding, that is, in this embodiment, a pipeline for cooling the coil winding and the bearing is formed
  • the cooling liquid flowing to the bearing cools the bearing and then flows to the lower end of the coil winding, thereby achieving the purpose of cooling the lower end of the coil winding, and avoiding the existence of the coil winding when the cooling liquid sequentially cools the end of the coil winding from top to bottom
  • the semicircular arc shaped plate is provided with a plurality of openings, so that part of the cooling liquid in the gap can penetrate into the end of the coil winding.
  • part of the cooling liquid penetrates into the upper semicircular end of the coil winding through the opening for cooling, so as to realize the heat dissipation of the upper semicircular end of the coil winding.
  • the barrier is a semicircular arc-shaped tarp wrapped on the inner surface of the upper semicircular end of the coil winding.
  • the barrier is made of oil-wrapped cloth
  • the oil-wrapped cloth is a flexible material, it can be directly wrapped on the end of the coil winding during assembly, and the installation position of the oil-wrapped cloth can be adjusted at any time, which greatly reduces the barrier and the coil
  • the difficulty of matching the winding ends makes the installation more convenient.
  • the end of the tarp close to the outer surface of the coil winding end has an extension extending to the outer surface of the upper semicircular end of the coil winding, and the drainage The part is an opening opened on the extension part, so that a part of the cooling liquid sprayed to the coil winding flows to the bearing.
  • an oil collecting groove is opened on the housing close to the top end of the bearing or on the top end of the bearing, and the oil collecting groove is used to flow to the bearing The cooling liquid is collected so that the cooling liquid flows into the bearing.
  • the outflowing coolant is concentrated to the bearing through the oil collecting groove to effectively dissipate the heat of the bearing. Moreover, when the oil collecting groove is provided, the cooling liquid flowing to the bearing is buffered, and the pressure of the cooling liquid flowing to the bearing is prevented from being excessively on the bearing. Splashing around.
  • a diversion groove is provided in the housing close to the bottom end of the bearing, and the diversion groove is used to guide the cooling liquid on the bearing into the The lower semicircular end of the coil winding.
  • the cooling liquid on the bearing is introduced into the lower semicircular end of the coil winding through the flow guide groove, so that the cooling liquid can cool the lower semicircular end of the coil winding.
  • due to the partial cooling liquid Flows directly from the bearing, and the heat of the bearing is much smaller than the heat of the coil winding, so the temperature rise of the coolant after flowing through the bearing will not be very high.
  • the coolant flows to the lower semicircular end of the coil winding under the action of the diversion slot. ,
  • the lower semicircular end 32 of the coil winding is dissipated, thereby achieving balanced heat dissipation of the upper and lower parts of the coil winding end.
  • it further includes: an oil guide, the oil guide is provided on the inner surface of the lower semicircular end of the coil winding, and one end of the oil guide is close to The other end of the oil guide groove is close to the rotor, and the oil guide member is provided with a circulation hole through which the cooling liquid can flow, so that the cooling liquid can penetrate into the bottom side of the lower semicircular end of the coil winding.
  • the cooling liquid flows to the lower semicircular end of the coil winding near the inner surface of the rotor under the guidance of the oil guide, and the cooling liquid penetrates to the lower semicircular end of the coil winding through the circulation hole, and balances the lower semicircular end of the coil winding. Heat dissipation.
  • a protrusion is provided on an edge of the oil guide member near one end of the rotor, and the protrusion is used to block the cooling liquid on the oil guide member from flowing into the Rotor.
  • the protrusion on the oil guide prevents the coolant on the oil guide from contacting the rotor, thereby further avoiding the consumption of rotor kinetic energy.
  • the outer wall of the stator and the inner surface of the housing enclose the cooling channel, and the cooling channel is formed between the two ends of the stator and the inner surface of the housing. spout.
  • a groove is provided on the inner wall of the housing close to the stator, and the groove and the outer wall of the stator enclose the cooling channel, and the groove The upper slot near the end of the coil winding forms the spout.
  • the cooling channel is provided in the inner wall of the housing close to the stator, and the spray port communicating with the cooling channel is opened on the inner wall of the housing.
  • the housing includes an intermediate housing and a front end cover and a rear end cover located at two ends of the intermediate housing, and the intermediate housing, the front end cover and the rear
  • the inner wall of the end cover encloses a cavity for accommodating the stator, the coil winding, the rotor, and the rotating shaft.
  • the two ends of the rotating shaft respectively pass through the bearing and the front end cover and the rear end
  • the cover is connected by rotation;
  • the cooling channel is provided in the intermediate housing or between the intermediate housing and the outer wall of the stator.
  • it further includes: an oil pump, the inlet of the oil pump is in communication with one of the first opening and the second opening, and the outlet of the oil pump is connected to the The first opening communicates with the other one of the second openings.
  • it further includes: a heat exchanger configured to cool the cooling liquid discharged from the cooling channel.
  • the heat exchanger can cool the discharged coolant, and after the coolant is cooled, it can enter the cooling channel again to cool the motor, ensuring that the temperature of the coolant is not too high.
  • it further includes: a filter for filtering the cooling liquid discharged from the outlet of the oil pump.
  • An embodiment of the present application also provides a power assembly, including any one of the above-mentioned motors and a reducer connected to a shaft of the motor, wherein a heat dissipation channel is provided in the reducer, and the heat dissipation channel is connected to The cooling channel in the motor forms a cooling circuit.
  • the kinetic energy consumption when the rotor rotates at a high speed is avoided, and the purpose of integrated cooling of the motor and the reducer is realized at the same time, so that the heat dissipation of the power assembly is better.
  • the oil pump, the heat exchanger and the filter in the motor are located in the reducer.
  • An embodiment of the present application also provides an automobile, which at least includes a wheel, a transmission component, and any one of the above-mentioned motors, and the rotating shaft of the motor is connected to the wheel through the transmission component.
  • the automobile provided by the embodiment of the present application, by including the above-mentioned motor, blocks the contact between the motor rotor and the coolant, thereby avoiding the kinetic energy consumption of the motor rotor during the rotation process, making the motor rotor rotate faster, and the kinetic energy output by the rotating shaft is greater , Which makes the car more powerful.
  • FIG. 1 is a schematic diagram of a side view structure and a cooling liquid flow path inside a motor provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of a side view structure inside the motor and another flow path of the cooling liquid provided in the first embodiment of the present application;
  • FIG. 3 is a schematic cross-sectional structure diagram of a motor provided by Embodiment 1 of the present application.
  • Fig. 4 is a schematic structural diagram of a barrier in a motor provided in the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure of the barrier and the stator in the motor provided in the first embodiment of the present application;
  • Fig. 6 is a schematic front view of the structure of the barrier in the motor provided in the first embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of assembling the barrier member on the inner wall of the housing in the motor provided in the first embodiment of the present application;
  • FIG. 8 is a schematic diagram of a three-dimensional structure of assembling the barrier member on the inner wall of the housing in the motor provided in the first embodiment of the present application;
  • FIG. 9 is a three-dimensional schematic diagram of another direction of assembling the barrier member on the inner wall of the housing in the motor provided in the first embodiment of the present application;
  • FIG. 10 is a schematic structural view of another direction of assembling the barrier member on the inner wall of the housing in the motor provided in the first embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of a barrier in a motor provided in the second embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of the barrier and the stator in the motor provided in the second embodiment of the present application;
  • 13 is a schematic diagram of the structure between the barrier and the inner wall of the housing in the motor provided in the second embodiment of the present application;
  • FIG. 14 is a schematic diagram of the structure of the barrier in the motor provided in the third embodiment of the present application.
  • 15 is a schematic diagram of the structure of the barrier and the stator in the motor provided in the third embodiment of the present application.
  • 16 is a schematic diagram of the structure between the internal side structure of the motor and the oil pump, heat exchanger, and filter provided by the embodiment of the present application;
  • FIG. 17 is a schematic structural diagram of a power assembly provided in Embodiment 4 of the present application.
  • 10-shell 11-first opening; 12-second opening; 13-diversion groove; 20-cooling channel; 21-spout; 30-end; 31-upper semicircular end; 32-lower semicircular end 301-inner surface; 302-outer surface; 303-outer surface; 40-barrier; 40a-semi-circular arc partition; 41a-through hole; 42a-connection part; 40b-semi-circular arc plate; 41b- Opening; 42b-outer edge; 40c- tarp; 41c- opening; 42c- extension; 50- shaft; 51- bearing; 60- rotor; 70- stator; 80- oil pump; 90- filter; 100-change Heater; 110-oil guide; 112-circulation hole; 111-protrusion; 200-reducer; 201-radiation channel.
  • FIG. 1 is a schematic diagram of a side view structure and a coolant flow path inside a motor provided in Embodiment 1 of the present application
  • FIG. 2 is a schematic diagram of a side view structure and another flow path of coolant inside the motor provided by Embodiment 1 of the present application
  • 3 is a schematic cross-sectional structure diagram of the motor provided in Embodiment 1 of the present application
  • FIG. 4 is a schematic diagram of the structure of the barrier in the motor provided in Embodiment 1 of the present application
  • FIG. 5 is a schematic diagram of the barrier and the barrier in the motor provided in Embodiment 1 of the present application
  • Fig. 6 is a schematic front view of the structure of the barrier in the motor provided in the first embodiment of the present application
  • FIG. 7 is a schematic view of the structure of the barrier in the motor provided in the first embodiment of the present application assembling on the inner wall of the housing.
  • 8 is a three-dimensional structural diagram of the barrier member in the motor provided in the first embodiment of the present application assembling on the inner wall of the housing
  • FIG. 9 is a three-dimensional view in another direction of the barrier member in the motor provided in the first embodiment of the present application assembling on the inner wall of the housing
  • Fig. 10 is a schematic structural diagram of another direction of assembling the barrier member on the inner wall of the housing in the motor provided in the first embodiment of the application
  • Fig. 16 is the side view structure and the oil pump and the oil pump inside the motor provided in the embodiment of the present application. Schematic diagram of the structure between the heater and the filter.
  • the existing motor has the problem of consuming the kinetic energy of the rotor.
  • the reason for this problem lies in the fact that in the existing motor structure, when the motor is cooled by oil cooling, the main method is to set a metal pipe in the shell.
  • the cooling fluid sprays cooling oil to the coil windings, stator and rotor ends through the openings at both ends of the metal pipe for heat dissipation.
  • the cooling oil at both ends of the rotor is splashed to the ends of the coil windings through centrifugal action.
  • this embodiment provides a motor, which can be applied to electric vehicles/electric vehicles (EV), pure electric vehicles (Pure Electric Vehicle/Battery Electric Vehicle, PEV/ BEV), Hybrid Electric Vehicle (HEV), Range Extended Electric Vehicle (REEV), Plug-in Hybrid Electric Vehicle (PHEV), New Energy vehicles (New Energy Vehicle), Battery Management (Battery Management), Motor & Driver (Motor & Driver), Power Conversion (Power Converter), Reducer (Reducer), etc.
  • EV electric vehicles/electric vehicles
  • pure electric vehicles Purure Electric Vehicle/Battery Electric Vehicle
  • PEV/ BEV Hybrid Electric Vehicle
  • HEV Hybrid Electric Vehicle
  • REEV Range Extended Electric Vehicle
  • PHEV Plug-in Hybrid Electric Vehicle
  • New Energy vehicles New Energy Vehicle
  • Battery Management Battery Management
  • Motor & Driver Motor & Driver
  • Power Conversion Power Converter
  • Reducer Reducer
  • the motor includes: a housing 10 in which a rotating shaft 50, a rotor 60, and a stator 70 are sequentially sleeved, that is, the rotating shaft 50 is sheathed with a rotor 60, the rotor 60 Cover setting member 70.
  • the stator 70 is fixed in the housing 10, and the rotor 60 drives the shaft 50 to rotate.
  • the stator 70 is wound with a coil winding, wherein the coil winding is on the stator 70
  • a number of coil slots are evenly distributed along the circumferential direction on the inner wall of the stator core of the stator 70, and the coil windings are wound in the stator core through the coil slots.
  • the coil windings are When the stator core is wound, both ends of the coil winding extend outward from both ends of the stator core, that is, the length of the coil winding is often greater than the length of the stator 70, so in this embodiment, the end 30 of the coil winding is The two ends of the coil winding extending from the two ends of the stator 70, where, in this embodiment, the two ends of the rotating shaft 50 are respectively connected by a bearing 51 on two opposite side end faces of the housing 10, specifically, one end of the rotating shaft 50 It protrudes outward from one of the side end surfaces of the housing 10 and is connected to the load. In this embodiment, one end of the rotating shaft 50 protrudes from the side end surface of the housing 10 and is connected to the input shaft gear of the reducer.
  • the housing 10 in order to cool the motor, specifically, the housing 10 has a cooling channel 20 that allows cooling liquid to circulate and extends to the end 30 of the coil winding at both ends, that is, the cooling channel 20 has a flowing The two ends of the cooling channel 20 extend to the two ends 30 of the coil winding.
  • the cooling channel 20 and the top end of the housing 10 and The first opening 11 and the second opening 12 respectively opened at the bottom are communicated, that is, the top and bottom ends of the housing 10 are respectively opened with a first opening 11 and a second opening 12, and the first opening 11 and the second opening 12 are connected to the cooling
  • the channels 20 are connected, so that the cooling liquid can enter the cooling channel 20 from the first opening 11 to absorb the heat in the housing 10, and finally be discharged from the second opening 12, or the cooling liquid can enter the cooling channel 20 from the second opening 12 , And finally discharged from the first opening 11.
  • the cooling channel 20 has a nozzle 21 near the end 30 of the coil winding.
  • the nozzle 21 is used for cooling
  • the cooling liquid in the channel 20 is sprayed to the end 30 of the coil winding, that is, the cooling liquid in the cooling channel 20 flows to the end 30 of the coil winding through the nozzle 21 to cool and dissipate the coil winding.
  • the cooling liquid when the cooling liquid is sprayed to the top of the end 30 of the coil winding, the cooling liquid flows downward under the action of gravity and often comes into contact with both ends of the rotor 60, which often causes the kinetic energy of the rotor 60 to be consumed.
  • the rotor 60 further includes: at least one barrier 40, which is located at least on the inner surface 301 or outer surface 303 of the coil winding end 30, and blocks the nozzle 21 and the rotor 60
  • the barrier 40 can be provided on the inner surface 301 of the end 30 of the coil winding, so that when the cooling liquid located above is sprayed from the nozzle 21 to the end 30 of the coil winding, the cooling liquid is under the action of gravity.
  • the cooling liquid is not easy to contact the rotor 60 under the blocking effect of the blocking member 40, thereby avoiding the problem of the kinetic energy consumption of the rotor 60 caused by the contact between the cooling liquid and the rotation .
  • the barrier 40 can also be provided on the outer surface 303 of the end 30 of the coil winding, so that when the cooling liquid is sprayed from the nozzle 21 to the end 30 of the coil winding, the barrier 40 is blocked by the The coolant is sprayed toward the barrier 40 without contacting the end 30 of the coil winding, so that the coolant can flow along the end 30 of the barrier 40 to the area away from the rotor 60 and along the barrier 40 to the end 30 of the coil winding
  • the lower side reduces or avoids the contact of the cooling liquid with the rotor 60, thereby reducing or avoiding the problem of kinetic energy consumption caused by the contact of the rotor 60 with the cooling liquid.
  • the barrier 40 can also be provided on the inner surface 301 and the outer surface 302 of the end 30 of the coil winding, so that the barrier 40 includes a portion opposite to the inner surface 301 of the end 30 of the coil winding and The opposite part of the outer side surface 302 of the end 30 of the winding, and the two parts of the barrier 40 enable the cooling liquid to be guided to the lower half of the winding end 30 of the coil, thereby further reducing the chance of contact between the cooling liquid and the rotor 60, so
  • the barrier 40 plays a role of blocking the contact between the cooling liquid and the rotor 60, and in this embodiment, the cooling liquid flows along the barrier 40 from the upper part of the coil winding end 30 to the coil winding end 30 The lower part may guide the cooling liquid to an area away from the rotor 60, that is, in this embodiment, the barrier 40 also plays a role of drainage.
  • the barrier 40 when the number of the barrier 40 is one, the barrier 40 can be disposed on the inner surface 301 or the outer surface 303 of one end 30 of the coil winding, so that one end of the rotor 60 Compared with the prior art, it can still reduce the kinetic energy consumption of the rotor 60 without contact with the cooling liquid.
  • the number of barriers 40 is two as shown in FIG. It can be located on the inner surface 301 or the outer surface 303 of the two ends 30 of the coil winding respectively, so that both ends of the rotor 60 are not in contact with the cooling liquid, thereby avoiding the problem of kinetic energy consumption of the rotor 60.
  • the barrier 40 when the barrier 40 is disposed on the inner surface 301 or the outer surface 303 of the end 30 of the coil winding, the barrier 40 may be along the inner surface 301 or outer surface of the end 30 of the coil winding.
  • 303 is provided with a circle, that is, the entire inner surface 301 or the entire outer surface 303 of the end 30 of the coil winding is provided with a barrier 40, or, even if there is cooling liquid on the lower part of the end 30 of the coil winding, under the action of gravity
  • the cooling liquid is not easy to contact the rotor 60, so it is only necessary to block the cooling liquid on the upper part of the coil winding end 30 from contacting the rotor 60.
  • the barrier 40 can be along the inner surface of the end 30 of the coil winding. 301 or the upper half of the outer surface 303, that is, the barrier 40 partially covers the inner surface 301 or the outer surface 303 of the end 30 of the coil winding. This can reduce the weight of the barrier 40 and thus the weight of the motor.
  • the barrier 40 covers at least the inner surface 301 or the outer surface 303 of the upper end portion 30 of the coil winding.
  • the first opening 11 may be the inlet of the cooling channel 20, and the second opening 12 may be the outlet of the cooling channel 20, that is, the cooling liquid enters and exits up and down, as shown in FIG.
  • the coolant can enter the cooling channel 20 at the top from the first opening 11 on the top of the housing 10, and part of the coolant flows through the nozzle 21 to the end 30 of the coil winding, as shown in Figure 2
  • the cooling liquid sprayed from the nozzle 21 flows to the lower side of the coil winding end 30 and the area away from the rotor 60 under the blocking action of the barrier 40, and finally Converges to the bottom end of the housing 10, at this time, it can flow into the cooling channel 20 at the bottom end through the nozzle 21 at the bottom end of the cooling channel 20, and finally discharge the cooling liquid in the cooling channel 20 outward through the second opening 12 (Or directly discharged from the second opening 12).
  • the second opening 12 may be the inlet of the cooling channel 20, and the first opening 11 is the outlet of the cooling channel 20, that is, the cooling liquid enters and exits from the bottom.
  • the liquid can be discharged from the first opening 11, and the cooling liquid often has a certain pressure (for example, it is delivered to the second opening 12 by an oil pump), so that the cooling liquid enters the cooling channel 20 from the second opening 12 under pressure, and is partially cooled.
  • the liquid is sprayed from the nozzle 21 at the bottom end of the cooling channel 20 to the lower side of the end 30 of the coil winding (as shown by the horizontal dashed arrow in Figure 1), and part of the cooling liquid flows from the bottom end of the cooling channel 20 to the bottom of the cooling channel 20
  • the top (shown by the vertical dashed arrow in Figure 1) absorbs the heat in the housing 10 during the flow process.
  • part of the coolant is discharged from the first opening 11 (As shown by the upper horizontal dashed arrow in Fig. 1), part of the cooling liquid is sprayed from the nozzle 21 at the top of the cooling channel 20 to the end 30 of the coil winding (as shown by the upper solid arrow in Fig.
  • the cooling liquid flows to the lower side of the coil winding end 30 and the area away from the rotor 60 under the blocking action of the barrier 40, and finally the cooling liquid after cooling the coil winding end 30 converges to the bottom of the housing 10. At this time, it can enter the cooling channel 20 from the nozzle 21 at the bottom end of the cooling channel 20 and flow out from the second opening 12 or directly to the drain port (not shown) at the bottom end of the housing 10 Outside discharge.
  • the motor provided in this embodiment has a cooling channel 20 in the housing 10 that allows the cooling liquid to circulate and extends to the coil winding end 30 at both ends.
  • the cooling channel 20 is opened with the top and bottom ends of the housing 10 respectively.
  • the first opening 11 and the second opening 12 are in communication, and the cooling channel 20 has a nozzle 21 at a position close to the coil winding end 30, and the nozzle 21 is used to spray the coolant in the cooling channel 20 to the coil winding end 30, and It also includes: at least one barrier 40, which is located at least on the inner surface 301 or outer surface 303 of the coil winding end 30.
  • the barrier 40 is used to block the coolant sprayed from the nozzle 21 from contacting the rotor 60, thus cooling the channel
  • the coolant in 20 is ejected through the nozzle 21 to dissipate the coil windings
  • the coolant cannot contact the rotor 60 under the blocking action of the barrier 40
  • the coolant is guided by the barrier 40 to the area away from the rotor 60 and the coil windings.
  • the lower end area of the end portion 30 achieves the purpose of cooling the coil windings while avoiding the contact of the coolant with the rotor 60, thereby reducing or avoiding the kinetic energy consumption of the rotor 60.
  • the motor provided in this embodiment prevents cooling Liquid leaks or overflows from the coil winding end 30 to the area of the rotor 60, avoiding the problem of kinetic energy consumption of the rotor 60 due to contact with the cooling liquid, and solving the problem that the rotor 60 in the existing motor sprays the cooling oil to the coil under the centrifugal action
  • the end 30 sometimes causes the problem of kinetic energy consumption of the rotor 60.
  • the barrier 40 has a drainage portion (see the following through hole 41a, outer edge 42b, and opening 41c for details) near the top end of the housing 10, and the drainage portion is used to connect the portion on the barrier 40
  • the cooling liquid is drained to the bearing 51 so that the cooling liquid flows to the end of the coil winding near the bottom end of the housing 10 (ie the lower semicircular end 32 of the coil winding) after passing through the bearing 51, so that part of the cooling liquid penetrates into the barrier 40 Along the two ends of the barrier 40 toward the lower semicircular end 32 of the coil winding, part of the coolant flows to the bearing 51 along the drainage part to dissipate the bearing 51, and the coolant passing through the bearing 51 flows to the coil winding under the action of gravity.
  • the cooling liquid at the lower end of the coil winding is cooled by the upper end of the coil winding and then flows along the coil winding to the lower end of the coil winding to cool the lower end of the coil winding.
  • the cooling liquid passing through the bearing 51 can achieve good heat dissipation of the lower end of the coil winding. Therefore, the embodiment of the application realizes the The purpose of balanced heat dissipation at the upper and lower ends.
  • the end 30 of the coil winding is often a circular ring structure, that is, the end 30 is surrounded by an upper semicircular end 31 and a lower semicircular end 32.
  • the cooling liquid is easy to leak or overflow to the rotor 60 area under the action of gravity, and when the cooling liquid is at the lower semicircular end 32, the cooling liquid leaks toward the bottom end of the housing 10 under the action of gravity, so it is often difficult to contact the rotor 60 area. Therefore, in order to prevent the coolant from leaking on the upper semicircular end 31 of the coil winding, refer to the rotor 60 area. Specifically, as shown in FIG.
  • the barrier 40 is at least around the inner surface of the upper semicircular end 31 of the coil winding 301 or the semi-circular arc structure provided on the outer surface 303, that is, the barrier 40 is a semi-circular arc structure, and the semi-circular arc structure is located on the inner surface 301 or outer surface 303 of the upper semicircular end 31 of the coil winding.
  • the circular arc structure can block the coolant on the upper semicircular end 31 of the coil winding to prevent the coolant from leaking or overflowing to the rotor 60 area.
  • the semicircular arc structure guides the coolant to the lower semicircular end 32 of the coil winding. Place.
  • the barrier 40 is a semicircular arc partition 40a arranged around the inner surface 301 of the upper semicircular end 31 of the coil winding, and one end of the semicircular arc partition 40a is connected to The inner wall of the casing 10 is connected, and a space for the upper semicircular end 31 of the coil winding is formed between the arc surface of the semicircular arc partition 40a and the inner wall of the casing 10, so that the semicircular arc partition 40a Located on the inner surface 301 of the upper semicircular end 31 of the coil winding, that is, in this embodiment, one end of the barrier 40 is fixedly connected to the inner wall of the housing 10, and the other end of the barrier 40 can extend to the upper semicircular end of the coil winding At the inner surface 301 of 31, specifically, in this embodiment, one end of the semicircular arc partition 40a is connected to the side end surface in the housing 10 (that is, the side surface of the housing 10 and the rotating shaft 50 rot
  • one end of the semicircular arc partition 40a connected to the housing 10 has a connecting portion 42a, and the semicircular arc partition 40a is connected to the inner wall of the housing 10 through the connecting portion 42a.
  • the connecting portion 42a is an outer edge formed by bending one end of the semi-circular arc partition 40a, wherein the connecting portion 42a and the arc surface of the semi-circular arc partition 40a can be arranged vertically, and Reinforcing ribs are provided between the connecting portion 42a and the arc surface of the semi-circular-arc partition 40a to increase the strength of the connecting portion 42a.
  • the connecting portion 42a and the inner wall of the housing 10 can be tightly tightened.
  • the fasteners such as screws or bolts
  • the connecting portion 42a is provided with threaded holes through which the screws can pass.
  • the screws or bolts pass through the threaded holes to fix the barrier 40 on the inner wall of the housing 10.
  • the drainage portion is specifically a through hole 41a opened on the semicircular arc partition 40a near the connecting portion 42a, and the projection area of the through hole 41a in the vertical direction is located on the bearing 51, so that the coil
  • the cooling liquid on the upper semicircular end 31 of the winding flows to the semicircular arc partition 40a, part of the cooling liquid flows to the bearing 51 through the through hole 41a, and the remaining cooling liquid flows along the semicircular arc partition 40a to the lower semicircle of the coil winding
  • the cooling liquid is in contact with the bearing 51, which enhances the heat dissipation capacity of the bearing 51 at high speeds, and at the same time achieves the purpose of equalizing heat dissipation to the upper and lower ends of the coil winding.
  • an oil collecting groove (not shown) is opened on the housing 10 near the top of the bearing 51 or on the top of the bearing 51 Out), the oil collecting groove is used to collect the cooling liquid flowing to the bearing 51, so that the cooling liquid flows into the bearing 51, that is, in this embodiment, the cooling liquid flowing out from the through hole 41a is concentrated and guided to the bearing 51 through the oil collecting groove.
  • the bearing 51 is effectively dissipated.
  • the oil collecting groove may be opened at the top end of the bearing 51, or the oil collecting groove may be opened on the side end surface of the housing 10 above the bearing 51, so that when the coolant has a certain pressure, The coolant discharged from the through hole 41a can be collected in the oil collecting tank.
  • the diversion groove 13 is used to guide the cooling liquid on the bearing 51 into the lower semicircular end 32 of the coil winding, so that the cooling liquid can affect the coil winding
  • the lower semicircular end 32 is cooled.
  • the cooling liquid flows After passing the bearing 51, the temperature rise will not be very high, and the flow will flow to the lower semicircular end 32 of the coil winding under the action of the guide slot 13 to dissipate the lower semicircular end 32 of the coil winding, thereby realizing the coil winding end Balanced heat dissipation of the upper and lower parts.
  • the cooling liquid tends to concentrate on the end 30 of the coil winding near the flow guide groove 13.
  • it also includes: an oil guide 110, which is arranged at the lower semicircular end 32 of the coil winding On the inner surface 301, one end of the oil guide 110 is close to the oil guide groove and is fixedly connected to the inner wall of the housing, and the other end extends to the rotor 60.
  • the oil guide 110 is provided with a circulation hole 112 for cooling fluid to flow, so that the coolant is in the guide
  • the oil 110 is guided to flow down to the lower semicircular end 32 of the coil winding near the inner surface 301 of the rotor 60, and the coolant penetrates to the lower semicircular end 32 of the coil winding through the circulation hole 112, and the lower semicircular end 32 of the coil winding Achieve balanced heat dissipation.
  • the oil guide 110 is specifically an arc-shaped plate that matches the inner surface 301 of the lower semicircular end 32 of the coil winding, and the oil guide 110 can specifically be tightened The part is fixed on the inner surface 301 of the lower semicircular end 32 of the coil winding.
  • the oil guide 110 when the oil guide 110 is arranged on the inner surface 301 of the lower semicircular end 32 of the coil winding, the oil guide 110 will lower the coil winding.
  • the inner surface 301 of the semicircular end 32 is partially covered, that is, there is a gap between the two ends of the oil guide 110 and the two ends of the semicircular arc partition 40a.
  • the oil guide 110 is provided with a protrusion 111 on the edge of one end close to the rotor 60, and the protrusion 111 is used to block the coolant on the oil guide 110 from flowing into the rotor 60, that is, this embodiment
  • the protrusion 111 on the oil guide 110 prevents the coolant on the oil guide 110 from contacting the rotor 60, thereby further avoiding the consumption of kinetic energy of the rotor 60.
  • the oil guide 110 and the barrier 40 may be plastic parts, so as to be insulated from the coil windings.
  • the cooling channel 20 in the housing 10 when the cooling channel 20 in the housing 10 is provided, it may be: the outer wall of the stator 70 and the inner surface 301 of the housing 10 enclose the cooling channel 20, that is, the outer wall of the stator 70 and the inner wall of the housing 10 There is a gap between them, which can be used as the cooling channel 20, so that when the cooling liquid enters the cooling channel 20, it can directly contact the outer wall of the stator 70 to dissipate the heat of the stator 70.
  • both ends of the stator 70 and the housing 10 The nozzle 21 is formed between the inner surface 301. Specifically, the two ends of the stator 70 and the inner wall of the housing 10 are open.
  • the nozzle 21 is specifically an annular opening, so that when the coolant enters the cooling channel 20 , Part of the cooling liquid flows from the top end of the cooling channel 20 to the bottom end (or from the bottom end to the top end of the cooling channel 20), while part of the cooling liquid flows laterally in the cooling channel 20, and is finally sprayed from the nozzle 21 to the end 30 of the coil winding , To cool the end 30 of the coil winding.
  • a groove (not shown) is provided on the inner wall of the housing 10 close to the stator 70, and the groove and the outer wall of the stator 70 enclose the cooling channel 20, and the groove is close to the coil winding.
  • the notch at the end 30 forms a spout 21, that is, in this embodiment, the cooling channel 20 is surrounded by a groove on the inner wall of the housing 10 and the outer wall of the stator 70, and a metal pipe is arranged inside the motor housing 10 in the prior art.
  • a groove is provided on the inner wall of the housing 10 to greatly reduce the manufacturing difficulty.
  • a cooling channel 20 is provided in the inner wall of the housing 10 close to the stator 70, and the inner wall of the housing 10 is provided with a nozzle 21 communicating with the cooling channel 20, that is, in this embodiment, the cooling channel 20 is located in the housing In the inner wall of 10, the nozzle 21 is located on the inner wall of the housing 10 and corresponds to the end 30 of the coil winding, so that the coolant sprayed from the nozzle 21 is sprayed to the end 30 of the coil winding.
  • the housing 10 includes an intermediate housing and a front end cover and a rear end cover located at both ends of the intermediate housing, that is, the front end cover is located at one end of the intermediate housing, and the rear end cover is located in the middle.
  • the other end of the housing, and the inner walls of the middle housing, the front end cover and the back end cover enclose a cavity for the stator 70, the coil winding, the rotor 60 and the shaft 50.
  • the two ends of the shaft 50 pass through the bearing 51 and the front end respectively.
  • the cover and the rear cover are rotatably connected, and at the same time, one end of the rotating shaft 50 can extend from the front cover to be connected to the load.
  • the cooling channel 20 when the cooling channel 20 is provided, specifically, the cooling channel 20 can be provided in the middle casing or between the middle casing and the outer wall of the stator 70. At this time, the first opening 11 and the second opening 12 are specifically opened in the middle casing. Top and bottom.
  • the motor further includes: an oil pump 80, the inlet of the oil pump 80 and the first opening 11 and the second opening 12
  • the outlet of the oil pump 80 is in communication with the other of the first opening 11 and the second opening 12.
  • the first opening 11 is an inlet
  • the outlet of the oil pump 80 is in communication with the first opening 11
  • the inlet of the oil pump 80 is in communication with the second opening 12.
  • the second opening 12 is an inlet
  • the outlet of the oil pump 80 is in communication with the second opening 12, and the inlet of the oil pump 80 is in communication with the first opening 11.
  • the oil pump 80 can ensure the flow of the coolant in the cooling channel 20, on the other hand, it can also control the flow rate of the coolant in the cooling channel 20. For example, when the temperature of the coil winding is high, the cooling channel 20 can be enlarged. The flow speed of the internal coolant enables the coolant to quickly take out the heat in the motor and achieve good heat dissipation of the motor.
  • the oil pump 80 is specifically arranged outside the motor housing 10. As shown in FIG. 17, the oil pump 80 is specifically arranged in the reducer 200.
  • the heat exchanger 100 for cooling the cooling liquid discharged from the cooling channel 20, so that the cooling liquid can enter the cooling channel 20 again after cooling.
  • the motor is cooled.
  • the heat exchanger 100 may specifically be an oil-water heat exchanger 100, that is, the cooling liquid is cooled by a water-cooling method.
  • the cooling liquid is specifically cooling oil.
  • a filter 90 which is used to filter the cooling liquid, so as to avoid debris in the cooling liquid from causing the cooling channel 20, the first opening 11 and the second opening 12, where, in this embodiment, the heat exchanger 100 and the filter 90 can be located outside the motor housing 10, for example, can be located in the reducer 200, where, in this embodiment, it should be noted that, When the oil pump 80, the heat exchanger 100 and the filter 90 are all located in the reducer 200, at this time, the first opening 11 and the second opening 12 on the motor can also be used to communicate with the heat dissipation channel 201 in the reducer 200, In order to make the cooling channel 20 in the motor and the heat dissipation channel 201 in the reducer 200 form a cooling circuit, the oil pump 80, the heat exchanger 100 and the filter 90 may be located on the cooling circuit in the circuit of the reducer 200.
  • FIG. 11 is a schematic diagram of the structure of the barrier in the motor provided in the second embodiment of the present application
  • FIG. 12 is a schematic view of the barrier and the stator in the motor provided in the second embodiment of the present application
  • FIG. 13 is a schematic view of the motor provided in the second embodiment of the present application Schematic diagram of the structure between the barrier and the inner wall of the housing.
  • the blocking member 40 is a semi-circular arc plate 40b arranged around the outer surface 303 of the upper semicircular end 31 of the coil winding.
  • the semi-circular arc plate 40b is connected to the inner wall of the housing 10, that is, in this embodiment, the barrier 40 is fixed on the inner wall of the housing 10 and is arranged around the outer surface 303 of the upper semicircular end 31 of the coil winding.
  • the nozzle 21 of the cooling channel 20 is formed between the semi-circular arc plate 40b and the inner wall of the housing 10 Connected gap, so that the coolant sprayed from the nozzle 21 at the top of the cooling channel 20 enters the gap, and the coolant flows along the semicircular arc shaped plate 40b toward the bearing 51 and the lower semicircular end 32 of the coil winding, that is, a semicircular arc
  • the profile plate 40b plays a role of guiding flow, which prevents the cooling liquid from contacting the rotor 60, thereby avoiding the kinetic energy consumption of the rotor 60.
  • the upper semicircular end 31 of the coil winding cannot contact the coolant at this time, so the coil winding
  • the upper semicircular end 31 of the coil can only be cooled by the cooling liquid flowing on the semicircular arc plate 40b, but this makes the cooling effect of the upper semicircular end 31 of the coil winding poor.
  • the semicircular The arc-shaped plate 40b is provided with a plurality of openings 41b to allow part of the cooling liquid in the gap to penetrate into the upper semicircular end 31 of the coil winding, so that part of the cooling liquid penetrates into the upper semicircular end 31 of the coil winding for cooling.
  • the amount of cooling liquid that penetrates the upper semicircular end 31 of the coil winding is often less. Therefore, there is often less coolant that may come into contact with the rotor 60, but compared with the prior art, this embodiment can still reduce the kinetic energy consumption of the rotor 60.
  • the drainage portion is a semi-circular arc-shaped plate 40b extending outward toward one end of the side end surface of the housing 10 and forming a downwardly inclined outer edge 42b ( Specifically, the outer edge 42b is used to guide part of the coolant in the gap to the bearing 51. Specifically, in this embodiment, the outer edge 42b and the bearing 51 are at least partially overlapped in the vertical direction. The outer edge 42b guides part of the cooling liquid between the semi-circular arc shaped plate 40b and the inner wall of the housing 10 so that the cooling liquid can flow to the bearing 51 after flowing out of the outer edge 42b, thereby realizing heat dissipation to the bearing 51.
  • the semi-circular arc shaped plate 40b when the semi-circular arc shaped plate 40b is located on the outer surface 303 of the upper semicircular end 31 of the coil winding, and a downwardly inclined outer edge 42b is provided at one end of the semicircular arc shaped plate 40b, this partial cooling
  • the liquid is directly guided to the bearing 51 along the semi-circular arc shaped plate 40b, so that the cooling liquid flowing to the bearing 51 does not make contact with the end of the coil winding, that is, in this embodiment, a pipeline for cooling the coil winding and the bearing 51 is formed, and at the same time
  • the two ends of the semi-circular arc plate 40b direct part of the cooling liquid to the lower semicircular end 32 of the coil winding, and the cooling liquid after cooling the bearing 51 is guided to the lower semicircle of the coil winding through the guide groove 13 and the oil guide 110
  • the end 32 realizes the cooling of the lower semicircular end 32 of the coil winding.
  • the coolant contacts the upper semicircular end 31 of the coil winding and then flows to the lower part of the coil winding.
  • the semicircular end 32 is cooled, which causes the problem of uneven heat dissipation at the upper and lower ends of the coil winding.
  • the oil collection groove, the flow guide groove 13 and the oil guide member 110 may be specifically referred to in the above-mentioned embodiment, which will not be repeated in this embodiment.
  • FIG. 14 is a schematic diagram of the structure of the barrier in the motor provided in the third embodiment of the present application
  • FIG. 15 is a schematic view of the structure of the barrier and the stator in the motor provided in the third embodiment of the present application.
  • the barrier 40 is wrapped on the inner surface 301 of the upper semicircular end 31 of the coil winding and is in the shape of a semicircular arc.
  • the oil cloth 40c that is, the barrier 40 is an oil cloth 40c, which is wrapped on the inner surface 301 of the upper semicircular end 31 of the coil winding, so that the oil cloth 40c blocks the coolant and prevents the coolant from contacting the rotor 60.
  • the tarpaulin 40c is an existing material.
  • the coordination of the barrier 40 and the coil winding end must be controlled, which is required The installation accuracy is high. Once the barrier 40 is installed incorrectly or the shape of the barrier 40 is deformed, it will cause the barrier 40 to fail to achieve a good fit with the end of the coil winding.
  • the barrier 40 when the barrier 40 is used
  • the tarp 40c when the barrier 40 is used, since the tarp 40c is a flexible material, it can be directly wrapped on the end of the coil winding during assembly, and the installation position of the tarp 40c can be adjusted at any time, which greatly reduces the barrier 40 and the coil winding end The difficulty of matching the parts makes the installation more convenient.
  • the end of the tarp 40c close to the outer surface 302 of the coil winding end portion 30 has an extension portion 42c extending to the outer surface 302 of the upper semicircular end portion 31 of the coil winding, and in this embodiment, the drainage portion is an extension
  • the opening 41c is opened on the portion 42c to allow the coolant sprayed to the coil winding to flow to the bearing 51, so that the coolant on the upper semicircular end 31 of the coil winding flows to the bearing 51 at the extension 42c through the opening 41c, thereby achieving
  • the bearing 51 dissipates heat, and at the same time, after the cooling liquid passes through the bearing 51, it flows to the lower semicircular end 32 of the coil winding through the flow groove 13 and the oil guide 110, so as to cool the upper and lower ends of the coil winding.
  • FIG. 17 is a schematic structural diagram of a power assembly provided in Embodiment 4 of the present application.
  • This embodiment provides a powertrain.
  • the powertrain provided in this embodiment can be applied to electric vehicles/electric vehicles (EV), pure electric vehicles (PEV/BEV), hybrid electric vehicles (HEV), and extended-range electric vehicles. (REEV), plug-in hybrid electric vehicle (PHEV), new energy vehicle (New Energy Vehicle), etc., or can be applied to battery management (Battery Management), motor & drive (Motor & Driver), power conversion (Power Converter) )
  • a reducer 200 connected to the shaft 50 of the motor, wherein the reducer 200 is provided with a heat dissipation channel 201, and the heat dissipation channel 201 is connected to the motor
  • the inner cooling channel 20 forms a cooling circuit, that is, the motor and the reducer 200 adopt an integrated cooling system for heat dissipation, which not only realizes the cooling of the motor, but also realizes the cooling of the reducer 200, where, in this embodiment, For other components in the reducer 200,
  • the difference from the existing reducer is that in this embodiment, the cooling channel 20 in the reducer 200 is provided in the reducer 200.
  • the oil pump 80, the heat exchanger 100 and the filter 90 in the above embodiment are located in the reducer 200, that is, in this embodiment, the oil pump 80, the heat exchanger 100 and the filter 90 in the cooling system are arranged in the reducer 200 Inside, the circulating heat dissipation of the cooling circuit is realized by the oil pump 80, and the coolant in the cooling circuit can be cooled by the heat exchanger 100, so as to realize good heat dissipation of the motor and the reducer 200. Accordingly, the filter 90 serves to cool down The cooling on the circuit is used for filtering purposes.
  • the coolant is specifically cooling oil, that is, the motor and reducer 200 in the powertrain adopt an oil cooling system.
  • the control microcontroller unit specifically uses water cooling for heat dissipation, so that the water cooling water outlet of the MCU can be connected to the heat exchanger 100, and the water outlet of the heat exchanger 100 and the reducer The outlet on the 200 is connected.
  • the power assembly provided by this embodiment includes the above-mentioned motor and reducer 200, which avoids the consumption of kinetic energy when the rotor 60 rotates at a high speed, realizes the purpose of balanced heat dissipation at the upper and lower ends of the coil windings in the motor, and realizes both the motor and the reducer.
  • the purpose of the integrated cooling of the reducer 200 makes the heat dissipation of the powertrain better.
  • the housing of the motor (specifically the front end cover in the motor housing) and the housing of the reducer can be fixed together by a fixing member (such as a screw or bolt) to form an integral structure, which can be specifically as As shown in Figure 7, Figure 8, and Figure 13, the motor and the reducer are fixed together to form a whole.
  • a fixing member such as a screw or bolt
  • This embodiment provides an automobile, where the automobile provided in this embodiment may be an electric vehicle/electric vehicle (EV), a pure electric vehicle (PEV/BEV), a hybrid electric vehicle (HEV), and a range-extended electric vehicle (REEV) , Plug-in Hybrid Electric Vehicle (PHEV), New Energy Vehicle (New Energy Vehicle), etc.
  • EV electric vehicle/electric vehicle
  • PEV/BEV pure electric vehicle
  • HEV hybrid electric vehicle
  • REEV range-extended electric vehicle
  • PHEV Plug-in Hybrid Electric Vehicle
  • New Energy Vehicle New Energy Vehicle
  • the automobile includes at least wheels, transmission components, and the motor of any of the above embodiments, wherein the shaft 50 of the motor is connected to the wheels through the transmission component, so that the shaft 50 of the motor rotates to output power, and the transmission component transmits the power to the wheels so that the wheels
  • the number of motors included in the car can be one or two. When the number of motors is one, the motors are connected to the two front wheels or the two rear wheels through the transmission components. When the motor is connected to the two front wheels through the transmission part, the front wheel is the driving wheel and the rear wheel is the driven wheel.
  • the motor when the motor is connected to the two rear wheels through the transmission part, the rear wheel It is the driving wheel and the front wheel is the driven wheel; when the number of motors is two, one of the motors is connected to the two front wheels through a transmission component, and the other motor is connected to the two rear wheels through another transmission component.
  • the transmission component may specifically include a gearbox and a half shaft.
  • the rotating shaft 50 of the motor is connected to the gearbox, and the gearbox is respectively connected to the two front wheels or the two rear wheels through the half shafts.
  • the car provided in this embodiment may also include a control panel, a car body, etc.
  • other structures of the car can refer to the prior art, and this embodiment does not Repeat it again.
  • the automobile provided by the embodiment of the present application, by including the above-mentioned motor, blocks the contact between the motor rotor and the coolant, thereby avoiding the kinetic energy consumption of the motor rotor during the rotation process, making the motor rotor rotate faster, and the kinetic energy output by the rotating shaft is greater , Which makes the car more powerful.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or Indirect connection through an intermediate medium can be the internal communication between two elements or the interaction between two elements.
  • connection should be understood according to specific circumstances.

Abstract

本申请实施例提供一种电机、动力总成和汽车,该电机可以应用于电动车/电动汽车、纯电动汽车、混合动力汽车、增程式电动汽车、插电式混合动力汽车、新能源汽车、电池管理、电机&驱动、功率变换、减速器等,该电机用于输出动力,且电机输出动力过程中,电机内设置的阻隔件阻挡冷却液与转子接触,这样转子在旋转过程中冷却液不会在转子的离心作用下飞溅,从而避免了转子的动能消耗,使得电机的转速更快,动力输出更大,解决了现有电机中转子在离心作用下将冷却油喷向线圈端部时而造成转子动能消耗的问题。

Description

电机、动力总成和汽车
本申请要求于2019年7月8日提交中国专利局、申请号为201910611288.9、申请名称为“电机、动力总成和汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电机领域,并且尤其涉及一种线圈端部油冷的电机、动力总成和汽车。
背景技术
电机是一种依据电磁感应定律实现电能转换或传递的电磁装置,主要作用是产生驱动转矩,作为用电器或各种机械的动力源,电机主要包括壳体以及位于壳体两端的前端盖和厚端盖,壳体、前端盖和后端盖的内壁围成腔体,腔体内设有定子、转子、线圈以及一端从前端盖伸出且另一端与后端盖转动相连的转轴,其中电机在高速运转时,线圈会产生大量的热量,为此,常常采用冷水或油冷方式对电机进行散热,其中,水作为冷却介质,存在水冷电机功率密度低、链路热阻大、界面热阻占比高、线圈端部需灌胶以及高速油封无量产等问题,所以,油冷越来越被广泛地使用。
目前,电机采用油冷时,具体实现方式为:在电机的壳体中设有金属管道,且金属管道的两端从前端盖和后端盖延伸到转子端部,其中,金属管道上开设开孔,金属管道内的冷却油在压力作用下从开孔喷向定子、线圈端部以及金属管道两端的开口喷向转子端部,并利用重力作用使得冷却油自上而下覆盖到定子的轭部以及线圈端部,最后从底部的集油通路流向减速器。同时,转子在旋转过程中的离心作用将冷却油飞溅到线圈端部,以增强线圈的冷却效果。
然而,上述油冷方式中,转子在旋转过程利用离心作用将冷却油喷向线圈端部时,需消耗转子的动能,这样电机高转速的趋势下,电机由于转子喷油而消耗的动能比例会升高,最终造成转子的转速受到极大的影响。
发明内容
本申请实施例提供一种电机、动力总成和汽车,降低或避免了油冷电机在高速转速时的动能损耗,从而解决了现有电机中转子在离心作用下将冷却油喷向线圈端部时而造成转子动能消耗的问题。
本申请实施例提供一种电机,包括壳体,所述壳体内设置依次套设的转轴、转子和定子,且所述定子上绕设有线圈绕组,所述转轴的两端分别通过轴承与所述壳体相对的两个侧端面转动相连,其中:
所述壳体内具有可供冷却液流通以及两端延伸到所述线圈绕组端部的冷却通道,所述 冷却通道与所述壳体的顶端和底端分别开设的第一开口和第二开口相连通,且所述冷却通道靠近所述线圈绕组端部的位置具有喷口,所述喷口用于将所述冷却通道中的冷却液喷向所述线圈绕组的端部;
其中,还包括:
至少一个阻隔件,所述阻隔件至少位于所述线圈绕组端部的内表面或外表面,所述阻隔件阻挡在所述喷口与所述转子之间。
本申请实施例提供的电机,通过所述壳体内具有可供冷却液流通且两端延伸到所述线圈绕组端部的冷却通道,所述冷却通道与所述壳体的顶端和底端分别开设的第一开口和第二开口相连通,且所述冷却通道靠近所述线圈绕组端部的位置具有喷口,所述喷口用于将所述冷却通道中的冷却液喷向所述线圈绕组的端部,以及还包括:至少一个阻隔件,所述阻隔件至少位于所述线圈绕组端部的内表面或外表面,所述阻隔件阻挡在所述喷口与所述转子之间,这样冷却通道中的冷却液通过喷口喷出对线圈绕组进行散热时,在阻隔件的阻挡作用下使得冷却液无法与转子接触,冷却液被阻隔件引导到远离转子的区域以及线圈绕组端部的下端区域,实现了对线圈绕组冷却的同时避免了冷却液与转子接触的目的,从而减小或避免了转子的动能消耗,因此,本实施例提供的电机,防止了冷却液从线圈绕组端部渗漏或溢出指转子区域,避免了转子由于与冷却液接触而导致动能消耗的问题,解决了现有电机中转子在离心作用下将冷却油喷向线圈端部时而造成转子动能消耗的问题。
在第一方面的一种可能的实施方式中,所述阻隔件上靠近所述壳体顶端的位置具有引流部,所述引流部用于将所述阻隔件上的部分所述冷却液引流到所述轴承上,以使所述冷却液经过所述轴承后流向所述线圈绕组靠近所述壳体底端的端部。
这样渗透到阻隔件上的部分冷却液沿着阻隔件的两端朝向线圈绕组的下半圆端部冷却外,部分冷却液沿着引流部流向轴承,对轴承进行散热,而且经过轴承的冷却液在重力作用流向线圈绕组的下端部,从而实现了对线圈绕组下端部的冷却目的,与现有技术中冷却液先经过线圈绕组的端部上端冷却后再沿着线圈绕组流向线圈绕组的端部下端冷却相比,本申请实施例中实现了对线圈绕组上下端部均衡散热的目的。
在第一方面的一种可能的实施方式中,所述阻隔件为至少绕着所述线圈绕组上半圆端部的内表面或外表面设置的半圆弧型结构。
这样半圆弧型结构可以对线圈绕组上半圆端部上的冷却液进行阻挡,防止冷却液渗漏或溢出至转子区域,半圆弧型结构将冷却液引导至线圈绕组的下半圆端部处,而且本申请实施例中,阻隔件采用半圆弧型结构时,在实现了冷却液与转子无法接触的前提下,还节省了阻隔件的材料,同时降低了阻隔件的重量。
在第一方面的一种可能的实施方式中,所述阻隔件为绕着所述线圈绕组上半圆端部的内表面设置的半圆弧型隔板,所述半圆弧型隔板的一端与所述壳体的内壁相连,且所述半圆弧型隔板的弧面与所述壳体的内壁之间形成可供所述线圈绕组的上半圆端部容纳的空间,以使所述半圆弧型隔板位于所述线圈绕组的上半圆端部的内表面。
这样安装时,半圆弧型隔板可以直接先安装在壳体内壁上,安装后半圆弧型隔板一端伸入线圈绕组的上半圆端部的内表面处,从而对线圈绕组上半圆端部上渗出或溢出的冷却液进行阻挡以及引流,使得冷却液无法与转子接触,从而达到避免转子动能消耗的目的。
在第一方面的一种可能的实施方式中,所述半圆弧型隔板与所述壳体相连的一端具有连接部,所述半圆弧型隔板通过所述连接部与所述壳体的内壁相连。
通过连接部实现半圆弧型隔板与壳体内壁的安装,实现了半圆弧型隔板方便安装的目的。
在第一方面的一种可能的实施方式中,所述引流部为所述半圆弧型隔板靠近所述连接部的位置开设的通孔,且所述通孔在竖直方向上的投影区域位于所述轴承上,以使所述冷却液通过所述通孔流向所述轴承。
这样线圈绕组上半圆端部上的冷却液流至半圆弧型隔板时,部分冷却液通过通孔流向轴承,其余冷却液沿着半圆弧型隔板向线圈绕组的下半圆端部,从而实现了冷却液与轴承的接触,这样增强高转速下轴承的散热能力。
在第一方面的一种可能的实施方式中,所述阻隔件为绕着所述线圈绕组上半圆端部的外表面设置的半圆弧型板,其中,所述半圆弧型板与所述壳体的内壁相连,且所述半圆弧型板与所述壳体内壁之间形成与所述冷却通道的所述喷口连通的间隙,以使所述冷却液沿着所述半圆弧型板朝向所述轴承和所述线圈绕组的下半圆端部流动。
这样冷却通道顶端处的喷口喷出的冷却液进入该间隙,冷却液沿着半圆弧型板朝向轴承和线圈绕组的下半圆端部流动,即半圆弧型板起到导流作用,这样避免了冷却液与转子接触,从而避免了转子的动能消耗,同时,当半圆弧型板位于线圈绕组的上半圆端部的外表面时,半圆弧型板的两端将部分冷却液直接导向线圈绕组的下半圆端部,实现了对线圈绕组下半圆端部的冷却,与现有技术相比,避免了冷却液与线圈绕组的上半圆端部接触后再流向线圈绕组的下半圆端部进行冷却而导致线圈绕组的上下端部散热不均衡的问题。
在第一方面的一种可能的实施方式中,所述引流部为所述半圆弧型板朝向所述壳体的侧端面的一端向外延伸形成且向下倾斜的外沿,且所述外沿与所述轴承在竖直上至少部分重叠,以使所述间隙中的部分所述冷却液通过所述外沿流向所述轴承。
这样部分冷却液沿着半圆弧型板的外沿直接导向轴承,这样流向轴承的冷却液未与线圈绕组端部进行接触,即本实施例中,形成分别对线圈绕组和轴承冷却的管路,同时,流向轴承的冷却液对轴承冷却后流向线圈绕组的下端部,从而实现了对线圈绕组下端部的冷却目的,避免了冷却液从上到下对线圈绕组端部依次冷却时存在线圈绕组上下端部散热不均衡的问题。
在第一方面的一种可能的实施方式中,所述半圆弧型板上设有多个开孔,以使所述间隙中的部分所述冷却液渗入所述线圈绕组的端部。
这样部分冷却液通过开孔渗入到线圈绕组的上半圆端部上进行冷却,实现对线圈绕组的上半圆端部的散热。
在第一方面的一种可能的实施方式中,所述阻隔件为包裹在所述线圈绕组的上半圆端部的内表面上且呈半圆弧型状的裹油布。
通过阻隔件采用裹油布制成时,由于裹油布为柔性材料,这样组装时可以直接包裹在线圈绕组的端部上即可,而且可以随时调整裹油布的安装位置,大大降低了阻隔件与线圈绕组端部的配合难度,使得安装更方便。
在第一方面的一种可能的实施方式中,所述裹油布靠近所述线圈绕组端部外侧面的一端具有向所述线圈绕组的上半圆端部外侧面延伸的延伸部,且所述引流部为所述延伸部 上开设的开口,以使喷向所述线圈绕组的部分所述冷却液流向所述轴承。
这样,线圈绕组的上半圆端部上的冷却液在延伸部处通过开口喷向轴承,从而实现对轴承的散热。
在第一方面的一种可能的实施方式中,所述壳体上靠近所述轴承顶端的位置或者所述轴承的顶端上开设集油槽,所述集油槽用于将流向所述轴承的所述冷却液进行收集,以使所述冷却液流入所述轴承中。
通过集油槽将流出的冷却液集中导向至轴承,对轴承进行有效散热,而且设置集油槽时,对流向轴承的冷却液起到缓冲目的,避免了流向轴承的冷却液压力过大而在轴承上四处飞溅。
在第一方面的一种可能的实施方式中,所述壳体内靠近所述轴承底端的位置设有导流槽,所述导流槽用于将所述轴承上的所述冷却液导入所述线圈绕组的下半圆端部。
通过导流槽将轴承上的冷却液导入线圈绕组的下半圆端部,这样冷却液可以对线圈绕组下半圆端部进行冷却,与现有技术相比,本申请实施例中,由于部分冷却液直接从流向轴承,而轴承的热量远远小于线圈绕组的热量,所以冷却液流过轴承后温升不会很高,在导流槽的导流作用下冷却液流向线圈绕组的下半圆端部,对线圈绕组的下半圆端部32进行散热,从而实现了线圈绕组端部的上下两个部分的均衡散热。
在第一方面的一种可能的实施方式中,还包括:导油件,所述导油件设在在所述线圈绕组的下半圆端部的内表面,且所述导油件的一端靠近所述导油槽,另一端靠近所述转子,所述导油件上开设可供所述冷却液流通的流通孔,以使所述冷却液渗入所述线圈绕组的下半圆端部的底侧。
这样冷却液在导油件的引导下流至线圈绕组下半圆端部靠近转子的内表面处,通过流通孔冷却液渗透至线圈绕组的下半圆端部处,对线圈绕组的下半圆端部实现均衡散热。
在第一方面的一种可能的实施方式中,所述导油件靠近所述转子的一端边缘设有凸起,所述凸起用于阻挡所述导油件上的所述冷却液流入所述转子。
通过导油件上的凸起,防止了导油件上的冷却液与转子接触,进而进一步避免转子动能的消耗。
在第一方面的一种可能的实施方式中,所述定子的外壁与所述壳体的内表面围成所述冷却通道,所述定子的两端与所述壳体内表面之间形成所述喷口。
在第一方面的一种可能的实施方式中,所述壳体靠近所述定子的内壁上设置凹槽,所述凹槽与所述定子的外壁围成所述冷却通道,且所述凹槽上靠近所述线圈绕组端部的槽口形成所述喷口。
在第一方面的一种可能的实施方式中,所述壳体靠近所述定子的内壁中设置所述冷却通道,且所述壳体的内壁上开设与所述冷却通道连通的所述喷口。
在第一方面的一种可能的实施方式中,所述壳体包括中间壳体以及位于中间壳体两端的前端盖和后端盖,且所述中间壳体、所述前端盖和所述后端盖的内壁围成可供所述定子、所述线圈绕组、所述转子以及所述转轴容纳的腔体,所述转轴的两端分别通过所述轴承与所述前端盖和所述后端盖转动相连;
所述中间壳体内或所述中间壳体与所述定子的外壁之间设置所述冷却通道。
这样方便电机内各个器件在壳体内的组装。
在第一方面的一种可能的实施方式中,还包括:油泵,所述油泵的进口与所述第一开口和所述第二开口中的其中一个相连通,所述油泵的出口与所述第一开口和所述第二开口中的另一个相连通。
这样一方面可以确保冷却通道内冷却液的流动,另一方面还可以对冷却通道内的冷却液的流速进行控制。
在第一方面的一种可能的实施方式中,还包括:换热器,所述换热器用于对所述冷却通道排出的所述冷却液进行冷却。
这样换热器可以对排出的冷却液进行冷却,冷却液冷却后可以再次进入冷却通道中对电机进行冷却,确保了冷却液的温度不会过高。
在第一方面的一种可能的实施方式中,还包括:过滤器,所述过滤器用于对所述油泵的出口排出的所述冷却液进行过滤。
这样避免冷却液中的杂物造成冷却通道、第一开口和第二开口的堵塞,
本申请实施例还提供一种动力总成,包括上述任一所述的电机以及与所述电机的转轴相连的减速器,其中,所述减速器内设有散热通道,且所述散热通道与所述电机内的冷却通道形成冷却回路。
通过包括上述电机和减速器,避免了转子高速转动时的动能消耗,同时实现了电机和减速器的集成化冷却目的,使得动力总成的散热更佳。
在第二方面的一种可能的实施方式中,所述电机中的油泵、换热器和过滤器位于所述减速器内。
这样使得动力总成的结构更加紧凑。
本申请实施例还提供一种汽车,至少包括车轮、传动部件以及上述任一所述的电机,所述电机的转轴通过所述传动部件与所述车轮相连。
本申请实施例提供的汽车,通过包括上述电机,阻挡了电机转子与冷却液的接触,从而避免了电机转子在旋转过程中的动能消耗,使得电机的转子转速更快,转轴输出的动能更大,这样使得汽车的动力更大。
结合附图,根据下文描述的实施例,示例性实施例的这些和其它方面、实施形式和优点将变得显而易见。但应了解,说明书和附图仅用于说明并且不作为对本申请实施例的限制的定义,详见随附的权利要求书。本申请实施例的其它方面和优点将在以下描述中阐述,而且部分将从描述中显而易见,或通过本申请实施例的实践得知。此外,本申请实施例的各方面和优点可以通过所附权利要求书中特别指出的手段和组合得以实现和获得。
附图说明
图1是本申请实施例一提供的电机内部的侧视结构与冷却液流动路径的示意图;
图2是本申请实施例一提供的电机内部的侧视结构与冷却液又一种流动路径的示意图;
图3是本申请实施例一提供的电机的剖面结构示意图;
图4是本申请实施例一提供的电机中阻隔件的结构示意图;
图5是本申请实施例一提供的电机中阻隔件与定子的结构示意图;
图6是本申请实施例一提供的电机中阻隔件的主视结构示意图;
图7是本申请实施例一提供的电机中阻隔件在壳体内壁上装配的结构示意图;
图8是本申请实施例一提供的电机中阻隔件在壳体内壁上装配的立体结构示意图;
图9是本申请实施例一提供的电机中阻隔件在壳体内壁上装配的另一方向的立体结构示意图;
图10是本申请实施例一提供的电机中阻隔件在壳体内壁上装配的另一方向的结构示意图;
图11是本申请实施例二提供的电机中阻隔件的结构示意图;
图12是本申请实施例二提供的电机中阻隔件与定子的结构示意图;
图13是本申请实施例二提供的电机中阻隔件与壳体内壁之间的结构示意图;
图14是本申请实施例三提供的电机中阻隔件的结构示意图;
图15是本申请实施例三提供的电机中阻隔件与定子的结构示意图;
图16是本申请实施例提供的电机内部的侧视结构与油泵、换热器以及过滤器之间的结构示意图;
图17是本申请实施例四提供的动力总成的结构示意图。
附图标记说明:
10-壳体;11-第一开口;12-第二开口;13-导流槽;20-冷却通道;21-喷口;30-端部;31-上半圆端部;32-下半圆端部;301-内表面;302-外侧面;303-外表面;40-阻隔件;40a-半圆弧型隔板;41a-通孔;42a-连接部;40b-半圆弧型板;41b-开孔;42b-外沿;40c-裹油布;41c-开口;42c-延伸部;50-转轴;51-轴承;60-转子;70-定子;80-油泵;90-过滤器;100-换热器;110-导油件;112-流通孔;111-凸起;200-减速器;201-散热通道。
具体实施方式
图1是本申请实施例一提供的电机内部的侧视结构与冷却液流动路径的示意图,图2是本申请实施例一提供的电机内部的侧视结构与冷却液又一种流动路径的示意图,图3是本申请实施例一提供的电机的剖面结构示意图,图4是本申请实施例一提供的电机中阻隔件的结构示意图,图5是本申请实施例一提供的电机中阻隔件与定子的结构示意图,图6是本申请实施例一提供的电机中阻隔件的主视结构示意图,图7是本申请实施例一提供的电机中阻隔件在壳体内壁上装配的结构示意图,图8是本申请实施例一提供的电机中阻隔件在壳体内壁上装配的立体结构示意图,图9是本申请实施例一提供的电机中阻隔件在壳体内壁上装配的另一方向的立体结构示意图,图10是本申请实施例一提供的电机中阻隔件在壳体内壁上装配的另一方向的结构示意图,图16是本申请实施例提供的电机内部的侧视结构与油泵、换热器以及过滤器之间的结构示意图。
正如背景技术,现有的电机存在消耗转子动能的问题,产生该问题的原因在于:现有电机结构中,电机采用油冷方式冷却时,主要通过在壳体中设置金属管道,金属管道内的冷却液通过金属管道的两端的开口向线圈绕组、定子以及转子端部喷冷却油进行散热,其中转子在高速转动过程中,通过离心作用将转子两端的冷却油飞溅到线圈绕组的端部,以增强线圈绕组的冷却效果,但是转子在旋转过程将冷却油喷向线圈端部时,需消耗转子的动能,这样电机高转速的趋势下,电机由于转子喷油而消耗的动能比例会升高,最终造成 转子的转速受到极大的影响。
为此,为了解决上述问题,本实施例提供一种电机,该电机可以应用于电动车/电动汽车(Electric Vehicle,简称EV)、纯电动汽车(Pure Electric Vehicle/Battery Electric Vehicle,简称:PEV/BEV)、混合动力汽车(Hybrid Electric Vehicle,简称:HEV)、增程式电动汽车(Range Extended Electric Vehicle,简称REEV)、插电式混合动力汽车(Plug-in Hybrid Electric Vehicle,简称:PHEV)、新能源汽车(New Energy Vehicle)、电池管理(Battery Management)、电机&驱动(Motor & Driver)、功率变换(Power Converter)、减速器(Reducer)等。
其中,本实施例中,如图1-10所示,电机包括:壳体10,壳体10内设置依次套设的转轴50、转子60和定子70,即转轴50外套设转子60,转子60外套设定子70,本实施例中,定子70在壳体10内固定,转子60带动转轴50进行转动,本实施例中,定子70上绕设有线圈绕组,其中,线圈绕组在定子70上绕设时,具体为,在定子70的定子铁芯内壁上沿圆周方向均匀分布有若干个线圈槽,线圈绕组通过线圈槽绕设在定子铁芯内,其中,本实施例中,线圈绕组在定子铁芯内绕设时,线圈绕组的两端从定子铁芯的两端向外延伸出去,即线圈绕组的长度往往大于定子70的长度,所以本实施例中,线圈绕组的端部30为线圈绕组从定子70的两端延伸出去的两端,其中,本实施例中,转轴50的两端分别通过轴承51与壳体10相对的两个侧端面转动相连,具体的,转轴50的一端从壳体10的其中一个侧端面向外伸出与负载相连,本实施例中,转轴50的其中一端从壳体10的侧端面伸出与减速器的输入轴齿轮相连。
其中,本实施例中,为了对电机进行冷却,具体的,壳体10内具有可供冷却液流通且两端延伸到线圈绕组的端部30的冷却通道20,即冷却通道20内具有流动的冷却液,且冷却通道20的两端延伸到线圈绕组的两个端部30,其中,本实施例中,为了便于冷却通道20内的冷却液进行流通,冷却通道20与壳体10的顶端和底端分别开设的第一开口11和第二开口12相连通,即壳体10的顶端和底端分别开设第一开口11和第二开口12,且第一开口11和第二开口12与冷却通道20相连通,这样冷却液可以从第一开口11进入冷却通道20对壳体10内的热量进行吸收,最终从第二开口12向外排出,或者冷却液从第二开口12进入冷却通道20,最后从第一开口11向外排出。
其中,本实施例中,由于线圈绕组在工作时产生很大的热量,为了对线圈绕组进行冷却,具体的,冷却通道20靠近线圈绕组的端部30位置具有喷口21,喷口21用于将冷却通道20中的冷却液喷向线圈绕组的端部30,即冷却通道20中的冷却液通过喷口21流向线圈绕组的端部30,对线圈绕组进行冷却散热。
其中,冷却液喷向线圈绕组的端部30顶端时,冷却液在重力作用下向下流动且往往会与转子60的两端接触,这样往往造成转子60的动能消耗,为此,为了降低或避免转子60的动能消耗,本实施例中,还包括:至少一个阻隔件40,阻隔件40至少位于线圈绕组端部30的内表面301或外表面303,阻隔件40阻挡在喷口21与转子60之间,即本实施例中,阻隔件40可以设在线圈绕组的端部30内表面301,这样位于上方的冷却液从喷口21喷向线圈绕组的端部30时,冷却液在重力作用下从线圈绕组之间的间隙向下渗,但是由于设置阻隔件40,在阻隔件40的阻隔作用下冷却液不易与转子60接触,从而避免了冷却液与转动接触而导致转子60动能消耗的问题。
或者,本实施例中,阻隔件40也可以设在线圈绕组的端部30外表面303上,这样冷却液从喷口21喷向线圈绕组的端部30时,在阻隔件40的阻挡作用下使得冷却液喷向阻隔件40而未与线圈绕组的端部30接触,这样冷却液可以沿着阻隔件40的端部30流向远离转子60的区域以及沿着阻隔件40流向线圈绕组的端部30下侧,从而减小或避免了冷却液与转子60接触,进而降低或避免了转子60由于与冷却液接触而造成动能消耗的问题。
或者,本实施例中,阻隔件40还可以设在线圈绕组的端部30内表面301和外侧面302上,这样阻隔件40包括与线圈绕组的端部30内表面301相对的部分以及与线圈绕组的端部30外侧面302相对的部分,阻隔件40的这两部分使得冷却液被引导到线圈绕组端部30的下半部分,从而进一步的降低了冷却液与转子60的接触机率,所以,本实施例中,阻隔件40起到阻挡冷却液与转子60接触的作用,同时本实施例中,冷却液顺着阻隔件40从线圈绕组端部30的上部分流向线圈绕组端部30的下部分或将冷却液引导到远离转子60的区域处,即本实施例中,阻隔件40还起到引流的作用。
其中,本实施例中,当阻隔件40的数量为一个时,此时阻隔件40可以设置在线圈绕组的其中一个端部30的内表面301或外表面303上,这样可以使得转子60的一端不与冷却液接触,与现有技术相比,仍然能起到降低转子60动能消耗的作用,本实施例中,阻隔件40的数量如图1所示为两个,这样两个阻隔件40可以分别位于线圈绕组的两个端部30的内表面301或外表面303,这样转子60的两端均不与冷却液接触,从而避免了转子60动能消耗的问题。
其中,本实施例中,需要说明的是,阻隔件40在线圈绕组的端部30内表面301或外表面303设置时,阻隔件40可以沿着线圈绕组的端部30内表面301或外表面303设置一圈,即线圈绕组的端部30整个内表面301或整个外表面303均设有阻隔件40,或者,由于线圈绕组的端部30下部分上即使有冷却液,但是在重力作用下,冷却液不易与转子60接触的,所以只需阻挡线圈绕组端部30上部分上的冷却液与转子60接触,所以本实施例中,阻隔件40可以沿着线圈绕组的端部30内表面301或外表面303的上半部分进行设置,即阻隔件40将线圈绕组的端部30内表面301或外表面303部分覆盖,这样可以降低阻隔件40的重量进而降低电机的重量,所以,本实施例中,阻隔件40至少覆盖挡线圈绕组的上部分端部30内表面301或外表面303。
其中,本实施例中,如图2所示,第一开口11可以为冷却通道20的进口,第二开口12可以为冷却通道20的出口,即冷却液上进下出,这样如图2中的实线箭头所示,冷却液可以从壳体10顶端上的第一开口11进入顶端处的冷却通道20,通过部分冷却液通过喷口21流向线圈绕组的端部30位置,部分冷却液如图2中虚线箭头所示,向冷却通道20的下端流动,其中,从喷口21喷出的冷却液,在阻隔件40的阻挡作用下流向线圈绕组端部30的下侧以及远离转子60的区域,最终汇聚到壳体10内的底端处,此时可以通过冷却通道20底端处的喷口21再次流入底端的冷却通道20内,最终通过第二开口12将冷却通道20内的冷却液向外排出(或者直接从第二开口12向外排出)。
或者,本实施例中,如图1所示,第二开口12可以为冷却通道20的进口,第一开口11为冷却通道20的出口,即冷却液下进上出,此时,为了使得冷却液能从第一开口11向外排出,冷却液往往具有一定的压力(例如通过油泵输送到第二开口12处),这样冷却液在压力作用下从第二开口12进入冷却通道20,部分冷却液从冷却通道20的底端处喷口 21喷向线圈绕组的端部30的下侧(如图1中的横向虚线箭头所示),部分冷却液从冷却通道20的底端流向冷却通道20的顶端(如图1中的竖向虚线箭头所示),流动过程中对壳体10内的热量进行吸收,当冷却液到达冷却通道20的顶端时,部分冷却液从第一开口11向外排出(如图1中上方的横向虚线箭头所示),部分冷却液从冷却通道20的顶端处的喷口21喷向线圈绕组的端部30(如图1中的上方的实线箭头所示),此时冷却液在阻隔件40的阻挡作用下向线圈绕组端部30的下侧以及远离转子60的区域流动,最终对线圈绕组的端部30冷却后的冷却液汇聚到壳体10内的底端处,此时可以从冷却通道20底端处的喷口21进入冷却通道20并从第二开口12向外流出或者通过壳体10底端处额外开设的泄液口(未示出)直接向外排出。
因此,本实施例提供的电机,通过壳体10内具有可供冷却液流通且两端延伸到线圈绕组端部30的冷却通道20,冷却通道20与壳体10的顶端和底端分别开设的第一开口11和第二开口12相连通,且冷却通道20靠近线圈绕组端部30的位置具有喷口21,喷口21用于将冷却通道20中的冷却液喷向线圈绕组的端部30,以及还包括:至少一个阻隔件40,阻隔件40至少位于线圈绕组端部30的内表面301或外表面303,阻隔件40用于阻挡从喷口21喷出的冷却液与转子60接触,这样冷却通道20中的冷却液通过喷口21喷出对线圈绕组进行散热时,在阻隔件40的阻挡作用下使得冷却液无法与转子60接触,冷却液被阻隔件40引导到远离转子60的区域以及线圈绕组端部30的下端区域,实现了对线圈绕组冷却的同时避免了冷却液与转子60接触的目的,从而减小或避免了转子60的动能消耗,因此,本实施例提供的电机,防止了冷却液从线圈绕组端部30渗漏或溢出指转子60区域,避免了转子60由于与冷却液接触而导致动能消耗的问题,解决了现有电机中转子60在离心作用下将冷却油喷向线圈端部30时而造成转子60动能消耗的问题。
其中,本实施例中,阻隔件40上靠近壳体10顶端的位置具有引流部(具体见下述的通孔41a、外沿42b和开口41c),引流部用于将阻隔件40上的部分冷却液引流到轴承51上,以使冷却液经过轴承51后流向线圈绕组靠近壳体10底端的端部(即线圈绕组的下半圆端部32),这样渗透到阻隔件40上的部分冷却液沿着阻隔件40的两端朝向线圈绕组的下半圆端部32冷却外,部分冷却液沿着引流部流向轴承51,对轴承51进行散热,而且经过轴承51的冷却液在重力作用流向线圈绕组的下端部,从而实现了对线圈绕组下端部的冷却目的,与现有技术中冷却液先经过线圈绕组的端部上端冷却后再沿着线圈绕组流向线圈绕组的端部下端冷却相比,本申请实施例中由于轴承51产生的热量远远低于线圈绕组产生的热量,所以经过轴承51的冷却液可以实现对线圈绕组下端部的良好散热,所以,本申请实施例中实现了对线圈绕组上下端部均衡散热的目的。
其中,本实施例中,线圈绕组的端部30往往为圆环结构,即端部30由上半圆端部31和下半圆端部32围成,其中,冷却液在上半圆端部31时,冷却液在重力作用下易渗漏或溢出至转子60区域,而冷却液在下半圆端部32时,冷却液在重力作用下朝向壳体10内的底端渗漏,所以往往不易与转子60区域接触,所以,为了防止线圈绕组上半圆端部31上的冷却液渗漏指转子60区域,具体的,如图3所示,阻隔件40为至少绕着线圈绕组上半圆端部31的内表面301或外表面303设置的半圆弧型结构,即阻隔件40为半圆弧型结构,该半圆弧型结构位于线圈绕组的上半圆端部31的内表面301或外表面303,这样半圆弧型结构可以对线圈绕组上半圆端部31上的冷却液进行阻挡,防止冷却液渗漏或溢出至 转子60区域,半圆弧型结构将冷却液引导至线圈绕组的下半圆端部32处。
其中,本实施例中,如图4所示,阻隔件40为绕着线圈绕组上半圆端部31的内表面301设置的半圆弧型隔板40a,半圆弧型隔板40a的一端与壳体10的内壁相连,且半圆弧型隔板40a的弧面与壳体10的内壁之间形成可供线圈绕组的上半圆端部31容纳的空间,以使半圆弧型隔板40a位于线圈绕组的上半圆端部31的内表面301,即本实施例中,阻隔件40的一端与壳体10内壁进行固定连接,阻隔件40的另一端可以延伸到线圈绕组的上半圆端部31的内表面301处,具体的,本实施例中,半圆弧型隔板40a的一端与壳体10内的侧端面(即壳体10与转轴50转动相连的侧面)相连。
其中,本实施例中,如图4所示,半圆弧型隔板40a与壳体10相连的一端具有连接部42a,半圆弧型隔板40a通过连接部42a与壳体10的内壁相连,本实施例中,连接部42a为半圆弧型隔板40a的一端经过弯折形成的外沿,其中,连接部42a与半圆弧型隔板40a的弧面之间可以垂直设置,且连接部42a与半圆弧型隔板40a的弧面之间设有加强筋位,以增强连接部42a的强度,本实施例中,连接部42a与壳体10的内壁之间具体可以通过紧固件(例如螺钉或螺栓)紧固相连,具体的,连接部42a上开设可供螺钉穿过的螺纹孔,螺钉或螺栓穿过螺纹孔将阻隔件40固定在壳体10的内壁上。
其中,本实施例中,引流部具体为半圆弧型隔板40a上靠近连接部42a的位置开设的通孔41a,且通孔41a在竖直方向上的投影区域位于轴承51上,这样线圈绕组上半圆端部31上的冷却液流至半圆弧型隔板40a时,部分冷却液通过通孔41a流向轴承51,其余冷却液沿着半圆弧型隔板40a流向线圈绕组的下半圆端部32,本实施例中,通过冷却液与轴承51的接触,这样增强高转速下轴承51的散热能力,同时实现了对线圈绕组上下端部均衡散热的目的。
其中,本实施例中,为了便于从通孔41a流出的冷却液能集中对轴承51进行散热,具体的,壳体10上靠近轴承51顶端的位置或者轴承51的顶端上开设集油槽(未示出),集油槽用于将流向轴承51的冷却液进行收集,以使冷却液流入轴承51中,即本实施例中,通过集油槽将从通孔41a流出的冷却液集中导向至轴承51,对轴承51进行有效散热。其中,本实施例中,集油槽可以开设在轴承51的顶端处,或者集油槽可以开设在壳体10内位于轴承51上方的侧端面上,这样当冷却液具有一定的压力时,此时从通孔41a排出的冷却液能集中收集到集油槽中。
其中,现有技术中,电机冷却时,金属管道内的冷却液喷向定子70、转子60以及线圈绕组时,冷却液对线圈绕组的上半圆端部31冷却后再流向线圈绕组的下半圆端部32,这样往往会出现线圈绕组端部30的上下两部分的散热不均衡的问题,为了进一步地解决线圈绕组上下端部散热不均衡的问题,本实施例中,具体的,如图9所示,在壳体10内靠近轴承51底端的位置设有导流槽13,导流槽13用于将轴承51上的冷却液导入线圈绕组的下半圆端部32,这样冷却液可以对线圈绕组下半圆端部32进行冷却,与现有技术相比,本实施例中,由于部分冷却液直接从通孔41a流向轴承51,而轴承51的热量远远小于线圈绕组的热量,所以冷却液流过轴承51后温升不会很高,在导流槽13的导流作用下流向线圈绕组的下半圆端部32,对线圈绕组的下半圆端部32进行散热,从而实现了线圈绕组端部的上下两个部分的均衡散热。
其中,本实施例中,导流槽13将冷却液流向线圈绕组的下半圆端部32后,冷却液往 往集中在靠近导流槽13处的线圈绕组的端部30,本实施例中,为了实现对线圈绕组的下半圆端部32的良好散热,具体的,如图5和图9所示,还包括:导油件110,导油件110设在在线圈绕组的下半圆端部32的内表面301,且导油件110的一端靠近导油槽且与壳体内壁固定相连,另一端延伸至转子60,导油件110上开设可供冷却液流通的流通孔112,这样冷却液在导油件110的引导下流至线圈绕组下半圆端部32靠近转子60的内表面301处,通过流通孔112冷却液渗透至线圈绕组的下半圆端部32处,对线圈绕组的下半圆端部32实现均衡散热。
其中,本实施例中,如图5和图9所示,导油件110具体为与线圈绕组的下半圆端部32的内表面301匹配的弧型板,导油件110具体可以通过紧固件固定在线圈绕组的下半圆端部32内表面301上,其中,本实施例中,导油件110在线圈绕组下半圆端部32的内表面301设置时,导油件110将线圈绕组下半圆端部32的内表面301部分覆盖,即导油件110的两端与半圆弧型隔板40a的两端之间存在间隔。
其中,本实施例中,如图9所示,导油件110靠近转子60的一端边缘设有凸起111,凸起111用于阻挡导油件110上的冷却液流入转子60,即本实施例中,通过导油件110上的凸起111防止导油件110上的冷却液与转子60接触,进而进一步避免转子60动能的消耗。
其中,本实施例中,导油件110和阻隔件40具体可以为塑胶件,这样与线圈绕组之间绝缘。
其中,本实施例中,壳体10内的冷却通道20设置时,可以为:定子70的外壁与壳体10的内表面301围成冷却通道20,即定子70的外壁与壳体10的内壁之间存在间隙,该间隙即可作为冷却通道20,这样当冷却液进入冷却通道20时,可以直接与定子70的外壁接触,对定子70进行散热,同时,定子70的两端与壳体10内表面301之间形成喷口21,具体的,定子70的两端与壳体10的内壁之间为敞开的,本实施例中,喷口21具体的为环形开口,这样冷却液进入冷却通道20时,部分冷却液从冷却通道20的顶端流向底端(或者从冷却通道20的底端流向顶端),同时部分冷却液在冷却通道20内横向流动,最终从喷口21喷向线圈绕组的端部30,以对线圈绕组的端部30进行冷却。
或者,本实施例中,还可以为:在壳体10靠近定子70的内壁上设置凹槽(未示出),凹槽与定子70的外壁围成冷却通道20,且凹槽上靠近线圈绕组端部30的槽口形成喷口21,即本实施例中,冷却通道20由壳体10内壁上的凹槽与定子70的外壁围成,与现有技术中电机壳体10内部设置金属管道相比,本实施例在壳体10内壁开设凹槽大大降低了制作难度。
或者,本实施例中,壳体10靠近定子70的内壁中设置冷却通道20,且壳体10的内壁上开设与冷却通道20连通的喷口21,即本实施例中,冷却通道20位于壳体10内壁中,喷口21位于壳体10的内壁上且与线圈绕组的端部30相对应,这样便于喷口21喷出的冷却液喷向线圈绕组的端部30。
其中,本实施例中,为了便于组装,具体的,壳体10包括中间壳体以及位于中间壳体两端的前端盖和后端盖,即前端盖位于中间壳体的一端,后端盖位于中间壳体的另一端,且中间壳体、前端盖和后端盖的内壁围成可供定子70、线圈绕组、转子60以及转轴50容纳的腔体,转轴50的两端分别通过轴承51与前端盖和后端盖转动相连,同时,转轴50 的一端可以从前端盖伸出与负载相连。其中,冷却通道20设置时,具体的,可以在中间壳体内或中间壳体与定子70的外壁之间设置冷却通道20,此时第一开口11和第二开口12具体开设在中间壳体的顶端和底端。
其中,本实施例中,为了确保冷却液在冷却通道20内的流动,具体的,如图16所示,电机还包括:油泵80,油泵80的进口与第一开口11和第二开口12中的其中一个相连通,油泵80的出口与第一开口11和第二开口12中的另一个相连通,具体的,当第一开口11为进口时,此时油泵80的出口与第一开口11相连通,油泵80的进口与第二开口12连通,当第二开口12为进口时,此时油泵80的出口与第二开口12相连通,油泵80的进口与第一开口11连通,通过设置油泵80,一方面可以确保冷却通道20内冷却液的流动,另一方面还可以对冷却通道20内的冷却液的流速进行控制,例如当线圈绕组的温度较高时,可以增大冷却通道20内冷却液的流动速度,使得冷却液快速将电机内的热量带出,实现对电机的良好散热。
其中,本实施例中,油泵80具体设置在电机壳体10的外部,如图17所示,油泵80具体设置在减速器200内。
其中,本实施例中,如图16所示,还包括:换热器100,换热器100用于对冷却通道20排出的冷却液进行冷却,这样冷却液冷却后可以再次进入冷却通道20中对电机进行冷却,本实施例中,换热器100具体可以为油水换热器100,即通过水冷方式对冷却液进行冷却,其中,本实施例中,冷却液具体为冷却油。
其中,本实施例中,如图16所示,还包括:过滤器90,过滤用于对冷却液进行过滤,这样避免冷却液中的杂物造成冷却通道20、第一开口11和第二开口12的堵塞,其中,本实施例中,换热器100和过滤器90可以均位于电机壳体10的外部,例如可以位于减速器200内,其中,本实施例中,需要说明的是,当油泵80、换热器100和过滤器90均位于减速器200内时,此时,电机上的第一开口11和第二开口12还可以用于与减速器200内的散热通道201连通,以使电机内的冷却通道20与减速器200内的散热通道201形成冷却回路,油泵80、换热器100和过滤器90可以位于冷却回路处于减速器200内的回路上。
实施例二
图11是本申请实施例二提供的电机中阻隔件的结构示意图,图12是本申请实施例二提供的电机中阻隔件与定子的结构示意图,图13是本申请实施例二提供的电机中阻隔件与壳体内壁之间的结构示意图。
本实施例与上述实施例的区别为:本实施例中,如图11-13所示,阻隔件40为绕着线圈绕组的上半圆端部31的外表面303设置的半圆弧型板40b,其中,半圆弧型板40b与壳体10的内壁相连,即本实施例中,阻隔件40固定在壳体10内壁上且绕着线圈绕组上半圆端部31的外表面303设置,同时,本实施例中,为了实现半圆弧型板40b阻挡冷却液与转子60接触的目的,本实施例中,半圆弧型板40b与壳体10内壁之间形成与冷却通道20的喷口21连通的间隙,这样冷却通道20顶端处的喷口21喷出的冷却液进入该间隙,冷却液沿着半圆弧型板40b朝向轴承51和线圈绕组的下半圆端部32流动,即半圆弧型板40b起到导流作用,这样避免了冷却液与转子60接触,从而避免了转子60的动能消耗。
其中,本实施例中,当半圆弧型板40b绕设在线圈绕组的上半圆端部31的外表面303 时,此时线圈绕组的上半圆端部31与冷却液无法接触,这样线圈绕组的上半圆端部31只能通过半圆弧型板40b上流过的冷却液进行冷却,但是这样使得线圈绕组的上半圆端部31的冷却效果不佳,为此,本实施例中,半圆弧型板40b上设有多个开孔41b,以使间隙中的部分冷却液渗入线圈绕组的上半圆端部31上,这样部分冷却液渗入到线圈绕组的上半圆端部31上进行冷却,但是需要说明的是,冷却液从半圆弧型板40b上的开孔41b渗透到线圈绕组的上半圆端部31时,渗到线圈绕组上半圆端部31上的冷却液的量往往较少,所以往往会有较少的冷却液可能会与转子60接触,但是与现有技术相比,本实施例仍可以起到降低转子60动能消耗的作用。
其中,本实施例中,为了实现对轴承51的良好散热,具体的,引流部为半圆弧型板40b朝向壳体10的侧端面的一端向外延伸形成且向下倾斜的外沿42b(具体为朝向轴承51向下倾斜),外沿42b用于将间隙中的部分冷却液导向轴承51,具体的,本实施例中,外沿42b与轴承51在竖直方向上至少部分重叠,这样通过外沿42b,将半圆弧型板40b与壳体10内壁之间的部分冷却液进行引导,最终使得冷却液从外沿42b流出后可以流向轴承51上,从而实现对轴承51的散热。
其中,本实施例中,当半圆弧型板40b位于线圈绕组上半圆端部31的外表面303,同时在半圆弧型板40b的一端设置向下倾斜的外沿42b时,这样部分冷却液沿着半圆弧型板40b直接导向轴承51,这样流向轴承51的冷却液未与线圈绕组端部进行接触,即本实施例中,形成分别对线圈绕组和轴承51冷却的管路,同时,半圆弧型板40b的两端将部分冷却液直接导向线圈绕组的下半圆端部32,以及对轴承51冷却后的冷却液通过导流槽13和导油件110导向线圈绕组的下半圆端部32,实现了对线圈绕组下半圆端部32的冷却,与现有技术相比,本实施例中,避免了冷却液与线圈绕组的上半圆端部31接触后再流向线圈绕组的下半圆端部32进行冷却而导致线圈绕组的上下端部散热不均衡的问题。
其中,本实施例中,集油槽、导流槽13以及导油件110具体可以参考上述实施例中的,本实施例中,不在赘述。
实施例三
图14是本申请实施例三提供的电机中阻隔件的结构示意图,图15是本申请实施例三提供的电机中阻隔件与定子的结构示意图。
本实施例与上述实施例的区别为:本实施例中,如图14-15所示,阻隔件40为包裹在线圈绕组的上半圆端部31内表面301上且呈半圆弧型状的裹油布40c,即阻隔件40为裹油布40c,裹油布40c裹在线圈绕组的上半圆端部31内表面301上,这样裹油布40c对冷却液进行阻挡,防止冷却液与转子60接触,其中,本实施例中,裹油布40c为现有的材料,本实施例中,当阻隔件40为刚性材料时,安装过程中,必须控制好阻隔件40与线圈绕组端部的配合,即要求的安装精度较高,一旦阻隔件40安装不准确或者阻隔件40的形状发生变形,都会造成阻隔件40与线圈绕组的端部无法实现较好的配合,而本实施例中,当阻隔件40采用裹油布40c时,由于裹油布40c为柔性材料,这样组装时可以直接包裹在线圈绕组的端部上即可,而且可以随时调整裹油布40c的安装位置,大大降低了阻隔件40与线圈绕组端部的配合难度,使得安装更方便。
其中,本实施例中,裹油布40c靠近线圈绕组端部30外侧面302的一端具有向线圈绕 组的上半圆端部31外侧面302延伸的延伸部42c,且本实施例中,引流部为延伸部42c上开设的开口41c,以使喷向线圈绕组的冷却液引流到轴承51,这样,线圈绕组的上半圆端部31上的冷却液在延伸部42c处通过开口41c流向轴承51,从而实现对轴承51的散热,同时,冷却液经过轴承51散热后,通过导流槽13、导油件110流向线圈绕组的下半圆端部32,从而实现对线圈绕组的上下端部的冷却。
实施例四
图17是本申请实施例四提供的动力总成的结构示意图。
本实施例提供一种动力总成,本实施例提供的动力总成可以应用于电动车/电动汽车(EV)、纯电动汽车(PEV/BEV)、混合动力汽车(HEV)、增程式电动汽车(REEV)、插电式混合动力汽车(PHEV)、新能源汽车(New Energy Vehicle)等,或者,可以应用于电池管理(Battery Management)、电机&驱动(Motor & Driver)、功率变换(Power Converter)等设备中,如图17所示,至少包括上述任一实施例的电机以及与电机的转轴50相连的减速器200,其中,减速器200内设有散热通道201,且散热通道201与电机内的冷却通道20形成冷却回路,即电机和减速器200采用集成化的冷却系统进行散热,这样既实现了对电机的冷却,同时也实现了减速器200的冷却,其中,本实施例中,减速器200内的其他部件具体可以参考现有减速器200的结构,本实施例中,与现有减速器的区别为,本实施例中,在减速器200内设置与电机内的冷却通道20形成冷却回路的散热通道201,通过散热通道201实现对减速器200内的器件进行散热。
其中,上述实施例中的油泵80、换热器100和过滤器90位于减速器200内,即本实施例中,冷却系统中的油泵80、换热器100和过滤器90设置在减速器200内,通过油泵80实现冷却回路的循环散热,通过换热器100可以对冷却回路中的冷却液进行冷却,从而实现对电机和减速器200的良好散热,相应的,过滤器90起到对冷却回路上的冷却进行过滤目的,本实施例中,冷却液具体为冷却油,即动力总成中的电机和减速器200采用油冷系统,本实施例中,需要说明的是,当动力总成应用到电动汽车中时,此时控制微控制单元(Microcontroller Unit;MCU)具体采用水冷方式进行散热,这样MCU的水冷出水口可以与换热器100相连,换热器100的出水口与减速器200上的出水口相连。
因此,本实施例提供的动力总成,通过包括上述电机和减速器200,避免了转子60高速转动时的动能消耗,实现了电机内线圈绕组上下端部均衡散热的目的,同时实现了电机和减速器200集成化冷却的目的,使得动力总成的散热更佳。
其中,本实施例中,电机的壳体(具体为电机壳体内的前端盖)与减速器的壳体之间可以通过固定件(例如螺钉或螺栓)固定在一起形成整体结构,具体可以如图7、图8、图13所示,电机与减速器固定在一起形成整体。
实施例五
本实施例提供一种汽车,其中,本实施例提供的汽车可以为电动车/电动汽车(EV)、纯电动汽车(PEV/BEV)、混合动力汽车(HEV)、增程式电动汽车(REEV)、插电式混合动力汽车(PHEV)、新能源汽车(New Energy Vehicle)等。
该汽车至少包括车轮、传动部件和上述任一实施例的电机,其中,电机的转轴50通 过传动部件与车轮相连,这样电机的转轴50转动以输出动力,传动部件将动力传递给车轮,使得车轮转动,其中本实施例中,需要说明的是,汽车中包括的电机数量可以为一个也可以两个,当电机数量为一个时,此时电机通过传动部件与两个前车轮或两个后车轮相连,其中,电机通过传动部件与两个前车轮相连时,此时前车轮为主动轮,后车轮为从动轮,相应的,电机通过传动部件与两个后车轮相连时,此时,后车轮为主动轮,前车轮为从动轮;当电机数量为两个时,则其中一个电机通过传动部件与两个前车轮相连,另一个电机通过另一传动部件与两个后车轮相连。
在一种可能的实现方式中,传动部件具体可以包括变速箱和半轴,电机的转轴50与变速箱相连,变速箱通过半轴分别与两个前车轮或两个后车轮相连。
应该理解的是,本实施例提供的汽车除了车轮、传动部件和电机外,还可以包括控制板、车体等,本实施例中,汽车的其他结构可以参考现有技术,本实施例中不再赘述。
本申请实施例提供的汽车,通过包括上述电机,阻挡了电机转子与冷却液的接触,从而避免了电机转子在旋转过程中的动能消耗,使得电机的转子转速更快,转轴输出的动能更大,这样使得汽车的动力更大。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (21)

  1. 一种电机,包括壳体,所述壳体内设置依次套设的转轴、转子和定子,且所述定子上绕设有线圈绕组,所述转轴的两端分别通过轴承与所述壳体相对的两个侧端面转动相连,其特征在于:
    所述壳体内具有可供冷却液流通且两端延伸到所述线圈绕组端部的冷却通道,所述冷却通道与所述壳体的顶端和底端分别开设的第一开口和第二开口相连通,且所述冷却通道靠近所述线圈绕组端部的位置具有喷口,所述喷口用于将所述冷却通道中的冷却液喷向所述线圈绕组的端部;
    其中,还包括:
    至少一个阻隔件,所述阻隔件至少位于所述线圈绕组端部的内表面或外表面,且所述阻隔件阻挡在所述喷口与所述转子之间。
  2. 根据权利要求1所述的电机,其特征在于,所述阻隔件上靠近所述壳体顶端的位置具有引流部,所述引流部用于将所述阻隔件上的部分所述冷却液引流到所述轴承上,以使所述冷却液经过所述轴承后流向所述线圈绕组靠近所述壳体底端的端部。
  3. 根据权利要求2所述的电机,其特征在于,所述阻隔件为至少绕着所述线圈绕组上半圆端部的内表面或外表面设置的半圆弧型结构。
  4. 根据权利要求3所述的电机,其特征在于,所述阻隔件为绕着所述线圈绕组上半圆端部的内表面设置的半圆弧型隔板,所述半圆弧型隔板的一端与所述壳体的内壁相连,且所述半圆弧型隔板的弧面与所述壳体的内壁之间形成可供所述线圈绕组的上半圆端部容纳的空间,以使所述半圆弧型隔板位于所述线圈绕组的上半圆端部的内表面。
  5. 根据权利要求4所述的电机,其特征在于,所述半圆弧型隔板与所述壳体相连的一端具有连接部,所述半圆弧型隔板通过所述连接部与所述壳体的内壁相连。
  6. 根据权利要求5所述的电机,其特征在于,所述引流部为所述半圆弧型隔板靠近所述连接部的位置开设的通孔,且所述通孔在竖直方向上的投影区域位于所述轴承上,以使所述冷却液通过所述通孔流向所述轴承。
  7. 根据权利要求3所述的电机,其特征在于,所述阻隔件为绕着所述线圈绕组上半圆端部的外表面设置的半圆弧型板,其中,所述半圆弧型板与所述壳体的内壁相连,且所述半圆弧型板与所述壳体内壁之间形成与所述冷却通道的所述喷口连通的间隙,以使所述冷却液沿着所述半圆弧型板朝向所述轴承和所述线圈绕组的下半圆端部流动。
  8. 根据权利要求7所述的电机,其特征在于,所述引流部为所述半圆弧型板朝向所述壳体的侧端面的一端向外延伸形成且向下倾斜的外沿,且所述外沿与所述轴承在竖直方向上至少部分重叠,以使所述间隙中的部分所述冷却液通过所述外沿流向所述轴承。
  9. 根据权利要求8所述的电机,其特征在于,所述半圆弧型板上设有多个开孔,以使所述间隙中的部分所述冷却液渗入所述线圈绕组的端部。
  10. 根据权利要求3所述的电机,其特征在于,所述阻隔件为包裹在所述线圈绕组的上半圆端部的内表面上且呈半圆弧型状的裹油布。
  11. 根据权利要求10所述的电机,其特征在于,所述裹油布靠近所述线圈绕组端部外侧面的一端具有向所述线圈绕组的上半圆端部外侧面延伸的延伸部,且所述引流部为所 述延伸部上开设的开口,以使喷向所述线圈绕组的部分所述冷却液通过所述开口流向所述轴承。
  12. 根据权利要求1-11任一所述的电机,其特征在于,所述壳体上靠近所述轴承顶端的位置或者所述轴承的顶端上开设集油槽,所述集油槽用于将流向所述轴承的所述冷却液进行收集,以使所述冷却液流入所述轴承中。
  13. 根据权利要求1-12任一所述的电机,其特征在于,所述壳体内靠近所述轴承底端的位置设有导流槽,所述导流槽用于将所述轴承上的所述冷却液导入所述线圈绕组的下半圆端部。
  14. 根据权利要求13所述的电机,其特征在于,还包括:导油件,所述导油件设在在所述线圈绕组的下半圆端部的内表面,且所述导油件的一端靠近所述导油槽,另一端靠近所述转子,所述导油件上开设可供所述冷却液流通的流通孔,以使所述冷却液渗入所述线圈绕组的下半圆端部的底侧。
  15. 根据权利要求14所述的电机,其特征在于,所述导油件靠近所述转子的一端边缘设有凸起,所述凸起用于阻挡所述导油件上的所述冷却液流入所述转子。
  16. 根据权利要求1-15任一所述的电机,其特征在于,所述定子的外壁与所述壳体的内表面围成所述冷却通道,所述定子的两端与所述壳体内表面之间形成所述喷口。
  17. 根据权利要求1-15任一所述的电机,其特征在于,所述壳体靠近所述定子的内壁上设置凹槽,所述凹槽与所述定子的外壁围成所述冷却通道,且所述凹槽上靠近所述线圈绕组端部的槽口形成所述喷口。
  18. 根据权利要求1-15任一所述的电机,其特征在于,所述壳体靠近所述定子的内壁中设置所述冷却通道,且所述壳体的内壁上开设与所述冷却通道连通的所述喷口。
  19. 一种动力总成,其特征在于,至少包括上述权利要求1-18任一所述的电机以及与所述电机的转轴相连的减速器,其中,所述减速器内设有散热通道,且所述散热通道与所述电机内的冷却通道形成冷却回路。
  20. 根据权利要求19所述的动力总成,其特征在于,所述电机中的油泵、换热器和过滤器设置在所述减速器内。
  21. 一种汽车,其特征在于,至少包括车轮、传动部件以及上述权利要求1-18任一所述的电机,所述电机的转轴通过所述传动部件与所述车轮相连。
PCT/CN2020/082615 2019-07-08 2020-03-31 电机、动力总成和汽车 WO2021004102A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20837233.4A EP3934070B1 (en) 2019-07-08 2020-03-31 Motor, power assembly and vehicle
JP2021566075A JP7309916B2 (ja) 2019-07-08 2020-03-31 モータ、パワートレイン、および車両
KR1020217037879A KR20210144937A (ko) 2019-07-08 2020-03-31 모터, 파워트레인 및 차량
US17/501,247 US11575291B2 (en) 2019-07-08 2021-10-14 Motor with coolant blocking member on end portion of winding, powertrain, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910611288.9A CN110492663B (zh) 2019-07-08 2019-07-08 电机、动力总成和汽车
CN201910611288.9 2019-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/501,247 Continuation US11575291B2 (en) 2019-07-08 2021-10-14 Motor with coolant blocking member on end portion of winding, powertrain, and vehicle

Publications (1)

Publication Number Publication Date
WO2021004102A1 true WO2021004102A1 (zh) 2021-01-14

Family

ID=68546811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082615 WO2021004102A1 (zh) 2019-07-08 2020-03-31 电机、动力总成和汽车

Country Status (6)

Country Link
US (1) US11575291B2 (zh)
EP (1) EP3934070B1 (zh)
JP (1) JP7309916B2 (zh)
KR (1) KR20210144937A (zh)
CN (1) CN110492663B (zh)
WO (1) WO2021004102A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123614A (zh) * 2021-11-12 2022-03-01 华中科技大学 一种集成有冷却结构的内转子电机
WO2023173267A1 (zh) * 2022-03-15 2023-09-21 舍弗勒技术股份两合公司 电机

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492663B (zh) 2019-07-08 2021-02-23 华为技术有限公司 电机、动力总成和汽车
US11670443B2 (en) * 2019-11-18 2023-06-06 Ford Global Technologies, Llc Liquid cooled inductor via nozzle spray
CN112467940B (zh) * 2019-12-24 2022-11-25 长城汽车股份有限公司 电机冷却结构、驱动组件及车辆
CN111342586B (zh) * 2020-02-28 2022-04-22 华为数字能源技术有限公司 电机、动力总成和汽车
WO2021237539A1 (zh) * 2020-05-27 2021-12-02 华为数字能源技术有限公司 一种动力总成及电动车
JP2022144359A (ja) * 2021-03-19 2022-10-03 本田技研工業株式会社 回転電機
CN114285197A (zh) * 2021-12-30 2022-04-05 浙江吉利控股集团有限公司 一种定子铁芯、电机、动力总成和汽车
JP7439277B2 (ja) * 2021-06-09 2024-02-27 浙江吉利控股集団有限公司 ステータコア、電動機、パワートレイン、自動車及び車両
CN113708550B (zh) * 2021-09-14 2022-11-15 威海西立电子有限公司 一种电机
WO2023146002A1 (ko) * 2022-01-28 2023-08-03 엘지마그나 이파워트레인 주식회사 모터 조립체

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195409A (zh) * 2010-03-12 2011-09-21 永济新时速电机电器有限责任公司 双馈异步发电机
US20140097713A1 (en) * 2012-10-09 2014-04-10 Dumitru Puiu Electric motor with coolant shield assembly
CN108336865A (zh) * 2018-03-30 2018-07-27 北京理工大学 一种液冷驱动电机
CN207705951U (zh) * 2017-12-06 2018-08-07 深圳市大地和电气股份有限公司 汽车驱动电机冷却系统
CN207939353U (zh) * 2018-03-30 2018-10-02 长城汽车股份有限公司 一种电机和车辆
CN110492663A (zh) * 2019-07-08 2019-11-22 华为技术有限公司 电机、动力总成和汽车

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146812A (zh) * 1974-05-15 1975-11-25
US5682074A (en) * 1994-03-02 1997-10-28 Northrop Grumman Corporation Electric vehicle motor
JP4757238B2 (ja) * 2007-07-13 2011-08-24 アイシン・エィ・ダブリュ株式会社 回転電機の冷却構造及び冷却方法
JP2010124657A (ja) * 2008-11-21 2010-06-03 Toyota Motor Corp 回転電機
JP5136688B2 (ja) * 2010-02-19 2013-02-06 トヨタ自動車株式会社 動力伝達装置の潤滑構造
US8525375B2 (en) * 2010-03-23 2013-09-03 Hamilton Sundstrand Corporation Cooling arrangement for end turns and stator in an electric machine
JP5575055B2 (ja) * 2010-06-24 2014-08-20 株式会社日本自動車部品総合研究所 回転電機
JP5957879B2 (ja) 2011-12-27 2016-07-27 株式会社豊田自動織機 回転電機の冷却構造
JP2014030284A (ja) * 2012-07-31 2014-02-13 Mitsubishi Motors Corp 車両用回転電機
CN102820738B (zh) * 2012-08-17 2015-03-18 中国科学院电工研究所 一种喷淋式电机定子蒸发冷却系统
EP2762752B1 (en) * 2013-01-30 2017-06-21 C.R.F. Società Consortile per Azioni A gearbox for a motor vehicle
JP6108541B2 (ja) 2013-05-16 2017-04-05 本田技研工業株式会社 電動機
JP6118633B2 (ja) * 2013-05-16 2017-04-19 本田技研工業株式会社 電動機
CN103683673B (zh) * 2013-11-13 2016-08-17 华南理工大学 一种直接喷淋式电机冷却系统
JP6072866B1 (ja) * 2015-08-26 2017-02-01 三菱電機株式会社 回転電機
JP2017118688A (ja) 2015-12-24 2017-06-29 三菱自動車工業株式会社 モータ
CN205566953U (zh) 2016-04-08 2016-09-07 深圳麦格米特电气股份有限公司 一种户外风冷式充电桩
US20170310189A1 (en) * 2016-04-25 2017-10-26 Ford Global Technologies, Llc Stator Cooling For Electric Machines
US10903701B2 (en) * 2016-08-17 2021-01-26 Atieva, Inc. Motor cooling system utilizing axial cooling channels
CN206124802U (zh) 2016-10-18 2017-04-26 苏州协鑫集成科技工业应用研究院有限公司 直流充电桩
US11251682B2 (en) * 2017-06-19 2022-02-15 Lg Magna E-Powertrain Co., Ltd. Electric motor including oil spraying part
DE102017211135A1 (de) * 2017-06-30 2019-01-03 Audi Ag Elektrische Maschine und Kraftfahrzeug
US10396631B2 (en) * 2017-10-31 2019-08-27 Nio Usa, Inc. Dual inverter and electric motor split-flow cooling system
JP2019106776A (ja) 2017-12-12 2019-06-27 株式会社マーレ フィルターシステムズ モータ内蔵型駆動装置
JP6594401B2 (ja) * 2017-12-19 2019-10-23 本田技研工業株式会社 回転電機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195409A (zh) * 2010-03-12 2011-09-21 永济新时速电机电器有限责任公司 双馈异步发电机
US20140097713A1 (en) * 2012-10-09 2014-04-10 Dumitru Puiu Electric motor with coolant shield assembly
CN207705951U (zh) * 2017-12-06 2018-08-07 深圳市大地和电气股份有限公司 汽车驱动电机冷却系统
CN108336865A (zh) * 2018-03-30 2018-07-27 北京理工大学 一种液冷驱动电机
CN207939353U (zh) * 2018-03-30 2018-10-02 长城汽车股份有限公司 一种电机和车辆
CN110492663A (zh) * 2019-07-08 2019-11-22 华为技术有限公司 电机、动力总成和汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3934070A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123614A (zh) * 2021-11-12 2022-03-01 华中科技大学 一种集成有冷却结构的内转子电机
WO2023173267A1 (zh) * 2022-03-15 2023-09-21 舍弗勒技术股份两合公司 电机

Also Published As

Publication number Publication date
JP7309916B2 (ja) 2023-07-18
EP3934070B1 (en) 2024-01-31
US20220037955A1 (en) 2022-02-03
CN110492663B (zh) 2021-02-23
EP3934070A1 (en) 2022-01-05
US11575291B2 (en) 2023-02-07
JP2022531713A (ja) 2022-07-08
EP3934070A4 (en) 2022-07-27
CN110492663A (zh) 2019-11-22
KR20210144937A (ko) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2021004102A1 (zh) 电机、动力总成和汽车
EP4002656B1 (en) Oil-water-cooled electric drive assembly and new energy automobile
WO2021042465A1 (zh) 一种油水双冷的电驱动总成和新能源汽车
WO2020253321A1 (zh) 定子铁芯、壳体、电动车的电机冷却系统及电动车
CN108206610B (zh) 与冷却剂热交换而冷却的驱动电动机及使用其的环保车辆
CN206313565U (zh) 电机转子油冷结构和具有该油冷结构的电机
EP4206012A1 (en) Integrated electric driving system, and electric vehicle
CN106655632B (zh) 一种油冷回路系统、驱动电机、动力系统及汽车
WO2018003214A1 (ja) 車両用回転電機
WO2022178868A1 (zh) 动力总成及电动车
WO2024045664A1 (zh) 一种动力总成及机械设备
CN209705250U (zh) 一种水冷电机前轴承油润滑机构和电机驱动总成
CN115384290A (zh) 动力总成及车辆
CN113767553B (zh) 一种动力总成、车辆及电机冷却方法
US11670443B2 (en) Liquid cooled inductor via nozzle spray
CN211924860U (zh) 一种减速器壳体、双驱动减速器及汽车
JP2022551076A (ja) モータ冷却構造、駆動アセンブリ及び車両
JP7310531B2 (ja) 車両用モータ
JP7484547B2 (ja) 車両用駆動装置
KR100642994B1 (ko) 구동장치
JP7484549B2 (ja) 車両用駆動装置
JP7484548B2 (ja) 回転電機
KR20140071580A (ko) 전기자동차
CN113675980B (zh) 一种电动汽车及其驱动电机、动力总成
CN211151748U (zh) 一种油水双冷的电驱动总成和新能源汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020837233

Country of ref document: EP

Effective date: 20210927

ENP Entry into the national phase

Ref document number: 2021566075

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217037879

Country of ref document: KR

Kind code of ref document: A