WO2021002608A1 - Rotary engine - Google Patents

Rotary engine Download PDF

Info

Publication number
WO2021002608A1
WO2021002608A1 PCT/KR2020/007692 KR2020007692W WO2021002608A1 WO 2021002608 A1 WO2021002608 A1 WO 2021002608A1 KR 2020007692 W KR2020007692 W KR 2020007692W WO 2021002608 A1 WO2021002608 A1 WO 2021002608A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
housing
fuel
rotor
rotary engine
Prior art date
Application number
PCT/KR2020/007692
Other languages
French (fr)
Korean (ko)
Inventor
오휘성
박건영
장수호
이윤희
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2021002608A1 publication Critical patent/WO2021002608A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F01C21/186Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet for variable fluid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/10Fuel supply; Introducing fuel to combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2730/00Internal-combustion engines with pistons rotating or oscillating with relation to the housing
    • F02B2730/01Internal-combustion engines with pistons rotating or oscillating with relation to the housing with one or more pistons in the form of a disk or rotor rotating with relation to the housing; with annular working chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a rotary engine. More specifically, it relates to a rotary engine capable of changing the flow of fuel input to the rotary engine.
  • a rotary engine refers to an engine that generates power through rotational motion.
  • Rotary engines have a simpler structure compared to piston engines, so they are easy to miniaturize, and because they allow continuous combustion strokes, they produce high output with a small displacement.
  • the rotary engine has the advantage of having less vibration and noise than the piston engine because the rotational power is uniform, and that it emits less nitrogen oxides.
  • the rotary engine is composed of an epitrochoid curved housing 100 and a triangular rotor 200 inscribed thereto.
  • the housing 100 corresponds to a cylinder and the rotor 200 serves as a piston.
  • Fig. 1(a) shows the structure of a conventional rotary engine.
  • the housing 100 accommodates the rotor 200 and includes a rotor housing 130 that forms a combustion chamber provided with an epitropic curve, and a first housing 110 coupled to shield one surface of the rotor housing 130 And, a second housing 120 provided to shield the other surface of the rotor housing 130.
  • the rotary engine further includes an intake part 140 provided to inject fuel into the housing 100 and an exhaust part 150 provided to discharge fuel burned in the housing 100.
  • the conventional rotary engine 1 is installed so that the intake unit 140 communicates with the rotor housing 130 as shown. Accordingly, the fuel is injected along a direction in which one surface of the rotor 200 rotates, thereby preventing the injection of the fuel from being obstructed by the rotor 200.
  • Fig. 1(b) shows an operation method of a conventional rotary engine. Referring to FIG. 1(b), there are three spaces between the housing 100 and the rotor 200, and the volume of each space changes every moment as the rotor 200 rotates.
  • the rotor 200 rotates in the I direction, and the fuel F flows from the intake part 140 in the II direction corresponding to the I direction. Because the fuel (F) flowing in the II direction has no resistance, it is introduced in the form of a laminar flow or a flow with a weak turbulent intensive flow. The fuel F flowing in the direction II is intensively compressed toward the ignition device 400.
  • the ignition device 400 of a conventional rotary engine includes a first ignition device 410 and a second ignition device spaced apart from the first ignition device 420 in a direction opposite to the rotation direction of the rotor. Device 420. At this time, since more fuel is compressed in the first ignition device 410, primary ignition occurs in the first ignition device 410, and when the remaining fuel is compressed according to the rotation of the rotor 200, the second Secondary ignition occurs in the ignition device 420.
  • the fuel ignited by the first ignition device 410 explodes and the flame propagates in a direction III opposite to the II direction.
  • the propagating flame moves and explodes all the fuels that are not ignited by the ignition device 400 in a chain.
  • the fuel F is introduced into a flow having a weak degree of laminar or turbulent flow, thereby reducing the degree of propagation of the flame.
  • the conventional rotary engine supplies fuel through the rotor housing 130, the diameter or position of the intake port is limited, so that a large amount of fuel cannot be burned at once.
  • An object of the present invention is to provide a rotary engine capable of enhancing combustion efficiency of fuel by supplying fuel in a direction different from the rotational direction of the rotor.
  • An object of the present invention is to provide a rotary engine capable of improving engine performance by inhaling fuel in various directions.
  • An object of the present invention is to provide a rotary engine capable of preventing collisions between fuels flowing in multiple directions.
  • a turbulence forming unit is installed to enhance the degree of turbulence generated in the combustion chamber to increase the mixing rate of air and to increase the combustion efficiency by spreading the flame surface much faster than the flame surface of the laminar flame.
  • the possibility of spontaneous ignition and knock can be reduced.
  • the present invention has a structure in which a structure capable of increasing the turbulence strength of the mixer flowing into the combustion chamber is positioned immediately before the port.
  • the bluff body to be installed through the present invention may be located inside the intake pipe flow path immediately before the intake part (intake port), immediately before the mixer flows into the combustion chamber. Therefore, the turbulence intensity of the mixer flowing into the combustion chamber is increased.
  • the shape of the structure can be of various shapes.
  • the rotary engine of the present invention a fuel-air mixture is introduced into the combustion chamber through both side housings based on the rotor housing. Therefore, there is an advantage that a large amount of fuel can be injected.
  • the mixers supplied at the same time from both sides collide with each other in the combustion chamber and lose kinetic energy and the turbulence intensity may decrease.
  • the rotary engine of the present invention has a structure in which the directions and curvatures of the intake passages of the first housing and the second housing are different so that the mixers flowing into the combustion chamber do not cancel each other.
  • the rotary engine of the present invention can provide a method of distributing/supplying a mixer to one side and the other side of the rotor by varying the approach angle from the intake passage to the port.
  • a guide capable of guiding the mixer to one side and the other side of the combustion chamber may be installed inside the flow path.
  • the rotary engine of the present invention can provide a shape in which the fuel-air mixture supplied from both side surfaces is distributed to both sides of the rotor and supplied, and an intake flow path for distributing it to both sides.
  • the rotary engine of the present invention may provide a guide capable of guiding the mixer to both sides of the combustion chamber.
  • the present invention has the effect of increasing engine efficiency by accelerating flame propagation to incoming fuel.
  • the present invention has the effect of increasing engine efficiency by blocking incoming fuel from interfering with flame propagation.
  • the present invention has the effect of improving engine performance by supplying a large amount of fuel to the same volume.
  • the present invention has the effect of preventing the engine performance from being reduced by preventing collision during the introduction of a large amount of fuel.
  • the present invention has the effect of increasing the turbulence strength of the fuel-air mixture introduced into the combustion chamber.
  • the present invention has an effect of increasing the combustion efficiency by increasing the fuel-air mixing ratio and increasing the flame propagation speed.
  • the present invention has the effect of reducing the possibility of spontaneous ignition and knock as the combustion process proceeds rapidly.
  • FIG. 1 shows the structure of a conventional rotary engine.
  • FIG. 2 is a diagram illustrating a flame propagation in a conventional rotary engine.
  • FIG. 3 shows the structure of the rotary engine of the present invention.
  • Figure 4 shows a structure in which fuel is introduced in the rotary engine of the present invention.
  • Fig. 5 shows a structure for enhancing turbulence strength in fuel in the rotary engine of the present invention.
  • Figure 6 shows several embodiments of the turbulence generation unit of the present invention.
  • Fig. 7 shows a collision preventing unit for preventing collision between fuels in the rotary engine of the present invention.
  • Figure 8 shows another embodiment of preventing collision between fuels in the rotary engine of the present invention.
  • Figure 2 shows a rotary engine of the present invention.
  • the rotary engine of the present invention includes a combustion chamber 132 in which fuel is combusted and a housing 100 including a supply passage through which lubricating oil is supplied to the combustion chamber 132, and is accommodated in the combustion chamber to be eccentrically rotated to move the fuel It may include a rotor 200 that is compressed and lubricated with the lubricating oil.
  • the housing 100 includes a rotor housing 130 that contacts the outer circumferential surface of the rotor while accommodating the rotor 200, a first housing 110 coupled to one surface of the rotor housing to seal the combustion chamber, and the It may include a second housing 120 coupled to the other surface facing the one surface of the rotor housing to seal the combustion chamber.
  • the rotor housing 130 is provided in the receiving body 131 which is in contact with the rotor 200 and accommodates the rotor 200, and is provided inside the receiving body 131 to accommodate the rotor 200 or to receive fuel. It may include a combustion chamber 132 to burn.
  • the present invention rotary engine 1 includes an intake part 140 provided to supply fuel to the combustion chamber 132 and an exhaust part 150 provided to discharge the fuel burned in the combustion chamber 132.
  • the fuel may be a mixer in which air is mixed.
  • the intake part 140 may be provided in communication with the rotor housing 130, but communicate with any one of the first housing 110 and the second housing 120 to improve flame propagation efficiency of fuel. Can be provided. That is, the intake part 140 may be provided to supply the fuel to both sides of the rotor 200 so as to supply the fuel in an inclined direction or irrespective of the rotational direction of the rotor 200.
  • the first housing 110 is coupled to the rotor housing 130 to form one surface of the combustion chamber, and the first housing body 111 penetrates the first housing body 111 to pass through the intake part. It may include a first intake hole 112 provided to communicate with the 140.
  • the second housing 120 is coupled to the rotor housing 130 while facing the first housing 110 to form the other surface of the combustion chamber, the second housing body 121, and the second housing body 121 ) May include a second intake hole 122 communicating with the intake part 140.
  • the first intake hole 112 and the second intake hole 122 may be provided to be biased toward one side of the first housing body 111 and the second housing body 121. This is because fuel must be injected into a space formed between the outer circumferential surface of the rotor 200 and the inner circumferential surface of the rotor housing 130.
  • the exhaust part 150 may also be provided to communicate with at least one of the first housing 110 or the second housing 120.
  • the first housing 110 may include a first exhaust hole 113 passing through the first housing body 111 and communicating with the exhaust unit 150
  • the second housing 120 May include a second exhaust hole 123 passing through the second housing body 121 and communicating with the exhaust part 150.
  • the first exhaust hole 113 and the second exhaust hole 123 are also provided with the first housing body 111 and the second inlet hole 112 and the second intake hole 122. It may be provided on one side of the housing body 121. This is to discharge the burned fuel while the rotor 200 has completed one rotation as much as possible.
  • the first exhaust hole 113 and the second exhaust hole 123 are spaced apart from the first intake hole 112 and the second intake hole 122 in a direction opposite to the rotation direction of the rotor 200, respectively. Can be deployed.
  • the separation distance may be provided as any distance as long as it can be prevented that the intake fuel and the aspirated fuel can be prevented from being diluted.
  • the first exhaust hole 113 and the second exhaust hole 123 may be provided to face each other.
  • first housing 110 and the second housing 120 may include a support hole through which the rotation shaft 300 for rotating the rotor 200 passes or rotatably supports it.
  • first housing 110 may include a first support hole 116 through which the rotation shaft 300 passes or accommodates and supports one end of the rotation shaft
  • second housing 120 May include a second support hole 126 that is provided through the rotation shaft 300 or accommodates and supports the other end of the rotation shaft.
  • the rotor 200 may include a rotor body 210 provided to compress or move the fuel, and a through hole 220 through which the rotation shaft is coupled through the rotor body 210.
  • the through hole 220 may be provided larger than a diameter of the rotation shaft, and the through hole 220 may further include an inner main gear 225 that may be provided in engagement with a part of the rotation shaft 230. .
  • the rotor 200 is accommodated in the combustion chamber so as to be eccentrically rotated to move the fuel inhaled from the suction unit 140 along the inner circumferential surface of the rotor housing 130, or transfer the fuel to the rotor housing 130. It is provided to push and compress.
  • the rotor 200 may include a corner that divides the combustion chamber by making surface contact or line contact with the rotor housing 130.
  • the rotor 200 has a triangular cross section, but this is for illustration only. Even if the rotor 200 has a circular or elliptical cross section, the same principle may be used.
  • the rotor 200 may have a triangular cross section to divide the combustion chamber 132 into three parts.
  • the rotor 200 includes a first compression surface 211 forming one of the outer circumferential surfaces, and a second compression surface forming the other surface of the outer peripheral surface of the rotor at the end of the first compression surface 211 ( 212), and a third compression surface 213 forming another surface of the outer peripheral surface of the rotor at an end of the second compression surface 212.
  • the rotor 200 may have three corners. Specifically, the first compression surface 211 and the second compression surface 212 may share a first edge (A), the second compression surface 212 and the third compression surface 213 May share the second corner B, and the third compression surface 213 and the first compression surface 211 may share a third corner C.
  • the first edge A, the second edge B, and the third edge C may move while in surface contact with the rotor housing 130 whenever the rotor 200 rotates. Accordingly, the first edge (A), the second edge (B), and the third edge (C) can divide the combustion chamber 132 into three. In addition, although not shown, the first edge (A), the second edge (B), and the third edge (C) are in surface contact with the rotor housing 130 to partition the combustion chamber 132 but a partitioned space. There is a risk of communication with each other.
  • the first edge (A), the second edge (B), and the third edge (C) form a side seal or a corner seal that is in close contact with the rotor housing 130. It may contain more.
  • the side seal or corner seal may be formed of a material different from that of the rotor 200.
  • the first compression surface 211, the second compression surface 212, and the third compression surface 213 are recessed inward to receive fuel or receive a repulsive force when the fuel explodes.
  • a groove 2111, a second groove 2121, and a third groove 2131 may be included.
  • the rotation shaft 300 includes a first shaft 310 coupled to the first housing 110, a second shaft 330 coupled to the second housing 120, and the first shaft 310 ) And the second shaft 330, but may include an eccentric shaft 320 that is eccentric to one side from the rotation center of the first shaft 310 and the second shaft 320.
  • the first shaft 310 and the second shaft 330 may have the same rotation center.
  • the eccentric shaft 320 may be provided to protrude eccentrically from the first shaft or the second shaft toward one side.
  • the eccentric shaft 320 may be accommodated in the through hole 220 and provided to press a part of the through hole 220 to the inner circumferential surface of the rotor housing 130.
  • the eccentric shaft 320 provides power to compress the fuel.
  • the outer circumferential surface of the eccentric shaft 320 may further include an outer main gear capable of engaging the inner main gear 225.
  • the rotary engine of the present invention may further include an oil supply unit 500 that supplies lubricating oil that lubricates the contact surface between the rotor 200 and the rotor housing 130.
  • the oil supply unit 500 is provided in the housing 100 to supply lubricating oil to the rotor 200.
  • the oil supply unit 500 is provided in the housing 100 and provided to be in contact with a supply passage 570 through which the lubricating oil moves, and a seal which is provided in contact with the rotor 200 to selectively close the supply passage 570 It may include a portion 530 and an elastic portion 520 for pressing the sealing portion 530 toward the combustion chamber.
  • the present invention rotary engine 1 includes an intake part 140 provided to supply fuel to the combustion chamber 132 and an exhaust part 150 provided to discharge the fuel burned in the combustion chamber 132.
  • the fuel may be a mixer in which air is mixed.
  • the intake part 140 may be provided in communication with the rotor housing 130, but communicate with any one of the first housing 110 and the second housing 120 to improve flame propagation efficiency of fuel. Can be provided. That is, the intake part 140 may be provided to supply the fuel to both sides of the rotor 200 so as to supply the fuel in an inclined direction or irrespective of the rotational direction of the rotor 200.
  • the first housing 110 is coupled to the rotor housing 130 to form one surface of the combustion chamber, and the first housing body 111 penetrates the first housing body 111 to pass through the intake part. It may include a first intake hole 112 provided to communicate with the 140.
  • the second housing 120 is coupled to the rotor housing 130 while facing the first housing 110 to form the other surface of the combustion chamber, the second housing body 121, and the second housing body 121 ) May include a second intake hole 122 communicating with the intake part 140.
  • the first intake hole 112 and the second intake hole 122 may be provided to be biased toward one side of the first housing body 111 and the second housing body 121. This is because fuel must be injected into a space formed between the outer circumferential surface of the rotor 200 and the inner circumferential surface of the rotor housing 130.
  • the first intake hole 112 and the second intake hole 122 are not provided in the rotor housing 130, but are provided in the first housing and the second housing. . Accordingly, since fuel is injected through both sides of the housing 100, a large amount of fuel can be burned, thereby improving engine performance.
  • the exhaust part 150 may also be provided to communicate with at least one of the first housing 110 or the second housing 120.
  • the first housing 110 may include a first exhaust hole 113 passing through the first housing body and communicating with the exhaust unit 150
  • the second housing 120 is It may include a second exhaust hole 123 passing through the second housing body and communicating with the exhaust unit 150.
  • the first exhaust hole 113 and the second exhaust hole 123 are also provided with the first housing body 111 and the second inlet hole 112 and the second intake hole 122. It may be provided on one side of the housing body 121. This is to discharge the burned fuel while the rotor 200 has completed one rotation as much as possible.
  • the first exhaust hole 113 and the second exhaust hole 123 are spaced apart from the first intake hole 112 and the second intake hole 122 in a direction opposite to the rotation direction of the rotor 200, respectively. Can be deployed.
  • the separation distance may be provided as any distance as long as it can be prevented that the intake fuel and the aspirated fuel can be prevented from being diluted.
  • the first exhaust hole 113 and the second exhaust hole 123 may be provided to face each other.
  • an ignition device for igniting the fuel may be installed.
  • the ignition device is a device that is coupled to the upper housing 100 and exposed to the combustion chamber, and supplies energy to the combustion chamber (ex. spark is generated) to burn the fuel.
  • the rotary engine 1 of the present invention may install the ignition device in the rotor housing 130. This is because the inner circumferential surface of the rotor housing 130 is an area where the most amount of fuel is compressed, so that the fuel is easily ignited.
  • the rotor housing 130 may include insertion holes 133 and 134 to which an ignition device is coupled.
  • the insertion holes 133 and 134 may be provided through the rotor housing 130 in the thickness direction, and may be provided in an area opposite or facing the intake hole and the exhaust hole. This is because the area facing the intake hole and the exhaust hole is a part where fuel is compressed most.
  • the ignition device may be provided to ignite the front portion of the fuel. This is because the front portion of the fuel is compressed more than the rear portion by the rotation of the rotor 200, so that it can be ignited more easily.
  • the flame generated when the front portion of the fuel starts to ignite may propagate to the entire area of the fuel and burn up to the rear portion of the fuel.
  • the intake hole is provided in the first housing or the second housing, the direction in which the fuel is injected does not correspond to a direction opposite to the flame propagation direction. Therefore, since the movement of the fuel does not interfere with the propagation of the flame, the fuel is ignited more effectively, thereby increasing the combustion efficiency.
  • a plurality of insertion holes may be provided so that a plurality of ignition devices may be installed. That is, in the insertion hole, the first insertion hole 133 to which the first ignition device is coupled and the second ignition device are coupled, and the first insertion hole 133 is spaced apart from the first insertion hole 133 in a direction opposite to the rotation direction of the rotor. It may include two insertion holes 134. Accordingly, the second ignition device can induce the entire fuel to be burned by re-igniting the rear of the fuel. Nevertheless, when the intake hole is installed in the rotor housing 130 so that the moving direction of the fuel is opposite to the flame propagation direction, the fuel located between the first insertion hole 133 and the second insertion hole 134 There is a risk of not burning.
  • the moving direction of the fuel does not correspond to a direction opposite to the flame propagation direction. Accordingly, even if the rotary engine of the present invention is provided with a plurality of ignition devices, it is possible to burn all of the fuel between the ignition devices, and thus the efficiency of the engine may be increased.
  • Figure 4 shows the structure of the intake portion of the rotary engine of the present invention.
  • Fig. 4(a) shows a structure in which the housing is omitted in the present invention rotary engine
  • Fig. 4(b) shows a cross-sectional view in which the intake part is coupled to the housing.
  • the rotary engine of the present invention may include an intake part 140 that supplies fuel to the housing 100.
  • the intake part 140 includes a supply part 144 coupled to a fuel supply source to receive fuel, and a first intake part 141 extending from the supply part 144 to the first intake hole 112 to supply fuel. And a second intake part 142 extending from the supply part 144 to the second intake hole 122 to supply fuel.
  • the first intake part 141 and the second intake part 142 may be provided in a shape of a pipe or a duct through which fuel moves, and the first intake part 141 and the second intake part 142 are
  • the flowing fuel may be a mixture of air and fuel.
  • the intake part 140 may include a fixing part 143 fixing the first intake part 141 and the second intake part 142.
  • the fixing part 143 may include a first fixing hole 143a through which the first intake part 141 passes and a second fixing hole 143b through which the second intake part 142 passes.
  • the inclination or direction of the first intake part 141 and the second intake part 142 can be maintained, and even if the rotor 200 rotates at a high speed and vibration occurs, the position Can be fixed.
  • the fuel flows through the first intake part 141 in the rotational direction I of the rotor 200 and the inclined first direction A, and the second intake Through the portion 142, the fuel may flow into the rotation direction I of the rotor 200 and the second direction B inclined.
  • the first and second directions may correspond to a direction inclined to each other as well as the flame propagation direction.
  • the directions A and B in which the fuel is introduced are not directions that interfere with flame propagation, ignition of the fuel can be effectively performed.
  • FIG. 4 is illustrated based on a plurality of intake parts 140, but this is only an example, and may be provided in communication only with the first housing 110 or the second housing 120.
  • the fuel can be burned more effectively as the flame propagation is performed more.
  • the propagation of the flame since the propagation of the flame is performed by the molecules of the fuel, it may be much faster when the fuel flows in a turbulent flow rather than in a laminar flow.
  • the air introduced into the intake hole may be in a laminar flow form or a degree of turbulence may be weak in consideration of the flow velocity, the viscosity of the fuel, and the diameter of the intake part.
  • the speed of the fuel supplied to the intake hole can be increased, but this increases the load of the fuel supply device, and there is a risk that the fuel flows backward or leaks from the combustion chamber 132, which is not preferable.
  • the rotary engine of the present invention may be provided to enhance the degree of turbulence even at the existing inflow speed of fuel.
  • 5 shows an embodiment of creating turbulence in fuel.
  • the rotary engine of the present invention may include a turbulence forming part protruding into the intake part 140 to increase the turbulence intensity of the fuel.
  • the turbulence forming part 600 may be provided to protrude from the inner circumferential surfaces of the intake holes 112 and 122 to which the intake part 140 and the housing 100 are coupled.
  • the intake part is provided as the first intake part 141 and the second intake part 142
  • the turbulence forming part 600 is formed on the inner peripheral surface of the first intake hole 112 and the second intake hole 122. ) May be provided on one or more of the inner circumferential surfaces.
  • the turbulence forming part 600 may be provided to collide with the fuel flowing into the first intake hole 112 and the second intake hole 122. Thereby, it is possible to increase the turbulence intensity in the fuel.
  • the turbulence forming part 600 may be provided to protrude from the inner circumferential surface of the intake part 140. At this time, in order to effectively increase the turbulence intensity of the fuel flowing into the combustion chamber 132 without interfering with the flow of fuel as much as possible, the turbulence forming part 600 is spaced apart from the intake hole toward the intake part 140. Can be installed on the part. That is, the turbulence forming part 600 may be installed near a portion where the intake part 140 and the housing 100 are combined. For example, the turbulence forming part 600 may be installed at a portion where the intake part 140 is bent to be coupled to the housing 100.
  • the turbulence forming part 600 may protrude from the intake part 140 or the intake hole in a direction away from the combustion chamber. Accordingly, it is possible to further increase the turbulence intensity of the fuel by actively interfering with the flow of the fuel. Meanwhile, the length of the turbulence forming part 600 protruding from the intake part 140 or the intake holes 112 and 122 may be less than half the diameter of the intake part 140 or the intake hole. Thus, it is possible to effectively increase the turbulence intensity without disturbing the flow of fuel.
  • the turbulence forming part 600 is a direction in which the intake part 140 extends among the intake part 140 or the inner peripheral surfaces of the intake holes 112 and 122 It may be provided to protrude from the portion located at.
  • the turbulence forming part 600 may be provided integrally with the intake part 140, but may be provided separately and coupled to the intake part 140.
  • the fuel that has passed through the first intake part 141 and the second intake part 142 may flow in the compression chamber 132 in a complex turbulent form.
  • FIG. 6 shows various embodiments of the turbulence forming unit.
  • the turbulence forming unit may be provided in various forms.
  • the turbulence forming part 600 may be provided in plural along the longitudinal direction of the intake part 140. Of course, unlike shown, the turbulence forming part 600 may be provided in a single number in the intake part 140.
  • the turbulence forming part 600 may include a shielding rib 610 protruding from the intake part 140 in a straight line.
  • the shielding rib 610 may be provided so as not to be parallel to the direction in which the suction part 140 extends. This is to further enlarge an area in contact with the fuel flowing through the suction unit 140. Accordingly, the shielding rib 610 may be provided to protrude perpendicular to the direction in which the suction part 140 extends.
  • the turbulence forming part 600 may include a protruding pillar 620 having a circular or elliptical cross section and protruding from the inner peripheral surface of the intake part. Accordingly, even if the fuel collides with the protruding pillar 620, the turbulence intensity can be increased while minimizing the flow velocity loss of the fuel.
  • the turbulence forming part 600 extends from a first rib 631 protruding obliquely to a direction in which the intake part 140 extends, and from one end of the first rib 631. It may include a second rib (632).
  • the first rib 631 and the second rib 632 may be provided so as to be further away from each other toward the downstream of the intake part 140. As a result, turbulence can be intensively formed on the rear surfaces of the first rib 631 and the second rib 632.
  • the turbulence forming part 600 includes a blocking rib 641 protruding from the intake hole or the intake part in a straight line, and a guide provided protruding from one surface of the blocking rib. It may include a portion 642.
  • the blocking rib 641 may have a width greater than a thickness so that an area colliding with the fuel is greater.
  • the guide part 642 may be provided to extend in a downstream direction through which fuel flows from the blocking rib 641, and may be provided to have a thickness smaller as the distance from the blocking rib 641 increases.
  • the fuel is first collided with the blocking rib 641 to form a turbulent flow at the rear surface of the blocking rib 641, and the formed turbulence is separated from both sides of the guide part 642 and can be moved.
  • the turbulence may form a constant vortex and flow into the combustion chamber 132, thereby increasing the flame propagation rate.
  • the fuel introduced from the first intake part 141 and the second intake part 142 may collide with each other.
  • the intensity of turbulence may increase, but the fuel may accumulate and prevent the inflow of other fuels.
  • the rotary engine of the present invention may be provided so as to prevent collision between fuels even when fuel flows into both sides.
  • Figure 7 shows the structure of the collision preventing unit in the present invention rotary engine.
  • the rotary engine of the present invention is provided in at least one of the inside of the first intake part and the inside of the second intake part, and the fuel supplied from the first intake part and the fuel supplied from the second intake part It may further include a collision preventing unit 160 for preventing the fuel from colliding with each other.
  • the collision avoidance unit 160 includes a first vane 161 provided inside the first intake unit along the extending direction of the first intake unit 141, and the second intake unit 160 along the extending direction of the second intake unit. It may include a second vane 162 protruding and provided inside the intake part.
  • the first vane 161 and the second vane 162 may partition the interior of the intake part 140.
  • the first vane 161 and the second vane 162 may guide the direction of the fuel flowing through the intake part 140.
  • the first vane 161 and the second vane 162 may be provided in a plate shape, and may be provided at any height as long as the direction of the fuel can be guided.
  • an end of the first vane 161 facing the combustion chamber and an end of the second vane 162 facing the combustion chamber may be provided alternately so as not to face each other.
  • first vane 161 may be provided so that the end extension line L1 and the end extension line L2 of the second vane 162 do not meet each other.
  • first vane 161 may be provided to face the rotor 200 from the first intake hole 112
  • second vane 162 may be the second intake hole 122 It may be provided to face the rotor housing 130 at.
  • an inclination formed by the end of the first vane and the combustion chamber and an inclination formed by the second vane and the end and the combustion chamber may be different from each other.
  • Figure 8 shows another embodiment for preventing a collision of fuel in the rotary engine of the present invention.
  • the first intake part 141 may be obliquely coupled to the first housing 110, and the second intake unit 142 may be obliquely coupled to the second housing 120.
  • the first intake part 141 and the second intake part ( 142 may be obliquely coupled to the housing 100.
  • the first intake part 141 may be provided in the first housing 110 to be inclined in a direction away from the supply part 144
  • the second intake part 142 may be provided in the second housing 120. It may be provided to be inclined in a direction closer to the supply unit 144. Accordingly, it is possible to prevent the fuel discharged from the first intake part 141 and the fuel discharged from the second intake part 142 collide with each other.
  • the rotary engine of the present invention even if there is no collision prevention unit in the intake unit 140, collision between fuels can be prevented.
  • the collision prevention effect between fuels can be maximized.
  • Fig. 9 shows another embodiment for preventing a collision of fuel in the rotary engine of the present invention.
  • the first intake hole 112 and the second intake hole 122 may be provided to be prevented from facing each other. That is, the first intake hole 112 and the second intake hole 122 may be provided alternately. Accordingly, it is possible to prevent direct collision between the fuel discharged from the first intake hole 112 and the second intake hole 122.
  • first intake part 141 connected to the first intake hole 112 and the second intake part 142 connected to the second intake hole 122 may have different inclinations.
  • the first intake part 141 may be provided in the first housing 110 to be inclined in a direction away from the supply part 144, and the second intake part 142 may be provided in the second housing 120. It may be provided to be inclined in a direction closer to the supply unit 144. Accordingly, it is possible to further prevent the fuel discharged from the first intake part 141 and the fuel discharged from the second intake part 142 collide with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

The present invention relates to a rotary engine which includes a turbulence formation unit for increasing the turbulence intensity of fuel supplied to the engine. The turbulence formation unit may be disposed inside an intake device into which fuel is injected.

Description

로터리 엔진Rotary engine
본 발명은 로터리 엔진에 관한 것이다. 보다 상세하게는, 로터리 엔진에 투입되는 연료에 유동을 변화시킬 수 있는 로터리 엔진에 관한 것이다.The present invention relates to a rotary engine. More specifically, it relates to a rotary engine capable of changing the flow of fuel input to the rotary engine.
일반적으로 로터리 엔진은 회전운동으로 동력을 생산하는 엔진을 말한다. 로터리엔진은 피스톤엔진에 비해 단순한 구조를 가지고 있어 소형화가 용이하고, 연속적인 연소행정이 가능하여 적은 배기량으로 높은 출력을 내는 특징이 있다. 또한 로터리 엔진은 회전력이 균일하여 피스톤엔진에 비해 진동 및 소음이 적고, 질소산화물을 적게 배출한다는 장점도 지니고 있다.In general, a rotary engine refers to an engine that generates power through rotational motion. Rotary engines have a simpler structure compared to piston engines, so they are easy to miniaturize, and because they allow continuous combustion strokes, they produce high output with a small displacement. In addition, the rotary engine has the advantage of having less vibration and noise than the piston engine because the rotational power is uniform, and that it emits less nitrogen oxides.
따라서, 근자에는 이러한 로터리 엔진의 장점으로 인해 자동차, 자전거, 항공기, 제트스키 등의 주요 엔진으로 적용될 뿐만 아니라, 단순한 구조로 인해 히트 펌프 시스템의 압축기에도 적용되고 있는 실정이다.Therefore, in recent years, due to the advantages of such a rotary engine, it is not only applied to major engines such as automobiles, bicycles, aircraft, and jet skis, but also applied to compressors of heat pump systems due to its simple structure.
도 1은 종래의 로터리 엔진을 대표할 수 있는 방켈 엔진을 도시한 것이다. (일본특허공개공보 제2017-44078호 참조) 상기 로터리 엔진은 에피트로코이드(epitrochoid) 곡선 모양의 하우징(100)과 이것에 내접하는 삼각형 모양의 로터(200)로 구성된다. 상기 하우징(100)이 실린더에 해당하고 로터(200)가 피스톤의 역할을 수행한다. 1 shows a Bankel engine that can represent a conventional rotary engine. (See Japanese Patent Laid-Open Publication No. 2017-44078) The rotary engine is composed of an epitrochoid curved housing 100 and a triangular rotor 200 inscribed thereto. The housing 100 corresponds to a cylinder and the rotor 200 serves as a piston.
도1(a)은 종래 로터리 엔진의 구조를 도시한 것이다. 상기 하우징(100)은 상기 로터(200)을 수용하며 에피트로코이드 곡선으로 구비된 연소실을 형성하는 로터하우징(130)과, 상기 로터하우징(130)의 일면을 차폐하도록 결합되는 제1하우징(110)과, 상기 로터하우징(130)의 타면을 차폐하도록 구비되는 제2하우징(120)을 포함한다.Fig. 1(a) shows the structure of a conventional rotary engine. The housing 100 accommodates the rotor 200 and includes a rotor housing 130 that forms a combustion chamber provided with an epitropic curve, and a first housing 110 coupled to shield one surface of the rotor housing 130 And, a second housing 120 provided to shield the other surface of the rotor housing 130.
상기 로터리 엔진은 상기 하우징(100) 내부에 연료를 주입하도록 구비되는 흡기부(140)와, 상기 하우징(100)에서 연소된 연료를 배출하도록 구비되는 배기부(150)를 더 포함한다.The rotary engine further includes an intake part 140 provided to inject fuel into the housing 100 and an exhaust part 150 provided to discharge fuel burned in the housing 100.
종래 로터리 엔진(1)은 도시된 바와 같이 로터하우징(130)에 상기 흡기부(140)이 연통되도록 설치한다. 이로써, 상기 로터(200)의 일면이 회전하는 방향을 따라 상기 연료가 주입되도록 하여, 상기 로터(200)에 의해 상기 연료의 주입이 방해되는 것을 방지할 수 있다. The conventional rotary engine 1 is installed so that the intake unit 140 communicates with the rotor housing 130 as shown. Accordingly, the fuel is injected along a direction in which one surface of the rotor 200 rotates, thereby preventing the injection of the fuel from being obstructed by the rotor 200.
도1(b)는 종래 로터리 엔진의 작동방식을 도시한 것이다. 도1(b)를 참조하면, 상기 하우징(100)과 로터(200) 사이에 3개의 공간이 있으며, 로터(200)의 회전으로 각 공간의 부피는 시시각각으로 변화한다. Fig. 1(b) shows an operation method of a conventional rotary engine. Referring to FIG. 1(b), there are three spaces between the housing 100 and the rotor 200, and the volume of each space changes every moment as the rotor 200 rotates.
구체적으로, 상기 로터(200)의 일면이 상기 흡기부(140)를 개방하면, 상기 흡기부(140)에서 연료(F)가 상기 하우징(100) 내부로 투입된다. (흡기행정) 상기 하우징(100)에 투입된 연료(F)는 상기 로터(200)의 회전방향에 따라 함께 하우징(100)의 내주면을 따라 이동하며 압축된다.(압축행정) 상기 연료(F)가 점화장치(400)에 부근에 도달하면, 상기 점화장치(400)는 스파크 등을 발생시켜 상기 연료(F)를 폭발시킨다.(폭발행정) 상기 로터(200)는 상기 폭발된 연료에 의해 회전력을 받아 회전하며 상기 배기구(150)를 개방하여 연소된 연료(F)를 배출시킨다.(배기행정)Specifically, when one surface of the rotor 200 opens the intake part 140, the fuel F from the intake part 140 is injected into the housing 100. (Intake stroke) The fuel F injected into the housing 100 is compressed while moving along the inner circumferential surface of the housing 100 together according to the rotation direction of the rotor 200. (Compression stroke) The fuel F is compressed. When it reaches the vicinity of the ignition device 400, the ignition device 400 generates sparks and the like to explode the fuel F. (Explosion stroke) The rotor 200 generates a rotational force by the exploded fuel. It rotates by receiving and opening the exhaust port 150 to discharge the burned fuel F. (Exhaust stroke)
다시말해, 종래 로터리 엔진은 상기 로터(200)가 1회전하는 사이에 흡기, 압축, 폭발, 배기의 4사이클 동작이 완성된다. In other words, in the conventional rotary engine, four cycles of intake, compression, explosion, and exhaust are completed while the rotor 200 rotates once.
이러한, 로터리 엔진은 흡입·압축을 위한 밸브는 없고 2사이클과 같은 흡기구·배기구를 로터(200)가 회전하여 개폐하도록 구비되며, 크랭크가 없으므로 소형화 할 수 있는 장점이 있다. In such a rotary engine, there is no valve for suction and compression, and the rotor 200 rotates and opens and closes the intake and exhaust ports such as two cycles, and since there is no crank, there is an advantage of miniaturization.
도2는 종래 로터리 엔진의 연소 상황을 도시한 것이다.2 shows a combustion situation of a conventional rotary engine.
도2(a)를 참조하면, 상기 로터(200)는 I 방향으로 회전하며, 상기 연료(F)는 상기 흡기부(140)에서 상기 I방향과 대응되는 II방향으로 유입된다. II방향으로 유입되는 연료(F)는 별다른 저항이 없기 때문에 층류(laminar flow) 형태로 유입되거나, 난류정도(turbulent intensive)가 약한 유동으로 유입된다. 상기 II방향으로 유입되는 연료(F)는 상기 점화장치(400)를 향하여 집중적으로 압축된다.Referring to FIG. 2A, the rotor 200 rotates in the I direction, and the fuel F flows from the intake part 140 in the II direction corresponding to the I direction. Because the fuel (F) flowing in the II direction has no resistance, it is introduced in the form of a laminar flow or a flow with a weak turbulent intensive flow. The fuel F flowing in the direction II is intensively compressed toward the ignition device 400.
도2(b)를 참조하면, 종래 로터리 엔진의 점화장치(400)는 제1점화장치(410)와, 상기 제1점화장치(420)에서 로터의 회전방향과 반대 방향으로 이격되는 제2점화장치(420)를 포함한다. 이때, 상기 제1점화장치(410)에 연료가 더 많이 압축되어 있으므로 상기 제1점화장치(410)에 1차 점화가 발생하며, 이후 로터(200)의 회전에 따라 나머지 연료가 압축되면 제2점화장치(420)에 2차 점화가 발생한다. 2(b), the ignition device 400 of a conventional rotary engine includes a first ignition device 410 and a second ignition device spaced apart from the first ignition device 420 in a direction opposite to the rotation direction of the rotor. Device 420. At this time, since more fuel is compressed in the first ignition device 410, primary ignition occurs in the first ignition device 410, and when the remaining fuel is compressed according to the rotation of the rotor 200, the second Secondary ignition occurs in the ignition device 420.
이때, 상기 제1차점화장치(410)에서 점화된 연료는 폭발하며 II방향과 반대인 III방향으로 화염이 전파된다. 상기 전파되는 화염은 이동하며 점화장치(400)에 의해 점화되지 않는 연료까지 모두 연쇄적으로 폭발시킨다. At this time, the fuel ignited by the first ignition device 410 explodes and the flame propagates in a direction III opposite to the II direction. The propagating flame moves and explodes all the fuels that are not ignited by the ignition device 400 in a chain.
그러나, 종래 로터리 엔진은 상기 연료가 화염전파 방향과 다른 방향으로 이동하므로, 연료의 유동 자체가 화염의 전파를 방해하는 문제가 있었다.However, in the conventional rotary engine, since the fuel moves in a direction different from the flame propagation direction, there is a problem that the flow of fuel itself interferes with the propagation of the flame.
또한, 상기 연료(F)는 층류나 난류정도가 약한 유동으로 유입되어 화염의 전파정도를 약화시키는 문제가 있었다.In addition, the fuel F is introduced into a flow having a weak degree of laminar or turbulent flow, thereby reducing the degree of propagation of the flame.
따라서, 종래 로터리 엔진은 연료(F)가 전부 연소되지 않거나, 충분히 연소되지 않아 의도한 효율보다 엔진효율이 감소되는 문제가 있다. Therefore, in the conventional rotary engine, there is a problem in that the engine efficiency is reduced than the intended efficiency because not all of the fuel F is burned or sufficiently burned.
더욱이, 종래 로터리 엔진 중에 도시된 바와 달리, 점화장치가 단수로 구비되는 경우에는 화염 전파정도가 더욱 감소하여 엔진효율이 급감하는 문제가 있었다. Moreover, unlike conventional rotary engines, when the ignition device is provided in a single number, the degree of flame propagation is further reduced, and the engine efficiency is sharply reduced.
또한, 종래 로터리 엔진은 연료의 연소가 상대적으로 느리므로 연료가 의도치 않는 부분에서 자발화되거나 폭발하여 로터(200)의 회전을 방해하는 노크 현상이 발생할 가능성이 크다.In addition, since the combustion of fuel is relatively slow in the conventional rotary engine, there is a high possibility that a knock phenomenon that prevents the rotation of the rotor 200 may occur due to spontaneous ignition or explosion of fuel in an unintended portion.
또한, 종래 로터리 엔진은 연료를 로터하우징(130)을 통해 공급하게 되므로 흡기구의 직경이나 위치가 제한되어 다량의 연료를 일시에 연소시킬 수 없는 한계가 있었다. In addition, since the conventional rotary engine supplies fuel through the rotor housing 130, the diameter or position of the intake port is limited, so that a large amount of fuel cannot be burned at once.
본 발명은 유입되는 연료에 난류정도(turbulent intensive)를 강화할 수 있는 로터리 엔진을 제공하는 것을 해결하고자 하는 과제로 한다.It is an object of the present invention to provide a rotary engine capable of enhancing the degree of turbulent intensive in an incoming fuel.
본 발명은 연료를 로터의 회전방향과 다른 방향으로 공급하여 연료의 연소효율을 강화시킬 수 있는 로터리 엔진을 제공하는 것을 해결하고자 하는 과제로 한다.An object of the present invention is to provide a rotary engine capable of enhancing combustion efficiency of fuel by supplying fuel in a direction different from the rotational direction of the rotor.
본 발명은 연료를 다양한 방향으로 흡입하도록 하여 엔진성능을 향상시킬 수 있는 로터리 엔진을 제공하는 것을 해결하고자 하는 과제로 한다.An object of the present invention is to provide a rotary engine capable of improving engine performance by inhaling fuel in various directions.
본 발명은 다방향으로 유입되는 연료들 간의 충돌을 방지할 수 있는 로터리 엔진을 제공하는 것을 해결하고자 하는 과제로 한다.An object of the present invention is to provide a rotary engine capable of preventing collisions between fuels flowing in multiple directions.
본 발명 로터리 엔진은 난류형성부를 설치하여, 연소실에서 발생하는 난류 정도를 강화시켜 공기의 혼합율을 높이고 층류 화염의 화염면보다 훨씬 빠르게 화염면을 확산시켜 연소 효율을 높인다. 또한, 빠르게 연소과정이 진행되면서 자발화와 노크의 발생가능성도 줄일 수 있다.In the rotary engine of the present invention, a turbulence forming unit is installed to enhance the degree of turbulence generated in the combustion chamber to increase the mixing rate of air and to increase the combustion efficiency by spreading the flame surface much faster than the flame surface of the laminar flame. In addition, as the combustion process proceeds rapidly, the possibility of spontaneous ignition and knock can be reduced.
구체적으로, 본 발명은 연소실로 유입되는 혼합기의 난류강도를 높일 수 있는 구조체를 포트 직전에 위치하도록 하는 구조를 구비한다. 본 발명을 통해 설치 하고자 하는 구조체(bluff body)는 흡기부(흡기포트) 직전, 연소실로 혼합기가 유입되기 직전, 흡기관 유로 내부에 위치할 수 있다. 따라서, 연소실로 유입되는 혼합기의 난류강도를 증가시킨다. 구조체의 형상은 다양한 형태가 될 수 있다.Specifically, the present invention has a structure in which a structure capable of increasing the turbulence strength of the mixer flowing into the combustion chamber is positioned immediately before the port. The bluff body to be installed through the present invention may be located inside the intake pipe flow path immediately before the intake part (intake port), immediately before the mixer flows into the combustion chamber. Therefore, the turbulence intensity of the mixer flowing into the combustion chamber is increased. The shape of the structure can be of various shapes.
본 발명 로터리 엔진은 로터하우징을 기준으로 양쪽 사이드 하우징으로 연료-공기 혼합기를 연소실로 유입시킨다. 따라서, 다량의 연료를 주입시킬 수 있는 장점이 있다. 그러나, 양쪽에서 동시에 공급되는 혼합기는 연소실에서 서로 부딪히며 운동에너지를 잃고 난류강도가 작아질 수 있다. 이를 개선하기 위해, 본 발명 로터리 엔진은 연소실 내부로 유입되는 혼합기가 서로 상쇄되지 않도록 제1 하우징과 제2하우징의 흡기 유로의 방향과 곡률을 다르게 하는 구조를 구비한다.In the rotary engine of the present invention, a fuel-air mixture is introduced into the combustion chamber through both side housings based on the rotor housing. Therefore, there is an advantage that a large amount of fuel can be injected. However, the mixers supplied at the same time from both sides collide with each other in the combustion chamber and lose kinetic energy and the turbulence intensity may decrease. To improve this, the rotary engine of the present invention has a structure in which the directions and curvatures of the intake passages of the first housing and the second housing are different so that the mixers flowing into the combustion chamber do not cancel each other.
본 발명 로터리 엔진은 흡기 유로로부터 포트로의 접근 각도를 달리하여 로터의 일면 및 타면으로 혼합기를 분배/공급 하는 방법을 제공할 수 있다. 또한, 본 발명 로터리 엔진은 유로 내부에 연소실 일면 및 타면으로 혼합기를 유도할 수 있는 가이드를 설치 할 수 있다.The rotary engine of the present invention can provide a method of distributing/supplying a mixer to one side and the other side of the rotor by varying the approach angle from the intake passage to the port. In addition, in the rotary engine of the present invention, a guide capable of guiding the mixer to one side and the other side of the combustion chamber may be installed inside the flow path.
본 발명 로터리 엔진은 양쪽 사이드 면에서 공급되는 연료-공기 혼합기가 로터 양쪽으로 분배되어 공급되는 형상과 양쪽으로 분배하기 위한 흡기 유로를 제공할 수 있다. 본 발명 로터리 엔진은 연소실 양측으로 혼합기를 유도할 수 있는 가이드를 제공할 수 있다.The rotary engine of the present invention can provide a shape in which the fuel-air mixture supplied from both side surfaces is distributed to both sides of the rotor and supplied, and an intake flow path for distributing it to both sides. The rotary engine of the present invention may provide a guide capable of guiding the mixer to both sides of the combustion chamber.
본 발명은 유입되는 연료에 화염전파를 가속화하여 엔진효율을 높이는 효과가 있다.The present invention has the effect of increasing engine efficiency by accelerating flame propagation to incoming fuel.
본 발명은 유입되는 연료가 화염전파를 방해하는 것을 차단하여 엔진효율을 높이는 효과가 있다.The present invention has the effect of increasing engine efficiency by blocking incoming fuel from interfering with flame propagation.
본 발명은 같은 체적에 다량의 연료를 공급하여 엔진성능을 향상시키는 효과가 있다.The present invention has the effect of improving engine performance by supplying a large amount of fuel to the same volume.
본 발명은 다량의 연료가 유입되는 과정에서 충돌되는 것을 방지하여 엔진성능을 감소시키는 것을 방지하는 효과가 있다. The present invention has the effect of preventing the engine performance from being reduced by preventing collision during the introduction of a large amount of fuel.
본 발명은 연소실로 유입되는 연료-공기 혼합기의 난류강도를 높일 수 있는 효과가 있다. The present invention has the effect of increasing the turbulence strength of the fuel-air mixture introduced into the combustion chamber.
본 발명은 연료-공기의 혼합율을 증가시키고 화염전파속도를 증가시켜 연소효율을 높일 수 있는 효과가 있다.The present invention has an effect of increasing the combustion efficiency by increasing the fuel-air mixing ratio and increasing the flame propagation speed.
본 발명은 연소과정이 빠르게 진행되면서 자발화 및 노크의 발생가능성이 감소되는 효과가 있다.The present invention has the effect of reducing the possibility of spontaneous ignition and knock as the combustion process proceeds rapidly.
도1은 종래 로터리 엔진의 구조를 도시한 것이다.1 shows the structure of a conventional rotary engine.
도2는 종래 로터리 엔진에서 화염이 전파되는 태양을 도시한 것이다.2 is a diagram illustrating a flame propagation in a conventional rotary engine.
도3은 본 발명 로터리 엔진의 구조를 도시한 것이다.3 shows the structure of the rotary engine of the present invention.
도4는 본 발명 로터리 엔진에서 연료가 유입되는 구조를 도시한 것이다.Figure 4 shows a structure in which fuel is introduced in the rotary engine of the present invention.
도5는 본 발명 로터리 엔진에서 연료에 난류강도를 강화하는 구조를 도시한 것이다.Fig. 5 shows a structure for enhancing turbulence strength in fuel in the rotary engine of the present invention.
도6은 본 발명 난류생성부의 여러 실시예를 도시한 것이다.Figure 6 shows several embodiments of the turbulence generation unit of the present invention.
도7은 본 발명 로터리 엔진에서 연료간의 충돌을 방지하는 충돌방지부를 도시한 것이다.Fig. 7 shows a collision preventing unit for preventing collision between fuels in the rotary engine of the present invention.
도8은 본 발명 로터리엔진에서 연료간의 충돌을 방지하는 다른 실시예를 도시한 것이다.Figure 8 shows another embodiment of preventing collision between fuels in the rotary engine of the present invention.
도9는 본 발명 로터리엔진에서 연료간의 충돌을 방지하는 또 다른 실시예를 도시한 것이다.9 shows another embodiment of preventing collisions between fuels in the rotary engine of the present invention.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명한다. 본 명세서는, 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.Hereinafter, exemplary embodiments disclosed in the present specification will be described in detail with reference to the accompanying drawings. In the present specification, the same/similar reference numerals are assigned to the same/similar configurations even in different embodiments, and the description is replaced with the first description. The singular expression used in the present specification includes a plural expression unless the context clearly indicates otherwise. In addition, in describing the embodiments disclosed in the present specification, when it is determined that a detailed description of related known technologies may obscure the subject matter of the embodiments disclosed in the present specification, the detailed description thereof will be omitted. In addition, it should be noted that the accompanying drawings are for easy understanding of the embodiments disclosed in the present specification and should not be construed as limiting the technical idea disclosed in the present specification by the accompanying drawings.
도2는 본 발명 로터리 엔진을 도시한 것이다.Figure 2 shows a rotary engine of the present invention.
본 발명 로터리 엔진은 연료가 연소되는 연소실(132)과 상기 연소실(132)로 윤활오일이 공급되는 공급유로를 포함하는 하우징(100), 상기 연소실에 편심회전 가능하게 수용되어 상기 연료를 이동시키거나 압축하며 상기 윤활오일로 윤활되는 로터(200)를 포함할 수 있다.The rotary engine of the present invention includes a combustion chamber 132 in which fuel is combusted and a housing 100 including a supply passage through which lubricating oil is supplied to the combustion chamber 132, and is accommodated in the combustion chamber to be eccentrically rotated to move the fuel It may include a rotor 200 that is compressed and lubricated with the lubricating oil.
상기 하우징(100)은 상기 로터(200)를 수용하면서 상기 로터의 외주면과 접촉되는 로터하우징(130)과, 상기 로터하우징의 일면에 결합되어 상기 연소실을 밀폐하는 제1하우징(110)과, 상기 로터하우징의 상기 일면과 마주하는 타면에 결합되어 상기 연소실을 밀폐하는 제2하우징(120)을 포함할 수 있다. The housing 100 includes a rotor housing 130 that contacts the outer circumferential surface of the rotor while accommodating the rotor 200, a first housing 110 coupled to one surface of the rotor housing to seal the combustion chamber, and the It may include a second housing 120 coupled to the other surface facing the one surface of the rotor housing to seal the combustion chamber.
상기 로터하우징(130)은 상기 로터(200)와 내접하며 상기 로터(200)를 수용하는 수용바디(131)와, 상기 수용바디(131)의 내부에 구비되어 로터(200)를 수용하거나 연료를 연소시키는 연소실(132)을 포함할 수 있다. The rotor housing 130 is provided in the receiving body 131 which is in contact with the rotor 200 and accommodates the rotor 200, and is provided inside the receiving body 131 to accommodate the rotor 200 or to receive fuel. It may include a combustion chamber 132 to burn.
한편, 본 발명 로터리 엔진(1)은 상기 연소실(132)에 연료를 공급하도록 구비되는 흡기부(140)와 상기 연소실(132)에 연소된 연료를 배출하도록 구비되는 배기부(150)를 포함할 수 있다. 상기 연료는 공기가 혼합된 혼합기 일 수 있다. 상기 흡기부(140)는 상기 로터하우징(130)에 연통되어 구비될 수 있으나, 연료의 화염전파효율을 향상시키기 위해 상기 제1하우징(110)과 상기 제2하우징(120) 중 어느 하나에 연통되어 구비될 수 있다. 즉, 상기 흡기부(140)는 상기 연료를 상기 로터(200)의 회전방향과 무관하거나 경사진 방향으로 공급할 수 있도록 상기 로터(200)의 양측면에 공급하도록 구비될 수 있다. On the other hand, the present invention rotary engine 1 includes an intake part 140 provided to supply fuel to the combustion chamber 132 and an exhaust part 150 provided to discharge the fuel burned in the combustion chamber 132. I can. The fuel may be a mixer in which air is mixed. The intake part 140 may be provided in communication with the rotor housing 130, but communicate with any one of the first housing 110 and the second housing 120 to improve flame propagation efficiency of fuel. Can be provided. That is, the intake part 140 may be provided to supply the fuel to both sides of the rotor 200 so as to supply the fuel in an inclined direction or irrespective of the rotational direction of the rotor 200.
이를 위해, 상기 제1하우징(110)은 상기 로터하우징(130)에 결합하여 상기 연소실의 일면을 형성하는 제1하우징바디(111)와, 상기 제1하우징바디(111)를 관통하여 상기 흡기부(140)와 연통하도록 구비되는 제1흡기홀(112)을 포함할 수 있다. 상기 제2하우징(120)은 상기 제1하우징(110)과 마주하면서 상기 로터하우징(130)에 결합되어 상기 연소실의 타면을 형성하는 제2하우징바디(121)와, 상기 제2하우징바디(121)를 관통하여 상기 흡기부(140)와 연통하는 제2흡기홀(122)을 포함할 수 있다. 이때, 상기 제1흡기홀(112)과 상기 제2흡기홀(122)는 상기 제1하우징바디(111)와 상기 제2하우징바디(121)의 일측에 치우쳐 구비될 수 있다. 이는, 상기 로터(200)의 외주면과 상기 로터하우징(130)의 내주면 사이에 형성되는 공간에 연료가 주입되어야 하기 때문이다. To this end, the first housing 110 is coupled to the rotor housing 130 to form one surface of the combustion chamber, and the first housing body 111 penetrates the first housing body 111 to pass through the intake part. It may include a first intake hole 112 provided to communicate with the 140. The second housing 120 is coupled to the rotor housing 130 while facing the first housing 110 to form the other surface of the combustion chamber, the second housing body 121, and the second housing body 121 ) May include a second intake hole 122 communicating with the intake part 140. In this case, the first intake hole 112 and the second intake hole 122 may be provided to be biased toward one side of the first housing body 111 and the second housing body 121. This is because fuel must be injected into a space formed between the outer circumferential surface of the rotor 200 and the inner circumferential surface of the rotor housing 130.
한편, 상기 배기부(150)도 상기 제1하우징(110) 또는 상기 제2하우징(120) 중 하나 이상과 연통하도록 구비될 수 있다. 이를 위해, 상기 제1하우징(110)은 상기 제1하우징바디(111)를 관통하여 상기 배기부(150)와 연통하는 제1배기홀(113)을 포함할 수 있고, 상기 제2하우징(120)는 상기 제2하우징바디(121)를 관통하여 상기 배기부(150)와 연통하는 제2배기홀(123)을 포함할 수 있다. 상기 제1배기홀(113)과 상기 제2배기홀(123)도 상기 제1흡기홀(112)과 상기 제2흡기홀(122)이 구비되는 상기 제1하우징바디(111)와 상기 제2하우징바디(121)의 일측에 구비될 수 있다. 이는 상기 로터(200)가 최대한 1회전이 완성된 상태에서 연소된 연료를 배출시키기 위함이다. Meanwhile, the exhaust part 150 may also be provided to communicate with at least one of the first housing 110 or the second housing 120. To this end, the first housing 110 may include a first exhaust hole 113 passing through the first housing body 111 and communicating with the exhaust unit 150, and the second housing 120 ) May include a second exhaust hole 123 passing through the second housing body 121 and communicating with the exhaust part 150. The first exhaust hole 113 and the second exhaust hole 123 are also provided with the first housing body 111 and the second inlet hole 112 and the second intake hole 122. It may be provided on one side of the housing body 121. This is to discharge the burned fuel while the rotor 200 has completed one rotation as much as possible.
상기 제1배기홀(113)과 상기 제2배기홀(123)은 각각 상기 제1흡기홀(112)과 상기 제2흡기홀(122)에서 상기 로터(200)의 회전방향과 반대방향으로 이격되어 배치될 수 있다. 상기 이격거리는 흡기되는 연료와 애기되는 연료가 희석되는 것이 방지될 수 있다면 어떠한 거리로 구비되어도 충분하다. 상기 제1배기홀(113)과 상기 제2배기홀(123)은 서로 마주보도록 구비될 수 있다. The first exhaust hole 113 and the second exhaust hole 123 are spaced apart from the first intake hole 112 and the second intake hole 122 in a direction opposite to the rotation direction of the rotor 200, respectively. Can be deployed. The separation distance may be provided as any distance as long as it can be prevented that the intake fuel and the aspirated fuel can be prevented from being diluted. The first exhaust hole 113 and the second exhaust hole 123 may be provided to face each other.
한편, 상기 제1하우징(110)과 상기 제2하우징(120)은 상기 로터(200)를 회전시키는 회전축(300)이 관통하거나 회전가능하게 지지할 수 있는 지지홀을 포함할 수 있다. 구체적으로, 상기 제1하우징(110)은 상기 회전축(300)이 관통되거나 상기 회전축의 일단을 수용하여 지지할 수 있는 제1지지홀(116)을 포함할 수 있고, 상기 제2하우징(120)은 상기 회전축(300)이 관통되어 구비되거나 상기 회전축의 타단을 수용하여 지지할 수 있는 제2지지홀(126)을 포함할 수 있다. Meanwhile, the first housing 110 and the second housing 120 may include a support hole through which the rotation shaft 300 for rotating the rotor 200 passes or rotatably supports it. Specifically, the first housing 110 may include a first support hole 116 through which the rotation shaft 300 passes or accommodates and supports one end of the rotation shaft, and the second housing 120 May include a second support hole 126 that is provided through the rotation shaft 300 or accommodates and supports the other end of the rotation shaft.
상기 로터(200)는 상기 연료를 압축하거나 이동시키도록 구비되는 로터바디(210)와 상기 로터바디(210) 내부를 관통하여 상기 회전축이 결합되는 관통홀(220)을 포함할 수 있다. 상기 관통홀(220)은 상기 회전축의 직경보다 더 크게 구비될 수 있으며, 상기 관통홀(220)은 상기 회전축(230)의 일부와 맞물려 구비될 수 있는 내주기어(225)가 더 구비될 수 있다. The rotor 200 may include a rotor body 210 provided to compress or move the fuel, and a through hole 220 through which the rotation shaft is coupled through the rotor body 210. The through hole 220 may be provided larger than a diameter of the rotation shaft, and the through hole 220 may further include an inner main gear 225 that may be provided in engagement with a part of the rotation shaft 230. .
상기 로터(200)는 상기 연소실에 편심회전 가능하게 수용되어 상기 흡입부(140)에서 흡기된 연료를 상기 로터하우징(130)의 내주면을 따라 이동시키거나, 상기 연료를 상기 로터하우징(130)으로 밀어내어 압축시키도록 구비된다. The rotor 200 is accommodated in the combustion chamber so as to be eccentrically rotated to move the fuel inhaled from the suction unit 140 along the inner circumferential surface of the rotor housing 130, or transfer the fuel to the rotor housing 130. It is provided to push and compress.
상기 로터(200)는 상기 로터하우징(130)과 면접촉 또는 선접촉하여 상기 연소실을 구획하는 모서리를 포함할 수 있다. 이하에서는 상기 로터(200)가 단면이 삼각형인 경우를 가정하여 서술하나, 이는 설명을 위한 것 일뿐, 상기 로터(200)가 단면이 원형이나, 타원형으로 구비되어도 동일한 원리로 설명될 수 있다. The rotor 200 may include a corner that divides the combustion chamber by making surface contact or line contact with the rotor housing 130. Hereinafter, it is assumed that the rotor 200 has a triangular cross section, but this is for illustration only. Even if the rotor 200 has a circular or elliptical cross section, the same principle may be used.
상기 로터(200)는 상기 연소실(132)을 3부분으로 구획하도록 단면이 삼각형으로 구비될 수 있다. 이 경우, 상기 로터(200)는 외주면 중 일면을 형성하는 제1압축면(211)과, 상기 제1압축면(211)의 말단에서 상기 로터의 외주면 중 다른 면을 형성하는 제2압축면(212)과, 상기 제2압축면(212)의 말단에서 상기 로터의 외주면 중 또 다른 면을 형성하는 제3압축면(213)을 포함할 수 있다.The rotor 200 may have a triangular cross section to divide the combustion chamber 132 into three parts. In this case, the rotor 200 includes a first compression surface 211 forming one of the outer circumferential surfaces, and a second compression surface forming the other surface of the outer peripheral surface of the rotor at the end of the first compression surface 211 ( 212), and a third compression surface 213 forming another surface of the outer peripheral surface of the rotor at an end of the second compression surface 212.
또한, 상기 로터(200)는 3개이 모서리를 구비할 수 있다. 구체적으로, 상기 제1압축면(211)과 상기 제2압축면(212)은 제1모서리(A)를 공유할 수 있고, 상기 제2압축면(212)과 상기 제3압축면(213)은 제2모서리(B)를 공유할 수 있으며, 상기 제3압축면(213)과 상기 제1압축면(211)은 제3모서리(C)를 공유할 수 있다. In addition, the rotor 200 may have three corners. Specifically, the first compression surface 211 and the second compression surface 212 may share a first edge (A), the second compression surface 212 and the third compression surface 213 May share the second corner B, and the third compression surface 213 and the first compression surface 211 may share a third corner C.
상기 제1모서리(A), 상기 제2모서리(B), 상기 제3모서리(C)는 상기 로터(200)가 회전할 때마다 상기 로터하우징(130)에 면접촉하며 이동할 수 있다. 이로써, 상기 제1모서리(A), 상기 제2모서리(B), 상기 제3모서리(C)는 상기 연소실(132)을 3개로 구분할 수 있다. 또한, 도시되진 않았으나, 상기 제1모서리(A), 상기 제2모서리(B), 상기 제3모서리(C)는 상기 로터하우징(130)에 면접촉되어 연소실(132)을 구획하나 구획된 공간이 서로 연통될 우려가 있다. 즉, 흡입된 연료가 상기 상기 제1모서리(A), 상기 제2모서리(B), 상기 제3모서리(C)이 접촉된 상기 로터하우징(130)의 내주면을 통과하여 다른 공간으로 이동할 우려가 있다. 따라서, 이를 방지하기 위해, 상기 제1모서리(A), 상기 제2모서리(B), 상기 제3모서리(C)는 상기 로터하우징(130)을 향하여 밀착되는 사이드실 또는 코너실(seal)을 더 포함할 수 있다. 상기 사이드실 또는 코너실(seal)은 상기 로터(200)와 다른 재질로 구비될 수 있다. The first edge A, the second edge B, and the third edge C may move while in surface contact with the rotor housing 130 whenever the rotor 200 rotates. Accordingly, the first edge (A), the second edge (B), and the third edge (C) can divide the combustion chamber 132 into three. In addition, although not shown, the first edge (A), the second edge (B), and the third edge (C) are in surface contact with the rotor housing 130 to partition the combustion chamber 132 but a partitioned space. There is a risk of communication with each other. That is, there is a risk that the sucked fuel passes through the inner circumferential surface of the rotor housing 130 to which the first edge (A), the second edge (B), and the third edge (C) are in contact with each other and moves to another space. have. Therefore, in order to prevent this, the first edge (A), the second edge (B), and the third edge (C) form a side seal or a corner seal that is in close contact with the rotor housing 130. It may contain more. The side seal or corner seal may be formed of a material different from that of the rotor 200.
상기 제1압축면(211)과 상기 제2압축면(212), 상기 제3압축면(213)는 내부로 오목하게 함몰되어 연료가 수용되거나, 연료가 폭발할 때 반발력을 받을 수 있는 제1홈(2111), 제2홈(2121), 제3홈(2131)을 포함할 수 있다. The first compression surface 211, the second compression surface 212, and the third compression surface 213 are recessed inward to receive fuel or receive a repulsive force when the fuel explodes. A groove 2111, a second groove 2121, and a third groove 2131 may be included.
한편, 상기 회전축(300)은 상기 제1하우징(110)에 결합되는 제1축(310)과, 상기 제2하우징(120)에 결합되는 제2축(330)과, 상기 제1축(310)과 상기 제2축(330)을 연결하되 상기 제1축(310)과 상기 제2축(320)의 회전중심에서 일측으로 편심되어 구비되는 편심축(320)을 포함할 수 있다. 상기 제1축(310)과 상기 제2축(330)은 회전중심이 동일할 수 있다. 상기 편심축(320)은 상기 제1축 또는 상기 제2축에서 일측으로 편심되어 돌출되어 구비될 수 있다. 상기 편심축(320)은 상기 관통홀(220)에 수용되어 상기 관통홀(220)의 일부를 상기 로터하우징(130)의 내주면으로 가압하도록 구비될 수 있다. 상기 편심축(320)은 상기 연료를 압축하는 동력을 제공한다. 상기 편심축(320)의 외주면은 상기 내주기어(225)와 맞물릴 수 있는 외주기어가 더 구비될 수 있다. Meanwhile, the rotation shaft 300 includes a first shaft 310 coupled to the first housing 110, a second shaft 330 coupled to the second housing 120, and the first shaft 310 ) And the second shaft 330, but may include an eccentric shaft 320 that is eccentric to one side from the rotation center of the first shaft 310 and the second shaft 320. The first shaft 310 and the second shaft 330 may have the same rotation center. The eccentric shaft 320 may be provided to protrude eccentrically from the first shaft or the second shaft toward one side. The eccentric shaft 320 may be accommodated in the through hole 220 and provided to press a part of the through hole 220 to the inner circumferential surface of the rotor housing 130. The eccentric shaft 320 provides power to compress the fuel. The outer circumferential surface of the eccentric shaft 320 may further include an outer main gear capable of engaging the inner main gear 225.
한편, 상기 제1모서리(A), 상기 제2모서리(B), 상기 제3모서리(C)는 실링 또는 공간분할을 위해 상기 로터하우징(130)에 면접촉되어 이동하도록 구비된다. 따라서, 상기 제1모서리(A), 상기 제2모서리(B), 상기 제3모서리(C)는 상기 로터하우징(130)과 마찰이 심하며, 연료가 폭발하는 경우 고온에도 노출되어 윤활이 필요할 수 있다. 따라서, 본 발명 로터리 엔진은 상기 로터(200)와 상기 로터하우징(130)의 접촉면을 윤활하는 윤활오일을 공급하는 오일공급부(500)를 더 포함할 수 있다.Meanwhile, the first edge (A), the second edge (B), and the third edge (C) are provided to move in surface contact with the rotor housing 130 for sealing or space division. Therefore, the first edge (A), the second edge (B), and the third edge (C) have severe friction with the rotor housing 130, and when fuel explodes, they may be exposed to high temperatures and require lubrication. have. Accordingly, the rotary engine of the present invention may further include an oil supply unit 500 that supplies lubricating oil that lubricates the contact surface between the rotor 200 and the rotor housing 130.
상기 오일공급부(500)는 상기 하우징(100)에 구비되어 상기 로터(200)에 윤활오일을 공급하도록 구비된다. 상기 오일공급부(500)는 상기 하우징(100)에 구비되어 윤활오일이 이동하는 공급유로(570)와, 상기 로터(200)에 접촉가능하게 구비되어 상기 공급유로(570)을 선택적으로 폐쇄하는 실링부(530)와, 상기 실링부(530)를 상기 연소실을 향하여 가압시키는 탄성부(520)를 포함할 수 있다. The oil supply unit 500 is provided in the housing 100 to supply lubricating oil to the rotor 200. The oil supply unit 500 is provided in the housing 100 and provided to be in contact with a supply passage 570 through which the lubricating oil moves, and a seal which is provided in contact with the rotor 200 to selectively close the supply passage 570 It may include a portion 530 and an elastic portion 520 for pressing the sealing portion 530 toward the combustion chamber.
한편, 본 발명 로터리 엔진(1)은 상기 연소실(132)에 연료를 공급하도록 구비되는 흡기부(140)와 상기 연소실(132)에 연소된 연료를 배출하도록 구비되는 배기부(150)를 포함할 수 있다. 상기 연료는 공기가 혼합된 혼합기 일 수 있다. 상기 흡기부(140)는 상기 로터하우징(130)에 연통되어 구비될 수 있으나, 연료의 화염전파효율을 향상시키기 위해 상기 제1하우징(110)과 상기 제2하우징(120) 중 어느 하나에 연통되어 구비될 수 있다. 즉, 상기 흡기부(140)는 상기 연료를 상기 로터(200)의 회전방향과 무관하거나 경사진 방향으로 공급할 수 있도록 상기 로터(200)의 양측면에 공급하도록 구비될 수 있다. On the other hand, the present invention rotary engine 1 includes an intake part 140 provided to supply fuel to the combustion chamber 132 and an exhaust part 150 provided to discharge the fuel burned in the combustion chamber 132. I can. The fuel may be a mixer in which air is mixed. The intake part 140 may be provided in communication with the rotor housing 130, but communicate with any one of the first housing 110 and the second housing 120 to improve flame propagation efficiency of fuel. Can be provided. That is, the intake part 140 may be provided to supply the fuel to both sides of the rotor 200 so as to supply the fuel in an inclined direction or irrespective of the rotational direction of the rotor 200.
이를 위해, 상기 제1하우징(110)은 상기 로터하우징(130)에 결합하여 상기 연소실의 일면을 형성하는 제1하우징바디(111)와, 상기 제1하우징바디(111)를 관통하여 상기 흡기부(140)와 연통하도록 구비되는 제1흡기홀(112)을 포함할 수 있다. 상기 제2하우징(120)은 상기 제1하우징(110)과 마주하면서 상기 로터하우징(130)에 결합되어 상기 연소실의 타면을 형성하는 제2하우징바디(121)와, 상기 제2하우징바디(121)를 관통하여 상기 흡기부(140)와 연통하는 제2흡기홀(122)을 포함할 수 있다. 이때, 상기 제1흡기홀(112)과 상기 제2흡기홀(122)는 상기 제1하우징바디(111)와 상기 제2하우징바디(121)의 일측에 치우쳐 구비될 수 있다. 이는 상기 로터(200)의 외주면과 상기 로터하우징(130)의 내주면 사이에 형성되는 공간에 연료가 주입되어야 하기 때문이다. To this end, the first housing 110 is coupled to the rotor housing 130 to form one surface of the combustion chamber, and the first housing body 111 penetrates the first housing body 111 to pass through the intake part. It may include a first intake hole 112 provided to communicate with the 140. The second housing 120 is coupled to the rotor housing 130 while facing the first housing 110 to form the other surface of the combustion chamber, the second housing body 121, and the second housing body 121 ) May include a second intake hole 122 communicating with the intake part 140. In this case, the first intake hole 112 and the second intake hole 122 may be provided to be biased toward one side of the first housing body 111 and the second housing body 121. This is because fuel must be injected into a space formed between the outer circumferential surface of the rotor 200 and the inner circumferential surface of the rotor housing 130.
결과적으로, 본 발명 로터리 엔진은 상기 제1흡기홀(112)과 상기 제2흡기홀(122)이 상기 로터하우징(130)에 구비된 것이 아니라, 상기 제1하우징과 상기 제2하우징에 구비된다. 따라서, 상기 하우징(100)의 양측면을 통해 연료가 투입되므로 다량의 연료를 연소시킬 수 있어 엔진 성능이 향상될 수 있다. As a result, in the rotary engine of the present invention, the first intake hole 112 and the second intake hole 122 are not provided in the rotor housing 130, but are provided in the first housing and the second housing. . Accordingly, since fuel is injected through both sides of the housing 100, a large amount of fuel can be burned, thereby improving engine performance.
한편, 상기 배기부(150)도 상기 제1하우징(110) 또는 상기 제2하우징(120) 중 하나 이상과 연통하도록 구비될 수 있다. 이를 위해, 상기 제1하우징(110)은 상기 제1하우징바디를 관통하여 상기 배기부(150)와 연통하는 제1배기홀(113)을 포함할 수 있고, 상기 제2하우징(120)는 상기 제2하우징바디를 관통하여 상기 배기부(150)와 연통하는 제2배기홀(123)을 포함할 수 있다. 상기 제1배기홀(113)과 상기 제2배기홀(123)도 상기 제1흡기홀(112)과 상기 제2흡기홀(122)이 구비되는 상기 제1하우징바디(111)와 상기 제2하우징바디(121)의 일측에 구비될 수 있다. 이는 상기 로터(200)가 최대한 1회전이 완성된 상태에서 연소된 연료를 배출시키기 위함이다. Meanwhile, the exhaust part 150 may also be provided to communicate with at least one of the first housing 110 or the second housing 120. To this end, the first housing 110 may include a first exhaust hole 113 passing through the first housing body and communicating with the exhaust unit 150, and the second housing 120 is It may include a second exhaust hole 123 passing through the second housing body and communicating with the exhaust unit 150. The first exhaust hole 113 and the second exhaust hole 123 are also provided with the first housing body 111 and the second inlet hole 112 and the second intake hole 122. It may be provided on one side of the housing body 121. This is to discharge the burned fuel while the rotor 200 has completed one rotation as much as possible.
상기 제1배기홀(113)과 상기 제2배기홀(123)은 각각 상기 제1흡기홀(112)과 상기 제2흡기홀(122)에서 상기 로터(200)의 회전방향과 반대방향으로 이격되어 배치될 수 있다. 상기 이격거리는 흡기되는 연료와 애기되는 연료가 희석되는 것이 방지될 수 있다면 어떠한 거리로 구비되어도 충분하다. 상기 제1배기홀(113)과 상기 제2배기홀(123)은 서로 마주보도록 구비될 수 있다. The first exhaust hole 113 and the second exhaust hole 123 are spaced apart from the first intake hole 112 and the second intake hole 122 in a direction opposite to the rotation direction of the rotor 200, respectively. Can be deployed. The separation distance may be provided as any distance as long as it can be prevented that the intake fuel and the aspirated fuel can be prevented from being diluted. The first exhaust hole 113 and the second exhaust hole 123 may be provided to face each other.
한편, 본 발명 로터리 엔진(1)은 상기 연료를 점화시키는 점화장치가 설치될 수 있다. 상기 점화장치는 상리 하우징(100)에 결합되어 상기 연소실에 노출되는 장치로서 상기 연소실에 에너지를 공급하여(ex. Spark 발생)하여 상기 연료를 연소시키는 장치이다. Meanwhile, in the rotary engine 1 of the present invention, an ignition device for igniting the fuel may be installed. The ignition device is a device that is coupled to the upper housing 100 and exposed to the combustion chamber, and supplies energy to the combustion chamber (ex. spark is generated) to burn the fuel.
본 발명 로터리 엔진(1)은 상기 점화장치를 상기 로터하우징(130)에 설치할 수 있다. 이는 상기 로터 하우징(130)의 내주면이 가장 연료가 많이 압축되는 영역이므로 연료의 점화가 용이하기 때문이다. 상기 로터 하우징(130)은 점화장치가 결합되는 삽입홀(133,134)를 구비할 수 있다. 상기 삽입홀(133,134) 로터하우징(130)을 두께방향으로 관통하여 구비될 수 있으며, 상기 흡기홀과 상기 배기홀과 반대 영역 또는 마주보는 영역에 구비될 수 있다. 이는 상기 흡기홀과 배기홀과 마주하는 영역이 가장 많이 연료가 압축되는 부분이기 때문이다.The rotary engine 1 of the present invention may install the ignition device in the rotor housing 130. This is because the inner circumferential surface of the rotor housing 130 is an area where the most amount of fuel is compressed, so that the fuel is easily ignited. The rotor housing 130 may include insertion holes 133 and 134 to which an ignition device is coupled. The insertion holes 133 and 134 may be provided through the rotor housing 130 in the thickness direction, and may be provided in an area opposite or facing the intake hole and the exhaust hole. This is because the area facing the intake hole and the exhaust hole is a part where fuel is compressed most.
한편, 로터(200)가 회전하여 연료를 삽입홀을 향하여 압축하기 시작하면, 상기 점화장치는 상기 연료의 앞부분을 점화시키도록 구비될 수 있다. 이는 로터(200)의 회전에 의해 연료의 앞부분이 뒷부분 보다 더 많이 압축되어 있으므로 더욱 용이하게 점화될 수 있기 때문이다. 상기 연료의 앞부분이 점화되기 시작하여 발생하는 화염은 연료의 전체영역으로 전파되어 상기 연료의 뒷부분까지 연소시킬 수 있다. Meanwhile, when the rotor 200 rotates and starts to compress fuel toward the insertion hole, the ignition device may be provided to ignite the front portion of the fuel. This is because the front portion of the fuel is compressed more than the rear portion by the rotation of the rotor 200, so that it can be ignited more easily. The flame generated when the front portion of the fuel starts to ignite may propagate to the entire area of the fuel and burn up to the rear portion of the fuel.
본 발명 로터리 엔진은 상기 흡기홀이 상기 제1하우징 또는 제2하우징에 구비되어 있으므로 상기 연료가 주입되는 방향은 상기 화염전파방향과 반대방향에 해당하지 않는다. 따라서, 상기 연료의 이동이 상기 화염전파를 방해하지 않으므로, 상기 연료가 더욱 효과적으로 점화되어 연소효율이 증가될 수 있다. In the rotary engine of the present invention, since the intake hole is provided in the first housing or the second housing, the direction in which the fuel is injected does not correspond to a direction opposite to the flame propagation direction. Therefore, since the movement of the fuel does not interfere with the propagation of the flame, the fuel is ignited more effectively, thereby increasing the combustion efficiency.
물론, 상기 삽입홀은 복수개로 구비되어 복수의 점화장치가 설치될 수 있다. 즉, 상기 삽입홀은 제1점화장치가 결합되는 제1삽입홀(133)과 상기 제2점화장치가 결합되되 상기 제1삽입홀(133) 보다 상기 로터의 회전방향과 반대방향으로 이격되는 제2삽입홀(134)을 포함할 수 있다. 이로써, 상기 제2점화장치는 상기 연료의 후방을 재점화함으로서 전체 연료가 연소되도록 유도할 수 있다. 그럼에도 불구하고, 상기 로터하우징(130)에 흡기홀이 설치되어 연료의 이동방향이 화염전파방향과 반대가 되면, 상기 제1삽입홀(133)과 상기 제2삽입홀(134) 사이에 위치한 연료는 연소되지 않을 위험이 있다. Of course, a plurality of insertion holes may be provided so that a plurality of ignition devices may be installed. That is, in the insertion hole, the first insertion hole 133 to which the first ignition device is coupled and the second ignition device are coupled, and the first insertion hole 133 is spaced apart from the first insertion hole 133 in a direction opposite to the rotation direction of the rotor. It may include two insertion holes 134. Accordingly, the second ignition device can induce the entire fuel to be burned by re-igniting the rear of the fuel. Nevertheless, when the intake hole is installed in the rotor housing 130 so that the moving direction of the fuel is opposite to the flame propagation direction, the fuel located between the first insertion hole 133 and the second insertion hole 134 There is a risk of not burning.
그러나, 본 발명 로터리 엔진은 상기 흡기홀이 상기 하우징의 양측면 또는 일측면에 구비되므로 상기 연료의 이동방향이 화염전파방향과 반대방향에 해당하지 않는다. 따라서, 본 발명 로터리 엔진은 복수의 점화장치가 구비되어 있어도 점화장치들 사이의 연료까지 모두 연소시킬 수 있어 엔진의 효율이 증가될 수 있다. However, in the rotary engine of the present invention, since the intake holes are provided on both sides or one side of the housing, the moving direction of the fuel does not correspond to a direction opposite to the flame propagation direction. Accordingly, even if the rotary engine of the present invention is provided with a plurality of ignition devices, it is possible to burn all of the fuel between the ignition devices, and thus the efficiency of the engine may be increased.
도4는 본 발명 로터리 엔진에 흡기부의 구조를 도시한 것이다.Figure 4 shows the structure of the intake portion of the rotary engine of the present invention.
도4(a)는 본 발명 로터리 엔진에서 하우징을 생략한 구조를 도시한 것이며, 도4(b)는 상기 흡기부가 하우징에 결합된 단면도를 도시한 것이다Fig. 4(a) shows a structure in which the housing is omitted in the present invention rotary engine, and Fig. 4(b) shows a cross-sectional view in which the intake part is coupled to the housing.
도4(a)를 참조하면, 본 발명 로터리 엔진은 상기 하우징(100)에 연료를 공급하는 흡기부(140)를 포함할 수 있다. 상기 흡기부(140)는 연료공급원에 결합되어 연료를 공급받는 공급부(144)와, 상기 공급부(144)에서 상기 제1흡기홀(112)에 연장되어 연료를 공급하는 제1흡기부(141)와, 상기 상기 공급부(144)에서 상기 제2 흡기홀(122)에 연장되어 연료를 공급하는 제2흡기부(142)를 포함할 수 있다. Referring to FIG. 4A, the rotary engine of the present invention may include an intake part 140 that supplies fuel to the housing 100. The intake part 140 includes a supply part 144 coupled to a fuel supply source to receive fuel, and a first intake part 141 extending from the supply part 144 to the first intake hole 112 to supply fuel. And a second intake part 142 extending from the supply part 144 to the second intake hole 122 to supply fuel.
상기 제1흡기부(141)와 상기 제2흡기부(142)는 연료가 이동하는 파이프나 덕트 형상으로 구비될 수 있으며, 상기 제1흡기부(141)와 상기 제2흡기부(142)를 유동하는 연료는 공기와 연료가 혼합된 혼합기 일 수 있다. The first intake part 141 and the second intake part 142 may be provided in a shape of a pipe or a duct through which fuel moves, and the first intake part 141 and the second intake part 142 are The flowing fuel may be a mixture of air and fuel.
상기 흡기부(140)는 상기 제1흡기부(141)와 상기 제2흡기부(142)를 고정하는 고정부(143)를 포함할 수 있다. 상기 고정부(143)는 상기 제1흡기부(141)가 관통하는 제1고정홀(143a)과 상기 제2흡기부(142)가 관통하는 제2고정홀(143b)을 포함할 수 있다. The intake part 140 may include a fixing part 143 fixing the first intake part 141 and the second intake part 142. The fixing part 143 may include a first fixing hole 143a through which the first intake part 141 passes and a second fixing hole 143b through which the second intake part 142 passes.
상기 고정부(143)로 인해, 상기 제1흡기부(141)와 상기 제2흡기부(142)는 경사나 방향이 유지될 수 있으며, 로터(200)가 고속으로 회전하여 진동이 발생하더라도 위치가 고정될 수 있다.Due to the fixing part 143, the inclination or direction of the first intake part 141 and the second intake part 142 can be maintained, and even if the rotor 200 rotates at a high speed and vibration occurs, the position Can be fixed.
도4(b)를 참조하면, 상기 제1흡기부(141)를 통해 상기 연료는 상기 로터(200)의 회전방향(I)과 경사진 제1방향(A)으로 유입되며, 상기 제2흡기부(142)를 통해 상기 연료는 상기 로터(200)의 회전방향(I)과 경사진 제2방향(B)으로 유입될 수 있다. Referring to FIG. 4(b), the fuel flows through the first intake part 141 in the rotational direction I of the rotor 200 and the inclined first direction A, and the second intake Through the portion 142, the fuel may flow into the rotation direction I of the rotor 200 and the second direction B inclined.
이때, 상기 로터의 회전방향(I)과 화염전파방향(III)은 서로 다른 방향이므로 상기 제1방향과 상기 제2방향은 상기 화염전파방향과도 서로 경사진 방향에 해당할 수 있다. 그 결과, 상기 연료가 유입되는 방향(A,B)은 화염전파를 방해하는 방향이 아니므로 상기 연료의 점화가 효과적으로 수행될 수 있다. At this time, since the rotation direction I and the flame propagation direction III of the rotor are different directions, the first and second directions may correspond to a direction inclined to each other as well as the flame propagation direction. As a result, since the directions A and B in which the fuel is introduced are not directions that interfere with flame propagation, ignition of the fuel can be effectively performed.
도4는 상기 흡기부(140)가 복수개로 구비된 것을 기준으로 도시하였으나, 이는 일실시예일 뿐, 상기 제1하우징(110) 또는 상기 제2하우징(120)에 만 연통되어 구비될 수도 있다. FIG. 4 is illustrated based on a plurality of intake parts 140, but this is only an example, and may be provided in communication only with the first housing 110 or the second housing 120.
한편, 상기 연료는 상기 화염전파가 더 많이 수행될 수록 더 효과적으로 연소될 수 있다. 이때, 화염의 전파는 연료의 분자들이 수행하는 것이므로 연료가 층류 형태로 유동할 때 보다 난류 형태로 유동할 때가 훨씬 더 빠를 수 있다. 그러나, 상기 흡기홀로 유입되는 공기는 유동의 속도, 연료의 점성, 흡기부의 직경 등을 고려할 때 층류 형태이거나 난류정도가 약할 수 있다. 상기 난류정도를 높이기 위해 상기 흡기홀로 공급되는 연료의 속도를 높일 수 있으나, 이는 연료공급장치의 부하를 증가시키며 상기 연소실(132)에서 연료가 역류하거나 누출될 위험이 있으므로 바람직하지 않다. Meanwhile, the fuel can be burned more effectively as the flame propagation is performed more. At this time, since the propagation of the flame is performed by the molecules of the fuel, it may be much faster when the fuel flows in a turbulent flow rather than in a laminar flow. However, the air introduced into the intake hole may be in a laminar flow form or a degree of turbulence may be weak in consideration of the flow velocity, the viscosity of the fuel, and the diameter of the intake part. In order to increase the degree of turbulence, the speed of the fuel supplied to the intake hole can be increased, but this increases the load of the fuel supply device, and there is a risk that the fuel flows backward or leaks from the combustion chamber 132, which is not preferable.
따라서, 본 발명 로터리 엔진은 연료의 기존 유입속도에서도 난류정도를 강화할 수 있도록 구비될 수 있다.Therefore, the rotary engine of the present invention may be provided to enhance the degree of turbulence even at the existing inflow speed of fuel.
도5는 연료에 난류를 형성시키는 일실시예를 도시한 것이다.5 shows an embodiment of creating turbulence in fuel.
본 발명 로터리 엔진은 상기 흡기부(140) 내부에 돌출되어 상기 연료의 난류강도(turbulence intensity)를 증가시키는 난류형성부를 포함할 수 있다. The rotary engine of the present invention may include a turbulence forming part protruding into the intake part 140 to increase the turbulence intensity of the fuel.
상기 난류형성부(600)는 상기 흡기부(140)와 상기 하우징(100)이 결합되는 흡기홀(112,122)의 내주면에 돌출되어 구비될 수 있다. 흡기부가 제1흡기부(141)와 상기 제2흡기부(142)로 구비되는 경우에는, 상기 난류형성부(600)는 상기 제1흡기홀(112)의 내주면과 상기 제2흡기홀(122)의 내주면 중 하나 이상에 구비될 수 있다. The turbulence forming part 600 may be provided to protrude from the inner circumferential surfaces of the intake holes 112 and 122 to which the intake part 140 and the housing 100 are coupled. When the intake part is provided as the first intake part 141 and the second intake part 142, the turbulence forming part 600 is formed on the inner peripheral surface of the first intake hole 112 and the second intake hole 122. ) May be provided on one or more of the inner circumferential surfaces.
상기 난류형성부(600)는 상기 제1흡기홀(112)과 상기 제2흡기홀(122)로 유입되는 연료와 충돌하도록 구비될 수 있다. 이로써, 상기 연료에 난류강도를 증가시킬 수 있다. The turbulence forming part 600 may be provided to collide with the fuel flowing into the first intake hole 112 and the second intake hole 122. Thereby, it is possible to increase the turbulence intensity in the fuel.
또한, 상기 난류형성부(600)는 상기 흡기부(140)의 내주면에서 돌출되어 구비될 수 있다. 이때, 연료의 유동을 최대한 방해하지 않고 상기 연소실(132)로 유입되는 연료의 난류강도를 효과적으로 증가시키기 위해, 상기 난류형성부(600)는 상기 흡기홀에서 상기 흡기부(140)를 향해 이격된 부분에 설치될 수 있다. 즉, 상기 난류형성부(600)는 흡기부(140)과 상기 하우징(100)이 결합된 부분 근방에 설치될 수 있다. 예를들어, 상기 흡기부(140)가 상기 하우징(100)과 결합되기 위해 절곡된 부분에 상기 난류형성부(600)가 설치될 수 있다. In addition, the turbulence forming part 600 may be provided to protrude from the inner circumferential surface of the intake part 140. At this time, in order to effectively increase the turbulence intensity of the fuel flowing into the combustion chamber 132 without interfering with the flow of fuel as much as possible, the turbulence forming part 600 is spaced apart from the intake hole toward the intake part 140. Can be installed on the part. That is, the turbulence forming part 600 may be installed near a portion where the intake part 140 and the housing 100 are combined. For example, the turbulence forming part 600 may be installed at a portion where the intake part 140 is bent to be coupled to the housing 100.
또한, 상기 난류형성부(600)는 상기 흡기부(140) 또는 상기 흡기홀에서 상기 연소실과 멀어지는 방향으로 돌출될 수 있다. 이로써, 상기 연료의 유동을 적극적으로 방해하여 상기 연료에 난류강도를 더욱 증가시킬 수 있다. 한편, 상기 난류형성부(600)가 상기 흡기부(140)나 상기 흡기홀(112,122)에서 돌출된 길이는 상기 흡기부(140)나 상기 흡기홀의 직경의 절반 이하일 수 있다. 이로써, 연료의 유동을 방해하지 않으면서 효과적으로 난류강도를 증가시킬 수 있다. In addition, the turbulence forming part 600 may protrude from the intake part 140 or the intake hole in a direction away from the combustion chamber. Accordingly, it is possible to further increase the turbulence intensity of the fuel by actively interfering with the flow of the fuel. Meanwhile, the length of the turbulence forming part 600 protruding from the intake part 140 or the intake holes 112 and 122 may be less than half the diameter of the intake part 140 or the intake hole. Thus, it is possible to effectively increase the turbulence intensity without disturbing the flow of fuel.
상기 흡기부(140)에서 유입되는 연료와 효과적으로 충돌되기 위하여, 상기 난류형성부(600)는 상기 흡기부(140) 또는 상기 흡기홀(112,122)의 내주면 중 상기 흡기부(140)가 연장되는 방향에 위치한 부분에서 돌출되어 구비될 수 있다. In order to effectively collide with the fuel introduced from the intake part 140, the turbulence forming part 600 is a direction in which the intake part 140 extends among the intake part 140 or the inner peripheral surfaces of the intake holes 112 and 122 It may be provided to protrude from the portion located at.
상기 난류형성부(600)는 상기 흡기부(140)와 일체로 구비될 수 있지만, 별도로 구비되어 상기 흡기부(140)에 결합되어 구비될 수도 있다. The turbulence forming part 600 may be provided integrally with the intake part 140, but may be provided separately and coupled to the intake part 140.
상기 난류형성부(600)로 인해, 상기 제1흡기부(141)와 상기 제2흡기부(142)를 통과한 연료는 상기 압축실(132)에서 복잡한 난류형태로 유동할 수 있다. Due to the turbulence forming part 600, the fuel that has passed through the first intake part 141 and the second intake part 142 may flow in the compression chamber 132 in a complex turbulent form.
도6은 난류형성부의 다양한 실시예를 도시한 것이다.6 shows various embodiments of the turbulence forming unit.
도6(a)를 참조하면, 상기 난류형성부는 다양한 형태로 구비될 수 있다. Referring to Fig. 6(a), the turbulence forming unit may be provided in various forms.
상기 난류형성부(600)는 상기 흡기부(140)의 길이방향을 따라 복수개로 구비될 수 있다. 물론, 도시된 바와 달리, 상기 난류형성부(600)는 상기 흡기부(140) 에 단수로 구비될 수 있다. The turbulence forming part 600 may be provided in plural along the longitudinal direction of the intake part 140. Of course, unlike shown, the turbulence forming part 600 may be provided in a single number in the intake part 140.
도6(b)를 참조하면, 상기 난류형성부(600)는 상기 흡기부(140)에서 직선형태로 돌출되는 차폐리브(610)를 포함할 수 있다. 상기 차폐리브(610)는 상기 흡입부(140)가 연장되는 방향과 나란하지 않도록 구비될 수 있다. 이는 상기 흡입부(140)에 유동하는 연료에 접촉되는 면적을 더 확대시키기 위함이다. 따라서, 상기 차폐리브(610)는 상기 흡입부(140)가 연장되는 방향에 수직으로 돌출되어 구비될 수 있다. Referring to FIG. 6B, the turbulence forming part 600 may include a shielding rib 610 protruding from the intake part 140 in a straight line. The shielding rib 610 may be provided so as not to be parallel to the direction in which the suction part 140 extends. This is to further enlarge an area in contact with the fuel flowing through the suction unit 140. Accordingly, the shielding rib 610 may be provided to protrude perpendicular to the direction in which the suction part 140 extends.
도6(c)를 참조하면, 상기 난류형성부(600)는 단면이 원형 또는 타원형으로 상기 흡기부의 내주면에서 돌출되어 구비되는 돌출기둥(620)을 포함할 수 있다. 이로써, 상기 연료가 상기 돌출기둥(620)에 충돌되어도, 상기 연료의 유속손실을 최소화 하면서 난류강도를 증가시킬 수 있다. Referring to FIG. 6C, the turbulence forming part 600 may include a protruding pillar 620 having a circular or elliptical cross section and protruding from the inner peripheral surface of the intake part. Accordingly, even if the fuel collides with the protruding pillar 620, the turbulence intensity can be increased while minimizing the flow velocity loss of the fuel.
도6(d)를 참조하면, 상기 난류형성부(600)는 상기 흡기부(140)가 연장되는 방향과 경사지게 돌출되는 제1리브(631)와, 상기 제1리브(631)의 일단에서 연장되는 제2리브(632)를 포함할 수 있다. 상기 제1리브(631)와 상기 제2리브(632)는 상기 흡기부(140)의 하류로 갈수록 서로 멀어지도록 구비될 수 있다. 이로써, 상기 제1리브(631)와 상기 제2리브(632) 배면에 집중적으로 난류를 형성시킬 수 있다.Referring to FIG. 6(d), the turbulence forming part 600 extends from a first rib 631 protruding obliquely to a direction in which the intake part 140 extends, and from one end of the first rib 631. It may include a second rib (632). The first rib 631 and the second rib 632 may be provided so as to be further away from each other toward the downstream of the intake part 140. As a result, turbulence can be intensively formed on the rear surfaces of the first rib 631 and the second rib 632.
도6(e)를 참조하면, 상기 난류형성부(600)는 상기 흡기홀 또는 상기 흡기부에서 직선형태로 돌출되어 구비되는 차단리브(641)와, 상기 차단리브의 일면에서 돌출되어 구비되는 안내부(642)를 포함할 수 있다.6(e), the turbulence forming part 600 includes a blocking rib 641 protruding from the intake hole or the intake part in a straight line, and a guide provided protruding from one surface of the blocking rib. It may include a portion 642.
상기 차단리브(641)는 상기 연료와 충돌되는 면적이 더 크도록 너비가 두께보다 크게 구비될 수 있다. 상기 안내부(642)는 상기 차단리브(641)에서 연료가 흐르는 하류방향으로 연장되어 구비될 수 있고 상기 차단리브(641)에서 멀어질수록 두께가 좁아지게 구비될 수 있다. 이로써, 연료는 차단리브(641)에서 1차 충돌하여 상기 차단리브(641)의 배면에서 난류로 형성되고, 형성된 난류는 상기 안내부(642)의 양측에서 분리되며 이동할 수 있다. 그 결과, 상기 난류가 일정한 와류(vortex)를 형성하며 연소실(132)에 유입될 수 있고, 화염전파율을 높일 수 있다. The blocking rib 641 may have a width greater than a thickness so that an area colliding with the fuel is greater. The guide part 642 may be provided to extend in a downstream direction through which fuel flows from the blocking rib 641, and may be provided to have a thickness smaller as the distance from the blocking rib 641 increases. As a result, the fuel is first collided with the blocking rib 641 to form a turbulent flow at the rear surface of the blocking rib 641, and the formed turbulence is separated from both sides of the guide part 642 and can be moved. As a result, the turbulence may form a constant vortex and flow into the combustion chamber 132, thereby increasing the flame propagation rate.
한편, 상기 하우징(100)의 양측에서 연료가 주입되는 경우, 상기 제1흡기부(141)와 상기 제2흡기부(142)에서 유입되는 연료는 서로 충돌할 수 있다. On the other hand, when fuel is injected from both sides of the housing 100, the fuel introduced from the first intake part 141 and the second intake part 142 may collide with each other.
상기 유입되는 연료가 서로 충돌하면 난류 강도는 강해질 수 있으나, 연료가 적체되어 다른 연료의 유입을 방해할 수 있다. When the introduced fuels collide with each other, the intensity of turbulence may increase, but the fuel may accumulate and prevent the inflow of other fuels.
따라서, 본 발명 로터리 엔진은 양측에 연료가 유입되더라도 연료간의 충돌을 방지할 수 있도록 구비될 수 있다. Accordingly, the rotary engine of the present invention may be provided so as to prevent collision between fuels even when fuel flows into both sides.
도 7은 본 발명 로터리 엔진에 충돌방지부의 구조를 도시한 것이다.Figure 7 shows the structure of the collision preventing unit in the present invention rotary engine.
도 7(a)를 참조하면, 본 발명 로터리 엔진은 상기 제1흡기부의 내부와 상기 제2흡기부의 내부 중 하나 이상에 구비되어 상기 제1흡기부에서 공급되는 연료와 상기 제2흡기부에서 공급되는 연료가 서로 충돌하는 것을 방지하는 충돌방지부(160)을 더 포함할 수 있다.Referring to FIG. 7(a), the rotary engine of the present invention is provided in at least one of the inside of the first intake part and the inside of the second intake part, and the fuel supplied from the first intake part and the fuel supplied from the second intake part It may further include a collision preventing unit 160 for preventing the fuel from colliding with each other.
상기 충돌방지부(160)는 상기 제1흡기부(141)의 연장방향을 따라 상기 제1흡기부 내부에 구비되는 제1베인(161)과, 상기 제2흡기부의 연장방향을 따라 상기 제2흡기부 내부에 돌출되어 구비되는 제2베인(162)를 포함할 수 있다.The collision avoidance unit 160 includes a first vane 161 provided inside the first intake unit along the extending direction of the first intake unit 141, and the second intake unit 160 along the extending direction of the second intake unit. It may include a second vane 162 protruding and provided inside the intake part.
상기 제1베인(161)과 상기 제2베인(162)는 상기 흡기부(140) 내부를 구획할 수 있다. 상기 제1베인(161)과 상기 제2베인(162)는 상기 흡기부(140)를 유동하는 연료의 방향을 안내할 수 있다. 상기 제1베인(161)과 상기 제2베인(162)는 판형상으로 구비될 수 있으며, 상기 연료의 방향을 안내할 수 있다면 어떠한 높이로 구비되어도 무방하다.The first vane 161 and the second vane 162 may partition the interior of the intake part 140. The first vane 161 and the second vane 162 may guide the direction of the fuel flowing through the intake part 140. The first vane 161 and the second vane 162 may be provided in a plate shape, and may be provided at any height as long as the direction of the fuel can be guided.
도 7(b)를 참조하면, 상기 제1베인(161) 중 상기 연소실을 향하는 말단과, 상기 제2베인(162) 중 상기 연소실을 향하는 말단이 서로 마주하지 않도록 엇갈려 구비될 수 있다.Referring to FIG. 7B, an end of the first vane 161 facing the combustion chamber and an end of the second vane 162 facing the combustion chamber may be provided alternately so as not to face each other.
즉, 상기 제1베인(161) 말단 연장선(L1)과, 상기 제2베인(162)의 말단 연장선(L2)이 서로 만나지 않도록 구비될 수 있다. 예를들어, 상기 제1베인(161)은 상기 제1흡기홀(112)에서 상기 로터(200)를 향하도록 구비될 수 있고, 상기 제2베인(162)은 상기 제2흡기홀(122)에서 상기 로터하우징(130)을 향하도록 구비될 수 있다. 또한, 상기 제1베인의 말단과 상기 연소실이 이루는 경사와 상기 제2베인과 말단과 상기 연소실이 이루는 경사는 서로 다르게 구비될 수 있다. That is, the first vane 161 may be provided so that the end extension line L1 and the end extension line L2 of the second vane 162 do not meet each other. For example, the first vane 161 may be provided to face the rotor 200 from the first intake hole 112, and the second vane 162 may be the second intake hole 122 It may be provided to face the rotor housing 130 at. In addition, an inclination formed by the end of the first vane and the combustion chamber and an inclination formed by the second vane and the end and the combustion chamber may be different from each other.
이로써, 상기 제1베인(161)을 통해 안내되는 연료와, 상기 제2베인(162)을 통해 안내되는 연료는 상기 연소실(132)에 유입되는 과정에서 충돌되는 것을 방지할 수 있다. 오히려, 상기 제1베인(161)과 상기 제2베인(162)으로 인해 상기 연소실(132)에 강력한 와류(Vortex)가 형성되어 화염전파가 매우 효과적으로 수행될 수 있다. Accordingly, it is possible to prevent the fuel guided through the first vane 161 and the fuel guided through the second vane 162 from colliding while being introduced into the combustion chamber 132. Rather, a strong vortex is formed in the combustion chamber 132 due to the first vane 161 and the second vane 162, so that flame propagation can be performed very effectively.
도8은 본 발명 로터리 엔진에서 연료의 충돌을 방지하는 다른 실시예를 도시한 것이다. Figure 8 shows another embodiment for preventing a collision of fuel in the rotary engine of the present invention.
상기 제1흡기부(141)는 상기 제1하우징(110)에서 경사지게 결합되고, 상기 제2흡기부(142)는 상기 제2하우징(120)에서 경사지게 결합되어 구비될 수 있다.The first intake part 141 may be obliquely coupled to the first housing 110, and the second intake unit 142 may be obliquely coupled to the second housing 120.
구체적으로, 상기 제1흡기부(141)에서 토출되는 연료와, 상기 제2흡기부(142)에서 토출되는 연료가 서로 충돌하지 않도록, 상기 제1흡기부(141)와 상기 제2흡기부(142)는 상기 하우징(100)에 경사지게 결합될 수 있다. 상기 제1흡기부(141)는 상기 제1하우징(110)에 상기 공급부(144)에서 멀어지는 방향으로 경사지게 구비될 수 있고, 상기 제2흡기부(142)는 상기 제2하우징(120)에서 상기 공급부(144)와 가까워지는 방향으로 경사지게 구비될 수 있다. 이로써, 상기 제1흡기부(141)에서 배출되는 연료와 상기 제2흡기부(142)에서 배출되는 연료가 서로 충돌되는 것이 방지될 수 있다. Specifically, to prevent the fuel discharged from the first intake part 141 and the fuel discharged from the second intake part 142 collide with each other, the first intake part 141 and the second intake part ( 142 may be obliquely coupled to the housing 100. The first intake part 141 may be provided in the first housing 110 to be inclined in a direction away from the supply part 144, and the second intake part 142 may be provided in the second housing 120. It may be provided to be inclined in a direction closer to the supply unit 144. Accordingly, it is possible to prevent the fuel discharged from the first intake part 141 and the fuel discharged from the second intake part 142 collide with each other.
이로써, 본 발명 로터리 엔진은 상기 흡기부(140) 내부에 충돌방지부가 없더라도, 연료간의 충돌이 방지될 수 있다. 물론, 본 발명 로터리 엔진은 상기 충돌방지부의 구성을 함께 구비할 경우에는 연료간의 충돌방지 효과가 극대화 될 수 있다. Accordingly, in the rotary engine of the present invention, even if there is no collision prevention unit in the intake unit 140, collision between fuels can be prevented. Of course, when the rotary engine of the present invention is provided with the configuration of the collision prevention unit, the collision prevention effect between fuels can be maximized.
도9는 본 발명 로터리 엔진에서 연료의 충돌을 방지하는 또 다른 실시예를 도시한 것이다. Fig. 9 shows another embodiment for preventing a collision of fuel in the rotary engine of the present invention.
상기 제1흡기홀(112)과 상기 제2흡기홀(122)은 서로 마주하는 것이 방지되도록 구비될 수 있다. 즉, 상기 제1흡기홀(112)과 상기 제2흡기홀(122)은 엇갈려 구비될 수 있다. 이로써, 상기 제1흡기홀(112)과 상기 제2흡기홀(122)에서 토출되는 연료는 직접적으로 충돌되는 것이 방지될 수 있다.The first intake hole 112 and the second intake hole 122 may be provided to be prevented from facing each other. That is, the first intake hole 112 and the second intake hole 122 may be provided alternately. Accordingly, it is possible to prevent direct collision between the fuel discharged from the first intake hole 112 and the second intake hole 122.
더욱이, 상기 제1흡기홀(112)과 연결된 상기 제1흡기부(141)와 상기 제2흡기홀(122)과 연결된 상기 제2흡기부(142)의 경사도 서로 다르게 구비될 수 있다.Moreover, the first intake part 141 connected to the first intake hole 112 and the second intake part 142 connected to the second intake hole 122 may have different inclinations.
상기 제1흡기부(141)는 상기 제1하우징(110)에 상기 공급부(144)에서 멀어지는 방향으로 경사지게 구비될 수 있고, 상기 제2흡기부(142)는 상기 제2하우징(120)에서 상기 공급부(144)와 가까워지는 방향으로 경사지게 구비될 수 있다. 이로써, 상기 제1흡기부(141)에서 배출되는 연료와 상기 제2흡기부(142)에서 배출되는 연료가 서로 충돌되는 것이 더욱 방지될 수 있다. The first intake part 141 may be provided in the first housing 110 to be inclined in a direction away from the supply part 144, and the second intake part 142 may be provided in the second housing 120. It may be provided to be inclined in a direction closer to the supply unit 144. Accordingly, it is possible to further prevent the fuel discharged from the first intake part 141 and the fuel discharged from the second intake part 142 collide with each other.
본 발명은 다양한 형태로 변형되어 실시될 수 있을 것인바 상술한 실시예에 그 권리범위가 한정되지 않는다. 따라서 변형된 실시예가 본 발명 특허청구범위의 구성요소를 포함하고 있다면 본 발명의 권리범위에 속하는 것으로 보아야 할 것이다.The scope of the rights is not limited to the above-described embodiments as the present invention may be modified and implemented in various forms. Therefore, if the modified embodiment includes the elements of the claims of the present invention, it should be viewed as belonging to the scope of the present invention.

Claims (14)

  1. 연료가 압축되는 연소실을 형성하는 하우징;A housing forming a combustion chamber in which fuel is compressed;
    상기 연소실에 편심회전 가능하게 수용되어 상기 연료를 이동시키거나 압축하는 로터;A rotor accommodated in the combustion chamber to be eccentrically rotated to move or compress the fuel;
    상기 하우징에 연통하도록 구비되어 상기 로터의 외주면에 상기 연료를 공급하도록 구비되는 흡기부;An intake part provided to communicate with the housing and provided to supply the fuel to an outer peripheral surface of the rotor;
    상기 흡기부 내부에 돌출되어 상기 연료의 난류강도(turbulence intensity)를 증가시키는 난류형성부;를 포함하는 것을 특징으로 하는 로터리 엔진. And a turbulence forming unit protruding inside the intake unit to increase turbulence intensity of the fuel.
  2. 제1항에 있어서,The method of claim 1,
    상기 난류형성부는The turbulence forming part
    상기 흡기부의 내주면에서 돌출되어 구비되는 것을 특징으로 하는 로터리 엔진.Rotary engine, characterized in that provided to protrude from the inner peripheral surface of the intake portion.
  3. 제1항에 있어서,The method of claim 1,
    상기 하우징은 The housing is
    상기 흡기부와 결합되는 흡기홀을 더 포함하고, Further comprising an intake hole coupled to the intake portion,
    상기 난류형성부는 The turbulence forming part
    상기 흡기부와 상기 하우징이 결합되는 흡기홀의 내주면에 돌출되어 구비되는 것을 특징으로 하는 로터리 엔진. Rotary engine, characterized in that it is provided to protrude from the inner circumferential surface of the intake hole in which the intake part and the housing are coupled.
  4. 제1항에 있어서,The method of claim 1,
    상기 하우징은 The housing is
    상기 흡기부와 결합되는 흡기홀을 더 포함하고, Further comprising an intake hole coupled to the intake portion,
    상기 난류형성부는The turbulence forming part
    상기 흡기홀 또는 상기 흡기부의 내주면에서 상기 연소실과 반대방향으로 돌출되어 구비되는 것을 특징으로 하는 로터리 엔진. Rotary engine, characterized in that it is provided to protrude in a direction opposite to the combustion chamber from the intake hole or the inner circumferential surface of the intake part.
  5. 제1항에 있어서,The method of claim 1,
    상기 하우징은 The housing is
    상기 흡기부와 결합되는 흡기홀을 더 포함하고, Further comprising an intake hole coupled to the intake portion,
    상기 흡기홀 또는 상기 흡기부에서 직선형태로 돌출되어 구비되는 차폐리브를 포함하는 것을 특징으로 하는 로터리 엔진.And a shielding rib protruding in a straight line from the intake hole or the intake part.
  6. 제1항에 있어서,The method of claim 1,
    상기 하우징은 The housing is
    상기 흡기부와 결합되는 흡기홀을 더 포함하고, Further comprising an intake hole coupled to the intake portion,
    상기 난류형성부는 The turbulence forming part
    단면이 원형 또는 타원형으로 상기 흡기부의 내주면에서 돌출되어 구비되는 돌출기둥을 포함하는 것을 특징으로 하는 로터리 엔진.A rotary engine comprising a protruding pillar having a circular or elliptical cross section and protruding from an inner peripheral surface of the intake portion.
  7. 제1항에 있어서,The method of claim 1,
    상기 난류형성부는The turbulence forming part
    상기 흡기부가 연장되는 방향과 경사지게 돌출되는 제1리브와,A first rib protruding obliquely with a direction in which the intake part extends,
    상기 제1리브의 일단에서 연장되어 구비되는 제2리브를 포함하는 것을 특징으로 하는 로터리 엔진.And a second rib extending from one end of the first rib.
  8. 제1항에 있어서,The method of claim 1,
    상기 하우징은 The housing is
    상기 흡기부와 결합되는 흡기홀을 더 포함하고, Further comprising an intake hole coupled to the intake portion,
    상기 난류형성부는 The turbulence forming part
    상기 흡기홀 또는 상기 흡기부에서 직선형태로 돌출되어 구비되는 차단리브와, 상기 차단리브의 일면에서 돌출되어 구비되는 안내리브를 포함하는 것을 특징으로 하는 로터리 엔진. And a blocking rib protruding from the intake hole or the intake portion in a straight line, and a guide rib protruding from one surface of the blocking rib.
  9. 제1항에 있어서,The method of claim 1,
    상기 하우징은 The housing is
    상기 로터의 외주면과 접촉되는 로터하우징과,A rotor housing in contact with the outer peripheral surface of the rotor,
    상기 로터하우징의 일면에 결합되어 상기 연소실을 밀폐하는 제1하우징과,A first housing coupled to one surface of the rotor housing to seal the combustion chamber,
    상기 로터하우징의 상기 일면과 마주하는 타면에 결합되어 상기 연소실을 밀폐하는 제2하우징을 포함하고,And a second housing coupled to the other surface facing the one surface of the rotor housing to seal the combustion chamber,
    상기 흡기부는The intake part
    상기 제1하우징에 연통하여 결합되는 제1흡기부와,A first intake part coupled in communication with the first housing,
    상기 제2하우징에 연통하여 결합되는 제2흡기부를 포함하고,And a second intake part coupled in communication with the second housing,
    상기 난류형성부는 The turbulence forming part
    상기 제1흡기부와 상기 제2흡기부 중 하나 이상의 내주면에 구비되는 것을 특징으로 하는 로터리 엔진.Rotary engine, characterized in that provided on an inner peripheral surface of at least one of the first intake portion and the second intake portion.
  10. 제9항에 있어서,The method of claim 9,
    상기 제1흡기부에서 공급되는 연료와 상기 제2흡기부에서 공급되는 연료가 서로 충돌하는 것이 방지되도록, To prevent the fuel supplied from the first intake part and the fuel supplied from the second intake part from colliding with each other,
    상기 제1흡기부는 상기 제1하우징에서 경사지게 결합되고, The first intake part is obliquely coupled in the first housing,
    상기 제2흡기부는 상기 제2하우징에서 경사지게 결합되어 특징으로 하는 로터리 엔진. The second intake part is a rotary engine, characterized in that it is obliquely coupled to the second housing.
  11. 제9항에 있어서, The method of claim 9,
    상기 제1하우징을 관통하여 상기 제1흡기부가 연통하는 제1흡기홀과,A first intake hole through which the first intake part communicates through the first housing,
    상기 제2하우징을 관통하여 상기 제2흡기부가 연통하는 제2흡기홀을 포함하고,And a second intake hole through which the second intake part communicates through the second housing,
    상기 제1흡기홀과 상기 제2흡기홀은 서로 마주하는 것이 방지되도록 구비되는 것을 특징으로 하는 로터리 엔진. The rotary engine, characterized in that the first intake hole and the second intake hole are provided to be prevented from facing each other.
  12. 제9항에 있어서,The method of claim 9,
    상기 제1흡기부의 내부와 상기 제2흡기부의 내부 중 하나 이상에 구비되어It is provided in at least one of the inside of the first intake part and the inside of the second intake part
    상기 제1흡기부에서 공급되는 연료와 상기 제2흡기부에서 공급되는 연료가 서로 충돌하는 것을 방지하는 충돌방지부를 더 포함하는 것을 특징으로 하는 로터리 엔진. And a collision preventing unit for preventing the fuel supplied from the first intake unit and the fuel supplied from the second intake unit from colliding with each other.
  13. 제12항에 있어서,The method of claim 12,
    상기 충돌방지부는The collision avoidance unit
    상기 제1흡기부의 연장방향을 따라 상기 제1흡기부 내부에 구비되는 제1베인과,A first vane provided inside the first intake part along the extending direction of the first intake part,
    상기 제2흡기부의 연장방향을 따라 상기 제2흡기부 내부에 구비되는 제2베인을 포함하고,And a second vane provided inside the second intake part along the extending direction of the second intake part,
    상기 연소실을 향하는 상기 제1베인의 말단과, 상기 연소실을 향하는 상기 제2베인의 말단이 서로 엇갈려 구비되는 것을 특징으로 하는 로터리 엔진. Rotary engine, characterized in that the end of the first vane toward the combustion chamber and the end of the second vane toward the combustion chamber are provided alternately with each other.
  14. 제13항에 있어서,The method of claim 13,
    상기 제1베인의 말단과 상기 연소실이 이루는 경사와The slope formed by the end of the first vane and the combustion chamber
    상기 제2베인의 말단과 상기 연소실이 이루는 경사는 서로 다르게 구비되는 것을 특징으로 하는 로터리 엔진.The rotary engine, characterized in that the inclination formed by the end of the second vane and the combustion chamber is provided differently from each other.
PCT/KR2020/007692 2019-07-04 2020-06-15 Rotary engine WO2021002608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0080594 2019-07-04
KR1020190080594A KR102202336B1 (en) 2019-07-04 2019-07-04 A rotary engine

Publications (1)

Publication Number Publication Date
WO2021002608A1 true WO2021002608A1 (en) 2021-01-07

Family

ID=74101363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007692 WO2021002608A1 (en) 2019-07-04 2020-06-15 Rotary engine

Country Status (2)

Country Link
KR (1) KR102202336B1 (en)
WO (1) WO2021002608A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587016A (en) * 1991-09-27 1993-04-06 Mazda Motor Corp Fuel injection device of rotary piston engine
JPH0783011A (en) * 1993-09-14 1995-03-28 Kanesaka Gijutsu Kenkyusho:Kk Rotary valve for engine
JP2004044528A (en) * 2002-07-15 2004-02-12 Mazda Motor Corp Intake device for rotary engine
JP2008185027A (en) * 2006-12-15 2008-08-14 United Technol Corp <Utc> Rotor for rotary internal combustion engine, rotor for wankel engine, rotary internal combustion engine and method for modifying combustion fuel/air flow
JP2009526945A (en) * 2006-02-16 2009-07-23 ロントラ リミテッド Rotary piston and cylinder device
JP2011202642A (en) * 2010-03-26 2011-10-13 Mazda Motor Corp Rotary piston engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587016A (en) * 1991-09-27 1993-04-06 Mazda Motor Corp Fuel injection device of rotary piston engine
JPH0783011A (en) * 1993-09-14 1995-03-28 Kanesaka Gijutsu Kenkyusho:Kk Rotary valve for engine
JP2004044528A (en) * 2002-07-15 2004-02-12 Mazda Motor Corp Intake device for rotary engine
JP2009526945A (en) * 2006-02-16 2009-07-23 ロントラ リミテッド Rotary piston and cylinder device
JP2008185027A (en) * 2006-12-15 2008-08-14 United Technol Corp <Utc> Rotor for rotary internal combustion engine, rotor for wankel engine, rotary internal combustion engine and method for modifying combustion fuel/air flow
JP2011202642A (en) * 2010-03-26 2011-10-13 Mazda Motor Corp Rotary piston engine

Also Published As

Publication number Publication date
KR102202336B1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
WO2014104750A1 (en) Engine intake port structure
WO2013012258A2 (en) Precombustion chamber structure for gas engine
WO2017171159A1 (en) Fluid accelerator for internal combustion engine
WO2017111311A1 (en) Rotary engine
CN113646507B (en) Piston rod and free piston engine
WO2021002608A1 (en) Rotary engine
EP1315904B1 (en) Hot wall combustion insert for a rotary vane pumping machine
WO2018186628A1 (en) Rotary engine
US4029075A (en) Combustion apparatus for an internal combustion engine
US4050422A (en) Apparatus for supplying rich air/fuel mixture in an internal combustion engine
WO2015152510A1 (en) Turbo charger having nvh-reducing device
JP2015504999A (en) Rotary piston engine
WO2014148804A1 (en) Plasma burner
WO2012044051A2 (en) Rotary engine and multi-stepped rotary engine using same
WO2018199490A1 (en) Rotary engine
KR102271440B1 (en) A rotary engine
WO2019088376A1 (en) Ramjet generator for intake/exhaust
US4072136A (en) Apparatus for supplying rich air/fuel mixture in an internal combustion engine
WO2019231248A1 (en) Vehicle swirler
RU2196906C2 (en) Combustion chamber of gas turbine engine
KR950006214A (en) 4-cycle piston type internal combustion engine
CN115176114A (en) Burner assembly, gas turbine combustor, and gas turbine
US3964446A (en) Rotary piston internal combustion engine
WO2021194117A1 (en) Rotary engine
RU2063528C1 (en) Combustion chamber of rotary-piston internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835093

Country of ref document: EP

Kind code of ref document: A1