WO2021002437A1 - 改変フィブロイン複合体及びその製造方法 - Google Patents
改変フィブロイン複合体及びその製造方法 Download PDFInfo
- Publication number
- WO2021002437A1 WO2021002437A1 PCT/JP2020/026038 JP2020026038W WO2021002437A1 WO 2021002437 A1 WO2021002437 A1 WO 2021002437A1 JP 2020026038 W JP2020026038 W JP 2020026038W WO 2021002437 A1 WO2021002437 A1 WO 2021002437A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- modified fibroin
- seq
- fibroin
- sequence
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/145—Preparation of hydroorganosols, organosols or dispersions in an organic medium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/36—Silicates having base-exchange properties but not having molecular sieve properties
- C01B33/38—Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
- C01B33/40—Clays
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/09—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L89/00—Compositions of proteins; Compositions of derivatives thereof
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F4/00—Monocomponent artificial filaments or the like of proteins; Manufacture thereof
- D01F4/02—Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
Definitions
- the present invention relates to a modified fibroin complex and a method for producing the same.
- Natural spider traction yarn which is a representative of fibroin material, is super-shrinkable when the diameter of the traction yarn expands and the length contracts by about 50% when in contact with moisture or in an environment where the relative humidity exceeds 60%.
- Non-Patent Document 1 Recombinant protein fibers derived from natural spider silk that cause such super-shrinkage have also been reported (Patent Document 1).
- Non-Patent Document 1 and Patent Document 1 may not be preferable, and a material having reduced humidity dependence is required. May be done.
- Non-Patent Document 2 includes a composite film of recombinant spider silk (eADF4) and synthetic layered sodium silicate hectorite ([Na 0.5 ] [Li 0.5 Mg 2.5 ] [Si 4 ] O 10 F 2 ). Is disclosed. It is disclosed that this composite film has an effect of improving the strength, an effect of insolubilizing the film, an effect of increasing the beta sheet structure content, an effect of improving the gas barrier property against oxygen and water vapor, and an effect of improving the elastic modulus. However, this composite film has a problem of a decrease in elongation and toughness.
- Non-Patent Document 3 includes an aqueous metal solution (Al (CH 3 ) 3 [trimethylaluminum (TMA)] / H 2 O or Ti (OCH (CH 3 ) 2 ) 4 [titanium (IV) isopropoxide (TIP)] / H 2
- TMA trimethylaluminum
- O oxidized metal
- IV titanium
- TIP titanium isopropoxide
- Patent Document 2 discloses a molded product of a composition containing a polypeptide and an inorganic substance, in which a structural protein (spider silk fibroin) is used as a polypeptide and a metal oxide (titanium oxide) is used as an inorganic substance.
- a structural protein spike silk fibroin
- a metal oxide titanium oxide
- clay minerals smectites
- the present invention relates to, for example, the following inventions.
- [1] A dispersion containing modified fibroin, a silicate and / or a silicate mineral, and an organic solvent.
- [2] The dispersion according to [1], wherein the total content of the silicate and the silicate mineral is 0.01% by weight to 7% by weight with respect to the modified fibroin.
- [3] The dispersion according to [1] or [2], wherein the silicate mineral is smectite, bentonite or kaolinite, and the silicate is silicon dioxide.
- [4] The dispersion according to any one of [1] to [3], wherein the silicate mineral is an organic layered silicate mineral.
- a dispersion aid for dispersing silicates and / or silicate minerals in organic solvents including modified fibroin.
- a modified fibroin complex comprising a modified fibroin and a silicate and / or an organic layered silicate mineral, which is a fiber, film, gel or porous body.
- the above-mentioned polyamide polymer is at least one selected from the group consisting of n-nylon and n, m-nylon, and the organic cation is from 1st to 4th class alkylammonium ions and alkylpyridinium ions having a long-chain alkyl group.
- a method for producing a modified fibroin complex which comprises a step of removing the organic solvent from the dispersion.
- the organic solvent is hexafluoroisopropanol, hexafluoroacetone, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, N-methyl-2-pyrrolidone, acetonitrile,
- Method for producing the complex [22] The method for producing a modified fibroin composite according to any one of [16] to [21], wherein the composite is a fiber, a film, a gel or a porous body. [23] The method for producing a modified fibroin composite according to any one of [16] to [22], wherein the composite is a fiber or a film.
- the present invention it is possible to provide a modified fibroin complex having improved moisture resistance and a dispersion liquid useful for producing the same. Further, it is possible to provide a modified fibroin complex having improved moisture resistance and a method for producing the same.
- the dispersion of one embodiment of the present invention comprises modified fibroin, silicates and / or silicate minerals, and organic solvents.
- the dispersion liquid of the present embodiment is a dispersion liquid for producing a modified fibroin complex having improved moisture resistance.
- the modified fibroin complex obtained using the dispersion has a reduced humidity dependence, that is, improved moisture resistance, as compared with a modified fibroin molded product containing no silicate and / or silicate mineral. Have.
- the modified fibroin according to the present embodiment has a domain sequence represented by the formula 1: [(A) n motif-REP] m or the formula 2: [(A) n motif-REP] m- (A) n motif. It is a protein contained.
- the modified fibroin may further have an amino acid sequence (N-terminal sequence and C-terminal sequence) added to either or both of the N-terminal side and the C-terminal side of the domain sequence.
- the N-terminal sequence and the C-terminal sequence are not limited to this, but are typically regions that do not have the repetition of the amino acid motif characteristic of fibroin, and consist of about 100 residues of amino acids.
- the modified fibroin is the modified spider silk fibroin, the heat retention property, the heat absorption and heat generation property, and / or the flame retardancy are further improved.
- modified fibroin means artificially produced fibroin (artificial fibroin).
- the modified fibroin may be a fibroin whose domain sequence is different from the amino acid sequence of naturally occurring fibroin, or may be fibroin having the same amino acid sequence as naturally occurring fibroin.
- “Naturally derived fibroin” as used herein is also represented by the formula 1: [(A) n motif-REP] m or the formula 2: [(A) n motif-REP] m- (A) n motif. It is a protein containing the domain sequence to be used.
- modified fibroin may be one in which the amino acid sequence of naturally-derived fibroin is used as it is, or one in which the amino acid sequence is modified based on the amino acid sequence of naturally-derived fibroin (for example, cloned naturally-derived). It may be an amino acid sequence modified by modifying the gene sequence of fibroin, or an artificially designed and synthesized product that does not depend on naturally occurring fibroin (for example, a nucleic acid encoding the designed amino acid sequence). It may have a desired amino acid sequence by chemical synthesis).
- modified fibroin modified spider silk fibroin is preferably used because it is also excellent in heat retention, hygroscopic heat generation and / or flame retardancy.
- domain sequence refers to a fibroin-specific crystalline region (typically corresponding to the (A) n motif of an amino acid sequence) and an amorphous region (typically to the REP of an amino acid sequence).
- An amino acid sequence that produces (corresponding.)) which is represented by the formula 1: [(A) n motif-REP] m or the formula 2: [(A) n motif-REP] m- (A) n motif.
- the (A) n motif shows an amino acid sequence mainly composed of alanine residues, and the number of amino acid residues is 2 to 27.
- the number of amino acid residues of the n motif may be an integer of 2 to 20, 4 to 27, 2 to 27, 8 to 20, 10 to 20, 4 to 16, 8 to 16, or 10 to 16. .. Further, (A) the ratio of the number of alanine residues to the total number of amino acid residues in the n motif may be 40% or more, 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, It may be 86% or more, 90% or more, 95% or more, or 100% (meaning that it is composed only of alanine residues).
- a plurality of (A) n motifs present in the domain sequence may be composed of at least seven alanine residues only.
- REP shows an amino acid sequence consisting of 2-200 amino acid residues.
- REP may be an amino acid sequence composed of 10 to 200 amino acid residues, 10 to 40, 10 to 60, 10 to 80, 10 to 100, 10 to 120, 10 to 140, 10 to 160, or It may be an amino acid sequence composed of 1 to 180 amino acid residues.
- m represents an integer of 2 to 300, 8 to 300 or 10 to 300, 20 to 300, 40 to 300, 60 to 300, 80 to 300, 10 to 200, 20 to 200, 20 to 180, 20 to 160, It may be an integer of 20 to 140 or 20 to 120.
- a plurality of (A) n motifs may have the same amino acid sequence or different amino acid sequences.
- the plurality of REPs may have the same amino acid sequence or different amino acid sequences.
- the modified fibroin according to the present embodiment is, for example, an amino acid sequence corresponding to substitution, deletion, insertion and / or addition of one or more amino acid residues to the cloned naturally occurring fibroin gene sequence. It can be obtained by modifying. Substitution, deletion, insertion and / or addition of amino acid residues can be carried out by methods well known to those skilled in the art such as partial specific mutagenesis methods. Specifically, Nucleic Acid Res. It can be carried out according to the method described in the literature such as 10, 6487 (1982), Methods in Enzymology, 100, 448 (1983).
- Naturally-derived fibroin is a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m or the formula 2: [(A) n motif-REP] m- (A) n motif. Yes, specifically, for example, fibroin produced by insects or arachnids.
- fibroins produced by insects include Bombyx mori, Bombyx mandarina, Antheraea yamamai, Antheraea pyrai, ⁇ ⁇ (Anteraea pernii), and tussah. ), Silk moth (Samia cinthia), Chrysanthemum (Caligra japonica), Chusser silk moth (Antheraea mylitta), Muga silk moth (Antheraea assama), etc. Hornet silk protein can be mentioned.
- insect-produced fibroin include, for example, the silk moth fibroin L chain (GenBank accession number M76430 (base sequence) and AAA27840.1 (amino acid sequence)).
- fibroins produced by spiders include spiders belonging to the genus Araneus such as spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders,
- Spiders belonging to the genus Spider spiders belonging to the genus Pronus, spiders belonging to the genus Trinofundamashi (genus Cyrtarachne) such as Torinofundamashi and Otorinofundamashi, spiders belonging to the genus Cyrtarachne, spiders such as spiders Spiders belonging to (Gasteracantha genus), spiders belonging to the genus Isekigumo (genus Ordgarius) such as Mameitaisekigumo and Mutsutogaysekigumo, spiders belonging to the genus Koganegumo, Kogatakoganegumo and Nagakoganegumo, etc.
- Trinofundamashi gene Cyrtarachne
- Torinofundamashi and Otorinofundamashi spiders belonging to the genus Cyrtarachne
- spiders such as spiders Spiders belonging to (Gasteracantha genus)
- Spiders belonging to the genus Arachnura spiders belonging to the genus Acusilas such as spiders, spiders belonging to the genus Cytophora, spiders belonging to the genus Cytophora, spiders belonging to the genus Cytophora, spiders belonging to the genus Cytophora ), Spiders belonging to the genus Cyclosa such as spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders, spiders Spiders Spiders belonging to the genus Tetragnatha, such as Yasagata spider, Harabiroashidakagumo, and Urokoa shina
- spider silk proteins produced by spiders include, for example, fibroin-3 (aff-3) [derived from Araneus diadematus] (GenBank accession numbers AAC47010 (amino acid sequence), U47855 (base sequence)). fibroin-4 (aff-4) [derived from Araneus diadematus] (GenBank accession number AAC47011 (amino acid sequence), U47856 (base sequence)), dragline silk protein spidroin 1 [from Nephila clavipes] (GenBank sequence number AAC4011 (amino acid sequence), U47856 (base sequence)) ), U37520 (base sequence)), major amplifier speedin 1 [derived from Latropectus hesperus] (GenBank accession number ABR68856 (amino acid sequence), EF595246 (base sequence)), dragline silk proteinaspirin from radinaspiraspirin Numbers AAL32472 (amino acid sequence), AF441245 (base sequence
- fibroin whose sequence information is registered in NCBI GenBank can be mentioned.
- sequence information registered in NCBI GenBank among the sequences containing INV as DIVISION, spidroin, complete, fibroin, "silk and protein", or “silk and protein” are described as keywords in DEFINITION. It can be confirmed by extracting a sequence, a character string of a specific protein from CDS, and a sequence in which a specific character string is described in TISSUE TYPE from SOURCE.
- the modified fibroin according to the present embodiment may be modified silk fibroin (modified amino acid sequence of silk protein produced by spiders), or modified spider silk fibroin (spider silk protein produced by spiders). It may be a modified amino acid sequence).
- modified spider silk fibroin also referred to as “artificial spider silk protein” is preferable.
- modified fibroin examples include modified fibroin (first modified fibroin) derived from large spit tube bookmarker thread protein produced in the large bottle-shaped gland of spider, and modified fibroin with reduced glycine residue content.
- (2nd modified fibroin) (A) reduced content of n motifs Modified fibroin (3rd modified fibroin), content of glycine residues, and (A) reduced content of n motifs It has a modified fibroin (fourth modified fibroin), a modified fibroin (fifth modified fibroin) having a domain sequence containing a region having a locally high hydrophobicity index, and a domain sequence having a reduced content of glutamine residues.
- Modified fibroin (sixth modified fibroin) can be mentioned.
- Examples of the first modified fibroin include proteins containing a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the number of amino acid residues of (A) n motif is preferably an integer of 3 to 20, more preferably an integer of 2 to 27, further preferably an integer of 8 to 20, and an integer of 10 to 20. Is even more preferable, an integer of 4 to 16 is even more preferable, an integer of 8 to 16 is particularly preferable, and an integer of 10 to 16 is most preferable.
- the number of amino acid residues constituting REP in the formula 1 is preferably 10 to 200 residues, more preferably 10 to 150 residues, and 20 to 100 residues.
- the total number of residues of glycine residue, serine residue and alanine residue contained in the amino acid sequence represented by the formula 1: [(A) n motif-REP] m is the amino acid residue. It is preferably 40% or more, more preferably 60% or more, and even more preferably 70% or more with respect to the total number.
- the first modified fibroin contains the unit of the amino acid sequence represented by the formula 1: [(A) n motif-REP] m , and the C-terminal sequence is the amino acid sequence shown in any of SEQ ID NOs: 1 to 3 or It may be a polypeptide having an amino acid sequence having 90% or more homology with the amino acid sequence shown in any of SEQ ID NOs: 1 to 3.
- the amino acid sequence shown in SEQ ID NO: 1 is the same as the amino acid sequence consisting of 50 residues at the C-terminal of the amino acid sequence of ADF3 (GI: 1263287, NCBI), and the amino acid sequence shown in SEQ ID NO: 2 is a sequence. It is the same as the amino acid sequence in which 20 residues were removed from the C end of the amino acid sequence shown in No. 1, and the amino acid sequence shown in SEQ ID NO: 3 was obtained by removing 29 residues from the C end of the amino acid sequence shown in SEQ ID NO: 1. It has the same amino acid sequence.
- the amino acid sequence shown in (1-i) SEQ ID NO: 4 (recombinant spider silk product ADF3 KaiLargeNRSH1), or the amino acid sequence shown in (1-ii) SEQ ID NO: 4 and 90
- the sequence identity is preferably 95% or more.
- the amino acid sequence shown by SEQ ID NO: 4 is the first to the amino acid sequence of ADF3 in which the amino acid sequence (SEQ ID NO: 5) consisting of the start codon, His10 tag and HRV3C protease (Human rhinovirus 3C protease) recognition site is added to the N-terminal.
- the 13th repeat region was increased to approximately double, and the translation was mutated to terminate at the 1154th amino acid residue.
- the C-terminal amino acid sequence of the amino acid sequence shown in SEQ ID NO: 4 is the same as the amino acid sequence shown in SEQ ID NO: 3.
- the modified fibroin of (1-i) may consist of the amino acid sequence shown in SEQ ID NO: 4.
- the second modified fibroin has an amino acid sequence whose domain sequence has a reduced content of glycine residues as compared to naturally occurring fibroin. It can be said that the second modified fibroin has an amino acid sequence corresponding to at least one or more glycine residues in REP replaced with another amino acid residue as compared with naturally occurring fibroin. ..
- the second modified fibroin has a domain sequence of GGX and GPGXX in REP as compared with naturally occurring fibroin (where G is a glycine residue, P is a proline residue, and X is an amino acid residue other than glycine.
- G is a glycine residue
- P is a proline residue
- X is an amino acid residue other than glycine.
- at least one motif sequence selected from at least one or a plurality of glycine residues in the motif sequence have an amino acid sequence corresponding to being replaced with another amino acid residue. You may.
- the ratio of the motif sequence in which the above-mentioned glycine residue is replaced with another amino acid residue may be 10% or more of the total motif sequence.
- the second modified fibroin contains a domain sequence represented by the formula 1: [(A) n motif-REP] m , and is located closest to the C-terminal side of the domain sequence (A) from the n motif to the domain sequence.
- the total number of amino acid residues in the amino acid sequence consisting of XGX (where X indicates amino acid residues other than glycine) contained in all REPs in the sequence excluding the sequence up to the C-terminal of is z, and the above domain sequence.
- the number of alanine residues with respect to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. It is even more preferably 100% (meaning that it is composed only of alanine residues).
- the second modified fibroin is preferably one in which the content ratio of the amino acid sequence consisting of XGX is increased by substituting one glycine residue of the GGX motif with another amino acid residue.
- the content ratio of the amino acid sequence consisting of GGX in the domain sequence of the second modified fibroin is preferably 30% or less, more preferably 20% or less, further preferably 10% or less, 6 % Or less is even more preferable, 4% or less is even more preferable, and 2% or less is particularly preferable.
- the content ratio of the amino acid sequence consisting of GGX in the domain sequence can be calculated by the same method as the method for calculating the content ratio (z / w) of the amino acid sequence consisting of XGX below.
- fibroin modified fibroin or naturally-derived fibroin
- domain sequence represented by the formula 1: [(A) n motif-REP] m it is located most on the C-terminal side from the domain sequence (A) n.
- the amino acid sequence consisting of XGX is extracted from all REPs contained in the sequence excluding the sequence from the motif to the C-terminal of the domain sequence.
- z / w (%) can be calculated by dividing z by w.
- z / w is preferably 50.9% or more, more preferably 56.1% or more, further preferably 58.7% or more, and 70% or more. Is even more preferable, and 80% or more is even more preferable.
- the upper limit of z / w is not particularly limited, but may be, for example, 95% or less.
- the second modified fibroin is, for example, modified from the cloned naturally occurring fibroin gene sequence by substituting at least a part of the base sequence encoding the glycine residue to encode another amino acid residue.
- one glycine residue in the GGX motif and the GPGXX motif may be selected as the glycine residue to be modified, or may be substituted so that z / w is 50.9% or more. It can also be obtained, for example, by designing an amino acid sequence satisfying the above embodiment from the amino acid sequence of naturally occurring fibroin and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
- one or more amino acid residues are further substituted or deleted.
- Insertion and / or modification of the amino acid sequence corresponding to the addition may be performed.
- the other amino acid residue described above is not particularly limited as long as it is an amino acid residue other than the glycine residue, but is a valine (V) residue, a leucine (L) residue, an isoleucine (I) residue, and methionine ( Hydrophobic amino acid residues such as M) residue, proline (P) residue, phenylalanine (F) residue and tryptophan (W) residue, glutamine (Q) residue, asparagine (N) residue, serine (S) ) Residues, hydrophilic amino acid residues such as lysine (K) residue and glutamate (E) residue are preferred, valine (V) residue, phenylalanine (F) residue, leucine (L) residue, isoleucine ( I) Residues and Glutamine (Q) Residues are more preferred, and Glutamine (Q) Residues are even more preferred.
- SEQ ID NO: 6 (Met-PRT380), SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT525) or SEQ ID NO: 9 (Met) - contains an amino acid sequence represented by PRT799) or (2-ii) an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- Modified fibroin can be mentioned.
- the modified fibroin of (2-i) will be described.
- the amino acid sequence shown in SEQ ID NO: 6 is obtained by substituting GQX for all GGX in the REP of the amino acid sequence shown in SEQ ID NO: 10 (Met-PRT313) corresponding to naturally occurring fibroin.
- the amino acid sequence shown by SEQ ID NO: 7 is such that every two (A) n motifs are deleted from the N-terminal side to the C-terminal side from the amino acid sequence shown in SEQ ID NO: 6, and further before the C-terminal sequence.
- One [(A) n motif-REP] is inserted in.
- amino acid sequence shown in SEQ ID NO: 8 two alanine residues are inserted on the C-terminal side of each (A) n motif of the amino acid sequence shown in SEQ ID NO: 7, and a part of glutamine (Q) residue is further added. It is substituted with a serine (S) residue and a part of the amino acid on the C-terminal side is deleted.
- the amino acid sequence shown in SEQ ID NO: 9 is a region of 20 domain sequences existing in the amino acid sequence shown in SEQ ID NO: 7 (however, several amino acid residues on the C-terminal side of the region are substituted). A hinge sequence and a His tag sequence are added to the C-terminal of the sequence obtained by repeating the above 4 times.
- the value of z / w in the amino acid sequence shown in SEQ ID NO: 10 (corresponding to naturally occurring fibroin) is 46.8%.
- the z / w values in the amino acid sequence shown in SEQ ID NO: 6, the amino acid sequence shown in SEQ ID NO: 7, the amino acid sequence shown in SEQ ID NO: 8, and the amino acid sequence shown in SEQ ID NO: 9 are 58.7%, respectively. It is 70.1%, 66.1% and 70.0%.
- x / y in the jagged ratio (described later) of 1: 1.8 to 11.3 of the amino acid sequences shown by SEQ ID NO: 10, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9 is They are 15.0%, 15.0%, 93.4%, 92.7% and 89.8%, respectively.
- the modified fibroin of (2-i) may consist of the amino acid sequence represented by SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (2-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (2-ii) is also a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (2-ii) has 90% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, and is contained in REP.
- X indicates an amino acid residue other than glycine.
- the second modified fibroin may contain a tag sequence at either or both of the N-terminus and the C-terminus. This enables isolation, immobilization, detection, visualization and the like of modified fibroin.
- tag sequence examples include affinity tags that utilize specific affinity (binding, affinity) with other molecules.
- affinity tag is a histidine tag (His tag).
- His tag is a short peptide in which about 4 to 10 histidine residues are lined up, and has the property of specifically binding to metal ions such as nickel. Therefore, isolation of modified fibroin by metal chelating chromatography (chromatography) is performed. Can be used for.
- Specific examples of the tag sequence include the amino acid sequence shown in SEQ ID NO: 11 (amino acid sequence including His tag sequence and hinge sequence).
- tag sequences such as glutathione-S-transferase (GST) that specifically binds to glutathione and maltose-binding protein (MBP) that specifically binds to maltose can also be used.
- GST glutathione-S-transferase
- MBP maltose-binding protein
- an "epitope tag” utilizing an antigen-antibody reaction can also be used.
- an antigenic peptide (epitope) as a tag sequence
- an antibody against the epitope can be bound.
- the epitope tag include HA (peptide sequence of hemagglutinin of influenza virus) tag, myc tag, FLAG tag and the like.
- a tag sequence in which the tag sequence can be separated by a specific protease can also be used.
- the modified fibroin from which the tag sequence has been separated can also be recovered.
- the modified fibroin containing the tag sequence the amino acids represented by (2-iii) SEQ ID NO: 12 (PRT380), SEQ ID NO: 13 (PRT410), SEQ ID NO: 14 (PRT525) or SEQ ID NO: 15 (PRT799).
- Examples thereof include a modified fibroin containing a sequence or an amino acid sequence having 90% or more sequence identity with the amino acid sequence set forth in (2-iv) SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15. ..
- amino acid sequences represented by SEQ ID NO: 16 (PRT313), SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15 are represented by SEQ ID NO: 10, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9, respectively.
- the amino acid sequence shown by SEQ ID NO: 11 (including His tag sequence and hinge sequence) is added to the N-terminal of the indicated amino acid sequence.
- the modified fibroin of (2-iii) may consist of the amino acid sequence set forth in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (2-iv) comprises an amino acid sequence having 90% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (2-iv) is also a protein containing the domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (2-iv) has 90% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15 and is contained in REP.
- X indicates an amino acid residue other than glycine.
- the second modified fibroin may contain a secretory signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretory signal can be appropriately set according to the type of host.
- the third modified fibroin has an amino acid sequence whose domain sequence has a reduced content of (A) n motif as compared with naturally occurring fibroin. It can be said that the domain sequence of the third modified fibroin has an amino acid sequence corresponding to the deletion of at least one or more (A) n motifs as compared with naturally occurring fibroin.
- the third modified fibroin may have an amino acid sequence corresponding to a 10-40% deletion of the (A) n motif from naturally occurring fibroin.
- the third modification fibroin its domain sequence, compared to the naturally occurring fibroin, at least from the N-terminal side toward the C-terminal one to three (A) n motif every one (A) n motif It may have an amino acid sequence corresponding to the deletion of.
- the third modified fibroin has a domain sequence of at least two consecutive (A) n- motif deletions and one (A) from the N-terminal side to the C-terminal side as compared to naturally occurring fibroin. ) It may have an amino acid sequence corresponding to the deletion of the n- motif being repeated in this order.
- the third modified fibroin may have an amino acid sequence whose domain sequence corresponds to the deletion of (A) n motif at least every other two from the N-terminal side to the C-terminal side. ..
- the third modified fibroin contains a domain sequence represented by the formula 1: [(A) n motif-REP] m , and two adjacent [(A) n motifs from the N-terminal side to the C-terminal side.
- -REP The number of amino acid residues in the REP of the unit is sequentially compared, and when the number of amino acid residues in the REP having a small number of amino acid residues is 1, the ratio of the number of amino acid residues in the other REP is 1.8 to When x is the maximum value of the sum of the number of amino acid residues of two adjacent [(A) n motif-REP] units, which is 11.3, and y is the total number of amino acid residues in the domain sequence.
- the number of alanine residues with respect to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more. It is even more preferably 100% (meaning that it is composed only of alanine residues).
- FIG. 1 shows a domain sequence obtained by removing the N-terminal sequence and the C-terminal sequence from the modified fibroin. From the N-terminal side (left side), the domain sequence consists of (A) n motif-first REP (50 amino acid residues)-(A) n motif-second REP (100 amino acid residues)-(A) n. Motif-Third REP (10 amino acid residues)-(A) n Motif-Fourth REP (20 amino acid residues)-(A) n Motif-Fifth REP (30 amino acid residues)-(A) It has an arrangement called n motifs.
- Two adjacent [(A) n motif-REP] units are sequentially selected from the N-terminal side to the C-terminal side so as not to overlap. At this time, there may be a [(A) n motif-REP] unit that is not selected.
- pattern 1 (comparison between the first REP and the second REP and comparison between the third REP and the fourth REP)
- pattern 2 (comparison between the first REP and the second REP, and a comparison).
- 4th REP and 5th REP comparison Pattern 3 (2nd RE and 3rd REP comparison, and 4th REP and 5th REP comparison
- Pattern 4 (1st REP and (Comparison of the second REP) is shown. There are other selection methods.
- the number of amino acid residues in each REP in two adjacent [(A) n motif-REP] units selected is compared.
- the comparison is performed by obtaining the ratio of the number of amino acid residues of the other when the one with the smaller number of amino acid residues is set to 1.
- each pattern add up the total number of amino acid residues of the two adjacent [(A) n motif-REP] units shown by the solid line (not only REP, but also the number of amino acid residues of (A) n motif. is there.). Then, the total values added are compared, and the total value of the pattern in which the total value is maximized (maximum value of the total value) is defined as x. In the example shown in FIG. 1, the total value of pattern 1 is the maximum.
- x / y (%) can be calculated by dividing x by the total number of amino acid residues y in the domain sequence.
- x / y is preferably 50% or more, more preferably 60% or more, further preferably 65% or more, still more preferably 70% or more. It is preferably 75% or more, even more preferably 80% or more, and particularly preferably 80% or more.
- the upper limit of x / y is not particularly limited and may be, for example, 100% or less.
- x / y is preferably 89.6% or more, and when the jagged ratio is 1: 1.8 to 3.4, x.
- / Y is preferably 77.1% or more, and when the jagged ratio is 1: 1.9 to 8.4, x / y is preferably 75.9% or more, and the jagged ratio is 1. In the case of 1.9 to 4.1, x / y is preferably 64.2% or more.
- the third modified fibroin is a modified fibroin in which at least 7 of the (A) n motifs present in the domain sequence are composed of only alanine residues
- the x / y is 46.4% or more. Is more preferable, 50% or more is more preferable, 55% or more is further preferable, 60% or more is further more preferable, 70% or more is even more preferable, and 80% or more. It is particularly preferable to have.
- the upper limit of x / y is not particularly limited and may be 100% or less.
- the horizontal axis of FIG. 3 indicates x / y (%), and the vertical axis indicates frequency.
- x / y in naturally-derived fibroin is less than 64.2% (the highest is 64.14%).
- the third modified fibroin deletes one or more of the sequences encoding the (A) n motif from the cloned naturally occurring fibroin gene sequence so that x / y is 64.2% or more.
- an amino acid sequence corresponding to the deletion of one or more (A) n motifs so that x / y is 64.2% or more is designed and designed from the amino acid sequence of naturally occurring fibroin. It can also be obtained by chemically synthesizing a nucleic acid encoding the amino acid sequence.
- amino acid residues are further substituted, deleted, inserted and / or added.
- the amino acid sequence corresponding to the above may be modified.
- 3-i) SEQ ID NO: 17 (Met-PRT399), SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT525) or SEQ ID NO: 9 (Met) contains an amino acid sequence represented by PRT799) or an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by (3-ii) SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- Modified fibroin can be mentioned.
- the modified fibroin of (3-i) will be described.
- the amino acid sequence shown by SEQ ID NO: 17 is from the amino acid sequence shown by SEQ ID NO: 10 (Met-PRT313) corresponding to naturally occurring fibroin, every other (A) n from the N-terminal side to the C-terminal side.
- the motif is deleted, and one [(A) n motif-REP] is inserted in front of the C-terminal sequence.
- the amino acid sequence set forth in SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9 is as described in the second modified fibroin.
- the value of x / y in the giza ratio of 1: 1.8 to 11.3 of the amino acid sequence shown in SEQ ID NO: 10 is 15.0%.
- the value of x / y in the amino acid sequence shown in SEQ ID NO: 17 and the amino acid sequence shown in SEQ ID NO: 7 is 93.4%.
- the value of x / y in the amino acid sequence shown in SEQ ID NO: 8 is 92.7%.
- the value of x / y in the amino acid sequence shown in SEQ ID NO: 9 is 89.8%.
- the modified fibroin of (3-i) may consist of the amino acid sequence represented by SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (3-ii) contains an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (3-ii) is also a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (3-ii) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, and is N-terminal to C-terminal.
- the number of amino acid residues of REP of two adjacent [(A) n motif-REP] units is sequentially compared and the number of amino acid residues of REP having a small number of amino acid residues is 1, the other
- x / y is preferably 64.2% or more.
- the third modified fibroin may contain the tag sequence described above at either or both of the N-terminus and the C-terminus.
- modified fibroin containing the tag sequence the amino acids represented by (3-iii) SEQ ID NO: 18 (PRT399), SEQ ID NO: 13 (PRT410), SEQ ID NO: 14 (PRT525) or SEQ ID NO: 15 (PRT799).
- modified fibroins comprising a sequence or an amino acid sequence having 90% or more sequence identity with the amino acid sequence set forth in (3-iv) SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15. ..
- amino acid sequences shown in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15 are the N-terminals of the amino acid sequences shown in SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9, respectively.
- the amino acid sequence represented by (including His tag sequence and hinge sequence) is added.
- the modified fibroin of (3-iii) may consist of the amino acid sequence set forth in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (3-iv) comprises an amino acid sequence having 90% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (3-iv) is also a protein containing the domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (3-iv) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15, and is N-terminal to C-terminal.
- the number of amino acid residues of REP of two adjacent [(A) n motif-REP] units is sequentially compared and the number of amino acid residues of REP having a small number of amino acid residues is 1, the other
- the maximum value of the total value of the sum of the number of amino acid residues of two adjacent [(A) n motif-REP] units in which the ratio of the number of amino acid residues of REP in REP is 1.8 to 11.3 is x.
- x / y is preferably 64.2% or more.
- the third modified fibroin may contain a secretory signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretory signal can be appropriately set according to the type of host.
- the fourth modified fibroin has an amino acid sequence whose domain sequence has a reduced content of (A) n motifs and a reduced content of glycine residues as compared with naturally occurring fibroin.
- the domain sequence of the fourth modified fibroin lacked at least one or more (A) n motifs as compared to naturally occurring fibroin, plus at least one or more glycine residues in the REP. It can be said that it has an amino acid sequence corresponding to being substituted with another amino acid residue. That is, it is a modified fibroin having the characteristics of the above-mentioned second modified fibroin and the third modified fibroin. Specific aspects and the like are as described in the second modified fibroin and the third modified fibroin.
- the fourth modified fibroin (4-i) SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT525), SEQ ID NO: 9 (Met-PRT799), SEQ ID NO: 13 (PRT410) ), The amino acid sequence represented by SEQ ID NO: 14 (PRT525) or SEQ ID NO: 15 (PRT799), or (4-ii) SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15
- modified fibroins containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by Specific embodiments of the modified fibroin comprising the amino acid sequence set forth in SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15 are as described above.
- the fifth modified fibroin had its domain sequence replaced by one or more amino acid residues in the REP compared to naturally occurring fibroin, and / or REP. It may have an amino acid sequence containing a region having a large hydrophobic index locally, which corresponds to the insertion of one or a plurality of amino acid residues having a large hydrophobic index.
- the region having a locally large hydrophobicity index is preferably composed of consecutive 2 to 4 amino acid residues.
- amino acid residues having a large hydrophobicity index mentioned above are isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A). It is more preferable that the amino acid residue is selected from.
- one or more amino acid residues in REP were replaced with amino acid residues having a higher hydrophobicity index as compared with naturally occurring fibroin, and / or one or more amino acid residues in REP.
- one or more amino acid residues were substituted, deleted, inserted and / or added as compared with naturally occurring fibroin.
- the fifth modified fibroin leaves one or more hydrophilic amino acid residues (for example, amino acid residues having a negative hydrophobicity index) in the REP from the cloned naturally occurring fibroin gene sequence. It can be obtained by substituting for a group (eg, an amino acid residue with a positive hydrophobicity index) and / or inserting one or more hydrophobic amino acid residues in the REP. Also, for example, one or more hydrophilic amino acid residues in REP have been replaced with hydrophobic amino acid residues from the amino acid sequence of naturally occurring fibroin, and / or one or more hydrophobic amino acid residues in REP.
- an amino acid sequence corresponding to the insertion of and chemically synthesizing a nucleic acid encoding the designed amino acid sequence In each case, one or more hydrophilic amino acid residues in the REP were replaced with hydrophobic amino acid residues from the amino acid sequence of naturally occurring fibroin, and / or one or more hydrophobic amino acids in the REP.
- the amino acid sequence corresponding to the substitution, deletion, insertion and / or addition of one or more amino acid residues may be further modified.
- the fifth modified fibroin contains a domain sequence represented by the formula 1: [(A) n motif-REP] m , from the (A) n motif located closest to the C-terminal side to the C-terminal of the above domain sequence.
- the total number of amino acid residues contained in the region where the average value of the hydrophobicity index of consecutive 4 amino acid residues is 2.6 or more is defined as p.
- hydrophobicity index For the hydrophobicity index of amino acid residues, a known index (Hydrotherapy index: Kyte J, & Doolittle R (1982) "A single method for dispensing the hydropathic protein, protein7, B. 105-132) is used. Specifically, the hydrophobicity index (hydropathy index, hereinafter also referred to as “HI”) of each amino acid is as shown in Table 1 below.
- sequence A [(A) n motif-REP] m.
- sequence A the sequence obtained by removing the sequence from the (A) n motif located closest to the C-terminal side to the C-terminal of the domain sequence from the domain sequence represented by the formula 1: [(A) n motif-REP] m.
- sequence A the average value of the hydrophobicity index of four consecutive amino acid residues is calculated for all REPs contained in the sequence A.
- the average value of the hydrophobicity index is obtained by dividing the total HI of each amino acid residue contained in four consecutive amino acid residues by 4 (the number of amino acid residues).
- the average value of the hydrophobicity index is obtained for all consecutive 4 amino acid residues (each amino acid residue is used to calculate the average value 1 to 4 times).
- a region in which the average value of the hydrophobicity index of consecutive four amino acid residues is 2.6 or more is specified. Even if a certain amino acid residue corresponds to a plurality of "consecutive four amino acid residues having an average value of 2.6 or more of the hydrophobicity index", it should be included as one amino acid residue in the region. become.
- the total number of amino acid residues contained in the region is p.
- the total number of amino acid residues contained in sequence A is q.
- the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.
- the hydrophobicity index of the consecutive 4 amino acid residues is present in an overlapping manner by only one amino acid residue.
- p / q is preferably 6.2% or more, more preferably 7% or more, further preferably 10% or more, and more preferably 20% or more. Even more preferably, it is even more preferably 30% or more.
- the upper limit of p / q is not particularly limited, but may be, for example, 45% or less.
- the fifth modified fibroin is, for example, one or more hydrophilic amino acid residues (eg, a hydrophobic index) in the REP so that the amino acid sequence of the cloned naturally occurring fibroin satisfies the above p / q condition.
- Amino acid residue with a negative value is replaced with a hydrophobic amino acid residue (for example, an amino acid residue with a positive hydrophobicity index), and / or one or more hydrophobic amino acid residues are inserted in the REP.
- a hydrophobic amino acid residue for example, an amino acid residue with a positive hydrophobicity index
- an amino acid sequence satisfying the above p / q condition from the amino acid sequence of naturally occurring fibroin and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
- one or more amino acid residues in the REP were replaced with amino acid residues with a higher hydrophobicity index compared to naturally occurring fibroin, and / or one or more in the REP.
- the modification corresponding to the substitution, deletion, insertion and / or addition of one or more amino acid residues may be performed. ..
- the amino acid residue having a large hydrophobicity index is not particularly limited, but isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A). ) Is preferable, and valine (V), leucine (L) and isoleucine (I) are more preferable.
- the fifth modified fibroin (5-i) the amino acid sequence set forth in SEQ ID NO: 19 (Met-PRT720), SEQ ID NO: 20 (Met-PRT665) or SEQ ID NO: 21 (Met-PRT666).
- a modified fibroin containing (5-ii) an amino acid sequence having 90% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21 can be mentioned.
- the modified fibroin of (5-i) will be described.
- the amino acid sequence shown in SEQ ID NO: 19 is an amino acid sequence consisting of 3 amino acid residues every other REP, except for the terminal on the C-terminal side, with respect to the amino acid sequence shown in SEQ ID NO: 7 (Met-PRT410). VLI) was inserted at two locations, and a part of the glutamine (Q) residue was replaced with a serine (S) residue, and a part of the amino acid on the C-terminal side was deleted.
- the amino acid sequence shown by SEQ ID NO: 20 is the amino acid sequence shown by SEQ ID NO: 8 (Met-PRT525) with one amino acid sequence (VLI) consisting of 3 amino acid residues inserted every other REP. is there.
- the amino acid sequence shown in SEQ ID NO: 21 is the amino acid sequence shown in SEQ ID NO: 8 with two amino acid sequences (VLI) consisting of three amino acid residues inserted every other REP.
- the modified fibroin of (5-i) may consist of the amino acid sequence represented by SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
- the modified fibroin of (5-ii) comprises an amino acid sequence having 90% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
- the modified fibroin of (5-ii) is also a protein containing a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (5-ii) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21, and is located most on the C-terminal side (A) n.
- P / q is preferably 6.2% or more.
- the fifth modified fibroin may contain a tag sequence at either or both of the N-terminus and the C-terminus.
- modified fibroin containing a tag sequence the amino acid sequence set forth in (5-iii) SEQ ID NO: 22 (PRT720), SEQ ID NO: 23 (PRT665) or SEQ ID NO: 24 (PRT666), or (5-iv).
- a modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24 can be mentioned.
- amino acid sequences shown in SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24 are the amino acid sequences shown in SEQ ID NO: 11 (His tag) at the N-terminal of the amino acid sequences shown in SEQ ID NO: 19, SEQ ID NO: 20 and SEQ ID NO: 21, respectively. (Including array and hinge array) is added.
- the modified fibroin of (5-iii) may consist of the amino acid sequence set forth in SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24.
- the modified fibroin of (5-iv) comprises an amino acid sequence having 90% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24.
- the modified fibroin of (5-iv) is also a protein containing the domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the sequence identity is preferably 95% or more.
- the modified fibroin of (5-iv) has 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24, and is located most on the C-terminal side (A) n.
- the total number of residues is p and the total number of amino acid residues contained in the sequence excluding the sequence from the (A) n motif located closest to the C-terminal to the C-terminal of the domain sequence from the domain sequence is q.
- the fifth modified fibroin may contain a secretory signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretory signal can be appropriately set according to the type of host.
- the sixth modified fibroin has an amino acid sequence with a reduced content of glutamine residues as compared to naturally occurring fibroin.
- the sixth modified fibroin preferably contains at least one motif selected from the GGX motif and the GPGXX motif in the amino acid sequence of REP.
- the content of the GPGXXX motif is usually 1% or more, may be 5% or more, and is preferably 10% or more.
- the upper limit of the GPGXX motif content is not particularly limited and may be 50% or less, or 30% or less.
- GPGXX motif content is a value calculated by the following method.
- Formula 1 [(A) n motif-REP] m , or formula 2: [(A) n motif-REP] m- (A) fibroin containing a domain sequence represented by n motif (modified fibroin or naturally derived) In (fibroin), the number of GPGXX motifs contained in the region in all REPs included in the sequence excluding the sequence from the (A) n motif located closest to the C-terminal side to the C-terminal of the domain sequence from the domain sequence.
- s be the number obtained by multiplying the total number by 3 (that is, corresponding to the total number of G and P in the GPGXX motif), and the sequence from the (A) n motif located closest to the C-terminal side to the C-terminal of the domain sequence from the domain sequence.
- the GPGXX motif content is calculated as s / t, where t is the total number of amino acid residues in all REPs excluding (A) n motifs.
- the sequence obtained by excluding the sequence from the (A) n motif located on the most C-terminal side to the C-terminal of the domain sequence from the domain sequence is targeted at "the most C-terminal side".
- the sequence from (A) n motif to the C end of the domain sequence located in (A) may include a sequence having a low correlation with the sequence characteristic of fibroin, and m is small. In this case (that is, when the domain sequence is short), it affects the calculation result of the GPGXX motif content, and this effect is eliminated.
- the "GPGXX motif” is located at the C-terminal of the REP, even if the "XX" is, for example, "AA”, it is treated as the "GPGXX motif".
- FIG. 5 is a schematic diagram showing the domain sequence of modified fibroin.
- the sixth modified fibroin has a glutamine residue content of preferably 9% or less, more preferably 7% or less, further preferably 4% or less, and particularly preferably 0%. ..
- glucose residue content is a value calculated by the following method.
- Formula 1 [(A) n motif-REP] m
- Formula 2 [(A) n motif-REP] m-
- all the sequences from the (A) n motif located closest to the C-terminal side to the C-terminal of the domain sequence are excluded from the domain sequence (the sequence corresponding to "region A" in FIG. 5).
- the total number of glutamine residues contained in the region is u, and the sequence from the (A) n motif located most on the C-terminal side to the C-terminal of the domain sequence is removed from the domain sequence, and (A) n.
- the glutamine residue content is calculated as u / t, where t is the total number of amino acid residues in all REPs excluding the motif.
- t is the total number of amino acid residues in all REPs excluding the motif.
- the sixth modified fibroin corresponds to its domain sequence lacking one or more glutamine residues in the REP or substituting for other amino acid residues as compared to naturally occurring fibroin. It may have an amino acid sequence.
- the "other amino acid residue” may be an amino acid residue other than the glutamine residue, but is preferably an amino acid residue having a larger hydrophobicity index than the glutamine residue.
- the hydrophobicity index of amino acid residues is as shown in Table 1.
- amino acid residues having a larger hydrophobicity index than glutamine residues include isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), and methionine (M). ) Amino acid residues selected from alanine (A), glutamine (G), threonine (T), serine (S), tryptophan (W), tyrosine (Y), proline (P) and histidine (H). it can.
- amino acid residues selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A) are more preferable.
- Isoleucine (I), valine (V), leucine (L) and phenylalanine (F) are more preferably amino acid residues.
- the sixth modified fibroin has a REP hydrophobicity of -0.8 or more, more preferably -0.7 or more, further preferably 0 or more, and 0.3 or more. Is even more preferable, and 0.4 or more is particularly preferable.
- the upper limit of the hydrophobicity of REP is not particularly limited and may be 1.0 or less, or 0.7 or less.
- the "hydrophobicity of REP” is a value calculated by the following method.
- Formula 1 [(A) n motif-REP] m
- Formula 2 [(A) n motif-REP] m-
- all the sequences from the (A) n motif located closest to the C-terminal side to the C-terminal of the domain sequence are excluded from the domain sequence (the sequence corresponding to "region A” in FIG. 5).
- the sum of the hydrophobicity indexes of each amino acid residue in the region is v, and the sequence from the (A) n motif located most on the C-terminal side to the C-terminal of the domain sequence is removed from the domain sequence, and further ( A) The hydrophobicity of REP is calculated as v / t, where t is the total number of amino acid residues of all REPs excluding the n motif.
- the reason for targeting is the above-mentioned reason. The same is true.
- the sixth modified fibroin had its domain sequence deleted of one or more glutamine residues in REP as compared to naturally occurring fibroin, and / or one or more glutamine residues in REP.
- modification corresponding to the replacement of one or more amino acid residues with another amino acid residue there may be a modification of the amino acid sequence corresponding to the substitution, deletion, insertion and / or addition of one or more amino acid residues. ..
- the sixth modified fibroin deletes one or more glutamine residues in REP from the cloned naturally occurring fibroin gene sequence and / or removes one or more glutamine residues in REP. It can be obtained by substituting with the amino acid residue of. Also, for example, one or more glutamine residues in REP were deleted from the amino acid sequence of naturally occurring fibroin, and / or one or more glutamine residues in REP were replaced with other amino acid residues. It can also be obtained by designing an amino acid sequence corresponding to this and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
- SEQ ID NO: 25 (Met-PRT888), SEQ ID NO: 26 (Met-PRT965), SEQ ID NO: 27 (Met-PRT889), SEQ ID NO: 28 (Met) -PRT916), modified fibroin containing the amino acid sequence set forth in SEQ ID NO: 29 (Met-PRT918), SEQ ID NO: 30 (Met-PRT699), SEQ ID NO: 31 (Met-PRT698) or SEQ ID NO: 32 (Met-PRT966), or (6-ii) 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 or SEQ ID NO: 32.
- a modified fibroin containing an amino acid sequence having the same can be mentioned.
- the modified fibroin of (6-i) will be described.
- the amino acid sequence shown in SEQ ID NO: 25 is obtained by substituting VL for all QQs in the amino acid sequence (Met-PRT410) shown in SEQ ID NO: 7.
- the amino acid sequence shown in SEQ ID NO: 26 is one in which all QQs in the amino acid sequence shown in SEQ ID NO: 7 are replaced with TS, and the remaining Qs are replaced with A.
- the amino acid sequence shown in SEQ ID NO: 27 is one in which all QQs in the amino acid sequence shown in SEQ ID NO: 7 are replaced with VL, and the remaining Qs are replaced with I.
- the amino acid sequence shown in SEQ ID NO: 28 is one in which all QQs in the amino acid sequence shown in SEQ ID NO: 7 are replaced with VI, and the remaining Qs are replaced with L.
- the amino acid sequence shown in SEQ ID NO: 29 is one in which all QQs in the amino acid sequence shown in SEQ ID NO: 7 are replaced with VF, and the remaining Qs are replaced with I.
- the amino acid sequence shown in SEQ ID NO: 30 is obtained by substituting VL for all QQs in the amino acid sequence (Met-PRT525) shown in SEQ ID NO: 8.
- the amino acid sequence shown in SEQ ID NO: 31 is one in which all QQs in the amino acid sequence shown in SEQ ID NO: 8 are replaced with VL, and the remaining Qs are replaced with I.
- the amino acid sequence shown by SEQ ID NO: 32 is a region of 20 domain sequences existing in the amino acid sequence (Met-PRT410) shown by SEQ ID NO: 7 (however, a few amino acid residues on the C-terminal side of the region are substituted. ) Is repeated twice, all QQs in the sequence are replaced with VF, and the remaining Qs are replaced with I.
- amino acid sequences shown in SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 and SEQ ID NO: 32 all have a glutamine group content of 9% or less. (Table 2).
- the modified fibroin of (6-i) comprises the amino acid sequence represented by SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 or SEQ ID NO: 32. There may be.
- the modified fibroin of (6-ii) is 90% or more of the amino acid sequence represented by SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 or SEQ ID NO: 32. It contains an amino acid sequence having the sequence identity of.
- the modified fibroin of (6-ii) is also a domain represented by the formula 1: [(A) n motif-REP] m or the formula 2: [(A) n motif-REP] m- (A) n motif. It is a protein containing a sequence.
- the sequence identity is preferably 95% or more.
- the modified fibroin of (6-ii) preferably has a glutamine residue content of 9% or less. Further, the modified fibroin of (6-ii) preferably has a GPGXX motif content of 10% or more.
- the sixth modified fibroin may contain a tag sequence at either or both of the N-terminus and the C-terminus. This enables isolation, immobilization, detection, visualization and the like of modified fibroin.
- SEQ ID NO: 33 PRT888
- SEQ ID NO: 34 PRT965
- SEQ ID NO: 35 PRT889
- SEQ ID NO: 36 PRT916
- SEQ ID NO: 37 PRT918
- Modified fibroin containing the amino acid sequence set forth in SEQ ID NO: 38 PRT699
- SEQ ID NO: 39 SEQ ID NO: 39
- SEQ ID NO: 40 SEQ ID NO: 40
- (6-iv) SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39 or modified fibroin containing an amino acid sequence having 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 40 can be mentioned.
- amino acid sequences shown by SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39 and SEQ ID NO: 40 are SEQ ID NO: 25, SEQ ID NO: 26 and SEQ ID NO: 27, respectively.
- SEQ ID NO: 28 SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 and SEQ ID NO: 32 added to the N-terminal of the amino acid sequence shown by SEQ ID NO: 11 (including His tag sequence and hinge sequence). It is a thing.
- SEQ ID NO: 33 SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39.
- amino acid sequence shown by SEQ ID NO: 40 has a glutamine residue content of 9% or less (Table 3).
- the modified fibroin of (6-iii) comprises the amino acid sequence represented by SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39 or SEQ ID NO: 40. There may be.
- the modified fibroin of (6-iv) is 90% or more of the amino acid sequence represented by SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39 or SEQ ID NO: 40. It contains an amino acid sequence having the sequence identity of.
- the modified fibroin of (6-iv) is also a domain represented by the formula 1: [(A) n motif-REP] m or the formula 2: [(A) n motif-REP] m- (A) n motif. It is a protein containing a sequence.
- the sequence identity is preferably 95% or more.
- the modified fibroin of (6-iv) preferably has a glutamine residue content of 9% or less. Further, the modified fibroin of (6-iv) preferably has a GPGXX motif content of 10% or more.
- the sixth modified fibroin may contain a secretory signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretory signal can be appropriately set according to the type of host.
- the modified fibroin is at least two or more of the characteristics of the first modified fibroin, the second modified fibroin, the third modified fibroin, the fourth modified fibroin, the fifth modified fibroin, and the sixth modified fibroin. It may be a modified fibroin having the above-mentioned characteristics.
- the modified fibroin according to the present embodiment is, for example, by a host transformed with an expression vector having a nucleic acid sequence encoding the modified fibroin and one or more regulatory sequences operably linked to the nucleic acid sequence. It can be produced by expressing the nucleic acid.
- the method for producing the nucleic acid encoding the modified fibroin is not particularly limited.
- the nucleic acid is produced by a method of amplifying and cloning by a polymerase chain reaction (PCR) or the like using a gene encoding natural fibroin and modifying it by a genetic engineering method or a method of chemically synthesizing it. be able to.
- the chemical synthesis method of nucleic acid is not particularly limited, and for example, based on the amino acid sequence information of fibroin obtained from NCBI's web database, etc., AKTA oligopilot plus 10/100 (GE Healthcare Japan Co., Ltd.), etc.
- Genes can be chemically synthesized by a method of linking automatically synthesized oligonucleotides by PCR or the like.
- a nucleic acid encoding the modified fibroin consisting of an amino acid sequence in which an amino acid sequence consisting of a start codon and a His10 tag is added to the N-terminal of the above amino acid sequence is synthesized. You may.
- the regulatory sequence is a sequence that controls the expression of the modified fibroin in the host (for example, a promoter, enhancer, ribosome binding sequence, transcription termination sequence, etc.), and can be appropriately selected depending on the type of host.
- a promoter an inducible promoter that functions in the host cell and can induce the expression of modified fibroin may be used.
- An inducible promoter is a promoter that can control transcription by the presence of an inducing substance (expression inducer), the absence of a repressor molecule, or physical factors such as an increase or decrease in temperature, osmotic pressure, or pH value.
- the type of expression vector can be appropriately selected depending on the type of host, such as a plasmid vector, a viral vector, a cosmid vector, a phosmid vector, and an artificial chromosome vector.
- a vector containing a promoter at a position capable of autonomous replication in a host cell, integration into a host chromosome, and transcription of a nucleic acid encoding modified fibroin is preferably used.
- any of prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells and plant cells can be preferably used.
- prokaryotic hosts include bacteria belonging to the genus Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Brevibacterium, Corynebacterium, Pseudomonas and the like.
- microorganisms belonging to the genus Escherichia include Escherichia coli and the like.
- microorganisms belonging to the genus Brevibacillus include Brevibacillus agri and the like.
- microorganisms belonging to the genus Serratia include Serratia marcescens and the like.
- microorganisms belonging to the genus Bacillus include Bacillus satirus and the like.
- microorganisms belonging to the genus Microbacterium include Microbacterium, Ammonia Philum and the like.
- microorganisms belonging to the genus Brevibacterium include Brevibacterium divaricatum and the like.
- microorganisms belonging to the genus Corynebacterium include Corynebacterium and Ammonia Genes.
- microorganisms belonging to the genus Pseudomonas include Pseudomonas putida and the like.
- a prokaryote when used as a host, as a vector into which a nucleic acid encoding modified fibroin is introduced, for example, pBTrp2 (manufactured by Boehringer Mannheim), pGEX (manufactured by Pharmacia), pUC18, pBluescriptII, pSupex, pET22b, pCold, pUB110, Examples thereof include pNCO2 (Japanese Unexamined Patent Publication No. 2002-238569).
- Eukaryotic hosts include, for example, yeast and filamentous fungi (molds, etc.).
- yeast include yeasts belonging to the genus Saccharomyces, Pichia, Schizosaccharomyces and the like.
- filamentous fungi include filamentous fungi belonging to the genus Aspergillus, the genus Penicillium, the genus Trichoderma, and the like.
- examples of the vector into which the nucleic acid encoding the modified fibroin is introduced include YEP13 (ATCC37115) and YEp24 (ATCC37051).
- a method for introducing an expression vector into the host cell any method for introducing DNA into the host cell can be used. For example, a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], electroporation method, spheroplast method, protoplast method, lithium acetate method, competent method and the like.
- nucleic acid by a host transformed with an expression vector in addition to direct expression, secretory production, fusion protein expression, etc. can be performed according to the method described in Molecular Cloning 2nd Edition. ..
- the modified fibroin can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, producing and accumulating the modified fibroin in the culture medium, and collecting the modified fibroin from the culture medium.
- the method of culturing the host in the culture medium can be carried out according to the method usually used for culturing the host.
- the culture medium contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by the host, and the host can be efficiently cultured. If so, either a natural medium or a synthetic medium may be used.
- the carbon source may be any assimilated by the transforming microorganisms, for example, glucose, fructose, sucrose, carbohydrates containing them such as honey, starch and starch hydrolyzate, acetic acid and propionic acid.
- Organic acids and alcohols such as ethanol and propanol can be used.
- Nitrogen sources include, for example, ammonium salts of inorganic or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate and ammonium phosphate, other nitrogen-containing compounds, and peptone, meat extract, yeast extract, corn steep liquor, etc. Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented bacterial cells and their digests can be used.
- inorganic salts for example, primary potassium phosphate, secondary potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate and calcium carbonate can be used.
- Culturing of prokaryotes such as Escherichia coli or eukaryotes such as yeast can be carried out under aerobic conditions such as shaking culture or deep aeration stirring culture.
- the culture temperature is, for example, 15-40 ° C.
- the culture time is usually 16 hours to 7 days.
- the pH of the culture medium during culturing is preferably maintained at 3.0 to 9.0.
- the pH of the culture medium can be adjusted using an inorganic acid, an organic acid, an alkaline solution, urea, calcium carbonate, ammonia or the like.
- antibiotics such as ampicillin and tetracycline may be added to the culture medium during the culture, if necessary.
- an inducer may be added to the medium as needed.
- isopropyl- ⁇ -D-thiogalactopyranoside and the like are used when culturing microorganisms transformed with an expression vector using the lac promoter
- indol acrylic is used when culturing microorganisms transformed with an expression vector using the trp promoter. Acids and the like may be added to the medium.
- Isolation and purification of the expressed modified fibroin can be carried out by a commonly used method.
- the modified fibroin is expressed in a lysed state in cells
- the host cells are collected by centrifugation, suspended in an aqueous buffer solution, and then an ultrasonic crusher, a French press, or a manton. Crush the host cells with a gaulin homogenizer, dynomil, or the like to obtain a cell-free extract.
- Cationic exchange chromatography method hydrophobic chromatography method using resins such as butyl Sepharose and phenyl Sepharose, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, electrophoresis such as isoelectric point electrophoresis, etc.
- Purified preparations can be obtained by using methods such as the law alone or in combination.
- the modified fibroin When the modified fibroin is expressed by forming an insoluble matter in the cells, the insoluble matter of the modified fibroin is recovered as a precipitate fraction by similarly collecting the host cell, crushing it, and centrifuging it.
- the insoluble form of the recovered modified fibroin can be solubilized with a protein denaturing agent.
- a purified preparation of modified fibroin can be obtained by the same isolation and purification method as described above.
- the modified fibroin When the modified fibroin is secreted extracellularly, the modified fibroin can be recovered from the culture supernatant. That is, a purified sample can be obtained by treating the culture by a method such as centrifugation to obtain a culture supernatant, and using the same isolation and purification method as described above from the culture supernatant.
- the critical oxygen index (LOI) value of the modified (artificial) fibroin fiber may be 18 or more, 20 or more, 22 or more, 24 or more, 26 or more. It may be 28 or more, 29 or more, or 30 or more.
- the above LOI value is measured in accordance with the "Test method for powdered or low melting point synthetic resin" described in "Fire and Disaster Management Agency Dangerous Goods Regulation Section Chief Fire Danger No. 50 (dated May 31, 1995)". Value. The same applies to modified (artificial) fibroin films, gels and porous materials.
- the maximum heat absorption and heat generation of the modified (artificial) fibroin fiber, the modified fibroin film, the modified fibroin gel and the modified fibroin porous body obtained according to the following formula A may be more than 0.025 ° C./g, and may be 0.026 ° C. It may be / g or more, 0.027 ° C / g or more, 0.028 ° C / g or more, 0.029 ° C / g or more, and 0. It may be 030 ° C./g or higher, 0.035 ° C./g or higher, or 0.040 ° C./g or higher.
- the upper limit of the maximum heat absorption and heat generation is not particularly limited, but is usually 0.060 ° C./g or less.
- Maximum heat absorption and heat generation ⁇ (Maximum value of sample temperature when the sample is placed in a low humidity environment until the sample temperature reaches equilibrium and then moved to a high humidity environment)-(Sample, sample Sample temperature when moving to a high humidity environment after being placed in a low humidity environment until the temperature reaches equilibrium) ⁇ (° C) / sample weight (g)
- a low humidity environment means an environment with a temperature of 20 ° C. and a relative humidity of 40%
- a high humidity environment means an environment with a temperature of 20 ° C. and a relative humidity of 90%.
- the heat retention index of the modified fibroin fiber, the modified fibroin film, the modified fibroin gel and the modified fibroin porous body may be more than 0.18, may be 0.20, and may be more than 0.22. It may be 0.24 or more, 0.26 or more, 0.28 or more, 0.30 or more, and 0.32 or more.
- the upper limit of the heat retention index is not particularly limited, but may be, for example, 0.60 or less, or 0.40 or less.
- the modified fibroin fiber, the modified fibroin film, the modified fibroin gel and the modified fibroin porous body preferably have excellent heat retention, and the heat retention index determined according to the following formula C may be 0.20 or more.
- Heat retention index heat retention rate (%) / sample basis weight (g / m 2 )
- a silicate is a compound containing an anion having a structure centered on one or more silicon atoms and surrounded by an electronegativity ligand, and is also called a silicate.
- silicon dioxide silicon dioxide
- the silica may be in the form of particles, and the particle size of the silica particles can be appropriately selected from the viewpoint of easy dispersion and according to the desired physical properties of the obtained modified fibroin complex.
- the particle size of the silicate may be, for example, 5 to 100 nm, preferably 5 nm to 80 nm, more preferably 5 nm to 60 nm, and even more preferably 5 nm to 40 nm.
- the specific surface area of the silicate may be, for example, 50 to 400 m 2 / g, preferably 100 to 400 m 2 / g, more preferably 200 to 400 m 2 / g, and even more preferably. Is 300-400 m 2 / g.
- the specific surface area of the silicate can be measured, for example, by the BET method.
- the silicate mineral is not particularly limited, but may be a layered silicate mineral (layered clay mineral), and examples of the layered silicate mineral include smectite (group), bentonite, serpentine-kaolin (group), and the like. Talk-pyrophilite (tribe), vermiculite (tribe), mica, brittle mica and green mudstones and hydrotalcites. Examples of smectites (tribes) include montmorillonite, byderite, nontronite, saponite, hectorite, saponite, stevensite, volcon scoreite, and sinholdite, and montmorillonite is preferable from the viewpoint of distribution.
- Serpentinite-kaolin includes, for example, lizardite, barcherin, amesite, cronstedite, nepoite, keliaite, frayponite, brindriaite, kaolinite, dikite, nacrite, halosite and audinite.
- talc-pyrophilite examples include talc, willlemsite, kerolite, pimelite, pyrophyllite and ferlipylophyllite.
- Examples of vermiculite include 3-octahedral vermiculite and 2-octahedral vermiculite.
- Examples of mica include black mica, phlogopite, annite, yeast night, siderophyllite, tetraferite annite, scale mica, polylysiolite, muscovite, celadon stone, iron celadon stone, iron aluminoceradon stone, and aluminoceradon stone.
- Tobelite mica and soda mica examples of the brittle mica include clintite, Kinoshita stone, bitty mica, ananda stone and pearl mica.
- chlorite group examples include chlorite group, chamosite, penantite, nimite, bailicroa, donbacite, cucumberite and sudoite.
- the layered silicate mineral is preferably selected from the group consisting of smectite (group) and bentonite, and more preferably composed of montmorillonite, saponite, stevensite, hectorite and bentonite from the viewpoint of flowability and cost effectiveness. It is selected from the group, more preferably from the group consisting of montmorillonite, hectorite and bentonite.
- the layered silicate mineral may be an organically modified organic (organized) silicate mineral or may be an organic (organized) layered silicate mineral.
- Examples of the organic (organized) layered silicate mineral include organic (organized) smectite, organic (organized) serpentinite-kaolin (group), and organic (organic) obtained by organically modifying the above-mentioned layered silicate mineral. From the group consisting of talc-pyrophilite (family), organic (organized) vermiculite (group), organic (organized) mica family, organic (organized) brittle mica family and organic (organized) chlorite group. It may be selected.
- organic (organized) smectites examples include organic (organized) montmorillonite, organic (organized) biderite, organic (organized) nontronite, organic (organized) saponite, organic (organized) hectorite, and organic. Examples include (organized) saponite, organic (organized) stephensite, organic (organized) voltmorillonite and organic (organized) sine hectorite.
- the organic (organized) layered silicate mineral is preferably selected from the group consisting of organic (organized) smectite and organic (organized) bentonite from the viewpoint of flowability and cost effectiveness, and more preferably organic. It is selected from the group consisting of montmorillonite, organic hectorite and organic bentonite. By using an organic layered silicate mineral (organic silicate mineral), the dispersibility in an organic solvent can be further improved.
- organic modification of organic (organized) layered silicate minerals include ion exchange with organic cations (cationic surfactant ions, etc.), molecular adsorption, interlayer polymerization, and polymer insertion (melting method, solution method). ) Etc. can be mentioned.
- organic cation cationic surfactant ion and the like
- examples of the organic cation include 1st to 4th grade alkylammonium ions and alkylpyridinium ions having a long-chain alkyl group.
- Examples of the primary to quaternary alkylammonium ions having a long-chain alkyl group include alkylammonium, alkyltrimethylammonium ion, dialkylammonium ion, tetramethylammonium ion (TMA), tetramethylphosphonium ion (TMP), and trimethylphenylammonium.
- Ions (TMPA), dimethyl distearyl ammonium ion, benzyl dimethyl stearyl ammonium ion, trioctyl methyl ammonium ion, dipolyoxyethylene palm alkyl chloride (8 to 18 carbon atoms) methyl ammonium ion and the like can be mentioned.
- examples of the organic compound (organic molecule) intercalated with the layered silicate mineral by the polymerization reaction between layers (interlayer polymerization method) and / or the polymer insertion method include polyamide-based polymer and olefin-based polymer.
- examples include rubber-based polymers.
- n-nylon examples include nylon 6, nylon 7, nylon 9, nylon 11, nylon 12, and the like.
- n, m-nylon examples include nylon 6,6, nylon 610, nylon 6T, nylon 6I, nylon 9T, nylon M5T, nylon 612 and the like.
- the organic compound (organic molecule) intercalated in the organic (organized) layered silicate mineral is a polyamide polymer having high dispersibility or solubility in an organic solvent described later from the viewpoint of improving dispersibility.
- nylon 6, nylon 6, 6 and nylon 11 are more preferable, and nylon 6 and nylon 6, 6 are even more preferable.
- the method of intercalating nylon 6 with a layered silicate mineral is described in J. Mater.
- the silicate mineral may be in the form of powder or particulate, and its particle size can be appropriately selected from the viewpoint of easy dispersion and according to the desired physical properties of the obtained modified fibroin complex.
- the particle size (sphere equivalent diameter) of the silicate mineral at the time of dispersion may be, for example, 2 ⁇ m or less, 1.5 ⁇ m or less, 1 ⁇ m or less, or 0.5 ⁇ m or less. Good.
- the powder it is preferable that the powder has a uniform particle size.
- the particle size of the powder and its distribution can be measured by, for example, a dynamic light scattering method.
- Organic solvent Any organic solvent can be used as long as it can dissolve modified fibroin and disperse silicate and / or silicate minerals, for example, hexafluoroisopropanol (HFIP), hexafluoroacetone (HFA).
- HFIP hexafluoroisopropanol
- HFA hexafluoroacetone
- DMSO Dimethyl sulfoxide
- DMF N-dimethylformamide
- DMA N-dimethylacetamide
- DMI 1,3-dimethyl-2-imidazolidone
- NMP N-methyl-2-pyrrolidone
- Acetonitrile N-methylmorpholine N-oxide (NMO), formic acid and the like.
- HFIP HFIP
- DMSO and formic acid are more preferable
- formic acid is further preferable.
- These organic solvents may contain water. These solvents may be used alone or in combination of two or more. The use of an organic solvent has an advantage that the dispersibility of an organic (organized) layered silicate mineral can be further improved.
- the concentration of the modified fibroin in the dispersion according to the present embodiment is preferably 5 to 40% by weight, more preferably 7 to 40% by weight, and 10 to 10 to 40% by weight, assuming that the total amount of the dispersion is 100% by weight. It is more preferably 40% by weight, more preferably 7 to 35% by weight, more preferably 10 to 35% by weight, and even more preferably 12 to 35% by weight.
- the concentration of modified fibroin in the dispersion is preferably 15 to 35% by weight, preferably 15 to 30% by weight, when the total amount of the dispersion is 100% by weight. More preferably, it is more preferably 20 to 35% by weight, and particularly preferably 20 to 30% by weight.
- the concentration of the modified fibroin is 5% by mass or more, the dispersibility of the silicate and / or the silicate mineral (layered silicate mineral) can be sufficiently improved.
- the concentration of the modified fibroin is 40% by mass or less, it is possible to avoid a decrease in dispersibility of the silicate and / or silicate mineral due to a significant increase in viscosity.
- the total content of silicate and silicate mineral (layered silicate mineral and / or organic layered silicate mineral) in the dispersion according to the present embodiment is 0.01% by weight to 7% by weight based on the modified fibroin.
- weight% that is, when the modified fibroin is 100% by weight, it may be 0.01% by weight to 7% by weight, 0.05% by weight to 6% by weight, and 0.05% by weight to 5% by weight.
- weight% is preferable, 0.1% by weight to 5% by weight is more preferable, 0.3% by weight to 5% by weight is more preferable, 0.3% by weight to 4% by weight is more preferable, and 0.3% by weight to 0.3% by weight.
- 3.5% by weight is more preferable, 0.4% by weight to 3.2% by weight is more preferable, 0.5% by weight to 3.2% by weight is more preferable, and 0.5% by weight to 3% by weight is further preferable. It is preferable, and 0.5% by weight to 2% by weight is particularly preferable.
- Inorganic salts may be added to the dispersion according to the present embodiment, if necessary.
- the inorganic salt can function as a dissolution accelerator for modified fibroin.
- examples of the inorganic salt include alkali metal halides, alkaline earth metal halides, and alkaline earth metal nitrates.
- Specific examples of the inorganic salt include lithium carbonate, lithium chloride, calcium chloride, calcium nitrate, lithium bromide, barium bromide, calcium bromide, barium chlorate, sodium perchlorate, lithium perchlorate, and barium perchlorate. , Calcium perchlorate, magnesium perchlorate. At least one of these inorganic salts may be added to the solvent.
- the method for preparing the dispersion according to the present embodiment is not particularly limited, and the modified fibroin and the silicate and / or silicate mineral (layered silicate mineral and / or organic layered silicate mineral) are used.
- the organic mineral may be mixed in any order.
- the modified fibroin may be dissolved in an organic solvent and then the silicate and / or silicate mineral may be dispersed in the solution, and the silicate and / or silicate mineral may be dispersed in the organic solvent.
- the modified fibroin may be dissolved in the dispersion, or a solution in which the modified fibroin is dissolved in an organic solvent and a dispersion in which a silicate and / or a silicate mineral is dispersed are mixed. May be good.
- the modified fibroin may be stirred or shaken for some time to facilitate dissolution in the organic solvent. At that time, if necessary, it may be heated to a temperature at which it can be dissolved depending on the modified fibroin and the organic solvent used. For example, it may be heated to 30 ° C. or higher, 40 ° C. or higher, 50 ° C. or higher, 60 ° C. or higher, 70 ° C. or higher, 80 ° C. or higher, or 90 ° C. or higher.
- the upper limit of the heating temperature is, for example, below the boiling point of the solvent.
- the viscosity of the dispersion liquid according to the present embodiment may be appropriately set according to the use of the dispersion liquid and the like.
- its viscosity may be appropriately set according to the spinning method, and is, for example, 5,000 to 60,000 mPa ⁇ sec at 20 ° C. It may be 5,000 to 50,000 mPa ⁇ sec, 5,000 to 40,000 mPa ⁇ sec, 5,000 to 35,000 mPa ⁇ sec, and 5,000 to 20. It may be 5,000 mPa ⁇ sec, 5,000 to 15,000 mPa ⁇ sec, 5,000 to 10,000 mPa ⁇ sec, or the like.
- the viscosity of the spinning stock solution can be measured using, for example, the trade name "EMS viscometer" manufactured by Kyoto Electronics Industry Co., Ltd.
- the dispersion aid of one embodiment of the present invention is a dispersion aid for dispersing a silicate and / or a silicate mineral (layered silicate mineral and / or an organic layered silicate mineral) in an organic solvent. Yes, including modified fibroins. By providing the organic solvent with an appropriate viscosity with the modified fibroin, the silicate and / or silicate mineral can be easily dispersed in the organic solvent.
- the modified fibroin complex of one embodiment of the present invention comprises modified fibroin and silicates and / or organic layered silicate minerals.
- the composite is also a fiber, film, gel or porous body.
- the modified fibroin complex the modified fibroin and the silicate and / or the organic layered silicate mineral are physically mixed, and both are integrally formed into a molded product.
- silicates and / or organic layered silicate minerals are dispersed in the modified fibroin.
- it is preferred that the silicate and / or organic layered silicate mineral is uniformly dispersed in the modified fibroin.
- Modified fibroin, silicates and / or organic layered silicate minerals are as described above.
- the modified fibroin complex can be produced by the method for producing a modified fibroin complex described later.
- the total content of silicate and organic layered silicate mineral is 0.01% to 7% by weight, i.e. 0% by weight of the modified fibroin. It may be 0.01% by weight to 7% by weight, may be 0.05% by weight to 6% by weight, preferably 0.05% by weight to 5% by weight, more preferably 0.1% by weight to 5% by weight. Preferably, 0.3% by weight to 5% by weight is more preferable, 0.3% by weight to 4% by weight is more preferable, 0.3% by weight to 3.5% by weight is more preferable, and 0.4% by weight to 3% by weight.
- the modified fibroin complex of this embodiment has good moisture resistance.
- it has improved moisture resistance as compared to modified fibroin moldings that are not composited with silicates and / or organic layered silicate minerals.
- the humidity resistance means that the change in elongation (dimension change) with respect to humidity is suppressed, that is, the dimensional stability is high.
- the evaluation of moisture resistance can be evaluated by, for example, the change in elongation of the modified fibroin complex in a humidified environment.
- a fibrous molded body (fiber) of the modified fibroin composite for example, the fiber is allowed to stand in a device of DMA Q800 set to a temperature of 30 ° C. and a relative humidity of 0%, and a stress of 0.008 N is continuously applied. It can be evaluated by increasing the relative humidity from 0 to 90% at a rate of 1% / min and measuring the change in length at that time.
- the length with the modified fibroin molded body (fiber) not composited with the silicate and / or silicate mineral (layered silicate mineral and / or organic layered silicate mineral) measured under the same conditions. It can be evaluated by comparing the changes.
- the moisture resistance can be evaluated by, for example, measuring its dynamic viscoelastic property and evaluating the transition point of the storage elastic modulus with respect to relative humidity.
- the film is allowed to stand for 1 hour in a device of DMA Q800 (manufactured by TA Instruments Japan Co., Ltd.) set at a temperature of 30 ° C. and a relative humidity of 40%.
- the relative humidity is raised to 40 to 90% at a rate of 2% / min, and a sinusoidal strain of 1 Hz is applied to measure the dynamic viscoelastic properties (storage elastic modulus, loss elastic modulus and loss tangent).
- the transition point of the storage elastic modulus with respect to the relative humidity corresponds to the value of the relative humidity when the modified fibroin complex is deformed.
- the value can be calculated as an onset value of the storage elastic modulus curve.
- the evaluation of mechanical properties can be performed, for example, as follows.
- the composite (fiber) is placed in a device of DMA Q800 (manufactured by TA Instruments Japan Co., Ltd.) set at a temperature of 30 ° C. and a relative humidity of 25%. ) was allowed to stand for 30 minutes, and then a tensile test was performed at a load rate of 50 MPa / min. From the obtained SS curve, the tensile strength [MPa], breaking elongation [%] and toughness of the composite (fiber) [MJ / m 3 ] can be calculated respectively.
- the tensile strength, elongation at break and toughness were compared with the modified fibroin molded product (fiber) not composited with the silicate and / or the organic silicate mineral measured under the same conditions, and the relative value [%] was obtained. It can be evaluated by calculating.
- the modified fibroin complex of the present embodiment uses a specific organic solvent when preparing the modified fibroin dispersion, and by removing the solvent, the residual solvent is scarcely contained or the residual solution is sufficiently small ().
- a modified fibroin complex (with a residual amount in ppm) can be provided.
- the measurement of the residual organic solvent in the modified fibroin complex can be carried out as follows.
- the organic solvent is DMSO
- a 1,2-dichloroethane-formic acid solution having a concentration of 3,100 ppm (0.00310 mg / ml) is prepared as an internal standard.
- 500 ⁇ l of protein solution 0.1 g of modified fibroin complex dissolved in 10 ml formic acid
- 500 ⁇ l of internal standard solution 500 ⁇ l of internal standard solution.
- 1 H-NMR measurement about the same amount of acetonitrile deuterated solvent is added and diluted about 2 times, and H-NMR measurement is performed (NMR model: JEOL Ltd. JNM-ECX 100).
- the 1- and 2-dichloroethane H-NMR integrated intensities of the internal standard sample and the DMSO H-NMR integrated intensities are compared.
- To prepare a calibration curve prepare a DMSO-formic acid solution of 3 ppm to 3000 ppm, and prepare a calibration curve according to the above protocol.
- the DMSO concentration in the protein solution can be determined from the comparison with the calibration curve.
- the DMSO concentration measurement may be performed using a nuclear magnetic resonance apparatus (NMR) manufactured by JEOL Ltd.
- the method for producing a modified fibroin complex is a method for producing a modified fibroin complex containing a modified fibroin and a silicate and / or a silicate mineral, wherein the modified fibroin, the silicate and the modified fibroin complex are produced. / Or includes a step of removing the organic solvent from the dispersion containing the silicate mineral and the organic solvent. Modified fibroin, silicates and / or silicate minerals, and organic solvents, and dispersions containing them are as described above.
- the modified fibroin complex may be molded into, for example, fibers, films, gels or porous bodies.
- the modified fibroin composite is a fiber (fibrous molded body), it can be produced by a known wet spinning method, dry spinning method, dry wet spinning method, melt spinning method or the like.
- a spinning method for example, a dispersion liquid containing modified fibroin and a silicate and / or a silicate mineral and an organic solvent is used as a dope liquid for spinning, and the dispersion liquid is spun and spun (threads). ) Is obtained by removing the solvent.
- the modified fibroin complex is a film
- it is obtained by forming a film of a dispersion containing the modified fibroin and a silicate and / or a silicate mineral and an organic solvent, and removing the solvent from the formed film. ..
- a method for producing a film from a fibroin-derived protein is described in International Publication No. 2014/1037799, which is basically obtained according to this method.
- the modified fibroin complex is a gel
- it is obtained by forming a gel of a dispersion containing the modified fibroin and a silicate and / or a silicate mineral and an organic solvent, and removing the solvent from the formed gel. ..
- a method for producing a gel from a fibroin-derived protein is described in International Publication No. 2014/175177, which is basically obtained according to this method.
- the modified fibroin complex is a porous body
- a method for producing a porous body from a fibroin-derived protein is described in International Publication No. 2014/175178, which is basically obtained by this method.
- modified fibroin [1. Manufacture of modified fibroin] (1) Preparation of expression vector A modified fibroin having SEQ ID NO: 15 (hereinafter, also referred to as “PRT799”) based on the nucleotide sequence and amino acid sequence of fibroin (GenBank accession number: P4684.1, GI: 11744415) derived from Nephila clavipes. , A modified fibroin having SEQ ID NO: 37 (hereinafter, also referred to as “PRT918”), and a modified fibroin having SEQ ID NO: 40 (hereinafter, also referred to as “PRT966”) were designed.
- the amino acid sequence shown in SEQ ID NO: 15 has an amino acid sequence obtained by substituting, inserting and deleting amino acid residues for the purpose of improving productivity with respect to the amino acid sequence of fibroin derived from Nephila clavipes. Further, the amino acid sequence (tag sequence and hinge sequence) shown by SEQ ID NO: 11 is added to the N-terminal.
- the amino acid sequence shown in SEQ ID NO: 37 has an amino acid sequence in which all QQs in the amino acid sequence shown in SEQ ID NO: 7 are replaced with VF and the remaining Qs are replaced with I for the purpose of improving hydrophobicity. Further, the amino acid sequence shown by SEQ ID NO: 11 is added to the N-terminal.
- amino acid sequence shown by SEQ ID NO: 40 is an amino acid sequence in which all QQs in the amino acid sequence shown in SEQ ID NO: 9 are replaced with VF and the remaining Qs are replaced with I for the purpose of improving the hydrophobicity.
- amino acid sequence shown by SEQ ID NO: 11 is added to the N-terminal.
- nucleic acids encoding modified fibroin (modified spider silk fibroin) PRT799, PRT918 and PRT966 having the designed amino acid sequences of SEQ ID NO: 15, SEQ ID NO: 37 and SEQ ID NO: 40 were synthesized.
- the nucleic acid had an NdeI site at the 5'end and an EcoRI site downstream of the stop codon.
- the nucleic acid was cloned into a cloning vector (pUC118). Then, the nucleic acid was cut out by restriction enzyme treatment with NdeI and EcoRI, and then recombined with the protein expression vector pET-22b (+) to obtain an expression vector.
- the seed culture solution was added to a jar fermenter to which 500 mL of the production medium (Table 5) was added so that the OD 600 was 0.05.
- the temperature of the culture solution was maintained at 37 ° C., and the cells were cultured at a constant pH of 6.9.
- the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
- the feed solution (glucose 455 g / 1 L, Yeast Extract 120 g / 1 L) was added at a rate of 1 mL / min.
- the temperature of the culture solution was maintained at 37 ° C., and the cells were cultured at a constant pH of 6.9. Further, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration, and the culture was carried out for 20 hours. Then, 1 M of isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce the expression of modified fibroin.
- IPTG isopropyl- ⁇ -thiogalactopyranoside
- the washed precipitate was suspended in 8M guanidine buffer (8M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) to a concentration of 100 mg / mL at 60 ° C. was stirred with a stirrer for 30 minutes to dissolve.
- dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.).
- the white aggregated protein obtained after dialysis was recovered by centrifugation, water was removed by a lyophilizer, and the lyophilized powder was recovered to obtain modified fibroin (PRT799, PRT918 and PRT966).
- the content of the filler was 3% by weight based on the modified fibroin.
- the viscosity of each prepared dispersion and the dispersibility of the filler are shown in Table 6 and FIG.
- SiO 2 specific surface area 300 m 2 / g
- bentonite (Bengel, cation exchange capacity: 93 meq / 100 g, length: 500 nm, width: 3 to 5 nm intercalation: Na + )
- Organic bentonite S-BEN NX, cation exchange capacity: 93meq / 100g, length: 500nm, width: 3-5nm Intercalation: [(CH 3 ) (CH 2 ) 17 ] 2 N + (CH 3 ) 2 ) Was manufactured by Hojun Co., Ltd.
- the viscosity of the modified fibroin dispersion containing silicate (SiO 2 ) and layered silicate minerals (purified bentonite and organic bentonite) increased. Further, as shown in Table 6 and FIG. 6, the silicate (SiO 2 ) showed good dispersibility in the formic acid and the modified fibroin solution. On the other hand, the layered silicate minerals (purified bentonite and organic bentonite) were precipitated in formic acid, but showed good dispersibility in the modified fibroin solution in which modified fibroin was added to formic acid. It was shown that the modified fibroin served as a dispersion aid.
- doping solution (dispersion solution) 2.4 g of modified fibroin powder (PRT799) obtained in the above purification step, 12 mg of organic bentonite (S-BEN NX, manufactured by Hojun Co., Ltd.) organically modified with dimethyldioctadecylammonium as a layered silicate mineral, and formic acid. 7.6 g was added as a solvent, and then the mixture was stirred at 40 ° C. for 3 hours.
- a dope solution (Example 4) was prepared by filtering with a metal filter having a mesh size of 3 ⁇ m.
- the content of organic bentonite in the dope solution was 0.18% by weight based on the modified fibroin, and the viscosity of the dope solution at 40 ° C. was 5,350 cP.
- the content of the modified fibroin was 24% by weight based on the total amount of the doping solution.
- the content of organic bentonite was calculated from the amount of residual inorganic substances when the fiber obtained in the next step (2) was burned at 650 ° C.
- a doping solution (Example 5) was prepared in the same manner as described above except that filtration with a metal filter was not performed.
- the content of organic bentonite in the doping solution was 0.46% by weight based on the modified fibroin.
- a dope solution was prepared in the same manner as described above except that organic bentonite was not added.
- the viscosity of the doping solution at 40 ° C. was 4,700 cP.
- the coagulated raw yarn was stretched in a water washing bath. After washing and stretching in a water washing bath, the obtained modified fibroin fiber (modified fibroin composite) was wound up using a tabletop spinning device. The wound fibers were allowed to air dry overnight in a draft.
- the conditions for wet spinning were as follows. Extruded nozzle diameter: 0.2 mm Coagulant: Methanol Coagulant temperature: 25 ° C Stretching ratio in water washing bath: 6 times Water wash bath temperature: 25 ° C
- the modified fibroin complex (fiber) complexed with organic bentonite which is a layered silicate mineral, has excellent strength and toughness while maintaining elongation. An effect was obtained (Example 4).
- the modified fibroin composites (fibers, Examples 4 and 5) compounded with organic bentonite, which is a layered silicate mineral, are different from the uncomposited modified fibroin fibers (Comparative Example 5).
- the change in elongation (change in size) with respect to humidity was suppressed, and the dimensional stability was improved. It was shown that the moisture resistance of the modified fibroin complex (fiber) was improved by combining the modified fibroin with a clay mineral.
- the modified fibroin dispersion was prepared by stirring the modified fibroin solution and the filler at room temperature for 3 hours.
- the content of the modified fibroin was 13.6% by weight based on the total amount of the doping solution.
- the content of the filler with respect to the modified fibroin is as shown in Table 8.
- Table 8 shows the viscosity of each of the prepared dispersions and the dispersibility of the filler.
- the filler did not settle even after standing for 3 hours and the clear dispersion was well dispersed ( ⁇ ), and the filler did not settle even after standing for 3 hours, but the dispersion became turbid. Those with turbidity were evaluated as turbid dispersion ( ⁇ ), and those with the filler settled after standing for 3 hours were evaluated as poor dispersion (x).
- RC-G (montmorillonite, cation exchange capacity: 40 meq / 100 g, length: 300 nm, width: 3 to 5 nm, intercalation: NH 4 + ), smecton-SAN (organic synthetic hectorite, used as filler).
- dispersion dispersion
- the prepared dispersion was cast on a polyethylene terephthalate substrate, formed into a film using a doctor blade (BEVS industrial Co. LTD), and dried at 70 ° C. for 12 hours to form a film having a thickness of 50 ⁇ m. Further, the film was impregnated in a water bath for 30 minutes, the water was replaced, and the film was impregnated again for 30 minutes. This operation was repeated, and the film was impregnated in a water bath for a total of 90 minutes to remove the solvent. It was allowed to stand in a constant temperature and humidity chamber at 30 ° C. and a relative humidity of 60% for 3 hours for equilibration (Example 6).
- Example 6 and Example 6 except that silicon dioxide (AEROSIL (registered trademark) 300, specific surface area 300 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.) as a silicate was used and the content with respect to modified fibroin was set to 3% by weight.
- a film composited with silicon dioxide was prepared in the same procedure (Example 7).
- Example 6 As a control, a film containing only modified fibroin was prepared in the same manner as in Example 6 except that no layered silicate mineral was added (Comparative Example 6).
- kaolinite manufactured by Hayashi Kasei Co., Ltd.
- a film was prepared in the same procedure (Example 8).
- the transition point of the storage elastic modulus with respect to the relative humidity corresponds to the value of the relative humidity when the modified fibroin complex is deformed.
- the value was calculated as an onset value of the storage elastic modulus curve.
- modified fibroin complexes (Examples 6 and 7) complexed with organic smectite, which is a layered silicate mineral, and modified fibroin complexed with silicon dioxide, which is a silicate.
- the elastic modulus was improved at the same temperature and the same relative humidity as compared with the modified fibroin film (Comparative Example 6) which was not composited, and the elastic modulus was higher under higher humidity. The elastic modulus was maintained. It was confirmed that the moisture resistance was improved by combining with a layered silicate mineral or a silicate.
- the values in Table 10 are the ratio of the ⁇ -sheet structure to the ⁇ -helix structure, and the larger the value, the larger the ratio of the ⁇ -sheet structure.
- the peak position derived from carbon (C) at the ⁇ -position of the alanine residue in the modified fibroin changes due to the secondary structure change, and appears at around 21 ppm in the ⁇ -sheet structure and around 16 ppm in the ⁇ -helix structure.
- the modified fibroin complex complexed with the layered silicate mineral has a reduced number of peaks attributed to the ⁇ -helix structure compared to the uncomposited modified fibroin film.
- the peaks attributed to the ⁇ -sheet structure were increasing.
- the layered silicate mineral acted as a crystal nucleating agent for modified fibroin.
- the content of the layered silicate mineral with respect to the modified fibroin of the measured film was set to 3% by weight.
- 12-aminolauric acid (12-ALA) (twice the cation exchange capacity of Kunipia-F), 0.25 ml of concentrated hydrochloric acid, and 50 ml of pure water were added and heated.
- a solution of 12-ALA was added to the dispersion of Kunipia-F, and the mixture was stirred at 60 ° C. for 6 hours.
- the product obtained by centrifugation was washed 3 times with 50 ml of hot water and dried overnight in a vacuum oven at 80 ° C. to obtain a product (12-MMT).
- Table 16 shows the dispersibility of the filler of each of the prepared dispersions.
- the filler did not settle even after standing for 3 hours and the clear dispersion was well dispersed ( ⁇ ), and the filler did not settle even after standing for 3 hours, but the dispersion became turbid.
- Those with turbidity were evaluated as turbid dispersion ( ⁇ ), and those with the filler settled after standing for 3 hours were evaluated as poor dispersion (x).
- the modified fibroin (PRT799) powder obtained in the above purification step and formic acid were mixed to prepare a 20% by mass modified fibroin solution.
- the NCH obtained above was added to this solution, and the mixture was stirred for 6 hours to prepare a doping solution (dispersion solution).
- the final concentrations of NCH with respect to the modified fibroin of each doping solution were 0.5% by mass, 1.0% by mass and 3.0% by mass, respectively (Examples 10 to 12).
- Each doping solution was cast on a glass substrate, the film thickness was adjusted using a doctor blade, the mixture was naturally dried overnight, and then washed with pure water three times. The film obtained was about 200 micrometers thick.
- a film containing only modified fibroin was prepared in the same manner as in Examples 10 to 12 except that a layered silicate mineral (polyamide-based polymer clay hybrid) was not added (Comparative Example 8).
- the modified fibroin composite (Examples 10 to 12) compounded with the polyamide-based polymer clay hybrid (nylon 6 clay hybrid), which is an organic layered silicate mineral, is not modified.
- the elastic modulus was improved at the same temperature and the same relative humidity, and the higher elastic modulus was maintained under higher humidity. Furthermore, improvement in tensile strength and elongation at break was also observed. It was confirmed that the moisture resistance was improved by complexing the modified fibroin with the layered silicate mineral.
- the obtained undiluted spinning solution is heated to 90 ° C., filtered through a metal filter having a mesh size of 5 ⁇ m, then allowed to stand in a 30 mL stainless syringe to defoam, and then 100 weights from a solid nozzle having a needle diameter of 0.2 mm. % Methanol was discharged into a coagulation bath. The discharge temperature was 90 ° C. After solidification, the obtained raw yarn was wound up and air-dried to obtain modified fibroin fiber (raw material fiber).
- a knitted fabric (thickness: 180 denier, gauge number: 18) was produced by circular knitting using a circular knitting machine using twisted yarn obtained by twisting raw material fibers. 20 g of the obtained knitted fabric was cut out and used as a test piece.
- the flammability test was based on the "test method for synthetic resin with powdery granules or low melting point" described in "Fire Danger No. 50 (dated May 31, 1995)". The test was carried out under the conditions of a temperature of 22 ° C., a relative humidity of 45% and an atmospheric pressure of 1021 hPa. Table 11 shows the measurement results (oxygen concentration (%), combustion rate (%), converted combustion rate (%)).
- the critical oxygen index (LOI) value of the knitted fabric knitted with the modified fibroin (PRT799) fiber was 27.2.
- the LOI value is 26 or more, it is known to be flame-retardant. It can be seen that the modified fibroin is excellent in flame retardancy.
- the obtained undiluted spinning solution is heated to 60 ° C., filtered through a metal filter having a mesh size of 5 ⁇ m, then allowed to stand in a 30 mL stainless syringe to defoam, and then 100 weights from a solid nozzle having a needle diameter of 0.2 mm. % Methanol was discharged into a coagulation bath. The discharge temperature was 60 ° C. After solidification, the obtained raw yarn was wound up and air-dried to obtain modified fibroin fiber (raw material fiber).
- Each knitted fabric was produced by weft knitting using a weft knitting machine using each raw material fiber.
- Table 12 shows the thickness and the number of gauges of the knitted fabric using PRT918 fiber or PRT799 fiber. The thickness and the number of gauges of the knitted fabric using the other raw material fibers were adjusted so as to have almost the same coverage factor as the knitted fabric of the modified fibroin fiber. Specifically, it is as follows.
- test piece Two knitted fabrics cut into 10 cm ⁇ 10 cm were put together, and the four sides were sewn together to form a test piece (sample).
- the test piece is left in a low humidity environment (temperature 20 ⁇ 2 ° C., relative humidity 40 ⁇ 5%) for 4 hours or more, and then transferred to a high humidity environment (temperature 20 ⁇ 2 ° C., relative humidity 90 ⁇ 5%).
- the temperature was measured at 1-minute intervals for 30 minutes using a temperature sensor attached to the center of the inside.
- FIG. 10 is a graph showing an example of the results of the hygroscopic heat generation test.
- the horizontal axis of the graph is 0 when the sample is moved from the low humidity environment to the high humidity environment, and indicates the leaving time (minutes) in the high humidity environment.
- the vertical axis of the graph shows the temperature (sample temperature) measured by the temperature sensor.
- the point indicated by M corresponds to the maximum value of the sample temperature.
- Table 13 shows the calculation results of the maximum heat absorption and heat generation of each knitted fabric.
- the modified fibroin (PRT918 and PRT799) has a higher maximum degree of heat absorption and heat generation and is excellent in heat absorption and heat generation as compared with the existing materials.
- the obtained undiluted spinning solution is heated to 60 ° C., filtered through a metal filter having a mesh size of 5 ⁇ m, then allowed to stand in a 30 mL stainless syringe to defoam, and then 100 weights from a solid nozzle having a needle diameter of 0.2 mm. % Methanol was discharged into a coagulation bath. The discharge temperature was 60 ° C. After solidification, the obtained raw yarn was wound up and air-dried to obtain modified fibroin fiber (raw material fiber).
- Each knitted fabric was produced by weft knitting using a weft knitting machine using each raw material fiber.
- the count, number of twists, number of gauges, and basis weight of the knitted fabric using PRT966 fiber or PRT799 fiber are as shown in Table 14.
- the knitted fabric using other raw material fibers was adjusted so as to have almost the same coverage factor as the knitted fabric of the modified fibroin fiber. Specifically, it is as follows.
- the heat retention was evaluated by using a KES-F7 Thermolab II testing machine manufactured by Kato Tech Co., Ltd. and using a dry contact method (a method assuming direct contact between the skin and clothes in a dry state).
- a dry contact method a method assuming direct contact between the skin and clothes in a dry state.
- One knitted fabric cut into a rectangle of 20 cm ⁇ 20 cm was used as a test piece (sample).
- the test piece was set on a hot plate set at a constant temperature (30 ° C.), and the amount of heat (a) dissipated through the test piece was determined under the condition of a wind speed of 30 cm / sec in the wind tunnel.
- the amount of heat (b) dissipated under the same conditions as above was determined without setting the test piece, and the heat retention rate (%) was calculated according to the following formula B.
- Heat retention rate (%) (1-a / b) x 100 From the measurement results, the heat retention index was calculated according to the following formula C.
- Heat retention index heat retention rate (%) / sample basis weight (g / m 2 )
- the modified fibroin (PRT966 and PRT799) has a higher heat retention index and is excellent in heat retention as compared with the existing materials.
- the modified fibroin when the modified fibroin is the modified spider silk fibroin, it can be made more excellent in heat retention, hygroscopic heat generation and / or flame retardancy.
- a complex By forming a complex using the modified spider silk fibroin, a complex having excellent heat retention, hygroscopic heat generation and / or flame retardancy, and extremely excellent moisture resistance can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Toxicology (AREA)
- Peptides Or Proteins (AREA)
Abstract
本発明は、湿度依存性が低減された、すなわち、耐湿性が向上した改変フィブロイン複合体及びその製造に有用な分散液を提供することを目的とする。また、湿度依存性が低減された改変フィブロイン複合体及びその製造方法の提供を目的とする。本発明の分散液は、改変フィブロインと、ケイ酸塩及び/又はケイ酸塩鉱物と、有機溶媒とを含む。本発明の改変フィブロイン複合体は、改変フィブロインとケイ酸塩及び/又は有機層状ケイ酸塩鉱物と、を含み、繊維、フィルム、ゲル又は多孔質体である。
Description
本発明は、改変フィブロイン複合体及びその製造方法に関する。
フィブロイン素材の優位性を活用した産業用材料化プロセスの検討がなされている。フィブロイン素材を代表する天然のクモの牽引糸は、水分との接触時や、相対湿度が60%を超える環境下では、牽引糸の直径が膨張して長さが約50%収縮する、超収縮が生じることが報告されている(非特許文献1)。このような超収縮を生じる天然クモ糸由来の組み換えタンパク質繊維も報告されている(特許文献1)。
しかしながら、産業用途によっては、非特許文献1及び特許文献1に開示されるような湿度変化に対する機械的性質の変化が大きな材料は、好ましくない場合があり、湿度依存性が低減された材料が求められる場合がある。
一方、フィブロイン素材と他の素材との併用の検討もなされている。非特許文献2には、組み換えスパイダーシルク(eADF4)と合成層状ケイ酸ナトリウムヘクトライト([Na0.5][Li0.5Mg2.5][Si4]O10F2)のコンポジットフィルムが開示されている。このコンポジットフィルムは強度が向上し、またフィルムの不溶化効果、ベータシート構造含有量の増加効果、酸素と水蒸気に対するガスバリア性向上効果、及び弾性率向上効果を有すると開示されている。しかしながら、このコンポジットフィルムは伸度及びタフネスの低下が問題点である。
非特許文献3には、金属水溶液(Al(CH3)3[trimethylaluminum(TMA)]/H2O又はTi(OCH(CH3)2)4[titanium(IV) isopropoxide(TIP)]/H2O)と原子層堆積(ALD)を組み合わせた多重パルス気相浸透により、亜鉛、チタン、アルミニウムをクモドラグラインシルクに浸透させ、靭性を大幅に向上させることが開示されている。しかしながら、特殊な設備が必要とされるうえ、甚大な表面積を有する繊維全表面に多重パルス気相浸透処理を行うことは、およそ実用的ではない。
特許文献2には、ポリペプチドと無機物を含有する組成物のモールド成形体が開示されており、ポリペプチドとしては、構造タンパク質(クモ糸フィブロイン)が、無機物としては、金属酸化物(酸化チタン)又は粘土鉱物(スメクタイト)が開示されている。
Lukas Eisoldt et.al,materialstoday, March 2011,Volume 14, Issue 3, pages 80-86
Elena Doblhofer et al., StructuralInsights into Water-Based Spider Silk Protein-Nanoclay Composites withExcellent Gas and Water Vapor Barrier Properties, ACS Appl. Mater. Interfaces2016, 8, 25535-25543
Seung-Mo Lee et al., GreatlyIncreased Toughness of Infiltrated Spider Silk, 24 APRIL 2009 VOL 324 SCIENCE,488-492
本発明は、湿度依存性が低減された、すなわち、耐湿性が向上した改変フィブロイン複合体及びその製造に有用な分散液を提供することを目的とする。また、湿度依存性が低減された改変フィブロイン複合体及びその製造方法の提供を目的とする。
本発明は、例えば、以下の各発明に関する。
[1]
改変フィブロインと、ケイ酸塩及び/又はケイ酸塩鉱物と、有機溶媒と、を含む、分散液。
[2]
上記ケイ酸塩及び上記ケイ酸塩鉱物の合計含有量が、上記改変フィブロインに対して0.01重量%~7重量%である、[1]に記載の分散液。
[3]
上記ケイ酸塩鉱物が、スメクタイト、ベントナイト又はカオリナイトであり、上記ケイ酸塩が、二酸化ケイ素である、[1]又は[2]に記載の分散液。
[4]
前記ケイ酸塩鉱物が、有機層状ケイ酸塩鉱物である、[1]~[3]のいずれかに記載の分散液。
[5]
上記有機層状ケイ酸塩鉱物が、有機スメクタイト又は有機ベントナイトである、[1]~[4]のいずれかに記載の分散液。
[6]
上記有機溶媒が、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリドン、N-メチル-2-ピロリドン、アセトニトリル、N-メチルモルホリンN-オキシド及びギ酸からなる群より選ばれる少なくとも1種である、[1]~[5]のいずれかに記載の分散液。
[7]
改変フィブロインを含む、ケイ酸塩及び/又はケイ酸塩鉱物を有機溶媒に分散させるための分散助剤。
[8]
改変フィブロインとケイ酸塩及び/又は有機層状ケイ酸塩鉱物とを含み、繊維、フィルム、ゲル又は多孔質体である、改変フィブロイン複合体。
[9]
上記ケイ酸塩及び/又は上記有機層状ケイ酸塩鉱物の含有量が、上記改変フィブロインに対して0.01重量%~7重量%である、[8]に記載の改変フィブロイン複合体。
[10]
上記有機層状ケイ酸塩鉱物が、有機スメクタイト及び有機ベントナイトからなる群より選択される少なくとも1種であり、上記ケイ酸塩が二酸化ケイ素である、[8]又は[9]に記載の改変フィブロイン複合体。
[11]
上記有機スメクタイトが、有機モンモリロナイト及び有機ヘクトライトからなる群より選択される少なくとも1種である、[8]~[10]のいずれかに記載の改変フィブロイン複合体。
[12]
上記有機層状ケイ酸塩鉱物に含まれる有機化合物がポリアミド系ポリマー又は有機カチオンである、[8]~[11]のいずれかに記載の改変フィブロイン複合体。
[13]
上記ポリアミド系ポリマーがn-ナイロン及びn,m-ナイロンからなる群より選択される少なくとも1種であり、上記有機カチオンが長鎖アルキル基を有する1~4級のアルキルアンモニウムイオン及びアルキルピリジニウムイオンからなる群より選択される少なくとも1種である、[8]~[12]のいずれかに記載の改変フィブロイン複合体。
[14]
上記複合体が、繊維又はフィルムである、[8]~[13]のいずれかに記載の改変フィブロイン複合体。
[15]
残存有機溶媒をさらに含む、[8]~[14]のいずれかに記載の改変フィブロイン複合体。
[16]
改変フィブロインとケイ酸塩及び/又はケイ酸塩鉱物とを含む改変フィブロイン複合体の製造方法であって、上記改変フィブロインと上記ケイ酸塩及び/又は上記ケイ酸塩鉱物と有機溶媒と、を含む分散液から上記有機溶媒を除去する工程を含む、改変フィブロイン複合体の製造方法。
[17]
上記ケイ酸塩が二酸化ケイ素であり、上記ケイ酸塩鉱物がスメクタイト、ベントナイト及びカオリナイトからなる群より選択される少なくとも1種である、[16]に記載の改変フィブロイン複合体の製造方法。
[18]
前記ケイ酸塩鉱物が有機層状ケイ酸塩鉱物である、[16]又は[17]に記載の改変フィブロイン複合体の製造方法。
[19]
上記有機層状ケイ酸塩鉱物が有機スメクタイト及び有機ベントナイトからなる群より選択される少なくとも1種である、[16]~[18]のいずれかに記載の改変フィブロイン複合体の製造方法。
[20]
上記有機溶媒が、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリドン、N-メチル-2-ピロリドン、アセトニトリル、N-メチルモルホリンN-オキシド及びギ酸からなる群より選ばれる少なくとも1種である、[16]~[19]のいずれかに記載の改変フィブロイン複合体の製造方法。
[21]
上記ケイ酸塩及び/又は上記ケイ酸塩鉱物の含有量が、上記改変フィブロインに対して0.01重量%~7重量%である、[16]~[20]のいずれかに記載の改変フィブロイン複合体の製造方法。
[22]
上記複合体が繊維、フィルム、ゲル又は多孔質体である、[16]~[21]のいずれかに記載の改変フィブロイン複合体の製造方法。
[23]
上記複合体が、繊維又はフィルムである、[16]~[22]のいずれかに記載の改変フィブロイン複合体の製造方法。
[1]
改変フィブロインと、ケイ酸塩及び/又はケイ酸塩鉱物と、有機溶媒と、を含む、分散液。
[2]
上記ケイ酸塩及び上記ケイ酸塩鉱物の合計含有量が、上記改変フィブロインに対して0.01重量%~7重量%である、[1]に記載の分散液。
[3]
上記ケイ酸塩鉱物が、スメクタイト、ベントナイト又はカオリナイトであり、上記ケイ酸塩が、二酸化ケイ素である、[1]又は[2]に記載の分散液。
[4]
前記ケイ酸塩鉱物が、有機層状ケイ酸塩鉱物である、[1]~[3]のいずれかに記載の分散液。
[5]
上記有機層状ケイ酸塩鉱物が、有機スメクタイト又は有機ベントナイトである、[1]~[4]のいずれかに記載の分散液。
[6]
上記有機溶媒が、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリドン、N-メチル-2-ピロリドン、アセトニトリル、N-メチルモルホリンN-オキシド及びギ酸からなる群より選ばれる少なくとも1種である、[1]~[5]のいずれかに記載の分散液。
[7]
改変フィブロインを含む、ケイ酸塩及び/又はケイ酸塩鉱物を有機溶媒に分散させるための分散助剤。
[8]
改変フィブロインとケイ酸塩及び/又は有機層状ケイ酸塩鉱物とを含み、繊維、フィルム、ゲル又は多孔質体である、改変フィブロイン複合体。
[9]
上記ケイ酸塩及び/又は上記有機層状ケイ酸塩鉱物の含有量が、上記改変フィブロインに対して0.01重量%~7重量%である、[8]に記載の改変フィブロイン複合体。
[10]
上記有機層状ケイ酸塩鉱物が、有機スメクタイト及び有機ベントナイトからなる群より選択される少なくとも1種であり、上記ケイ酸塩が二酸化ケイ素である、[8]又は[9]に記載の改変フィブロイン複合体。
[11]
上記有機スメクタイトが、有機モンモリロナイト及び有機ヘクトライトからなる群より選択される少なくとも1種である、[8]~[10]のいずれかに記載の改変フィブロイン複合体。
[12]
上記有機層状ケイ酸塩鉱物に含まれる有機化合物がポリアミド系ポリマー又は有機カチオンである、[8]~[11]のいずれかに記載の改変フィブロイン複合体。
[13]
上記ポリアミド系ポリマーがn-ナイロン及びn,m-ナイロンからなる群より選択される少なくとも1種であり、上記有機カチオンが長鎖アルキル基を有する1~4級のアルキルアンモニウムイオン及びアルキルピリジニウムイオンからなる群より選択される少なくとも1種である、[8]~[12]のいずれかに記載の改変フィブロイン複合体。
[14]
上記複合体が、繊維又はフィルムである、[8]~[13]のいずれかに記載の改変フィブロイン複合体。
[15]
残存有機溶媒をさらに含む、[8]~[14]のいずれかに記載の改変フィブロイン複合体。
[16]
改変フィブロインとケイ酸塩及び/又はケイ酸塩鉱物とを含む改変フィブロイン複合体の製造方法であって、上記改変フィブロインと上記ケイ酸塩及び/又は上記ケイ酸塩鉱物と有機溶媒と、を含む分散液から上記有機溶媒を除去する工程を含む、改変フィブロイン複合体の製造方法。
[17]
上記ケイ酸塩が二酸化ケイ素であり、上記ケイ酸塩鉱物がスメクタイト、ベントナイト及びカオリナイトからなる群より選択される少なくとも1種である、[16]に記載の改変フィブロイン複合体の製造方法。
[18]
前記ケイ酸塩鉱物が有機層状ケイ酸塩鉱物である、[16]又は[17]に記載の改変フィブロイン複合体の製造方法。
[19]
上記有機層状ケイ酸塩鉱物が有機スメクタイト及び有機ベントナイトからなる群より選択される少なくとも1種である、[16]~[18]のいずれかに記載の改変フィブロイン複合体の製造方法。
[20]
上記有機溶媒が、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリドン、N-メチル-2-ピロリドン、アセトニトリル、N-メチルモルホリンN-オキシド及びギ酸からなる群より選ばれる少なくとも1種である、[16]~[19]のいずれかに記載の改変フィブロイン複合体の製造方法。
[21]
上記ケイ酸塩及び/又は上記ケイ酸塩鉱物の含有量が、上記改変フィブロインに対して0.01重量%~7重量%である、[16]~[20]のいずれかに記載の改変フィブロイン複合体の製造方法。
[22]
上記複合体が繊維、フィルム、ゲル又は多孔質体である、[16]~[21]のいずれかに記載の改変フィブロイン複合体の製造方法。
[23]
上記複合体が、繊維又はフィルムである、[16]~[22]のいずれかに記載の改変フィブロイン複合体の製造方法。
本発明によれば、耐湿性が向上した改変フィブロイン複合体及びその製造に有用な分散液を提供することができる。また、耐湿性が向上した改変フィブロイン複合体及びその製造方法を提供することができる。
〔分散液〕
本発明の一実施形態の分散液は、改変フィブロインと、ケイ酸塩及び/又はケイ酸塩鉱物と、有機溶媒と、を含む。本実施形態の分散液は、耐湿性が向上した改変フィブロイン複合体を製造するための分散液である。該分散液を用いて得られた改変フィブロイン複合体は、ケイ酸塩及び/又はケイ酸塩鉱物を含まない改変フィブロイン成形体に比べて、低減された湿度依存性、すなわち、向上した耐湿性を有する。
本発明の一実施形態の分散液は、改変フィブロインと、ケイ酸塩及び/又はケイ酸塩鉱物と、有機溶媒と、を含む。本実施形態の分散液は、耐湿性が向上した改変フィブロイン複合体を製造するための分散液である。該分散液を用いて得られた改変フィブロイン複合体は、ケイ酸塩及び/又はケイ酸塩鉱物を含まない改変フィブロイン成形体に比べて、低減された湿度依存性、すなわち、向上した耐湿性を有する。
<改変フィブロイン>
本実施形態に係る改変フィブロインは、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。改変フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。なお、本実施形態において、改変フィブロインが改変クモ糸フィブロインであると、保温性、吸湿発熱性及び/又は難燃性がより優れるものとなる。
本実施形態に係る改変フィブロインは、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。改変フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。なお、本実施形態において、改変フィブロインが改変クモ糸フィブロインであると、保温性、吸湿発熱性及び/又は難燃性がより優れるものとなる。
本明細書において「改変フィブロイン」とは、人為的に製造されたフィブロイン(人造フィブロイン)を意味する。改変フィブロインは、そのドメイン配列が、天然由来のフィブロインのアミノ酸配列とは異なるフィブロインであってもよく、天然由来のフィブロインのアミノ酸配列と同一であるフィブロインであってもよい。本明細書でいう「天然由来のフィブロイン」もまた、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。
「改変フィブロイン」は、天然由来のフィブロインのアミノ酸配列をそのまま利用したものであってもよく、天然由来のフィブロインのアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のフィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のフィブロインに依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。なお、本実施形態において、改変フィブロインとして、保温性、吸湿発熱性及び/又は難燃性にも優れることから、好ましくは改変クモ糸フィブロインが用いられる。
本明細書において「ドメイン配列」とは、フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)nモチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるアミノ酸配列を意味する。ここで、(A)nモチーフは、アラニン残基を主とするアミノ酸配列を示し、アミノ酸残基数は2~27である。(A)nモチーフのアミノ酸残基数は、2~20、4~27、2~27、8~20、10~20、4~16、8~16、又は10~16の整数であってよい。また、(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)nモチーフは、少なくとも7つがアラニン残基のみで構成されてもよい。REPは2~200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10~200アミノ酸残基から構成されるアミノ酸配列であってもよく、10~40、10~60、10~80、10~100、10~120、10~140、10~160、又は1~180アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2~300の整数を示し、8~300又は10~300、20~300、40~300、60~300、80~300、10~200、20~200、20~180、20~160、20~140又は20~120の整数であってもよい。複数存在する(A)nモチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
本実施形態に係る改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列に対し、例えば、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行うことで得ることができる。アミノ酸残基の置換、欠失、挿入及び/又は付加は、部分特異的突然変異誘発法等の当業者に周知の方法により行うことができる。具体的には、Nucleic Acid Res.10,6487(1982)、Methods in Enzymology,100,448(1983)等の文献に記載されている方法に準じて行うことができる。
天然由来のフィブロインは、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質であり、具体的には、例えば、昆虫又はクモ類が産生するフィブロインが挙げられる。
昆虫が産生するフィブロインとしては、例えば、ボンビックス・モリ(Bombyx mori)、クワコ(Bombyx mandarina)、天蚕(Antheraea yamamai)、柞蚕(Anteraea pernyi)、楓蚕(Eriogyna pyretorum)、蓖蚕(Pilosamia Cynthia ricini)、樗蚕(Samia cynthia)、栗虫(Caligura japonica)、チュッサー蚕(Antheraea mylitta)、ムガ蚕(Antheraea assama)等のカイコが産生する絹タンパク質、及びスズメバチ(Vespa simillima xanthoptera)の幼虫が吐出するホーネットシルクタンパク質が挙げられる。
昆虫が産生するフィブロインのより具体的な例としては、例えば、カイコ・フィブロインL鎖(GenBankアクセッション番号M76430(塩基配列)、及びAAA27840.1(アミノ酸配列))が挙げられる。
クモ類が産生するフィブロインとしては、例えば、オニグモ、ニワオニグモ、アカオニグモ、アオオニグモ及びマメオニグモ等のオニグモ属(Araneus属)に属するクモ、ヤマシロオニグモ、イエオニグモ、ドヨウオニグモ及びサツマノミダマシ等のヒメオニグモ属(Neoscona属)に属するクモ、コオニグモモドキ等のコオニグモモドキ属(Pronus属)に属するクモ、トリノフンダマシ及びオオトリノフンダマシ等のトリノフンダマシ属(Cyrtarachne属)に属するクモ、トゲグモ及びチブサトゲグモ等のトゲグモ属(Gasteracantha属)に属するクモ、マメイタイセキグモ及びムツトゲイセキグモ等のイセキグモ属(Ordgarius属)に属するクモ、コガネグモ、コガタコガネグモ及びナガコガネグモ等のコガネグモ属(Argiope属)に属するクモ、キジロオヒキグモ等のオヒキグモ属(Arachnura属)に属するクモ、ハツリグモ等のハツリグモ属(Acusilas属)に属するクモ、スズミグモ、キヌアミグモ及びハラビロスズミグモ等のスズミグモ属(Cytophora属)に属するクモ、ゲホウグモ等のゲホウグモ属(Poltys属)に属するクモ、ゴミグモ、ヨツデゴミグモ、マルゴミグモ及びカラスゴミグモ等のゴミグモ属(Cyclosa属)に属するクモ、及びヤマトカナエグモ等のカナエグモ属(Chorizopes属)に属するクモが産生するスパイダーシルクタンパク質、並びにアシナガグモ、ヤサガタアシナガグモ、ハラビロアシダカグモ及びウロコアシナガグモ等のアシナガグモ属(Tetragnatha属)に属するクモ、オオシロカネグモ、チュウガタシロカネグモ及びコシロカネグモ等のシロカネグモ属(Leucauge属)に属するクモ、ジョロウグモ及びオオジョロウグモ等のジョロウグモ属(Nephila属)に属するクモ、キンヨウグモ等のアズミグモ属(Menosira属)に属するクモ、ヒメアシナガグモ等のヒメアシナガグモ属(Dyschiriognatha属)に属するクモ、クロゴケグモ、セアカゴケグモ、ハイイロゴケグモ及びジュウサンボシゴケグモ等のゴケグモ属(Latrodectus属)に属するクモ、及びユープロステノプス属(Euprosthenops属)に属するクモ等のアシナガグモ科(Tetragnathidae科)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。スパイダーシルクタンパク質としては、例えば、MaSp(MaSp1及びMaSp2)、ADF(ADF3及びADF4)等の牽引糸タンパク質、MiSp(MiSp1及びMiSp2)等が挙げられる。
クモ類が産生するスパイダーシルクタンパク質のより具体的な例としては、例えば、fibroin-3(adf-3)[Araneus diadematus由来](GenBankアクセッション番号AAC47010(アミノ酸配列)、U47855(塩基配列))、fibroin-4(adf-4)[Araneus diadematus由来](GenBankアクセッション番号AAC47011(アミノ酸配列)、U47856(塩基配列))、dragline silk protein spidroin 1[Nephila clavipes由来](GenBankアクセッション番号AAC04504(アミノ酸配列)、U37520(塩基配列))、major ampullate spidroin 1[Latrodectus hesperus由来](GenBankアクセッション番号ABR68856(アミノ酸配列)、EF595246(塩基配列))、dragline silk protein spidroin 2[Nephila clavata由来](GenBankアクセッション番号AAL32472(アミノ酸配列)、AF441245(塩基配列))、major ampullate spidroin 1[Euprosthenops australis由来](GenBankアクセッション番号CAJ00428(アミノ酸配列)、AJ973155(塩基配列))、及びmajor ampullate spidroin 2[Euprosthenops australis](GenBankアクセッション番号CAM32249.1(アミノ酸配列)、AM490169(塩基配列))、minor ampullate silk protein 1[Nephila clavipes](GenBankアクセッション番号AAC14589.1(アミノ酸配列))、minor ampullate silk protein 2[Nephila clavipes](GenBankアクセッション番号AAC14591.1(アミノ酸配列))、minor ampullate spidroin-like protein[Nephilengys cruentata](GenBankアクセッション番号ABR37278.1(アミノ酸配列)等が挙げられる。
天然由来のフィブロインのより具体的な例としては、更に、NCBI GenBankに配列情報が登録されているフィブロインを挙げることができる。例えば、NCBI GenBankに登録されている配列情報のうちDIVISIONとしてINVを含む配列の中から、DEFINITIONにspidroin、ampullate、fibroin、「silk及びpolypeptide」、又は「silk及びprotein」がキーワードとして記載されている配列、CDSから特定のproductの文字列、SOURCEからTISSUE TYPEに特定の文字列の記載された配列を抽出する
ことにより確認することができる。
ことにより確認することができる。
本実施形態に係る改変フィブロインは、改変絹(シルク)フィブロイン(カイコが産生する絹タンパク質のアミノ酸配列を改変したもの)であってもよく、改変クモ糸フィブロイン(クモ類が産生するスパイダーシルクタンパク質のアミノ酸配列を改変したもの)であってもよい。改変フィブロインとしては、改変クモ糸フィブロイン(「人工クモ糸タンパク質」ともいう)が好ましい。
改変フィブロインの具体的な例として、クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロイン(第1の改変フィブロイン)、グリシン残基の含有量が低減された改変フィブロイン(第2の改変フィブロイン)、(A)nモチーフの含有量が低減された改変フィブロイン(第3の改変フィブロイン)、グリシン残基の含有量、及び(A)nモチーフの含有量が低減された改変フィブロイン(第4の改変フィブロイン)、局所的に疎水性指標の大きい領域を含むドメイン配列を有する改変フィブロイン(第5の改変フィブロイン)、並びにグルタミン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第6の改変フィブロイン)が挙げられる。
第1の改変フィブロインとしては、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質が挙げられる。第1の改変フィブロインにおいて、(A)nモチーフのアミノ酸残基数は、3~20の整数が好ましく、2~27の整数がより好ましく、8~20の整数が更に好ましく、10~20の整数が更により好ましく、4~16の整数が更によりまた好ましく、8~16の整数が特に好ましく、10~16の整数が最も好ましい。第1の改変フィブロインは、式1中、REPを構成するアミノ酸残基の数は、10~200残基であることが好ましく、10~150残基であることがより好ましく、20~100残基であることが更に好ましく、20~75残基であることが更により好ましい。第1の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるアミノ酸配列中に含まれるグリシン残基、セリン残基及びアラニン残基の合計残基数がアミノ酸残基数全体に対して、40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。
第1の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるアミノ酸配列の単位を含み、かつC末端配列が配列番号1~3のいずれかに示されるアミノ酸配列又は配列番号1~3のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列であるポリペプチドであってもよい。
配列番号1に示されるアミノ酸配列は、ADF3(GI:1263287、NCBI)のアミノ酸配列のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号2に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号3に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
第1の改変フィブロインのより具体的な例として、(1-i)配列番号4(recombinant spider silk protein ADF3KaiLargeNRSH1)で示されるアミノ酸配列、又は(1-ii)配列番号4で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列同一性は、95%以上であることが好ましい。
配列番号4で示されるアミノ酸配列は、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Human rhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号5)を付加したADF3のアミノ酸配列において、第1~13番目の反復領域をおよそ2倍になるように増やすとともに、翻訳が第1154番目アミノ酸残基で終止するように変異させたものである。配列番号4で示されるアミノ酸配列のC末端のアミノ酸配列は、配列番号3で示されるアミノ酸配列と同一である。
(1-i)の改変フィブロインは、配列番号4で示されるアミノ酸配列からなるものであってもよい。
第2の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、グリシン残基の含有量が低減されたアミノ酸配列を有する。第2の改変フィブロインは、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。
第2の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中のGGX及びGPGXX(但し、Gはグリシン残基、Pはプロリン残基、Xはグリシン以外のアミノ酸残基を示す。)から選ばれる少なくとも一つのモチーフ配列において、少なくとも1又は複数の当該モチーフ配列中の1つのグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものであってもよい。
第2の改変フィブロインは、上述のグリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上であってもよい。
第2の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、上記ドメイン配列から、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を除いた配列中の全REPに含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列から、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を除いた配列中の総アミノ酸残基数をwとしたときに、z/wが30%以上、40%以上、50%以上又は50.9%以上であるアミノ酸配列を有するものであってもよい。(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
第2の改変フィブロインは、GGXモチーフの1つのグリシン残基を別のアミノ酸残基に置換することにより、XGXからなるアミノ酸配列の含有割合を高めたものであることが好ましい。第2の改変フィブロインは、ドメイン配列中のGGXからなるアミノ酸配列の含有割合が30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、6%以下であることが更により好ましく、4%以下であることが更によりまた好ましく、2%以下であることが特に好ましい。ドメイン配列中のGGXからなるアミノ酸配列の含有割合は、下記XGXからなるアミノ酸配列の含有割合(z/w)の算出方法と同様の方法で算出することができる。
z/wの算出方法を更に詳細に説明する。まず、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、ドメイン配列から、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列を除いた配列に含まれる全てのREPから、XGXからなるアミノ酸配列を抽出する。XGXを構成するアミノ酸残基の総数がzである。例えば、XGXからなるアミノ酸配列が50個抽出された場合(重複はなし)、zは50×3=150である。また、例えば、XGXGXからなるアミノ酸配列の場合のように2つのXGXに含まれるX(中央のX)が存在する場合は、重複分を控除して計算する(XGXGXの場合は5アミノ酸残基である)。wは、ドメイン配列から、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列を除いた配列に含まれる総アミノ酸残基数である。例えば、図1に示したドメイン配列の場合、wは4+50+4+100+4+10+4+20+4+30=230である(最もC末端側に位置する(A)nモチーフは除いている。)。次に、zをwで除すことによって、z/w(%)を算出することができる。
ここで、天然由来のフィブロインにおけるz/wについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、フィブロイン中のGGXからなるアミノ酸配列の含有割合が6%以下である天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、z/wを算出した。その結果を図2に示す。図2の横軸はz/w(%)を示し、縦軸は頻度を示す。図2から明らかなとおり、天然由来のフィブロインにおけるz/wは、いずれも50.9%未満である(最も高いもので、50.86%)。
第2の改変フィブロインにおいて、z/wは、50.9%以上であることが好ましく、56.1%以上であることがより好ましく、58.7%以上であることが更に好ましく、70%以上であることが更により好ましく、80%以上であることが更によりまた好ましい。z/wの上限に特に制限はないが、例えば、95%以下であってもよい。
第2の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、グリシン残基をコードする塩基配列の少なくとも一部を置換して別のアミノ酸残基をコードするように改変することにより得ることができる。このとき、改変するグリシン残基として、GGXモチーフ及びGPGXXモチーフにおける1つのグリシン残基を選択してもよいし、またz/wが50.9%以上になるように置換してもよい。また、例えば、天然由来のフィブロインのアミノ酸配列から上記態様を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中のグリシン残基を別のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
上記の別のアミノ酸残基としては、グリシン残基以外のアミノ酸残基であれば特に制限はないが、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、メチオニン(M)残基、プロリン(P)残基、フェニルアラニン(F)残基及びトリプトファン(W)残基等の疎水性アミノ酸残基、グルタミン(Q)残基、アスパラギン(N)残基、セリン(S)残基、リシン(K)残基及びグルタミン酸(E)残基等の親水性アミノ酸残基が好ましく、バリン(V)残基、フェニルアラニン(F)残基、ロイシン(L)残基、イソロイシン(I)残基及びグルタミン(Q)残基がより好ましく、グルタミン(Q)残基が更に好ましい。
第2の改変フィブロインのより具体的な例として、(2-i)配列番号6(Met-PRT380)、配列番号7(Met-PRT410)、配列番号8(Met-PRT525)若しくは配列番号9(Met-PRT799)で示されるアミノ酸配列、又は(2-ii)配列番号6、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有す
るアミノ酸配列を含む、改変フィブロインを挙げることができる。
るアミノ酸配列を含む、改変フィブロインを挙げることができる。
(2-i)の改変フィブロインについて説明する。配列番号6で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met-PRT313)で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号7で示されるアミノ酸配列は、配列番号6で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)nモチーフを欠失させ、更にC末端配列の手前に[(A)nモチーフ-REP]を1つ挿入したものである。配列番号8で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列の各(A)nモチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、C末端側の一部のアミノ酸を欠失させたものである。配列番号9で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端にヒンジ配列及びHisタグ配列が付加されたものである。
配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)におけるz/wの値は、46.8%である。配列番号6で示されるアミノ酸配列、配列番号7で示されるアミノ酸配列、配列番号8で示されるアミノ酸配列、及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ58.7%、70.1%、66.1%及び70.0%である。また、配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のギザ比率(後述する)1:1.8~11.3におけるx/yの値は、それぞれ15.0%、15.0%、93.4%、92.7%及び89.8%である。
(2-i)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(2-ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2-ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による改変フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。
また、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。
さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に改変フィブロインを精製することができる。
さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した改変フィブロインを回収することもできる。
タグ配列を含む改変フィブロインのより具体的な例として、(2-iii)配列番号12(PRT380)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(2-iv)配列番号12、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号16(PRT313)、配列番号12、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(2-iii)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(2-iv)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2-iv)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)nモチーフの含有量が低減されたアミノ酸配列を有する。第3の改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)nモチーフが欠失したことに相当するアミノ酸配列を有するものということができる。
第3の改変フィブロインは、天然由来のフィブロインから(A)nモチーフを10~40%欠失させたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって1~3つの(A)nモチーフ毎に1つの(A)nモチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって2つ連続した(A)nモチーフの欠失、及び1つの(A)nモチーフの欠失がこの順に繰り返されたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、少なくともN末端側からC末端側に向かって2つおきに(A)nモチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、N末端側からC末端側に向かって、隣合う2つの[(A)nモチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)nモチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが20%以上、30%以上、40%以上又は50%以上であるアミノ酸配列を有するものであってもよい。(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
x/yの算出方法を図1を参照しながら更に詳細に説明する。図1には、改変フィブロインからN末端配列及びC末端配列を除いたドメイン配列を示す。当該ドメイン配列は、N末端側(左側)から(A)nモチーフ-第1のREP(50アミノ酸残基)-(A)nモチーフ-第2のREP(100アミノ酸残基)-(A)nモチーフ-第3のREP(10アミノ酸残基)-(A)nモチーフ-第4のREP(20アミノ酸残基)-(A)nモチーフ-第5のREP(30アミノ酸残基)-(A)nモチーフという配列を有する。
隣合う2つの[(A)nモチーフ-REP]ユニットは、重複がないように、N末端側からC末端側に向かって、順次選択する。このとき、選択されない[(A)nモチーフ-REP]ユニットが存在してもよい。図1には、パターン1(第1のREPと第2のREPの比較、及び第3のREPと第4のREPの比較)、パターン2(第1のREPと第2のREPの比較、及び第4のREPと第5のREPの比較)、パターン3(第2のREと第3のREPの比較、及び第4のREPと第5のREPの比較)、パターン4(第1のREPと第2のREPの比較)を示した。なお、これ以外にも選択方法は存在する。
次に各パターンについて、選択した隣合う2つの[(A)nモチーフ-REP]ユニット中の各REPのアミノ酸残基数を比較する。比較は、よりアミノ酸残基数の少ない方を1としたときの、他方のアミノ酸残基数の比を求めることによって行う。例えば、第1のREP(50アミノ酸残基)と第2のREP(100アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第1のREPを1としたとき、第2のREPのアミノ酸残基数の比は、100/50=2である。同様に、第4のREP(20アミノ酸残基)と第5のREP(30アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第4のREPを1としたとき、第5のREPのアミノ酸残基数の比は、30/20=1.5である。
図1中、よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8~11.3となる[(
A)nモチーフ-REP]ユニットの組を実線で示した。本明細書中、この比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)nモチーフ-REP]ユニットの組は破線で示した。
A)nモチーフ-REP]ユニットの組を実線で示した。本明細書中、この比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)nモチーフ-REP]ユニットの組は破線で示した。
各パターンにおいて、実線で示した隣合う2つの[(A)nモチーフ-REP]ユニットの全てのアミノ酸残基数を足し合わせる(REPのみではなく、(A)nモチーフのアミノ酸残基数もである。)。そして、足し合わせた合計値を比較して、当該合計値が最大となるパターンの合計値(合計値の最大値)をxとする。図1に示した例では、パターン1の合計値が最大である。
次に、xをドメイン配列の総アミノ酸残基数yで除すことによって、x/y(%)を算出することができる。
第3の改変フィブロインにおいて、x/yは、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることが更に好ましく、70%以上であることが更により好ましく、75%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、例えば、100%以下であってよい。ギザ比率が1:1.9~11.3の場合には、x/yは89.6%以上であることが好ましく、ギザ比率が1:1.8~3.4の場合には、x/yは77.1%以上であることが好ましく、ギザ比率が1:1.9~8.4の場合には、x/yは75.9%以上であることが好ましく、ギザ比率が1:1.9~4.1の場合には、x/yは64.2%以上であることが好ましい。
第3の改変フィブロインが、ドメイン配列中に複数存在する(A)nモチーフの少なくとも7つがアラニン残基のみで構成される改変フィブロインである場合、x/yは、46.4%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが更により好ましく、70%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、100%以下であればよい。
ここで、天然由来のフィブロインにおけるx/yについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)nモチーフ-REP]mで表されるドメイン配列で構成される天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、x/yを算出した。ギザ比率が1:1.9~4.1の場合の結果を図3に示す。
図3の横軸はx/y(%)を示し、縦軸は頻度を示す。図3から明らかなとおり、天然由来のフィブロインにおけるx/yは、いずれも64.2%未満である(最も高いもので、64.14%)。
第3の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、x/yが64.2%以上になるように(A)nモチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から、x/yが64.2%以上になるように1又は複数の(A)nモチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列から(A)nモチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第3の改変フィブロインのより具体的な例として、(3-i)配列番号17(Met-PRT399)、配列番号7(Met-PRT410)、配列番号8(Met-PRT525)若しくは配列番号9(Met-PRT799)で示されるアミノ酸配列、又は(3-ii)配列番号17、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(3-i)の改変フィブロインについて説明する。配列番号17で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met-PRT313)で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)nモチーフを欠失させ、更にC末端配列の手前に[(A)nモチーフ-REP]を1つ挿入したものである。配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列は、第2の改変フィブロインで説明したとおりである。
配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)のギザ比率1:1.8~11.3におけるx/yの値は15.0%である。配列番号17で示されるアミノ酸配列、及び配列番号7で示されるアミノ酸配列におけるx/yの値は、いずれも93.4%である。配列番号8で示されるアミノ酸配列におけるx/yの値は、92.7%である。配列番号9で示されるアミノ酸配列におけるx/yの値は、89.8%である。配列番号10、配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ46.8%、56.2%、70.1%、66.1%及び70.0%である。
(3-i)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(3-ii)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3-ii)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)nモチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3(ギザ比率が1:1.8~11.3)となる隣合う2つの[(A)nモチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、N末端及びC末端のいずれか一方又は両方に上述したタグ配列を含んでいてもよい。
タグ配列を含む改変フィブロインのより具体的な例として、(3-iii)配列番号18(PRT399)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(3-iv)配列番号18、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号18、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(3-iii)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(3-iv)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3-iv)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)nモチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)nモチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第4の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)nモチーフの含有量が低減されたことに加え、グリシン残基の含有量が低減されたアミノ酸配列を有するものである。第4の改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)nモチーフが欠失したことに加え、更に少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。すなわち、上述した第2の改変フィブロインと、第3の改変フィブロインの特徴を併せ持つ改変フィブロインである。具体的な態様等は、第2の改変フィブロイン、及び第3の改変フィブロインで説明したとおりである。
第4の改変フィブロインのより具体的な例として、(4-i)配列番号7(Met-PRT410)、配列番号8(Met-PRT525)、配列番号9(Met-PRT799)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(4-ii)配列番号7、配列番号8、配列番号9、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列番号7、配列番号8、配列番号9、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列を含む改変フィブロインの具体的な態様は上述のとおりである。
第5の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有するものであってよい。
局所的に疎水性指標の大きい領域は、連続する2~4アミノ酸残基で構成されていることが好ましい。
上述の疎水性指標の大きいアミノ酸残基は、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)
から選ばれるアミノ酸残基であることがより好ましい。
から選ばれるアミノ酸残基であることがより好ましい。
第5の改変フィブロインは、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に、天然由来のフィブロインと比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第5の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとたときに、p/qが6.2%以上であるアミノ酸配列を有してもよい。
アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105-132)を使用する。具体的には、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)は、下記表1に示すとおりである。
p/qの算出方法を更に詳細に説明する。算出には、式1:[(A)nモチーフ-REP]mで表されるドメイン配列から、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列を除いた配列(以下、「配列A」とする)を用いる。まず、配列Aに含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値を算出する。疎水性指標の平均値は、連続する4アミノ酸残基に含まれる各アミノ酸残基のHIの総和を4(アミノ酸残基数)で除して求める。疎水性指標の平均値は、全ての連続する4アミノ酸残基について求める(各アミノ酸残基は、1~4回平均値の算出に用いられる。)。次いで、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域を特定する。あるアミノ酸残基が、複数の「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」に該当する場合であっても、領域中には1アミノ酸残基として含まれることになる。そして、当該領域に含まれるアミノ酸残基の総数がpである。また、配列Aに含まれるアミノ酸残基の総数がqである。
例えば、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が20カ所抽出された場合(重複はなし)、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、連続する4アミノ酸残基(重複はなし)が20含まれることになり、pは20×4=80である。また、例えば、2つの「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が1アミノ酸残基だけ重複して存在する場合、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、7アミノ酸残基含まれることになる(p=2×4-1=7。「-1」は重複分の控除である。)。例えば、図4に示したドメイン配列の場合、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が重複せずに7つ存在するため、pは7×4=28となる。また、例えば、図4に示したドメイン配列の場合、qは4+50+4+40+4+10+4+20+4+30=170である(C末端側の最後に存在する(A)nモチーフは含めない)。次に、pをqで除すことによって、p/q(%)を算出することができる。図4の場合28/170=16.47%となる。
第5の改変フィブロインにおいて、p/qは、6.2%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが更に好ましく、20%以上であることが更により好ましく、30%以上であることが更によりまた好ましい。p/qの上限は、特に制限されないが、例えば、45%以下であってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のフィブロインのアミノ酸配列を、上記のp/qの条件を満たすように、REP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより、局所的に疎水性指標の大きい領域を含むアミノ酸配列に改変することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から上記のp/qの条件を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当する改変を行ってもよい。
疎水性指標の大きいアミノ酸残基としては、特に制限はないが、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)が好ましく、バリン(V)、ロイシン(L)及びイソロイシン(I)がより好ましい。
第5の改変フィブロインのより具体的な例として、(5-i)配列番号19(Met-PRT720)、配列番号20(Met-PRT665)若しくは配列番号21(Met-PRT666)で示されるアミノ酸配列、又は(5-ii)配列番号19、配列番号20若しくは配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(5-i)の改変フィブロインについて説明する。配列番号19で示されるアミノ酸配列は、配列番号7(Met-PRT410)で示されるアミノ酸配列に対し、C末端側の端末を除いて、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、かつC末端側の一部のアミノ酸を欠失させたものである。配列番号20で示されるアミノ酸配列は、配列番号8(Met-PRT525)で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を1カ所挿入したものである。配列番号21で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入したものである。
(5-i)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列からなるものであってもよい。
(5-ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5-ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。
タグ配列を含む改変フィブロインのより具体的な例として、(5-iii)配列番号22(PRT720)、配列番号23(PRT665)若しくは配列番号24(PRT666)で示されるアミノ酸配列、又は(5-iv)配列番号22、配列番号23若しくは配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号22、配列番号23及び配列番号24で示されるアミノ酸配列は、それぞれ配列番号19、配列番号20及び配列番号21で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(5-iii)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列からなるものであってもよい。
(5-iv)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5-iv)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/
qが6.2%以上であることが好ましい。
qが6.2%以上であることが好ましい。
第5の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第6の改変フィブロインは、天然由来のフィブロインと比較して、グルタミン残基の含有量が低減されたアミノ酸配列を有する。
第6の改変フィブロインは、REPのアミノ酸配列中に、GGXモチーフ及びGPGXXモチーフから選ばれる少なくとも一つのモチーフが含まれていることが好ましい。
第6の改変フィブロインが、REP中にGPGXXモチーフを含む場合、GPGXXモチーフ含有率は、通常1%以上であり、5%以上であってもよく、10%以上であるのが好ましい。GPGXXモチーフ含有率の上限に特に制限はなく、50%以下であってよく、30%以下であってもよい。
本明細書において、「GPGXXモチーフ含有率」は、以下の方法により算出される値である。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をsとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、GPGXXモチーフ含有率はs/tとして算出される。
GPGXXモチーフ含有率の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としているのは、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列」(REPに相当する配列)には、フィブロインに特徴的な配列と相関性の低い配列が含まれることがあり、mが小さい場合(つまり、ドメイン配列が短い場合)、GPGXXモチーフ含有率の算出結果に影響するので、この影響を排除するためである。なお、REPのC末端に「GPGXXモチーフ」が位置する場合、「XX」が例えば「AA」の場合であっても、「GPGXXモチーフ」として扱う。
図5は、改変フィブロインのドメイン配列を示す模式図である。図5を参照しながらGPGXXモチーフ含有率の算出方法を具体的に説明する。まず、図5に示した改変フィブロインのドメイン配列(「[(A)nモチーフ-REP]m-(A)nモチーフ」タイプである。)では、全てのREPが「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図5中、「領域A」で示した配列。)に含まれているため、sを算出するためのGPGXXモチーフの個数は7であり、sは7×3=21となる。同様に、全てのREPが「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図5中、「領域A」で示した配列。)に含まれているため、当該配列から更に(A)nモチーフを除いた全REPのアミノ酸残基の総数tは50+40+10+20+30=150である。次に、sをtで除すことによって、s/t(%)を算出することができ、図5の改変フィブロインの場合21/150=14.0%となる。
第6の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましく、7%以下であることがより好ましく、4%以下であることが更に好ましく、0%であることが特に好ましい。
本明細書において、「グルタミン残基含有率」は、以下の方法により算出される値である。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図5の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域に含まれるグルタミン残基の総数をuとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、グルタミン残基含有率はu/tとして算出される。グルタミン残基含有率の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当するアミノ酸配列を有するものであってよい。
「他のアミノ酸残基」は、グルタミン残基以外のアミノ酸残基であればよいが、グルタミン残基よりも疎水性指標の大きいアミノ酸残基であることが好ましい。アミノ酸残基の疎水性指標は表1に示すとおりである。
表1に示すとおり、グルタミン残基よりも疎水性指標の大きいアミノ酸残基としては、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)アラニン(A)、グリシン(G)、スレオニン(T)、セリン(S)、トリプトファン(W)、チロシン(Y)、プロリン(P)及びヒスチジン(H)から選ばれるアミノ酸残基を挙げることができる。これらの中でも、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましく、イソロイシン(I)、バリン(V)、ロイシン(L)及びフェニルアラニン(F)から選ばれるアミノ酸残基であることが更に好ましい。
第6の改変フィブロインは、REPの疎水性度が、-0.8以上であることが好ましく、-0.7以上であることがより好ましく、0以上であることが更に好ましく、0.3以上であることが更により好ましく、0.4以上であることが特に好ましい。REPの疎水性度の上限に特に制限はなく、1.0以下であってよく、0.7以下であってもよい。
本明細書において、「REPの疎水性度」は、以下の方法により算出される値である。 式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図5の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をvとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、REPの疎水性度はv/tとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第6の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数のグルタミン残基を欠失させること、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。
第6の改変フィブロインのより具体的な例として、(6-i)配列番号25(Met-PRT888)、配列番号26(Met-PRT965)、配列番号27(Met-PRT889)、配列番号28(Met-PRT916)、配列番号29(Met-PRT918)、配列番号30(Met-PRT699)、配列番号31(Met-PRT698)若しくは配列番号32(Met-PRT966)で示されるアミノ酸配列を含む改変フィブロイン、又は(6-ii)配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31若しくは配列番号32で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む改変フィブロインを挙げることができる。
(6-i)の改変フィブロインについて説明する。配列番号25で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met-PRT410)中のQQを全てVLに置換したものである。配列番号26で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てTSに置換し、かつ残りのQをAに置換したものである。配列番号27で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。配列番号28で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVIに置換し、かつ残りのQをLに置換したものである。配列番号29で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号30で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列(Met-PRT525)中のQQを全てVLに置換したものである。配列番号31で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
配列番号32で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met-PRT410)中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を2回繰り返した配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
(6-i)の改変フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31又は配列番号32で示されるアミノ酸配列からなるものであってもよい。
(6-ii)の改変フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31又は配列番号32で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6-ii)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-ii)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列を含む改変フィブロインのより具体的な例として、(6-iii)配列番号33(PRT888)、配列番号34(PRT965)、配列番号35(PRT889)、配列番号36(PRT916)、配列番号37(PRT918)、配列番号38(PRT699)、配列番号39(PRT698)若しくは配列番号40(PRT966)で示されるアミノ酸配列を含む改変フィブロイン、又は(6-iv)配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39若しくは配列番号40で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む改変フィブロインを挙げることができる。
配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39及び配列番号40で示されるアミノ酸配列は、それぞれ配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31及び配列番号32で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。N末端にタグ配列を付加しただけであるため、グルタミン残基含有率に変化はなく、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39及び配列番号40で示されるアミノ酸配列は、いずれもグルタミン残基含有率が9%以下である(表3)。
(6-iii)の改変フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39又は配列番号40で示されるアミノ酸配列からなるものであってもよい。
(6-iv)の改変フィブロインは、配列番号33、配列番号34、配列番号35、配番号36、配列番号37、配列番号38、配列番号39又は配列番号40で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6-iv)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-iv)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
改変フィブロインは、第1の改変フィブロイン、第2の改変フィブロイン、第3の改フィブロイン、第4の改変フィブロイン、第5の改変フィブロイン、及び第6の改変フィブロインが有する特徴のうち、少なくとも2つ以上の特徴を併せ持つ改変フィブロインであってもよい。
<改変フィブロインの製造方法>
本実施形態に係る改変フィブロインは、例えば、当該改変フィブロインをコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。
本実施形態に係る改変フィブロインは、例えば、当該改変フィブロインをコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。
改変フィブロインをコードする核酸の製造方法は、特に制限されない。例えば、天然のフィブロインをコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)などで増幅しクローニングし、遺伝子工学的手法により改変する方法、又は化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手したフィブロインのアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結する方法によって遺伝子を化学的に合成することができる。この際に、改変フィブロインの精製及び/又は確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなる改変フィブロインをコードする核酸を合成してもよい。
調節配列は、宿主における改変フィブロインの発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、改変フィブロインを発現誘導可能な誘導性プロモーターを用いてもよい。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモーターである。
発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、改変フィブロインをコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。
宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。
原核生物の宿主の好ましい例として、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する細菌を挙げることができる。エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ等を挙げることができる。ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ等を挙げることができる。セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス等を挙げることができる。バチルス属に属する微生物として、例えば、バチルス・サチラス等を挙げることができる。ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム等を挙げることができる。ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム等を挙げることができる。コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス等を挙げることができる。シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ等を挙げることができる。
原核生物を宿主とする場合、改変フィブロインをコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002-238569号公報)等を挙げることができる。
真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。
真核生物を宿主とする場合、改変フィブロインをコードする核酸を導入するベクターとしては、例えば、YEP13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110(1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。
発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。
改変フィブロインは、例えば、発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に当該改変フィブロインを生成蓄積させ、該培養培地から採取することにより製造することができる。宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。
宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、宿主の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。
炭素源としては、上記形質転換微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。
大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15~40℃である。培養時間は、通常16時間~7日間である。培養中の培養培地のpHは3.0~9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。
また、培養中、必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
発現させた改変フィブロインの単離、精製は通常用いられている方法で行うことができる。例えば、当該改変フィブロインが、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液に懸濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、改変フィブロインの単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。
また、改変フィブロインが細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分として改変フィブロインの不溶体を回収する。回収した改変フィブロインの不溶体はタンパク質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法により改変フィブロインの精製標品を得ることができる。当該改変フィブロインが細胞外に分泌された場合には、培養上清から当該改変フィブロインを回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、その培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。
改変(人造)フィブロイン繊維の限界酸素指数(LOI)値は、18以上であってよく、20以上であってもよく、22以上であってもよく、24以上であってもよく、26以上であってもよく、28以上であってもよく、29以上であってもよく、30以上であってもよい。上記のLOI値は、「消防庁危険物規制課長 消防危50号(平成7年5月31日付け)」に記載の「粉粒状又は融点の低い合成樹脂の試験方法」に準拠して測定される値である。改変(人造)フィブロインフィルム、ゲル及び多孔質体も同様である。
改変(人造)フィブロイン繊維、改変フィブロインフィルム、改変フィブロインゲル及び改変フィブロイン多孔質体の、下記式Aに従って求められる最高吸湿発熱度は、0.025℃/g超であってよく、0.026℃/g以上であってもよく、0.027℃/g以上であってもよく、0.028℃/g以上であってもよく、0.029℃/g以上であってもよく、0.030℃/g以上であってもよく、0.035℃/g以上であってもよく、0.040℃/g以上であってもよい。最高吸湿発熱度の上限に特に制限はないが、通常0.060℃/g以下である。
式A: 最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)-(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
[式A中、低湿度環境は、温度20℃及び相対湿度40%の環境を意味し、高湿度環境は、温度20℃及び相対湿度90%の環境を意味する。]
式A: 最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)-(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
[式A中、低湿度環境は、温度20℃及び相対湿度40%の環境を意味し、高湿度環境は、温度20℃及び相対湿度90%の環境を意味する。]
改変フィブロイン繊維、改変フィブロインフィルム、改変フィブロインゲル及び改変フィブロイン多孔質体の保温性指数は、0.18超であってよく、0.20であってよく、以上0.22以上であってよく、0.24以上であってよく、0.26以上であってよく、0.28以上であってよく、0.30以上であってよく、0.32以上であってよい。保温性指数の上限に特に制限はないが、例えば、0.60以下、又は0.40以下であってよい。
改変フィブロイン繊維、改変フィブロインフィルム、改変フィブロインゲル及び改変フィブロイン多孔質体は、優れた保温性を有することが好ましく、下記式Cに従って求められる保温性指数が0.20以上であってよい。
式C: 保温性指数=保温率(%)/試料の目付け(g/m2)
式C: 保温性指数=保温率(%)/試料の目付け(g/m2)
<ケイ酸塩> ケイ酸塩は、1個又は複数個のケイ素原子を中心とし、電気陰性な配位子がこれを取り囲んだ構造を持つアニオンを含む化合物をいい、シリケートとも呼ばれる。例えば、二酸化ケイ素(シリカ)が挙げられる。シリカは粒子状であってよく、シリカ粒子の粒径は、分散しやすい観点から、また、得られる改変フィブロイン複合体の所望の物性に応じて適宜に選択することができる。ケイ酸塩の粒径は、例えば、5~100nmであってよく、好ましくは5nm~80nmであり、より好ましくは5nm~60nmであり、さらに好ましくは5nm~40nmである。また、ケイ酸塩の比表面積は、例えば、50~400m2/gであってよく、好ましくは100~400m2/gであってよく、より好ましくは200~400m2/gであり、さらに好ましくは300~400m2/gである。ケイ酸塩の比表面積は、例えばBET法によって測定することができる。
<ケイ酸塩鉱物>
ケイ酸塩鉱物は特に限定されないが、層状ケイ酸塩鉱物(層状粘土鉱物)であってよく、層状ケイ酸塩鉱物としては、例えば、スメクタイト(族)、ベントナイト、蛇紋岩-カオリン(族)、タルク-パイロフィライト(族)、バーミキュライト(族)、雲母族、脆雲母族及び緑泥石族及びハイドロタルサイトなどが挙げられる。スメクタイト(族)としては、例えば、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチーブンサイト、ボルコンスコアイト及びスインホルダイトなどが挙げられ、流通性などの観点から、好ましくは、モンモリロナイト、サポナイト、スチーブンサイト及びヘクトライトからなる群より選択され、より好ましくは、モンモリロナイト及びヘクトライトからなる群より選択される。蛇紋岩-カオリン(族)としては、例えば、リザーダイト、バーチェリン、アメサイト、クロンステダイト、ネポーアイト、ケリアイト、フレイポナイト、ブリンドリアイト、カオリナイト、ディカイト、ナクライト、ハロイサイト及びオーディナイトなどが挙げられる。タルク-パイロフィライト(族)としては、例えば、タルク、ウィレムサイト、ケロライト、ピメライト、パイロフィライト及びフェリパイロフィライトなどが挙げられる。バーミキュライト(族)としては、例えば、3八面体型バーミキュライト及び2八面体型バーミキュライトなどが挙げられる。雲母族としては、例えば、黒雲母、金雲母、鉄雲母、イーストナイト、シデロフィライト、テトラフェリ鉄雲母、鱗雲母、ポリリシオライト、白雲母、セラドン石、鉄セラドン石、鉄アルミノセラドン石、アルミノセラドン石、砥部雲母及びソーダ雲母などが挙げられる。脆雲母族としては、例えば、クリントナイト、木下石、ビティ雲母、アナンダ石及び真珠雲母などが挙げられる。緑泥石族としては、例えば、クリノクロア、シャモサイト、ペナンタイト、ニマイト、ベイリクロア、ドンバサイト、クッケアイト及びスドーアイトなどが挙げられる。層状ケイ酸塩鉱物は、流通性や対費用効果の観点から、好ましくは、スメクタイト(族)及びベントナイトからなる群より選択され、より好ましくは、モンモリロナイト、サポナイト、スチーブンサイト、ヘクトライト及びベントナイトからなる群より選択され、さらに好ましくは、モンモリロナイト、ヘクトライト及びベントナイトからなる群より選択される。
ケイ酸塩鉱物は特に限定されないが、層状ケイ酸塩鉱物(層状粘土鉱物)であってよく、層状ケイ酸塩鉱物としては、例えば、スメクタイト(族)、ベントナイト、蛇紋岩-カオリン(族)、タルク-パイロフィライト(族)、バーミキュライト(族)、雲母族、脆雲母族及び緑泥石族及びハイドロタルサイトなどが挙げられる。スメクタイト(族)としては、例えば、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチーブンサイト、ボルコンスコアイト及びスインホルダイトなどが挙げられ、流通性などの観点から、好ましくは、モンモリロナイト、サポナイト、スチーブンサイト及びヘクトライトからなる群より選択され、より好ましくは、モンモリロナイト及びヘクトライトからなる群より選択される。蛇紋岩-カオリン(族)としては、例えば、リザーダイト、バーチェリン、アメサイト、クロンステダイト、ネポーアイト、ケリアイト、フレイポナイト、ブリンドリアイト、カオリナイト、ディカイト、ナクライト、ハロイサイト及びオーディナイトなどが挙げられる。タルク-パイロフィライト(族)としては、例えば、タルク、ウィレムサイト、ケロライト、ピメライト、パイロフィライト及びフェリパイロフィライトなどが挙げられる。バーミキュライト(族)としては、例えば、3八面体型バーミキュライト及び2八面体型バーミキュライトなどが挙げられる。雲母族としては、例えば、黒雲母、金雲母、鉄雲母、イーストナイト、シデロフィライト、テトラフェリ鉄雲母、鱗雲母、ポリリシオライト、白雲母、セラドン石、鉄セラドン石、鉄アルミノセラドン石、アルミノセラドン石、砥部雲母及びソーダ雲母などが挙げられる。脆雲母族としては、例えば、クリントナイト、木下石、ビティ雲母、アナンダ石及び真珠雲母などが挙げられる。緑泥石族としては、例えば、クリノクロア、シャモサイト、ペナンタイト、ニマイト、ベイリクロア、ドンバサイト、クッケアイト及びスドーアイトなどが挙げられる。層状ケイ酸塩鉱物は、流通性や対費用効果の観点から、好ましくは、スメクタイト(族)及びベントナイトからなる群より選択され、より好ましくは、モンモリロナイト、サポナイト、スチーブンサイト、ヘクトライト及びベントナイトからなる群より選択され、さらに好ましくは、モンモリロナイト、ヘクトライト及びベントナイトからなる群より選択される。
層状ケイ酸塩鉱物は、有機修飾された有機(有機化)ケイ酸塩鉱物であってよく、有機(有機化)層状ケイ酸塩鉱物であってよい。有機(有機化)層状ケイ酸塩鉱物としては、例えば、上述の層状ケイ酸塩鉱物を有機修飾した、有機(有機化)スメクタイト、有機(有機化)蛇紋岩-カオリン(族)、有機(有機化)タルク-パイロフィライト(族)、有機(有機化)バーミキュライト(族)、有機(有機化)雲母族、有機(有機化)脆雲母族及び有機(有機化)緑泥石族からなる群より選択されてもよい。有機(有機化)スメクタイトとしては、例えば、有機(有機化)モンモリロナイト、有機(有機化)バイデライト、有機(有機化)ノントロナイト、有機(有機化)サポナイト、有機(有機化)ヘクトライト、有機(有機化)ソーコナイト、有機(有機化)スチーブンサイト、有機(有機化)ボルコンスコアイト及び有機(有機化)スインホルダイトなどが挙げられる。有機(有機化)層状ケイ酸塩鉱物は、流通性や対費用効果の観点から、好ましくは、有機(有機化)スメクタイト及び有機(有機化)ベントナイトからなる群より選択され、より好ましくは、有機モンモリロナイト、有機ヘクトライト及び有機ベントナイトからなる群より選択される。有機層状ケイ酸塩鉱物(有機ケイ酸塩鉱物)を用いることで、有機溶媒に対する分散性をより向上させることができる。
有機(有機化)層状ケイ酸塩鉱物の有機修飾の例としては、有機カチオン(陽イオン界面活性剤イオン等)でのイオン交換、分子吸着、層間重合法及びポリマー挿入法(溶融法、溶液法)等を挙げることができる。有機カチオン(陽イオン界面活性剤イオン等)としては、長鎖アルキル基を有する1~4級のアルキルアンモニウムイオン又はアルキルピリジニウムイオン等が挙げられる。長鎖アルキル基を有する1~4級のアルキルアンモニウムイオンとしては、例えば、アルキルアンモニウム、アルキルトリメチルアンモニウムイオン、ジアルキルアンモニウムイオン、テトラメチルアンモニウムイオン(TMA)、テトラメチルホスホニウムイオン(TMP)、トリメチルフェニルアンモニウムイオン(TMPA)、ジメチルジステアリルアンモニウムイオン、ベンジルジメチルステアリルアンモニウムイオン、トリオクチルメチルアンモニウムイオン及び塩化ジポリオキシエチレンヤシアルキル(炭素数8~18)メチルアンモニウムイオン等を挙げることができ、有機層状ケイ酸塩鉱物が分散性により優れ得る観点から、ジメチルジステアリルアンモニウムイオン及びトリオクチルメチルアンモニウムイオンが好ましい。また、層間での重合反応(層間重合法)及び/又はポリマー挿入法により、層状ケイ酸塩鉱物にインターカレーションされる有機化合物(有機分子)の例としては、ポリアミド系ポリマー、オレフィン系ポリマー、ゴム系ポリマー等を挙げることができる。ポリアミド系ポリマーとしては、具体的には、重縮合反応で得られるn-ナイロン(n=2~12で表される任意の数字)又は共縮重合反応で得られるn,m-ナイロン(n=2~12、m=2~12で表される任意の数字)が挙げられる。n-ナイロンとしては、例えば、ナイロン6、ナイロン7、ナイロン9、ナイロン11及びナイロン12等が挙げられる。n,m-ナイロンとしては、例えば、ナイロン6,6、ナイロン610、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T及びナイロン612等が挙げられる。有機(有機化)層状ケイ酸塩鉱物中にインターカレーションされる有機化合物(有機分子)は、分散性を向上させる観点から、後述の有機溶媒への分散性又は溶解性が高いポリアミド系ポリマーが好ましく、ナイロン6、ナイロン6,6及びナイロン11がより好ましく、ナイロン6及びナイロン6,6がさらに好ましい。層状ケイ酸塩鉱物にナイロン6をインターカレーションする方法は、J.Mater.Res.,Vol.8,No.5,pp.1179-1184,May 1993.に記載されており、基本的にこの方法に準じて得られる。層状ケイ酸塩鉱物にナイロン6,6をインターカレーションする方法は、Bull.Mater.Sci.,Vol.39,No.4,August 2016,pp.935-941.に記載されており、基本的にこの方法に準じて得られる。層状ケイ酸塩鉱物にナイロン11をインターカレーションする方法は、Materials Chemistry and Physics,Vol.143,Issue.1,December 2013,pp.336-348.に記載されており、基本的にこの方法に準じて得られる。
ケイ酸塩鉱物は、粉末状又は粒子状であってよく、その粒径は、分散しやすい観点から、また、得られる改変フィブロイン複合体の所望の物性に応じて適宜に選択することができる。分散時のケイ酸塩鉱物の粒径(球相当径)は、例えば、2μm以下であってよく、1.5μm以下であってよく、1μm以下であってよく、0.5μm以下であってもよい。粉末の場合は、粒径が均一の粉末であることが好ましい。粉体の粒径及びその分布は、例えば動的光散乱法によって測定することができる。
<有機溶媒>
有機溶媒は、改変フィブロインを溶解し、ケイ酸塩及び/又はケイ酸塩鉱物を分散し得るものであればいずれも使用することができ、例えばヘキサフルオロイソプロパノール(HFIP)、ヘキサフルオロアセトン(HFA)、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、1,3-ジメチル-2-イミダゾリドン(DMI)、N-メチル-2-ピロリドン(NMP)、アセトニトリル、N-メチルモルホリンN-オキシド(NMO)及びギ酸等が挙げられる。溶解性により優れる点からは、HFIP、DMSO及びギ酸が好ましく、DMSO及びギ酸がより好ましく、ギ酸がさらに好ましい。これらの有機溶媒は、水を含んでいてもよい。これらの溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。有機溶媒を用いることで、特に有機(有機化)層状ケイ酸塩鉱物の分散性をより向上させられる利点がある。
有機溶媒は、改変フィブロインを溶解し、ケイ酸塩及び/又はケイ酸塩鉱物を分散し得るものであればいずれも使用することができ、例えばヘキサフルオロイソプロパノール(HFIP)、ヘキサフルオロアセトン(HFA)、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、1,3-ジメチル-2-イミダゾリドン(DMI)、N-メチル-2-ピロリドン(NMP)、アセトニトリル、N-メチルモルホリンN-オキシド(NMO)及びギ酸等が挙げられる。溶解性により優れる点からは、HFIP、DMSO及びギ酸が好ましく、DMSO及びギ酸がより好ましく、ギ酸がさらに好ましい。これらの有機溶媒は、水を含んでいてもよい。これらの溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。有機溶媒を用いることで、特に有機(有機化)層状ケイ酸塩鉱物の分散性をより向上させられる利点がある。
本実施形態に係る分散液における改変フィブロインの濃度は、分散液全量を100重量%としたとき、5~40重量%であることが好ましく、7~40重量%であることがより好ましく、10~40重量%であることがより好ましく、7~35重量%であることがより好ましく、10~35重量%であることがより好ましく、12~35重量%であることがより好ましい。分散液を紡糸用のドープ液として用いる場合、分散液における改変フィブロインの濃度は、分散液全量を100重量%としたとき、15~35重量%であることが好ましく、15~30重量%であることがより好ましく、20~35重量%であることがさらに好ましく、20~30重量%であることが特に好ましい。改変フィブロインの濃度が5質量%以上であると、ケイ酸塩及び/又はケイ酸塩鉱物(層状ケイ酸塩鉱物)の分散性を充分に向上させることができる。改変フィブロインの濃度が40質量%以下であると、粘度の著しい増大によるケイ酸塩及び/又はケイ酸塩鉱物の分散性の低下を避けることができる。
本実施形態に係る分散液におけるケイ酸塩及びケイ酸塩鉱物(層状ケイ酸塩鉱物及び/又は有機層状ケイ酸塩鉱物)の合計含有量は、改変フィブロインに対して0.01重量%~7重量%、すなわち、改変フィブロインを100重量%としたとき、0.01重量%~7重量%であればよく、0.05重量%~6重量%であってよく、0.05重量%~5重量%が好ましく、0.1重量%~5重量%がより好ましく、0.3重量%~5重量%がより好ましく、0.3重量%~4重量%がより好ましく、0.3重量%~3.5重量%がより好ましく、0.4重量%~3.2重量%がより好ましく、0.5重量%~3.2重量%がより好ましく、0.5重量%~3重量%がさらに好ましく、0.5重量%~2重量%が特に好ましい。改変フィブロインに対するケイ酸塩及びケイ酸塩鉱物の合計含有量を上述の範囲内にすることで、分散液におけるケイ酸塩及びケイ酸塩鉱物の分散性をより向上させることができる。
本実施形態に係る分散液には、必要に応じて無機塩を添加してもよい。無機塩は、改変フィブロインの溶解促進剤として機能し得る。無機塩としては、例えば、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、及びアルカリ土類金属硝酸塩等が挙げられる。無機塩の具体例としては、炭酸リチウム、塩化リチウム、塩化カルシウム、硝酸カルシウム、臭化リチウム、臭化バリウム、臭化カルシウム、塩素酸バリウム、過塩素酸ナトリウム、過塩素酸リチウム、過塩素酸バリウム、過塩素酸カルシウム、過塩素酸マグネシウムが挙げられる。これらのうちの少なくとも1種類の無機塩を溶媒に添加してもよい。
本実施形態に係る分散液の調製法は、特に限定されるものではなく、改変フィブロインと、ケイ酸塩及び/又はケイ酸塩鉱物(層状ケイ酸塩鉱物及び/又は有機層状ケイ酸塩鉱物)と、有機溶媒とをそれぞれ任意の順序で混合してよい。混合は、改変フィブロインを有機溶媒中に溶解させてから、該溶液にケイ酸塩及び/又はケイ酸塩鉱物を分散してもよく、ケイ酸塩及び/又はケイ酸塩鉱物を有機溶媒に分散してから、該分散液に改変フィブロインを溶解させてもよく、また、改変フィブロインを有機溶媒に溶解した溶液と、ケイ酸塩及び/又はケイ酸塩鉱物を分散した分散液とを混合してもよい。
改変フィブロインの有機溶媒への溶解を促進するために、ある程度の時間撹拌又は振とうしてもよい。その際、必要により、使用する改変フィブロイン及び有機溶媒に応じて溶解可能な温度に加熱してもよい。例えば、30℃以上、40℃以上、50℃以上、60℃以上、70℃以上、80℃以上、又は、90℃以上に加熱してもよい。加熱温度の上限は、例えば、溶媒の沸点以下である。
本実施形態に係る分散液の粘度は、分散液の用途等に応じて適宜設定してよい。例えば、分散液を紡糸用のドープ液(紡糸原液)として使用する場合、その粘度は紡糸方法に応じて適宜設定してよく、例えば、20℃において、5,000~60,000mPa・secであってよく、5,000~50,000mPa・secであってよく、5,000~40,000mPa・secであってよく、5,000~35,000mPa・secであってよく、5,000~20,000mPa・secであってよく、5,000~15,000mPa・secであってよく、5,000~10,000mPa・sec等であってよい。紡糸原液の粘度は、例えば京都電子工業社製の商品名“EMS粘度計”を使用して測定することができる。
〔分散助剤〕
本発明の一実施形態の分散助剤は、ケイ酸塩及び/又はケイ酸塩鉱物(層状ケイ酸塩鉱物及び/又は有機層状ケイ酸塩鉱物)を有機溶媒に分散させるための分散助剤であり、改変フィブロインを含む。改変フィブロインによって有機溶媒に適宜な粘度をもたらすことによって、ケイ酸塩及び/又はケイ酸塩鉱物は有機溶媒に分散することが容易になる。
本発明の一実施形態の分散助剤は、ケイ酸塩及び/又はケイ酸塩鉱物(層状ケイ酸塩鉱物及び/又は有機層状ケイ酸塩鉱物)を有機溶媒に分散させるための分散助剤であり、改変フィブロインを含む。改変フィブロインによって有機溶媒に適宜な粘度をもたらすことによって、ケイ酸塩及び/又はケイ酸塩鉱物は有機溶媒に分散することが容易になる。
〔改変フィブロイン複合体〕
本発明の一実施形態の改変フィブロイン複合体は、改変フィブロインと、ケイ酸塩及び/又は有機層状ケイ酸塩鉱物と、を含む。また、該複合体は、繊維、フィルム、ゲル又は多孔質体である。改変フィブロイン複合体において、改変フィブロインと、ケイ酸塩及び/又は有機層状ケイ酸塩鉱物と、が物理的に混在しており、両者が一体となって成形体となっている。言い換えれば、ケイ酸塩及び/又は有機層状ケイ酸塩鉱物が改変フィブロイン中に分散されている。改変フィブロイン複合体において、ケイ酸塩及び/又は有機層状ケイ酸塩鉱物が、改変フィブロイン中に均一に分散されていることが好ましい。
本発明の一実施形態の改変フィブロイン複合体は、改変フィブロインと、ケイ酸塩及び/又は有機層状ケイ酸塩鉱物と、を含む。また、該複合体は、繊維、フィルム、ゲル又は多孔質体である。改変フィブロイン複合体において、改変フィブロインと、ケイ酸塩及び/又は有機層状ケイ酸塩鉱物と、が物理的に混在しており、両者が一体となって成形体となっている。言い換えれば、ケイ酸塩及び/又は有機層状ケイ酸塩鉱物が改変フィブロイン中に分散されている。改変フィブロイン複合体において、ケイ酸塩及び/又は有機層状ケイ酸塩鉱物が、改変フィブロイン中に均一に分散されていることが好ましい。
改変フィブロイン、ケイ酸塩及び/又は有機層状ケイ酸塩鉱物は上述のとおりである。改変フィブロイン複合体は、後述の改変フィブロイン複合体の製造方法によって製造することができる。
改変フィブロイン複合体において、ケイ酸塩及び有機層状ケイ酸塩鉱物の合計含有量は、改変フィブロインに対して0.01重量%~7重量%、すなわち、改変フィブロインを100重量%としたとき、0.01重量%~7重量%であればよく、0.05重量%~6重量%であってよく、0.05重量%~5重量%が好ましく、0.1重量%~5重量%がより好ましく、0.3重量%~5重量%がより好ましく、0.3重量%~4重量%がより好ましく、0.3重量%~3.5重量%がより好ましく、0.4重量%~3.2重量%がより好ましく、0.5重量%~3.2重量%がより好ましく、0.5重量%~3重量%がさらに好ましく、0.5重量%~2重量%が特に好ましい。改変フィブロインに対するケイ酸塩及び有機層状ケイ酸塩鉱物の合計含有量を上述の範囲内にすることで、ケイ酸塩及び有機層状ケイ酸塩鉱物の分散性をより向上させることができる。
本実施形態の改変フィブロイン複合体は良好な耐湿性を有する。特に、ケイ酸塩及び/又は有機層状ケイ酸塩鉱物によって複合されていない改変フィブロイン成形体に比べて、改善された耐湿性を有する。ここで、耐湿性とは、湿度に対する伸度変化(寸法変化)が抑制されること、すなわち、寸法安定性が高いことをいう。
耐湿性の評価は、例えば、加湿環境中における改変フィブロイン複合体の伸度変化によって評価することができる。改変フィブロイン複合体の繊維状成形体(繊維)の場合、例えば、温度30℃、相対湿度0%に設定したDMA Q800の装置内に繊維を静置し、0.008Nの応力をかけ続けた状態で相対湿度を1%/minの速度で0~90%まで増加させ、その際の長さ変化を測定することによって評価することができる。その際、同一条件で測定したケイ酸塩及び/又はケイ酸塩鉱物(層状ケイ酸塩鉱物及び/又は有機層状ケイ酸塩鉱物)によって複合されていない改変フィブロイン成形体(繊維)との長さ変化を比較することによって評価することができる。
耐湿性の評価は、改変フィブロイン複合体のフィルムの場合、例えば、その動的粘弾性特性を測定し、相対湿度に対する貯蔵弾性率の転移点によって評価することができる。具体的には、例えば、温度30℃、相対湿度40%に設定したDMA Q800(ティー・エイ・インスツルメント・ジャパン株式会社製)の装置内にフィルムを1時間静置する。その後、相対湿度を2%/minの速度で40~90%まで昇湿させ、1Hzの正弦ひずみをかけて動的粘弾性特性(貯蔵弾性率、損失弾性率及び損失正接)を測定する。相対湿度に対する貯蔵弾性率の転移点は、改変フィブロイン複合体に変形が生じた際の相対湿度の値に相当する。値の算出は、貯蔵弾性率の曲線のオンセット値として算出できる。
機械的物性の評価は、例えば、以下のようにして行うことができる。改変フィブロイン複合体の繊維状成形体(繊維)の場合、温度30℃、相対湿度25%に設定したDMA Q800(ティー・エイ・インスツルメント・ジャパン株式会社製)の装置内に複合体(繊維)を30分静置した後、50MPa/minの荷重速度で引張り試験を行い、得られたS-S曲線より、複合体(繊維)の引張強度[MPa]、破断伸度[%]及び靱性[MJ/m3]をそれぞれ算出することができる。その際、同一条件で測定したケイ酸塩及び/又は有機ケイ酸塩鉱物によって複合されていない改変フィブロイン成形体(繊維)と引張強度、破断伸度及び靭性を比較し、相対値[%]を算出することによって評価することができる。
本実施形態の改変フィブロイン複合体は、改変フィブロイン分散液を作成する際に特定の有機溶媒を使用し、該溶媒を除去することにより、残存溶媒をほとんど含まないか或いは残存溶液が十分に少ない(例えば、残存量がppm単位)改変フィブロイン複合体を提供することができる。
改変フィブロイン複合体中の残存有機溶媒の測定は、以下のようにして行うことができる。例えば、有機溶媒がDMSOである場合、内部標準として濃度3,100ppm(0.00310mg/ml)の1,2-ジクロロエタン-ギ酸溶液を準備する。タンパク質溶液(10mlのギ酸に0.1gの改変フィブロイン複合体を溶解したもの)500μlと内部標準溶液500μlを混合する。さらに、H-NMR測定のためアセトニトリル重溶媒を同量程度加え約2倍に希釈し、H-NMR測定を行う(NMRの機種:JEOL社 JNM-ECX 100)。内部標準試料1,2-ジクロロエタンのH-NMR積分強度とDMSOのH-NMR積分強度を比較する。検量線の作成は3ppm~3000ppmのDMSO-ギ酸溶液を作成し、上記プロトコルにしたがって、検量線を作成する。検量線との比較から、タンパク質溶液中のDMSO濃度を求めることができる。DMSO濃度測定は、JEOL社製の核磁気共鳴装置(NMR)を用いて行なってもよい。
〔改変フィブロイン複合体の製造方法〕
本発明の一実施形態の改変フィブロイン複合体の製造方法は、改変フィブロインとケイ酸塩及び/又はケイ酸塩鉱物とを含む改変フィブロイン複合体の製造方法であって、改変フィブロインとケイ酸塩及び/又はケイ酸塩鉱物と有機溶媒とを含む分散液から上記有機溶媒を除去する工程を含む。改変フィブロイン、ケイ酸塩及び/又はケイ酸塩鉱物、及び有機溶媒、並びにこれらを含む分散液は上述のとおりである。改変フィブロイン複合体は、例えば、繊維、フィルム、ゲル又は多孔質体に成形されてよい。
本発明の一実施形態の改変フィブロイン複合体の製造方法は、改変フィブロインとケイ酸塩及び/又はケイ酸塩鉱物とを含む改変フィブロイン複合体の製造方法であって、改変フィブロインとケイ酸塩及び/又はケイ酸塩鉱物と有機溶媒とを含む分散液から上記有機溶媒を除去する工程を含む。改変フィブロイン、ケイ酸塩及び/又はケイ酸塩鉱物、及び有機溶媒、並びにこれらを含む分散液は上述のとおりである。改変フィブロイン複合体は、例えば、繊維、フィルム、ゲル又は多孔質体に成形されてよい。
改変フィブロイン複合体が繊維(繊維状成形体)である場合、公知の湿式紡糸法、乾式紡糸法、乾湿式紡糸法又は溶融紡糸法等によって製造することができる。紡糸法において、例えば、改変フィブロインとケイ酸塩及び/又はケイ酸塩鉱物と有機溶媒とを含む分散液を紡糸用のドープ液として、該分散液を紡糸し、紡糸された分散液(糸条)から溶媒を除去する方法により得られる。
改変フィブロイン複合体がフィルムである場合、改変フィブロインとケイ酸塩及び/又はケイ酸塩鉱物と有機溶媒とを含む分散液の膜を形成し、形成された膜から溶媒を除去する方法により得られる。フィブロイン由来タンパク質よりフィルムを製造する方法が国際公開第2014/103799号に記載されており、基本的にこの方法に準じて得られる。
改変フィブロイン複合体がゲルである場合、改変フィブロインとケイ酸塩及び/又はケイ酸塩鉱物と有機溶媒とを含む分散液のゲルを形成し、形成されたゲルから溶媒を除去する方法により得られる。フィブロイン由来タンパク質よりゲルを製造する方法が国際公開第2014/175177号に記載されており、基本的にこの方法に準じて得られる。
改変フィブロイン複合体が多孔質体である場合、フィブロイン由来タンパク質より多孔質体を製造する方法が国際公開第2014/175178号に記載されており、基本的にこの方法によって得られる。
〔1.改変フィブロインの製造〕
(1)発現ベクターの作製
ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号15を有する改変フィブロイン(以下、「PRT799」ともいう。)、配列番号37を有する改変フィブロイン(以下、「PRT918」ともいう。)、及び配列番号40を有する改変フィブロイン(以下、「PRT966」ともいう。)を設計した。なお、配列番号15で示されるアミノ酸配列は、ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列を有し、さらにN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されている。配列番号37で示されるアミノ酸配列は、疎水度の向上を目的として、配列番号7で示されるアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したアミノ酸配列を有し、さらにN末端に配列番号11で示されるアミノ酸配列が付加されている。また、配列番号40で示されるアミノ酸配列は、疎水度の向上を目的として、配列番号9で示されるアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したアミノ酸配列を有し、さらにN末端に配列番号11で示されるアミノ酸配列が付加されている。
(1)発現ベクターの作製
ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号15を有する改変フィブロイン(以下、「PRT799」ともいう。)、配列番号37を有する改変フィブロイン(以下、「PRT918」ともいう。)、及び配列番号40を有する改変フィブロイン(以下、「PRT966」ともいう。)を設計した。なお、配列番号15で示されるアミノ酸配列は、ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列を有し、さらにN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されている。配列番号37で示されるアミノ酸配列は、疎水度の向上を目的として、配列番号7で示されるアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したアミノ酸配列を有し、さらにN末端に配列番号11で示されるアミノ酸配列が付加されている。また、配列番号40で示されるアミノ酸配列は、疎水度の向上を目的として、配列番号9で示されるアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したアミノ酸配列を有し、さらにN末端に配列番号11で示されるアミノ酸配列が付加されている。
次に、設計した配列番号15、配列番号37及び配列番号40のアミノ酸配列を有する改変フィブロイン(改変クモ糸フィブロイン)PRT799、PRT918及びPRT966をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト及び終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、それぞれタンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。
(2)改変フィブロインの発現
(1)で得られた発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表4)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
(1)で得られた発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表4)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
当該シード培養液を500mLの生産培地(表5)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。
生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、改変フィブロインを発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存した目的とする組み換え構造タンパク質のバンドの出現により、目的とする改変フィブロイン(改変クモ糸フィブロイン)の発現を確認した。
(3)改変フィブロインの精製
IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社製)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収することにより、改変フィブロイン(PRT799、PRT918及びPRT966)を得た。
IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社製)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収することにより、改変フィブロイン(PRT799、PRT918及びPRT966)を得た。
〔2.改変フィブロインの複合体(繊維)の製造〕
(1)フィラーの分散性評価
表6に示したフィラー(層状ケイ酸塩鉱物又はケイ酸塩)の有機溶媒への分散性を評価した。有機溶媒として、ギ酸、及び、上記精製工程で得られた改変フィブロイン(PRT799)とギ酸を含む改変フィブロイン溶液を用いた。ギ酸とフィラーの分散液は、ギ酸とフィラーを室温で3時間攪拌して調製した。改変フィブロイン分散液は、上記改変フィブロイン溶液とフィラーを室温で3時間攪拌して調製した。改変フィブロインの含有量は、分散液(ドープ液)全量に対して22重量%とした。フィラーの含有量は、いずれも改変フィブロインに対して3重量%とした。調製した各分散液の粘度及びフィラーの分散性を表6及び図6に示した。なお、SiO2(比表面積300m2/g)は日本アエロジル株式会社製、ベントナイト(ベンゲル、陽イオン交換容量:93meq/100g、長さ:500nm、幅:3~5nmインターカレーション:Na+)及び有機ベントナイト(S-BEN NX、陽イオン交換容量:93meq/100g、長さ:500nm、幅:3~5nmインターカレーション:[(CH3)(CH2)17]2N+(CH3)2)は株式会社ホージュン製のものを用いた。
(1)フィラーの分散性評価
表6に示したフィラー(層状ケイ酸塩鉱物又はケイ酸塩)の有機溶媒への分散性を評価した。有機溶媒として、ギ酸、及び、上記精製工程で得られた改変フィブロイン(PRT799)とギ酸を含む改変フィブロイン溶液を用いた。ギ酸とフィラーの分散液は、ギ酸とフィラーを室温で3時間攪拌して調製した。改変フィブロイン分散液は、上記改変フィブロイン溶液とフィラーを室温で3時間攪拌して調製した。改変フィブロインの含有量は、分散液(ドープ液)全量に対して22重量%とした。フィラーの含有量は、いずれも改変フィブロインに対して3重量%とした。調製した各分散液の粘度及びフィラーの分散性を表6及び図6に示した。なお、SiO2(比表面積300m2/g)は日本アエロジル株式会社製、ベントナイト(ベンゲル、陽イオン交換容量:93meq/100g、長さ:500nm、幅:3~5nmインターカレーション:Na+)及び有機ベントナイト(S-BEN NX、陽イオン交換容量:93meq/100g、長さ:500nm、幅:3~5nmインターカレーション:[(CH3)(CH2)17]2N+(CH3)2)は株式会社ホージュン製のものを用いた。
分散液の分散性の評価は、3時間静置後も分散液中のフィラーが沈降せず分散液が透明なものを良分散(○)、3時間静置後も分散液中のフィラーが沈降しないが分散液が混濁しているものを濁分散(△)、3時間静置後に分散液中のフィラーが沈降したものを貧分散(×)として評価した。分散性の評価結果と改変フィブロイン分散液の粘度を表6に示した。なお、粘度測定はEMS粘度計(京都電子工業株式会社製、EMS-1000)を用いて測定した。
表6に示したとおり、ケイ酸塩(SiO2)及び層状ケイ酸塩鉱物(精製ベントナイト及び有機ベントナイト)が添加された改変フィブロイン分散液では、粘度が増加した。また、表6及び図6に示した通り、ケイ酸塩(SiO2)はギ酸と改変フィブロイン溶液に対して良好な分散性を示した。一方、層状ケイ酸塩鉱物(精製ベントナイト及び有機ベントナイト)はギ酸中で沈殿したが、ギ酸に改変フィブロインを添加した改変フィブロイン溶液においては、良好な分散性を示した。改変フィブロインが分散補助剤としての役割をしたことが示された。
(2)ドープ液(分散液)の調製
上記精製工程で得られた改変フィブロイン粉末(PRT799)2.4gと、層状ケイ酸塩鉱物としてジメチルジオクタデシルアンモニウムで有機修飾された有機ベントナイト(S-BEN NX、株式会社ホージュン製)12mgに、ギ酸7.6gを溶媒として添加し、その後40℃で3時間攪拌した。目開き3μmの金属フィルターでろ過し、ドープ液(実施例4)を調製した。ドープ液における有機ベントナイトの含有量は、改変フィブロインに対して0.18重量%であり、40℃でのドープ液の粘度は5,350cPであった。改変フィブロインの含有量は、ドープ液全量に対して24重量%とした。なお、有機ベントナイトの含有量は、次工程(2)で得られた繊維を650℃で燃焼した際の、残留無機物量から算出した。
上記精製工程で得られた改変フィブロイン粉末(PRT799)2.4gと、層状ケイ酸塩鉱物としてジメチルジオクタデシルアンモニウムで有機修飾された有機ベントナイト(S-BEN NX、株式会社ホージュン製)12mgに、ギ酸7.6gを溶媒として添加し、その後40℃で3時間攪拌した。目開き3μmの金属フィルターでろ過し、ドープ液(実施例4)を調製した。ドープ液における有機ベントナイトの含有量は、改変フィブロインに対して0.18重量%であり、40℃でのドープ液の粘度は5,350cPであった。改変フィブロインの含有量は、ドープ液全量に対して24重量%とした。なお、有機ベントナイトの含有量は、次工程(2)で得られた繊維を650℃で燃焼した際の、残留無機物量から算出した。
ドープ液として、金属フィルターでのろ過を行わなかった他は、上記と同様にしてドープ液(実施例5)を調製した。ドープ液における有機ベントナイトの含有量は、改変フィブロインに対して0.46重量%であった。
コントロール用のドープ液(比較例5)として、有機ベントナイトを添加しなかった他は、上記と同様にしてドープ液を調製した。40℃でのドープ液の粘度は4,700cPであった。
(3)改変フィブロイン複合体(繊維)の製造 上記(2)で得られたドープ液をリザーブタンクに充填し、卓上の紡糸装置を使用して0.2mm径のモノホールノズルからギアポンプを用いて凝固浴槽中で吐出させ、原糸を形成させた。
次いで、凝固させた原糸を水洗浄浴中で延伸した。水洗浄浴中における洗浄及び延伸後、得られた改変フィブロイン繊維(改変フィブロイン複合体)を卓上の紡糸装置を用いて巻き取った。巻き取った繊維をドラフト中で一晩自然乾燥させた。湿式紡糸の条件は以下のとおりであった。 押出しノズル直径:0.2mm
凝固液:メタノール
凝固液の温度:25℃
水洗浄浴における延伸倍率:6倍
水洗浄浴の温度:25℃
凝固液:メタノール
凝固液の温度:25℃
水洗浄浴における延伸倍率:6倍
水洗浄浴の温度:25℃
(4)改変フィブロイン複合体(繊維)の物性評価
上記(3)で得られた複合体の物性を以下の方法で測定した。
上記(3)で得られた複合体の物性を以下の方法で測定した。
(4-1)機械物性の測定
温度30℃、相対湿度25%に設定したDMA Q800(ティー・エイ・インスツルメント・ジャパン株式会社製)の装置内に複合体を30分静置した後、50MPa/minの荷重速度で引張り試験を行った。得られたS-S曲線より、複合体(繊維)の引張強度[MPa]、破断伸度[%]、及び靱性[MJ/m3]をそれぞれ算出した。表7に各改変フィブロイン複合体(繊維)の機械物性評価結果を示した。各機械物性値は、比較例5における繊維の各物性値を100%とした場合の相対値として示した。
温度30℃、相対湿度25%に設定したDMA Q800(ティー・エイ・インスツルメント・ジャパン株式会社製)の装置内に複合体を30分静置した後、50MPa/minの荷重速度で引張り試験を行った。得られたS-S曲線より、複合体(繊維)の引張強度[MPa]、破断伸度[%]、及び靱性[MJ/m3]をそれぞれ算出した。表7に各改変フィブロイン複合体(繊維)の機械物性評価結果を示した。各機械物性値は、比較例5における繊維の各物性値を100%とした場合の相対値として示した。
表7に示した通り、層状ケイ酸塩鉱物である有機ベントナイトと複合化された改変フィブロイン複合体(繊維)では、伸度を維持したまま強度が向上し、その結果靭性が向上するという秀逸な効果が得られた(実施例4)。
(4-2)耐湿性の評価
加湿環境中における繊維の伸度変化を以下の方法で測定した。温度30℃、相対湿度0%に設定したDMA Q800の装置内に繊維を静置した。0.008Nの応力をかけ続けた状態で相対湿度を1%/minの速度で0~90%まで増加させ、その際の長さ変化を測定した。図7に測定結果を示した。
加湿環境中における繊維の伸度変化を以下の方法で測定した。温度30℃、相対湿度0%に設定したDMA Q800の装置内に繊維を静置した。0.008Nの応力をかけ続けた状態で相対湿度を1%/minの速度で0~90%まで増加させ、その際の長さ変化を測定した。図7に測定結果を示した。
図7に示した通り、層状ケイ酸塩鉱物である有機ベントナイトと複合化された改変フィブロイン複合体(繊維、実施例4及び5)では、複合化されていない改変フィブロイン繊維(比較例5)と比較して、湿度に対する伸度変化(寸法変化)が抑制され、寸法安定性が向上していた。改変フィブロインを粘土鉱物と複合化することで、改変フィブロイン複合体(繊維)の耐湿性が向上したことが示された。
[3.改変フィブロイン複合体(フィルム)の製造]
(1)フィラーの分散性評価
表8に示したフィラー(層状ケイ酸塩鉱物又はケイ酸塩)の有機溶媒への分散性を評価した。有機溶媒として、ジメチルスルホキシド(DMSO)及び上記精製工程で得られた改変フィブロイン(PRT799、粒径12.2nm)とDMSOを含む改変フィブロイン溶液を用いた。DMSOとフィラーの分散液は、DMSOとフィラーを室温で1時間攪拌して調製した。
(1)フィラーの分散性評価
表8に示したフィラー(層状ケイ酸塩鉱物又はケイ酸塩)の有機溶媒への分散性を評価した。有機溶媒として、ジメチルスルホキシド(DMSO)及び上記精製工程で得られた改変フィブロイン(PRT799、粒径12.2nm)とDMSOを含む改変フィブロイン溶液を用いた。DMSOとフィラーの分散液は、DMSOとフィラーを室温で1時間攪拌して調製した。
改変フィブロイン分散液は、改変フィブロイン溶液とフィラーを室温で3時間攪拌して調製した。改変フィブロインの含有量は、ドープ液全量に対して13.6重量%とした。改変フィブロインに対するフィラーの含有量は表8のとおりとした。調製した各分散液の粘度及びフィラーの分散性を表8に示した。分散液の分散性の評価は、3時間静置後もフィラーが沈降せず分散液が透明なものを良分散(○)、3時間静置後もフィラーが沈降しないが分散液が混濁しているものを濁分散(△)、3時間静置後フィラーが沈降したものを貧分散(×)として評価した。
なお、フィラーとして使用したRC-G(モンモリロナイト、陽イオン交換容量:40meq/100g、長さ:300nm、幅:3~5nm、インターカレーション:NH4
+)、スメクトン-SAN(有機合成ヘクトライト、構造式:[(Mg2.67Li0.33)(Si4O10)(OH)2][(C18H37)2(CH3)2N]0.33、陽イオン交換容量:105meq/100g、長さ:300nm、幅:3~5nm、インターカレーション:[CH3(CH2)17]2N+(CH3)2)及びスメクトン-SEN(有機合成ヘクトライト、陽イオン交換容量:105meq/100g、長さ:300nm、幅:3~5nm、層間距離:2.45nm、インターカレーション:(C8H17)3N+CH3)はクニミネ工業株式会社、SiO2は日本アエロジル株式会社より購入した。
(2)分散液と改変フィブロイン複合体(フィルム)の調製
上記精製工程で得られた改変フィブロイン(改変クモ糸フィブロイン)粉末(PRT799)と、層状ケイ酸塩鉱物として塩化ジポリオキシエチレンヤシアルキルメチルアンモニウムで修飾された有機化スメクタイト(スメクトン-SEN、クニミネ工業株式会社製)を混合し、混合粉末を得た。有機化スメクタイト含有量は、改変フィブロインに対してそれぞれ1重量%及び3重量%とした。上記混合粉末1.5gにDMSO10ml(11g)を溶媒として添加し、80℃で6時間混合攪拌して分散液(ドープ液)を調製した。調製した分散液をポリエチレンテレフタラート基盤上にキャストし、ドクターブレード(BEVS industrial Co.LTD)を用いて成膜し、70℃で12時間乾燥させ、厚さ50μmのフィルムを形成させた。さらにフィルムを水浴中に30分含浸し、水を交換して再度30分含浸した。この操作を繰り返し、計90分間フィルムを水浴中に含浸して脱溶媒を行った。30℃、相対湿度60%の恒温恒湿槽中で3時間静置し平衡化した(実施例6)。
上記精製工程で得られた改変フィブロイン(改変クモ糸フィブロイン)粉末(PRT799)と、層状ケイ酸塩鉱物として塩化ジポリオキシエチレンヤシアルキルメチルアンモニウムで修飾された有機化スメクタイト(スメクトン-SEN、クニミネ工業株式会社製)を混合し、混合粉末を得た。有機化スメクタイト含有量は、改変フィブロインに対してそれぞれ1重量%及び3重量%とした。上記混合粉末1.5gにDMSO10ml(11g)を溶媒として添加し、80℃で6時間混合攪拌して分散液(ドープ液)を調製した。調製した分散液をポリエチレンテレフタラート基盤上にキャストし、ドクターブレード(BEVS industrial Co.LTD)を用いて成膜し、70℃で12時間乾燥させ、厚さ50μmのフィルムを形成させた。さらにフィルムを水浴中に30分含浸し、水を交換して再度30分含浸した。この操作を繰り返し、計90分間フィルムを水浴中に含浸して脱溶媒を行った。30℃、相対湿度60%の恒温恒湿槽中で3時間静置し平衡化した(実施例6)。
ケイ酸塩である二酸化ケイ素(AEROSIL(登録商標)300、比表面積300m2/g、日本アエロジル株式会社製)を使用し、改変フィブロインに対する含有量を3重量%とした他は、実施例6と同様の手順で二酸化ケイ素と複合化させたフィルムを調製した(実施例7)。
コントロールとして、層状ケイ酸塩鉱物を添加しなかった以外は、実施例6と同様にして改変フィブロインのみを含有するフィルムを調製した(比較例6)。
さらに、固体NMR用の固体NMR用のサンプルとして、層状ケイ酸塩鉱物としてカオリナイト(林化成株式会社製)を使用し、改変フィブロインに対する含有量を3重量%とした他は、実施例6と同様の手順でフィルムを調製した(実施例8)。
固体NMR用の比較例として、上記の改変フィブロインのみを含有するコントロールフィルムをメタノール中で含浸処理したフィルムを調製した(比較例7)。
(3)改変フィブロイン複合体の物性評価
(3-1)動的粘弾性特性の測定
上記(2)で得られた複合体(フィルム)の物性を以下の方法で測定した。温度30℃、相対湿度40%に設定したDMAQ800(ティー・エイ・インスツルメント・ジャパン株式会社製)の装置内にフィルムを1時間静置した。その後、相対湿度を2%/minの速度で40~90%まで昇湿させ、1Hzの正弦ひずみをかけて動的粘弾性特性(貯蔵弾性率、損失弾性率及び損失正接)を測定した。図8に測定した貯蔵弾性率及び損失弾性のグラフを示した。表9に温度30℃、相対湿度40%の環境下での改変フィブロイン複合体の貯蔵弾性率の値、及び相対湿度に対する貯蔵弾性率の転移点の値を示した。
(3-1)動的粘弾性特性の測定
上記(2)で得られた複合体(フィルム)の物性を以下の方法で測定した。温度30℃、相対湿度40%に設定したDMAQ800(ティー・エイ・インスツルメント・ジャパン株式会社製)の装置内にフィルムを1時間静置した。その後、相対湿度を2%/minの速度で40~90%まで昇湿させ、1Hzの正弦ひずみをかけて動的粘弾性特性(貯蔵弾性率、損失弾性率及び損失正接)を測定した。図8に測定した貯蔵弾性率及び損失弾性のグラフを示した。表9に温度30℃、相対湿度40%の環境下での改変フィブロイン複合体の貯蔵弾性率の値、及び相対湿度に対する貯蔵弾性率の転移点の値を示した。
相対湿度に対する貯蔵弾性率の転移点は、改変フィブロイン複合体に変形が生じた際の相対湿度の値に相当する。値の算出は、貯蔵弾性率の曲線のオンセット値として算出した。
表9と図8に示したとおり、層状ケイ酸塩鉱物である有機スメクタイトと複合化された改変フィブロイン複合体(実施例6と7)及びケイ酸塩である二酸化ケイ素と複合化された改変フィブロイン複合体(実施例8)では、複合化されていない改変フィブロインフィルム(比較例6)と比較して、同一温度同一相対湿度において弾性率が向上したことに加えて、より高湿度下でより高い弾性率を維持した。層状ケイ酸塩鉱物又はケイ酸塩と複合化させることで、耐湿性が向上したことが確認された。
(3-2)固体核磁気共鳴の測定
上記(2)で得られた複合体(フィルム)を冷凍粉砕機(JFC-300、日本分析工業株式会社製)で粉砕して粉末状にし、測定試料とした。固体核磁気共鳴の測定は、核磁気共鳴装置(Advance III 500MHz、BRUKER ANALYTIK社)を用いて行った。測定方法は13C CP-MASとし、測定条件は、周波数10kHz、取得時間27μs、緩和時間3s及び積算回数8,000回とした。測定データのフーリエ変換と解析は、同社のTopSpin(商標)を用いて行った。測定結果を表10及び図9に示した。
上記(2)で得られた複合体(フィルム)を冷凍粉砕機(JFC-300、日本分析工業株式会社製)で粉砕して粉末状にし、測定試料とした。固体核磁気共鳴の測定は、核磁気共鳴装置(Advance III 500MHz、BRUKER ANALYTIK社)を用いて行った。測定方法は13C CP-MASとし、測定条件は、周波数10kHz、取得時間27μs、緩和時間3s及び積算回数8,000回とした。測定データのフーリエ変換と解析は、同社のTopSpin(商標)を用いて行った。測定結果を表10及び図9に示した。
なお、表10の値はαヘリックス構造に対するβシート構造の比であり、数値が大きいほどβシート構造の割合が大きいことを示す。改変フィブロイン中のアラニン残基のβ位の炭素(C)由来のピーク位置は二次構造変化により変化し、βシート構造では21ppm付近、αヘリックス構造では16ppm付近に出現する。値の算出は、αヘリックス構造に帰属される20.2ppmにピークをもつスペクトルの強度及びβシート構造に帰属される16.3ppmにピークをもつスペクトルの強度を算出し、これらの強度比をとって算出した。以下に算出式を示した。
式:(βシート構造に帰属されるスペクトルの強度)/(αヘリックス構造に帰属されるスペクトルの強度)=Iβ(20.2ppm)/Iα(16.3ppm)
式:(βシート構造に帰属されるスペクトルの強度)/(αヘリックス構造に帰属されるスペクトルの強度)=Iβ(20.2ppm)/Iα(16.3ppm)
図9に示したとおり、層状ケイ酸塩鉱物(有機スメクタイト)と複合化された改変フィブロイン複合体では、複合化されていない改変フィブロインフィルムと比較して、αヘリックス構造に帰属されるピークが減少し、βシート構造に帰属されるピークが増大していることが確認された。層状ケイ酸塩鉱物が改変フィブロインの結晶核剤として作用したことが示唆された。なお、測定したフィルムの改変フィブロインに対する層状ケイ酸塩鉱物の含有量は、いずれも3重量%とした。
〔4.ポリマークレイハイブリッドとの改変フィブロイン複合体(フィルム)の製造〕
(4-1)層状ケイ酸塩鉱物への有機化合物のインターカレーション
層状ケイ酸塩鉱物の剥離性を向上させるため、J.Mater.Res,Vol.8,No.5,1179-1184,May 1993に基づき、以下の手順で有機層状ケイ酸塩鉱物である、ポリアミド系ポリマークレイハイブリッド(ナイロン6クレイハイブリッド)の合成とキャラクタリゼーションを行なった。
(4-1)層状ケイ酸塩鉱物への有機化合物のインターカレーション
層状ケイ酸塩鉱物の剥離性を向上させるため、J.Mater.Res,Vol.8,No.5,1179-1184,May 1993に基づき、以下の手順で有機層状ケイ酸塩鉱物である、ポリアミド系ポリマークレイハイブリッド(ナイロン6クレイハイブリッド)の合成とキャラクタリゼーションを行なった。
(1)モンモリロナイトの陽イオン交換
層状ケイ酸塩鉱物として、クニミネ工業株式会社製のクニピア-F(モンモリロナイトを主成分とするベントナイト、陽イオン交換容量:105meq/100g、長さ:300nm、幅:3~5nm、インターカレーション:Na+)(以降、MMTと称する)を用いた。MMT1gと純水100mlをビーカーに加え、100℃で一晩分散させた。別のビーカーに、12-アミノラウリン酸(12-ALA)(クニピア-Fの2倍の陽イオン交換容量)、濃塩酸0.25ml、及び純水50mlを加えて加熱した。クニピア-Fの分散液に12-ALAの溶液を加え、60℃で6時間攪拌した。これを遠心分離して得られた生成物をそれぞれ50mlの熱水で3回洗浄し、80℃の真空オーブン中で一晩乾燥させ、生成物(12-MMT)を得た。
層状ケイ酸塩鉱物として、クニミネ工業株式会社製のクニピア-F(モンモリロナイトを主成分とするベントナイト、陽イオン交換容量:105meq/100g、長さ:300nm、幅:3~5nm、インターカレーション:Na+)(以降、MMTと称する)を用いた。MMT1gと純水100mlをビーカーに加え、100℃で一晩分散させた。別のビーカーに、12-アミノラウリン酸(12-ALA)(クニピア-Fの2倍の陽イオン交換容量)、濃塩酸0.25ml、及び純水50mlを加えて加熱した。クニピア-Fの分散液に12-ALAの溶液を加え、60℃で6時間攪拌した。これを遠心分離して得られた生成物をそれぞれ50mlの熱水で3回洗浄し、80℃の真空オーブン中で一晩乾燥させ、生成物(12-MMT)を得た。
(2)ナイロン6クレイハイブリッドの合成
(1)で得られた生成物(12-MMT)1gとε-カプロラクタム10gを乳鉢に加えて乳棒で混合し、窒素雰囲気下の25mlのシュレンク管に設置した。混合物を30分間攪拌しながらオイルバス中で100℃に加熱し、続いて250℃で6時間加熱した。生成物を機械的に粉砕し、80℃の水で1時間洗浄し、80℃で一晩乾燥させ、ナイロン6クレイハイブリッド(NCH)を得た。
(1)で得られた生成物(12-MMT)1gとε-カプロラクタム10gを乳鉢に加えて乳棒で混合し、窒素雰囲気下の25mlのシュレンク管に設置した。混合物を30分間攪拌しながらオイルバス中で100℃に加熱し、続いて250℃で6時間加熱した。生成物を機械的に粉砕し、80℃の水で1時間洗浄し、80℃で一晩乾燥させ、ナイロン6クレイハイブリッド(NCH)を得た。
(3)XRD分析によるキャラクタリゼーション
上記で得られたNCHを、粉末XRD用のガラスプレート上に平らに静置し、X線回折計(Rigaku Smartlab)を用いて分析した。測定条件は、反射配置、CuKα放射(波長1.542Å、40kV、30mA)、スキャン速度1.00°/min、ステップサイズ0.02°とした。得られたXRDパターンを図11と図12に示した。
上記で得られたNCHを、粉末XRD用のガラスプレート上に平らに静置し、X線回折計(Rigaku Smartlab)を用いて分析した。測定条件は、反射配置、CuKα放射(波長1.542Å、40kV、30mA)、スキャン速度1.00°/min、ステップサイズ0.02°とした。得られたXRDパターンを図11と図12に示した。
図11に示したXRDパターンより、反応前のモンモリロナイト(MMT)に比べ、陽イオン交換後の12-MMTでは、層間距離が増加したことが確認された。さらに、図12に示したXRDパターンより、モンモリロナイトの層間にナイロン6をインターカレーションさせたNCHにおいては、層間距離が大幅に増大し、剥離性が向上したことが示された。さらに、ポリアミド系ポリマークレイハイブリッド(ナイロン6クレイハイブリッド)としたことで、溶媒(ギ酸)に対する分散性の向上も期待される。
(4)フィラーの分散性評価
上記で得られたナイロン6クレイハイブリッド(NCH)と、有機修飾前のクニピア-F(MMT)の有機溶媒への分散性を評価した。上記精製工程で得られた改変フィブロイン(PRT799)粉末とギ酸8gを混合し、20質量%の改変フィブロイン溶液とした。この溶液にナイロン6クレイハイブリッド(NCH)又はクニピア-F(MMT)を添加し、6時間攪拌してドープ液(分散液)を調製した。ドープ液におけるNCH及びMMTの最終濃度は、改変フィブロインに対しそれぞれ3.0質量%とした(実施例9及び試験例1)。調製した各分散液のフィラーの分散性を表16に示した。分散液の分散性の評価は、3時間静置後もフィラーが沈降せず分散液が透明なものを良分散(○)、3時間静置後もフィラーが沈降しないが分散液が混濁しているものを濁分散(△)、3時間静置後フィラーが沈降したものを貧分散(×)として評価した。
上記で得られたナイロン6クレイハイブリッド(NCH)と、有機修飾前のクニピア-F(MMT)の有機溶媒への分散性を評価した。上記精製工程で得られた改変フィブロイン(PRT799)粉末とギ酸8gを混合し、20質量%の改変フィブロイン溶液とした。この溶液にナイロン6クレイハイブリッド(NCH)又はクニピア-F(MMT)を添加し、6時間攪拌してドープ液(分散液)を調製した。ドープ液におけるNCH及びMMTの最終濃度は、改変フィブロインに対しそれぞれ3.0質量%とした(実施例9及び試験例1)。調製した各分散液のフィラーの分散性を表16に示した。分散液の分散性の評価は、3時間静置後もフィラーが沈降せず分散液が透明なものを良分散(○)、3時間静置後もフィラーが沈降しないが分散液が混濁しているものを濁分散(△)、3時間静置後フィラーが沈降したものを貧分散(×)として評価した。
表16に示した通り、有機修飾前のクニピア-F(MMT)の分散液では、3時間静置後フィラーが沈降したのに対し(試験例1)、ナイロン6クレイハイブリッド(NCH)の分散液では、一晩経過後もフィラーが沈降せず、極めて安定した分散性を示した(実施例9)。
(4-2)改変フィブロイン複合体(フィルム)の製造
上記精製工程で得られた改変フィブロイン(PRT799)粉末とギ酸を混合し、20質量%の改変フィブロイン溶液とした。この溶液に上記で得られたNCHを添加し、6時間攪拌してドープ液(分散液)を調製した。各ドープ液の改変フィブロインに対するNCHの最終濃度は、それぞれ0.5質量%、1.0質量%及び3.0質量%とした(実施例10~12)。各ドープ液をガラス基板上に流延し、ドクターブレードを用いて膜厚を調整し、一晩自然乾燥させた後、純水で3回洗浄した。得られたフィルムは厚さ約200マイクロメートルであった。
上記精製工程で得られた改変フィブロイン(PRT799)粉末とギ酸を混合し、20質量%の改変フィブロイン溶液とした。この溶液に上記で得られたNCHを添加し、6時間攪拌してドープ液(分散液)を調製した。各ドープ液の改変フィブロインに対するNCHの最終濃度は、それぞれ0.5質量%、1.0質量%及び3.0質量%とした(実施例10~12)。各ドープ液をガラス基板上に流延し、ドクターブレードを用いて膜厚を調整し、一晩自然乾燥させた後、純水で3回洗浄した。得られたフィルムは厚さ約200マイクロメートルであった。
コントロールとして、層状ケイ酸塩鉱物(ポリアミド系ポリマークレイハイブリッド)を添加しなかった以外は、実施例10~12と同様にして改変フィブロインのみを含有するフィルムを調製した(比較例8)。
(4-3)改変フィブロイン複合体(フィルム)の物性評価
上記(4-2)で得られた複合体(フィルム)の物性は、(3-1)と同様の手順で測定した。表17に温度30℃、相対湿度40%の環境下での改変フィブロイン複合体の貯蔵弾性率、引張強度、破断及び伸度の値、並びに相対湿度に対する貯蔵弾性率の転移点の値を示した。
上記(4-2)で得られた複合体(フィルム)の物性は、(3-1)と同様の手順で測定した。表17に温度30℃、相対湿度40%の環境下での改変フィブロイン複合体の貯蔵弾性率、引張強度、破断及び伸度の値、並びに相対湿度に対する貯蔵弾性率の転移点の値を示した。
表17に示したとおり、有機層状ケイ酸塩鉱物であるポリアミド系ポリマークレイハイブリッド(ナイロン6クレイハイブリッド)と複合化された改変フィブロイン複合体(実施例10~12)では、複合化されていない改変フィブロインフィルム(比較例8)と比較して、同一温度同一相対湿度において弾性率が向上したことに加えて、より高湿度下でより高い弾性率が維持された。さらに、引張強度と破断伸度の向上も認められた。改変フィブロインを層状ケイ酸塩鉱物と複合化させることで、耐湿性が向上したことが確認された。
[参考例1:改変フィブロインの燃焼性試験]
塩化リチウムのジメチルスルホキシド溶液(濃度:4.0重量%)に、改変フィブロイン(PRT799)の凍結乾燥粉末を、濃度24重量%となるよう添加し、シェーカーを使用して3時間混合することにより、溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
塩化リチウムのジメチルスルホキシド溶液(濃度:4.0重量%)に、改変フィブロイン(PRT799)の凍結乾燥粉末を、濃度24重量%となるよう添加し、シェーカーを使用して3時間混合することにより、溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
得られた紡糸原液を90℃に加熱し、目開き5μmの金属フィルターで濾過し、次いで30mLのステンレスシリンジ内で静置し、脱泡させた後に、ニードル径0.2mmのソリッドノズルから100重量%メタノール凝固浴槽中へ吐出させた。吐出温度は90℃であった。凝固後、得られた原糸を巻き取り、自然乾燥させて改変フィブロイン繊維(原料繊維)を得た。
原料繊維を撚り合せた撚糸を使用して、丸編機を使用した丸編みで編地(太さ:180デニール、ゲージ数:18)を製造した。得られた編地を20g切り出して、試験片として使用した。
燃焼性試験は、「消防危50号(平成7年5月31日付け)」に記載の「粉粒状又は融点の低い合成樹脂の試験方法」に準拠した。試験は、温度22℃、相対湿度45%、気圧1021hPaの条件下で実施した。測定結果(酸素濃度(%)、燃焼率(%)、換算燃焼率(%))を表11に示す。
燃焼性試験の結果、改変フィブロイン(PRT799)繊維で編んだ編地の限界酸素指数(LOI)値は27.2であった。一般にLOI値が26以上であると、難燃性であると知られている。改変フィブロインは、難燃性に優れていることが分かる。
[参考例2:改変フィブロインの吸湿発熱性評価]
塩化リチウムのジメチルスルホキシド溶液(濃度:4.0重量%)に、改変フィブロインの凍結乾燥粉末を、濃度24重量%となるよう添加し、シェーカーを使用して3時間混合することにより、溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
塩化リチウムのジメチルスルホキシド溶液(濃度:4.0重量%)に、改変フィブロインの凍結乾燥粉末を、濃度24重量%となるよう添加し、シェーカーを使用して3時間混合することにより、溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
得られた紡糸原液を60℃に加熱し、目開き5μmの金属フィルターで濾過し、次いで30mLのステンレスシリンジ内で静置し、脱泡させた後に、ニードル径0.2mmのソリッドノズルから100重量%メタノール凝固浴槽中へ吐出させた。吐出温度は60℃であった。凝固後、得られた原糸を巻き取り、自然乾燥させて改変フィブロイン繊維(原料繊維)を得た。
比較のため、原料繊維として、市販されているウール繊維、コットン繊維、テンセル繊維、レーヨン繊維及びポリエステル繊維を用意した。
各原料繊維を使用して、横編機を使用した横編みで編地をそれぞれ製造した。PRT918繊維又はPRT799繊維を使用した編地の太さ及びゲージ数を表12に示すとおりである。その他の原料繊維を使用した編地は、改変フィブロイン繊維の編地とほぼ同一のカバーファクターとなるように太さ及びゲージ数を調整した。具体的には、以下のとおりである。
10cm×10cmに裁断した編地を2枚合わせにし、四辺を縫い合わせて試験片(試料)とした。試験片を低湿度環境(温度20±2℃、相対湿度40±5%)で4時間以上放置した後、高湿度環境(温度20±2℃、相対湿度90±5%)に移し、試験片内部中央に取り付けた温度センサーにより30分間、1分間隔で温度の測定を行った。
測定結果から、下記式Aに従って、最高吸湿発熱度を求めた。
式A:最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)-(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
式A:最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)-(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
図10は、吸湿発熱性試験の結果の一例を示すグラフである。グラフの横軸は、試料を低湿度環境から高湿度環境に移した時点を0とし、高湿度環境での放置時間(分)を示す。グラフの縦軸は、温度センサーで測定した温度(試料温度)を示す。図10に示したグラフ中、Mで示した点が、試料温度の最高値に対応している。
表13に示すとおり、改変フィブロイン(PRT918及びPRT799)は、既存の材料と比べて、最高吸湿発熱度が高く、吸湿発熱性に優れていることが分かる。
[参考例3:改変フィブロインの保温性評価]
塩化リチウムのジメチルスルホキシド溶液(濃度:4.0重量%)に、改変フィブロインの凍結乾燥粉末を、濃度24重量%となるよう添加し、シェーカーを使用して3時間混合することにより、溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
塩化リチウムのジメチルスルホキシド溶液(濃度:4.0重量%)に、改変フィブロインの凍結乾燥粉末を、濃度24重量%となるよう添加し、シェーカーを使用して3時間混合することにより、溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
得られた紡糸原液を60℃に加熱し、目開き5μmの金属フィルターで濾過し、次いで30mLのステンレスシリンジ内で静置し、脱泡させた後に、ニードル径0.2mmのソリッドノズルから100重量%メタノール凝固浴槽中へ吐出させた。吐出温度は60℃であった。凝固後、得られた原糸を巻き取り、自然乾燥させて改変フィブロイン繊維(原料繊維)を得た。
比較のため、原料繊維として、市販されているウール繊維、シルク繊維、綿繊維、レーヨン繊維及びポリエステル繊維を用意した。
各原料繊維を使用して、横編機を使用した横編みで編地をそれぞれ製造した。PRT966繊維又はPRT799繊維を使用した編地の番手、撚り本数、ゲージ数、目付けは、表14に示すとおりである。その他の原料繊維を使用した編地は、改変フィブロイン繊維の編地とほぼ同一のカバーファクターとなるように調整した。具体的には、以下のとおりである。
保温性は、カトーテック株式会社製のKES-F7サーモラボII試験機を使用し、ドライコンタクト法(皮膚と衣服が乾燥状態で直接触れた時を想定した方法)を用いて評価した。20cm×20cmの矩形に裁断した編地1枚を試験片(試料)として使用した。試験片を、一定温度(30℃)に設定した熱板にセットし、風洞内風速30cm/秒の条件で、試験片を介して放散された熱量(a)を求めた。試験片をセットしない状態で、上記同様の条件で放散された熱量(b)を求め、下記式Bに従い保温率(%)を算出した。
式B: 保温率(%)=(1-a/b)×100
測定結果から、下記式Cに従って、保温性指数を求めた。
式C: 保温性指数=保温率(%)/試料の目付け(g/m2)
式B: 保温率(%)=(1-a/b)×100
測定結果から、下記式Cに従って、保温性指数を求めた。
式C: 保温性指数=保温率(%)/試料の目付け(g/m2)
表15に示すとおり、改変フィブロイン(PRT966及びPRT799)は、既存の材料と比べて、保温性指数が高く、保温性に優れていることが分かる。
参考例1~3に示したとおり、改変フィブロインが改変クモ糸フィブロインであると、保温性、吸湿発熱性及び/又は難燃性がより優れるものとすることができる。改変クモ糸フィブロインを用いて複合体とすることで、保温性、吸湿発熱性及び/又は難燃性により優れ、かつ耐湿性に極めて優れた複合体を得ることができる。
Claims (15)
- 改変フィブロインと、ケイ酸塩及び/又はケイ酸塩鉱物と、有機溶媒と、を含む、分散液。
- 前記ケイ酸塩及び前記ケイ酸塩鉱物の合計含有量が、前記改変フィブロインに対して0.01重量%~7重量%である、請求項1に記載の分散液。
- 前記ケイ酸塩鉱物が、スメクタイト、ベントナイト又はカオリナイトであり、前記ケイ酸塩が二酸化ケイ素である、請求項1又は2に記載の分散液。
- 前記ケイ酸塩鉱物が、有機層状ケイ酸塩鉱物である、請求項1~3のいずれか一項に記載の分散液。
- 前記有機層状ケイ酸塩鉱物が、有機スメクタイト及び有機ベントナイトからなる群から選択される少なくとも1種である、請求項1~4のいずれか一項に記載の分散液。
- 改変フィブロインを含む、ケイ酸塩及び/又はケイ酸塩鉱物を有機溶媒に分散させるための分散助剤。
- 改変フィブロインとケイ酸塩及び/又は有機層状ケイ酸塩鉱物とを含み、繊維、フィルム、ゲル又は多孔質体である、改変フィブロイン複合体。
- 前記ケイ酸塩及び/又は前記有機層状ケイ酸塩鉱物の含有量が、前記改変フィブロインに対して0.01重量%~7重量%である、請求項7に記載の改変フィブロイン複合体。
- 前記有機層状ケイ酸塩鉱物が、有機スメクタイト及び有機ベントナイトからなる群より選択される少なくとも1種であり、前記ケイ酸塩が二酸化ケイ素である、請求項7又は8に記載の改変フィブロイン複合体。
- 前記有機スメクタイトが、有機モンモリロナイト及び有機ヘクトライトからなる群より選択される少なくとも1種である、請求項7~9のいずれか一項に記載の改変フィブロイン複合体。
- 前記複合体が、繊維又はフィルムである、請求項7~10のいずれか一項に記載の改変フィブロイン複合体。
- 改変フィブロインとケイ酸塩及び/又はケイ酸塩鉱物とを含む改変フィブロイン複合体の製造方法であって、前記改変フィブロインと前記ケイ酸塩及び/又は前記ケイ酸塩鉱物と有機溶媒と、を含む分散液から前記有機溶媒を除去する工程を含む、改変フィブロイン複合体の製造方法。
- 前記ケイ酸塩が二酸化ケイ素であり、前記ケイ酸塩鉱物がスメクタイト、ベントナイト及びカオリナイトから選択される少なくとも1種である、請求項12に記載の改変フィブロイン複合体の製造方法。
- 前記ケイ酸塩鉱物が有機層状ケイ酸塩鉱物である、請求項12又は13に記載の改変フィブロイン複合体の製造方法。
- 前記有機層状ケイ酸塩鉱物が有機スメクタイト及び有機ベントナイトからなる群より選択される少なくとも1種である、請求項12~14のいずれか一項に記載の改変フィブロイン複合体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021529190A JPWO2021002437A1 (ja) | 2019-07-03 | 2020-07-02 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019124801 | 2019-07-03 | ||
JP2019-124801 | 2019-07-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021002437A1 true WO2021002437A1 (ja) | 2021-01-07 |
Family
ID=74101352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/026038 WO2021002437A1 (ja) | 2019-07-03 | 2020-07-02 | 改変フィブロイン複合体及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021002437A1 (ja) |
WO (1) | WO2021002437A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002186847A (ja) * | 2000-12-19 | 2002-07-02 | National Institute Of Agrobiological Sciences | ハイドロゲルの製造方法および細胞培養支持体 |
JP2017014404A (ja) * | 2015-07-01 | 2017-01-19 | 日立化成株式会社 | フィブロイン成形体及びフィブロイン組成物 |
WO2018034111A1 (ja) * | 2016-08-19 | 2018-02-22 | 国立研究開発法人理化学研究所 | フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法 |
WO2018163758A1 (ja) * | 2017-03-10 | 2018-09-13 | Spiber株式会社 | モールド成形体及びモールド成形体の製造方法 |
WO2018164190A1 (ja) * | 2017-03-10 | 2018-09-13 | Spiber株式会社 | 人造フィブロイン繊維 |
WO2018235958A1 (ja) * | 2017-06-23 | 2018-12-27 | Spiber株式会社 | タンパク質の精製方法、タンパク質溶液の製造方法、及びタンパク質成形体の製造方法 |
CN109824922A (zh) * | 2019-01-17 | 2019-05-31 | 湖北工程学院 | 一种具有红外光响应的水凝胶材料及其制备方法 |
-
2020
- 2020-07-02 WO PCT/JP2020/026038 patent/WO2021002437A1/ja active Application Filing
- 2020-07-02 JP JP2021529190A patent/JPWO2021002437A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002186847A (ja) * | 2000-12-19 | 2002-07-02 | National Institute Of Agrobiological Sciences | ハイドロゲルの製造方法および細胞培養支持体 |
JP2017014404A (ja) * | 2015-07-01 | 2017-01-19 | 日立化成株式会社 | フィブロイン成形体及びフィブロイン組成物 |
WO2018034111A1 (ja) * | 2016-08-19 | 2018-02-22 | 国立研究開発法人理化学研究所 | フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法 |
WO2018163758A1 (ja) * | 2017-03-10 | 2018-09-13 | Spiber株式会社 | モールド成形体及びモールド成形体の製造方法 |
WO2018164190A1 (ja) * | 2017-03-10 | 2018-09-13 | Spiber株式会社 | 人造フィブロイン繊維 |
WO2018235958A1 (ja) * | 2017-06-23 | 2018-12-27 | Spiber株式会社 | タンパク質の精製方法、タンパク質溶液の製造方法、及びタンパク質成形体の製造方法 |
CN109824922A (zh) * | 2019-01-17 | 2019-05-31 | 湖北工程学院 | 一种具有红外光响应的水凝胶材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021002437A1 (ja) | 2021-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7088511B2 (ja) | フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法 | |
WO2020067574A1 (ja) | タンパク質繊維の製造方法 | |
JP7330468B2 (ja) | 混紡糸並びにその編織体及びその編織体の製造方法 | |
JPWO2020162627A1 (ja) | 人造構造タンパク質繊維の製造方法 | |
JPWO2019194146A1 (ja) | 成形体及びその製造方法 | |
JPWO2019194245A1 (ja) | 高収縮人造フィブロイン紡績糸及びその製造方法、並びに人造フィブロイン紡績糸及びその収縮方法 | |
WO2021002437A1 (ja) | 改変フィブロイン複合体及びその製造方法 | |
JPWO2019044982A1 (ja) | 高密度編地及び高密度編地の製造方法 | |
JPWO2019194224A1 (ja) | 改変フィブロイン成形体の塑性変形体の寸法回復方法 | |
JP7228220B2 (ja) | 吸湿発熱性付与剤、及び吸湿発熱性を付与する方法 | |
WO2021201103A1 (ja) | 難燃性材料及びその製造方法 | |
WO2021065769A1 (ja) | 接触冷感性及び吸水速乾性付与剤、並びに物品に接触冷感性及び吸水速乾性を付与する方法 | |
WO2019194249A1 (ja) | ドープ液、改変フィブロイン繊維及びその製造方法 | |
JP2022024192A (ja) | 複合糸、及びその製造方法、並びに布地 | |
WO2020250904A1 (ja) | 吸水速乾性付与剤、及び吸水速乾性を付与する方法 | |
JP7198481B2 (ja) | 難燃性付与剤、及び難燃性を付与する方法 | |
WO2021065812A1 (ja) | ドープ液及びそれを用いた改変フィブロイン成形体の製造方法 | |
WO2020067514A1 (ja) | 改変クモ糸フィブロイン繊維及びその製造方法 | |
WO2021065851A1 (ja) | 人工毛髪用保水性調節剤、及び保水性を調節する方法 | |
JP2021054819A (ja) | 人工構造タンパク質繊維及びその製造方法 | |
WO2020067573A1 (ja) | 異形断面タンパク質繊維の製造方法及び形状コントロール方法 | |
WO2019194261A1 (ja) | 人造フィブロイン繊維 | |
JPWO2020067553A1 (ja) | タンパク質紡績糸の製造方法 | |
JP2022024194A (ja) | 複合糸、及びその製造方法、並びに布地 | |
JPWO2019194263A1 (ja) | 高収縮人造フィブロイン撚糸及びその製造方法、並びに人造フィブロイン撚糸及びその収縮方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20834297 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021529190 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20834297 Country of ref document: EP Kind code of ref document: A1 |