WO2021002184A1 - エネルギマネジメントシステム - Google Patents

エネルギマネジメントシステム Download PDF

Info

Publication number
WO2021002184A1
WO2021002184A1 PCT/JP2020/023433 JP2020023433W WO2021002184A1 WO 2021002184 A1 WO2021002184 A1 WO 2021002184A1 JP 2020023433 W JP2020023433 W JP 2020023433W WO 2021002184 A1 WO2021002184 A1 WO 2021002184A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
heat
fuel
generation device
management system
Prior art date
Application number
PCT/JP2020/023433
Other languages
English (en)
French (fr)
Inventor
洋平 森本
重和 日高
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to EP20835375.5A priority Critical patent/EP3995605A4/en
Priority to CN202080049283.2A priority patent/CN114127875B/zh
Publication of WO2021002184A1 publication Critical patent/WO2021002184A1/ja
Priority to US17/567,292 priority patent/US20220123338A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/085Removing impurities
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • This disclosure relates to an energy management system.
  • Patent Document 1 proposes an energy storage method for storing energy by converting electrical energy obtained by photovoltaic power generation or the like into chemical energy.
  • hydrogen obtained by electrolysis of water is reacted with carbon monoxide or carbon dioxide to synthesize dimethyl ether, and dimethyl ether is liquefied and stored. Then, electric power is regenerated using the stored dimethyl ether.
  • Patent Document 1 does not sufficiently improve the efficiency of the entire system.
  • the present disclosure aims to improve system efficiency in an energy management system that synthesizes hydrocarbons using electric energy and generates electricity using hydrocarbons.
  • the energy management system of the present disclosure includes a fuel synthesizer, a power generation device, a CO 2 recovery unit, a compressor, a CO 2 storage unit, a CO 2 decompression unit, and a heat recovery unit.
  • the fuel synthesizer synthesizes hydrocarbons from H 2 O and CO 2 using external power.
  • the power generation device uses hydrocarbons to generate electricity.
  • CO 2 recovery unit recovers the CO 2 from the exhaust gas being discharged from the plant at the time of power generation.
  • the compressor compresses the recovered CO 2 .
  • the CO 2 storage unit stores compressed CO 2 .
  • the CO 2 decompression unit decompresses the CO 2 stored in the CO 2 storage unit in order to supply the CO 2 to the fuel synthesizer.
  • Heat recovery unit recovers the heat stored in the CO 2 by vacuum compression or CO 2 in the CO 2.
  • the energy management system includes a fuel synthesis power generation device 10.
  • the fuel synthesis power generation device 10 can switch between the synthesis of hydrocarbons using electric power supplied from the outside and the power generation using hydrocarbons.
  • the fuel synthesis power generation device 10 includes a fuel synthesis mode that operates as the fuel synthesis device 10a and a power generation mode that operates as the power generation device 10b.
  • the fuel synthesis device 10a is a solid oxide fuel cell (SOEC), and the power generation device 10b is a solid oxide fuel cell (SOFC).
  • the fuel synthesizer 10a can electrolyze H 2 O and CO 2 and synthesize hydrocarbons using the electrolyzed H 2 and CO.
  • the power generation device 10b can generate power using hydrocarbons.
  • the fuel synthesis power generation device 10 includes an electrolyte 11 and a pair of electrodes 12 and 13 provided on both sides of the electrolyte 11.
  • the fuel synthesis power generation device 10 shown in FIG. 1 has a single cell in which the electrolyte 11 is sandwiched between a pair of electrodes 12 and 13, but may have a stack structure in which a plurality of cells are stacked.
  • the electrolyte 11 is a solid material having oxygen ion conductivity, and for example, ZrO 2 which is a zirconia-based oxide can be used.
  • the electrodes 12 and 13 are configured as cermets obtained by mixing and firing a metal catalyst and ceramics.
  • the first electrode 12 is provided with Ni, Co or the like as a metal catalyst.
  • Ni, Co is a catalyst which promotes the electrolysis reaction of CO 2 and H 2 and the synthesis reaction of hydrocarbons.
  • the second electrode 13 is provided with Ni, Pt or the like as a metal catalyst.
  • Ni and Pt are catalysts that promote the reaction of combining O 2- with electrons to produce O 2 .
  • Electrodes 12 and 13 function as an anode or a cathode.
  • the anodes and cathodes of these electrodes 12 and 13 are interchanged depending on whether the fuel synthesis power generation device 10 operates in the fuel synthesis mode or the power generation mode. Specifically, when the fuel synthesis power generation device 10 operates in the fuel synthesis mode, the first electrode 12 functions as a cathode and the second electrode 13 functions as an anode. When the fuel synthesis power generation device 10 operates in the power generation mode, the first electrode 12 functions as an anode and the second electrode 13 functions as a cathode.
  • the fuel synthesis power generation device 10 When the fuel synthesis power generation device 10 operates in the fuel synthesis mode, power is supplied to the fuel synthesis power generation device 10 from the power supply device 14 which is an external power source.
  • the power supply device 14 In the present embodiment, a power generation device using natural energy is used as the power supply device 14.
  • the power supply device 14 for example, a solar power generation device can be used.
  • the power consuming device 15 is a device that operates by being supplied with electric power.
  • an electric device such as a home appliance can be used.
  • H 2 O and CO 2 are supplied to the fuel synthesis power generation device 10.
  • H 2 is generated by electrolysis of H 2 O
  • CO is generated by electrolysis of CO 2 .
  • H 2 O is supplied from the H 2 O storage unit 20 to the fuel synthesis power generation device 10 via the H 2 O supply passage 21.
  • H 2 O reservoir 20 of the present embodiment H 2 O in the liquid state it is stored.
  • the H 2 O supply passage 21 is provided with an H 2 O pump 22 that pumps H 2 O to the fuel synthesis power generation device 10.
  • H 2 O may be supplied to the fuel synthesis power generation device 10 in a liquid state, or may be supplied to the fuel synthesis power generation device 10 as water vapor.
  • the H 2 O pump 22 operates based on a control signal from the control device 50 described later.
  • CO 2 is supplied from the CO 2 storage unit 23 to the fuel synthesis power generation device 10 via the CO 2 supply passage 24.
  • the CO 2 reservoir 23 of the present embodiment CO 2 in the liquid state is stored. CO 2 which is stored in CO 2 reservoir 23 is pressurized.
  • a pressure regulating valve 25 is provided in the CO 2 supply passage 24.
  • the pressure regulating valve 25 is a CO 2 pressure reducing unit for reducing the pressure of CO 2 that is stored in CO 2 reservoir 23.
  • the pressure regulating valve 25 is an expansion valve for expanding CO 2 .
  • the pressure regulating valve 25 operates based on a control signal from the control device 50 described later.
  • a first heat exchanger 26 is provided on the downstream side of the gas flow of the pressure regulating valve 25 in the CO 2 supply passage 24.
  • the first heat exchanger 26 is an evaporator and functions as a cooling heat exchanger.
  • the first heat exchanger 26 is capable of heat exchange between CO 2 flowing through the CO 2 supply passage 24 and a heat medium flowing through the first heat medium circuit 27.
  • the CO 2 decompressed by the pressure regulating valve 25 absorbs heat from the heat medium flowing through the first heat medium circuit 27 and evaporates.
  • the heat medium is cooled by the cold heat generated by the evaporation of CO 2 .
  • the heat medium for example, an ethylene glycol aqueous solution can be used.
  • the first heat exchanger 26 is a heat recovery unit that recovers the cold heat stored in CO 2 by decompression expansion.
  • the heat medium cooled by the first heat exchanger 26 is supplied to the cold heat utilization unit 28 via the first heat medium circuit 27.
  • the cold heat utilization unit 28 is a device that utilizes the cold heat generated when CO 2 is evaporated, and can be, for example, a cooling device that performs indoor cooling.
  • hydrocarbons are synthesized from H 2 and CO generated by electrolysis.
  • the synthesized hydrocarbon is contained in the fuel synthetic exhaust gas and discharged from the fuel synthesis power generation device 10.
  • the hydrocarbon contained in the fuel synthetic exhaust gas is, for example, methane. Hydrocarbons are used as fuel when the fuel synthesis power generation device 10 operates in the power generation mode.
  • the fuel synthetic exhaust gas passes through the fuel synthetic exhaust gas passage 29.
  • the fuel synthesis exhaust gas passage 29 is provided with a fuel separation unit 30.
  • the fuel separation unit 30 separates hydrocarbons from the fuel synthetic exhaust gas. Separation of hydrocarbons from fuel synthetic exhaust gas can be performed, for example, by distillation separation.
  • the hydrocarbon separated by the fuel separation unit 30 is stored in the fuel storage unit 31 as fuel. Hydrocarbons in a liquid state are stored in the fuel storage unit 31 of the present embodiment.
  • the fuel synthesis power generation device 10 When the fuel synthesis power generation device 10 operates in the power generation mode, it is supplied to the reformer 32 stored in the fuel storage unit 31.
  • the reformer 32 produces H 2 and CO from the hydrocarbon by the reforming reaction.
  • the reformer 32 can reform hydrocarbons, for example, by steam reforming.
  • the reformer 32 operates based on a control signal from the control device 50 described later.
  • H 2 and CO generated by the reformer 32 are supplied to the fuel synthesis power generation device 10 via the reformer fuel supply passage 33.
  • the power generation exhaust gas containing CO 2 and H 2 O is discharged from the fuel synthesis power generation device 10.
  • the generated exhaust gas passes through the generated exhaust gas passage 34.
  • H 2 O separation section 35 The generator exhaust gas passage 34, H 2 O separation section 35 is provided.
  • the generated exhaust gas containing CO 2 and H 2 O is supplied to the H 2 O separation unit 35.
  • H 2 O separation section 35 separates of H 2 O from the generator exhaust.
  • H 2 O separation section 35 can be used, for example, a gas-liquid separator.
  • a CO 2 recovery unit 36 is provided on the downstream side of the gas flow of the H 2 O separation unit 35 in the power generation exhaust gas passage 34. Power generation exhaust gas containing CO 2 is supplied to the CO 2 recovery unit 36.
  • the CO 2 recovery unit 36 separates CO 2 from the generated exhaust gas. CO 2 recovery unit 36 of the present embodiment, by repeating the adsorption and desorption of CO 2, separating and recovering CO 2 from the generator exhaust.
  • CO 2 recovered by the CO 2 recovery unit 36 is supplied to the CO 2 reservoir 23 through the CO 2 recovery passage 37.
  • a compressor 38 is provided in the CO 2 recovery passage 37. The compressor 38 operates based on a control signal from the control device 50 described later.
  • CO 2 recovered by the CO 2 recovery unit 36 is compressed in compressor 38, it is supplied to the CO 2 reservoir 23.
  • a second heat exchanger 39 is provided on the downstream side of the gas flow of the compressor 38 in the CO 2 recovery passage 37.
  • the second heat exchanger 39 is a condenser and functions as a heat exchanger for heating.
  • the second heat exchanger 39 is capable of heat exchange between CO 2 flowing through the CO 2 recovery passage 37 and the heat medium flowing through the second heat medium circuit 40.
  • the CO 2 compressed by the compressor 38 dissipates heat to the heat medium flowing through the second heat medium circuit 40 and condenses.
  • the heat medium is heated by the heat generated during the condensation of CO 2 .
  • the heat medium for example, an ethylene glycol aqueous solution can be used.
  • the second heat exchanger 39 is a heat recovery unit that recovers the heat stored in CO 2 by compression.
  • the heat medium cooled by the second heat exchanger 39 is supplied to the heat utilization unit 41 via the second heat medium circuit 40.
  • the heat utilization unit 41 is a device that utilizes the heat generated during the compression of CO 2 .
  • the heat utilization unit 41 can be a heating device that heats the air used for indoor air conditioning by the heat recovered by the second heat exchanger 39.
  • the heat utilization unit 41 can be a hot water supply device that heats water by the heat recovered by the second heat exchanger 39 to boil water.
  • heat utilization unit 41 be H 2 O heating apparatus for heating of H 2 O supplied from the H 2 O reservoir 20 with recovered heat in the second heat exchanger 39 to the fuel synthesizing generator 10 it can.
  • H 2 O can be supplied to the fuel synthesis power generation device 10 as steam.
  • the heat utilization unit 41 can be a heating device that heats the fuel synthesis power generation device 10 with the heat recovered by the second heat exchanger 39. As a result, the amount of heat required when the fuel synthesis power generation device 10 operates in the fuel synthesis mode or the power generation mode can be supplemented.
  • the heat utilization unit 41 can be a heating device that heats the reformer 32 with the heat recovered by the second heat exchanger 39. As a result, the amount of heat required for the reforming reaction in the reformer 32 can be supplemented.
  • the energy management system includes a control device 50.
  • the control device 50 is composed of a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof.
  • the control device 50 performs various calculations and processes based on the air conditioning control program stored in the ROM, and controls the operation of various controlled target devices 22, 25, 32, 38, etc. connected to the output side.
  • Various sensors (not shown) are connected to the input side of the control device 50.
  • the fuel synthesis power generation device 10 operates as the fuel synthesis device 10a. In the fuel synthesis mode, power is supplied from the power supply device 14 to the fuel synthesis power generation device 10.
  • H 2 O and CO 2 are supplied to the first electrode 12 of the fuel synthesis power generation device 10.
  • H 2 O which is stored in H 2 O reservoir 20 is supplied to the fuel synthesizing generator 10 by actuating of H 2 O pump 22.
  • CO 2 which is stored in CO 2 reservoir 23 is supplied to the fuel synthesizing generator 10 by opening the pressure regulating valve 25.
  • the CO 2 decompressed by the pressure regulating valve 25 evaporates in the first heat exchanger 26, and the heat medium flowing through the first heat medium circuit 27 is cooled by the latent heat of vaporization.
  • the heat medium cooled by the first heat exchanger 26 is supplied to the cold heat utilization unit 28 via the first heat medium circuit 27.
  • the cold heat generated by the reduced pressure expansion of CO 2 is used in the cold heat utilization unit 28.
  • the first electrode 12 of the fuel synthesis power generation device 10 functions as a cathode, and the reaction shown below occurs.
  • the electrolytic reaction is a co-electrolytic reaction in which H 2 O and CO 2 are electrolyzed at the same time.
  • CH 4 is synthesized as a hydrocarbon.
  • O 2- generated by the electrolytic reaction of the first electrode 12 conducts the electrolyte 11 and moves to the second electrode 13.
  • the second electrode 13 functions as an anode, and O 2- and electrons are combined to generate O 2 .
  • CH 4 is synthesized from H 2 and CO produced in the electrolytic reaction.
  • CH 4 generated by the first electrode 12 is discharged from the fuel synthesis power generation device 10 as the fuel synthesis exhaust gas through the fuel synthesis exhaust gas passage 29.
  • CH 4 contained in the fuel synthetic exhaust gas is separated by the fuel separation unit 30 and stored as a hydrocarbon fuel in the fuel storage unit 31. The remaining fuel synthetic exhaust gas from which CH 4 is separated is discharged to the outside.
  • the fuel synthesis power generation device 10 operates as the power generation device 10b.
  • the electric power generated by the fuel synthesis power generation device 10 is supplied to the power consumption device 15.
  • H 2 and CO are supplied from the reformer 32 to the first electrode 12. Further, air containing O 2 is supplied to the second electrode 13.
  • the second electrode 13 functions as a cathode, and electrons are separated from O 2 in the air to generate O 2- .
  • the O 2- generated at the second electrode 13 conducts the electrolyte 11 and moves to the first electrode 12.
  • the first electrode 12 functions as an anode, and the reaction shown below occurs.
  • H 2 + O 2- + 2e - ⁇ H 2 O CO + O 2- + 2e - ⁇ CO 2 H 2 O and CO 2 generated by the first electrode 12 are discharged from the fuel synthesis power generation device 10 as power generation exhaust gas through the power generation exhaust gas passage 34.
  • the H 2 O contained in the generated exhaust gas is separated by the H 2 O separation unit 35 and stored in the H 2 O storage unit 20.
  • the CO 2 contained in the generated exhaust gas is separated by the CO 2 recovery unit 36 and supplied to the compressor 38 via the CO 2 recovery passage 37.
  • the remaining generated exhaust gas from which H 2 O and CO 2 are separated is discharged to the outside.
  • CO 2 separated by the CO 2 recovery unit 36 is compressed by the compressor 38 is supplied to the CO 2 reservoir 23.
  • the CO 2 compressed by the compressor 38 is condensed by the second heat exchanger 39, and the heat medium flowing through the second heat medium circuit 40 is heated.
  • the heat medium heated by the second heat exchanger 39 is supplied to the heat utilization unit 41 via the second heat medium circuit 40.
  • the cold heat generated by the compression of CO 2 is used by the heat utilization unit 41.
  • the energy management system of the present embodiment switches between the fuel synthesis mode and the power generation mode depending on the season.
  • the system input power is the power supplied from the power supply device 14 to the fuel synthesis power generation device 10, or the power supplied from the fuel synthesis power generation device 10 to the power consumption device 15.
  • the system input power in spring, summer, and autumn is proportional to the power generation amount of the power supply device 14, and the system input power in winter is proportional to the power consumption amount of the power consumption device 15.
  • the fuel production amount is the amount of hydrocarbons produced by the fuel synthesis power generation device 10 in the fuel synthesis mode.
  • the fuel consumption is the amount of hydrocarbons used in the fuel synthesis power generation device 10 in the power generation mode.
  • the amount of fuel produced is proportional to the amount of power generated by the power supply device 14.
  • the fuel consumption is proportional to the power consumption of the power consumption device 15.
  • the fuel storage amount is the amount of hydrocarbon stored in the fuel storage unit 31.
  • the fuel storage amount of the fuel storage unit 31 increases due to the generation of hydrocarbons.
  • the fuel storage amount of the fuel storage unit 31 is reduced due to the consumption of hydrocarbons.
  • CO 2 storage amount is a storage amount of CO 2 in the CO 2 reservoir 23.
  • the fuel synthesizing mode CO 2 storage amount of CO 2 reservoir 23 in order to use the CO 2 in the hydrocarbon synthesis in the fuel synthesis generator 10 is reduced.
  • CO 2 storage amount of CO 2 reservoir 23 is increased in order to recover the CO 2 generated along with the electric power generation by the fuel synthesis generator 10.
  • CO 2 recovery amount is CO 2 recovery from the fuel synthesizing generator 10.
  • the fuel synthesizing mode CO 2 recovery amount becomes minus CO 2 to be used for hydrocarbon synthesis in the fuel synthesis generator 10.
  • CO 2 recovery amount is positive in order to recover the CO 2 generated along with the electric power generation by the fuel synthesis generator 10.
  • CO 2 recovery heat is a heat quantity can be recovered from the CO 2.
  • cold heat is generated as the reduced CO 2 evaporates, so that the amount of heat recovered by CO 2 becomes negative.
  • CO 2 recovery heat is positive for heat is generated with the compression of CO 2 by the compressor 38.
  • the energy management system of the present embodiment described above recovers CO 2 from the exhaust gas discharged from the fuel synthesis power generation device 10 during power generation using hydrocarbons, and generates heat generated when CO 2 is compressed and stored. It is being collected. As a result, the heat generated when CO 2 is compressed can be effectively used, and the system efficiency can be improved.
  • the energy management system of the present embodiment recovers the cold heat generated when the CO 2 is decompressed when CO 2 is supplied to the fuel synthesis power generation device 10 for fuel synthesis.
  • the cold heat generated when the CO 2 is depressurized can be effectively used, and the system efficiency can be improved.
  • CO 2 recovered from the generated exhaust gas is stored in the CO 2 storage unit 23 in a compressed and liquefied state.
  • the volume of recovered CO 2 can be significantly reduced, and the storage space for CO 2 can be reduced.
  • methane is exemplified as the hydrocarbon synthesized by the fuel synthesis power generation device 10, but different types of hydrocarbons may be synthesized.
  • the type of catalyst used in the first electrode 12 and the reaction temperature can be made different.
  • different types of hydrocarbons include hydrocarbons such as ethane and propane, which have more carbon atoms than methane, and hydrocarbons containing oxygen atoms such as alcohol and ether.
  • one fuel synthesis power generation device 10 is switched to the fuel synthesis device 10a and the power generation device 10b to operate, but the fuel synthesis device 10a and the power generation device 10b may be provided as independent devices. Good.
  • the CO 2 storage unit 23 stores the CO 2 in the liquid state, but the CO 2 in the gaseous state may be contained, and at least a part of the recovered CO 2 is a liquid. It suffices if it is stored in a state.
  • the hydrocarbon in the liquid state is stored in the fuel storage unit 31, but the hydrocarbon in the gaseous state may be stored in the fuel storage unit 31.
  • the heat generated while the fuel synthesis power generation device 10 is operating may be used for hot water supply or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

エネルギマネジメントシステムは、燃料合成装置(10a)と、発電装置(10b)と、CO2回収部(36)と、圧縮機(38)と、CO2貯蔵部(23)と、CO2減圧部(25)と、熱回収部(26、39)とを備える。燃料合成装置は、外部電力を用いてH2OおよびCO2から炭化水素を合成する。発電装置は、炭化水素を用いて発電する。CO2回収部は、発電時に発電装置から排出される排ガスからCO2を回収する。圧縮機は、回収されたCO2を圧縮する。CO2貯蔵部は、圧縮されたCO2を貯蔵する。CO2減圧部は、CO2貯蔵部に貯蔵されたCO2を燃料合成装置に供給するために減圧する。熱回収部は、CO2の圧縮またはCO2の減圧によってCO2に蓄えられた熱を回収する。

Description

エネルギマネジメントシステム 関連出願の相互参照
 本出願は、2019年7月2日に出願された日本特許出願番号2019-123665号に基づくもので、ここにその記載内容を援用する。
 本開示は、エネルギマネジメントシステムに関する。
 特許文献1には、太陽光発電等によって得られる電気エネルギを化学エネルギに変換することによってエネルギの貯蔵を行うエネルギ貯蔵方法が提案されている。このエネルギ貯蔵方法では、水の電気分解で得られた水素を一酸化炭素または二酸化炭素と反応させてジメチルエーテルを合成し、ジメチルエーテルを液化して貯蔵している。そして、貯蔵したジメチルエーテルを用いて電力を再生するようになっている。
特開2010-62192号公報
 しかしながら、特許文献1のエネルギ貯蔵方法では、システム全体の効率化が充分ではない。
 本開示は上記点に鑑み、電気エネルギを用いて炭化水素を合成し、炭化水素を用いて発電するエネルギマネジメントシステムにおいて、システム効率を向上させることを目的とする。
 上記目的を達成するため、本開示のエネルギマネジメントシステムは、燃料合成装置と、発電装置と、CO2回収部と、圧縮機と、CO2貯蔵部と、CO2減圧部と、熱回収部とを備える。燃料合成装置は、外部電力を用いてH2OおよびCO2から炭化水素を合成する。発電装置は、炭化水素を用いて発電する。CO2回収部は、発電時に発電装置から排出される排ガスからCO2を回収する。圧縮機は、回収されたCO2を圧縮する。CO2貯蔵部は、圧縮されたCO2を貯蔵する。CO2減圧部は、CO2貯蔵部に貯蔵されたCO2を燃料合成装置に供給するために減圧する。熱回収部は、CO2の圧縮またはCO2の減圧によってCO2に蓄えられた熱を回収する。
 これにより、CO2の圧縮時に発生する温熱あるいはCO2の減圧時に発生する冷熱を有効利用することができ、システム効率を向上させることができる。
本開示の実施形態に係るエネルギマネジメントシステムの全体構成を示す図である。 制御装置のブロック図である。 燃料合成モードにおけるエネルギマネジメントシステムを示す図である。 発電モードにおけるエネルギマネジメントシステムを示す図である。 エネルギマネジメントシステムのシステム投入電力、燃料合成量/燃料消費量、燃料貯蔵量、CO2貯蔵量、CO2回収量、CO2回収熱量の関係を示す図である。
 以下、本開示の実施形態に係るエネルギマネジメントシステムについて図面を用いて説明する。
 図1に示すように、エネルギマネジメントシステムは、燃料合成発電装置10を備えている。燃料合成発電装置10は、外部から供給される電力を用いた炭化水素の合成と、炭化水素を用いた発電とを切り替え可能となっている。燃料合成発電装置10は、燃料合成装置10aとして作動する燃料合成モードと、発電装置10bとして作動する発電モードとを備えている。
 燃料合成装置10aは固体酸化物型電解セル(SOEC)であり、発電装置10bは固体酸化物型燃料電池(SOFC)である。燃料合成装置10aは、H2OおよびCO2を電解し、電解によって生成したH2およびCOを用いて炭化水素を合成することができる。発電装置10bは、炭化水素を用いて発電することができる。
 燃料合成発電装置10は、電解質11と、電解質11の両側に設けられた一対の電極12、13を備えている。図1に示す燃料合成発電装置10は、電解質11が一対の電極12、13で挟まれた単セルとなっているが、複数のセルが積層されたスタック構造としてもよい。
 電解質11は、酸素イオン伝導性を有する固体材料であり、例えばジルコニア系酸化物であるZrO2を用いることができる。電極12、13は、金属触媒とセラミクスを混合して焼成したサーメットとして構成されている。第1電極12には、金属触媒としてNi、Co等を設けている。Ni、Coは、CO2およびH2の電解反応と炭化水素の合成反応とを促進する触媒である。第2電極13には、金属触媒としてNi、Pt等を設けている。Ni、Ptは、O2-と電子を結合してO2を生成する反応を促進する触媒である。
 電極12、13は、アノードまたはカソードとして機能する。これらの電極12、13は、燃料合成発電装置10が燃料合成モードあるいは発電モードで作動する場合とで、アノードとカソードが入れ替わる。具体的には、燃料合成発電装置10が燃料合成モードで作動する場合には、第1電極12はカソードとして機能し、第2電極13はアノードとして機能する。燃料合成発電装置10が発電モードで作動する場合には、第1電極12はアノードとして機能し、第2電極13はカソードとして機能する。
 燃料合成発電装置10が燃料合成モードで作動する場合には、外部電源である電力供給装置14から燃料合成発電装置10に電力供給される。本実施形態では、電力供給装置14として自然エネルギを利用した発電装置を用いている。電力供給装置14としては、例えば太陽光発電装置を用いることができる。
 燃料合成発電装置10が発電モードで作動する場合には、燃料合成発電装置10で発電した電力は電力消費装置15に供給される。電力消費装置15は、電力が供給されることによって作動する装置である。電力消費装置15は、例えば家電等の電気機器を用いることができる。
 燃料合成発電装置10が燃料合成モードで作動する場合には、燃料合成発電装置10にH2OおよびCO2が供給される。燃料合成発電装置10では、H2Oの電解によってH2が生成され、CO2の電解によってCOが生成される。
 H2Oは、H2O貯蔵部20からH2O供給通路21を介して燃料合成発電装置10に供給される。本実施形態のH2O貯蔵部20には、液体状態のH2Oが貯蔵されている。H2O供給通路21には、H2Oを燃料合成発電装置10に圧送するH2Oポンプ22が設けられている。H2Oは、液体状態で燃料合成発電装置10に供給されてもよく、あるいは水蒸気として燃料合成発電装置10に供給されてもよい。H2Oポンプ22は、後述する制御装置50からの制御信号に基づいて作動する。
 CO2は、CO2貯蔵部23からCO2供給通路24を介して燃料合成発電装置10に供給される。本実施形態のCO2貯蔵部23には、液体状態のCO2が貯蔵されている。CO2貯蔵部23に貯蔵されているCO2は、加圧されている。
 CO2供給通路24には、圧力調整弁25が設けられている。圧力調整弁25は、CO2貯蔵部23に貯蔵されているCO2を減圧するCO2減圧部である。圧力調整弁25は、CO2を膨張させるための膨張弁である。圧力調整弁25は、後述する制御装置50からの制御信号に基づいて作動する。
 CO2供給通路24における圧力調整弁25のガス流れ下流側には、第1熱交換器26が設けられている。第1熱交換器26は蒸発器であり、冷房用熱交換器として機能する。
 第1熱交換器26は、CO2供給通路24を流れるCO2と、第1熱媒体回路27を流れる熱媒体とを熱交換可能となっている。圧力調整弁25で減圧されたCO2は、第1熱媒体回路27を流れる熱媒体から吸熱して蒸発する。第1熱交換器26では、CO2の蒸発で生成した冷熱によって熱媒体が冷却される。熱媒体は、例えばエチレングリコール水溶液を用いることできる。第1熱交換器26は、減圧膨張によってCO2に蓄えられた冷熱を回収する熱回収部である。
 第1熱交換器26で冷却された熱媒体は、第1熱媒体回路27を介して冷熱利用部28に供給される。冷熱利用部28は、CO2の蒸発時に生成した冷熱を利用する装置であり、例えば室内冷房を行う冷房装置とすることができる。
 燃料合成発電装置10が燃料合成モードで作動する場合には、電解で生成されたH2とCOから炭化水素が合成される。合成された炭化水素は、燃料合成排ガスに含まれて燃料合成発電装置10から排出される。燃料合成排ガスに含まれる炭化水素は、例えばメタンである。炭化水素は、燃料合成発電装置10が発電モードで作動する際に燃料として用いられる。
 燃料合成排ガスは、燃料合成排ガス通路29を通過する。燃料合成排ガス通路29には、燃料分離部30が設けられている。燃料分離部30は、燃料合成排ガスから炭化水素を分離する。燃料合成排ガスから炭化水素の分離は、例えば蒸留分離によって行うことができる。
 燃料分離部30で分離された炭化水素は、燃料として燃料貯蔵部31に貯蔵される。本実施形態の燃料貯蔵部31には、液体状態の炭化水素が貯蔵される。
 燃料合成発電装置10が発電モードで作動する場合には、燃料貯蔵部31に貯蔵された改質装置32に供給される。改質装置32は、改質反応によって炭化水素からH2およびCOを生成する。改質装置32は、例えば水蒸気改質によって炭化水素を改質することができる。改質装置32は、後述する制御装置50からの制御信号に基づいて作動する。改質装置32で生成したH2およびCOは、改質燃料供給通路33を介して燃料合成発電装置10に供給される。
 燃料合成発電装置10が発電モードで作動する場合には、燃料合成発電装置10からCO2およびH2Oを含む発電排ガスが排出される。発電排ガスは、発電排ガス通路34を通過する。
 発電排ガス通路34には、H2O分離部35が設けられている。H2O分離部35には、CO2およびH2Oを含む発電排ガスが供給される。H2O分離部35は、発電排ガスからH2Oを分離する。H2O分離部35は、例えば気液分離器を用いることができる。
 発電排ガス通路34におけるH2O分離部35のガス流れ下流側には、CO2回収部36が設けられている。CO2回収部36には、CO2を含む発電排ガスが供給される。CO2回収部36は、発電排ガスからCO2を分離する。本実施形態のCO2回収部36は、CO2の吸着および脱離を繰り返すことで、発電排ガスからCO2を分離して回収する。
 CO2回収部36で回収されたCO2は、CO2回収通路37を介してCO2貯蔵部23に供給される。CO2回収通路37には、圧縮機38が設けられている。圧縮機38は、後述する制御装置50からの制御信号に基づいて作動する。
 CO2回収部36で回収されたCO2は、圧縮機38で圧縮され、CO2貯蔵部23に供給される。CO2回収通路37における圧縮機38のガス流れ下流側には、第2熱交換器39が設けられている。第2熱交換器39は凝縮器であり、暖房用熱交換器として機能する。
 第2熱交換器39は、CO2回収通路37を流れるCO2と、第2熱媒体回路40を流れる熱媒体とを熱交換可能となっている。圧縮機38で圧縮されたCO2は、第2熱媒体回路40を流れる熱媒体に放熱して凝縮する。第2熱交換器39では、CO2の凝縮時に生成した温熱によって熱媒体が加熱される。熱媒体は、例えばエチレングリコール水溶液を用いることできる。第2熱交換器39は、圧縮によってCO2に蓄えられた温熱を回収する熱回収部である。
 第2熱交換器39で冷却された熱媒体は、第2熱媒体回路40を介して温熱利用部41に供給される。温熱利用部41は、CO2の圧縮時に生成した温熱を利用する装置である。
 温熱利用部41は、第2熱交換器39で回収した温熱によって室内空調に用いられる空気を加熱する暖房装置とすることができる。あるいは、温熱利用部41は、第2熱交換器39で回収した温熱によって水を加熱して湯を沸かす給湯装置とすることができる。
 また、温熱利用部41は、第2熱交換器39で回収した温熱でH2O貯蔵部20から燃料合成発電装置10に供給されるH2Oを加熱するH2O加熱装置とすることができる。これにより、H2Oを水蒸気として燃料合成発電装置10に供給することができる。
 また、温熱利用部41は、第2熱交換器39で回収した温熱で燃料合成発電装置10を加熱する加熱装置とすることができる。これにより、燃料合成発電装置10が燃料合成モードあるいは発電モードで作動する場合に必要となる熱量を補填することができる。
 また、温熱利用部41は、第2熱交換器39で回収した温熱で改質装置32を加熱する加熱装置とすることができる。これにより、改質装置32における改質反応に必要となる熱量を補填することができる。
 図2に示すように、エネルギマネジメントシステムは、制御装置50を備えている。制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置50は、ROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器22、25、32、38等の作動を制御する。制御装置50の入力側には、図示しない各種センサ等が接続されている。
 次に、本実施形態のエネルギマネジメントシステムの作動について説明する。
 まず、図3を用いて燃料合成モードについて説明する。燃料合成発電装置10は、燃料合成装置10aとして作動する。燃料合成モードでは、電力供給装置14から燃料合成発電装置10に電力供給される。
 燃料合成モードでは、燃料合成発電装置10の第1電極12にH2OおよびCO2が供給される。H2O貯蔵部20に貯蔵されているH2Oは、H2Oポンプ22を作動させることによって燃料合成発電装置10に供給される。CO2貯蔵部23に貯蔵されているCO2は、圧力調整弁25を開放することで燃料合成発電装置10に供給される。
 圧力調整弁25で減圧されたCO2は第1熱交換器26で蒸発し、気化潜熱によって第1熱媒体回路27を流れる熱媒体が冷却される。第1熱交換器26で冷却された熱媒体は、第1熱媒体回路27を介して冷熱利用部28に供給される。CO2の減圧膨張で生成した冷熱は冷熱利用部28で利用される。
 燃料合成モードでは、燃料合成発電装置10の第1電極12はカソードとして機能し、以下に示す反応が起こる。
 (電解反応)
 H2O+2e-→H2+O2-
 CO2+2e-→CO+O2-
 (燃料合成反応)
 3H2+CO→CH4+H2
 電解反応は、H2OとCO2が同時に電解する共電解反応となっている。本実施形態の燃料合成反応では、炭化水素としてCH4が合成される。第1電極12の電解反応で生成したO2-は、電解質11を伝導して第2電極13に移動する。燃料合成モードでは、第2電極13はアノードとして機能し、O2-と電子が結合してO2が生成される。
 燃料合成反応では、電解反応で生成したH2およびCOからCH4が合成される。第1電極12で生成したCH4は、燃料合成排ガスとして燃料合成排ガス通路29を介して燃料合成発電装置10から排出される。燃料合成排ガスに含まれるCH4は、燃料分離部30で分離され、炭化水素燃料として燃料貯蔵部31で貯蔵される。CH4が分離された残りの燃料合成排ガスは、外部に排出される。
 次に、図4を用いて発電モードについて説明する。発電モードでは、燃料合成発電装置10は発電装置10bとして作動する。燃料合成発電装置10で発電した電力は電力消費装置15に供給される。
 発電モードでは、第1電極12に対し、改質装置32からH2とCOが供給される。また、第2電極13に対し、O2を含む空気が供給される。
 発電モードでは、第2電極13はカソードとして機能し、空気中のO2から電子が分離してO2-が生成される。第2電極13で生成したO2-は、電解質11を伝導して第1電極12に移動する。
 発電モードでは、第1電極12はアノードとして機能し、以下に示す反応が起こる。
 H2+O2-+2e-→H2
 CO+O2-+2e-→CO2
 第1電極12で生成したH2OとCO2は、発電排ガスとして発電排ガス通路34を介して燃料合成発電装置10から排出される。発電排ガスに含まれるH2Oは、H2O分離部35で分離され、H2O貯蔵部20で貯蔵される。発電排ガスに含まれるCO2は、CO2回収部36で分離され、CO2回収通路37を介して圧縮機38に供給される。H2OとCO2が分離された残りの発電排ガスは、外部に排出される。
 CO2回収部36で分離されたCO2は圧縮機38で圧縮され、CO2貯蔵部23に供給される。圧縮機38で圧縮されたCO2は第2熱交換器39で凝縮し、第2熱媒体回路40を流れる熱媒体が加熱される。第2熱交換器39で加熱された熱媒体は、第2熱媒体回路40を介して温熱利用部41に供給される。CO2の圧縮で生成した冷熱は温熱利用部41で利用される。
 次に、図5を用いてエネルギマネジメントシステムのシステム投入電力、燃料合成量および燃料消費量、燃料貯蔵量、CO2貯蔵量、CO2回収量、CO2回収熱量について説明する。
 本実施形態の電力供給装置14は、自然エネルギを利用した発電を行うため、季節によって発電能力が変化する。このため、図5に示すように、本実施形態のエネルギマネジメントシステムは、季節によって燃料合成モードと発電モードを切り替えている。
 太陽光が豊富であり、電力供給装置14の発電能力が大きくなる春、夏、秋は、燃料合成モードで炭化水素を生成し、炭化水素の形でエネルギを貯蔵する。一方、自然エネルギによる発電能力が低下するとともに、暖房等を目的として電力消費装置15の電力消費量が増大する冬は、発電モードで炭化水素を利用して発電を行う。
 システム投入電力は、電力供給装置14から燃料合成発電装置10に供給される電力、あるいは燃料合成発電装置10から電力消費装置15に供給される電力である。春、夏、秋のシステム投入電力は、電力供給装置14の発電量に比例し、冬のシステム投入電力は、電力消費装置15の電力消費量に比例している。
 燃料生成量は、燃料合成モードにおいて燃料合成発電装置10で生成される炭化水素量である。燃料消費量は、発電モードにおいて燃料合成発電装置10で利用される炭化水素量である。燃料生成量は、電力供給装置14の発電量に比例している。燃料消費量は、電力消費装置15の電力消費量に比例している。
 燃料貯蔵量は、燃料貯蔵部31における炭化水素の貯蔵量である。燃料合成モードでは、炭化水素が生成されることで燃料貯蔵部31の燃料貯蔵量が増大する。発電モードでは、炭化水素が消費されることで燃料貯蔵部31の燃料貯蔵量が減少する。
 CO2貯蔵量は、CO2貯蔵部23におけるCO2の貯蔵量である。燃料合成モードでは、CO2を燃料合成発電装置10での炭化水素合成に利用するためにCO2貯蔵部23のCO2貯蔵量が減少する。発電モードでは、燃料合成発電装置10での発電に伴って発生するCO2を回収するためにCO2貯蔵部23のCO2貯蔵量が増大する。
 CO2回収量は、燃料合成発電装置10からのCO2回収量である。燃料合成モードでは、CO2を燃料合成発電装置10での炭化水素合成に利用するためにCO2回収量がマイナスになる。発電モードでは、燃料合成発電装置10での発電に伴って発生するCO2を回収するためにCO2回収量がプラスになる。
 CO2回収熱量は、CO2から回収できる熱量である。燃料合成モードでは、減圧したCO2の蒸発に伴って冷熱が発生するため、CO2回収熱量がマイナスになる。発電モードでは、圧縮機38によるCO2の圧縮に伴って温熱が発生するためにCO2回収熱量がプラスになる。
 以上説明した本実施形態のエネルギマネジメントシステムは、炭化水素を用いた発電時に燃料合成発電装置10から排出される排ガスからCO2を回収し、CO2を圧縮して貯蔵する際に発生する温熱を回収している。これにより、CO2の圧縮時に発生する温熱を有効利用することができ、システム効率を向上させることができる。
 また、本実施形態のエネルギマネジメントシステムは、燃料合成のために燃料合成発電装置10にCO2を供給する際に、CO2減圧時に発生する冷熱を回収している。これにより、CO2の減圧時に発生する冷熱を有効利用することができ、システム効率を向上させることができる。
 また、本実施形態のエネルギマネジメントシステムは、発電排ガスから回収したCO2を圧縮して液化した状態でCO2貯蔵部23に貯蔵している。これにより、回収したCO2の体積を大幅に小さくすることができ、CO2の貯蔵スペースを小さくすることができる。
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。
 例えば、上記実施形態では、燃料合成発電装置10で合成する炭化水素としてメタンを例示したが、異なる種類の炭化水素を合成するようにしてもよい。第1電極12で用いる触媒の種類や反応温度を異ならせることで、合成する炭化水素の種類を異ならせることができる。異なる種類の炭化水素としては、例えばメタンよりも炭素原子数が多いエタンやプロパン等の炭化水素、アルコールやエーテルのような酸素原子を含んだ炭化水素を例示できる。
 また、上記実施形態では、1つの燃料合成発電装置10を燃料合成装置10aおよび発電装置10bに切り替えて作動するようにしたが、燃料合成装置10aおよび発電装置10bをそれぞれ独立した装置として設けてもよい。
 また、上記実施形態では、CO2貯蔵部23に液体状態のCO2を貯蔵するようにしたが、気体状態のCO2が含まれていてもよく、回収されたCO2の少なくとも一部が液体状態で貯蔵されていればよい。
 また、上記実施形態では、液体状態の炭化水素を燃料貯蔵部31に貯蔵するようにしたが、気体状態の炭化水素を燃料貯蔵部31に貯蔵するようにしてもよい。
 また、上記実施形態の構成において、燃料合成発電装置10が作動中に発生する熱を給湯等に利用してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (10)

  1.  外部から供給される電力を用いてH2OおよびCO2から炭化水素を合成する燃料合成装置(10a)と、
     前記炭化水素を用いて発電する発電装置(10b)と、
     発電時に前記発電装置から排出される排ガスからCO2を回収するCO2回収部(36)と、
     前記CO2回収部で回収されたCO2を圧縮する圧縮機(38)と、
     前記圧縮機で圧縮されたCO2を貯蔵するCO2貯蔵部(23)と、
     前記CO2貯蔵部に貯蔵されたCO2を、前記燃料合成装置に供給するために減圧するCO2減圧部(25)と、
     前記圧縮機によるCO2の圧縮または前記CO2減圧部によるCO2の減圧によってCO2に蓄えられた熱を回収する熱回収部(26、39)と、
     を備えるエネルギマネジメントシステム。
  2.  前記燃料合成装置は、自然エネルギを利用して発電する電力供給装置(14)から供給される電力を用いて前記H2Oおよび前記CO2を電解する請求項1に記載のエネルギマネジメントシステム。
  3.  前記CO2貯蔵部で貯蔵されるCO2は、少なくとも一部が液体状態である請求項1または2に記載のエネルギマネジメントシステム。
  4.  前記熱回収部は前記圧縮機によるCO2の圧縮により発生する温熱を回収し、
     前記熱回収部によって回収された温熱は温熱利用部(41)で利用される請求項1ないし3のいずれか1つに記載のエネルギマネジメントシステム。
  5.  前記温熱利用部は、前記温熱で室内空調に用いられる空気を加熱する請求項4に記載のエネルギマネジメントシステム。
  6.  前記温熱利用部は、前記温熱で水を加熱して湯を沸かす請求項4に記載のエネルギマネジメントシステム。
  7.  前記温熱利用部は、前記温熱で前記燃料合成装置に供給されるH2Oを加熱する請求項4に記載のエネルギマネジメントシステム。
  8.  前記温熱利用部は、前記温熱で前記燃料合成装置または前記発電装置を加熱する請求項4に記載のエネルギマネジメントシステム。
  9.  前記熱回収部は、前記CO2減圧部によるCO2の減圧により発生する冷熱を回収し、
     前記熱回収部によって回収された冷熱は冷熱利用部(28)で利用される請求項1ないし3のいずれか1つに記載のエネルギマネジメントシステム。
  10.  前記燃料合成装置および前記発電装置は、外部から供給される電力を用いた炭化水素の合成と、炭化水素を用いた発電とを切り替え可能な1つの燃料合成発電装置(10)によって構成されており、
     前記燃料合成発電装置は、電解質(11)と前記電解質の両側に設けられた一対の電極(12、13)を備えており、
     前記燃料合成発電装置が前記燃料合成装置として作動する場合と、前記燃料合成発電装置が前記発電装置として作動する場合とで、前記一対の電極はアノードとカソードの関係が入れ替わる請求項1ないし9のいずれか1つに記載のエネルギマネジメントシステム。
PCT/JP2020/023433 2019-07-02 2020-06-15 エネルギマネジメントシステム WO2021002184A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20835375.5A EP3995605A4 (en) 2019-07-02 2020-06-15 ENERGY MANAGEMENT SYSTEM
CN202080049283.2A CN114127875B (zh) 2019-07-02 2020-06-15 能源管理系统
US17/567,292 US20220123338A1 (en) 2019-07-02 2022-01-03 Energy management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-123665 2019-07-02
JP2019123665A JP2021009820A (ja) 2019-07-02 2019-07-02 エネルギマネジメントシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/567,292 Continuation US20220123338A1 (en) 2019-07-02 2022-01-03 Energy management system

Publications (1)

Publication Number Publication Date
WO2021002184A1 true WO2021002184A1 (ja) 2021-01-07

Family

ID=74100575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023433 WO2021002184A1 (ja) 2019-07-02 2020-06-15 エネルギマネジメントシステム

Country Status (5)

Country Link
US (1) US20220123338A1 (ja)
EP (1) EP3995605A4 (ja)
JP (1) JP2021009820A (ja)
CN (1) CN114127875B (ja)
WO (1) WO2021002184A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034131A (ja) * 2019-08-16 2021-03-01 東京瓦斯株式会社 蓄エネルギー装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790122B2 (ja) * 1987-05-12 1995-10-04 日本酸素株式会社 高圧二酸化炭素を用いる抽出方法
JP2010062192A (ja) 2008-09-01 2010-03-18 Meisan Kk ジメチルエーテル(dme)を利用した自然エネルギーの液化と貯蔵
JP2012087759A (ja) * 2010-10-22 2012-05-10 Toshiba Corp 二酸化炭素回収方法及び二酸化炭素回収型汽力発電システム
JP2016511296A (ja) * 2013-01-04 2016-04-14 サウジ アラビアン オイル カンパニー 太陽放射から利用される合成ガス生成セルによる、二酸化炭素の炭化水素燃料への変換
JP2018511907A (ja) * 2015-02-25 2018-04-26 フュエルセル エナジー, インコーポレイテッドFuelcell Energy, Inc. 発電ガス分離システムおよび方法
JP2018190650A (ja) * 2017-05-10 2018-11-29 株式会社豊田中央研究所 電力貯蔵・供給システム

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045238B2 (en) * 2003-03-24 2006-05-16 Ion America Corporation SORFC power and oxygen generation method and system
US7482078B2 (en) * 2003-04-09 2009-01-27 Bloom Energy Corporation Co-production of hydrogen and electricity in a high temperature electrochemical system
WO2006099573A1 (en) * 2005-03-16 2006-09-21 Fuelcor Llc Systems, methods, and compositions for production of synthetic hydrocarbon compounds
US20080138675A1 (en) * 2006-12-11 2008-06-12 Jang Bor Z Hydrogen generation and storage method for personal transportation applications
US20100314235A1 (en) * 2009-06-16 2010-12-16 Exxonmobil Research And Engineering Company High temperature hydropyrolysis of carbonaceous materials
AU2010320483A1 (en) * 2009-11-20 2012-07-12 Cri Ehf Storage of intermittent renewable energy as fuel using carbon containing feedstock
WO2012069636A2 (en) * 2010-11-26 2012-05-31 Statoil Asa Sanner cycle energy system and converter
GB201202791D0 (en) * 2012-02-20 2012-04-04 Simpson Robert Methods and system for energy conversion and generation
US9954239B2 (en) * 2013-09-12 2018-04-24 Japan Aerospace Exploration Agency Solid polymer power generation or electrolysis method and system
FR3024985B1 (fr) * 2014-08-22 2020-01-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'electrolyse ou de co-electrolyse a haute temperature, procede de production d'electricite par pile a combustible sofc, interconnecteurs, reacteurs et procedes de fonctionnement associes.
EP3054519B1 (en) * 2015-02-03 2017-11-08 Technische Universität München Reversible fuel cell system and method for operating a fuel cell system
DE112015006427A5 (de) * 2015-04-08 2017-12-28 Climeworks Ag Herstellungsverfahren sowie herstellungsanlage zur herstellung von methan / gasförmigen und/oder flüssigen kohlenwasserstoffen
EP3403291A4 (en) * 2015-11-16 2019-06-05 Fuelcell Energy, Inc. CO2 CAPTURE SYSTEM FROM A FUEL CELL
CA3107519C (en) * 2015-11-17 2023-01-31 Fuelcell Energy Inc. Hydrogen and carbon monoxide generation using an rep with partial oxidation
CN105845962B (zh) * 2016-03-30 2019-01-18 华中科技大学 固体氧化物燃料电池和固体氧化物电解池联合发电系统
CN109415822B (zh) * 2016-07-26 2021-12-17 蒂森克虏伯工业解决方案股份公司 用于制备甲醇的方法和系统
CN109563634B (zh) * 2016-08-09 2021-05-07 本田技研工业株式会社 氢处理装置
WO2018163416A1 (ja) * 2017-03-10 2018-09-13 株式会社 東芝 水素エネルギー利用システム及びその運転方法
CN111466048B (zh) * 2017-11-22 2023-08-01 燃料电池能有限公司 利用带有rep的燃料电池系统生成氢气
FR3075832A1 (fr) * 2017-12-22 2019-06-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fonctionnement en mode de demarrage ou en mode stand-by d'une unite power-to-gas comportant une pluralite de reacteurs d'electrolyse (soec) ou co-electrolyse a haute temperature
AU2019210132B2 (en) * 2018-01-22 2023-02-02 Twelve Benefit Corporation System and method for carbon dioxide reactor control
US11710840B2 (en) * 2018-03-19 2023-07-25 Gt Co., Ltd. Carbon dioxide utilization system, and complex power generation system using the same
GB201812568D0 (en) * 2018-08-01 2018-09-12 Storelectric Ltd Energy Storage with Hydrogen
JP7203669B2 (ja) * 2019-03-29 2023-01-13 大阪瓦斯株式会社 電気化学モジュール、電気化学装置及びエネルギーシステム
CN113039153B9 (zh) * 2019-05-14 2024-06-18 松下知识产权经营株式会社 氢系统
JP2021008655A (ja) * 2019-07-02 2021-01-28 株式会社デンソー エネルギ変換システム
US11383977B1 (en) * 2019-12-17 2022-07-12 Samuel Okechukwu Umealu Incomplete combustion as a means of reducing carbon dioxide emissions
US11685865B2 (en) * 2020-08-28 2023-06-27 Methylennium Energy Corp. System and method for production of hydrocarbons from carbon dioxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790122B2 (ja) * 1987-05-12 1995-10-04 日本酸素株式会社 高圧二酸化炭素を用いる抽出方法
JP2010062192A (ja) 2008-09-01 2010-03-18 Meisan Kk ジメチルエーテル(dme)を利用した自然エネルギーの液化と貯蔵
JP2012087759A (ja) * 2010-10-22 2012-05-10 Toshiba Corp 二酸化炭素回収方法及び二酸化炭素回収型汽力発電システム
JP2016511296A (ja) * 2013-01-04 2016-04-14 サウジ アラビアン オイル カンパニー 太陽放射から利用される合成ガス生成セルによる、二酸化炭素の炭化水素燃料への変換
JP2018511907A (ja) * 2015-02-25 2018-04-26 フュエルセル エナジー, インコーポレイテッドFuelcell Energy, Inc. 発電ガス分離システムおよび方法
JP2018190650A (ja) * 2017-05-10 2018-11-29 株式会社豊田中央研究所 電力貯蔵・供給システム

Also Published As

Publication number Publication date
JP2021009820A (ja) 2021-01-28
CN114127875B (zh) 2023-10-13
EP3995605A4 (en) 2022-10-05
CN114127875A (zh) 2022-03-01
US20220123338A1 (en) 2022-04-21
EP3995605A1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
JP7446372B2 (ja) 電解槽と結合された水素化物タンクを含む水の高温可逆電解用システム
Smolinka et al. Hydrogen production from renewable energies—electrolyzer technologies
Lamy From hydrogen production by water electrolysis to its utilization in a PEM fuel cell or in a SO fuel cell: Some considerations on the energy efficiencies
US11201365B2 (en) Thermo-electrochemical convertor with integrated energy storage
US20030207161A1 (en) Hydrogen production and water recovery system for a fuel cell
US10087532B2 (en) Electrochemical compressor utilizing an electrolysis
US20040219400A1 (en) Hybrid fuel cell/desalination systems and method for use
JP6893310B2 (ja) 水素システム
WO2013145674A1 (ja) 燃料電池モジュール及び燃料電池システム
KR20120082582A (ko) 연료전지시스템 및 이를 구비한 선박
JP6291402B2 (ja) 圧縮水素供給装置
JP2014506375A (ja) 燃料電池を用いて発電を行う装置
JP6415941B2 (ja) 水素製造装置、水素製造方法及び電力貯蔵システム
WO2021002184A1 (ja) エネルギマネジメントシステム
JP2004186074A (ja) 溶融炭酸塩型燃料電池を用いた二酸化炭素回収方法
Siddiqui et al. Development of a new ammonia‐based energy storage option for grid balancing
Al-Hallaj et al. Conceptual design of a novel hybrid fuel cell/desalination system
KR101828937B1 (ko) 고온 고분자전해질막연료전지와 랜킨사이클시스템을 결합한 복합발전장치
JP2000054173A (ja) 水電解蓄電池
KR102106656B1 (ko) 선박
JP2002056879A (ja) 水電解装置−リン酸形燃料電池系発電システム
Tsai et al. Revolutionizing Energy Sustainability: Unleashing the Potential of rSOC Technology
Tsai et al. 10 Revolutionizing Energy Sustainability
Nouri et al. A new principal design of a sustainable power plant to produce combined Hydrogen-Carbon dioxide fuel for industrial applications
Godula‐Jopek et al. Outlook and Summary

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020835375

Country of ref document: EP

Effective date: 20220202