WO2021004101A1 - 三维打印方法、系统及存储介质 - Google Patents

三维打印方法、系统及存储介质 Download PDF

Info

Publication number
WO2021004101A1
WO2021004101A1 PCT/CN2020/082420 CN2020082420W WO2021004101A1 WO 2021004101 A1 WO2021004101 A1 WO 2021004101A1 CN 2020082420 W CN2020082420 W CN 2020082420W WO 2021004101 A1 WO2021004101 A1 WO 2021004101A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
slice
cross
slice layer
outer frame
Prior art date
Application number
PCT/CN2020/082420
Other languages
English (en)
French (fr)
Inventor
马达荣
Original Assignee
珠海赛纳三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳三维科技有限公司 filed Critical 珠海赛纳三维科技有限公司
Publication of WO2021004101A1 publication Critical patent/WO2021004101A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Definitions

  • This application relates to the field of three-dimensional printing technology, in particular to a three-dimensional printing method, system and storage medium.
  • Three-dimensional printing usually includes the following steps:
  • the printer prints layer by layer according to the print data.
  • Existing 3D printers generally include a print head, a printing platform, and a three-axis movement mechanism of X, Y, and Z.
  • the relative movement between the print head and the printing platform is realized through the X, Y, and Z three-axis movement mechanism.
  • the print head moves in the X direction relative to the printing platform to perform scanning and printing operations, and moves in the Y direction to perform stepping operations, so as to realize the printing of a single slice layer, and make the print head relative to the printing after the single slice layer is printed.
  • the platform moves along the Z direction to print the subsequent layers; usually in order to increase the printing speed, it is necessary to reduce the number of acceleration and deceleration movements between the print head and the printing platform as much as possible, that is, to complete the printing with as few scans as possible
  • the placement rule of three-dimensional objects in three-dimensional printing is Lz ⁇ Ly ⁇ Lx (Lz, Ly, Lx are the dimensions of three-dimensional objects in the Z direction, Y direction and X direction respectively); but because of the three-dimensional objects
  • the contour shapes of the different slice layers are different, so that the contour sizes of some slice layers in the X direction and the Y direction cannot meet the above rules, which makes it difficult to further increase the printing speed.
  • the main purpose of this application is to provide a three-dimensional printing method that can increase the printing speed.
  • This application provides a three-dimensional printing method, which includes:
  • the three-dimensional model of the three-dimensional object to be printed is sliced to generate slice data.
  • the slice data includes the cross-sectional shape information of each slice layer of the three-dimensional object to be printed.
  • the scanning printing direction and the stepping direction of each slice layer are determined according to the outer frame of the cross-section of each slice layer; the stepping direction is the extension direction of the shortest side of the outer frame, and the scanning printing direction Is the direction perpendicular to the stepping direction.
  • the printing data of each slice layer is generated according to the cross-sectional shape information, scanning printing direction and stepping direction of each slice layer.
  • a plurality of printing layers are formed according to the printing data of each of the slice layers, and the plurality of printing layers are superimposed to form the three-dimensional object to be printed.
  • slicing the three-dimensional model of the three-dimensional object to be printed, and generating slice data includes:
  • a support structure for supporting the three-dimensional model for printing is generated according to the slicing direction, and then the three-dimensional model on which the support structure is generated is sliced along the determined slicing direction.
  • determining the slice direction of the three-dimensional model includes:
  • determining the outer frame surrounding the cross section of each slice layer according to the cross-sectional shape information of each slice layer includes:
  • each of the slice layers in a two-dimensional coordinate system, the two-dimensional coordinate system including an X axis and a Y axis perpendicular to each other.
  • determining the outer frame surrounding the cross section of each slice layer according to the cross-sectional shape information of each slice layer includes:
  • each of the slice layers in a two-dimensional coordinate system, the two-dimensional coordinate system including an X axis and a Y axis perpendicular to each other.
  • each slice layer According to the cross-sectional shape of each slice layer, the two points farthest away on the cross-sectional contour of each slice layer are determined, and the two points are connected.
  • the two farthest points on the cross-sectional contour of each slice layer and the two points farthest from the connecting line are used as tangent points to obtain multiple outer tangent lines of the cross section of each slice layer.
  • the outer frame of the section of each slice layer is determined according to the plurality of outer tangent lines.
  • determining the outer frame surrounding the cross section of each slice layer according to the cross-sectional shape information of each slice layer includes:
  • each slice layer is divided into a plurality of regions.
  • a corresponding sub-outer frame is determined in each of the areas.
  • the outer frame of the cross-section of each slice layer is determined according to the plurality of sub-outer frames.
  • the print data includes print head rotation angle data, and the print head rotation angle data is used to control the rotation of the print head so that the extension direction of the nozzle column on the print head is perpendicular to the scanning and printing direction .
  • the printing data includes rotation angle data of the printing platform, and the rotation angle data of the printing platform is used to control the rotation of the printing platform so that the scanning and printing direction is perpendicular to the extending direction of the nozzle column on the printing head.
  • the print data further includes movement data and print head deposition data of the first direction movement mechanism, the second direction movement mechanism and the third direction movement mechanism.
  • the movement data of the first direction moving mechanism and the second direction moving mechanism are used to control the print head or the printing platform to move along the scanning and printing direction to perform scanning and printing operations, and to perform scanning and printing operations between adjacent scanning and printing operations.
  • the stepping operation is performed while moving along the stepping direction.
  • the movement data of the third-direction movement mechanism is used to control the movement of the print head or the printing platform in a direction perpendicular to the plane determined by the scanning and printing direction and the stepping direction.
  • the print head deposition data is used to control the print head to deposit materials on the printing platform during the scanning printing operation to form a three-dimensional object.
  • this application also provides a three-dimensional printing system, which includes:
  • the slicing unit is used to slice the three-dimensional model of the three-dimensional object to be printed to generate slice data, the slice data including the cross-sectional shape information of each slice layer of the three-dimensional object to be printed.
  • the outer frame determining unit is configured to determine the outer frame surrounding the cross section of each slice layer according to the cross-sectional shape information of each slice layer.
  • the direction determining unit is configured to determine the scanning printing direction and the stepping direction of each slice layer according to the outer frame of the cross-section of each slice layer, and the stepping direction is the extension direction of the shortest side of the outer frame ,
  • the scanning and printing direction is a direction perpendicular to the stepping direction.
  • the printing data generating unit is used to generate the printing data of each slice layer according to the cross-sectional shape information, scanning printing direction and stepping direction of each slice layer.
  • the printing layer forming unit is configured to form multiple printing layers according to the printing data of each of the slice layers, and the multiple printing layers are superimposed to form the three-dimensional object to be printed.
  • the slicing unit includes:
  • the slice direction determining unit is used to determine the slice direction of the three-dimensional model.
  • a judging unit for judging whether it is necessary to generate a supporting structure for supporting the three-dimensional model for printing
  • the support structure generation and slicing sub-unit is used to generate a support structure for supporting the three-dimensional model for printing according to the slicing direction when the judgment result is yes, and then support the generated support along the determined slicing direction
  • the three-dimensional model of the structure is sliced; when the judgment result is no, the three-dimensional model is sliced along the determined slice direction.
  • the slicing direction determining unit is configured to determine the smallest volume outer box surrounding the three-dimensional model according to the three-dimensional model, and use the extension direction of the shortest side of the smallest volume outer box as the slicing direction of the three-dimensional model; Alternatively, it is used to rotate the three-dimensional model to determine the smallest volume of the supporting structure supporting the three-dimensional model for printing, and the direction perpendicular to the horizontal plane in the smallest volume of the placing method is taken as the three-dimensional model Slice direction.
  • the outer frame determining unit includes:
  • the first setting unit is configured to place each slice layer in a two-dimensional coordinate system, and the two-dimensional coordinate system includes an X axis and a Y axis that are perpendicular to each other.
  • the first determining subunit is used to determine the minimum value Xmin and the maximum value Xmax of the coordinates on the X axis and the minimum value Ymin and the maximum value Ymax of the coordinates on the Y axis of the cross section of each slice layer.
  • the first outer frame determines the subunit, which is used to combine coordinate points (Xmin, Ymin), coordinate points (Xmax, Ymin), coordinate points (Xmax, Ymax), coordinate points (Xmin, Ymax), and coordinate points (Xmin, Ymin) Connected sequentially to obtain the outer frame of the cross section of each slice layer.
  • the outer frame determining unit includes:
  • the second setting unit is configured to place each slice layer in a two-dimensional coordinate system, and the two-dimensional coordinate system includes an X axis and a Y axis that are perpendicular to each other.
  • the second determining subunit is configured to determine the two points furthest away on the cross-sectional contour of each slice layer according to the cross-sectional shape of each slice layer, and connect the two points.
  • the third determining subunit is used for finding the points farthest from the connecting line on both sides of the connecting line between the two furthest points.
  • the outer tangent line generating unit is configured to use the two farthest points on the cross-sectional contour of each slice layer and the two points farthest from the connecting line as the tangent points to obtain multiple outer slices of the cross section of each slice layer. Tangent.
  • the second outer frame determining subunit is used for determining the outer frame of the cross section of each slice layer according to the plurality of outer tangent lines.
  • the outer frame determining unit includes:
  • the area dividing unit is used to divide the cross section of each slice layer into multiple areas.
  • the child outer frame determining unit is used to determine the corresponding child outer frame in each of the regions.
  • the third outer frame determining subunit is configured to determine the outer frame of the cross section of each slice layer according to the plurality of sub-outer frames.
  • the present application also provides a storage medium, the storage medium including a storage program, wherein, when the program is running, the device where the storage medium is located is controlled to execute the above-mentioned three-dimensional printing method.
  • the three-dimensional printing method of the present application determines the outer frame surrounding the cross section of each slice layer according to the cross-sectional shape of each slice layer, and determines each slice according to the outer frame of the cross section of each slice layer.
  • the scanning printing direction and the stepping direction of the layer by setting the extension direction of the shortest side of the outer frame of the cross section of each slice layer as the stepping direction, and setting the direction perpendicular to the stepping direction as the scanning printing direction, and then according to
  • the cross-sectional shape information of each slice layer and the determined scanning printing direction and stepping direction generate printing data and print multiple printing layers according to the printing data, so as to enable each slice layer to perform scanning printing times during the printing process Minimal, thereby reducing the time for the print head to accelerate and decelerate during the printing process of each slice layer, and improve the printing speed.
  • FIG. 1a, FIG. 1b, and FIG. 1c are schematic diagrams of the printing state of the three-dimensional printing device according to the embodiment of the application.
  • FIGS. 2a, 2b, and 2c are schematic diagrams of the printing state of the three-dimensional printing device according to another embodiment of the application.
  • FIG. 3 is a flowchart of a three-dimensional printing method according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of a method for determining an outer frame according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of a method for determining an outer frame according to another embodiment of the application.
  • FIG. 6 is a schematic diagram of a method for determining an outer frame according to another embodiment of the application.
  • FIG. 7 is a block diagram of a three-dimensional printing system according to an embodiment of the application.
  • the embodiment of the present application discloses the structure and printing process of a three-dimensional printing device 10.
  • Figures 1a-1c show schematic diagrams of the printing state of the three-dimensional printing device 10 corresponding to three different slice layers.
  • the three-dimensional printing device 10 includes an X-axis moving mechanism 11, a Y-axis moving mechanism 12, and a Z-axis moving mechanism (in the figure) Not shown), the printing platform 13, the printing head assembly 14, and the printing head rotating mechanism 15.
  • the print head assembly 14 is movably arranged on the X-axis moving mechanism 11, and both ends of the X-axis moving mechanism 11 are movably arranged on the Y-axis moving mechanism 12, respectively.
  • the print head assembly 14 includes at least one inkjet head, the at least one inkjet head includes at least one nozzle row, and a plurality of nozzle holes are arranged in sequence in the nozzle row direction to form the nozzle row.
  • the direction of the nozzle column of the inkjet head is parallel to the Y-axis moving mechanism 12.
  • the X-axis moving mechanism 11, the Y-axis moving mechanism 12 and the Z-axis moving mechanism The printing head assembly 14 is driven to move above the printing platform 13, and the inkjet head on the printing head assembly 14 ejects materials to the printing platform 13 during the movement to form a target three-dimensional object.
  • the print head rotating mechanism 15 is used to rotate the print head assembly 14 so that the extension direction of the nozzle holes of the ink jet head on the print head assembly 14 is perpendicular to the scanning and printing direction M;
  • FIG. 1a shows a schematic diagram of the printing state of the three-dimensional printing device 10 when the first slice layer 1 is printed.
  • O1 is the cross-section of the first slice layer 1
  • F1 is the outer frame surrounding the cross-section O1
  • the outer frame F1 is rectangular
  • the two adjacent sides La and Lb of the outer frame F1 are respectively parallel to the X-axis moving mechanism 11 and the Y-axis moving mechanism 12, and the length of La is greater than the length of Lb
  • the extending direction of the side Lb is set as the stepping direction S
  • the direction perpendicular to the stepping direction S is set as the scanning printing direction M.
  • the scanning and printing direction M is the direction in which the inkjet head on the print head assembly 14 performs scanning and printing operations during the movement.
  • the scanning and printing operation specifically refers to the process of moving the inkjet head on the print head assembly 14 along the scanning and printing direction.
  • the stepping direction S is the direction in which the print head assembly 14 moves between adjacent scanning and printing operations. At this time, as shown in FIG. 1a, the direction of the nozzle holes of the inkjet head on the print head assembly 14 is perpendicular to the determined scan.
  • the printing direction M the printing head assembly 14 does not need to be rotated, and the printing head assembly 14 performs printing according to the determined scanning and printing direction M and the stepping direction S to form the first slice layer 1.
  • FIG. 1b shows a schematic diagram of the printing state of the three-dimensional printing device 10 when the second slice layer 2 is printed.
  • O2 is the cross section of the second slice layer 2
  • F2 is the outer frame surrounding the cross section O2
  • the outer frame F2 is rectangular
  • the two adjacent sides La and Lb of the outer frame F2 are respectively parallel to the Y axis moving mechanism 12
  • the X-axis moving mechanism 11 and the length of La is greater than the length of Lb, in the second slice layer 2
  • the extending direction of the side Lb is set as the stepping direction S
  • the direction perpendicular to the stepping direction S is set as the scanning Printing direction M, and as shown in Fig.
  • the print head assembly 14 is rotated 90 degrees by the print head rotation mechanism 15 so that the extension direction of the nozzle holes of the ink jet head on the print head assembly 14 is perpendicular to the determined scanning and printing direction M, the rotated print head assembly 14 performs printing according to the determined scanning and printing direction M and stepping direction S to form the second slice layer 2.
  • FIG. 1c shows a schematic diagram of the printing state of the three-dimensional printing device 10 when the third slice layer 3 is printed.
  • O3 is the cross-section of the third slice layer 3
  • F3 is the outer frame surrounding the cross-section O3
  • the outer frame F3 is rectangular
  • the two adjacent sides La and Lb of the outer frame F3 are moved by the Y-axis moving mechanism 12 and the X-axis.
  • the mechanisms 11 are not parallel, where the length of La is greater than the length of Lb, then in the third slice layer 3, the extending direction of the side Lb is set as the stepping direction S, and the direction perpendicular to the stepping direction S is set as the scanning Printing direction M, and as shown in FIG.
  • the print head assembly 14 is rotated by the print head rotation mechanism 15 so that the direction of the nozzle holes of the ink jet head on the print head assembly 14 is perpendicular to the determined scanning and printing direction M.
  • the print head assembly 14 performs printing in accordance with the determined scanning and printing direction M and stepping direction S to form the third slice layer 3.
  • the three-dimensional printing device described above performs printing based on the printing data generated by the control data generating unit, and the printing data includes the movement data of the X-axis moving mechanism 11, the Y-axis moving mechanism 12, and the Z-axis moving mechanism. Head deposition data and print head rotation angle data.
  • the movement data of the X-axis moving mechanism 11 and the Y-axis moving mechanism 12 are used to control the relative movement of the print head assembly 14 and the printing platform 13 in the scanning and printing direction M to perform scanning and printing operations, and between adjacent scanning and printing operations Move along the stepping direction S to perform the stepping operation.
  • the rotation angle data of the print head is used to control the rotation of the print head assembly 14 so that the extension direction of the nozzle column of the inkjet head on the print head assembly 14 is perpendicular to the scanning and printing direction M, and the movement data of the Z-axis moving mechanism is used to control printing
  • the head assembly 14 and the printing platform 13 move relative to each other in a direction perpendicular to the plane defined by the scanning and printing direction M and the stepping direction S to stack multiple layers in this direction, and the print head deposition data is used to control the printing on the print head assembly 14
  • the ink head deposits material on the printing platform during the scanning printing operation to form a three-dimensional object.
  • the movement data of the X-axis moving mechanism 11 and the movement data of the Y-axis moving mechanism 12 are related to the scanning and printing direction M and the stepping direction S determined by each slice layer.
  • the movement data includes movement speed, movement direction and movement amount
  • the movement data is data of the movement of the movable component installed on the movement mechanism driven by the corresponding movement mechanism.
  • the movement data of the X-axis moving mechanism 11 is the movement data of the print head assembly 14 in the scanning and printing direction M
  • the movement data of the Y-axis movement mechanism 12 is the print head assembly. 14 Movement data in the step direction S.
  • the movement data of the Y-axis movement mechanism 12 is the movement data of the print head assembly 14 in the scanning and printing direction M
  • the movement data of the X-axis movement mechanism is the movement data of the print head assembly 14 in the stepping direction.
  • Mobile data on S In the printing state as shown in FIG. 1c, the movement of the print head assembly 14 in the scanning and printing direction M needs to be realized by the linkage of the X-axis moving mechanism 11 and the Y-axis moving mechanism 12, that is, the print head assembly 14 needs to be made simultaneously Move along the X-axis moving mechanism 11 and the Y-axis moving mechanism 12.
  • the moving speed of the print head assembly 14 in the scanning and printing direction M is V
  • the angle between the scanning and printing direction M and the X-axis moving mechanism 11 is ⁇
  • the scanning and printing direction M and the stepping direction S are respectively determined according to the outer frame of the cross-sectional shape of each slice layer, and the print head assembly 14 is rotated by the print head rotating assembly 15 and the outer frame
  • Setting the extension direction of the shortest side Lb to the stepping direction S can reduce the number of scanning and printing operations performed by the slice layer, that is, reducing the number of acceleration and deceleration when the print head assembly 14 performs scanning and printing operations, that is, by changing the cross-sectional shape
  • the extension direction of the shortest side of the outer frame is set as a stepping direction to reduce the time for the print head assembly 14 to move in the non-printing area to improve printing efficiency.
  • FIGS. 2a to 2c are schematic diagrams of the printing state of the three-dimensional printing device 20 corresponding to three different slice layers.
  • the three-dimensional printing device 20 includes an X-axis moving mechanism 21, a Y-axis moving mechanism 22, a Z-axis moving mechanism (not shown in the figure), a printing platform 23, a print head assembly 24, and a printing platform rotating mechanism (not shown in the figure). Out).
  • the print head assembly 24 is movably arranged on the X-axis moving mechanism 21.
  • the two ends of the X-axis moving mechanism 21 are respectively movably arranged on the Y-axis moving mechanism 22.
  • the print head assembly 24 includes at least one inkjet head.
  • An inkjet head includes at least one nozzle row, and a plurality of nozzle holes are arranged in the direction of the nozzle row to form the nozzle row.
  • the direction of the nozzle column of the inkjet head is parallel to the Y-axis moving mechanism 22, the X-axis moving mechanism 21, the Y-axis moving mechanism 22 and the Z-axis moving mechanism
  • the print head assembly 24 is driven to move above the print platform 23, and the inkjet head on the print head assembly 24 ejects materials to the print platform 23 during the movement to form a target three-dimensional object.
  • the printing platform rotating mechanism is used to rotate the printing platform 23 so that the extension direction of the nozzle holes of the inkjet head on the printing head assembly 24 is perpendicular to the scanning printing direction M.
  • FIG. 2a shows a schematic diagram of the printing state of the three-dimensional printing device 20 when the first slice layer 1 is printed.
  • O1 is the cross-section of the first slice layer 1
  • F1 is the outer frame surrounding the cross-section O1
  • the outer frame F1 is rectangular
  • the two adjacent sides La and Lb of the outer frame F1 are respectively parallel to the X-axis moving mechanism 21 and Y-axis moving mechanism 22, and the length of La is greater than the length of Lb
  • the extending direction of the side Lb is set as the stepping direction S
  • the direction perpendicular to the stepping direction S is set as the scanning printing direction M.
  • the scanning and printing direction M is the direction in which the inkjet head on the print head assembly 24 performs scanning and printing operations during the movement.
  • the scanning and printing operation specifically refers to the inkjet head on the print head assembly 24 moving in the scanning and printing direction.
  • the stepping direction S is the direction in which the print head assembly 24 moves between adjacent scanning and printing operations.
  • the inkjet head on the print head assembly 24 The hole column direction is perpendicular to the determined scanning and printing direction M, so there is no need to rotate the printing platform 23, and the print head assembly 24 performs printing according to the determined scanning and printing direction M and the stepping direction S to form the first slice layer 1.
  • FIG. 2b shows a schematic diagram of the printing state of the three-dimensional printing device 20 when the second slice layer 2 is printed.
  • O2 is the cross-section of the second slice layer 2
  • F2 is the outer frame surrounding the cross-section O2
  • the outer frame F2 is rectangular
  • the two adjacent sides La and Lb of the outer frame F2 are respectively parallel to the Y-axis moving mechanism 22 and X Axis moving mechanism 21, and the length of La is greater than the length of Lb, in the second slice layer 2
  • the extending direction of the side Lb is set as the stepping direction S
  • the direction perpendicular to the stepping direction S is set as the scanning printing direction M, and as shown in FIG.
  • the printing platform 23 is rotated 90 degrees through the printing platform rotation mechanism, so that the direction of the nozzle holes of the inkjet head on the printing head assembly 14 is perpendicular to the determined scanning and printing direction M, and the printing head assembly 24 Printing is performed on the rotated printing platform 23 according to the determined scanning and printing direction M and stepping direction S to form the second slice layer 2.
  • FIG. 2c shows a schematic diagram of the printing state of the three-dimensional printing device 20 when the third slice layer 3 is printed.
  • O3 is the cross-section of the third slice layer 3
  • F3 is the outer frame surrounding the cross-section O3
  • the outer frame F3 is rectangular
  • the two adjacent sides La and Lb of the outer frame F3 are moved by the Y-axis moving mechanism 22 and the X-axis.
  • the mechanisms 21 are not parallel.
  • the length of La is greater than the length of Lb
  • the extending direction of the side Lb in the third slice layer 3 is set as the stepping direction S
  • the direction perpendicular to the stepping direction S is set as the scanning Printing direction M, and as shown in FIG.
  • the printing platform 23 is rotated by the printing platform rotation mechanism, so that the nozzle column direction of the inkjet head on the printing head assembly 24 is perpendicular to the determined scanning and printing direction M, and the printing head assembly 24 is in Printing is performed on the rotated printing platform 23 according to the determined scanning and printing direction M and stepping direction S to form the third slice layer 3.
  • the printing platform 23 is set in a circular shape.
  • the above-mentioned three-dimensional printing apparatus also performs printing based on the printing data generated by the control data generating unit.
  • the difference between the printing data in this embodiment and the printing data in the first embodiment is that the printing data does not include
  • the print head rotation angle data includes the print platform rotation angle data, that is, in this embodiment, the printing platform 23 is rotated to make the determined scanning and printing direction M perpendicular to the extension direction of the nozzle column of the inkjet head on the print head assembly 24.
  • the scanning and printing direction M is always parallel to the extension direction of the X-axis moving mechanism 11, that is, in the printing state shown in FIGS.
  • the X-axis moving mechanism 11 The movement data of is the movement data of the print head assembly 14 in the scanning direction M, and the movement data of the Y-axis movement mechanism 12 is the movement data of the print head assembly 14 in the stepping direction S.
  • the three-dimensional printing device 20 described above, the scanning printing direction M and the stepping direction S are respectively determined according to the outer frame of the cross-sectional shape of each slice layer, the printing platform 23 is rotated by the printing platform rotation mechanism, and the shortest side of the outer frame
  • the extension direction of Lb is set to the stepping direction S, which can reduce the number of scanning and printing operations performed by the slice layer, that is, reducing the number of acceleration and deceleration when the print head assembly 14 performs scanning and printing operations, that is, by changing the outer frame of the cross-sectional shape
  • the extension direction of the shortest side is set as a stepping direction to reduce the time for the print head assembly 14 to move in the non-printing area to improve printing efficiency.
  • This application also discloses a three-printing method, which includes:
  • this application discloses a three-dimensional printing method, which includes the steps:
  • the stepping direction is an extension direction of the shortest side of the outer frame
  • the scanning and printing direction is a direction perpendicular to the stepping direction.
  • the print data includes print head rotation angle data and/or print platform rotation angle data, as well as movement data and print head deposition data of the first direction moving mechanism, the second direction moving mechanism, and the third direction moving mechanism.
  • the print head rotation angle data is used to control the rotation of the print head so that the extension direction of the nozzle column on the print head is perpendicular to the scanning and printing direction;
  • the printing platform rotation angle data is used to control the rotation of the printing platform so that the scanning and printing direction is vertical
  • the movement data of the first direction moving mechanism and the second direction moving mechanism are used to control the relative movement of the print head and the printing platform in the scanning and printing direction to perform scanning and printing operations, and
  • the relative movement between adjacent scanning and printing operations is performed along the stepping direction to perform the stepping operation;
  • the movement data of the third-direction moving mechanism is used to control the printing head and the printing platform along a plane perpendicular to the scanning and printing direction and the stepping direction.
  • the direction is
  • slicing the three-dimensional model of the three-dimensional object to be printed and generating the slice data includes: determining the slicing direction of the three-dimensional model; judging whether it is necessary to generate a supporting structure for supporting the three-dimensional model for printing; The determined slice direction directly slices the 3D model.
  • a support structure for supporting the three-dimensional model for printing is generated according to the determined slicing direction, and then the three-dimensional model on which the support structure is generated is sliced along the determined slicing direction to generate slice data DATA.
  • the slicing includes dividing the three-dimensional model of the three-dimensional object to be printed into multiple layers along the determined slicing direction, where each layer may have a predetermined same thickness, or may be adaptively separated according to the shape of the three-dimensional model. Determine the thickness of each layer, that is, the thickness of each layer is related to the shape of the three-dimensional model.
  • the slicing direction of the three-dimensional model can be determined according to the needs of the user. For example, the user may need to complete the printing of the three-dimensional object in the shortest possible time, or the user needs to make the volume of the supporting structure as small as possible to reduce Waste of small materials.
  • determining the slicing direction of the three-dimensional model includes: determining the smallest volume outer box surrounding the three-dimensional model according to the three-dimensional model, and determining the extension direction of the shortest side of the determined smallest volume outer box as the slicing direction of the three-dimensional model.
  • the slicing direction can shorten the time required to complete the printing of the 3D object, or rotate the 3D model in the 3D space to determine the model placement method with the smallest volume of the supporting structure supporting the 3D model for printing, and the placement method is perpendicular to the horizontal plane
  • the direction of is determined as the slicing direction of the three-dimensional model, and the slicing direction determined in this way can minimize the use of supporting materials and reduce material waste.
  • determining the outer box of the three-dimensional model includes placing the three-dimensional model in an XYZ three-dimensional coordinate system, respectively determining the maximum and minimum values of the three-dimensional model on the X-axis, Y-axis and Z-axis, and finding the point (Xmin, Ymin , Zmin), (Xmin, Ymax, Zmin), (Xmax, Ymin, Zmin), (Xmax, Ymax, Zmin), (Xmin, Ymin, Zmax), (Xmin, Ymin, Zmax), (Xmax, Ymin, Zmax ), (Xmax, Ymax, Zmax), using the above eight points as the vertices of the outer box to determine the smallest volume outer box of the three-dimensional model.
  • Figure 4 shows a method for determining the outer frame
  • Figure 5 shows Another method for determining the outer frame
  • FIG. 6 shows another method for determining the outer frame.
  • the method for determining the outer frame of the cross section surrounding each slice layer includes the following steps:
  • the line KH and the line IJ are always parallel to the Y axis, that is, the side of the outer frame F is always parallel to the X axis or the Y axis.
  • the shortest side Lb of the outer frame F is either parallel to the X-axis or parallel to the Y-axis, that is to say, the scanning and printing direction M is parallel to the X-axis or parallel to the Y-axis, and the first embodiment and implementation
  • the print head rotation angle data and the print platform rotation angle data are such that the extension direction of the nozzle hole column of the inkjet head on the print head assembly 14 is perpendicular to the scanning and printing direction M (that is, the long side La of the outer frame) That is, the rotation angle data of the print head and the rotation angle data of the printing platform are related to the extension direction of the long side La of the outer frame F.
  • the long side La of the outer frame F determined based on the method shown in FIG. 4 may be perpendicular to the X axis or parallel to the X axis. If the initial extension direction of the nozzle hole row of the inkjet head on the print head assembly 14 is perpendicular to In the direction of the X-axis moving mechanism 11, when the extension direction of the long side La of the outer frame F is parallel to the X-axis, the print head rotation angle data or the print platform rotation angle data is 0 degrees, and when the extension direction of the long side La of the outer frame F is perpendicular to the X axis, the print head rotation angle data is 90 degrees clockwise or 90 degrees counterclockwise, or the print platform rotation angle data is 90 degrees clockwise Or rotate 90 degrees counterclockwise.
  • another method for determining the outer frame includes the following steps:
  • the extension direction of each side of the outer frame F can have an oblique angle with the X-axis and Y-axis, and the print head rotation angle data and printing in the first and second embodiments
  • the platform rotation angle data is the data such that the extension direction of the nozzle column of the inkjet head on the print head assembly 14 is perpendicular to the scanning and printing direction M (that is, the long side La of the outer frame), that is, the print head rotation angle data and printing
  • the platform rotation angle data is related to the extension direction of the long side La of the outer frame F.
  • the print head rotation angle data and the printing platform rotation angle data are the extension direction of the long side La of the outer frame F rotated clockwise or counterclockwise.
  • the method for determining the outer frame shown in FIG. 5 has reduced blank areas and reduced length of the shortest side, that is, when determining the outer frame based on the method for determining the outer frame shown in FIG. 5, It is possible to further reduce the number of performing scan printing operations and reduce the area of invalid printing areas, thereby further improving printing efficiency.
  • the cross-sectional shape of the slice layer may be irregular. If only the outer frame of the cross-sectional shape is determined according to the method shown in Fig. 4 or Fig. 5, it will result in a difference between the outline of the outer frame and the cross-sectional shape. The large blank area will limit the further improvement of printing efficiency. As shown in Figure 6, it is another method for determining the outer frame, which specifically includes the following steps:
  • the invalid printing area can be reduced as much as possible to improve printing efficiency.
  • this application also discloses a three-dimensional printing system, which is used to execute the above three-dimensional printing method.
  • the system includes: a slicing unit 100, an outer frame determining unit 200, a direction determining unit 300, and printing The data generating unit 400 and the printing layer forming unit 500.
  • the slicing unit 100 is configured to slice a three-dimensional model of the three-dimensional object to be printed to generate slice data, the slice data including the cross-sectional shape information of each slice layer of the three-dimensional object to be printed.
  • the outer frame determining unit 200 is configured to determine the outer frame surrounding the cross section of each slice layer according to the cross-sectional shape information of each slice layer.
  • the direction determining unit 300 is configured to determine the scanning printing direction and the stepping direction of each slice layer according to the outer frame of the cross-section of each slice layer, and the stepping direction is the extension direction of the shortest side of the outer frame.
  • the scanning printing direction is a direction perpendicular to the stepping direction.
  • the print data generating unit 400 is used for generating print data of each slice layer according to the cross-sectional shape information, scanning printing direction and stepping direction of each slice layer.
  • the printing layer forming unit 500 is configured to form multiple printing layers according to the printing data of each slice layer, and the multiple printing layers are superimposed to form the three-dimensional object to be printed.
  • the slicing unit 100 includes a slicing direction determining unit, a determining unit, and supporting structure generation and slicing sub-units; the slicing direction determining unit is used to determine the slicing direction of the three-dimensional model; the determining unit is used to determine whether it is necessary to generate a support three-dimensional model for printing The support structure of the support structure; the support structure generation and slicing sub-unit is used to generate a support structure for supporting the three-dimensional model for printing according to the determined slicing direction when the judgment result of the judging unit is yes, and then generate the support structure along the determined slicing direction The three-dimensional model of the supporting structure is sliced; when the judgment result of the judgment unit is no, the three-dimensional model is directly sliced along the determined slicing direction.
  • the slicing direction determining unit is used to determine the smallest volume outer box surrounding the three-dimensional model according to the three-dimensional model, and use the extension direction of the shortest side of the smallest volume outer box as the slicing direction of the three-dimensional model; or, to rotate the three-dimensional model to determine the support
  • the 3D model is placed in the smallest volume of the supporting structure for printing, and the direction perpendicular to the horizontal plane in the smallest volume is used as the slice direction of the 3D model.
  • the outer frame determining unit 200 includes a first setting unit, a first determining subunit, and a first outer frame determining subunit.
  • the first setting unit is used to place each slice layer in a two-dimensional coordinate system, and the two-dimensional coordinate system includes an X axis and a Y axis perpendicular to each other; the first determining subunit is used to determine the cross section of each slice layer The minimum value Xmin and maximum value Xmax of the coordinates on the X axis and the minimum value Ymin and the maximum value Ymax of the coordinates on the Y axis; the first outer frame determines the subunit for the coordinate point (Xmin, Ymin), the coordinate point (Xmax, Ymin), coordinate points (Xmax, Ymax), coordinate points (Xmin, Ymax), and coordinate points (Xmin, Ymin) are connected in sequence to obtain the outer frame of the cross section of each slice layer.
  • the outer frame determining unit 200 includes a second setting unit, a second determining subunit, a third determining subunit, an outer tangent generating unit, and a second outer frame determining subunit.
  • the second setting unit is used to place each slice layer in a two-dimensional coordinate system, the two-dimensional coordinate system includes an X axis and a Y axis perpendicular to each other;
  • the second determining sub-unit is used to determine the cross-sectional shape of each slice layer Determine the two points furthest apart on the cross-sectional profile of each slice layer, and connect the two points;
  • the third determining subunit is used to find the distance to the connecting line on both sides of the connecting line between the two furthest points The farthest point;
  • the outer tangent line generating unit is used to take the two farthest points on the cross-sectional profile of each slice layer and the two points farthest from the connecting line as the tangent points to obtain multiple outer slices of the cross-section of each slice layer. Tangent
  • the outer frame determining unit 200 includes a region dividing unit, a sub-outer frame determining unit, and a third outer frame determining sub-unit.
  • the area dividing unit is used to divide the cross-section of each slice layer into multiple areas; the sub-outer frame determining unit is used to determine the corresponding sub-outer frame in each area.
  • the third outer frame determining subunit is used to determine the outer frame of the cross-section of each slice layer according to a plurality of sub outer frames.
  • this application also discloses a storage medium, which includes a stored program, wherein the device where the storage medium is located is controlled to perform the following steps when the program is running:
  • the slice data includes the cross-sectional shape information of each slice layer of the three-dimensional object to be printed; The outer frame of the cross section of the slice layer; determine the scanning printing direction and the stepping direction of each slice layer according to the outer frame of the cross section of each slice layer; according to the cross-sectional shape information of each slice layer, Scanning the printing direction and the stepping direction to generate the printing data of each slice layer; forming a plurality of printing layers according to the printing data of each slice layer, and the plurality of printing layers are superimposed to form the three-dimensional object to be printed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ink Jet (AREA)

Abstract

本申请公开了一种三维打印方法及系统及存储介质,该方法包括:根据待打印三维物体的三维模型的每个切片层的截面形状信息确定包围每个切片层的截面的外边框;根据每个切片层的截面的外边框确定每个切片层的扫描打印方向和步进方向;根据每个切片层的截面形状信息、扫描打印方向及步进方向生成每个切片层的打印数据;根据每个切片层的打印数据形成多个打印层,进而形成三维物体。本申请通过将每个切片层的截面的外边框的最短边的延伸方向设置为步进方向,将与该步进方向垂直的方向设置为扫描打印方向,从而能够使得每个切片层的打印过程中执行扫描打印的次数最小,进而减少每个切片层的打印过程中打印头加速和减速的时间,提高了打印速度。

Description

三维打印方法、系统及存储介质
本申请要求于2019年07月11日提交中国专利局、申请号为201910625937.0、发明名称为“三维打印方法、系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及三维打印技术领域,具体涉及一种三维打印方法、系统及存储介质。
背景技术
三维打印通常包括以下步骤:
1)将目标3D物体的待打印模型转化为STL数据格式的数据或其它可被切片软件识别的数据格式的数据;
2)使用切片软件对待打印模型进行切片分层和数据处理获得打印数据;
3)打印机根据所述打印数据进行逐层打印。
现有的三维打印机一般包括打印头、打印平台和X、Y、Z三轴移动机构,其通过X、Y、Z三轴移动机构来实现打印头和打印平台之间的相对运动,具体来说,打印头相对于打印平台沿X方向运动以执行扫描打印操作,并沿Y方向运动以执行步进操作,从而实现单个切片层的打印,并在单个切片层打印完成后使得打印头相对于打印平台沿Z方向运动以进行后续层的打印;通常为了提高打印速率,需要尽可能地减少打印头和打印平台之间做加速和减速运动的次数,即尽可能地以较少的扫描打印次数完成三维物体的打印,则三维物体在三维打印中的摆放规则为Lz<Ly<Lx(Lz、Ly、Lx分别为三维物体在Z方向、Y方向和X方向上的尺寸);但是由于三维物体的不同切片层的轮廓形状不同,使得某些切片层的轮廓在X方向和Y方向上的尺寸不能满足如上规则的情况,进而导致打印速度难以进一步提高。
申请内容
为了克服上述现有技术存在的问题,本申请的主要目的在于提供一种能够提高打印速度的三维打印方法。
为了实现上述目的,本申请具体采用以下技术方案:
本申请提供了一种三维打印方法,该方法包括:
对待打印三维物体的三维模型进行切片,生成切片数据,所述切片数据包括所述待打印三维物体的每个切片层的截面形状信息。
根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框。
根据每个所述切片层的截面的外边框确定每个所述切片层的扫描打印方向和步进方向;所述步进方向为所述外边框的最短边的延伸方向,所述扫描打印方向为与所述 步进方向垂直的方向。
根据每个所述切片层的截面形状信息、扫描打印方向及步进方向生成每个所述切片层的打印数据。
根据每个所述切片层的打印数据形成多个打印层,所述多个打印层叠加形成所述待打印三维物体。
优选地,对待打印三维物体的三维模型进行切片,生成切片数据包括:
确定所述三维模型的切片方向。
判断是否需要生成用于支撑所述三维模型进行打印的支撑结构。
在判断结果为是时,根据所述切片方向生成用于支撑所述三维模型进行打印的支撑结构,之后沿所述确定的切片方向对所述生成了支撑结构的三维模型进行切片。
在判断结果为否时,沿所述确定的切片方向对所述三维模型进行切片。
优选地,确定所述三维模型的切片方向包括:
根据所述三维模型确定包围所述三维模型的最小体积外包盒,将所述最小体积外包盒的最短边的延伸方向作为所述三维模型的切片方向;或者,旋转所述三维模型,确定支撑所述三维模型进行打印的支撑结构体积最小的摆放方式,将在所述体积最小的摆放方式下垂直于水平面的方向作为所述三维模型的切片方向。
优选地,根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框包括:
将每个所述切片层放在二维坐标系中,所述二维坐标系包括互相垂直的X轴和Y轴。
确定每个所述切片层的截面在X轴上的坐标最小值Xmin和最大值Xmax以及在Y轴上的坐标最小值Ymin和最大值Ymax。
将坐标点(Xmin,Ymin)、坐标点(Xmax,Ymin)、坐标点(Xmax,Ymax)、坐标点(Xmin,Ymax)和坐标点(Xmin,Ymin)依次相连,得到每个所述切片层的截面的外边框。
优选地,根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框包括:
将每个所述切片层放在二维坐标系中,所述二维坐标系包括互相垂直的X轴和Y轴。
根据每个所述切片层的截面形状确定每个所述切片层的截面轮廓上距离最远的两点,并连接所述两点。
在所述最远两点之间的连接线的两侧分别找出距离所述连接线最远的点。
以每个所述切片层的截面轮廓上的最远两点及距离所述连接线最远两点作为切点,得到每个所述切片层的截面的多条外切线。
根据所述多个外切线确定每个所述切片层的截面的外边框。
优选地,根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框包括:
将每个所述切片层的截面划分为多个区域。
在每个所述区域中确定相应的子外边框。
根据多个所述子外边框确定每个所述切片层的截面的外边框。
优选地,所述打印数据包括打印头旋转角度数据,所述打印头旋转角度数据用于控制所述打印头旋转,使所述打印头上的喷孔列的延伸方向垂直于所述扫描打印方向。
优选地,所述打印数据包括打印平台旋转角度数据,所述打印平台旋转角度数据用于控制所述打印平台旋转使得所述扫描打印方向垂直于打印头上喷孔列的延伸方向。
优选地,所述打印数据还包括第一方向移动机构、第二方向移动机构和第三方向移动机构的移动数据和打印头沉积数据。
其中,所述第一方向移动机构和第二方向移动机构的移动数据用于控制打印头或打印平台沿所述扫描打印方向移动以执行扫描打印操作,并在相邻的所述扫描打印操作之间沿所述步进方向移动执行步进操作。
所述第三方向移动机构的移动数据用于控制打印头或打印平台沿垂直于所述扫描打印方向和步进方向确定的平面的方向移动。
所述打印头沉积数据用于控制打印头在所述扫描打印操作过程中沉积材料到打印平台以形成三维物体。
相应地,本申请还提供了一种三维打印系统,该系统包括:
切片单元,用于对待打印三维物体的三维模型进行切片,生成切片数据,所述切片数据包括所述待打印三维物体的每个切片层的截面形状信息。
外边框确定单元,用于根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框。
方向确定单元,用于根据每个所述切片层的截面的外边框确定每个所述切片层的扫描打印方向和步进方向,所述步进方向为所述外边框的最短边的延伸方向,所述扫描打印方向为与所述步进方向垂直的方向。
打印数据生成单元,用于根据每个所述切片层的截面形状信息、扫描打印方向及步进方向生成每个所述切片层的打印数据。
打印层形成单元,用于根据每个所述切片层的打印数据形成多个打印层,所述多个打印层叠加形成所述待打印三维物体。
优选地,所述切片单元包括:
切片方向确定单元,用于确定所述三维模型的切片方向。
判断单元,用于判断是否需要生成用于支撑所述三维模型进行打印的支撑结构;
支撑结构生成及切片子单元,用于在判断结果为是时,根据所述切片方向生成用于支撑所述三维模型进行打印的支撑结构,之后沿所述确定的切片方向对所述生成了支撑结构的三维模型进行切片;在判断结果为否时,沿所述确定的切片方向对所述三维模型进行切片。
优选地,所述切片方向确定单元用于根据所述三维模型确定包围所述三维模型的最小体积外包盒,将所述最小体积外包盒的最短边的延伸方向作为所述三维模型的切片方向;或者,用于旋转所述三维模型,确定支撑所述三维模型进行打印的支撑结构体积最小的摆放方式,将在所述体积最小的摆放方式下垂直于水平面的方向作为所述三维模型的切片方向。
优选地,所述外边框确定单元包括:
第一设置单元,用于将每个所述切片层放在二维坐标系中,所述二维坐标系包括互相垂直的X轴和Y轴。
第一确定子单元,用于确定每个所述切片层的截面在X轴上的坐标最小值Xmin和最大值Xmax以及在Y轴上的坐标最小值Ymin和最大值Ymax。
第一外边框确定子单元,用于将坐标点(Xmin,Ymin)、坐标点(Xmax,Ymin)、坐标点(Xmax,Ymax)、坐标点(Xmin,Ymax)和坐标点(Xmin,Ymin)依次相连,得到每个所述切片层的截面的外边框。
优选地,所述外边框确定单元包括:
第二设置单元,用于将每个所述切片层放在二维坐标系中,所述二维坐标系包括互相垂直的X轴和Y轴。
第二确定子单元,用于根据每个所述切片层的截面形状确定每个所述切片层的截面轮廓上距离最远的两点,并连接所述两点。
第三确定子单元,用于在所述最远两点之间的连接线的两侧分别找出距离所述连接线最远的点。
外切线生成单元,用于以每个所述切片层的截面轮廓上的最远两点及距离所述连接线最远两点作为切点,得到每个所述切片层的截面的多条外切线。
第二外边框确定子单元,用于根据所述多个外切线确定每个所述切片层的截面的外边框。
优选地,所述外边框确定单元包括:
区域划分单元,用于将每个所述切片层的截面划分为多个区域。
子外边框确定单元,用于在每个所述区域中确定相应的子外边框。
第三外边框确定子单元,用于根据多个所述子外边框确定每个所述切片层的截面的外边框。
相应地,本申请还提供了一种存储介质,所述存储介质包括存储程序,其中,所 述程序运行时控制所述存储介质所在设备执行上述的三维打印方法。
相比于现有技术,本申请的三维打印方法通过针对每个切片层的截面形状确定包围每个切片层的截面的外边框,并根据每个切片层的截面的外边框来确定每个切片层的扫描打印方向和步进方向,通过将每个切片层的截面的外边框的最短边的延伸方向设置为步进方向,将与该步进方向垂直的方向设置为扫描打印方向,再根据每个切片层的截面形状信息及所确定的扫描打印方向及步进方向生成打印数据并根据该打印数据打印形成多个打印层,从而能够使得每个切片层在打印过程中执行扫描打印的次数最小,进而减少每个切片层在打印过程中打印头加速和减速的时间,提高了打印速度。
附图说明
图1a、图1b、图1c为本申请实施例的三维打印装置的打印状态示意图。
图2a、图2b、图2c为本申请另一种实施例的三维打印装置的打印状态示意图。
图3为本申请实施例的三维打印方法流程图。
图4为本申请实施例的外边框确定方法示意图。
图5为本申请另一实施例的外边框确定方法示意图。
图6为本申请另一实施例的外边框确定方法示意图。
图7为本申请实施例的三维打印系统框图。
附图标识:
1、第一切片层;2、第二切片层;3、第三切片层;10、三维打印装置;11、X轴移动机构;12、Y轴移动机构;13、打印平台;14、打印头组件;15、打印头旋转机构;20、三维打印装置;21、X轴移动机构;22、Y轴移动机构;23、打印平台;24、打印头组件。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1a至1c所示,本申请的实施例公开了一种三维打印装置10的结构及打印过程。
图1a-1c示出了三个不同切片层对应的三维打印装置10的打印状态示意图,具体的,三维打印装置10包括X轴移动机构11、Y轴移动机构12、Z轴移动机构(图中未示出)、打印平台13、打印头组件14和打印头旋转机构15。其中,打印头组件14可移动地设置在X轴移动机构11上,X轴移动机构11的两端分别可移动地设置在Y轴移动机构12上。打印头组件14包括至少一个喷墨头,所述至少一个喷墨头包括至少一个喷孔列,多个喷孔依次排列在喷孔列方向上形成喷孔列。在本实施例中,图1a所示的打印状态中,喷墨头的喷孔列方向为与Y轴移动机构12平行的方向,X轴移动 机构11、Y轴移动机构12和Z轴移动机构带动打印头组件14在打印平台13的上方移动,打印头组件14上的喷墨头在移动过程中向打印平台13喷射材料以形成目标三维物体。其中,打印头旋转机构15用于旋转打印头组件14,使得打印头组件14上喷墨头的喷孔列的延伸方向垂直于扫描打印方向M;
具体的,在本实施例中,图1a示出了打印第一切片层1时所述三维打印装置10的打印状态示意图。其中,O1为第一切片层1的截面,F1为包围所述截面O1的外边框,外边框F1为长方形,外边框F1的两个相邻的边La和Lb分别平行于X轴移动机构11和Y轴移动机构12,且La的长度大于Lb的长度,则将边Lb的延伸方向设置为步进方向S,并将与步进方向S垂直的方向设置为扫描打印方向M。其中,扫描打印方向M为打印头组件14上喷墨头在移动过程中执行扫描打印操作的方向,扫描打印操作具体指在打印头组件14上喷墨头在沿所述扫描打印方向移动的过程中在打印平台13上沉积材料的操作。步进方向S即打印头组件14在相邻扫描打印操作之间移动的方向,此时,如图1a中所示,打印头组件14上喷墨头的喷孔列方向垂直于所确定的扫描打印方向M,则无需旋转打印头组件14,则打印头组件14依照所确定的扫描打印方向M和步进方向S执行打印以形成第一切片层1。
图1b示出了打印第二切片层2时的三维打印装置10的打印状态示意图。其中,O2为第二切片层2的截面,F2为包围所述截面O2的外边框,外边框F2为长方形,外边框F2的两个相邻的边La和Lb分别平行于Y轴移动机构12和X轴移动机构11,且La的长度大于Lb的长度,则在该第二切片层2中将边Lb的延伸方向设置为步进方向S,将与步进方向S垂直的方向设置为扫描打印方向M,并如图1b中所示,通过打印头旋转机构15将打印头组件14旋转90度,使得打印头组件14上喷墨头的喷孔列延伸方向垂直于所确定的扫描打印方向M,旋转后的打印头组件14依照所确定的扫描打印方向M和步进方向S执行打印以形成所述第二切片层2。
图1c示出了打印第三切片层3时三维打印装置10的打印状态示意图。其中,O3为第三切片层3的截面,F3为包围截面O3的外边框,外边框F3为长方形,外边框F3的两个相邻的边La和Lb与Y轴移动机构12和X轴移动机构11均不平行,其中,La的长度大于Lb的长度,则在该第三切片层3中将边Lb的延伸方向设置为步进方向S,将与步进方向S垂直的方向设置为扫描打印方向M,并如图1c中所示通过打印头旋转机构15旋转打印头组件14,使得打印头组件14上喷墨头的喷孔列方向垂直于所确定的扫描打印方向M,旋转后的打印头组件14依照所确定的扫描打印方向M和步进方向S执行打印以形成第三切片层3。
更为具体的,如上所述的三维打印装置基于控制数据生成单元生成的打印数据执行打印,所述打印数据包括X轴移动机构11、Y轴移动机构12和Z轴移动机构的移动数据、打印头沉积数据以及打印头旋转角度数据。其中,X轴移动机构11和Y轴移 动机构12的移动数据用于控制打印头组件14和打印平台13沿扫描打印方向M相对移动以执行扫描打印操作,并在相邻的扫描打印操作之间沿步进方向S移动执行步进操作。打印头旋转角度数据用于控制打印头组件14的旋转使得打印头组件14上喷墨头的喷孔列的延伸方向垂直于所述扫描打印方向M,Z轴移动机构的移动数据用于控制打印头组件14和打印平台13沿垂直于扫描打印方向M和步进方向S确定的平面的方向相对移动以在该方向上层叠多个层,打印头沉积数据则用于控制打印头组件14上喷墨头在扫描打印操作过程中沉积材料到打印平台以形成三维物体。
需要注意的是,本申请中,X轴移动机构11的移动数据、Y轴移动机构12的移动数据和每个切片层确定的扫描打印方向M和步进方向S相关。其中,移动数据包括移动速度、移动方向和移动量,并且移动数据为对应的移动机构驱动安装在该移动机构上的可移动部件的移动的数据。具体来说,在如图1a所示的打印状态下,X轴移动机构11的移动数据即打印头组件14在扫描打印方向M上的移动数据,Y轴移动机构12的移动数据即打印头组件14在步进方向S上的移动数据。在如图1b所示的打印状态下,Y轴移动机构12的移动数据即打印头组件14在扫描打印方向M上的移动数据,X轴移动机构的移动数据即打印头组件14在步进方向S上的移动数据。而在如图1c所示的打印状态下,打印头组件14在扫描打印方向M上的移动需要通过X轴移动机构11和Y轴移动机构12的联动来实现,即需要使得打印头组件14同时沿X轴移动机构11和Y轴移动机构12移动,例如,当打印头组件14在扫描打印方向M的移动速度为V时,扫描打印方向M与X轴移动机构11之间的夹角为θ,则需要使得打印头组件14沿X轴移动机构11移动的速度为Vcosθ,并同时使得打印头组件14沿Y轴移动机构12移动的速度为Vsinθ来实现打印头组件14沿扫描打印方向M移动以执行扫描打印操作,而在相邻扫描打印操作之间执行步进操作时,当预定的沿步进方向S步进的距离为d时,需要使得X轴移动机构11和打印头组件14沿Y轴移动机构移动d/cosθ。
如上所述的三维打印装置10,根据每个切片层的截面形状的外边框分别确定的扫描打印方向M和步进方向S,通过打印头旋转组件15旋转打印头组件14,通过将外边框的最短边Lb的延伸方向设置为步进方向S,可以减少切片层执行扫描打印操作的次数,即减少打印头组件14执行扫描打印操作时加速和减速的次数,也就是说,通过将截面形状的外边框的最短边的延伸方向设置为步进方向来减少打印头组件14在非打印区域移动的时间以提高打印效率。
本申请公开了另一种具体实施方式,如图2a至2c所示,为三个不同切片层对应的三维打印装置20的打印状态示意图。具体的,三维打印装置20包括X轴移动机构21、Y轴移动机构22、Z轴移动机构(图中未示出)、打印平台23、打印头组件24和打印平台旋转机构(图中未示出)。打印头组件24可移动地设置在X轴移动机构21上,X轴移动机构21两端分别可移动地设置在Y轴移动机构22上,打印头组件24包括至 少一个喷墨头,所述至少一个喷墨头包括至少一个喷孔列,多个喷孔依次排列在喷孔列方向上形成喷孔列。在本实施例中,图2a所示的打印状态中,喷墨头的喷孔列方向为与Y轴移动机构22平行的方向,X轴移动机构21、Y轴移动机构22和Z轴移动机构带动打印头组件24在打印平台23的上方移动,打印头组件24上的喷墨头在移动过程中向打印平台23喷射材料以形成目标三维物体。其中,打印平台旋转机构用于旋转打印平台23使得打印头组件24上喷墨头的喷孔列的延伸方向垂直于扫描打印方向M。
具体的,在本实施例中,图2a示出了打印第一切片层1时三维打印装置20的打印状态示意图。其中,O1为第一切片层1的截面,F1为包围截面O1的外边框,外边框F1为长方形,外边框F1的两个相邻的边La和Lb分别平行于X轴移动机构21和Y轴移动机构22,且La的长度大于Lb的长度,则将边Lb的延伸方向设置为步进方向S,并将与步进方向S垂直的方向设置为扫描打印方向M。其中,扫描打印方向M为打印头组件24上喷墨头在移动过程中执行扫描打印操作的方向,扫描打印操作具体指在打印头组件24上喷墨头在沿扫描打印方向移动的过程中在打印平台23上沉积材料的操作,步进方向S即打印头组件24在相邻扫描打印操作之间移动的方向,此时,如图2a中所示,打印头组件24上喷墨头的喷孔列方向垂直于所确定的扫描打印方向M,则无需旋转打印平台23,打印头组件24依照所确定的扫描打印方向M和步进方向S执行打印以形成所述第一切片层1。
图2b示出了打印第二切片层2时三维打印装置20的打印状态示意图。其中,O2为第二切片层2的截面,F2为包围截面O2的外边框,外边框F2为长方形,外边框F2的两个相邻的边La和Lb分别平行于Y轴移动机构22和X轴移动机构21,且La的长度大于Lb的长度,则在该第二切片层2中将边Lb的延伸方向设置为步进方向S,将与步进方向S垂直的方向设置为扫描打印方向M,并如图2b中所示通过打印平台旋转机构将打印平台23旋转90度,使得打印头组件14上喷墨头的喷孔列方向垂直于所确定的扫描打印方向M,打印头组件24在旋转后的打印平台23上依照所确定的扫描打印方向M和步进方向S执行打印以形成所述第二切片层2。
图2c示出了打印第三切片层3时所述三维打印装置20的打印状态示意图。其中,O3为第三切片层3的截面,F3为包围截面O3的外边框,外边框F3为长方形,外边框F3的两个相邻的边La和Lb与Y轴移动机构22和X轴移动机构21均不平行,其中,La的长度大于Lb的长度,则在该第三切片层3中将边Lb的延伸方向设置为步进方向S,将与步进方向S垂直的方向设置为扫描打印方向M,并如图2c中所示通过打印平台旋转机构旋转打印平台23,使得打印头组件24上喷墨头的喷孔列方向垂直于所确定的扫描打印方向M,打印头组件24在旋转后的打印平台23上依照所确定的扫描打印方向M和步进方向S执行打印以形成所述第三切片层3。
在本实施例中,为了便于打印平台23的旋转,将打印平台23设置为圆形。
更为具体的,如上所述的三维打印装置同样基于控制数据生成单元生成的打印数据执行打印,本实施例中打印数据和实施例一中所述打印数据的区别在于,所述打印数据不包括打印头旋转角度数据,而包括打印平台旋转角度数据,即本实施例通过旋转打印平台23使得确定的扫描打印方向M和打印头组件24上喷墨头的喷孔列的延伸方向垂直。并且,在本实施例中,由于打印平台23旋转后,扫描打印方向M始终和X轴移动机构11的延伸方向平行,即在如图2a-2c所示的打印状态下,X轴移动机构11的移动数据均为打印头组件14在扫描方向M上的移动数据,Y轴移动机构12的移动数据均为打印头组件14在步进方向S上的移动数据。
如上所述的三维打印装置20,根据每个切片层的截面形状的外边框分别确定的扫描打印方向M和步进方向S,通过打印平台旋转机构旋转打印平台23,通过将外边框的最短边Lb的延伸方向设置为步进方向S,可以减少切片层执行扫描打印操作的次数,即减少打印头组件14执行扫描打印操作时加速和减速的次数,也就是说,通过将截面形状的外边框的最短边的延伸方向设置为步进方向来减少打印头组件14在非打印区域移动的时间以提高打印效率。
本申请还公开一种三打印方法,该方法包括:
如图3所示,本申请公开了一种三维打印方法,该方法包括步骤:
S1、对待打印三维物体的三维模型进行切片,生成切片数据,该切片数据包括待打印三维物体的每个切片层的截面形状信息。
S2、根据每个切片层的截面形状信息确定包围每个切片层的截面的外边框。
S3、根据每个切片层的截面的外边框确定每个切片层的扫描打印方向和步进方向。
其中,所述步进方向为外边框的最短边的延伸方向,所述扫描打印方向为与步进方向垂直的方向。
S4、根据每个切片层的截面形状信息、扫描打印方向及步进方向生成每个切片层的打印数据。
其中,打印数据包括打印头旋转角度数据和/或打印平台旋转角度数据,以及第一方向移动机构、第二方向移动机构、第三方向移动机构的移动数据和打印头沉积数据。所述打印头旋转角度数据用于控制打印头旋转,使打印头上的喷孔列的延伸方向垂直于扫描打印方向;所述打印平台旋转角度数据用于控制打印平台旋转,使得扫描打印方向垂直于打印头上喷孔列的延伸方向;所述第一方向移动机构和第二方向移动机构的移动数据用于控制打印头和打印平台沿扫描打印方向相对移动以执行扫描打印操作,并在相邻的扫描打印操作之间沿步进方向相对移动执行步进操作;所述第三方向移动机构的移动数据用于控制打印头和打印平台沿垂直于扫描打印方向和步进方向确定的平面的方向相对移动;所述打印头沉积数据用于控制打印头在扫描打印操作过程中沉积材料到打印平台以形成三维物体。
S5、根据每个切片层的打印数据形成多个打印层,所述多个打印层叠加形成待打印三维物体。
具体的,对待打印的三维物体的三维模型进行切片、生成切片数据包括:确定三维模型的切片方向;判断是否需要生成用于支撑三维模型进行打印的支撑结构;在判断结果为否时,沿所确定的切片方向直接对三维模型进行切片。在判断结果为是时,根据所确定的切片方向生成用于支撑三维模型进行打印的支撑结构,之后沿所确定的切片方向对生成了支撑结构的三维模型进行切片,以生成切片数据DATA。
其中,所述切片包括沿所确定的切片方向将待打印三维物体的三维模型分割为多个层,其中,每个层可以具有预定的相同的厚度,也可以根据三维模型的形状适应性地分别确定每个层的厚度,即每个层的厚度和所述三维模型的形状有关。
更为具体的,所述三维模型的切片方向可以根据用户的需求确定,例如,用户可能需要在尽可能短的时间内完成三维物体的打印,或者用户需要使得支撑结构的体积尽可能小以减小材料的浪费。
基于上述需求,确定三维模型的切片方向包括:根据三维模型确定包围三维模型的最小体积外包盒,将所确定的最小体积外包盒的最短边的延伸方向确定为三维模型的切片方向,如此确定的切片方向可以缩短完成三维物体的打印所需的时间,或者,在三维空间中旋转三维模型,确定支撑三维模型进行打印的支撑结构体积最小的模型摆放方式,将该摆放方式下垂直于水平面的方向确定为三维模型的切片方向,如此确定的切片方向可以使得支撑材料的使用量最少以减少材料的浪费。
其中,确定三维模型的外包盒包括将三维模型放置在XYZ三维坐标系中,分别确定所述三维模型在X轴、Y轴和Z轴上的最大值和最小值,并找到点(Xmin,Ymin,Zmin)、(Xmin,Ymax,Zmin)、(Xmax,Ymin,Zmin)、(Xmax,Ymax,Zmin)、(Xmin,Ymin,Zmax)、(Xmin,Ymax,Zmax)、(Xmax,Ymin,Zmax)、(Xmax,Ymax,Zmax),以上述八个点作为外包盒的顶点确定三维模型的最小体积外包盒。
结合图4-图6,具体介绍根据每个切片层的截面形状信息确定包围每个切片层的截面的外边框的方法,其中,图4示出了一种外边框的确定方法,图5示出了另一种外边框的确定方法,图6示出了又一种外边框的方法。
具体的,如图4所示,包围每个切片层的截面的外边框的确定方法包括如下步骤:
S11.将切片层的截面O放置在二维坐标系XOY中,其中,二维坐标系的X轴和Y轴分别对应上述实施例的X轴移动机构11和Y轴移动机构12。
S12.确定切片层的截面O在X轴上的坐标最小值Xmin和最大值Xmax以及在Y轴上的坐标最小值Ymin和最大值Ymax。
S13.找出点H(Xmin,Ymin)、I(Xmax,Ymin)、J(Xmax,Ymax)、K(Xmin,Ymax)。
S14.顺次连接所述点H、I、J、K形成所述外边框F。
在如上所述的方法中,由于连线HI和连线JK始终与X轴平行,连线KH和连线IJ始终与Y轴平行,即外边框F的边始终平行于X轴或Y轴,也就是说外边框F的最短边Lb要么与X轴平行,要么与Y轴平行,也就是说扫描打印方向M为平行于X轴的方向或平行于Y轴的方向,而实施例一和实施例二中所述打印头旋转角度数据和打印平台旋转角度数据为使得所述打印头组件14上喷墨头的喷孔列的延伸方向垂直于扫描打印方向M(即外边框的长边La)的数据,也就是说,打印头旋转角度数据和打印平台旋转角度数据和外边框F的长边La的延伸方向相关。例如,基于图4所示的方法确定的外边框F的长边La可能垂直于X轴也可能平行于X轴,若打印头组件14上喷墨头的喷孔列的初始延伸方向为垂直于X轴移动机构11的方向时,当所述外边框F的长边La的延伸方向为平行于X轴的方向时,所述打印头旋转角度数据或打印平台旋转角度数据为0度,而当外边框F的长边La的延伸方向为垂直于X轴的方向时,打印头旋转角度数据为顺时针旋转90度或逆时针旋转90度,或者,打印平台旋转角度数据为顺时针旋转90度或逆时针旋转90度。
但是,如图4所示,这种外边框的确定方法所确定的外边框F中仍然存在较大的空白区域,即切片层截面形状轮廓以外的区域,打印过程中,该空白区域对应为无效打印区域,根据如上所述的外边框确定方法确定外边框F时,虽然可以通过减少扫描打印操作的次数来提高打印速度,但是仍然存在较大的无效打印区域,限制了打印效率的进一步提升。
具体的,如图5所示,为另一种外边框的确定方法,包括如下步骤:
S21.将切片层的截面O放置在二维坐标系XOY中,其中,二维坐标系的X轴和Y轴分别对应上述实施例的X轴移动机构11和Y轴移动机构12。
S22.寻找每个切片层的截面O的轮廓上的距离最远的两点A和B,并连接该两点A和B。
S23.在A和B两点之间的连接线的两侧分别找出距离该连接线AB的最远点C和D。
S24.以点A、B、C、D作为切点,得到截面的外切线L1、L2、L3和L4;
S25.根据外切线L1、L2、L3和L4的四个交点H、I、J、K顺次连接形成外边框F。
图5所示的外边框的确定方法中,外边框F各边的延伸方向可以和X轴和Y轴具有倾斜的角度,而实施例一和实施例二中所述打印头旋转角度数据和打印平台旋转角度数据为使得打印头组件14上喷墨头的喷孔列的延伸方向垂直于扫描打印方向M(即外边框的长边La)的数据,也就是说,打印头旋转角度数据和打印平台旋转角度数据和所述外边框F的长边La的延伸方向相关,同样,打印头旋转角度数据和打印平台旋转角度数据为顺时针或逆时针旋转外边框F的长边La的延伸方向和X轴之间的倾斜角度。图5所示的外边框确定方法和图4所示的外边框确定方法相比,空白区域减少,且最短边的长度减小,即基于图5所示的外边框确定方法确定外边框时,可以进一步 减少执行扫描打印操作的次数并减少无效打印区域的面积,从而进一步提高打印效率。
在具体的实施过程中,切片层的截面形状可能是不规则的,如果仅按图4或图5所示的方法确定截面形状的外边框,会导致外边框和截面形状的轮廓之间具有较大的空白区域,会限制打印效率的进一步提升,如图6所示,为另一种外边框的确定方法,具体包括以下步骤:
S31.将截面O分割为子区域A、B、C,其中,子区域的分割数量和方法可以根据截面的具体形状确定。
S32.分别在每个子区域A、B、C中依照图4所示方法和/或图5所示方法确定多个子外边框F’。
S33.基于多个子外边框F’确定截面O的外边框F,具体来说,将多个子外边框F’的顶点顺次连接获得截面O的外边框F。
根据图6所示的外边框确定方法确定外边框时,可以尽可能的减少无效打印区域以提高打印效率。
对应地,本申请还公开了一种三维打印系统,该系统用于执行上述三维打印方法,如图7所示,该系统包括:切片单元100、外边框确定单元200、方向确定单元300、打印数据生成单元400和打印层形成单元500。
切片单元100,用于对待打印三维物体的三维模型进行切片,生成切片数据,所述切片数据包括所述待打印三维物体的每个切片层的截面形状信息。
外边框确定单元200,用于根据每个切片层的截面形状信息确定包围每个切片层的截面的外边框。
方向确定单元300,用于根据每个切片层的截面的外边框确定每个切片层的扫描打印方向和步进方向,所述步进方向为所述外边框的最短边的延伸方向,所述扫描打印方向为与所述步进方向垂直的方向。
打印数据生成单元400,用于根据每个切片层的截面形状信息、扫描打印方向及步进方向生成每个切片层的打印数据。
打印层形成单元500,用于根据每个切片层的打印数据形成多个打印层,该多个打印层叠加形成所述待打印三维物体。
其中,切片单元100包括切片方向确定单元、判断单元和支撑结构生成及切片子单元;切片方向确定单元用于确定三维模型的切片方向;判断单元用于判断是否需要生成用于支撑三维模型进行打印的支撑结构;支撑结构生成及切片子单元用于在判断单元的判断结果为是时,根据所确定的切片方向生成用于支撑三维模型进行打印的支撑结构,之后沿所确定的切片方向对生成了支撑结构的三维模型进行切片;在判断单元的判断结果为否时,沿所确定的切片方向直接对三维模型进行切片。
进一步地,切片方向确定单元用于根据三维模型确定包围三维模型的最小体积外 包盒,将最小体积外包盒的最短边的延伸方向作为三维模型的切片方向;或者,用于旋转三维模型,确定支撑三维模型进行打印的支撑结构体积最小的摆放方式,将在体积最小的摆放方式下垂直于水平面的方向作为三维模型的切片方向。
在本实施例中,外边框确定单元200包括第一设置单元、第一确定子单元和第一外边框确定子单元。第一设置单元用于将每个切片层放在二维坐标系中,所述二维坐标系包括互相垂直的X轴和Y轴;第一确定子单元用于确定每个切片层的截面在X轴上的坐标最小值Xmin和最大值Xmax以及在Y轴上的坐标最小值Ymin和最大值Ymax;第一外边框确定子单元用于将坐标点(Xmin,Ymin)、坐标点(Xmax,Ymin)、坐标点(Xmax,Ymax)、坐标点(Xmin,Ymax)和坐标点(Xmin,Ymin)依次相连,得到每个切片层的截面的外边框。
在另一个实施例中,外边框确定单元200包括第二设置单元、第二确定子单元、第三确定子单元、外切线生成单元和第二外边框确定子单元。第二设置单元用于将每个切片层放在二维坐标系中,所述二维坐标系包括互相垂直的X轴和Y轴;第二确定子单元用于根据每个切片层的截面形状确定每个切片层的截面轮廓上距离最远的两点,并连接该两点;第三确定子单元用于在最远两点之间的连接线的两侧分别找出距离所述连接线最远的点;外切线生成单元用于以每个切片层的截面轮廓上的最远两点及距离所述连接线最远两点作为切点,得到每个切片层的截面的多条外切线;第二外边框确定子单元用于根据多个外切线确定每个所述切片层的截面的外边框。
在另一个实施例中,外边框确定单元200包括区域划分单元、子外边框确定单元和第三外边框确定子单元。区域划分单元用于将每个切片层的截面划分为多个区域;子外边框确定单元用于在每个区域中确定相应的子外边框。第三外边框确定子单元用于根据多个子外边框确定每个切片层的截面的外边框。
相应地,本申请还公开了一种存储介质,该存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行以下步骤:
对待打印三维物体的三维模型进行切片,生成切片数据,所述切片数据包括所述待打印三维物体的每个切片层的截面形状信息;根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框;根据每个所述切片层的截面的外边框确定每个所述切片层的扫描打印方向和步进方向;根据每个所述切片层的截面形状信息、扫描打印方向及步进方向生成每个所述切片层的打印数据;根据每个所述切片层的打印数据形成多个打印层,所述多个打印层叠加形成所述待打印三维物体。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (11)

  1. 一种三维打印方法,其特征在于,包括:
    对待打印三维物体的三维模型进行切片,生成切片数据,所述切片数据包括所述待打印三维物体的每个切片层的截面形状信息;
    根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框;
    根据每个所述切片层的截面的外边框确定每个所述切片层的扫描打印方向和步进方向,所述步进方向为所述外边框的最短边的延伸方向,所述扫描打印方向为与所述步进方向垂直的方向;
    根据每个所述切片层的截面形状信息、扫描打印方向及步进方向生成每个所述切片层的打印数据;
    根据每个所述切片层的打印数据形成多个打印层,所述多个打印层叠加形成所述待打印三维物体。
  2. 根据权利要求1所述的方法,其特征在于,对待打印三维物体的三维模型进行切片,生成切片数据包括:
    确定所述三维模型的切片方向;
    判断是否需要生成用于支撑所述三维模型进行打印的支撑结构;
    在判断结果为是时,根据所述切片方向生成用于支撑所述三维模型进行打印的支撑结构,之后沿所述确定的切片方向对所述生成了支撑结构的三维模型进行切片;
    在判断结果为否时,沿所述确定的切片方向对所述三维模型进行切片。
  3. 根据权利要求2所述的方法,其特征在于,确定所述三维模型的切片方向包括:
    根据所述三维模型确定包围所述三维模型的最小体积外包盒,将所述最小体积外包盒的最短边的延伸方向作为所述三维模型的切片方向;
    或者,
    旋转所述三维模型,确定支撑所述三维模型进行打印的支撑结构体积最小的摆放方式,将在所述体积最小的摆放方式下垂直于水平面的方向作为所述三维模型的切片方向。
  4. 根据权利要求1所述的方法,其特征在于,根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框包括:
    将每个所述切片层放在二维坐标系中,所述二维坐标系包括互相垂直的X轴和Y轴;
    确定每个所述切片层的截面在X轴上的坐标最小值Xmin和最大值Xmax以及在Y轴上的坐标最小值Ymin和最大值Ymax;
    将坐标点(Xmin,Ymin)、坐标点(Xmax,Ymin)、坐标点(Xmax,Ymax)、坐标点 (Xmin,Ymax)和坐标点(Xmin,Ymin)依次相连,得到每个所述切片层的截面的外边框。
  5. 根据权利要求1所述的方法,其特征在于,根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框包括:
    将每个所述切片层放在二维坐标系中,所述二维坐标系包括互相垂直的X轴和Y轴;
    根据每个所述切片层的截面形状确定每个所述切片层的截面轮廓上距离最远的两点,并连接所述两点;
    在所述最远两点之间的连接线的两侧分别找出距离所述连接线最远的点;
    以每个所述切片层的截面轮廓上的最远两点及距离所述连接线最远两点作为切点,得到每个所述切片层的截面的多条外切线;
    根据所述多个外切线确定每个所述切片层的截面的外边框。
  6. 根据权利要求1所述的方法,其特征在于,根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框包括:
    将每个所述切片层的截面划分为多个区域;
    在每个所述区域中确定相应的子外边框;
    根据多个所述子外边框确定每个所述切片层的截面的外边框。
  7. 根据权利要求1所述的方法,其特征在于,所述打印数据包括打印头旋转角度数据,所述打印头旋转角度数据用于控制所述打印头旋转,使所述打印头上的喷孔列的延伸方向垂直于所述扫描打印方向。
  8. 根据权利要求1所述的方法,其特征在于,所述打印数据包括打印平台旋转角度数据,所述打印平台旋转角度数据用于控制所述打印平台旋转,使得所述扫描打印方向垂直于打印头上喷孔列的延伸方向。
  9. 根据权利要求1所述的方法,其特征在于,所述打印数据还包括第一方向移动机构、第二方向移动机构和第三方向移动机构的移动数据和打印头沉积数据;
    其中,所述第一方向移动机构和第二方向移动机构的移动数据用于控制打印头或打印平台沿所述扫描打印方向移动以执行扫描打印操作,并在相邻的所述扫描打印操作之间沿所述步进方向移动执行步进操作;
    所述第三方向移动机构的移动数据用于控制打印头或打印平台沿垂直于所述扫描打印方向和步进方向确定的平面的方向移动;
    所述打印头沉积数据用于控制打印头在所述扫描打印操作过程中沉积材料到打印平台以形成三维物体。
  10. 一种三维打印系统,其特征在于,包括:
    切片单元,用于对待打印三维物体的三维模型进行切片,生成切片数据,
    所述切片数据包括所述待打印三维物体的每个切片层的截面形状信息;
    外边框确定单元,用于根据每个所述切片层的截面形状信息确定包围每个所述切片层的截面的外边框;
    方向确定单元,用于根据每个所述切片层的截面的外边框确定每个所述切片层的扫描打印方向和步进方向,所述步进方向为所述外边框的最短边的延伸方向,所述扫描打印方向为与所述步进方向垂直的方向;
    打印数据生成单元,用于根据每个所述切片层的截面形状信息、扫描打印方向及步进方向生成每个所述切片层的打印数据;
    打印层形成单元,用于根据每个所述切片层的打印数据形成多个打印层,所述多个打印层叠加形成所述待打印三维物体。
  11. 一种存储介质,其特征在于,所述存储介质包括存储程序,其中,所述程序运行时控制所述存储介质所在设备执行权利要求1-9中任一项所述的三维打印方法。
PCT/CN2020/082420 2019-07-11 2020-03-31 三维打印方法、系统及存储介质 WO2021004101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910625937.0 2019-07-11
CN201910625937.0A CN110328840B (zh) 2019-07-11 2019-07-11 三维打印方法、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2021004101A1 true WO2021004101A1 (zh) 2021-01-14

Family

ID=68146480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082420 WO2021004101A1 (zh) 2019-07-11 2020-03-31 三维打印方法、系统及存储介质

Country Status (2)

Country Link
CN (1) CN110328840B (zh)
WO (1) WO2021004101A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110328840B (zh) * 2019-07-11 2021-08-10 珠海赛纳三维科技有限公司 三维打印方法、系统及存储介质
CN110815825B (zh) * 2019-11-15 2021-06-04 珠海赛纳三维科技有限公司 3d物体切片层的打印方法、3d物体的打印方法及打印装置
CN110978502A (zh) * 2019-12-30 2020-04-10 深圳市纵维立方科技有限公司 一种快速光固化3d打印的装置和方法
CN112078129B (zh) * 2020-09-08 2022-05-17 鑫精合激光科技发展(北京)有限公司 一种零件打印方法及系统、终端设备和计算机存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329190A (ja) * 1994-06-14 1995-12-19 Asahi Chem Ind Co Ltd 三次元物体の製造方法及び製造装置
US20030127436A1 (en) * 2001-07-31 2003-07-10 3D Systems, Inc. Selective laser sintering with optimized raster scan direction
CN104890238A (zh) * 2015-04-30 2015-09-09 北京敏速自动控制设备有限公司 三维打印方法及系统
CN107570663A (zh) * 2017-09-15 2018-01-12 杭州喜马拉雅信息科技有限公司 一种双喷头异孔径喷嘴的砂型打印装置及方法
CN107716856A (zh) * 2017-09-15 2018-02-23 浙江大学 一种双喷头异孔径喷嘴的砂模并行打印装置及方法
CN107914397A (zh) * 2016-10-09 2018-04-17 珠海赛纳打印科技股份有限公司 一种3d物体的定区打印方法及系统
CN110328840A (zh) * 2019-07-11 2019-10-15 珠海赛纳打印科技股份有限公司 三维打印方法、系统及存储介质
CN110920051A (zh) * 2019-11-20 2020-03-27 江苏华疆三维科技有限公司 一种汽车3d打印轨迹优化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105984138B (zh) * 2015-01-27 2019-01-11 常州市东科电子科技有限公司 一种服饰单面成型法及3d打印装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07329190A (ja) * 1994-06-14 1995-12-19 Asahi Chem Ind Co Ltd 三次元物体の製造方法及び製造装置
US20030127436A1 (en) * 2001-07-31 2003-07-10 3D Systems, Inc. Selective laser sintering with optimized raster scan direction
CN104890238A (zh) * 2015-04-30 2015-09-09 北京敏速自动控制设备有限公司 三维打印方法及系统
CN107914397A (zh) * 2016-10-09 2018-04-17 珠海赛纳打印科技股份有限公司 一种3d物体的定区打印方法及系统
CN107570663A (zh) * 2017-09-15 2018-01-12 杭州喜马拉雅信息科技有限公司 一种双喷头异孔径喷嘴的砂型打印装置及方法
CN107716856A (zh) * 2017-09-15 2018-02-23 浙江大学 一种双喷头异孔径喷嘴的砂模并行打印装置及方法
CN110328840A (zh) * 2019-07-11 2019-10-15 珠海赛纳打印科技股份有限公司 三维打印方法、系统及存储介质
CN110920051A (zh) * 2019-11-20 2020-03-27 江苏华疆三维科技有限公司 一种汽车3d打印轨迹优化方法

Also Published As

Publication number Publication date
CN110328840B (zh) 2021-08-10
CN110328840A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
WO2021004101A1 (zh) 三维打印方法、系统及存储介质
AU2018256519B2 (en) Method and apparatus for three-dimensional digital printing
JP4533805B2 (ja) 立体メディアプリント用のインクジェットプリンタとそれを用いたプリント方法
CN110815825B (zh) 3d物体切片层的打印方法、3d物体的打印方法及打印装置
EP1031392A2 (en) Method, apparatus, and article of manufacture for a control system in a selective deposition modeling system
JP5116289B2 (ja) 凹凸を有する印刷表面への印刷方法および印刷装置
JP6740035B2 (ja) 印刷装置、印刷装置の制御方法、及び印刷方法
JP6801254B2 (ja) 画像形成装置、立体画像の造形方法及びプログラム
JP5656312B2 (ja) 3次元プリンタおよびその制御方法
WO1994011191A1 (en) Apparatus for fabrication of printing plates
JP2008162072A (ja) 印刷装置および印刷方法
US10421235B2 (en) Three-dimensional object, method for producing three-dimensional object, and three-dimensional object production apparatus
CN112677476A (zh) 一种复合打印机及其3d打印方法
KR102478345B1 (ko) 삼차원 오브젝트의 표면 상에 기능성 프린트 패턴을 프린트하기 위한 적층식 프린팅 방법, 관련된 컴퓨터 프로그램 및 컴퓨터 판독 가능 매체
JP5234592B2 (ja) 三次元レリーフの製造方法および装置
CN104210107A (zh) 双打印头的3d打印机的打印区域控制方法、打印方法
JP2003011458A5 (zh)
JP6289880B2 (ja) 薄膜形成方法及び薄膜形成装置
JP7495276B2 (ja) 印刷用データ生成装置及びインク塗布装置の制御装置
JP5105831B2 (ja) 三次元レリーフ作成装置
CN112721484B (zh) 应用于光栅投影幕布的打印方法及打印设备
CN215512283U (zh) 一种复合打印机
JP2018153942A (ja) 液滴吐出装置、情報処理装置、液滴吐出方法及びプログラム
JPH082003A (ja) プリント装置
Thorp et al. Concepts for “Direct‐to‐Shape” Inkjet Printing onto Curved Surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836729

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836729

Country of ref document: EP

Kind code of ref document: A1