WO2018199490A1 - Rotary engine - Google Patents

Rotary engine Download PDF

Info

Publication number
WO2018199490A1
WO2018199490A1 PCT/KR2018/003886 KR2018003886W WO2018199490A1 WO 2018199490 A1 WO2018199490 A1 WO 2018199490A1 KR 2018003886 W KR2018003886 W KR 2018003886W WO 2018199490 A1 WO2018199490 A1 WO 2018199490A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
lobe
rotor
housing
rolling
Prior art date
Application number
PCT/KR2018/003886
Other languages
French (fr)
Korean (ko)
Inventor
유병훈
이윤희
오휘성
이병철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880027416.9A priority Critical patent/CN110546360B/en
Publication of WO2018199490A1 publication Critical patent/WO2018199490A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a rotary engine for producing power in a rotary motion.
  • Rotary engines are engines that produce power in rotational motion and were originally designed by Wankel.
  • the Wankel engine devised by Wankel includes a housing whose inner surface is formed of an epitrocoid curve and a triangular rotor rotating within the housing.
  • the inner space of the housing is divided into three spaces by the rotor, and the volume of these spaces is changed in accordance with the rotation of the rotor, so that four strokes of intake ⁇ compression ⁇ explosion ⁇ exhaust occur continuously.
  • each stroke is performed three times while the rotor is rotating, and the eccentric shaft is configured to be three revolutions.
  • Wankel engine Since the development of the Wankel engine, various researches have been conducted to optimize the design of the Wankel engine, and a modified rotary engine has also been developed.
  • the rotary engine is easy to miniaturize due to its simple structure and is a high power engine capable of producing high power in high speed operation. Due to these features, rotary engines have the advantage of being applicable to various devices such as heat pump systems, automobiles, bicycles, aircraft, jet skis, chain saws and drones. In addition, the rotary engine has the advantage that the rotational force is uniform, less vibration and noise, and less NOx emissions.
  • the rotary engine has a large surface area compared to the stroke volume, the anti-inflammatory area is enlarged, and a large amount of unburned hydrocarbon (UHC) is discharged, and fuel efficiency and efficiency are low.
  • UHC unburned hydrocarbon
  • the housing internal space partitioned by the rotor is required to maintain the seal between the outside of the rotary engine or the respective spaces.
  • a face seal, a peak seal, and a button seal are provided on surfaces where the housing and the rotor rub against each other, for example.
  • the face seal is mounted to the rotor so as to rotate together with the rotor, and the peak seal and the button seal are fixed to a housing that forms a friction surface with the rotor.
  • the button seal of Patent Document 1 has a problem that it is difficult to completely seal the leakage space between the face seal and the peak seal. Therefore, there is a need to improve the sealing structure so as to maximize the sealing effect of the mixer while minimizing the increase in friction loss.
  • An object of the present invention is to provide a rotary engine having a corner seal configured to seal between a rolling seal and a lobe seal in response to a gap change formed during rotation of the rotor.
  • the rotary engine of the present invention having a plurality of lobe receiving portion therein; A rotor having a lobe eccentrically rotated from a center of the housing and continuously received in the lobe receiving portion; A housing cover coupled to the housing by overlapping the lobe receptacle; And a sealing unit sealing each of the lobe accommodation parts, wherein the sealing unit includes: a rolling seal protruding from the rotor to slide with the housing cover; A lobe seal protruding from the housing to isolate the lobe receptacle adjacent to each other; And a corner seal protruding from each of the lobe seals between the housing cover and the rotor to elastically support the rolling seal.
  • the corner seal is coupled to the lobe seal so that the rolling seal is elastically supported. Accordingly, the gap between the rolling seal and the lobe seal, which varies according to the movement of the rotor, can be accurately sealed. Unlike conventional corner seals fixed on the housing lid side and unable to cope with changes in position and size of the gap, the lobe receptacle can be continuously sealed. By ensuring sealing, the thermal efficiency of the rotary engine can be further improved.
  • the corner seal of the present invention includes a body portion and a protrusion, and the lobe seal may receive a force for pressing the rotor by a locking jaw between the body portion and the protrusion. Therefore, the corner seal can be interlocked together by the lobe seal elastic member, so that the sealing unit of the present invention can be concisely implemented.
  • the corner seal has an elastic support and may be seated to be movable in the mounting groove in the thickness direction of the rotor.
  • Such a corner seal of the present invention can perform the sealing function in response to the gap is varied in the thickness direction of the rotor.
  • FIG. 1 is a longitudinal sectional view of a rotary engine according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of some components of the rotary engine shown in FIG. 1.
  • FIG. 2 is an exploded perspective view of some components of the rotary engine shown in FIG. 1.
  • FIG. 3 is a conceptual view showing the internal structure of the rotary engine shown in FIG.
  • FIG. 4A and 4B are perspective views of the rotor shown in FIG. 1 viewed from different directions.
  • FIG. 5 is a conceptual diagram showing an intake process inside the rotary engine shown in FIG.
  • FIG. 6 is a conceptual diagram showing a compression process inside the rotary engine shown in FIG.
  • FIG. 7 is a conceptual diagram showing an explosion process inside the rotary engine shown in FIG.
  • FIG. 8 is a conceptual view illustrating an exhaust process inside the rotary engine shown in FIG.
  • FIG. 9 is an enlarged view of the area A shown in FIG. 1.
  • FIG. 9 is an enlarged view of the area A shown in FIG. 1.
  • FIG. 10 is a perspective view of the corner seal shown in FIG. 9.
  • FIG. 11 is a conceptual view illustrating a lubrication unit included in the rotary engine illustrated in FIG. 1.
  • FIG. 1 is a longitudinal sectional view of a rotary engine according to the present invention
  • Figure 2 is an exploded perspective view of some components of the rotary engine shown in FIG. 3 is a conceptual view illustrating an internal structure of the rotary engine illustrated in FIG. 1
  • FIGS. 4A and 4B are perspective views of the rotor illustrated in FIG. 1 viewed from different directions.
  • the volume of the N operating chambers formed between the housing 110 and the rotor 120 changes as the rotor 120 eccentrically rotates inside the housing 110.
  • the four strokes of intake ⁇ compression ⁇ explosion ⁇ exhaust occur continuously.
  • the crank shaft 180 is rotated in response to the eccentric rotation of the rotor 120, and is connected to the other engine to transmit the generated power.
  • the rotary engine 100 of the present invention includes a housing 110, a spark plug 130, a rotor 120, housing covers 141 and 142, a rotor gear 170, and a crank shaft. And 180.
  • the housing 110 includes N lobe accommodation portions 111 (N is a natural number of 3 or more) therein.
  • N is a natural number of 3 or more
  • the shape of the lobe receptacle 111 and the lobes 120 'and 120 ", which will be described later, is that when there is a cloud source moving while rotating over an arbitrary shape, any point existing on the cloud source is dependent on the rotation of the cloud source. It can be designed based on the trajectory Epitrochoid curve drawn along.
  • N combustion chambers 112 communicating with the lobe receiver 111 are provided at an upper center of each lobe receiver 111.
  • the combustion chamber 112 has a recessed shape in the inner wall of the housing 110 forming the lobe accommodating portion 111.
  • the size of the combustion chamber 112 may be designed differently according to the compression ratio of the rotary engine 100.
  • the housing 110 may be provided with a spark plug 130 for discharging a flame in each combustion chamber 112 to ignite a mixer filled in the combustion chamber 112.
  • the spark plug 130 may be mounted in the mounting hole 113 of the housing 110 and disposed to be exposed to the upper portion of the combustion chamber 112.
  • the mounting hole 113 is configured to communicate with the combustion chamber 112.
  • the rotor 120 is inserted into the lobe receiving portion 111, it is configured to eccentrically rotate relative to the center of the lobe receiving portion (111).
  • the rotor 120 has N-1 lobes 120 'and 120 "that are continuously received in each lobe receiving portion 111 during eccentric rotation.
  • a support part 121 in which the rotor gear 170 is mounted is formed at the center of the rotor 120, and the crank shaft 180 inserted into the rotor gear 170 is provided in the support part 121.
  • This through hole 122 is formed.
  • the flange portion 171 of the rotor gear 170 is supported on the front surface of the support portion 121 and maintains a firm coupling state with the flange portion 171 by a fastening means such as a fastening member.
  • the front part of the rotor 120 is formed with a first storage part 123a for temporary storage of the mixer sucked through the intake side cover 141 which is one of the housing covers.
  • the first storage portion 123a has a recessed shape from the front portion of the rotor 120 toward the rear portion (ie, in the axial direction of the crank shaft 180).
  • a portion of the rotor 120 (as shown, a portion of the first storage unit 123a that does not share sidewalls with the second storage unit 123b) is bordered. May be left thin and stiffness may be reduced.
  • ribs 125 for rigidly reinforcing the rotor 120 may be protruded from a plurality of locations on the inner surface of the rotor 120 forming the first storage part 123a.
  • the at least one rib 125 ′ may be configured to be connected to the support part 121, and a height lower than the thickness of the rotor 120 so that the mixer temporarily stored in the first storage part 123a may move to the opposite side. It may be formed to include a portion having.
  • An intake port 124a communicating with the first storage part 123a is formed at the side portion of the rotor 120 to allow the sucked mixer to be introduced into the lobe accommodation part 111.
  • the intake port 124a is formed at a position where the mixer 120 can inhale while the rotor 120 rotates 90 ° to 120 ° in the counterclockwise direction.
  • a second storage unit 123b for temporarily storing the exhaust gas generated after combustion is formed.
  • the second storage portion 123b is recessed from the rear portion of the rotor 120 toward the front portion (ie, in the axial direction of the crank shaft 180).
  • Exhaust gas temporarily stored in the second storage unit 123b is discharged to the outside through the exhaust side cover 142, which is one of the housing covers.
  • An exhaust port 124b communicating with the second storage part 123b is formed at the side portion of the rotor 120 so that exhaust gas generated after combustion may flow into the second storage part 123b.
  • the exhaust port 124b is formed at a position where the rotor 120 can be evacuated after the rotor 120 is rotated 270 ° in the counterclockwise direction so that it can be disposed after more expansion than the intake amount. Such overexpansion may increase the efficiency of the rotary engine 100.
  • An intake side cover 141 is provided on the front portion of the housing 110, and an exhaust side cover 142 is provided on the rear portion of the housing 110.
  • the intake side cover 141 is coupled to the housing 110 to cover one side of the lobe receiving portion 111.
  • the intake side cover 141 is provided with a sealing part (not shown) for maintaining airtightness with the housing 110 and the rotor 120.
  • the intake side cover 141 serves as a passage for delivering the inhaled mixer to the rotor 120 while closing the housing 110. To this end, the intake side cover 141 is provided with an intake hole 141a in communication with the first storage portion 123a provided in the front portion of the rotor 120.
  • the guide gear 160 is mounted inside the intake side cover 141 facing the lobe accommodating part 111.
  • Guide gear 160 is formed in the form of a toothed ring formed along the inner circumference, and the rotor gear 170 is configured to rotate inscribed therein, thereby causing the eccentric rotation of the rotor 120 with respect to the center of the lobe receiving portion 111 Is made to guide.
  • the number of teeth of the guide gear 160 is designed in consideration of the rotation ratio of the crank shaft 180 which transmits power with the rotor 120.
  • the rotor 120 is mounted to the rotor 120.
  • a tooth is formed along the outer circumference of the rotor gear 170, and the rotor gear 170 is configured to rotate inwardly with the guide gear 160 fixed to the intake side housing cover 141.
  • the number of teeth of the rotor gear 170 is designed in consideration of the rotation ratio of the rotor 120 and the crankshaft 180.
  • a central portion of the rotor gear 170 is formed with a receiving portion 174 into which the eccentric portion 182 of the crank shaft 180 is inserted, and the eccentric portion 182 is configured to be rotatable within the receiving portion 174.
  • the eccentric portion 182 accommodated in the accommodating portion 174 rotates in response to the eccentric rotation of the rotor 120.
  • the shaft portion 181 of the crank shaft 180 is rotated N-1 revolutions in the clockwise direction.
  • the rotor gear 170 is a flat flange portion 171 configured to be supported and fixed to the support portion 121 of the rotor 120, formed on one surface of the flange portion 171 to guide gear ( Gear portion 172 configured to be inscribed in 160, the flange portion 171 is inserted into the through hole 122 of the rotor 120 when the flange portion 171 is mounted to the support portion 121 of the rotor 120, the flange portion 171 Receiving portion formed through the gear portion 172 and the boss portion 173 so that the boss portion (173) protruding from the other surface of the) and the eccentric portion (182) of the crank shaft 180 can be inserted 174 can be configured.
  • the crank shaft 180 is an axial portion 181 configured to penetrate the rotary engine 100, and an eccentric portion 182 formed eccentrically from the shaft portion 181 and inserted into the receiving portion 174 of the rotor gear 170. It includes. In the present embodiment, the shaft portion 181 may pass through the intake side cover 141 to the front and the exhaust side cover 142 to the rear. The shaft portion 181 is connected to another engine (system) and is configured to transmit power generated by the rotary engine 100 of the present invention to the other engine (system).
  • the exhaust side cover 142 is coupled to the housing 110 to cover the other side of the lobe receiving portion 111.
  • the exhaust side cover 142 seals the housing 110 and serves as a passage for discharging the generated exhaust gas.
  • the exhaust side cover 142 is provided with an exhaust hole 142a communicating with the second storage portion 123b provided at the rear portion of the rotor 120.
  • the rotary engine 100 of the present invention having the structure described above operates in four strokes of intake-compression-explosion-expansion during one cycle.
  • the movement of the rotor 120 in the housing 110 during each stroke will be described.
  • FIG. 5 to 8 are conceptual views illustrating the intake air ⁇ compression ⁇ explosion ⁇ exhaust process of the inside of the rotary engine 100 shown in FIG. 3 based on the rotation angle of the rotor 120.
  • the intake port 124a and the exhaust port 124b are provided at the side portions of the rotor 120, respectively.
  • the intake process is performed by the rotor 120 rotating in the counterclockwise direction inside the housing 110, and the rotation angle of the rotor 120 is 120 at 0 degrees. Is made while changing to degrees.
  • an intake port 124a is provided in the lobe accommodating portion 111 provided in the upper portion of the housing 110 and the combustion chamber 112 communicating therewith. Through the mixer is introduced.
  • the rotary engine 100 of the present invention is designed to allow intake to 120 degrees. This is to ensure that the efficiency of the rotary engine 100 is improved by the over-expansion in the subsequent expansion process.
  • the mixer after the intake process begins to be compressed by the rotation of the rotor 120.
  • the compression process is performed while the rotation angle of the rotor 120 varies from 120 degrees to 180 degrees.
  • the compression ratio is maximum when the rotor 120 is rotated 180 degrees, at which time the mixer is ideally completely filled in the combustion chamber 112.
  • combustion process of the mixer begins.
  • the combustion process continues to the beginning of the explosion process.
  • the combustion process starts when the rotational angle of the rotor 120 is around 160 degrees and ends completely when the rotational angle of the rotor 120 is around 200 degrees.
  • the explosion (expansion) process is performed while the rotation angle of the rotor 120 varies from 180 degrees to 270 degrees.
  • the combustion process which begins at the end of the previous compression process, is completely terminated at the beginning of the explosion process.
  • the intake process of the preceding intake is a state in which the rotation angle of the rotor 120 is 120 degrees, that is, the intake of the mixer by the corresponding volume when the rotor 120 is rotated 240 degrees in this figure, while the expansion process Is the rotation angle of the rotor 120 forming a larger volume than this is up to 270 degrees. Therefore, the rotary engine 100 of the present invention can obtain an overexpansion effect of achieving expansion larger than the intake volume.
  • the exhausting process is performed while the rotation angle of the rotor 120 varies from 270 degrees to 360 degrees.
  • the generated exhaust gas is discharged through the exhaust port 124b while the rotor 120 rotates counterclockwise from 270 to 360 degrees.
  • FIG. 9 is an enlarged view of the area A shown in FIG. 1, and FIG. 10 is a perspective view of the corner seal 147 shown in FIG. 9. 1, 9 and 10, the rotary engine 100 according to an embodiment of the present invention includes a sealing unit 107.
  • the sealing unit 107 may function to respectively seal the space of the lobe accommodating part 111 where the volume is changed between the rotor 120 and the housing 110 to compress and expand the mixer.
  • the sealing unit 107 includes a rolling seal 127, a lobe seal 117, and a corner seal 147.
  • the rolling seals 127 are formed on the front and rear surfaces in the thickness direction of the rotor 120 (the axial direction in which the crank shaft 180 extends), respectively, and the intake side cover 141 and the exhaust side cover 142 and It is formed to protrude so as to slide.
  • the rolling seal 127 may be formed to extend along the circumference of the N-1 lobes formed in the rotor 120 to form a loop (loop). .
  • the rolling seal 127 When the rotor 120 rotates, the rolling seal 127 may be configured to maintain a close contact with the housing covers 141 and 142. Specifically, the side groove 127a may be formed to be recessed on the surface of the rotor 120, and the rolling seal 127 may be seated in the side groove 127a. In this case, the side elastic member 127b supported by the rolling seal 127 and the side groove 127a may be interposed.
  • the rolling seal 127 forms a loop to maintain close contact with the housing lids 141 and 142, thereby preventing the mixer from leaking into the gap between the rotor 120 and the housing lids 141 and 142. .
  • the rolling seal 127 in close contact with the intake side cover 141 restricts the mixer in the lobe accommodating part 111 from leaking to the intake hole 141a and the first storage part 123a. can do.
  • the rolling seal 127 in close contact with the exhaust side cover 142 may limit the flow of the mixer in the lobe accommodating part 111 toward the second storage part 123b and the exhaust hole 142a.
  • the lobe seal 117 serves to isolate the N lobe accommodation portions 111 in which mixers having different compression or expansion states are accommodated.
  • N peak portions 114 may be formed in the housing 110 having the N lobe accommodation portions 111, as shown in FIG. 3.
  • the lobe seal 117 may be formed to protrude from each of the N peak portions 114 to slide on the outer surface of the rotor 120 (the surface facing the housing 110 in the radial direction of the crank shaft 180). .
  • the lobe seal 117 may be accommodated in the apex groove 117a, and the lobe seal 117 may be supported by the apex groove 117a by the apex elastic member 117b.
  • the lobe seal 117 may protrude from the housing 110 to elastically support and adhere to the rotor 120.
  • the lobe seal 117 may be provided as many as the lobe accommodation portion 111.
  • the corner seal 147 functions to seal the space between the rolling seal 127 and the lobe seal 117.
  • the rolling seal 127 since the rolling seal 127 is formed to be inserted into the side groove 127a, the rolling seal 127 is positioned at a point spaced inward from the outer surface of the rotor 120. Therefore, the lobe seal 117 and the rolling seal 127 sliding on the outer surface of the rotor 120 may form a space spaced from each other. Through this space, the spaces of the lobe accommodation portions 111 may communicate with each other.
  • the space between the rolling seal 127 and the lobe seal 117 may vary in position and size. This may be due to the fact that the angle formed by the outer surface of the rotor 120 with respect to the peak portion 114 is continuously changed. As described above, since the outer surface of the rotor 120 is elastically supported with the lobe seal 117, leakage through the outer surface of the rotor 120 may be prevented, but the rolling seal 127 and the lobe seal 117 may be prevented. Moving spaces between them are difficult to seal accurately.
  • the corner seal 147 provided in the rotary engine 100 of the present embodiment protrudes between the housing covers 141 and 142 and the rotor 120 from each lobe seal 117 to be elastically supported by the rolling seal 127. It is made of a shape. As shown in FIGS. 1 and 9, the corner seal 147 may extend to be inserted into a space spaced between the housing covers 141, 142 and the rotor 120 at both ends of the lobe seal 117. An end of the extended corner seal 147 may be made to slide in contact with the rolling seal 127. Since the corner seal 147 extends from the lobe seal 117, the corner seal 147 also has a radius of the crank shaft 180 as the lobe seal 117 moves in the radial direction of the crank shaft 180. Can be moved in a direction.
  • corner seal 147 of the present embodiment is made to move in conjunction with the lobe seal 117, the corner seal 147 may more effectively seal the space between the rolling seal 127 and the lobe seal 117.
  • corner seal 147 is fixed to the housing cover (141, 142) side could not cope with the position and size change of the gap, each lobe receiving portion 111 can be continuously sealed, rotary engine There is an effect that the thermal efficiency of (100) can be improved.
  • the corner seal 147 of the present embodiment may include a body portion 147a and a protrusion 147b.
  • the body portion 147a is a portion formed to achieve engagement with the lobe seal 117 and may be formed in a cylindrical shape extending in the thickness direction in which the lobe seal 117 extends.
  • the body portion 147a may include a receiving groove 147c formed to receive an end portion of the sealing rod of the lobe seal 117.
  • the body portion 147a may be inserted into both ends of the lobe seal 117 in the axial direction of the crank shaft 180.
  • the protrusion 147b is protruded to contact the rolling seal 127 at the body 147a. When the rotor 120 rotates, the protrusion 147b may slide on the rolling seal 127 and the rotor 120.
  • the protrusion 147b is formed to a size sufficient to seal the space in consideration of the distance between the rolling seal 127 and the lobe seal 117 and the distance between the rotor 120 and the housing covers 141 and 142. Can be.
  • the protrusion 147b and the receiving groove 147c may be formed to protrude and recess in the same direction from each other on the outer circumferential surface of the body 147a. Accordingly, the lobe seal 117 and the protrusion 147b may slide on the outer surface of the rotor 120 and a surface adjacent thereto, respectively.
  • the locking jaw 147d may be formed by the protrusion 147b and the receiving groove 147c so that the corner seal 147 receives the force that the lobe seal 117 presses the outer surface of the rotor 120. have.
  • the protruding portion 147b may include a locking step 147d configured to contact the lobe seal 117 inserted into the receiving groove 147c. That is, the locking jaw 147d may be formed by overlapping the protrusion 147b and the receiving groove 147c with each other.
  • the protrusion 147b (the entire corner seal 147) is also moved toward the rolling seal 127 by the locking jaw 147d, It can also be elastically supported.
  • the corner seal 147 and the lobe seal 117 may be coupled to move relative to each other in the axial direction of the crank shaft 180.
  • the lobe seal 117 may be inserted into the receiving groove 147c so as to be slidable in the surface forming the locking step 147d.
  • the corner seal 147 of the present embodiment includes a body portion 147a and a protrusion 147b, and has a lobe seal by a locking step 147d between the body portion 147a and the protrusion 147b.
  • 117 may receive an elastic force for pressing the rotor 120.
  • the corner seal 147 which is interlocked with the lobe seal 117 to form the pressing force may be implemented by a simple structure.
  • the corner seal 147 may include an elastic support part 147e.
  • the elastic support 147e may generate an elastic force in the axial direction of the crank shaft 180 when the corner seal 147 is mounted to the lobe seal 117.
  • the elastic support part 147e may be configured to connect the body part 147a of the corner seal 147 and the housing 110 with each other.
  • the elastic support 147e When the elastic support 147e is mounted on the housing 110 supporting the lobe seal 117 as shown in the illustrated position, the elastic support 147e may be configured to generate a compressive force. That is, the elastic support part 147e may be formed to have a force for pulling the corner seal 147 in the direction from the housing covers 141 and 142 toward the rotor 120 in the axial direction of the crank shaft 180.
  • the mounting cover 143 may be formed in the housing covers 141 and 142 of the present embodiment to accommodate a part of the corner seal 147.
  • the mounting groove 143 may be formed in the housing covers 141 and 142 so as to be recessed in a surface facing the housing 110 or the rotor 120.
  • the mounting groove 143 may be formed in a shape for receiving a portion of the cylindrical body portion 147a and the protrusion 147b protruding from the body portion 147a.
  • the mounting groove 143 may have a larger space than the corner seal 147 so that the corner seal 147 seated therein is movable.
  • the direction in which the corner seal 147 can move is the direction toward the rolling seal 127 (the radial direction of the crankshaft 180), and the direction toward the lobe seal 117 (the thickness direction of the rotor 120). Can be.
  • an elastic support part 147f for supporting and pressing the corner seal 147 may be mounted in the mounting groove 143.
  • the elastic support part 147f fixed in the mounting groove 143 is configured to generate a tensile force to press the corner seal 147 in the direction toward the rotor 120 unlike the elastic support part 147e mounted to the housing 110. Can be.
  • the corner seal 147 is provided with an elastic support portion 147e and is seated to be movable in the mounting groove 143, so that the corner seal 147 of the present embodiment is disposed in the thickness direction of the rotor 120 and the housing 120.
  • the sealing function may be performed in response to the gap between the covers 141 and 142 being variable. Accordingly, the corner seal 147 is interlocked with the lobe seal 117 to move in the radial direction (up and down direction in FIG. 9) of the rotor 120, and between the rolling seal 127 and the lobe seal 117. The gap can be effectively sealed.
  • FIG. 11 is a longitudinal sectional view showing a lubrication unit included in the rotary engine 100 shown in FIG. 1.
  • the rotary engine 100 of the present invention may further include a lubrication unit 190.
  • the lubrication unit 190 includes an oil pan 191, an oil pump 192, and an oil supply flow path 193. These components each serve to store oil, pump oil, and supply oil to the corner seal 147.
  • the oil storage cover 150 may be coupled to the intake side cover 141.
  • an intake hole 141a may be formed at a rear surface of the intake side cover 141 that is coupled to face the rotor 120, and an oil pump 192 may be mounted at a front surface opposite to the rotor 120.
  • the oil storage cover 150 may be formed to cover the front surface of the intake side cover 141 to accommodate the oil pump 192.
  • an oil pan 191 may be formed in communication with a space formed by the oil storage cover 150 and the intake side cover 141 to fill the oil.
  • the oil pan 191 and the oil pump 192 may be connected to each other by a pipe or a tube for pumping oil, and an oil strainer 191a for filtering oil may be immersed in the oil pan 191 at the end of the pipe or the tube. It may be further provided to be.
  • the oil pump 192 may be, for example, a trochoid pump that sucks oil by eccentric rotation of the rotating body. In particular, it may be spaced apart to rotate in parallel with the crank shaft 180 as shown in FIG.
  • the chain gear 183 may be mounted on the outer circumferential surface of the crank shaft 180, and the trocoid pump and the crank shaft 180 may be connected to each other by the chain member 192a. Therefore, the rotational force generated on the crankshaft 180 in accordance with the operation of the rotary engine 100 according to the present invention can be transmitted to the trocoid pump.
  • the oil supply passage 193 may be connected to supply the oil pumped up to the oil pump 192 to the corner seal 147. That is, one end is connected to the discharge side of the oil pump 192 and the other end is located at a point adjacent to the corner seal 147.
  • the operation of the oil pump 192 is started as power is generated in the crankshaft 180, and the oil filled in the oil pan 191 is cornered through the oil supply flow passage 193. It is operated to be supplied to the seal 147.
  • lubrication is performed on the friction surface of the corner seal 147, and oil is also supplied to the rolling seal 127 and the lobe seal 117 through the friction surface of the corner seal 147. Lubrication can be performed.
  • the oil pump 192 may be operated in conjunction with the crank shaft 180 by the chain member 192a. In this way, the oil pump 192 can be operated without the need for additional driving means. Furthermore, as the output of the engine is increased, the oil supply may be increased so that a variable lubrication action corresponding to the output of the engine may be realized.
  • the oil supply passage 193 provided in the present invention may include a housing passage 193a and a supply tube 193b.
  • the housing flow passage 193a is an inner flow passage passing through the housing covers 141 and 142
  • the supply tube 193b has a form of an outer flow passage formed outside the housing 110 and the housing covers 141 and 142.
  • the housing flow passage 193a may be positioned such that one end thereof is exposed to the outer surface of the housing cover 141 and the other end thereof is adjacent to the corner seal 147. As shown in FIG. 9, the housing flow passage 193a may be formed to straightly penetrate the intake side cover 141 in the radial direction of the crankshaft 180.
  • the supply tube 193b may be formed outside the housing 110 and the housing covers 141 and 142 so as to communicate the oil pump 192 and the housing flow passage 193a with each other. That is, one end may be connected to the discharge side end of the oil pump 192, and the other end may be connected to each other where the housing flow path 193a is exposed to the outer surfaces of the housing covers 141 and 142.
  • the oil supply passage 193 is formed of a combination of the housing passage 193a and the supply tube 193b, the oil supply by the separate passage may be performed without using the flow of the mixer.
  • the present invention may be used and applied in the industrial field using a rotary engine that produces power by rotational motion.

Abstract

A rotary engine of the present invention comprises: a housing having a plurality of lobe receiving portions disposed therein; a rotor rotated while being disposed eccentrically from the center of the housing, and having lobes successively received in the lobe receiving portions; a housing cover coupled to the housing while overlapping the lobe receiving portions; and a sealing unit for sealing each of the lobe receiving portions, wherein the sealing unit comprises: rolling seals protruding from the rotor so as to slide on the housing cover; lobe seals protruding from the housing so as to separate the adjacent lobe receiving portions from each other; and corner seals protruding from each of the lobe seals, extending between the housing cover and the rotor, and elastically supported on the rolling seals. Accordingly, the varying gap between each lobe seal and each rolling seal can be effectively sealed.

Description

로터리 엔진Rotary engine
본 발명은 회전운동으로 동력을 생산하는 로터리 엔진에 관한 것이다.The present invention relates to a rotary engine for producing power in a rotary motion.
로터리 엔진은 회전운동으로 동력을 생산하는 엔진으로서, 방켈(Wankel)에 의해 처음 고안되었다.Rotary engines are engines that produce power in rotational motion and were originally designed by Wankel.
방켈에 의해 고안된 방켈 엔진은 내부면이 에피트로코이드 곡선으로 이루어진 하우징과, 하우징 내에서 회전하는 삼각형 모양의 로터를 포함한다. 하우징의 내부 공간은 로터에 의해 세 개의 공간으로 구획되며, 이들 공간의 체적이 로터의 회전에 따라 변하여, 흡기→압축→폭발→배기의 4행정이 연속적으로 일어나도록 구성된다. 방켈 엔진에서, 로터가 1회전하는 동안 각 행정은 3회 진행되며, 편심축은 3회전하도록 구성된다.The Wankel engine devised by Wankel includes a housing whose inner surface is formed of an epitrocoid curve and a triangular rotor rotating within the housing. The inner space of the housing is divided into three spaces by the rotor, and the volume of these spaces is changed in accordance with the rotation of the rotor, so that four strokes of intake → compression → explosion → exhaust occur continuously. In the Wankel engine, each stroke is performed three times while the rotor is rotating, and the eccentric shaft is configured to be three revolutions.
방켈 엔진이 고안된 이후, 방켈 엔진의 설계 최적화를 위한 다양한 연구가 이루어져 왔으며, 형태가 변형된 로터리 엔진 또한 개발되고 있다.Since the development of the Wankel engine, various researches have been conducted to optimize the design of the Wankel engine, and a modified rotary engine has also been developed.
로터리 엔진은 단순한 구조로 인하여 소형화가 용이하며, 고속운전에서 높은 출력을 낼 수 있는 고출력 엔진이다. 이러한 특징들로 인하여, 로터리 엔진은 히트 펌프 시스템, 자동차, 자전거, 항공기, 제트스키, 체인톱, 드론 등 다양한 장치에 적용 가능한 장점을 가진다. 뿐만 아니라, 로터리 엔진은 회전력이 균일하여 진동 및 소음이 적고, NOx를 적게 배출한다는 장점을 가진다.The rotary engine is easy to miniaturize due to its simple structure and is a high power engine capable of producing high power in high speed operation. Due to these features, rotary engines have the advantage of being applicable to various devices such as heat pump systems, automobiles, bicycles, aircraft, jet skis, chain saws and drones. In addition, the rotary engine has the advantage that the rotational force is uniform, less vibration and noise, and less NOx emissions.
다만, 로터리 엔진은 행정체적에 비해 넓은 표면적을 가짐에 따라, 소염면적이 확대되어 미연탄화수소(UHC: Unburned Hydrocarbon)가 다량 배출되고, 연비 및 효율이 낮다는 단점을 가진다.However, since the rotary engine has a large surface area compared to the stroke volume, the anti-inflammatory area is enlarged, and a large amount of unburned hydrocarbon (UHC) is discharged, and fuel efficiency and efficiency are low.
한편, 로터에 의해 구획되는 하우징 내부 공간은, 로터리 엔진의 외부 또는 각 공간 상호 간 밀폐가 유지되는 것이 요구된다. 이를 위하여 특허문헌 1의 예를 들면, 하우징과 로터가 서로 마찰되는 면들에 페이스 시일(Face Seal), 피크 시일(Peak Seal) 및 버튼 시일(Button Seal)이 각각 구비된다. 구체적으로, 페이스 시일은 로터와 함께 회전되도록 로터에 장착되고, 피크 시일 및 버튼 시일은 로터와 마찰면을 이루는 하우징에 고정되는 구성이 개시된 바 있다.On the other hand, the housing internal space partitioned by the rotor is required to maintain the seal between the outside of the rotary engine or the respective spaces. To this end, for example, a face seal, a peak seal, and a button seal are provided on surfaces where the housing and the rotor rub against each other, for example. Specifically, a configuration has been disclosed in which the face seal is mounted to the rotor so as to rotate together with the rotor, and the peak seal and the button seal are fixed to a housing that forms a friction surface with the rotor.
다만, 하우징 내부에서 로터가 편심되어 회전하기 위해서는 하우징 내부와 로터 사이에 소정의 간극이 필요하다. 그리고 이러한 간극으로 인하여, 로터의 회전 시 씰링 부품들 사이의 공간은 일정한 위치 또는 간격을 유지하지 못하고 변화하게 된다.However, in order to rotate the rotor eccentrically inside the housing, a predetermined gap is required between the inside of the housing and the rotor. And because of this gap, the space between the sealing parts during the rotation of the rotor is changed without maintaining a constant position or spacing.
이때, 특허문헌 1의 버튼 시일에 의하여는 페이스 시일과 피크 시일 사이의 누설 공간을 완벽하게 밀폐하기 어려운 문제점이 있었다. 따라서, 혼합기의 밀폐 효과를 극대화하면서, 아울러 마찰 손실이 증가되는 것을 최소화할 수 있도록 씰링 구조를 개선할 필요성이 있다.At this time, the button seal of Patent Document 1 has a problem that it is difficult to completely seal the leakage space between the face seal and the peak seal. Therefore, there is a need to improve the sealing structure so as to maximize the sealing effect of the mixer while minimizing the increase in friction loss.
본 발명의 목적은, 로터의 회전 시 형성되는 간극 변화에 대응하여 롤링 씰과 로브 씰 사이를 밀폐하도록 이루어지는 코너 씰을 구비하는 로터리 엔진을 제공하기 위한 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a rotary engine having a corner seal configured to seal between a rolling seal and a lobe seal in response to a gap change formed during rotation of the rotor.
이와 같은 본 발명의 과제를 달성하기 위하여, 본 발명의 로터리 엔진은, 내부에 복수 개의 로브 수용부를 구비하는 하우징; 상기 하우징의 중심으로부터 편심되어 회전하고, 상기 로브 수용부에 연속적으로 수용되는 로브를 구비하는 로터; 상기 로브 수용부를 오버랩하여 상기 하우징에 결합되는 하우징 덮개; 및 상기 로브 수용부를 각각 밀폐시키는 씰링 유닛을 포함하며, 상기 씰링 유닛은, 상기 하우징 덮개와 슬라이딩되도록 상기 로터에서 돌출 형성되는 롤링 씰; 서로 이웃한 상기 로브 수용부를 서로 격리시키도록 상기 하우징으로부터 돌출 형성되는 로브 씰; 및 각각의 상기 로브 씰로부터 상기 하우징 덮개와 로터 사이로 돌출되어, 상기 롤링 씰에 탄성 지지되도록 이루어지는 코너 씰을 구비한다.In order to achieve the above object of the present invention, the rotary engine of the present invention, the housing having a plurality of lobe receiving portion therein; A rotor having a lobe eccentrically rotated from a center of the housing and continuously received in the lobe receiving portion; A housing cover coupled to the housing by overlapping the lobe receptacle; And a sealing unit sealing each of the lobe accommodation parts, wherein the sealing unit includes: a rolling seal protruding from the rotor to slide with the housing cover; A lobe seal protruding from the housing to isolate the lobe receptacle adjacent to each other; And a corner seal protruding from each of the lobe seals between the housing cover and the rotor to elastically support the rolling seal.
이상에서 설명한 해결 수단에 의해 구성되는 본 발명에 의하면, 다음과 같은 효과가 있다.According to the present invention constituted by the solutions described above, the following effects can be obtained.
본 발명에 따른 로터리 엔진은, 코너 씰이 로브 씰과 결합되어 롤링 씰에 탄성 지지되도록 이루어진다. 이에 따라, 로터의 움직임에 따라 가변되는 롤링 씰과 로브 씰 사이의 간극이 정확하게 밀폐될 수 있다. 종래 코너 씰이 하우징 덮개 측에 고정되어 위 간극의 위치 및 크기 변화에 대응할 수 없었던 것과 달리, 로브 수용부를 지속적으로 밀폐시킬 수 있다. 밀폐가 보장됨으로써, 로터리 엔진의 열효율이 더욱 향상될 수 있다.In the rotary engine according to the present invention, the corner seal is coupled to the lobe seal so that the rolling seal is elastically supported. Accordingly, the gap between the rolling seal and the lobe seal, which varies according to the movement of the rotor, can be accurately sealed. Unlike conventional corner seals fixed on the housing lid side and unable to cope with changes in position and size of the gap, the lobe receptacle can be continuously sealed. By ensuring sealing, the thermal efficiency of the rotary engine can be further improved.
본 발명의 코너 씰은 몸체부와 돌출부를 구비하고, 몸체부와 돌출부 사이의 걸림턱에 의해 로브 씰이 로터를 가압하는 힘을 전달받을 수 있다. 따라서, 코너 씰은 로브 씰 탄성부재에 의하여 함께 연동될 수 있어, 본 발명의 씰링 유닛이 간결하게 구현될 수 있다.The corner seal of the present invention includes a body portion and a protrusion, and the lobe seal may receive a force for pressing the rotor by a locking jaw between the body portion and the protrusion. Therefore, the corner seal can be interlocked together by the lobe seal elastic member, so that the sealing unit of the present invention can be concisely implemented.
또한, 코너 씰은 탄성 지지부를 구비하고, 로터의 두께 방향으로 장착홈 내에서 이동 가능하도록 안착될 수 있다. 이러한 본 발명의 코너 씰은, 로터의 두께 방향으로 간극이 가변되는 것에 대응하여 밀폐 기능을 수행할 수 있다.In addition, the corner seal has an elastic support and may be seated to be movable in the mounting groove in the thickness direction of the rotor. Such a corner seal of the present invention can perform the sealing function in response to the gap is varied in the thickness direction of the rotor.
도 1은 본 발명의 일 실시예에 따른 로터리 엔진의 종단면도.1 is a longitudinal sectional view of a rotary engine according to an embodiment of the present invention;
도 2는 도 1에 도시된 로터리 엔진의 일부 구성요소들의 분해 사시도.FIG. 2 is an exploded perspective view of some components of the rotary engine shown in FIG. 1. FIG.
도 3은 도 1에 도시된 로터리 엔진의 내부 구조를 보인 개념도.3 is a conceptual view showing the internal structure of the rotary engine shown in FIG.
도 4a 및 도 4b는 도 1에 도시된 로터를 서로 다른 방향에서 바라본 사시도들.4A and 4B are perspective views of the rotor shown in FIG. 1 viewed from different directions.
도 5는 도 3에 도시된 로터리 엔진 내부의 흡기과정을 보인 개념도들.5 is a conceptual diagram showing an intake process inside the rotary engine shown in FIG.
도 6은 도 3에 도시된 로터리 엔진 내부의 압축과정을 보인 개념도들.6 is a conceptual diagram showing a compression process inside the rotary engine shown in FIG.
도 7은 도 3에 도시된 로터리 엔진 내부의 폭발과정을 보인 개념도들.7 is a conceptual diagram showing an explosion process inside the rotary engine shown in FIG.
도 8은 도 3에 도시된 로터리 엔진 내부의 배기과정을 보인 개념도들.8 is a conceptual view illustrating an exhaust process inside the rotary engine shown in FIG.
도 9는 도 1에 도시된 영역 A를 보인 확대도.FIG. 9 is an enlarged view of the area A shown in FIG. 1. FIG.
도 10은 도 9에 도시된 코너 씰의 사시도.10 is a perspective view of the corner seal shown in FIG. 9.
도 11은 도 1에 도시된 로터리 엔진에 구비되는 윤활 유닛을 보인 개념도.FIG. 11 is a conceptual view illustrating a lubrication unit included in the rotary engine illustrated in FIG. 1.
이하, 본 발명에 관련된 로터리 엔진에 대하여 도면을 참조하여 보다 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the rotary engine which concerns on this invention is demonstrated in detail with reference to drawings.
본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description of the embodiments disclosed herein, when it is determined that the detailed description of the related known technology may obscure the gist of the embodiments disclosed herein, the detailed description thereof will be omitted.
첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The accompanying drawings are only for easily understanding the embodiments disclosed in the present specification, and the technical idea disclosed in the present specification is not limited by the accompanying drawings, and all modifications and equivalents included in the spirit and scope of the present invention are provided. It should be understood to include water or substitutes.
도 1은 본 발명에 따른 로터리 엔진의 종단면도이고, 도 2는 도 1에 도시된 로터리 엔진의 일부구성요소들의 분해 사시도이다. 또한, 도 3은 도 1에 도시된 로터리 엔진의 내부 구조를 보인 개념도이며, 도 4a 및 도 4b는 도 1에 도시된 로터를 서로 다른 방향에서 바라본 사시도들이다.1 is a longitudinal sectional view of a rotary engine according to the present invention, Figure 2 is an exploded perspective view of some components of the rotary engine shown in FIG. 3 is a conceptual view illustrating an internal structure of the rotary engine illustrated in FIG. 1, and FIGS. 4A and 4B are perspective views of the rotor illustrated in FIG. 1 viewed from different directions.
본 발명에 따른 로터리 엔진(100)은, 로터(120)가 하우징(110) 내부를 편심 회전함에 따라, 하우징(110)과 로터(120) 사이에 형성된 N개의 작동실의 용적이 변화하며, 이과정에서 흡기→압축→폭발→배기의 4행정이 연속적으로 일어나도록 구성된다. 크랭크 축(180)은 이러한 로터(120)의 편심 회전에 대응하여 회전되며, 타 기관과 연결되어 생성된 동력을 전달하게 된다.In the rotary engine 100 according to the present invention, the volume of the N operating chambers formed between the housing 110 and the rotor 120 changes as the rotor 120 eccentrically rotates inside the housing 110. In the process, the four strokes of intake → compression → explosion → exhaust occur continuously. The crank shaft 180 is rotated in response to the eccentric rotation of the rotor 120, and is connected to the other engine to transmit the generated power.
도 1 및 2를 참조하면, 본 발명의 로터리 엔진(100)은, 하우징(110), 점화 플러그(130), 로터(120), 하우징 덮개(141, 142), 로터 기어(170), 크랭크 축(180)을 포함한다.1 and 2, the rotary engine 100 of the present invention includes a housing 110, a spark plug 130, a rotor 120, housing covers 141 and 142, a rotor gear 170, and a crank shaft. And 180.
먼저, 하우징(110)은 내부에 N개(N은 3 이상인 자연수)의 로브 수용부(111)를 구비한다. 본 실시예에서는, 로브 수용부(111)가 3개(즉, N=3)로 구성된 일 예를 보이고 있다. 로브 수용부(111) 및 후술하는 로브(120', 120")의 형상은, 임의의 형상 위를 회전하면서 이동하는 구름원이 있을 때, 구름원 상에 존재하는 임의의 점이 구름원의 회전에 따라 그리게 되는 궤적인 에피트로코이드(Epitrochoid) 곡선을 기초로 설계될 수 있다.First, the housing 110 includes N lobe accommodation portions 111 (N is a natural number of 3 or more) therein. In this embodiment, an example is shown in which the lobe accommodation portion 111 is composed of three (that is, N = 3). The shape of the lobe receptacle 111 and the lobes 120 'and 120 ", which will be described later, is that when there is a cloud source moving while rotating over an arbitrary shape, any point existing on the cloud source is dependent on the rotation of the cloud source. It can be designed based on the trajectory Epitrochoid curve drawn along.
각각의 로브 수용부(111)의 상부 중앙에는 로브 수용부(111)와 연통되는 N개의 연소실(112)이 구비된다. 도 3을 참조하면, 연소실(112)은 로브 수용부(111)를 형성하는 하우징(110)의 내측벽에서 리세스된 형태를 가진다. 연소실(112)의 크기는 로터리 엔진(100)의 압축비에 따라 달리 설계될 수 있다. N combustion chambers 112 communicating with the lobe receiver 111 are provided at an upper center of each lobe receiver 111. Referring to FIG. 3, the combustion chamber 112 has a recessed shape in the inner wall of the housing 110 forming the lobe accommodating portion 111. The size of the combustion chamber 112 may be designed differently according to the compression ratio of the rotary engine 100.
하우징(110)에는 각각의 연소실(112)에 불꽃을 방전하여 연소실(112)에 충진된 혼합기를 점화시키는 점화 플러그(130)가 설치될 수 있다. 도시된 바와 같이, 점화 플러그(130)는 하우징(110)의 장착홀(113)에 장착되며, 연소실(112)의 상부에 노출되도록 배치될 수 있다. 상기 장착홀(113)은 연소실(112)과 연통되도록 구성된다.The housing 110 may be provided with a spark plug 130 for discharging a flame in each combustion chamber 112 to ignite a mixer filled in the combustion chamber 112. As shown, the spark plug 130 may be mounted in the mounting hole 113 of the housing 110 and disposed to be exposed to the upper portion of the combustion chamber 112. The mounting hole 113 is configured to communicate with the combustion chamber 112.
한편, 로브 수용부(111)의 내부에는 로터(120)가 삽입되어, 로브 수용부(111)의 중심을 기준으로 편심 회전하도록 구성된다. 로터(120)는 편심 회전시 각각의 로브 수용부(111)에 연속적으로 수용되는 N-1개의 로브(120', 120")를 구비한다.On the other hand, the rotor 120 is inserted into the lobe receiving portion 111, it is configured to eccentrically rotate relative to the center of the lobe receiving portion (111). The rotor 120 has N-1 lobes 120 'and 120 "that are continuously received in each lobe receiving portion 111 during eccentric rotation.
도 4a 및 도 4b를 참조하면, 로터(120)의 중심부에는 로터 기어(170)가 장착되는 지지부(121)가 형성되며, 지지부(121)에는 로터 기어(170)에 삽입된 크랭크 축(180)이 관통하는 관통홀(122)이 형성된다. 지지부(121)의 전면에는 로터 기어(170)의 플랜지부(171)가 지지되며, 체결부재 등과 같은 체결수단에 의해 플랜지부(171)와 견고한 결합 상태를 유지한다.4A and 4B, a support part 121 in which the rotor gear 170 is mounted is formed at the center of the rotor 120, and the crank shaft 180 inserted into the rotor gear 170 is provided in the support part 121. This through hole 122 is formed. The flange portion 171 of the rotor gear 170 is supported on the front surface of the support portion 121 and maintains a firm coupling state with the flange portion 171 by a fastening means such as a fastening member.
로터(120)의 전면부에는 하우징 덮개 중 하나인 흡기측 덮개(141)를 통하여 흡입된 혼합기의 일시적인 저장을 위한 제1저장부(123a)가 형성된다. 제1저장부(123a)는 로터(120)의 전면부에서 후면부를 향하여(즉, 크랭크 축(180)의 축방향으로) 리세스된 형태를 가진다.The front part of the rotor 120 is formed with a first storage part 123a for temporary storage of the mixer sucked through the intake side cover 141 which is one of the housing covers. The first storage portion 123a has a recessed shape from the front portion of the rotor 120 toward the rear portion (ie, in the axial direction of the crank shaft 180).
제1저장부(123a)가 형성됨에 따라, 로터(120)의 일 부분(도시된 바와 같이, 제1저장부(123a) 중 제2저장부(123b)와 측벽을 공유하지 않는 부분)은 테두리가 얇게 남겨져 강성이 저하될 수 있다. 이를 고려하여, 제1저장부(123a)를 형성하는 로터(120)의 내측면에는 로터(120)의 강성 보강을 위한 리브(125)가 복수의 개소에서 돌출 형성될 수 있다. 이때, 적어도 하나의 리브(125')는 지지부(121)와 연결되도록 구성될 수 있으며, 제1저장부(123a)에 일시적으로 저장된 혼합기가 반대편으로 이동할 수 있도록 로터(120)의 두께보다 낮은 높이를 가지는 부분을 포함하여 형성될 수 있다.As the first storage unit 123a is formed, a portion of the rotor 120 (as shown, a portion of the first storage unit 123a that does not share sidewalls with the second storage unit 123b) is bordered. May be left thin and stiffness may be reduced. In consideration of this, ribs 125 for rigidly reinforcing the rotor 120 may be protruded from a plurality of locations on the inner surface of the rotor 120 forming the first storage part 123a. In this case, the at least one rib 125 ′ may be configured to be connected to the support part 121, and a height lower than the thickness of the rotor 120 so that the mixer temporarily stored in the first storage part 123a may move to the opposite side. It may be formed to include a portion having.
로터(120)의 측면부에는 제1저장부(123a)와 연통되는 흡기포트(124a)가 형성되어, 흡입된 혼합기가 로브 수용부(111) 내부로 유입될 수 있도록 이루어진다. 본 발명에서 흡기포트(124a)는 로터(120)가 반시계 방향으로 90°내지 120° 회전하는 동안 혼합기의 흡입이 가능한 위치에 형성된다.An intake port 124a communicating with the first storage part 123a is formed at the side portion of the rotor 120 to allow the sucked mixer to be introduced into the lobe accommodation part 111. In the present invention, the intake port 124a is formed at a position where the mixer 120 can inhale while the rotor 120 rotates 90 ° to 120 ° in the counterclockwise direction.
로터(120)의 후면부에는 연소 후 생성된 배기가스의 일시적인 저장을 위한 제2저장부(123b)가 형성된다. 제2저장부(123b)는 로터(120)의 후면부에서 전면부를 향하여(즉, 크랭크 축(180)의 축방향으로) 리세스된 형태를 가진다. 제2저장부(123b)에 일시적으로 저장된 배기가스는 하우징 덮개 중 하나인 배기측 덮개(142)를 통과하여 외부로 배출된다.On the rear side of the rotor 120, a second storage unit 123b for temporarily storing the exhaust gas generated after combustion is formed. The second storage portion 123b is recessed from the rear portion of the rotor 120 toward the front portion (ie, in the axial direction of the crank shaft 180). Exhaust gas temporarily stored in the second storage unit 123b is discharged to the outside through the exhaust side cover 142, which is one of the housing covers.
로터(120)의 측면부에는 제2저장부(123b)와 연통되는 배기포트(124b)가 형성되어, 연소 후 생성된 배기가스가 제2저장부(123b)로 유입될 수 있도록 이루어진다. 본 발명에서 배기포트(124b)는 흡기된 양보다 많은 팽창이 이루어진 후 배치될 수 있도록, 로터(120)가 반시계 방향으로 270° 회전된 이후에 배기될 수 있는 위치에 형성된다. 이러한 과팽창에 의해 로터리 엔진(100)의 효율이 증가될 수 있다.An exhaust port 124b communicating with the second storage part 123b is formed at the side portion of the rotor 120 so that exhaust gas generated after combustion may flow into the second storage part 123b. In the present invention, the exhaust port 124b is formed at a position where the rotor 120 can be evacuated after the rotor 120 is rotated 270 ° in the counterclockwise direction so that it can be disposed after more expansion than the intake amount. Such overexpansion may increase the efficiency of the rotary engine 100.
하우징(110)의 전면부에는 흡기측 덮개(141)가 구비되고, 하우징(110)의 후면부에는 배기측 덮개(142)가 구비된다.An intake side cover 141 is provided on the front portion of the housing 110, and an exhaust side cover 142 is provided on the rear portion of the housing 110.
흡기측 덮개(141)는 로브 수용부(111)의 일측을 덮도록 하우징(110)에 결합된다. 흡기측 덮개(141)에는 하우징(110) 및 로터(120)와의 기밀 유지를 위한 실링 부품(미도시)이 설치된다.The intake side cover 141 is coupled to the housing 110 to cover one side of the lobe receiving portion 111. The intake side cover 141 is provided with a sealing part (not shown) for maintaining airtightness with the housing 110 and the rotor 120.
흡기측 덮개(141)는 하우징(110)을 밀폐시키면서, 흡입되는 혼합기를 로터(120)에 전달해주는 통로 역할을 한다. 이를 위하여, 흡기측 덮개(141)에는 로터(120)의 전면부에 구비되는 제1저장부(123a)와 연통되는 흡기홀(141a)이 구비된다.The intake side cover 141 serves as a passage for delivering the inhaled mixer to the rotor 120 while closing the housing 110. To this end, the intake side cover 141 is provided with an intake hole 141a in communication with the first storage portion 123a provided in the front portion of the rotor 120.
로브 수용부(111)와 마주하는 흡기측 덮개(141)의 내측에는 가이드 기어(160)가 장착된다. 가이드 기어(160)는 내주를 따라 톱니가 형성된 링 형태로 형성되며, 로터 기어(170)가 이에 내접하여 회전되도록 구성됨으로써, 로브 수용부(111)의 중심에 대한 로터(120)의 편심 회전을 가이드하도록 이루어진다. 가이드 기어(160)의 잇수는 로터(120)와 동력을 전달하는 크랭크 축(180)의 회전비를 고려하여 설계된다.The guide gear 160 is mounted inside the intake side cover 141 facing the lobe accommodating part 111. Guide gear 160 is formed in the form of a toothed ring formed along the inner circumference, and the rotor gear 170 is configured to rotate inscribed therein, thereby causing the eccentric rotation of the rotor 120 with respect to the center of the lobe receiving portion 111 Is made to guide. The number of teeth of the guide gear 160 is designed in consideration of the rotation ratio of the crank shaft 180 which transmits power with the rotor 120.
로터(120)에는 로터 기어(170)가 장착된다. 로터 기어(170)의 외주를 따라서는 톱니가 형성되며, 로터 기어(170)는 흡기측 하우징 덮개(141)에 고정된 가이드 기어(160)에 내접하여 회전하도록 구성된다. 로터 기어(170)의 잇수는 로터(120)와 크랭크 축(180)의 회전비를 고려하여 설계된다.The rotor 120 is mounted to the rotor 120. A tooth is formed along the outer circumference of the rotor gear 170, and the rotor gear 170 is configured to rotate inwardly with the guide gear 160 fixed to the intake side housing cover 141. The number of teeth of the rotor gear 170 is designed in consideration of the rotation ratio of the rotor 120 and the crankshaft 180.
로터 기어(170)의 중심부에는 크랭크 축(180)의 편심부(182)가 삽입되는 수용부(174)가 형성되며, 편심부(182)는 수용부(174) 내에서 회전 가능하게 구성된다. 상기 구성에 의해, 로터(120)의 편심 회전에 대응하여 수용부(174)에 수용된 편심부(182)가 회전하게 된다. 구조적으로, 로터(120)가 반시계 방향으로 1바퀴 편심 회전하면, 크랭크 축(180)의 축부(181)는 시계 방향으로 N-1 바퀴 회전하게 된다.A central portion of the rotor gear 170 is formed with a receiving portion 174 into which the eccentric portion 182 of the crank shaft 180 is inserted, and the eccentric portion 182 is configured to be rotatable within the receiving portion 174. By the above configuration, the eccentric portion 182 accommodated in the accommodating portion 174 rotates in response to the eccentric rotation of the rotor 120. Structurally, when the rotor 120 rotates one eccentric in the counterclockwise direction, the shaft portion 181 of the crank shaft 180 is rotated N-1 revolutions in the clockwise direction.
도시된 바와 같이, 로터 기어(170)는 로터(120)의 지지부(121)에 지지 및 고정되도록 구성되는 평판 형태의 플랜지부(171), 상기 플랜지부(171)의 일면에 형성되어 가이드 기어(160)에 내접하도록 구성되는 기어부(172), 상기 플랜지부(171)가 로터(120)의 지지부(121)에 장착시 로터(120)의 관통홀(122)에 삽입되도록 상기 플랜지부(171)의 타면으로부터 돌출 형성되는 보스부(173), 및 크랭크 축(180)의 편심부(182)가 삽입될 수 있도록 상기 기어부(172)와 상기 보스부(173)를 관통하여 형성되는 수용부(174)를 포함하여 구성될 수 있다.As shown, the rotor gear 170 is a flat flange portion 171 configured to be supported and fixed to the support portion 121 of the rotor 120, formed on one surface of the flange portion 171 to guide gear ( Gear portion 172 configured to be inscribed in 160, the flange portion 171 is inserted into the through hole 122 of the rotor 120 when the flange portion 171 is mounted to the support portion 121 of the rotor 120, the flange portion 171 Receiving portion formed through the gear portion 172 and the boss portion 173 so that the boss portion (173) protruding from the other surface of the) and the eccentric portion (182) of the crank shaft 180 can be inserted 174 can be configured.
크랭크 축(180)은 로터리 엔진(100)을 관통하도록 구성되는 축부(181)와, 축부(181)로부터 편심되게 형성되어 로터 기어(170)의 수용부(174)에 삽입되는 편심부(182)를 포함한다. 본 실시예에서, 축부(181)는 전방으로는 흡기측 덮개(141)를 관통하며, 후방으로는 배기측 덮개(142)를 관통하도록 이루어질 수 있다. 축부(181)는 타 기관(시스템)과 연결되어 본 발명의 로터리 엔진(100)에 의해 형성되는 동력을 타 기관(시스템)으로 전달하도록 구성된다.The crank shaft 180 is an axial portion 181 configured to penetrate the rotary engine 100, and an eccentric portion 182 formed eccentrically from the shaft portion 181 and inserted into the receiving portion 174 of the rotor gear 170. It includes. In the present embodiment, the shaft portion 181 may pass through the intake side cover 141 to the front and the exhaust side cover 142 to the rear. The shaft portion 181 is connected to another engine (system) and is configured to transmit power generated by the rotary engine 100 of the present invention to the other engine (system).
배기측 덮개(142)는 로브 수용부(111)의 타측을 덮도록 하우징(110)에 결합된다. 배기측 덮개(142)는 하우징(110)을 밀폐시키고, 생성된 배기가스를 배출시키는 통로 역할을 한다. 이를 위하여, 배기측 덮개(142)에는 로터(120)의 후면부에 구비되는 제2저장부(123b)와 연통되는 배기홀(142a)이 구비된다.The exhaust side cover 142 is coupled to the housing 110 to cover the other side of the lobe receiving portion 111. The exhaust side cover 142 seals the housing 110 and serves as a passage for discharging the generated exhaust gas. To this end, the exhaust side cover 142 is provided with an exhaust hole 142a communicating with the second storage portion 123b provided at the rear portion of the rotor 120.
이상에서 설명한 구조를 가지는 본 발명의 로터리 엔진(100)은, 한 사이클 동안 흡기-압축-폭발(팽창)-배기의 4행정으로 작동한다. 이하에서는, 각 행정 동안의 하우징(110) 내의 로터(120)의 움직임에 대하여 설명한다.The rotary engine 100 of the present invention having the structure described above operates in four strokes of intake-compression-explosion-expansion during one cycle. Hereinafter, the movement of the rotor 120 in the housing 110 during each stroke will be described.
도 5 내지 도 8은 도 3에 도시된 로터리 엔진(100) 내부가 흡기→압축→폭발→배기과정을 로터(120)의 회전 각도를 중심으로 설명한 개념도들이다. 앞서 설명한 바와 같이, 로터(120)의 측면부에는 흡기포트(124a)와 배기포트(124b)가 각각 구비된다.5 to 8 are conceptual views illustrating the intake air → compression → explosion → exhaust process of the inside of the rotary engine 100 shown in FIG. 3 based on the rotation angle of the rotor 120. As described above, the intake port 124a and the exhaust port 124b are provided at the side portions of the rotor 120, respectively.
먼저, 도 5를 참조하여 흡기과정에 대하여 설명하면, 흡기과정은 하우징(110) 내부를 반시계방향으로 회전하는 로터(120)에 의해 이루어지며, 로터(120)의 회전 각도가 0도에서 120도까지 변하는 동안 이루어진다. 도면상에서 로터(120)가 0도에서 120도까지 반시계방향으로 회전하는 동안 하우징(110)의 상부에 구비되는 로브 수용부(111)와 이에 연통하는 연소실(112)에는 흡기포트(124a)를 통하여 혼합기가 유입된다.First, the intake process will be described with reference to FIG. 5. The intake process is performed by the rotor 120 rotating in the counterclockwise direction inside the housing 110, and the rotation angle of the rotor 120 is 120 at 0 degrees. Is made while changing to degrees. In the drawing, while the rotor 120 rotates counterclockwise from 0 degrees to 120 degrees, an intake port 124a is provided in the lobe accommodating portion 111 provided in the upper portion of the housing 110 and the combustion chamber 112 communicating therewith. Through the mixer is introduced.
이때, 도시된 바와 같이 로터(120)의 회전 각도가 90도일 때 가장 많은 흡기가 이루어지나, 본 발명의 로터리 엔진(100)은 120도까지 흡기를 할 수 있도록 설계된다. 이는 추후 이루어지는 팽창과정에서 과팽창이 이루어져 로터리 엔진(100)의 효율이 향상되도록 하기 위함이다.At this time, as shown, when the rotation angle of the rotor 120 is 90 degrees the most intake is made, the rotary engine 100 of the present invention is designed to allow intake to 120 degrees. This is to ensure that the efficiency of the rotary engine 100 is improved by the over-expansion in the subsequent expansion process.
다음으로, 도 6을 참조하면, 흡기과정이 끝난 혼합기는 로터(120)의 회전에 의해 압축되기 시작한다. 압축과정은 로터(120)의 회전 각도가 120도에서 180도까지 변하는 동안 이루어진다. 압축비는 로터(120)가 180도 회전되었을 때 최대가 되며, 이때 혼합기는 이상적으로는 연소실(112) 내에 완전히 충진된 상태가 된다.Next, referring to Figure 6, the mixer after the intake process begins to be compressed by the rotation of the rotor 120. The compression process is performed while the rotation angle of the rotor 120 varies from 120 degrees to 180 degrees. The compression ratio is maximum when the rotor 120 is rotated 180 degrees, at which time the mixer is ideally completely filled in the combustion chamber 112.
압축과정의 말기에는 점화 플러그(130)에 의한 점화가 시작되어, 혼합기의 연소과정이 시작된다. 상기 연소과정은 폭발과정의 초기까지 이어진다. 연소과정은 로터(120)의 회전각도가 160도 부근일 때부터 시작되어, 로터(120)의 회전각도가 200도 부근일 때 완전히 종료된다.At the end of the compression process, ignition by the spark plug 130 begins, and the combustion process of the mixer begins. The combustion process continues to the beginning of the explosion process. The combustion process starts when the rotational angle of the rotor 120 is around 160 degrees and ends completely when the rotational angle of the rotor 120 is around 200 degrees.
한편, 도면상에서 하우징(110)의 좌측 하단에 구비되는 로브 수용부(111)와 이에 연통하는 연소실(112)에는 흡기포트(124a)를 통하여 혼합기가 유입되는 흡기과정이 시작된다. 즉, 흡기→압축→폭발(팽창)→배기과정은 로터(120)의 회전방향에 대응되는 로브 수용부(111) 및 이와 연통되는 연소실(112)에서 연속적으로 일어난다.Meanwhile, in the drawing, an intake process in which a mixer flows into the lobe accommodating part 111 provided at the lower left side of the housing 110 and the combustion chamber 112 communicating therewith through the intake port 124a is started. That is, the intake air → compression → explosion (expansion) → exhaust process occurs continuously in the lobe accommodating part 111 corresponding to the rotational direction of the rotor 120 and the combustion chamber 112 in communication therewith.
다음으로, 도 7을 참조하면, 폭발(팽창)과정은 로터(120)의 회전각도가 180도에서 270도까지 변하는 동안 이루어진다. 앞선 압축과정의 말기에서 시작된 연소과정은 폭발과정의 초기에 완전히 종료된다.Next, referring to FIG. 7, the explosion (expansion) process is performed while the rotation angle of the rotor 120 varies from 180 degrees to 270 degrees. The combustion process, which begins at the end of the previous compression process, is completely terminated at the beginning of the explosion process.
이 과정에서 주목할 사항은 앞선 흡기과정은 로터(120)의 회전각도가 120도인 상태, 즉 본 도면에서 로터(120)가 240도 회전되었을 때에 해당하는 체적만큼 혼합기의 흡입이 이루어지는 반면에, 팽창과정은 이보다 큰 체적을 형성하는 로터(120)의 회전각도 270도까지 이루어진다는 것이다. 따라서 본 발명의 로터리 엔진(100)은 흡기되는 체적보다 큰 팽창을 이루는 과팽창 효과를 얻을 수 있다.Note that in this process, the intake process of the preceding intake is a state in which the rotation angle of the rotor 120 is 120 degrees, that is, the intake of the mixer by the corresponding volume when the rotor 120 is rotated 240 degrees in this figure, while the expansion process Is the rotation angle of the rotor 120 forming a larger volume than this is up to 270 degrees. Therefore, the rotary engine 100 of the present invention can obtain an overexpansion effect of achieving expansion larger than the intake volume.
다음으로, 도 8을 참조하면, 배기과정은 로터(120)의 회전각도가 270도에서 360도까지 변하는 동안 이루어진다. 생성된 배기가스는 로터(120)가 270도에서 360도까지 반시계방향으로 회전하는 동안 배기포트(124b)를 통하여 배출된다.Next, referring to FIG. 8, the exhausting process is performed while the rotation angle of the rotor 120 varies from 270 degrees to 360 degrees. The generated exhaust gas is discharged through the exhaust port 124b while the rotor 120 rotates counterclockwise from 270 to 360 degrees.
이상에서는 본 발명의 로터리 엔진(100)에 관하여, 동력의 발생과 관련되는 구성요소들을 중심으로 그 구조 및 동작을 설명하였다. 이하에서는 본 발명의 일 실시예와 다른 실시예에 따라, 로터(120)의 회전 시 혼합기가 압축 및 팽창되는 로브 수용부(111)를 밀폐하도록 이루어지는 씰링 구조에 대하여 설명한다.In the above, with respect to the rotary engine 100 of the present invention, the structure and operation of the components related to the generation of power have been described. Hereinafter, according to an embodiment of the present invention and another embodiment, a sealing structure made to seal the lobe accommodating portion 111 is compressed and expanded during the rotation of the rotor 120 will be described.
도 9는 도 1에 도시된 영역 A를 보인 확대도이며, 도 10은 도 9에 도시된 코너 씰(147)의 사시도이다. 도 1, 9 및 10을 참조하면, 본 발명의 일 실시예에 따른 로터리 엔진(100)은 씰링 유닛(107)을 포함한다.FIG. 9 is an enlarged view of the area A shown in FIG. 1, and FIG. 10 is a perspective view of the corner seal 147 shown in FIG. 9. 1, 9 and 10, the rotary engine 100 according to an embodiment of the present invention includes a sealing unit 107.
씰링 유닛(107)은, 로터(120)와 하우징(110) 사이에서 체적이 변화되어 혼합기의 압축 및 팽창이 이루어지는 로브 수용부(111) 공간을 각각 밀폐시키도록 기능할 수 있다. 이를 위하여 씰링 유닛(107)은, 롤링 씰(127), 로브 씰(117) 및 코너 씰(147)을 구비한다.The sealing unit 107 may function to respectively seal the space of the lobe accommodating part 111 where the volume is changed between the rotor 120 and the housing 110 to compress and expand the mixer. For this purpose, the sealing unit 107 includes a rolling seal 127, a lobe seal 117, and a corner seal 147.
롤링 씰(127)은, 로터(120)의 두께 방향(크랭크 축(180)이 연장되는 축방향)으로 전면 및 후면에 각각 형성되며, 각각 흡기측 덮개(141) 및 배기측 덮개(142)와 슬라이딩되도록 돌출되게 형성된다. 또한, 도 3, 4a 및 4b에 도시된 것과 같이, 롤링 씰(127)은 로터(120)에 형성되는 N-1개의 로브의 둘레를 따라 연장되도록 이루어져 하나의 루프(loop)를 형성할 수 있다.The rolling seals 127 are formed on the front and rear surfaces in the thickness direction of the rotor 120 (the axial direction in which the crank shaft 180 extends), respectively, and the intake side cover 141 and the exhaust side cover 142 and It is formed to protrude so as to slide. In addition, as shown in Figures 3, 4a and 4b, the rolling seal 127 may be formed to extend along the circumference of the N-1 lobes formed in the rotor 120 to form a loop (loop). .
로터(120)의 회전 시, 롤링 씰(127)은 하우징 덮개(141, 142)와의 밀착 상태를 유지하도록 이루어질 수 있다. 구체적으로, 로터(120)의 표면에서 리세스되는 사이드 홈(127a)이 형성되고, 사이드 홈(127a) 내에 롤링 씰(127)이 안착되도록 이루어질 수 있다. 이때, 롤링 씰(127)과 사이드 홈(127a)에 각각 지지되는 사이드 탄성부재(127b)가 개재될 수 있다.When the rotor 120 rotates, the rolling seal 127 may be configured to maintain a close contact with the housing covers 141 and 142. Specifically, the side groove 127a may be formed to be recessed on the surface of the rotor 120, and the rolling seal 127 may be seated in the side groove 127a. In this case, the side elastic member 127b supported by the rolling seal 127 and the side groove 127a may be interposed.
롤링 씰(127)은 하나의 루프를 형성하여 하우징 덮개(141, 142)와의 밀착을 유지함으로써, 혼합기가 로터(120)와 하우징 덮개(141, 142) 사이의 간극으로 누설되는 것을 방지할 수 있다. 구체적으로 도 1을 참조하면, 흡기측 덮개(141)와 밀착되는 롤링 씰(127)은 로브 수용부(111) 내의 혼합기가 흡기홀(141a) 및 제1저장부(123a) 측으로 누설되는 것을 제한할 수 있다. 또한, 배기측 덮개(142)와 밀착되는 롤링 씰(127)은, 로브 수용부(111) 내의 혼합기가 제2저장부(123b) 및 배기홀(142a) 측으로 흘러나가는 것을 제한할 수 있다.The rolling seal 127 forms a loop to maintain close contact with the housing lids 141 and 142, thereby preventing the mixer from leaking into the gap between the rotor 120 and the housing lids 141 and 142. . Specifically, referring to FIG. 1, the rolling seal 127 in close contact with the intake side cover 141 restricts the mixer in the lobe accommodating part 111 from leaking to the intake hole 141a and the first storage part 123a. can do. In addition, the rolling seal 127 in close contact with the exhaust side cover 142 may limit the flow of the mixer in the lobe accommodating part 111 toward the second storage part 123b and the exhaust hole 142a.
로브 씰(117)은, 각각 압축 또는 팽창되는 상태가 서로 다른 혼합기가 수용되는 N개의 로브 수용부(111)를 서로 격리시키는 역할을 한다. N개의 로브 수용부(111)를 구비하는 하우징(110)에는 도 3에 보인 것과 같이 N개의 피크부(114)가 형성될 수 있다. 로브 씰(117)은 N개의 피크부(114) 각각에서 돌출되어 로터(120)의 외곽면(크랭크 축(180)의 반경방향으로 하우징(110)과 마주보는 면)에 슬라이딩되도록 형성될 수 있다.The lobe seal 117 serves to isolate the N lobe accommodation portions 111 in which mixers having different compression or expansion states are accommodated. N peak portions 114 may be formed in the housing 110 having the N lobe accommodation portions 111, as shown in FIG. 3. The lobe seal 117 may be formed to protrude from each of the N peak portions 114 to slide on the outer surface of the rotor 120 (the surface facing the housing 110 in the radial direction of the crank shaft 180). .
앞서 롤링 씰(127)과 마찬가지로, 로브 씰(117)은 에이펙스 홈(117a)에 수용되고, 에이펙스 탄성부재(117b)에 의하여 로브 씰(117)이 에이펙스 홈(117a)에 지지되도록 이루어질 수 있다. 에이펙스 탄성부재(117b)에 의해, 로브 씰(117)은 하우징(110)으로부터 돌출되어 로터(120)에 탄성 지지 및 밀착되도록 이루어질 수 있다. 로브 씰(117)은 로브 수용부(111)의 개수만큼 구비될 수 있다.Like the rolling seal 127, the lobe seal 117 may be accommodated in the apex groove 117a, and the lobe seal 117 may be supported by the apex groove 117a by the apex elastic member 117b. By the apex elastic member 117b, the lobe seal 117 may protrude from the housing 110 to elastically support and adhere to the rotor 120. The lobe seal 117 may be provided as many as the lobe accommodation portion 111.
한편, 코너 씰(147)은 롤링 씰(127)과 로브 씰(117) 사이 공간을 밀폐하도록 기능한다. 앞서 설명한 것과 같이, 롤링 씰(127)은 사이드 홈(127a)에 삽입되는 형태로 이루어지므로, 롤링 씰(127)은 로터(120)의 외곽면보다 내측으로 이격되는 지점에 위치된다. 따라서, 로터(120)의 외곽면에 슬라이딩되는 로브 씰(117)과 롤링 씰(127)은 서로 이격되는 공간을 형성할 수 있다. 이 공간을 통하여는 각 로브 수용부(111) 공간이 서로 연통될 수 있다.On the other hand, the corner seal 147 functions to seal the space between the rolling seal 127 and the lobe seal 117. As described above, since the rolling seal 127 is formed to be inserted into the side groove 127a, the rolling seal 127 is positioned at a point spaced inward from the outer surface of the rotor 120. Therefore, the lobe seal 117 and the rolling seal 127 sliding on the outer surface of the rotor 120 may form a space spaced from each other. Through this space, the spaces of the lobe accommodation portions 111 may communicate with each other.
또한 로터(120)의 회전에 따라, 롤링 씰(127)과 로브 씰(117) 사이의 공간은 그 위치 및 크기가 가변될 수 있다. 이는 로터(120)의 외곽면이 피크부(114)에 대해 이루는 각도가 지속적으로 변하는 점에 기인할 수 있다. 앞서 설명한 것처럼, 로터(120)의 외곽면은 로브 씰(117)과 탄성 지지되므로, 로터(120)의 외곽면을 통한 누설은 방지된다고 할 수 있지만, 롤링 씰(127)과 로브 씰(117) 사이의 움직이는 공간은 정확하게 밀폐시키는 것이 어렵다.In addition, as the rotor 120 rotates, the space between the rolling seal 127 and the lobe seal 117 may vary in position and size. This may be due to the fact that the angle formed by the outer surface of the rotor 120 with respect to the peak portion 114 is continuously changed. As described above, since the outer surface of the rotor 120 is elastically supported with the lobe seal 117, leakage through the outer surface of the rotor 120 may be prevented, but the rolling seal 127 and the lobe seal 117 may be prevented. Moving spaces between them are difficult to seal accurately.
본 실시예의 로터리 엔진(100)에 구비되는 코너 씰(147)은, 각각의 로브 씰(117)로부터 하우징 덮개(141, 142)와 로터(120) 사이로 돌출되어 롤링 씰(127)에 탄성 지지되는 형상으로 이루어진다. 도 1 및 9에 보인 것처럼, 코너 씰(147)은 로브 씰(117)의 양 단부에서 하우징 덮개(141, 142)와 로터(120) 사이에 이격되는 공간에 삽입되도록 연장될 수 있다. 연장된 코너 씰(147)의 단부는 롤링 씰(127)에 접촉되어 슬라이딩 되도록 이루어질 수 있다. 코너 씰(147)이 로브 씰(117)에서 연장되는 형상으로 이루어짐으로써, 로브 씰(117)이 크랭크 축(180)의 반경방향으로 움직임에 따라 코너 씰(147)도 크랭크 축(180)의 반경방향으로 이동될 수 있다.The corner seal 147 provided in the rotary engine 100 of the present embodiment protrudes between the housing covers 141 and 142 and the rotor 120 from each lobe seal 117 to be elastically supported by the rolling seal 127. It is made of a shape. As shown in FIGS. 1 and 9, the corner seal 147 may extend to be inserted into a space spaced between the housing covers 141, 142 and the rotor 120 at both ends of the lobe seal 117. An end of the extended corner seal 147 may be made to slide in contact with the rolling seal 127. Since the corner seal 147 extends from the lobe seal 117, the corner seal 147 also has a radius of the crank shaft 180 as the lobe seal 117 moves in the radial direction of the crank shaft 180. Can be moved in a direction.
본 실시예의 코너 씰(147)이 로브 씰(117)과 연동되어 이동되도록 이루어짐으로써, 코너 씰(147)은 롤링 씰(127)과 로브 씰(117) 사이의 공간을 보다 효과적으로 밀폐시킬 수 있다. 종래 코너 씰(147)이 하우징 덮개(141, 142) 측에 고정되어 위 간극의 위치 및 크기 변화에 대응할 수 없었던 것과 달리, 각각의 로브 수용부(111)를 지속적으로 밀폐시킬 수 있어, 로터리 엔진(100)의 열효율이 향상될 수 있는 효과가 있다.Since the corner seal 147 of the present embodiment is made to move in conjunction with the lobe seal 117, the corner seal 147 may more effectively seal the space between the rolling seal 127 and the lobe seal 117. Unlike the conventional corner seal 147 is fixed to the housing cover (141, 142) side could not cope with the position and size change of the gap, each lobe receiving portion 111 can be continuously sealed, rotary engine There is an effect that the thermal efficiency of (100) can be improved.
도 10에 보인 것처럼, 본 실시예의 코너 씰(147)은 몸체부(147a) 및 돌출부(147b)를 구비할 수 있다. 몸체부(147a)는 로브 씰(117)과 결합을 구현하도록 이루어지는 부분으로, 로브 씰(117)이 연장되는 두께 방향으로 연장되는 원통형으로 형성될 수 있다. 또한, 몸체부(147a)는 로브 씰(117)의 밀폐 막대의 단부를 수용하도록 형성되는 수용홈(147c)을 구비할 수 있다. 몸체부(147a)는 크랭크 축(180)의 축방향으로 로브 씰(117)의 양 단부에 삽입 장착될 수 있다.As shown in FIG. 10, the corner seal 147 of the present embodiment may include a body portion 147a and a protrusion 147b. The body portion 147a is a portion formed to achieve engagement with the lobe seal 117 and may be formed in a cylindrical shape extending in the thickness direction in which the lobe seal 117 extends. In addition, the body portion 147a may include a receiving groove 147c formed to receive an end portion of the sealing rod of the lobe seal 117. The body portion 147a may be inserted into both ends of the lobe seal 117 in the axial direction of the crank shaft 180.
돌출부(147b)는 몸체부(147a)에서 롤링 씰(127)에 접촉되도록 돌출 형성된다. 로터(120)의 회전 시, 돌출부(147b)는 롤링 씰(127)과 로터(120)에 슬라이딩될 수 있다. 돌출부(147b)는, 롤링 씰(127)과 로브 씰(117) 사이의 거리와, 로터(120)와 하우징 덮개(141, 142) 사이의 거리를 고려하여 해당 공간을 밀폐하기에 충분한 크기로 형성될 수 있다.The protrusion 147b is protruded to contact the rolling seal 127 at the body 147a. When the rotor 120 rotates, the protrusion 147b may slide on the rolling seal 127 and the rotor 120. The protrusion 147b is formed to a size sufficient to seal the space in consideration of the distance between the rolling seal 127 and the lobe seal 117 and the distance between the rotor 120 and the housing covers 141 and 142. Can be.
한편, 돌출부(147b)와 수용홈(147c)은, 도 10에 보인 것과 같이, 몸체부(147a)의 외주면에서 서로 동일한 방향으로 각각 돌출 및 리세스되도록 형성될 수 있다. 따라서, 로브 씰(117)과 돌출부(147b)는, 각각 로터(120)의 외곽면과 그와 인접한 면에 슬라이딩될 수 있다.Meanwhile, as shown in FIG. 10, the protrusion 147b and the receiving groove 147c may be formed to protrude and recess in the same direction from each other on the outer circumferential surface of the body 147a. Accordingly, the lobe seal 117 and the protrusion 147b may slide on the outer surface of the rotor 120 and a surface adjacent thereto, respectively.
또한, 로브 씰(117)이 로터(120)의 외곽면을 가압하는 힘을 코너 씰(147)이 전달받도록, 돌출부(147b)와 수용홈(147c)에 의해 걸림턱(147d)이 형성될 수 있다. 도 9에 보인 것과 같이, 돌출부(147b)는 수용홈(147c)에 삽입되는 로브 씰(117)과 접촉되도록 이루어지는 걸림턱(147d)을 구비할 수 있다. 즉, 걸림턱(147d)은 돌출부(147b)와 수용홈(147c)이 서로 일정 부분 중첩됨으로써 형성될 수 있다. 로브 씰(117)이 에이펙스 탄성부재(117b)에 의해 힘을 받아 이동되면, 걸림턱(147d)에 의해 돌출부(147b)(코너 씰(147) 전체)도 롤링 씰(127)을 향하여 이동되고, 또한 탄성 지지될 수 있다.In addition, the locking jaw 147d may be formed by the protrusion 147b and the receiving groove 147c so that the corner seal 147 receives the force that the lobe seal 117 presses the outer surface of the rotor 120. have. As shown in FIG. 9, the protruding portion 147b may include a locking step 147d configured to contact the lobe seal 117 inserted into the receiving groove 147c. That is, the locking jaw 147d may be formed by overlapping the protrusion 147b and the receiving groove 147c with each other. When the lobe seal 117 is moved by the force of the apex elastic member 117b, the protrusion 147b (the entire corner seal 147) is also moved toward the rolling seal 127 by the locking jaw 147d, It can also be elastically supported.
아울러, 도 9에 보인 것처럼, 코너 씰(147)과 로브 씰(117)은 크랭크 축(180)의 축방향으로 서로 상대 이동 가능하도록 결합될 수 있다. 이를 위하여, 로브 씰(117)은 걸림턱(147d)을 형성하는 면에서 슬라이딩 가능하도록 수용홈(147c)에 삽입 장착될 수 있다.In addition, as shown in FIG. 9, the corner seal 147 and the lobe seal 117 may be coupled to move relative to each other in the axial direction of the crank shaft 180. To this end, the lobe seal 117 may be inserted into the receiving groove 147c so as to be slidable in the surface forming the locking step 147d.
이상에서 설명한 것과 같이, 본 실시예의 코너 씰(147)은 몸체부(147a)와 돌출부(147b)를 구비하고, 몸체부(147a)와 돌출부(147b) 사이의 걸림턱(147d)에 의해 로브 씰(117)이 로터(120)를 가압하는 탄성력을 전달받을 수 있다. 이와 같은 구조에 의해, 로브 씰(117)과 연동되어 가압력을 형성하는 코너 씰(147)이 간결한 구조에 의해 구현될 수 있다.As described above, the corner seal 147 of the present embodiment includes a body portion 147a and a protrusion 147b, and has a lobe seal by a locking step 147d between the body portion 147a and the protrusion 147b. 117 may receive an elastic force for pressing the rotor 120. By such a structure, the corner seal 147 which is interlocked with the lobe seal 117 to form the pressing force may be implemented by a simple structure.
이하에서는, 본 실시예의 코너 씰(147)이 로브 씰(117)과 롤링 씰(127) 사이의 로터(120) 표면을 가압할 수 있는 구조에 대하여 설명한다. 도 9를 참조하면, 본 실시예에서 코너 씰(147)은 탄성 지지부(147e)를 구비할 수 있다. 탄성 지지부(147e)는 코너 씰(147)이 로브 씰(117)에 장착되었을 때, 크랭크 축(180)의 축방향으로 탄성력을 생성할 수 있다.Hereinafter, a structure in which the corner seal 147 of the present embodiment can press the surface of the rotor 120 between the lobe seal 117 and the rolling seal 127 will be described. Referring to FIG. 9, in the present embodiment, the corner seal 147 may include an elastic support part 147e. The elastic support 147e may generate an elastic force in the axial direction of the crank shaft 180 when the corner seal 147 is mounted to the lobe seal 117.
도 9에 도시된 것과 같이, 탄성 지지부(147e)는 코너 씰(147)의 몸체부(147a)와 하우징(110)을 서로 연결하도록 이루어질 수 있다. 도시된 위치와 같이 로브 씰(117)을 지지하는 하우징(110)에 탄성 지지부(147e)가 장착되는 경우는, 탄성 지지부(147e)는 압축력을 생성하도록 이루어지는 것일 수 있다. 즉, 탄성 지지부(147e)는 크랭크 축(180)의 축방향 중 하우징 덮개(141, 142)로부터 로터(120)를 향하는 방향으로 코너 씰(147)을 끌어당기는 힘을 갖도록 형성될 수 있다.As shown in FIG. 9, the elastic support part 147e may be configured to connect the body part 147a of the corner seal 147 and the housing 110 with each other. When the elastic support 147e is mounted on the housing 110 supporting the lobe seal 117 as shown in the illustrated position, the elastic support 147e may be configured to generate a compressive force. That is, the elastic support part 147e may be formed to have a force for pulling the corner seal 147 in the direction from the housing covers 141 and 142 toward the rotor 120 in the axial direction of the crank shaft 180.
또한, 본 실시예의 하우징 덮개(141, 142)에는 코너 씰(147)의 일부를 수용하도록 장착홈(143)이 형성될 수 있다. 도 9에 보인 것과 같이, 하우징 덮개(141, 142)에서 하우징(110) 또는 로터(120)와 마주보는 면에서 리세스되도록 장착홈(143)이 형성될 수 있다. 장착홈(143)은 원통형의 몸체부(147a) 및 몸체부(147a)에서 돌출되는 돌출부(147b)의 일부를 수용하는 형상으로 이루어질 수 있다.In addition, the mounting cover 143 may be formed in the housing covers 141 and 142 of the present embodiment to accommodate a part of the corner seal 147. As shown in FIG. 9, the mounting groove 143 may be formed in the housing covers 141 and 142 so as to be recessed in a surface facing the housing 110 or the rotor 120. The mounting groove 143 may be formed in a shape for receiving a portion of the cylindrical body portion 147a and the protrusion 147b protruding from the body portion 147a.
이때 장착홈(143)은, 내부에 안착되는 코너 씰(147)이 이동 가능하도록 코너 씰(147)보다 큰 공간으로 이루어질 수 있다. 특히, 코너 씰(147)이 이동 가능한 방향은, 롤링 씰(127)을 향하는 방향(크랭크 축(180)의 반경방향)과, 로브 씰(117)을 향하는 방향(로터(120)의 두께 방향)일 수 있다.In this case, the mounting groove 143 may have a larger space than the corner seal 147 so that the corner seal 147 seated therein is movable. In particular, the direction in which the corner seal 147 can move is the direction toward the rolling seal 127 (the radial direction of the crankshaft 180), and the direction toward the lobe seal 117 (the thickness direction of the rotor 120). Can be.
아울러, 장착홈(143) 내에는, 코너 씰(147)을 지지하여 가압하는 탄성 지지부(147f)가 장착될 수 있다. 장착홈(143) 내에 고정되는 탄성 지지부(147f)는 하우징(110)에 장착되는 탄성 지지부(147e)와 달리 인장력을 생성하여 코너 씰(147)을 로터(120)를 향하는 방향으로 가압하도록 이루어지는 것일 수 있다.In addition, in the mounting groove 143, an elastic support part 147f for supporting and pressing the corner seal 147 may be mounted. The elastic support part 147f fixed in the mounting groove 143 is configured to generate a tensile force to press the corner seal 147 in the direction toward the rotor 120 unlike the elastic support part 147e mounted to the housing 110. Can be.
코너 씰(147)이 탄성 지지부(147e)를 구비하고, 장착홈(143) 내에 이동 가능하도록 안착됨으로써, 본 실시예의 코너 씰(147)은 로터(120)의 두께 방향으로 로터(120)와 하우징 덮개(141, 142) 사이의 간극이 가변되는 것에 대응하여 밀폐 기능을 수행할 수 있다. 따라서, 코너 씰(147)이 로브 씰(117)과 연동되어 로터(120)의 반경방향(도 9의 상하방향)으로 이동이 가능한 것과 함께, 롤링 씰(127)과 로브 씰(117) 사이의 간극이 효과적으로 밀폐될 수 있게 된다.The corner seal 147 is provided with an elastic support portion 147e and is seated to be movable in the mounting groove 143, so that the corner seal 147 of the present embodiment is disposed in the thickness direction of the rotor 120 and the housing 120. The sealing function may be performed in response to the gap between the covers 141 and 142 being variable. Accordingly, the corner seal 147 is interlocked with the lobe seal 117 to move in the radial direction (up and down direction in FIG. 9) of the rotor 120, and between the rolling seal 127 and the lobe seal 117. The gap can be effectively sealed.
한편, 도 11은 도 1에 도시된 로터리 엔진(100)에 구비되는 윤활 유닛을 보인 종단면도이다. 도 11을 참조하면, 본 발명의 로터리 엔진(100)은 윤활 유닛(190)을 더 포함할 수 있다. 윤활 유닛(190)은 오일 팬(Oil Pan, 191), 오일 펌프(192) 및 오일 공급 유로(193)를 구비한다. 이들 구성요소들은 각각 오일을 저장하고, 오일을 펌핑하고, 오일을 코너 씰(147)에 공급하는 역할을 수행한다.11 is a longitudinal sectional view showing a lubrication unit included in the rotary engine 100 shown in FIG. 1. Referring to FIG. 11, the rotary engine 100 of the present invention may further include a lubrication unit 190. The lubrication unit 190 includes an oil pan 191, an oil pump 192, and an oil supply flow path 193. These components each serve to store oil, pump oil, and supply oil to the corner seal 147.
도 9에 도시된 실시예에서, 흡기측 덮개(141)에는 저유 덮개(150)가 함께 결합될 수 있다. 이때 흡기측 덮개(141)에서, 로터(120)를 향하도록 결합되는 후면에는 흡기홀(141a)이 형성될 수 있고, 그 반대편인 전면에는 오일 펌프(192)가 장착될 수 있다.In the embodiment illustrated in FIG. 9, the oil storage cover 150 may be coupled to the intake side cover 141. In this case, an intake hole 141a may be formed at a rear surface of the intake side cover 141 that is coupled to face the rotor 120, and an oil pump 192 may be mounted at a front surface opposite to the rotor 120.
저유 덮개(150)는 흡기측 덮개(141)의 전면을 덮어 오일 펌프(192)를 수용하도록 형성될 수 있다. 그리고 저유 덮개(150)와 흡기측 덮개(141)에 의해 형성되는 공간과 연통되어 오일이 채워지도록 이루어지는 오일 팬(191)이 형성될 수 있다. 오일 팬(191)과 오일 펌프(192)는 오일을 퍼올리는 배관 또는 튜브 의해 서로 연결될 수 있고, 배관 또는 튜브의 단부에는 오일을 여과하는 오일 스트레이너(Strainer, 191a)가 오일 팬(191)에 잠길 수 있도록 더 구비될 수 있다.The oil storage cover 150 may be formed to cover the front surface of the intake side cover 141 to accommodate the oil pump 192. In addition, an oil pan 191 may be formed in communication with a space formed by the oil storage cover 150 and the intake side cover 141 to fill the oil. The oil pan 191 and the oil pump 192 may be connected to each other by a pipe or a tube for pumping oil, and an oil strainer 191a for filtering oil may be immersed in the oil pan 191 at the end of the pipe or the tube. It may be further provided to be.
오일 펌프(192)는 예를 들면, 회전체의 편심 회전에 의하여 오일을 흡상하는 트로코이드 펌프(Trochoid Pump)로 이루어질 수 있다. 특히, 도 11에 도시된 것처럼 크랭크 축(180)과 나란하게 회전되도록 이격 배치될 수 있다. 그리고 크랭크 축(180)의 외주면에는 체인 기어(183)가 장착되고, 트로코이드 펌프와 크랭크 축(180)은 체인 부재(192a)에 의하여 서로 연결될 수 있다. 따라서, 본 발명에 따른 로터리 엔진(100)의 작동에 따라 크랭크 축(180)에 발생된 회전력이 트로코이드 펌프로 전달될 수 있다.The oil pump 192 may be, for example, a trochoid pump that sucks oil by eccentric rotation of the rotating body. In particular, it may be spaced apart to rotate in parallel with the crank shaft 180 as shown in FIG. The chain gear 183 may be mounted on the outer circumferential surface of the crank shaft 180, and the trocoid pump and the crank shaft 180 may be connected to each other by the chain member 192a. Therefore, the rotational force generated on the crankshaft 180 in accordance with the operation of the rotary engine 100 according to the present invention can be transmitted to the trocoid pump.
오일 공급 유로(193)는, 오일 펌프(192)로 퍼 올려진 오일이 코너 씰(147)에 공급되도록 연결될 수 있다. 즉, 일 단은 오일 펌프(192)의 토출 측과 연결되고 타 단은 코너 씰(147)과 인접한 지점에 위치된다.The oil supply passage 193 may be connected to supply the oil pumped up to the oil pump 192 to the corner seal 147. That is, one end is connected to the discharge side of the oil pump 192 and the other end is located at a point adjacent to the corner seal 147.
본 발명의 윤활 유닛(190)은, 크랭크 축(180)에 동력이 발생됨에 따라 오일 펌프(192)의 동작이 개시되고, 오일 팬(191)에 채워진 오일이 오일 공급 유로(193)를 통하여 코너 씰(147)에 공급되도록 동작된다. 코너 씰(147)에 오일이 공급됨으로써, 코너 씰(147)의 마찰면에 윤활이 수행되고, 코너 씰(147)의 마찰면을 통하여 롤링 씰(127) 및 로브 씰(117)에도 오일이 공급되어 윤활이 수행될 수 있다.In the lubrication unit 190 of the present invention, the operation of the oil pump 192 is started as power is generated in the crankshaft 180, and the oil filled in the oil pan 191 is cornered through the oil supply flow passage 193. It is operated to be supplied to the seal 147. By supplying oil to the corner seal 147, lubrication is performed on the friction surface of the corner seal 147, and oil is also supplied to the rolling seal 127 and the lobe seal 117 through the friction surface of the corner seal 147. Lubrication can be performed.
나아가, 오일 펌프(192)는 체인 부재(192a)에 의하여 크랭크 축(180)과 연동되어 작동될 수 있다. 이로써, 오일 펌프(192)는 별도의 구동 수단이 추가될 필요 없이 작동이 가능하다. 나아가, 엔진의 출력이 높아짐에 따라 오일 공급이 증가되도록 가변될 수 있어, 엔진의 출력에 대응되는 가변적인 윤활 작용이 구현될 수 있는 이점이 있다.Furthermore, the oil pump 192 may be operated in conjunction with the crank shaft 180 by the chain member 192a. In this way, the oil pump 192 can be operated without the need for additional driving means. Furthermore, as the output of the engine is increased, the oil supply may be increased so that a variable lubrication action corresponding to the output of the engine may be realized.
본 발명에 구비되는 오일 공급 유로(193)는 하우징 유로(193a)와 공급 튜브(193b)를 포함할 수 있다. 하우징 유로(193a)는 하우징 덮개(141, 142)를 관통하는 내부 유로이며, 공급 튜브(193b)는 하우징(110) 및 하우징 덮개(141, 142)의 외부에 형성되는 외부 유로의 형태를 갖는다.The oil supply passage 193 provided in the present invention may include a housing passage 193a and a supply tube 193b. The housing flow passage 193a is an inner flow passage passing through the housing covers 141 and 142, and the supply tube 193b has a form of an outer flow passage formed outside the housing 110 and the housing covers 141 and 142.
구체적으로 하우징 유로(193a)는, 일 단부가 하우징 덮개(141)의 외면에 노출되고 타 단부는 코너 씰(147)에 인접하도록 위치될 수 있다. 도 9에 보인 것처럼, 하우징 유로(193a)는 크랭크 축(180)의 반경방향으로 흡기측 덮개(141)를 직선으로 관통하도록 형성될 수 있다.In detail, the housing flow passage 193a may be positioned such that one end thereof is exposed to the outer surface of the housing cover 141 and the other end thereof is adjacent to the corner seal 147. As shown in FIG. 9, the housing flow passage 193a may be formed to straightly penetrate the intake side cover 141 in the radial direction of the crankshaft 180.
공급 튜브(193b)는 오일 펌프(192)와 하우징 유로(193a)를 서로 연통시키도록, 하우징(110) 및 하우징 덮개(141, 142)의 외부에 형성될 수 있다. 즉, 일 단부는 오일 펌프(192)의 토출 측 단부에 연결되고, 타 단부는 하우징 유로(193a)가 하우징 덮개(141, 142)의 외면에 노출되는 부분과 서로 연결될 수 있다.The supply tube 193b may be formed outside the housing 110 and the housing covers 141 and 142 so as to communicate the oil pump 192 and the housing flow passage 193a with each other. That is, one end may be connected to the discharge side end of the oil pump 192, and the other end may be connected to each other where the housing flow path 193a is exposed to the outer surfaces of the housing covers 141 and 142.
위와 같이, 오일 공급 유로(193)가 하우징 유로(193a)와 공급 튜브(193b)의 조합으로 이루어짐으로써, 혼합기의 흐름을 이용하지 않고도 별도의 유로에 의한 오일 공급이 이루어질 수 있다.As described above, since the oil supply passage 193 is formed of a combination of the housing passage 193a and the supply tube 193b, the oil supply by the separate passage may be performed without using the flow of the mixer.
이상에서 설명한 것은 본 발명에 따른 로터리 엔진을 실시하기 위한 실시예들에 불과한 것으로서, 본 발명은 이상의 실시예들에 한정되지 않고, 이하의 청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어나지 않는 범위 내에서 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 사상이 있다고 할 것이다.What has been described above is only embodiments for implementing the rotary engine according to the present invention, the present invention is not limited to the above embodiments, the scope of the present invention as defined in the claims below Anyone with ordinary knowledge in the field to which the present invention belongs will have the technical idea of the present invention to the extent that various modifications can be made.
본 발명은, 회전운동으로 동력을 생산하는 로터리 엔진을 이용하는 산업 분야에서 사용 및 응용될 수 있을 것이다.The present invention may be used and applied in the industrial field using a rotary engine that produces power by rotational motion.

Claims (9)

  1. 내부에 N개(N은 3 이상인 자연수)의 로브 수용부와, 각각의 상기 로브 수용부와 연통되는 연소실을 구비하는 하우징;A housing having N lobes (N is a natural number of 3 or more) therein and a combustion chamber communicating with each of the lobe accommodations therein;
    상기 하우징의 중심으로부터 편심되어 회전하고, 각각 상기 로브 수용부에 연속적으로 수용되는 N-1개의 로브를 구비하는 로터;A rotor eccentrically rotating from the center of the housing, each having N-1 lobes continuously received in the lobe receiving portion;
    상기 로브 수용부를 오버랩하여 상기 하우징에 결합되는 하우징 덮개; 및A housing cover coupled to the housing by overlapping the lobe receptacle; And
    상기 N개의 로브 수용부를 각각 밀폐시키도록 이루어지는 씰링 유닛을 포함하며,And a sealing unit configured to seal the N lobe receiving portions, respectively.
    상기 씰링 유닛은,The sealing unit,
    상기 하우징 덮개와 슬라이딩되도록 상기 로터에서 돌출 형성되고, 상기 로브의 둘레를 따라 연장되는 롤링 씰;A rolling seal protruding from the rotor to slide with the housing cover and extending along a circumference of the lobe;
    서로 이웃한 상기 로브 수용부를 서로 격리시키도록 상기 하우징으로부터 돌출되어 상기 로터에 탄성 지지되도록 형성되는 N개의 로브 씰; 및N lobe seals protruding from the housing to elastically support the rotor to isolate adjacent lobe receiving portions from each other; And
    각각의 상기 로브 씰로부터 상기 하우징 덮개와 로터 사이에 삽입되도록 돌출되어, 상기 롤링 씰에 탄성 지지되도록 이루어지는 코너 씰을 구비하는 로터리 엔진.And a corner seal protruding from each of said lobe seals between said housing cover and rotor, said corner seals being elastically supported by said rolling seals.
  2. 제1항에 있어서,The method of claim 1,
    상기 코너 씰은,The corner seal is,
    상기 로브 씰의 단부를 수용하는 수용홈을 구비하는 몸체부; 및A body part having a receiving groove for receiving an end of the lobe seal; And
    상기 몸체부에서 상기 롤링 씰을 향하여 돌출 형성되고 상기 롤링 씰 및 로터와 슬라이딩되도록 형성되는 돌출부를 포함하는 로터리 엔진.And a protrusion formed to protrude from the body toward the rolling seal and to slide with the rolling seal and the rotor.
  3. 제2항에 있어서,The method of claim 2,
    상기 돌출부는, 상기 수용홈에 삽입되는 상기 로브 씰과 접촉되도록 형성되어 상기 롤링 씰을 향하는 방향으로 탄성력을 전달받도록 이루어지는 걸림턱을 구비하는 로터리 엔진.The protrusion has a locking jaw formed to be in contact with the lobe seal inserted into the receiving groove to receive the elastic force in the direction toward the rolling seal.
  4. 제3항에 있어서,The method of claim 3,
    상기 로브 씰은 상기 걸림턱과 슬라이딩 가능하도록 상기 수용홈에 삽입되는 것을 특징으로 하는 로터리 엔진.The lobe seal is inserted into the receiving groove so as to be slidable with the locking jaw.
  5. 제2항에 있어서,The method of claim 2,
    상기 몸체부는 상기 로터의 두께 방향으로 연장되는 상기 로브 씰과 나란하게 연장되는 원통형으로 이루어지고,The body portion is made of a cylindrical extending in parallel with the lobe seal extending in the thickness direction of the rotor,
    상기 돌출부 및 수용홈은, 상기 몸체부의 외주면에서 서로 동일한 방향으로 각각 돌출 및 리세스되도록 형성되는 것을 특징으로 하는 로터리 엔진.The projection and the receiving groove, the rotary engine, characterized in that formed to protrude and recess in the same direction from each other on the outer peripheral surface of the body portion.
  6. 제5항에 있어서,The method of claim 5,
    상기 돌출부 및 수용홈은 상기 몸체부의 연장 방향으로 서로 일부가 중첩되도록 이루어져, 상기 수용홈에 삽입된 상기 로브 씰이 상기 돌출부에 걸리는 걸림턱을 형성하는 것을 특징으로 하는 로터리 엔진.The protrusion and the receiving groove are formed so that a part overlaps each other in the extending direction of the body portion, the lobe seal inserted into the receiving groove to form a locking jaw that is caught by the protrusion.
  7. 제1항에 있어서,The method of claim 1,
    상기 코너 씰은, 상기 하우징에 결합되고 상기 하우징 덮개로부터 상기 로터를 향하는 방향으로 탄성력을 생성하도록 이루어지는 탄성 지지부를 구비하는 로터리 엔진.And the corner seal is provided with an elastic support coupled to the housing and configured to generate an elastic force in a direction from the housing cover toward the rotor.
  8. 제1항에 있어서,The method of claim 1,
    상기 하우징 덮개는, 상기 코너 씰의 일부를 수용하도록 상기 하우징 또는 로터와 마주보는 면에서 리세스되는 장착홈을 구비하는 로터리 엔진.And the housing cover has a mounting groove recessed in a surface facing the housing or rotor to receive a portion of the corner seal.
  9. 제8항에 있어서,The method of claim 8,
    상기 코너 씰은, 상기 롤링 씰을 향하는 방향 및 상기 로브 씰을 향하는 방향으로 이동 가능하도록 상기 장착홈 내에 안착되는 것을 특징으로 하는 로터리 엔진.And the corner seal is seated in the mounting groove so as to be movable in the direction toward the rolling seal and the direction toward the lobe seal.
PCT/KR2018/003886 2017-04-27 2018-04-03 Rotary engine WO2018199490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880027416.9A CN110546360B (en) 2017-04-27 2018-04-03 Rotor engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170054633A KR20180120526A (en) 2017-04-27 2017-04-27 Rotary engine
KR10-2017-0054633 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018199490A1 true WO2018199490A1 (en) 2018-11-01

Family

ID=63919846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003886 WO2018199490A1 (en) 2017-04-27 2018-04-03 Rotary engine

Country Status (3)

Country Link
KR (2) KR20180120526A (en)
CN (1) CN110546360B (en)
WO (1) WO2018199490A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113818960B (en) * 2021-10-12 2022-07-01 陕西新年动力科技集团有限公司 Rotor engine
KR20230165635A (en) 2022-05-27 2023-12-05 숭실대학교산학협력단 Wankel rotor with inner spring type and Wankel system including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872838A (en) * 1970-11-30 1975-03-25 Volkswagenwerk Ag Combustion engine having a rotary type piston arrangement
KR20140022029A (en) * 2011-03-29 2014-02-21 리퀴드피스톤 인크. Cycloid rotor engine
JP2016109061A (en) * 2014-12-08 2016-06-20 マツダ株式会社 Apex seal structure of rotary piston engine
WO2016145247A1 (en) * 2015-03-10 2016-09-15 Liquidpiston, Inc. High power density and efficiency epitrochoidal rotary engine
JP2016211522A (en) * 2015-05-13 2016-12-15 行廣 睦夫 Ignition method for wankel type rotary engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923607U (en) * 1972-06-07 1974-02-28
US3930767A (en) * 1974-07-16 1976-01-06 General Motors Corporation Circular rotor side seal for rotary machines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872838A (en) * 1970-11-30 1975-03-25 Volkswagenwerk Ag Combustion engine having a rotary type piston arrangement
KR20140022029A (en) * 2011-03-29 2014-02-21 리퀴드피스톤 인크. Cycloid rotor engine
JP2016109061A (en) * 2014-12-08 2016-06-20 マツダ株式会社 Apex seal structure of rotary piston engine
WO2016145247A1 (en) * 2015-03-10 2016-09-15 Liquidpiston, Inc. High power density and efficiency epitrochoidal rotary engine
JP2016211522A (en) * 2015-05-13 2016-12-15 行廣 睦夫 Ignition method for wankel type rotary engine

Also Published As

Publication number Publication date
CN110546360B (en) 2022-05-17
KR102329615B1 (en) 2021-11-22
KR20210103994A (en) 2021-08-24
KR20180120526A (en) 2018-11-06
CN110546360A (en) 2019-12-06

Similar Documents

Publication Publication Date Title
US7614382B2 (en) Aspiration plate for planetary rotary internal combustion engine
KR890000571B1 (en) Rotary engine
WO2012079468A1 (en) Rotary engine and rotor unit thereof
WO2018199490A1 (en) Rotary engine
US3314401A (en) Two-stroke cycle rotary engine
US3968776A (en) Rotary crankless machine
WO2012044051A2 (en) Rotary engine and multi-stepped rotary engine using same
WO2018216894A1 (en) Rotary engine
US4617886A (en) Rotary engine
RU2078221C1 (en) Rotor
US7100566B2 (en) Operating method for a rotary engine and a rotary internal combustion engine
US9874098B2 (en) Ignition engine of the rotary type with a double rotation center
US3973526A (en) Rotary combustion engine
WO2014010792A1 (en) Structure of rotary internal combustion engine
US3996898A (en) Rotary combustion engine apex seal arrangement
KR101972907B1 (en) Rotary engine having enhanced sealing structure
RU2271456C2 (en) Rotary internal combustion engine
KR101919712B1 (en) Rotary engine having crank shaft
KR101980014B1 (en) Multi-cylinder rotary engine having improved gas flow structure
US3176665A (en) Rotary piston internal combustion engine
KR20190124057A (en) Multi-cylinder rotary engine having improved gas flow structure
KR20180120524A (en) Rotary engine
US20220381145A1 (en) Modular rotary engine
RU2253029C2 (en) Rotary internal combustion engine
KR101886867B1 (en) Twin Rotary Engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790616

Country of ref document: EP

Kind code of ref document: A1