WO2021002001A1 - 移動体測位装置および移動体測位システム - Google Patents

移動体測位装置および移動体測位システム Download PDF

Info

Publication number
WO2021002001A1
WO2021002001A1 PCT/JP2019/026666 JP2019026666W WO2021002001A1 WO 2021002001 A1 WO2021002001 A1 WO 2021002001A1 JP 2019026666 W JP2019026666 W JP 2019026666W WO 2021002001 A1 WO2021002001 A1 WO 2021002001A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinates
landmark
positioning device
marker
image
Prior art date
Application number
PCT/JP2019/026666
Other languages
English (en)
French (fr)
Inventor
友哉 竹中
知明 武輪
努 朝比奈
ユミコ 川合
敬秀 平井
允裕 山隅
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021529663A priority Critical patent/JP7006847B2/ja
Priority to CN201980097863.6A priority patent/CN114127506A/zh
Priority to PCT/JP2019/026666 priority patent/WO2021002001A1/ja
Publication of WO2021002001A1 publication Critical patent/WO2021002001A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras

Definitions

  • the present invention relates to a mobile positioning device and a mobile positioning system.
  • Patent Document 1 discloses a mobile positioning device. According to the mobile positioning device, the position of the moving body can be calculated.
  • the mobile body positioning device described in Patent Document 1 uses the speed of the moving body when calculating the position of the moving body. Therefore, the error in the position of the moving body may become large.
  • An object of the present invention is to provide a mobile body positioning device and a mobile body positioning system capable of accurately calculating the position of a moving body.
  • the mobile body positioning device is based on an image obtained when a camera provided so that a landmark of a building is inside the shooting range captures a marker provided on the moving body.
  • An image processing unit that calculates the coordinates of the landmark and the marker in the above, and a position calculation unit that calculates the relative coordinates of the moving body with respect to the landmark in real coordinates based on the calculation result of the image processing unit. Equipped with.
  • the mobile positioning system according to the present invention is based on a camera provided so that a landmark of a building is inside the photographing range and an image obtained when the camera photographs a marker provided on the moving object.
  • the mobile body positioning apparatus according to any one of claims 1 to 7, which calculates the relative coordinates of the moving body with respect to the landmark in real coordinates.
  • the mobile body positioning device calculates the relative coordinates of the moving body with respect to the landmark in real coordinates from the images of the landmark and the marker. Therefore, the position of the moving body can be calculated accurately.
  • FIG. 5 is a hardware configuration diagram of a mobile positioning device of the mobile positioning system according to the first embodiment. It is a block diagram of the mobile positioning system in Embodiment 2. It is a flowchart for demonstrating the outline of operation of the mobile positioning apparatus of the mobile positioning system in Embodiment 2.
  • FIG. 5 is a hardware configuration diagram of a mobile positioning device of the mobile positioning system according to the first embodiment. It is a block diagram of the mobile positioning system in Embodiment 2. It is a flowchart for demonstrating the outline of operation of the mobile positioning apparatus of the mobile positioning system in Embodiment 2.
  • FIG. It is a block diagram of the mobile positioning system in Embodiment 3. It is a flowchart for demonstrating the outline of operation of the mobile body positioning apparatus of the mobile body positioning system in Embodiment 3.
  • FIG. 5 is a hardware configuration diagram of a mobile positioning device of the mobile positioning system according to the first embodiment. It is a block diagram of the mobile positioning system in Embodiment 2. It is a flowchart for
  • FIG. 1 is a configuration diagram of a mobile positioning system according to the first embodiment.
  • landmark 1 is provided on a building.
  • the landmark 1 is provided so that the image can be recognized.
  • landmark 1 is a two-dimensional bar code.
  • landmark 1 is a part of a building having a characteristic shape.
  • the moving body 2 is provided so that it can move autonomously.
  • the marker 3 is provided on the upper surface of the moving body 2.
  • the marker 3 is a two-dimensional bar code.
  • the mobile positioning system includes at least one camera 4 and a mobile positioning device 5.
  • the camera 4 is installed on the ceiling of a building.
  • the camera 4 is arranged so that the landmark 1 is within the shooting range.
  • the mobile positioning device 5 includes an image processing unit 6 and a position calculation unit 7.
  • the image processing unit 6 includes a landmark detection unit 6a, a landmark coordinate calculation unit 6b, a marker detection unit 6c, and a marker coordinate calculation unit 6d.
  • the landmark detection unit 6a detects the landmark 1 from the image of the camera 4.
  • the landmark coordinate calculation unit 6b calculates the coordinates of the landmark 1 inside the image of the camera 4 based on the detection result of the landmark detection unit 6a.
  • the marker detection unit 6c detects the marker 3 from the image of the camera 4 when the moving body 2 enters the shooting range of the camera 4.
  • the marker coordinate calculation unit 6d calculates the coordinates of the marker 3 inside the image of the camera 4 based on the detection result of the marker detection unit 6c.
  • the position calculation unit 7 includes a camera internal parameter storage unit 7a, a landmark shape size storage unit 7f, an in-image relative vector calculation unit 7b, and an in-real coordinate relative vector calculation unit 7c.
  • the camera internal parameter storage unit 7a stores information on the internal parameters of the camera 4.
  • the landmark shape size storage unit 7f stores information on the landmark shape size.
  • the landmark shape size information is information for making it possible to reproduce a figure congruent with the landmark 1.
  • the landmark shape size information may include information on the length of each side and the corresponding internal angle.
  • the in-image relative vector calculation unit 7b calculates the relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 inside the image of the camera 4 from the image processing unit 6.
  • the relative vector calculation unit 7c in real coordinates contains information stored in the camera internal parameter storage unit 7a, information stored in the landmark shape size storage unit 7f, and coordinate information of the landmark 1 output by the landmark detection unit 6a. Based on the above, the relative vector calculated by the in-image relative vector calculation unit 7b is converted into a relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 in the actual coordinates.
  • the coordinates of the landmark 1 inside the image represent the position of the landmark 1 on the projection surface by the camera 4. Therefore, the projection matrix showing the relationship between the coordinate system of the camera 4 and the actual coordinate system is calculated from the landmark shape size and the coordinates of the landmark 1, for example, by solving the pnp problem, which is a known method. Next, the relative vector in real coordinates is obtained by multiplying the matrix obtained by correcting the internal parameters of the camera 4 to the projection matrix by the relative vector inside the image.
  • FIG. 2 is a diagram showing a relative vector calculated in the mobile positioning system according to the first embodiment.
  • the plane coordinates are preset with the position of the landmark 1 as the origin.
  • the x-axis and the y-axis are orthogonal to each other.
  • the relative vector is defined by the distance between the landmark 1 and the marker 3 and the angle in the direction of the marker 3 with respect to the x-axis.
  • FIG. 3 is a flowchart for explaining an outline of the operation of the mobile positioning device of the mobile positioning system according to the first embodiment.
  • step S1 the mobile positioning device 5 detects the landmark 1. After that, the mobile positioning device 5 performs the operation of step S2. In step S2, the mobile positioning device 5 calculates the coordinates of the landmark 1 inside the image of the camera 4.
  • step S3 the mobile positioning device 5 determines whether or not the marker 3 has been detected. If the marker 3 is not detected in step S3, the mobile positioning device 5 performs the operation of step S3. When the marker 3 is detected in step S3, the mobile positioning device 5 performs the operation of step S4. In step S4, the mobile positioning device 5 calculates the coordinates of the marker 3 inside the image of the camera 4.
  • step S5 the mobile positioning device 5 calculates a relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 inside the image of the camera 4.
  • step S6 a relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 in the actual coordinates is calculated. After that, the mobile positioning device 5 ends its operation.
  • the mobile body positioning device 5 calculates the relative coordinates of the moving body 2 with respect to the landmark 1 in real coordinates from the images of the landmark 1 and the marker 3. Therefore, the position of the moving body 2 can be calculated accurately.
  • the mobile positioning device 5 uses the internal parameters of the camera 4, the information stored in the landmark shape size storage unit 7f, and the coordinate information of the landmark 1 output by the landmark detection unit 6a, to be used by the camera 4.
  • the relative vector with respect to landmark 1 in real coordinates is obtained.
  • the relative coordinates of the moving body 2 are calculated. Therefore, the position of the moving body 2 can be calculated more reliably and accurately.
  • the position calculation unit 7 stores the information of the absolute coordinates of the landmark 1 and moves based on the absolute coordinates of the landmark 1 and the relative vector of the coordinates of the landmark 1 and the coordinates of the marker 3 in the actual coordinates.
  • the absolute coordinates of the body 2 may be calculated. In this case, the absolute position of the moving body 2 can be calculated more reliably and accurately.
  • FIG. 4 is a hardware configuration diagram of the mobile positioning device of the mobile positioning system according to the first embodiment.
  • Each function of the mobile positioning device 5 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuit comprises at least one dedicated hardware 200.
  • each function of the mobile positioning device 5 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of the software and firmware is stored in at least one memory 100b. At least one processor 100a realizes each function of the mobile positioning device 5 by reading and executing a program stored in at least one memory 100b. At least one processor 100a is also referred to as a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • at least one memory 100b is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, or the like.
  • the processing circuit includes at least one dedicated hardware 200
  • the processing circuit is realized by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • each function of the mobile positioning device 5 is realized by a processing circuit.
  • each function of the mobile positioning device 5 is collectively realized by a processing circuit.
  • a part may be realized by the dedicated hardware 200, and the other part may be realized by software or firmware.
  • the function of the image processing unit 6 is realized by a processing circuit as dedicated hardware 200, and the function other than the function of the image processing unit 6 is a program in which at least one processor 100a is stored in at least one memory 100b. It may be realized by reading and executing.
  • the processing circuit realizes each function of the mobile positioning device 5 by hardware 200, software, firmware, or a combination thereof.
  • FIG. 5 is a configuration diagram of the mobile positioning system according to the second embodiment.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals. The explanation of the relevant part is omitted.
  • the image processing unit 6 includes a marker installation height calculation unit 6e.
  • the marker installation height calculation unit 6e reads the height information from the image of the marker 3. For example, the marker installation height calculation unit 6e reads the height information embedded in the marker 3 in advance by decoding the information from the image of the marker 3.
  • the position calculation unit 7 includes an altitude correction unit 7d.
  • the altitude correction unit 7d corrects the relative vector calculated by the in-image relative vector calculation unit 7b based on the information stored in the camera internal parameter storage unit 7a and the height information from the image processing unit 6. ..
  • the relative vector calculation unit 7c in real coordinates uses the information stored in the internal parameter storage unit 7a of the camera to obtain the relative vector corrected by the altitude correction unit 7d with the coordinates of the landmark 1 in real coordinates and the marker 3. Convert to a vector relative to the coordinates.
  • FIG. 6 is a flowchart for explaining an outline of the operation of the mobile positioning device of the mobile positioning system according to the second embodiment.
  • step S11 the mobile positioning device 5 detects the landmark 1. After that, the mobile positioning device 5 performs the operation of step S12. In step S12, the mobile positioning device 5 calculates the coordinates of the landmark 1 inside the image of the camera 4.
  • step S13 the mobile positioning device 5 determines whether or not the marker 3 has been detected. If the marker 3 is not detected in step S13, the mobile positioning device 5 performs the operation of step S13. When the marker 3 is detected in step S13, the mobile positioning device 5 performs the operation of step S14. In step S14, the mobile positioning device 5 calculates the coordinates of the marker 3 inside the image of the camera 4.
  • step S15 the mobile positioning device 5 reads the height information of the marker 3.
  • step S16 the mobile positioning device 5 calculates a relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 inside the image of the camera 4.
  • step S17 the mobile positioning device 5 corrects the altitude of the relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 inside the image of the camera 4.
  • step S18 the relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 in the actual coordinates is calculated. After that, the mobile positioning device 5 ends its operation.
  • the mobile positioning device 5 includes the internal parameters of the camera 4, the height information read by the image processing unit 6, and the information stored in the landmark shape size storage unit 7f. Based on the coordinates of the landmark 1 output by the landmark detection unit 6a, the altitude is corrected with respect to the relative coordinates of the moving body 2 with respect to the landmark 1. Therefore, the position of the moving body 2 can be calculated more reliably and accurately.
  • FIG. 7 is a configuration diagram of the mobile positioning system according to the third embodiment.
  • the same or corresponding parts as those of the second embodiment are designated by the same reference numerals. The explanation of the relevant part is omitted.
  • the image processing unit 6 includes an identification information reading unit 6f, a landmark coordinate storage unit 6g, and a landmark difference calculation unit 6h.
  • the identification information reading unit 6f reads the identification information from the image of the marker 3.
  • the landmark coordinate storage unit 6g stores the coordinate information calculated by the landmark coordinate calculation unit 6b for each identification information.
  • the landmark difference calculation unit 6h compares the image of the previous camera 4 with the image of the camera 4 this time for each identification information based on the information stored in the landmark coordinate storage unit 6g, thereby displaying the image of the camera 4. Calculate the difference between the images of landmark 1 inside.
  • the marker coordinate calculation unit 6d calculates the coordinates of the marker 3 inside the image of the camera 4 for each identification information.
  • the marker installation height calculation unit 6e reads the height information of the marker 3 inside the image of the camera 4 for each identification information.
  • the position calculation unit 7 includes a relative vector correction unit 7e.
  • the relative vector correction unit 7e corrects the relative vector calculated by the relative vector calculation unit 7c in real coordinates for each identification information. At this time, the relative vector correction unit 7e uses the information stored in the camera internal parameter storage unit 7a and the information of the difference between the images of the landmark 1 from the image processing unit 6.
  • FIG. 8 is a flowchart for explaining an outline of the operation of the mobile positioning device of the mobile positioning system according to the third embodiment.
  • step S21 the mobile positioning device 5 detects the landmark 1. After that, the mobile positioning device 5 performs the operation of step S22. In step S22, the mobile positioning device 5 calculates the coordinates of the landmark 1 inside the image of the camera 4.
  • step S23 the mobile positioning device 5 determines whether or not the marker 3 has been detected. If the marker 3 is not detected in step S23, the mobile positioning device 5 performs the operation of step S23. When the marker 3 is detected in step S23, the mobile positioning device 5 performs the operation of step S24. In step S24, the mobile positioning device 5 reads the identification information from the image of the marker 3. After that, the operation of step S25 is performed. In step S25, the mobile positioning device 5 calculates the coordinates of the marker 3 inside the image of the camera 4.
  • step S26 the mobile positioning device 5 reads the height information of the marker 3.
  • step S27 the mobile positioning device 5 calculates a relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 inside the image of the camera 4.
  • step S28 the mobile positioning device 5 corrects the altitude of the relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 inside the image of the camera 4.
  • step S29 the mobile positioning device 5 calculates a relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 in the actual coordinates.
  • step S30 the mobile positioning device 5 determines whether or not there is a difference in the coordinates of the landmark 1 inside the image of the camera 4.
  • step S31 the mobile positioning device 5 calculates the difference in the coordinates of the landmark 1.
  • step S32 the mobile positioning device 5 corrects the relative vector between the coordinates of the landmark 1 and the coordinates of the marker 3 in the actual coordinates.
  • the mobile positioning device 5 ends the operation, and then the mobile positioning device 5 ends the operation.
  • the mobile body positioning device 5 reads the identification information from the image of the marker 3 and identifies the moving body 2 based on the identification information. Therefore, the moving body 2 can be easily identified.
  • the plurality of moving objects 2 may be identified based on the plurality of identification information. In this case, the plurality of moving bodies 2 can be easily identified.
  • the moving body positioning device 5 is relative to the coordinates of the landmark 1 and the coordinates of the marker 3 in the actual coordinates based on the difference between the image of the landmark 1 in the image of the previous camera 4 and the image of the camera 4 this time. Correct the vector. Therefore, even if the positional relationship between the camera 4 and the landmark 1 unintentionally fluctuates, the position of the moving body 2 can be calculated more reliably and accurately. Further, even when the angle of view of the camera 4 is changed, the position of the moving body 2 can be calculated accurately.
  • the identification information and the height information may be stored in association with each other.
  • the coordinates of the landmark 1 and the coordinates of the marker 3 inside the image of the camera 4 are relative to each other based on the height information associated with the identification information when the identification information reading unit 6f reads the identification information.
  • the height of the vector may be corrected.
  • the marker 3 capable of identifying the orientation may be adopted. In this case, not only the position of the moving body 2 but also the orientation can be calculated accurately.
  • a plurality of landmarks 1 may be included in the shooting range of one camera 4. In this case, even if one of the landmarks 1 is hidden by a passing person or the like in the image of the camera 4, the position of the moving body 2 can be calculated accurately by using the image of the other landmark 1.
  • the mobile body positioning device and the mobile body positioning system according to the present invention can be used as a system for controlling a moving body.

Abstract

移動体の位置を精度よく算出することができる移動体測位装置を提供する。建築物のランドマークが撮影範囲の内部に入るように設けられたカメラが移動体に設けられたマーカーを撮影した際の画像に基づいて、当該画像の内部における前記ランドマークと前記マーカーとの座標を算出する画像処理部と、前記画像処理部の算出結果に基づいて、実座標における前記ランドマークに対する前記移動体の相対座標を算出する位置算出部と、を備えた。

Description

移動体測位装置および移動体測位システム
 この発明は、移動体測位装置および移動体測位システムに関する。
 特許文献1は、移動体測位装置を開示する。当該移動体測位装置によれば、移動体の位置を算出し得る。
日本特開2010-288112号公報
 しかしながら、特許文献1に記載の移動体測位装置は、移動体の位置を算出する際に移動体の速度を用いる。このため、移動体の位置の誤差が大きくなることもある。
 この発明は、上述の課題を解決するためになされた。この発明の目的は、移動体の位置を精度よく算出することができる移動体測位装置および移動体測位システムを提供することである。
 この発明に係る移動体測位装置は、建築物のランドマークが撮影範囲の内部に入るように設けられたカメラが移動体に設けられたマーカーを撮影した際の画像に基づいて、当該画像の内部における前記ランドマークと前記マーカーとの座標を算出する画像処理部と、前記画像処理部の算出結果に基づいて、実座標における前記ランドマークに対する前記移動体の相対座標を算出する位置算出部と、を備えた。
 この発明に係る移動体測位システムは、建築物のランドマークが撮影範囲の内部に入るように設けられたカメラと、前記カメラが移動体に設けられたマーカーを撮影した際の画像に基づいて、実座標における前記ランドマークに対する前記移動体の相対座標を算出する請求項1から請求項7のいずれか一項に記載の移動体測位装置と、を備えた。
 この発明によれば、移動体測位装置は、ランドマークとマーカーとの画像から実座標におけるランドマークに対する移動体の相対座標を算出する。このため、移動体の位置を精度よく算出することができる。
実施の形態1における移動体測位システムの構成図である。 実施の形態1における移動体測位システムにおいて算出される相対ベクトルを示す図である。 実施の形態1における移動体測位システムの移動体測位装置の動作の概要を説明するためのフローチャートである。 実施の形態1における移動体測位システムの移動体測位装置のハードウェア構成図である。 実施の形態2における移動体測位システムの構成図である。 実施の形態2における移動体測位システムの移動体測位装置の動作の概要を説明するためのフローチャートである。 実施の形態3における移動体測位システムの構成図である。 実施の形態3における移動体測位システムの移動体測位装置の動作の概要を説明するためのフローチャートである。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1は実施の形態1における移動体測位システムの構成図である。
 図1において、ランドマーク1は、建築物に設けられる。ランドマーク1は、画像認識し得るように設けられる。例えば、ランドマーク1は、二次元バーコードである。例えば、ランドマーク1は、建築物の一部で特徴的な形状の部分である。
 移動体2は、自律移動し得るように設けられる。マーカー3は、移動体2の上面に設けられる。例えば、マーカー3は、二次元バーコードである。
 移動体測位システムは、少なくとも一つのカメラ4と移動体測位装置5とを備える。
 例えば、カメラ4は、建築物の天井に設けられる。カメラ4は、ランドマーク1が撮影範囲に入るように配置される。
 移動体測位装置5は、画像処理部6と位置算出部7とを備える。
 画像処理部6は、ランドマーク検出部6aとランドマーク座標算出部6bとマーカー検出部6cとマーカー座標算出部6dとを備える。
 ランドマーク検出部6aは、カメラ4の画像からランドマーク1を検出する。ランドマーク座標算出部6bは、ランドマーク検出部6aの検出結果に基づいてカメラ4の画像の内部におけるランドマーク1の座標を算出する。マーカー検出部6cは、移動体2がカメラ4の撮影範囲に入った際にカメラ4の画像からマーカー3を検出する。マーカー座標算出部6dは、マーカー検出部6cの検出結果に基づいてカメラ4の画像の内部におけるマーカー3の座標を算出する。
 位置算出部7は、カメラ内部パラメータ記憶部7aとランドマーク形状サイズ記憶部7fと画像内相対ベクトル算出部7bと実座標内相対ベクトル算出部7cとを備える。
 カメラ内部パラメータ記憶部7aは、カメラ4の内部パラメータの情報を記憶する。ランドマーク形状サイズ記憶部7fは、ランドマーク形状サイズの情報を記憶する。ランドマーク形状サイズの情報は、ランドマーク1と合同な図形を再現可能とするための情報である。例えば、ランドマーク1が多角形である場合、ランドマーク形状サイズの情報として、各辺の長さと対応する内角との情報があればよい。
 画像内相対ベクトル算出部7bは、画像処理部6からのカメラ4の画像の内部におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを算出する。実座標内相対ベクトル算出部7cは、カメラ内部パラメータ記憶部7aに記憶された情報とランドマーク形状サイズ記憶部7fに記憶された情報とランドマーク検出部6aが出力したランドマーク1の座標の情報とに基づいて、画像内相対ベクトル算出部7bにより算出された相対ベクトルを実座標におけるランドマーク1の座標とマーカー3の座標との相対ベクトルに変換する。
 なお、画像の内部におけるランドマーク1の座標は、カメラ4による投影面上におけるランドマーク1の位置を表す。従って、カメラ4の座標系と実座標系との関係を示す投影行列は、ランドマーク形状サイズとランドマーク1の座標とから、例えば公知の手法であるpnp問題を解くことで算出される。次に、当該投影行列にカメラ4の内部パラメータの補正を加えて得た行列を、画像の内部における相対ベクトルに乗ずることで、実座標における相対ベクトルが得られる。
 次に、図2を用いて、カメラ4の画像の内部におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを説明する。
 図2は実施の形態1における移動体測位システムにおいて算出される相対ベクトルを示す図である。
 図2に示されるように、カメラ4の画像の内部において、平面座標は、ランドマーク1の位置を原点として予め設定される。平面座標において、x軸とy軸とは、互いに直交する。相対ベクトルは、ランドマーク1とマーカー3との距離およびx軸に対するマーカー3の方向の角度で定義される。
 次に、図3を用いて、移動体測位装置5の動作の概要を説明する。
 図3は実施の形態1における移動体測位システムの移動体測位装置の動作の概要を説明するためのフローチャートである。
 ステップS1では、移動体測位装置5は、ランドマーク1を検出する。その後、移動体測位装置5は、ステップS2の動作を行う。ステップS2では、移動体測位装置5は、カメラ4の画像の内部におけるランドマーク1の座標を算出する。
 その後、移動体測位装置5は、ステップS3の動作を行う。ステップS3では、移動体測位装置5は、マーカー3が検出されたか否かを判定する。ステップS3でマーカー3が検出されない場合、移動体測位装置5は、ステップS3の動作を行う。ステップS3でマーカー3が検出された場合、移動体測位装置5は、ステップS4の動作を行う。ステップS4では、移動体測位装置5は、カメラ4の画像の内部におけるマーカー3の座標を算出する。
 その後、移動体測位装置5は、ステップS5の動作を行う。ステップS5では、移動体測位装置5は、カメラ4の画像の内部におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを算出する。
 その後、移動体測位装置5は、ステップS6の動作を行う。ステップS6では、実座標におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを算出する。その後、移動体測位装置5は、動作を終了する。
 以上で説明した実施の形態1によれば、移動体測位装置5は、ランドマーク1とマーカー3との画像から実座標におけるランドマーク1に対する移動体2の相対座標を算出する。このため、移動体2の位置を精度よく算出することができる。
 また、移動体測位装置5は、カメラ4の内部パラメータとランドマーク形状サイズ記憶部7fに記憶された情報とランドマーク検出部6aが出力したランドマーク1の座標の情報とを用いて、カメラ4の画像の内部におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを実座標におけるランドマーク1の座標とマーカー3の座標との相対ベクトルに変換することで、実座標におけるランドマーク1に対する移動体2の相対座標を算出する。このため、移動体2の位置をより確実に精度よく算出することができる。
 なお、位置算出部7において、ランドマーク1の絶対座標の情報を記憶し、ランドマーク1の絶対座標と実座標におけるランドマーク1の座標とマーカー3の座標との相対ベクトルとに基づいて、移動体2の絶対座標を算出してもよい。この場合、移動体2の絶対位置をより確実に精度よく算出することができる。
 次に、図4を用いて、移動体測位装置5の例を説明する。
 図4は実施の形態1における移動体測位システムの移動体測位装置のハードウェア構成図である。
 移動体測位装置5の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア200を備える。
 処理回路が少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える場合、移動体測位装置5の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ100bに格納される。少なくとも1つのプロセッサ100aは、少なくとも1つのメモリ100bに記憶されたプログラムを読み出して実行することにより、移動体測位装置5の各機能を実現する。少なくとも1つのプロセッサ100aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ100bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。
 処理回路が少なくとも1つの専用のハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、移動体測位装置5の各機能は、それぞれ処理回路で実現される。例えば、移動体測位装置5の各機能は、まとめて処理回路で実現される。
 移動体測位装置5の各機能について、一部を専用のハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、画像処理部6の機能については専用のハードウェア200としての処理回路で実現し、画像処理部6の機能以外の機能については少なくとも1つのプロセッサ100aが少なくとも1つのメモリ100bに格納されたプログラムを読み出して実行することにより実現してもよい。
 このように、処理回路は、ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせで移動体測位装置5の各機能を実現する。
実施の形態2.
 図5は実施の形態2における移動体測位システムの構成図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 画像処理部6は、マーカー設置高算出部6eを備える。
 マーカー設置高算出部6eは、マーカー3の画像から高さ情報を読み取る。例えば、マーカー設置高算出部6eは、マーカー3の画像から情報を復号することで予めマーカー3に埋め込まれた高さ情報を読み込む。
 位置算出部7は、高度補正部7dを備える。
 高度補正部7dは、カメラ内部パラメータ記憶部7aに記憶された情報と画像処理部6からの高さ情報とに基づいて、画像内相対ベクトル算出部7bにより算出された相対ベクトルの高度補正を行う。
 実座標内相対ベクトル算出部7cは、カメラ内部パラメータ記憶部7aに記憶された情報に基づいて、高度補正部7dにより補正された相対ベクトルを実座標における前記ランドマーク1の座標と前記マーカー3の座標との相対ベクトルに変換する。
 次に、図6を用いて、移動体測位装置5の動作の概要を説明する。
 図6は実施の形態2における移動体測位システムの移動体測位装置の動作の概要を説明するためのフローチャートである。
 ステップS11では、移動体測位装置5は、ランドマーク1を検出する。その後、移動体測位装置5は、ステップS12の動作を行う。ステップS12では、移動体測位装置5は、カメラ4の画像の内部におけるランドマーク1の座標を算出する。
 その後、移動体測位装置5は、ステップS13の動作を行う。ステップS13では、移動体測位装置5は、マーカー3が検出されたか否かを判定する。ステップS13でマーカー3が検出されない場合、移動体測位装置5は、ステップS13の動作を行う。ステップS13でマーカー3が検出された場合、移動体測位装置5は、ステップS14の動作を行う。ステップS14では、移動体測位装置5は、カメラ4の画像の内部におけるマーカー3の座標を算出する。
 その後、移動体測位装置5は、ステップS15の動作を行う。ステップS15では、移動体測位装置5は、マーカー3の高さ情報を読み取る。その後、移動体測位装置5は、ステップS16の動作を行う。ステップS16では、移動体測位装置5は、カメラ4の画像の内部におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを算出する。
 その後、移動体測位装置5は、ステップS17の動作を行う。ステップS17では、移動体測位装置5は、カメラ4の画像の内部におけるランドマーク1の座標とマーカー3の座標との相対ベクトルの高度補正を行う。その後、移動体測位装置5は、ステップS18の動作を行う。ステップS18では、実座標におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを算出する。その後、移動体測位装置5は、動作を終了する。
 以上で説明した実施の形態2によれば、移動体測位装置5は、カメラ4の内部パラメータと画像処理部6により読み取られた高さ情報とランドマーク形状サイズ記憶部7fに記憶された情報とランドマーク検出部6aが出力したランドマーク1の座標とに基づいて、ランドマーク1に対する移動体2の相対座標に対して高度補正を行う。このため、移動体2の位置をより確実に精度よく算出することができる。
実施の形態3.
 図7は実施の形態3における移動体測位システムの構成図である。なお、実施の形態2の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 画像処理部6は、識別情報読取部6fとランドマーク座標記憶部6gとランドマーク差分算出部6hとを備える。
 識別情報読取部6fは、マーカー3の画像から識別情報を読み取る。ランドマーク座標記憶部6gは、識別情報ごとにランドマーク座標算出部6bにより算出された座標の情報を記憶する。ランドマーク差分算出部6hは、ランドマーク座標記憶部6gに記憶された情報に基づいて、識別情報ごとに前回のカメラ4の画像と今回のカメラ4の画像とを比較することでカメラ4の画像の内部におけるランドマーク1の画像の差分を算出する。
 マーカー座標算出部6dは、識別情報ごとにカメラ4の画像の内部におけるマーカー3の座標を算出する。マーカー設置高算出部6eは、識別情報ごとにカメラ4の画像の内部におけるマーカー3の高さ情報を読み取る。
 位置算出部7は、相対ベクトル補正部7eを備える。
 相対ベクトル補正部7eは、識別情報ごとに実座標内相対ベクトル算出部7cにより算出された相対ベクトルを補正する。この際、相対ベクトル補正部7eは、カメラ内部パラメータ記憶部7aに記憶された情報と画像処理部6からのランドマーク1の画像の差分の情報とを用いる。
 次に、図8を用いて、移動体測位装置5の動作の概要を説明する。
 図8は実施の形態3における移動体測位システムの移動体測位装置の動作の概要を説明するためのフローチャートである。
 ステップS21では、移動体測位装置5は、ランドマーク1を検出する。その後、移動体測位装置5は、ステップS22の動作を行う。ステップS22では、移動体測位装置5は、カメラ4の画像の内部におけるランドマーク1の座標を算出する。
 その後、移動体測位装置5は、ステップS23の動作を行う。ステップS23では、移動体測位装置5は、マーカー3が検出されたか否かを判定する。ステップS23でマーカー3が検出されない場合、移動体測位装置5は、ステップS23の動作を行う。ステップS23でマーカー3が検出された場合、移動体測位装置5は、ステップS24の動作を行う。ステップS24では、移動体測位装置5は、マーカー3の画像から識別情報を読み取る。その後、ステップS25の動作を行う。ステップS25では、移動体測位装置5は、カメラ4の画像の内部におけるマーカー3の座標を算出する。
 その後、移動体測位装置5は、ステップS26の動作を行う。ステップS26では、移動体測位装置5は、マーカー3の高さ情報を読み取る。その後、移動体測位装置5は、ステップS27の動作を行う。ステップS27では、移動体測位装置5は、カメラ4の画像の内部におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを算出する。
 その後、移動体測位装置5は、ステップS28の動作を行う。ステップS28では、移動体測位装置5は、カメラ4の画像の内部におけるランドマーク1の座標とマーカー3の座標との相対ベクトルの高度補正を行う。その後、移動体測位装置5は、ステップS29の動作を行う。ステップS29では、移動体測位装置5は、実座標におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを算出する。
 その後、移動体測位装置5は、ステップS30の動作を行う。ステップS30では、移動体測位装置5は、カメラ4の画像の内部においてランドマーク1の座標の差分があるか否かを判定する。
 ステップS30でランドマーク1の画像の差分がある場合、移動体測位装置5は、ステップS31の動作を行う。ステップS31では、移動体測位装置5は、ランドマーク1の座標の差分を算出する。その後、移動体測位装置5は、ステップS32の動作を行う。ステップS32では、移動体測位装置5は、実座標におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを補正する。
 ステップS30でランドマーク1の画像の差分がない場合またはステップS32の後、移動体測位装置5は、その後、移動体測位装置5は、動作を終了する。
 以上で説明した実施の形態3によれば、移動体測位装置5は、マーカー3の画像から識別情報を読み取り、当該識別情報に基づいて移動体2を識別する。このため、移動体2を容易に識別することができる。
 なお、複数のマーカー3から複数の識別情報がそれぞれ読み取られた場合は、当該複数の識別情報に基づいて複数の移動体2を識別すればよい。この場合、複数の移動体2を容易に判別することができる。
 また、移動体測位装置5は、前回のカメラ4の画像と今回のカメラ4の画像におけるランドマーク1の画像の差分に基づいて、実座標におけるランドマーク1の座標とマーカー3の座標との相対ベクトルを補正する。このため、カメラ4とランドマーク1との位置関係が意図せずに変動した場合でも、移動体2の位置をより確実に精度よく算出することができる。また、カメラ4の画角を変更した場合でも、移動体2の位置を精度よく算出することができる。
 なお、移動体測位装置5において、識別情報と高さ情報とを対応付けて記憶してもよい。この場合、識別情報読取部6fが識別情報を読み取った際に当該識別情報に対応付けられた高さ情報に基づいてカメラ4の画像の内部におけるランドマーク1の座標とマーカー3の座標との相対ベクトルの高度補正を行ってもよい。
 また、実施の形態1から実施の形態3において、向きを識別できるマーカー3を採用してもよい。この場合、移動体2の位置だけでなく向きも精度よく算出することができる。
 また、実施の形態1から実施の形態3において、1つのカメラ4の撮影範囲の内部に複数のランドマーク1が入るようにしてもよい。この場合、カメラ4の画像において、ランドマーク1の1つが通行する人等により隠れていても、他のランドマーク1の画像を用いて移動体2の位置を精度よく算出することができる。
 以上のように、この発明に係る移動体測位装置および移動体測位システムは、移動体を制御するシステムに利用できる。
 1 ランドマーク、 2 移動体、 3 マーカー、 4 カメラ、 5 移動体測位装置、 6 画像処理部、 6a ランドマーク検出部、 6b ランドマーク座標算出部、 6c マーカー検出部、 6d マーカー座標算出部、 6e マーカー設置高算出部、 6f 識別情報読取部、 6g ランドマーク座標記憶部、 6h ランドマーク差分算出部、 7 位置算出部、 7a カメラ内部パラメータ記憶部、 7b 画像内相対ベクトル算出部、 7c 実座標内相対ベクトル算出部、 7d 高度補正部、 7e 相対ベクトル補正部、 7f ランドマーク形状サイズ記憶部、 100a プロセッサ、 100b メモリ、 200 ハードウェア

Claims (8)

  1.  建築物のランドマークが撮影範囲の内部に入るように設けられたカメラが移動体に設けられたマーカーを撮影した際の画像に基づいて、当該画像の内部における前記ランドマークと前記マーカーとの座標を算出する画像処理部と、
     前記画像処理部の算出結果に基づいて、実座標における前記ランドマークに対する前記移動体の相対座標を算出する位置算出部と、
    を備えた移動体測位装置。
  2.  前記位置算出部は、前記カメラの内部パラメータとランドマーク形状サイズと前記ランドマークの座標とを用いて、前記カメラの画像の内部における前記ランドマークの座標と前記マーカーの座標との相対ベクトルを実座標における前記ランドマークの座標と前記マーカーの座標との相対ベクトルに変換することで、実座標における前記ランドマークに対する前記移動体の相対座標を算出する請求項1に記載の移動体測位装置。
  3.  前記画像処理部は、前記マーカーの画像から高さ情報を読み取り、
     前記位置算出部は、前記カメラの内部パラメータとランドマーク形状サイズと前記ランドマークの座標と前記画像処理部により読み取られた高さ情報とに基づいて、前記ランドマークに対する前記移動体の相対座標に対して高度補正を行う請求項2に記載の移動体測位装置。
  4.  前記位置算出部は、前記ランドマークの絶対座標の情報を記憶し、前記ランドマークの絶対座標と実座標における前記ランドマークの座標と前記マーカーの座標との相対ベクトルとに基づいて、前記移動体の絶対座標を算出する請求項2または請求項3に記載の移動体測位装置。
  5.  前記画像処理部は、前記マーカーの画像から識別情報を読み取り、当該識別情報に基づいて移動体を識別する請求項2から請求項4のいずれか一項に記載の移動体測位装置。
  6.  前記画像処理部は、複数のマーカーの画像から複数の識別情報をそれぞれ読み取った場合は、当該複数の識別情報に基づいて複数の移動体を識別する請求項5に記載の移動体測位装置。
  7.  前記画像処理部は、前回の前記カメラの画像と今回の前記カメラの画像とを比較することで前記カメラの画像の内部における前記ランドマークの画像の差分を算出し、
     前記位置算出部は、前記画像処理部により算出された差分に基づいて、実座標における前記ランドマークの座標と前記マーカーの座標との相対ベクトルを補正する請求項2から請求項6のいずれか一項に記載の移動体測位装置。
  8.  建築物のランドマークが撮影範囲の内部に入るように設けられたカメラと、
     前記カメラが移動体に設けられたマーカーを撮影した際の画像に基づいて、実座標における前記ランドマークに対する前記移動体の相対座標を算出する請求項1から請求項7のいずれか一項に記載の移動体測位装置と、
    を備えた移動体測位システム。
PCT/JP2019/026666 2019-07-04 2019-07-04 移動体測位装置および移動体測位システム WO2021002001A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021529663A JP7006847B2 (ja) 2019-07-04 2019-07-04 移動体測位装置および移動体測位システム
CN201980097863.6A CN114127506A (zh) 2019-07-04 2019-07-04 移动体测位装置和移动体测位系统
PCT/JP2019/026666 WO2021002001A1 (ja) 2019-07-04 2019-07-04 移動体測位装置および移動体測位システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026666 WO2021002001A1 (ja) 2019-07-04 2019-07-04 移動体測位装置および移動体測位システム

Publications (1)

Publication Number Publication Date
WO2021002001A1 true WO2021002001A1 (ja) 2021-01-07

Family

ID=74101203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026666 WO2021002001A1 (ja) 2019-07-04 2019-07-04 移動体測位装置および移動体測位システム

Country Status (3)

Country Link
JP (1) JP7006847B2 (ja)
CN (1) CN114127506A (ja)
WO (1) WO2021002001A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7282934B1 (ja) 2022-01-24 2023-05-29 エヌ・ティ・ティ・インフラネット株式会社 精度向上方法、離隔距離取得方法、位置情報算出支援装置、位置情報算出支援プログラム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337938A (ja) * 1993-03-31 1994-12-06 Fujitsu Ltd 画像処理装置及び距離測定装置
JPH0989560A (ja) * 1995-09-28 1997-04-04 Oojisu Soken:Kk 構造物計測システム
JPH11160021A (ja) * 1997-11-27 1999-06-18 Nippon Telegr & Teleph Corp <Ntt> 広域3次元位置計測方法及び装置
JP2001264037A (ja) * 2000-03-22 2001-09-26 Nippon Telegr & Teleph Corp <Ntt> カメラキャリブレーション方法及び装置及びカメラキャリブレーションプログラムを格納した記憶媒体
JP2003329411A (ja) * 2002-05-14 2003-11-19 Matsushita Electric Ind Co Ltd カメラ校正装置
JP2006113645A (ja) * 2004-10-12 2006-04-27 Kajima Corp 移動軌跡解析方法
JP2007106578A (ja) * 2005-10-17 2007-04-26 Fujitsu Ltd コンテナの管理システム及びプログラム
JP2007324770A (ja) * 2006-05-30 2007-12-13 Kyocera Corp 撮像装置および撮像方法
JP2010133711A (ja) * 2008-12-02 2010-06-17 Sumitomo Heavy Ind Ltd 目標物の位置の時間変化計測方法及び計測装置
JP2017196319A (ja) * 2016-04-28 2017-11-02 ソニー株式会社 撮像装置、認証処理装置、撮像方法、認証処理方法およびプログラム
JP2017207942A (ja) * 2016-05-19 2017-11-24 株式会社リコー 画像処理装置、自己位置推定方法、及び、プログラム
JP2017537484A (ja) * 2015-09-11 2017-12-14 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 可動物体を検出し、追跡するシステム及び方法
JP2019086478A (ja) * 2017-11-10 2019-06-06 株式会社Subaru 移動体の位置計測システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607558B2 (ja) * 1987-11-18 1997-05-07 株式会社東芝 移動体位置検出装置
GB0802444D0 (en) 2008-02-09 2008-03-19 Trw Ltd Navigational device for a vehicle
CN108243619B (zh) * 2015-11-09 2020-06-23 三菱电机株式会社 投射光学设备和前照灯装置
KR102024525B1 (ko) * 2017-09-29 2019-11-04 주식회사 유진로봇 인공표식 인식 장치, 인공표식, 및 이동체
JP2019050007A (ja) 2018-11-01 2019-03-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 移動体の位置を判断する方法および装置、ならびにコンピュータ可読媒体

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06337938A (ja) * 1993-03-31 1994-12-06 Fujitsu Ltd 画像処理装置及び距離測定装置
JPH0989560A (ja) * 1995-09-28 1997-04-04 Oojisu Soken:Kk 構造物計測システム
JPH11160021A (ja) * 1997-11-27 1999-06-18 Nippon Telegr & Teleph Corp <Ntt> 広域3次元位置計測方法及び装置
JP2001264037A (ja) * 2000-03-22 2001-09-26 Nippon Telegr & Teleph Corp <Ntt> カメラキャリブレーション方法及び装置及びカメラキャリブレーションプログラムを格納した記憶媒体
JP2003329411A (ja) * 2002-05-14 2003-11-19 Matsushita Electric Ind Co Ltd カメラ校正装置
JP2006113645A (ja) * 2004-10-12 2006-04-27 Kajima Corp 移動軌跡解析方法
JP2007106578A (ja) * 2005-10-17 2007-04-26 Fujitsu Ltd コンテナの管理システム及びプログラム
JP2007324770A (ja) * 2006-05-30 2007-12-13 Kyocera Corp 撮像装置および撮像方法
JP2010133711A (ja) * 2008-12-02 2010-06-17 Sumitomo Heavy Ind Ltd 目標物の位置の時間変化計測方法及び計測装置
JP2017537484A (ja) * 2015-09-11 2017-12-14 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 可動物体を検出し、追跡するシステム及び方法
JP2017196319A (ja) * 2016-04-28 2017-11-02 ソニー株式会社 撮像装置、認証処理装置、撮像方法、認証処理方法およびプログラム
JP2017207942A (ja) * 2016-05-19 2017-11-24 株式会社リコー 画像処理装置、自己位置推定方法、及び、プログラム
JP2019086478A (ja) * 2017-11-10 2019-06-06 株式会社Subaru 移動体の位置計測システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7282934B1 (ja) 2022-01-24 2023-05-29 エヌ・ティ・ティ・インフラネット株式会社 精度向上方法、離隔距離取得方法、位置情報算出支援装置、位置情報算出支援プログラム
JP2023107292A (ja) * 2022-01-24 2023-08-03 エヌ・ティ・ティ・インフラネット株式会社 精度向上方法、離隔距離取得方法、位置情報算出支援装置、位置情報算出支援プログラム

Also Published As

Publication number Publication date
JP7006847B2 (ja) 2022-01-24
CN114127506A (zh) 2022-03-01
JPWO2021002001A1 (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
CN107328420B (zh) 定位方法和装置
JP5961945B2 (ja) 画像処理装置、その画像処理装置を有するプロジェクタ及びプロジェクタシステム、並びに、画像処理方法、そのプログラム、及び、そのプログラムを記録した記録媒体
US8204643B2 (en) Estimation device, estimation method and estimation program for position of mobile unit
US20100001991A1 (en) Apparatus and method of building map for mobile robot
CN107666546B (zh) 图像拍摄对位方法和系统
US9591228B2 (en) Method for the localization of a tool in a workplace, corresponding system and computer program product
US10277884B2 (en) Method and apparatus for acquiring three-dimensional image, and computer readable recording medium
JP2018207373A (ja) 投写型表示装置の較正装置、較正方法、プログラム、投写型表示装置、及び投写型表示システム
JP2018051728A (ja) 対象物の三次元位置を検出する検出方法および検出装置
KR101842141B1 (ko) 3차원 스캐닝 장치 및 방법
JP2009052924A (ja) 移動体システム
JP7006847B2 (ja) 移動体測位装置および移動体測位システム
JP6088864B2 (ja) キャリブレーションシステム、およびキャリブレーション方法
CA2818164A1 (en) Spherical pin-hole model for use with camera lens image data
JP4702050B2 (ja) 画像投影装置、画像投影装置の投影画像補正方法及びプログラム
CA2988843A1 (en) Traffic signal detection device and traffic signal detection method
Goronzy et al. QRPos: Indoor positioning system for self-balancing robots based on QR codes
KR101828376B1 (ko) 휴대용 3차원 문서 스캐닝 장치 및 방법
KR20100081881A (ko) 데이터 매칭 장치, 데이터 매칭 방법, 및 이를 이용한 이동로봇
JP6582405B2 (ja) 組立装置、ロボットハンド位置修正方法、およびロボットハンド位置修正プログラム
KR20200030932A (ko) 이종 카메라를 이용한 마커 위치 추적장치 및 이를 이용한 마커 위치 추적방법
WO2018142580A1 (ja) 表示制御装置および表示制御方法
JP2015142157A (ja) 映像投影システム、投影制御装置、投影制御用プログラム
KR102070540B1 (ko) 그레이 패턴 및 위상 시프트 패턴을 이용한 3차원 스캐닝 방법 및 그 시스템
JP2019012915A (ja) 画像処理装置、画像変換方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936287

Country of ref document: EP

Kind code of ref document: A1