WO2021001916A1 - 荷電粒子ビームシステム - Google Patents

荷電粒子ビームシステム Download PDF

Info

Publication number
WO2021001916A1
WO2021001916A1 PCT/JP2019/026230 JP2019026230W WO2021001916A1 WO 2021001916 A1 WO2021001916 A1 WO 2021001916A1 JP 2019026230 W JP2019026230 W JP 2019026230W WO 2021001916 A1 WO2021001916 A1 WO 2021001916A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
charged particle
particle beam
aperture
plate
Prior art date
Application number
PCT/JP2019/026230
Other languages
English (en)
French (fr)
Inventor
直己 秋元
土肥 隆
譲 望月
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2021529590A priority Critical patent/JP7182003B2/ja
Priority to PCT/JP2019/026230 priority patent/WO2021001916A1/ja
Priority to US17/595,742 priority patent/US11961704B2/en
Publication of WO2021001916A1 publication Critical patent/WO2021001916A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/057Energy or mass filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24405Faraday cages

Definitions

  • the present disclosure relates to a charged particle beam system, and particularly to a high-resolution scanning electron microscope (SEM) that measures, inspects, observes, and analyzes semiconductor devices.
  • SEM scanning electron microscope
  • a diaphragm plate having a diaphragm hole on the path of an electron beam emitted from an electron source is generally used for the purpose of adjusting the amount of electron beam, limiting passage, suppressing aberration, or molding a beam shape.
  • an optical element that exerts such a desired effect on an electron beam is referred to as an "aperture").
  • the acceleration voltage of the electron beam irradiated on the diaphragm plate is high, the electron beam may pass through the diaphragm plate (Patent Document 1). Further, it is known that the electron beam irradiated to the diaphragm plate is scattered at the edge of the diaphragm hole (Patent Document 2).
  • the transmitted electrons and scattered electrons generated by irradiating the aperture plate and the vicinity of the aperture hole with the electron beam show different aspects depending on the acceleration voltage of the electron beam. That is, since the state of flare generated differs depending on the acceleration voltage of the electron beam used, an appropriate method capable of minimizing the influence of the flare is required for each acceleration voltage.
  • Patent Documents 1 to 3 there is no disclosure of a solution that can appropriately deal with the problem that flares having different states occur for each acceleration voltage.
  • the following is a charged particle beam system provided with a computer system for controlling the acceleration voltage of the charged particle beam emitted from the charged particle source, and is an aperture acting on the charged particle beam.
  • the computer system includes a first aperture group including the first and second apertures having different thicknesses and a first aperture switching mechanism for switching the apertures in the first aperture group, and the computer system has an acceleration voltage.
  • the influence of flare whose state differs depending on the acceleration voltage of the electron beam can be minimized, so that the resolution deterioration of the SEM image due to flare can be suppressed.
  • Schematic configuration diagram of the SEM type length measurement system (charged particle beam system) according to the first embodiment. Relationship diagram between the number of electrons passing through the diaphragm plate, the acceleration voltage of the electron beam, and the thickness of the diaphragm plate Relationship diagram between the number of electrons scattered on the side wall of the aperture hole, the acceleration voltage of the electron beam, and the thickness of the aperture plate Relationship diagram of acceleration voltage, aperture plate thickness, total number of transmitted electrons and scattered electrons Schematic diagram of the electron beam irradiated to the beam adjustment diaphragm plate The figure which showed the calculation result of the current amount generated by transmission electrons and the current amount generated by scattered electrons, and the total amount of transmitted electrons and scattered electrons with respect to the plate thickness of the drawing plate.
  • the figure which showed one Embodiment concerning the beam adjustment diaphragm unit Schematic configuration diagram of another SEM type length measurement system (charged particle beam system) according to the first embodiment. Flowchart for creating a diaphragm selection table Optimal plate thickness beam adjustment Flow chart for determining aperture plate and performing aperture hole positioning adjustment The figure which showed another embodiment concerning the beam adjustment diaphragm unit. Schematic configuration diagram of the SEM type length measurement system (charged particle beam system) according to the second embodiment. The figure which showed one Embodiment concerning the beam cut diaphragm unit The figure which showed the relationship between the beam adjustment diaphragm plate, the beam cut diaphragm plate, and an electron beam.
  • Flowchart for creating a beam cut aperture selection table Flowchart for determining the optimum beam cut aperture hole diameter and performing aperture hole positioning adjustment Flowchart when using the diaphragm plate selection table and the beam cut diaphragm hole selection table
  • Detailed view around the beam adjustment diaphragm and energy filter Flow chart when using the diaphragm plate selection table, beam cut diaphragm hole selection table, and energy filter applied voltage table The figure which showed an example of the aperture plate selection table
  • the figure which showed the other example of the aperture plate selection table The figure which showed an example of the beam cut aperture hole selection table
  • an SEM type length measuring system (also referred to as a length measuring SEM) that measures a pattern on a semiconductor wafer using an electron beam
  • Scanning Electron Microscope scanning electron microscope
  • Other examples of the charged particle beam system include a scanning ion microscope for observing a sample, a focused ion beam system for processing a sample, and the like.
  • the scanning electron microscope includes an inspection device using a scanning electron microscope, a review device, a general-purpose scanning electron microscope, a sample processing device equipped with a scanning electron microscope, a sample analysis device, and the like. The present disclosure is also applicable to these devices. Further, in the examples described below, the scanning electron microscope includes a system in which the scanning electron microscopes are connected by a network and a composite device in which a plurality of the scanning electron microscopes are combined.
  • sample will be described as an example of a semiconductor wafer on which a pattern is formed, but the present invention is not limited to this, and may be a metal, ceramics, biological sample, or the like.
  • semiconductor devices have become finer and three-dimensional in structure.
  • the integrated circuit technology of logic ICs has been miniaturized to a line width of 10 nm or less due to the progress of EUV exposure technology, and especially for SEMs for measuring the dimensions of fine patterns formed on wafers such as semiconductors, the measurement is higher. Long accuracy and reduction of machine difference between devices are required.
  • memory devices such as DRAM and NAND are becoming more three-dimensional in structure, and there is an increasing need for measurement of deep hole / deep groove patterns and the like.
  • the acceleration voltage of the electron beam is set to several 100V to several tens of kV in order to meet various needs. It is necessary to have the ability to obtain a high-resolution SEM image by changing it in a wide range. At the same time, there is a demand for an SEM that has little change in device performance over time and machine differences between devices.
  • FIG. 1 shows a schematic configuration of the SEM type length measuring system (charged particle beam system) according to the first embodiment.
  • the SEM type length measuring system 100 is composed of a beam irradiation system (also referred to as an imaging tool) 101 and a computer system 133.
  • the computer system 133 includes an overall control unit 102, a signal processing unit 103, an input / output unit 104, and a storage unit 105.
  • the electrons emitted from the electron gun 106 in the beam irradiation system 101 are accelerated by an acceleration electrode (not shown) and are irradiated to the sample 112 (for example, a wafer on which a pattern is formed) as a primary electron beam 107 (also referred to as an electron beam). ..
  • the beam irradiation system 101 includes a first focusing lens 108 that focuses the electron beam 107, and a second focusing lens 109 that further focuses the electron beam that has passed through the focusing lens 108.
  • the beam irradiation system 101 further includes a deflector 110 that deflects the electron beam 107, and an objective lens 111 that controls the focusing point (focus) of the electron beam 107.
  • the emitted electrons 114 such as secondary electrons (Secondary Electron: SE) and backscattered electrons (Backscattered Electron: BSE) emitted from the sample by irradiation of the electron beam 107 are the deflector 115 (first two) for deflecting the emitted electrons. It is guided in a predetermined direction by the secondary electron aligner).
  • the deflector 115 is a so-called Viennese filter that selectively deflects emitted electrons 114 in a predetermined direction without deflecting the electron beam. Further, the acceleration voltage of the electron beam 107 can be switched and used in a wide range according to the target sample 112.
  • the detection throttle 116 can discriminate the emitted electrons 114 in an angle.
  • the emitted electrons 114 that have passed through the detection aperture 116 are guided by the deflector 123 (second secondary electron aligner) to the detector 119 arranged off-axis.
  • the detector 119 has a detection surface at a position where the emitted electrons 114 collide, and for example, the emitted electrons incident on the detection surface are converted into an optical signal by a scintillator provided on the detection surface. This optical signal is amplified by the photomultiplier and converted into an electric signal, which becomes the output of the detector.
  • the energy filter 122 provided immediately before the detector 119 can discriminate the emitted electrons 114 having a passing orbit near the optical axis.
  • the detector 121 detects the tertiary electrons 120 (secondary electrons of the emitted electrons 114) generated by the emitted electrons 114 colliding with the wall surface of the detection throttle 116.
  • the beam adjusting diaphragm plate 130 and the electron beam 107 which have a function of partially restricting the passage of the electron beam and molding the electron beam, are deflected off the optical axis.
  • a blanking deflector 131 is provided to limit the arrival of the electron beam at the sample 112.
  • the beam adjusting diaphragm plate 130 is provided with a diaphragm hole 134 through which the electron beam 107 passes.
  • the Faraday cup 132 cuts off the electron beam 107 deflected by the blanking deflector 131, and measures the current flowing into the Faraday cup 132 to obtain the number of electrons incident on the Faraday cup 132 per unit time. it can. From the signal output of the Faraday cup 132, it is possible to monitor the probe current of the electron beam 107 that irradiates the sample.
  • the optical element provided in the scanning electron microscope as described above is controlled by the overall control unit 102.
  • the signal processing unit 103 generates an SEM image based on the outputs of the detectors 119 and 121.
  • the signal processing unit 103 generates image data by storing a detection signal in a frame memory or the like in synchronization with scanning of a scanning deflector (not shown).
  • the signal profile (one-dimensional information) and the SEM image (two-dimensional information) are generated by storing the detection signal at a position corresponding to the scanning position of the frame memory.
  • the beam adjusting diaphragm plate is made of a metal material having a large number of atoms in order to block the electron beam irradiated to the diaphragm plate portion other than the diaphragm hole.
  • a diaphragm plate formed by a semiconductor process using silicon (Si) as a base material and coated with a heavy metal coating film may be used as a beam adjustment diaphragm plate.
  • the base material part of the diaphragm plate (the diaphragm plate portion other than the diaphragm hole) is transmitted. It is the generation of electrons.
  • the electrons that have passed through the base material portion of the diaphragm plate have lower energy than the electrons that pass through the diaphragm holes, and are emitted from the lower surface of the diaphragm plate in random directions.
  • the number of electrons transmitted through the base material portion of the diaphragm plate increases as the thickness of the diaphragm plate decreases, and increases as the acceleration voltage of the electron beam increases.
  • the number of electrons scattered on the side wall of the diaphragm hole increases as the thickness of the diaphragm plate increases, that is, as the height of the side wall of the diaphragm hole increases, and as the acceleration voltage of the electron beam increases.
  • the electrons that have passed through the base material portion of the diaphragm plate and the electrons that are scattered in the side wall portion of the diaphragm hole cause the flare described above and cause deterioration of the resolution of the SEM image. Further, when the electrons transmitted through the base material portion of the diaphragm plate reach the Faraday cup, there is a risk of causing erroneous detection of the probe current value of the electron beam.
  • the inventors have analyzed in detail the relationship between the number of transmitted electrons and the number of scattered electrons, the acceleration voltage of the electron beam, and the thickness of the diaphragm plate, and as a result, as shown in FIG. 4, each acceleration voltage.
  • the total amount of electrons transmitted through the beam-adjusting aperture plate and the number of electrons scattered on the side wall of the aperture hole of the beam-adjusting aperture plate is the minimum plate thickness (for example, in the figure). It was newly found that t 1 , t 2 , t 3, etc. in 4 exist. In addition, from the relationship shown in FIG.
  • the inventors also increased the thickness of the beam adjusting diaphragm plate when the acceleration voltage of the electron beam was increased, and decreased the acceleration voltage of the electron beam. It was newly found that the total amount of transmitted electrons and scattered electrons can be minimized by reducing the thickness of the beam adjustment diaphragm plate as well.
  • FIG. 5 shows a schematic view of the electron beam 107 irradiated on the beam adjusting diaphragm plate 130.
  • the electron beam 107 is focused by the first focusing lens 108 at a point between the first focusing lens 108 and the diaphragm plate 130 (above the diaphragm plate 130).
  • this focusing point is also referred to as a crossover.
  • the electron beam 107 focused on the crossover (focusing point) 502 spreads at the emission angle ⁇ and irradiates the beam adjusting diaphragm plate 130, and the distance from the crossover 502 to the upper surface of the diaphragm is h.
  • the plate thickness (thickness) of the plate 130 is t, the radius of the aperture hole 134 is r, and the maximum radius of the electron beam irradiated on the upper surface of the beam adjusting aperture plate 130 is r'.
  • the current amount Is of the electron beam (electron beam scattered in the side wall portion of the aperture hole 134) irradiated to the side wall portion of the aperture hole 134 of the aperture plate 130 is the radiation angle current density J, the angle shown in FIG. It can be expressed as in Equation 1 using ⁇ and ⁇ .
  • the electron beam irradiated on the upper surface of the diaphragm plate 130 is exponentially attenuated with respect to the plate thickness t inside the diaphragm plate 130, and is emitted as transmitted electrons from the lower surface of the diaphragm plate 130.
  • the current amount It of the electron beam transmitted through the diaphragm plate 130 can be expressed as in Equation 5 by using the current value Iu of the electron beam irradiated on the upper surface of the diaphragm plate 130 and the decay constant ⁇ . it can.
  • the decay constant ⁇ is a parameter determined by the material of the diaphragm plate 130 and the acceleration voltage of the electron beam.
  • FIG. 6 is an example of a graph in which the optimum plate thickness t of the beam adjusting diaphragm plate 130 is obtained by using the above relational expression.
  • the calculation result of is shown. From the calculation result of FIG.
  • the aperture plate thickness that minimizes the total amount of the current amount generated by the transmitted electrons and the current amount generated by the scattered electrons. It can be seen that the optimum thickness of the diaphragm plate under this condition is about 7 ⁇ m.
  • FIG. 7 shows an embodiment relating to the beam adjustment diaphragm plate.
  • the beam adjustment diaphragm unit 700 shown in FIG. 7 is composed of an XY 2-axis electric stage on which a plurality of diaphragm plates having different thicknesses are mounted.
  • a Y stage 702 is attached to the stage base 703.
  • an X stage 501 that operates in a direction perpendicular to the Y stage is mounted.
  • three diaphragm plates 704, 705, and 706 having three plate thicknesses t 1 , t 2 , and t 3 are mounted via a diaphragm plate base 709.
  • the diaphragm plates 704 to 706 are each provided with a plurality of diaphragm holes having different hole diameters.
  • the beam adjusting diaphragm unit 700 can move the diaphragm plates 704 to 706 to arbitrary positions in the X direction 707 and the Y direction 708 by the X stage 701 and the Y stage 702. Further, the diaphragm base 709, the X stage 701, the Y stage 702, and the stage base 703 are throttled in order to secure a path for the electron beam 107 passing through the diaphragm holes of the diaphragm plates 704 to 706 to reach the sample 112. It is configured so that a space is created under the plates 704 to 706 (not shown). Further, the X stage 701 and the Y stage 702 are operated by an actuator for driving the stage (not shown) and an encoder for position monitoring (not shown).
  • FIG. 8 shows a schematic configuration of an SEM type length measuring system (charged particle beam system) 800 equipped with the beam adjusting diaphragm unit 700 shown in FIG. Since each component other than the beam adjusting diaphragm unit 700 in the charged particle beam system 800 is the same as that in FIG. 1, detailed description here will be omitted.
  • SEM type length measuring system charged particle beam system
  • FIG. 9 shows a flowchart for creating a diaphragm plate selection table in the charged particle beam system 800 of FIG.
  • the computer system 133 calculates in advance the optimum thickness of the diaphragm plate in the acceleration voltage range of the usable electron beam 107 by using the above-mentioned formulas 1 to 5 (901). From the calculation result, the computer system 133 creates a diaphragm plate selection table 904 showing the optimum correspondence between the acceleration voltage and each diaphragm plate (902), and stores the diaphragm plate selection table 904 in the storage unit 105 ( 903). As described in FIG. 4, the diaphragm plate selection table 904 also increases the plate thickness of the beam adjusting diaphragm plate when the acceleration voltage of the electron beam is increased, and decreases the acceleration voltage of the electron beam.
  • Another computer system executes a step of calculating the optimum thickness of the diaphragm plate (901) and a step of creating the diaphragm plate selection table 904 (902), and the computer system 133 determines.
  • the aperture plate selection table 904 may be stored in the storage unit 105 (903).
  • FIG. 21 is a diagram showing an example of a diaphragm plate selection table.
  • the diaphragm plate selection table 904 is configured so that the diaphragm plates having the optimum plate thicknesses of t 1 , t 2 , and t 3 correspond to the three types of acceleration voltages 25, 35, and 45 [kV], respectively. ..
  • computer system 133 if the acceleration voltage from the input section 104 45 [kV] is inputted (set) to select a diaphragm plate having a thickness t 3.
  • FIG. 22 is a diagram showing another example diaphragm plate selection table 905.
  • Stop plate selection table 905 the diaphragm plate having a thickness t 1 is the time less than the acceleration voltage is 30 [kV] (V ⁇ 30 [kV]), the acceleration voltage is less than 30 [kV] or more 40 [kV] (30 ⁇ When V ⁇ 40 [kV]), a diaphragm plate with a plate thickness of t 2 corresponds , and when the acceleration voltage is 40 [kV] or more (V ⁇ 40 [kV]), a diaphragm plate with a plate thickness of t 3 corresponds to each. It is configured as follows. For example, computer system 133, if the acceleration voltage from the input section 104 40 [kV] is inputted (set) to select a diaphragm plate having a thickness t 3.
  • FIG. 10 shows a flowchart for determining a beam adjusting diaphragm plate having an optimum plate thickness and performing positioning adjustment of a diaphragm hole in the charged particle beam system 800 of FIG.
  • the computer system 133 refers to the aperture plate selection table stored in the storage unit 105 (1002) according to the acceleration voltage set (changed) by the input / output unit 104 (for example, from the graphical user interface) (1001). , The drawing plate having the optimum thickness is determined from the drawing plates 704 to 706 (1003).
  • the process executed in the steps 1003 to 1003 is a thick beam adjustment diaphragm when the computer system 133 is changed in the direction of increasing the acceleration voltage with respect to the current value.
  • the control is performed so as to select a beam adjusting diaphragm plate having a thin plate thickness.
  • the computer system 133 changes the thickness of the drawing plate from the thin drawing plate to the thick drawing plate (or the thick drawing plate to the thin drawing plate according to the increase or decrease of the input (set) acceleration voltage. In other words, it controls to select the board.
  • the computer system 133 controls the X stage 701 and the Y stage 702 in the beam adjustment diaphragm unit 700, and adjusts the positioning of the desired diaphragm hole in the determined diaphragm plate (1004). After adjusting the positioning of the aperture hole, check whether the optical axis deviation is within the specification (1005), end the flow if it is within the specification, and readjust the positioning of the aperture hole if it is outside the specification (1005). 1004).
  • FIG. 11 shows another embodiment relating to the beam adjustment diaphragm plate.
  • the beam adjusting diaphragm unit 1100 shown in FIG. 11 has a structure in which a disk-shaped (disk-shaped) beam adjusting diaphragm 1101 having a plurality of diaphragm holes 1107 is connected to the motor 1103 via a rotating shaft 1102. . Further, the motor 1103 is attached to the r-axis electric stage 1104.
  • the disk-shaped beam adjusting diaphragm 1101 has a plurality of regions having different thicknesses (for example, thicknesses t1, t2, t3) for each predetermined rotation angle in the ⁇ direction 1106, and each region has a different thickness.
  • a plurality of throttle holes 1107 having different hole diameters are formed in the hole.
  • the disk-shaped beam adjusting diaphragm 1101 can be rotated in the ⁇ direction 1106 by the motor 1103, and the r stage 1104 is in the r direction by an actuator (not shown) for driving the stage and an encoder (not shown) for position monitoring. Operates on 1105.
  • the computer system 133 controls the motor 1103 and r stage 1104 in the beam adjustment diaphragm unit 1100 to perform the positioning adjustment of the diaphragm hole determined with respect to the optical axis 1108 ( 1004), the optical axis deviation is confirmed (1005).
  • the influence of flare whose state is different for each acceleration voltage is suppressed and the voltage is high at each acceleration voltage. It becomes possible to acquire a resolution image (SEM image).
  • the amount of heat ⁇ Q generated per unit time in the beam adjustment diaphragm plate is expressed as shown in Equation 6 assuming that the amount of current of the electron beam irradiated on the diaphragm plate is I. Will be done.
  • FIG. 12 shows a schematic configuration of the SEM type length measuring system (charged particle beam system) according to the second embodiment.
  • the SEM type length measuring system 1200 shown in FIG. 12 is newly a part of the electron beam 107 above the beam adjusting aperture plate unit 1100 of FIG. 11 described above.
  • a beam cut aperture unit 1300 is arranged to block the light.
  • FIG. 12 shows an enlarged view of the components of the beam adjusting diaphragm plate 130 and the beam cut diaphragm 1101.
  • FIG. 13 shows a schematic structure of the beam cut diaphragm unit 1300.
  • the beam-cut diaphragm unit 1300 shown in FIG. 13 has a structure in which a disk-shaped (disc-shaped) beam-cut diaphragm plate 1301 having a plurality of throttle holes 1307 is connected to a motor 1303 via a rotation shaft 1302. Further, the motor 1303 is attached to the r-axis electric stage 1304.
  • the disk-shaped beam-formed cut diaphragm plate 1301 has a uniform plate thickness, and a plurality of diaphragm holes 1307 having different hole diameters are formed.
  • the disk-shaped beam-cut drawing plate 1301 can be rotated in the ⁇ direction 1306 by the motor 1303, and the r stage 1304 is in the r direction by an actuator (not shown) for driving the stage and an encoder (not shown) for position monitoring. Operates on 1305.
  • the shape of each of the plurality of aperture holes 1307 is circular.
  • FIG. 14 is a diagram showing the relationship between the beam adjustment diaphragm 1101 of the beam adjustment diaphragm unit 1100, the mesh cut diaphragm 1301 of the beam cut diaphragm unit 1300, and the electron beam 107.
  • the electron beam 107 focused on the predetermined crossover (focusing point) 1401 by the first focusing lens 108 spreads at the emission angle ⁇ and travels toward the sample 112.
  • the aperture hole 1307 and the aperture are drawn so that the hole diameter ⁇ 2 of the aperture hole 1307 of the aperture plate 1301 is larger than the hole diameter ⁇ 3 of the aperture hole 1107 of the aperture plate 1101 (so that ⁇ 2 > ⁇ 3 ).
  • a part of the electron beam 107 can be cut (blocked) and the amount of current of the electron beam 107 irradiated on the upper surface of the diaphragm plate 1101 can be reduced. That is, in the configuration without the beam cut diaphragm plate 1301, all the electron beams that do not pass through the diaphragm hole 1107 need to be cut by the beam adjustment diaphragm plate 1101, so that the thermal energy change (current amount) due to the change in the acceleration voltage of the electron beam.
  • the beam adjusting diaphragm plate 1101 expands and contracts remarkably.
  • the newly added beam cut diaphragm plate 1301 cuts (blocks) the electron beam (the electron beam irradiated to the region other than the diaphragm hole 1107) on the upper surface of the beam adjustment diaphragm 1101 as much as possible. By doing so, it is possible to reduce the influence of the change in thermal energy due to the change in the acceleration voltage of the electron beam as much as possible, and to reduce the expansion and contraction of the beam adjusting diaphragm plate 1101.
  • the upper surface of the diaphragm plate 1101 is irradiated by cutting the electron beam irradiated to the region (upper surface of the beam adjustment diaphragm 1101) other than the diaphragm hole 1107 of the beam adjusting diaphragm 1101 as much as possible.
  • the amount of current (heat energy) of the electron beam 107 can be reduced as much as possible.
  • FIG. 15 shows a flowchart for creating a beam cut aperture hole selection table in the SEM type length measurement system (charged particle beam system) 1200 of FIG. Computer system 133, in advance, using Equation 7 described above, with respect to pore diameter phi 2 of the throttle hole 1107 of the available beam regulating orifice plate 1101, the optimum pore size phi 3 of throttle hole 1307 of the beam cut stop plate 1301 Is calculated (1501).
  • Computer system 133 is, from the calculation results, to create a beam cut stop holes selection table 1504 indicating the optimum correspondence between the pore size of phi 2 and hole diameter phi 3 (1502), the beam cut stop holes selection table 1504 storing unit Store at 105 (1503).
  • the cut drawing hole selection table 1504 may be stored in the storage unit 105 (1503).
  • FIG. 23 is a diagram showing an example of the beam cut aperture hole selection table 1504.
  • the beam cut aperture holes 1307 having the optimum hole diameters of X, Y, and Z correspond to the hole diameters A, B, and C of the three types of beam adjustment aperture holes 1107, respectively. It is configured.
  • the computer system 133 selects the beam cut narrowing hole 1307 having a hole diameter X when the beam adjusting narrowing hole 1107 having a hole diameter A is input (set) from the input / output unit 104.
  • FIG. 16 shows a flowchart for determining the optimum beam cut aperture hole diameter and performing aperture hole positioning adjustment in the SEM type length measurement system (charged particle beam system) 1200 of FIG.
  • Computer system 133 is set by the output unit 104 (selected) beam adjusted throttle hole against pore diameter phi 2 (1601), with reference to the beam cut stop holes selection table 1504 stored in the storage unit 105 (1602 ), to determine the optimal pore size phi 3 of throttle hole among the plurality of throttle hole 1307 formed in the beam cut stop plate 1301 (1603).
  • the computer system 133 controls the motor 1103, r stage 1104, motor 1303, and r stage 1304 in the beam adjustment diaphragm unit 1100 and the beam cut diaphragm unit 1300, and positions the set beam adjustment diaphragm hole and the determined beam cut diaphragm hole. Make adjustments (1604). After adjusting the positioning of both aperture holes, check whether the optical axis deviation is within the specifications (1605), end the flow if it is within the specifications, and readjust the positioning of the aperture holes if it is not within the specifications. (1604).
  • the beam-cut diaphragm hole selection table As another embodiment of the beam-cut diaphragm hole selection table, a table is prepared in advance so that the optimum beam-cut diaphragm hole diameter is determined for the setting of the optical conditions of the SEM type length measurement system 1200. It is possible to leave it. For example, with respect to the setting (change) of the acceleration voltage of the electron beam 107, the beam cut aperture hole such that the current amount (thermal energy) of the electron beam irradiated on the upper wall surface of the beam adjusting diaphragm 1101 is always constant. If the hole diameter is calculated in advance and stored in the storage unit 105 as the beam cut aperture hole selection table 1700, the beam adjustment aperture plate 1101 can be expanded even if the acceleration voltage setting of the electron beam 107 is changed. It is possible to reduce deformation such as shrinkage.
  • the beam cut aperture hole selection table 1700 can be created by the same flowchart as in FIG.
  • FIG. 17 shows a flowchart when the diaphragm plate selection table 1110 and the beam cut diaphragm hole selection table 1700 are used in the SEM type length measurement system (charged particle beam system) 1200 of FIG.
  • the computer system 133 refers to the diaphragm thickness selection table 1110 stored in the storage unit 105 (1702) according to the acceleration voltage set (changed) by the input / output unit 104, and a plurality of diaphragm plates 1101 are used.
  • a diaphragm hole having an optimum plate thickness is determined from the individually formed diaphragm holes 1107 (1703).
  • the computer system 133 refers to the beam cut aperture selection table 1700 stored in the storage unit 105 according to the acceleration voltage of the electron beam set (changed) by the input / output unit 104 (1704), and refers to the beam. to determine the optimal pore size phi 3 of throttle hole among the plurality of throttle hole 1307 formed in the cut stop plate 1301 (1705). Since the subsequent steps are the same as those in FIG. 16, detailed description here will be omitted.
  • the acceleration voltage of the electron beam is changed (switched)
  • the number of electrons transmitted through the beam adjusting diaphragm plate and the beam adjusting diaphragm are used by using a beam adjusting diaphragm plate having an optimum plate thickness in combination with the acceleration voltage of the desired electron beam. It was shown that the total amount of electrons scattered on the side wall of the aperture hole of the plate can be minimized. However, in the disclosure according to the first embodiment, since these transmitted electrons and scattered electrons cannot be completely excluded, the influence of flare on the resolution of the SEM image cannot be eliminated.
  • an energy filter 1801 for cutting transmitted electrons and scattered electrons is arranged below the beam adjusting diaphragm plate.
  • the SEM type length measuring system (charged particle beam system) 1800 of FIG. 18 is an example in which the energy filter 1801 is added to the SEM type length measuring system shown in FIG.
  • FIG. 19 shows a detailed view of the periphery of the beam adjusting diaphragm plate 1101 and the energy filter 1801.
  • the energy filter 1801 is formed in a grid pattern by a non-magnetic metal wire such as copper. Further, an arbitrary voltage can be applied to the energy filter 1801 by the power supply 1903.
  • the electrons 1901 that have passed through the predetermined diaphragm hole 1107 in the beam-adjusting diaphragm plate 1101 and the electrons 1902 that have been scattered in the side wall of the diaphragm hole 1107 of the beam-adjusting diaphragm plate 101 have the energy of the electrons themselves in the process of transmission and scattering.
  • this energy difference is used to discriminate between the main beam and transmitted / scattered electrons. That is, the computer system 133 applies an appropriate negative voltage to the energy filter 1801 and controls so that only transmitted / scattered electrons having an energy lower than that of the main beam electrons are repelled upward.
  • the optimum negative voltage to be applied to the energy filter 1801 is obtained by calculation or experiment in advance according to the acceleration voltage of the electron beam to be used, and the optimum combination of the acceleration voltage and the applied voltage is used as the energy filter applied voltage table 2000. It can be stored in the storage unit 105 in advance.
  • FIG. 24 is a diagram showing an example of the energy filter applied voltage table 2000.
  • computer system 133 if the acceleration voltage from the input section 104 45 [kV] is inputted (set), selects an energy filter voltage applied thickness V 3.
  • FIG. 20 shows a flowchart when the diaphragm plate selection table 1110, the beam cut diaphragm hole selection table 1700, and the energy filter applied voltage table 2000 are used in the SEM type length measurement system (charged particle beam system) 1800 of FIG. Since the flow of steps 1701 to 1707 is the same as that of FIG. 18, detailed description here will be omitted.
  • the energy filter stored in the storage unit 105 is stored according to the acceleration voltage set (changed) by the input / output unit 104.
  • the applied voltage table 2000 (2001) the optimum applied voltage for discriminating only transmitted / scattered electrons is determined (2002).
  • the electron beam is changed in a wide acceleration voltage range of several hundreds of volts to several tens of kVs. Even in this case, the resolution of the image (SEM image) at each acceleration voltage can be further increased. Further, according to the third embodiment, since it is possible to suppress the drift of the beam adjusting diaphragm plate with time, it is possible to realize a length-measuring SEM with little change in device performance with time and machine difference between devices.
  • 100 SEM type length measurement system (charged particle beam system), 101 ... beam irradiation system (imaging tool), 102 ... overall control unit, 103 ... signal processing unit, 104 ... input / output unit, 105 ... storage unit, 106 ... electron Gun, 107 ... electron beam, 108 ... first focusing lens, 109 ... second focusing lens, 110 ... deflector, 111 ... objective lens, 112 ... sample, 113 ... stage, 114 ... emitted electrons, 115 ...
  • deflector 116 ... Detection diaphragm 119... detector, 120..., 121... detector, 122... energy filter, 123... deflector, 130... beam adjustment diaphragm, 131... blanking deflector, 132... Faraday cup 133... computer system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

荷電粒子源から放出された荷電粒子ビームの加速電圧を制御するコンピュータシステムを備えた荷電粒子ビームシステムであって、荷電粒子ビームに作用する絞りであって、厚さが異なる第1及び第2の絞りを含む第1の絞り群と、第1の絞り群における絞りを切り替える第1の絞り切り替え機構と、を備え、コンピュータシステムは、加速電圧の増減に応じて第1の絞りから第2の絞りに切り替えるように、第1の絞り切り替え機構を制御する。

Description

荷電粒子ビームシステム
 本開示は、荷電粒子ビームシステムに関し、特に半導体デバイスの計測・検査・観察・分析を行う高分解能の走査型電子顕微鏡(Scanning Electron Microscope:SEM)に関する。
 SEMでは一般的に、電子ビームの量の調整、通過制限、収差の抑制、或いは、ビーム形状の成型等の目的で、電子源から放出された電子ビームの経路上に、絞り孔を有する絞り板を配置する(以下、電子ビームに対して、このような目的の作用を及ぼす光学要素を「絞り」と称する)。この際、絞り板上へ照射される電子ビームの加速電圧が高いと、電子ビームが絞り板を透過してしまう場合がある(特許文献1)。また、絞り板へ照射された電子ビームが、絞り孔のエッジで散乱される現象が知られている(特許文献2)。これらの透過電子(ビーム)や散乱電子(ビーム)は、絞り孔を通過した電子ビーム(以下「メインビーム」とも称する)とは異なるエネルギーと角度分布を持つため、メインビームの電子軌道と異なる軌道で試料上に収束されるといった現象が発生する(以下、当該現象を「フレア」とも称する)。このフレアは、SEM像の分解能を劣化させる原因となる。
特開2011-243540号公報 特開平6-5499号公報 特開平6-163371号公報
 絞り板および絞り孔近傍へ電子ビームが照射されることによって生じる透過電子や散乱電子は、電子ビームの加速電圧によって異なる態様を示す。即ち、使用する電子ビームの加速電圧に応じて発生するフレアの状態も異なってくるため、加速電圧毎に当該フレアの影響を最小化できる適切な手法が必要となる。しかしながら、特許文献1乃至3を含む従来技術においては、この加速電圧毎に状態が異なるフレアが発生するという課題に対して、適切に対処できる解決手段は開示されていない。
 上記課題の解決手段の一態様として、以下に、荷電粒子源から放出された荷電粒子ビームの加速電圧を制御するコンピュータシステムを備えた荷電粒子ビームシステムであって、荷電粒子ビームに作用する絞りであって、厚さが異なる第1及び第2の絞りを含む第1の絞り群と、第1の絞り群における絞りを切り替える第1の絞り切り替え機構と、を備え、コンピュータシステムは、加速電圧の増減に応じて第1の絞りから第2の絞りに切り替えるように、第1の絞り切り替え機構を制御する荷電粒子ビームシステムを提案する。
 上記方法または構成によれば、電子ビームの加速電圧毎に状態が異なるフレアの影響を最小化することができるため、フレアによるSEM像の分解能劣化を抑制することが可能である。
実施例1に係るSEM式測長システム(荷電粒子ビームシステム)の概略構成図 絞り板を透過する電子数と電子ビームの加速電圧及び絞り板の板厚との関係図 絞り孔の側壁部で散乱する電子数と電子ビームの加速電圧及び絞り板の板厚との関係図 加速電圧、絞り板の板厚、透過電子と散乱電子の総数の関係図 ビーム調整絞り板に照射される電子ビームの模式図 絞り板の板厚に対する透過電子により生じる電流量と散乱電子により生じる電流量および透過電子と散乱電子の総量の計算結果を示した図 ビーム調整絞り板ユニットに係る一実施態様を示した図 実施例1に係る別のSEM式測長システム(荷電粒子ビームシステム)の概略構成図 絞り板選択テーブルを作成するためのフローチャート 最適な板厚のビーム調整絞り板の決定および絞り孔の位置決め調整を実行するためのフローチャート ビーム調整絞り板ユニットに係る別の実施態様を示した図 実施例2に係るSEM式測長システム(荷電粒子ビームシステム)の概略構成図 ビームカット絞りユニットに係る一実施態様を示した図 ビーム調整絞り板とビームカット絞り板と電子ビームとの関係を示した図 ビームカット絞り孔選択テーブルを作成するためのフローチャート 最適なビームカット絞り孔の孔径の決定および絞り孔の位置決め調整を実行するためのフローチャート 絞り板選択テーブルおよびビームカット絞り孔選択テーブルを使用した場合におけるフローチャート 実施例3に係るSEM式測長システム(荷電粒子ビームシステム)の概略構成図 ビーム調整絞り板とエネルギーフィルタの周辺の詳細図 絞り板選択テーブル、ビームカット絞り孔選択テーブルおよびエネルギーフィルタ印加電圧テーブルを使用した場合におけるフローチャート 絞り板選択テーブルの一例を示した図 絞り板選択テーブルの他の例を示した図 ビームカット絞り孔選択テーブルの一例を示した図 エネルギーフィルタ印加電圧テーブルの一例を示した図
 以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号又は対応する番号で表示される場合もある。また、以下の実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す場合もある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
 以下に説明する実施形態では、荷電粒子ビームシステムの一例として、電子ビームを用いて半導体ウェーハ上のパターンを計測するSEM式測長システム(測長SEMともいう)を例にとって説明するが、「SEM:Scanning Electron Microscope(走査型電子顕微鏡)」とは、電子ビームを用いて試料の画像を撮像する装置を広く含むものとする。荷電粒子ビームシステムのその他の例としては、試料を観察する走査イオン顕微鏡、試料を加工する集束イオンビームシステム等が挙げられる。また、走査型電子顕微鏡のその他の例としては、走査型電子顕微鏡を用いた検査装置、レビュー装置、汎用の走査型電子顕微鏡、走査型電子顕微鏡を備えた試料加工装置や試料解析装置等が挙げられ、本開示はこれらの装置にも適用が可能である。また、以下に説明する実施例において走査型電子顕微鏡とは、上記走査型電子顕微鏡がネットワークで接続されたシステムや上記走査型電子顕微鏡を複数組み合わせた複合装置をも含むものとする。
 また、以下に説明する実施形態において「試料」とは、パターンが形成された半導体ウェーハを一例として説明するが、これに限られるものではなく、金属、セラミックス、生体試料等であっても良い。
 近年の半導体デバイスは、構造の微細化と三次元化が進んでいる。例えば、ロジックICの集積回路技術はEUV露光技術の進歩によって線幅10nm以下の微細化が進んでおり、特に半導体等のウェーハ上に形成された微細パターンの寸法計測用SEMには、より高い測長精度と装置間機差低減が要求されている。一方、DRAMやNANDといったメモリデバイスは構造の三次元化が進み、深穴・深溝パターン等の計測ニーズが高まっている。この測長SEMに代表されるように、近年、半導体デバイスの計測・検査・観察・分析を行うSEMにおいては、様々なニーズに対応するために、電子ビームの加速電圧を数100V~数10kVの幅広い範囲で変化させて、高分解能のSEM像を取得できる性能が必要となっている。また、併せて、装置性能の経時変化や装置間の機差が少ないSEMが求められている。
 以下、特に、高分解能のSEM像を長期間に渡って安定的に取得でき、また性能機差の少ない走査型電子顕微鏡について、図面を参照して詳述する。
 図1に、実施例1に係るSEM式測長システム(荷電粒子ビームシステム)の概略構成を示す。
 SEM式測長システム100は、ビーム照射システム(撮像ツールともいう)101およびコンピュータシステム133で構成されている。コンピュータシステム133は、全体制御部102、信号処理部103、入出力部104および記憶部105を備えている。
 ビーム照射システム101内の電子銃106から放出された電子は、図示しない加速電極によって加速され、一次電子ビーム107(電子ビームともいう)として試料112(例えばパターンが形成されたウェーハ)に照射される。ビーム照射システム101は、電子ビーム107を集束する第1集束レンズ108、及び集束レンズ108を通過した電子ビームを更に集束する第2集束レンズ109を備えている。ビーム照射システム101は更に、電子ビーム107を偏向する偏向器110 、電子ビーム107の集束点(焦点)を制御する対物レンズ111を備えている。 ビーム照射システム101内に設けられた各光学素子を通過した電子ビーム107は、ステージ113上に載せられた試料112に照射される。電子ビーム107の照射によって試料から放出される二次電子(Secondary Electron:SE)や後方散乱電子(Backscattered Electron:BSE)等の放出電子114は、放出電子偏向用の偏向器115(第1の二次電子アライナ)によって所定の方向に導かれる。偏向器115は所謂ウィーンフィルタであり、電子ビームを偏向させることなく、放出電子114を所定の方向に選択的に偏向させる。また、電子ビーム107の加速電圧は、対象となる試料112に合わせて、幅広い範囲で切り替えて使用することができる。
 検出絞り116は、放出電子114を角度弁別することが可能である。検出絞り116を通過した放出電子114は、偏向器123(第2の二次電子アライナ)によって、軸外に配置された検出器119に導かれる。検出器119は、放出電子114が衝突する位置に検出面を持ち、例えば、検出面に入射した放出電子は、検出面に設けられたシンチレータによって光信号に変換される。この光信号はフォトマルチプライヤによって増幅されると共に電気信号に変換され、検出器の出力となる。また、検出器119の直前に設けられたエネルギーフィルタ122により、光軸近傍に通過軌道を持つ放出電子114を、エネルギー弁別することができる。一方、検出器121は、放出電子114が検出絞り116の壁面に衝突することによって発生する三次電子120(放出電子114の二次電子)を検出する。
 また、図1に例示する走査電子顕微鏡には、電子ビームの通過を一部制限するとともに電子ビームを成型する機能を持つビーム調整絞り板130、電子ビーム107を光軸外に偏向することによって、試料112への電子ビームの到達を制限するブランキング偏向器131が設けられている。ビーム調整絞り板130は、電子ビーム107が通過する絞り孔134が設けられている。ファラデーカップ132は、ブランキング偏向器131によって偏向された電子ビーム107を遮断するとともに、ファラデーカップ132に流れ込む電流を測ることで、ファラデーカップ132に入射した電子の単位時間あたりの数を求めることができる。ファラデーカップ132の信号出力から、試料に照射する電子ビーム107のプローブ電流をモニタリングすることが可能である。
 上記したような走査電子顕微鏡内に設けられた光学素子は、全体制御部102によって制御される。
 信号処理部103では、検出器119、121の出力に基づいてSEM画像を生成する。信号処理部103では、図示しない走査偏向器の走査と同期して、フレームメモリ等に検出信号を記憶させることで画像データを生成する。フレームメモリに検出信号を記憶する際、フレームメモリの走査位置に対応する位置に検出信号を記憶させることで、信号プロファイル(一次元情報)、SEM画像(二次元情報)を生成する。
 次に、本実施例で用いるビーム調整絞り板130について説明する。
 一般的に、ビーム調整絞り板は、絞り孔以外の絞り板部分に照射された電子ビームを遮断するため、原子数の大きな金属材料で形成される。或いは、絞り孔の形状を均一にするため、シリコン(Si)を母材として半導体プロセスにより形成した絞り板に重金属のコーティング膜を施したものを、ビーム調整絞り板として使用する場合もある。しかし、このような従来のビーム調整絞り板を用いた技術においては、電子ビームの加速電圧を数100V~数10kVの幅広い範囲で変化させて高分解能のSEM像を取得しようとした場合、加速電圧の切り替えに伴って、以下のような問題が生じていた。
 ビーム調整に用いられる調整絞り板に照射される電子ビームのエネルギーが高い場合(電子ビームの加速電圧が高い場合)、絞り板の母材部分(絞り孔以外の絞り板部分)を透過してしまう電子が生じることである。この絞り板の母材部分を透過した電子は、絞り孔を通過する電子よりも低いエネルギーを持ち、調整絞り板の下面からランダムな方向へ出射する。図2は、絞り板の母材が同一の金属材料で形成されている場合において、絞り板を透過する電子数と電子ビームの加速電圧及び絞り板の板厚との関係について示したグラフである。絞り板の母材部分を透過する電子の数は、絞り板の板厚が薄くなるほど増加し、また、電子ビームの加速電圧が高くなるほど増加する。
 一方で、絞り板の母材部分を透過する電子とは別に、絞り孔の側壁部(内壁部)で散乱する電子も存在する。ここで言う「散乱」には、絞り孔の側壁部で進行方向が変えられた電子や、絞り孔の側壁部で反射してビーム照射システムの光軸側(或いは、絞り孔の中心軸側)に進行する電子が含まれる。この絞り孔の側壁部で散乱した電子は、絞り孔を通過する電子よりも低いエネルギーを持ち、絞り孔の側壁部からランダムな方向へ飛行する。 図3は、絞り板の母材が同一の金属材料で形成されている場合において、絞り孔の側壁部で散乱する電子数と電子ビームの加速電圧及び絞り板の板厚との関係について示したグラフである。絞り孔の側壁部で散乱する電子の数は、絞り板の板厚が厚くなるほど、即ち絞り孔の側壁部の高さが高くなるほど増加し、また、電子ビームの加速電圧が高くなるほど増加する。
 このような絞り板の母材部分を透過した電子や絞り孔の側壁部で散乱した電子は、前述したフレアを生じさせ、SEM像の分解能を劣化させる原因となる。また、絞り板の母材部分を透過した電子がファラデーカップに到達してしまった場合、電子ビームのプローブ電流値の誤検出を引き起こすおそれがあった。
 本開示に示した実施例の態様により、上記の課題を解決することが可能となる。
 発明者らは、上述した通り、透過電子数及び散乱電子数と、電子ビームの加速電圧及び絞り板の板厚との関係性について詳細に解析した結果、図4に示すように、各加速電圧において、ビーム調整絞り板を透過する電子数と、ビーム調整絞り板の絞り孔側壁部で散乱する電子数との総量(透過電子と散乱電子の総量)が、最小となる板厚(例えば、図4中のt、t、tなど)が存在することを新たに見出した。また、発明者らは、図4に示す関係性から、電子ビームの加速電圧を増加させた場合はビーム調整絞り板の板厚も併せて増加させ、電子ビームの加速電圧を減少させた場合はビーム調整絞り板の板厚も併せて減少させることで、透過電子と散乱電子の総量を最小にできることを新たに見出した。
 以下、ビーム調整絞り板の最適な板厚に関する具体的な計算方法について説明する。
 図5は、ビーム調整絞り板130に照射される電子ビーム107の模式図を示している。電子ビーム107は、第1集束レンズ108によって、第1集束レンズ108と絞り板130との間(絞り板130の上方)のある点において、集束される。以下、この集束点を、クロスオーバーとも称する。ここで、クロスオーバー(集束点)502に集束された電子ビーム107は、放出角αで広がってビーム調整絞り板130に照射されるものとし、クロスオーバー502から絞り上面までの距離をh、絞り板130の板厚(厚み)をt、絞り孔134の半径をr、ビーム調整絞り板130の上面に照射される電子ビームの最大半径をr’とする。このとき、絞り板130の絞り孔134の側壁部に照射される電子ビーム(絞り孔134の側壁部で散乱する電子ビーム)の電流量Isは、放射角電流密度J、図5中に示す角度βおよびγを用いて、数式1のように表すことができる。
 [数1]
 Is=Jπ(β-γ2
r、h、tを用いて変形すると、下記の数式2となる。
 [数2]
 Is=Jπ〔{tan-1(r/h)}-{tan-1(r/(h+t))}
また、絞り板130の上面に照射される電子ビームの電流値Iuは、放射角電流密度J、図5中に示す角度αおよびβを用いて、数式3のように表すことができる。
 [数3]
 Iu=Jπ(α-β2
r、r´、hを用いて変形すると、下記の数式4となる。
 [数4]
 Iu=Jπ〔{tan-1(r´/h)}-{tan-1(r/h)}
 一方、絞り板130の上面に照射された電子ビームは、絞り板130内部で板厚tに対して指数関数的に減衰し、絞り板130の下面から透過電子として出射する。このとき、絞り板130を透過してくる電子ビームの電流量Itは、絞り板130の上面に照射される電子ビームの電流値Iu、崩壊定数λを用いて、数式5のように表すことができる。なお、崩壊定数λは、絞り板130の材質と電子ビームの加速電圧によって決まるパラメータである。
 [数5]
 It=Iu×exp(-λt)
 上述した数式1~5の関係から、絞り孔134の側壁部で散乱する電子ビームの電流量Isと絞り板130を透過してくる電子ビームの電流量Itとの交点を求めることで、最適な板厚tを決定することができる。なお、数式1~5中に記載される各種のパラメータは、実験及び計算により求められるパラメータである。
 図6は、上記関係式を用いて、ビーム調整絞り板130の最適な板厚tを求めたグラフの一例である。図6のグラフは、特定の加速電圧条件を用いた実験から求められるパラメータの一例として、放射角電流密度J=250[A/Sr]、絞り孔134の半径r=10[μm]、ビーム調整絞り板130の上面に照射される電子ビームの中心軸からの半径r’=15[μm]、クロスオーバー502から絞り上面までの距離を100[μm]、崩壊定数λ=0.5としたときの計算結果を示している。図6の計算結果より、透過電子により生じる電流量と散乱電子により生じる電流量との総量が最小となるような絞り板厚を求めることが出来る。本条件における最適な絞り板の板厚は、7 μm程度であることが分かる。
 図7に、ビーム調整絞り板に係る一実施態様を示す。
 図7に示すビーム調整絞り板ユニット700は、異なる板厚の絞り板を複数枚搭載したXY2軸電動ステージによって構成される。ステージベース703には、Yステージ702が取り付けられている。Yステージ702上には、当該Yステージと直行方向に動作するXステージ501が取り付けられている。Xステージ701上には、絞り板ベース709を介して、3種類の板厚t、t、tから成る3枚の絞り板704、705、706が取り付けられている。絞り板704~706には、各々、孔径が異なる複数個の絞り孔が設けられている。ビーム調整絞り板ユニット700は、Xステージ701およびYステージ702によって、絞り板704~706をX方向707およびY方向708の任意の位置に移動することが可能である。また、絞り板ベース709、Xステージ701、Yステージ702およびステージベース703は、絞り板704~706の各絞り孔を通過した電子ビーム107が試料112に到達するまでの経路を確保するため、絞り板704~706の下側に空間が出来るように構成されている(図示なし)。また、Xステージ701およびYステージ702は、ステージ駆動のためのアクチュエータ(図示なし)と位置モニタのためのエンコーダ(図示なし)によって動作する。
 図8に、図7に示すビーム調整絞り板ユニット700を搭載したSEM式測長システム(荷電粒子ビームシステム)800の概略構成を示す。荷電粒子ビームシステム800におけるビーム調整絞り板ユニット700以外の各構成要素は、図1と同様であるため、ここでの詳細説明は省略する。
 図9に、図8の荷電粒子ビームシステム800において、絞り板選択テーブルを作成するためのフローチャートを示す。
 なお、以下では「コンピュータシステム」を主語(動作主体)として各ステップの処理について説明を行うが、全体制御部102(あるいはプロセッサ)を主語(動作主体)とした説明としてもよいし、コンピュータシステムが実行する「各種プログラム」を主語(動作主体)とした説明としてもよい。プログラムの一部または全ては専用ハードウェアで実現してもよく、また、モジュール化されていても良い。各種プログラムはプログラム配布サーバや記憶メディアによってコンピュータシステムにインストールされてもよい。
 コンピュータシステム133は、予め、前述した数式1~5を用いて、使用可能な電子ビーム107の加速電圧範囲における最適な絞り板の板厚を計算する(901)。コンピュータシステム133は、当該計算結果から、加速電圧と各絞り板との最適な対応関係を示す絞り板選択テーブル904を作成し(902)、当該絞り板選択テーブル904を記憶部105に保存する(903)。当該絞り板選択テーブル904は、図4で説明した通り、電子ビームの加速電圧を増加させた場合はビーム調整絞り板の板厚も併せて増加させ、電子ビームの加速電圧を減少させた場合はビーム調整絞り板の板厚も併せて減少させるような対応関係を有する形で作成される。図9に示すフローチャートにおいては、別のコンピュータシステムが、最適な絞り板の板厚を計算するステップ(901)と絞り板選択テーブル904を作成するステップ(902)を実行し、コンピュータシステム133が、当該絞り板選択テーブル904を記憶部105に保存するようにしてもよい(903)。
 図21は、絞り板選択テーブルの一例を示す図である。
 絞り板選択テーブル904は、3種類の加速電圧25、35、45[kV]に対して各々、t、t、tの最適な板厚の絞り板が対応するように構成されている。例えば、コンピュータシステム133は、入出力部104から45[kV]の加速電圧が入力(設定)された場合、板厚tの絞り板を選択する。
 図22は、他の一例の絞り板選択テーブル905を示す図である。
 絞り板選択テーブル905は、加速電圧が30[kV]未満(V<30[kV])のときは板厚tの絞り板、加速電圧が30[kV]以上40[kV]未満(30≦V<40[kV])のときは板厚tの絞り板、加速電圧が40[kV]以上(V≧40[kV])のときは板厚tの絞り板が、各々、対応するように構成されている。例えば、コンピュータシステム133は、入出力部104から40[kV]の加速電圧が入力(設定)された場合、板厚tの絞り板を選択する。
 図10に、図8の荷電粒子ビームシステム800において、最適な板厚のビーム調整絞り板の決定および絞り孔の位置決め調整を実行するためのフローチャートを示す。コンピュータシステム133は、入出力部104で(例えば、グラフィカルユーザーインターフェースから)設定(変更)された加速電圧に応じて(1001)、記憶部105に保存された絞り板選択テーブルを参照し(1002)、絞り板704~706の中から最適な板厚の絞り板を決定する(1003)。当該1003~1003のステップで実行されるプロセスは、別の言い方をすれば、コンピュータシステム133が、加速電圧が現在値に対して増加する方向で変更された場合は板厚の厚いビーム調整絞り板を選択し、加速電圧が現在値に対して減少する方向で変更された場合は板厚の薄いビーム調整絞り板を選択するように制御しているとも言い換えることができる。或いは、コンピュータシステム133は、入力(設定)された加速電圧の増減に応じて、板厚の薄い絞り板から板厚の厚い絞り板を(または、板厚の厚い絞り板から板厚の薄い絞り板を)選択するように制御しているとも言い換えることができる。その後、コンピュータシステム133は、ビーム調整絞り板ユニット700におけるXステージ701、Yステージ702を制御し、決定した絞り板における所望の絞り孔の位置決め調整を行う(1004)。絞り孔の位置決め調整後、光軸ずれが仕様内であるか否かを確認し(1005)、仕様内であればフローを終了し、仕様外であれば絞り孔の位置決めの再調整を行う(1004)。
 図11に、ビーム調整絞り板に係る別の実施態様を示す。
 図11に示すビーム調整絞り板ユニット1100は、複数個の絞り孔1107を有する円盤状(ディスク状)ビーム調整絞り板1101が、回転軸1102を介してモーター1103と接続された構造となっている。また、モーター1103は、r軸電動ステージ1104に取り付けられている。円盤状ビーム調整絞り板1101は、θ方向1106の所定の回転角度毎に厚さの異なる(例えば、厚さt1、t2、t3)複数の領域を有しており、各々厚さの異なる領域毎に孔径の異なる複数個の絞り孔1107が形成されている。円盤状ビーム調整絞り板1101は、モーター1103によってθ方向1106に回転可能であり、rステージ1104は、ステージ駆動のためのアクチュエータ(図示なし)と位置モニタのためのエンコーダ(図示なし)によってr方向1105に動作する。
 図8のSEM式測長システム(荷電粒子ビームシステム)800において、図7に示したビーム調整絞り板ユニット700の代わりに、図11に示すビーム調整絞り板ユニット1100を採用した場合においても、図9で説明したフローチャートに従って、絞り板厚選択テーブル1110を作成することが可能である。同様に、図10で説明したフローチャートに従って、最適な板厚の絞り孔を決定することも可能である(1003)。最適な板厚の絞り孔を決定後、コンピュータシステム133は、ビーム調整絞り板ユニット1100におけるモーター1103、rステージ1104を制御して、光軸1108に対して決定した絞り孔の位置決め調整を行い(1004)、光軸ずれの確認を行う(1005)。
 本実施例1によれば、数100V~数10kVの幅広い加速電圧範囲で電子ビームを変化させた場合であっても、加速電圧毎に状態が異なるフレアの影響を抑制し、各加速電圧において高分解能の画像(SEM像)を取得することが可能となる。
 従来のビーム調整絞り板を用いた技術においては、電子ビームの加速電圧を数100V~数10kVの幅広い範囲で変化させて高分解能の画像(SEM像)を取得しようとした場合、加速電圧の切り替えに伴って、次のような二つ目の問題も生じていた。
 即ち、電子ビームの加速電圧の切り替えに伴い、ビーム調整絞り板に照射される電子ビームの電流量が変化することで、ビーム調整絞り板に温度変化が生じ、絞り板の経時変化(ドリフト)が発生するという問題である。特に電子ビームの加速電圧を大きく変更した場合は、絞り板上へ照射される電子ビームによる熱エネルギーが大きく変化し、絞り板の膨張や収縮が顕著に発生する(例えば、特許文献3に、そのような問題が記載されている)。例えば、加速電圧をΔVだけ上昇させた場合、ビーム調整絞り板において単位時間あたりに発生する熱量ΔQは、絞り板上へ照射される電子ビームの電流量をIとすると、数式6のように表される。
 [数6]ΔQ=I・ΔV
この場合、当該熱量ΔQの発生によって、ビーム調整絞り板の温度が上昇して、絞り板が熱膨張する。このようなビーム調整絞り板の経時変化(ドリフト)が生じると、メインビームの状態が変化し、撮像部101の光軸が変化する、といった事象が発生するため、装置性能の経時変化や装置間の機差が発生してしまうという問題があった。
 上記の課題に対しては、本開示に示した実施例2の態様により、解決することが可能である。
 図12に、実施例2に係るSEM式測長システム(荷電粒子ビームシステム)の概略構成を示す。
 上述した二つ目の問題を解決するために、図12に示すSEM式測長システム1200は、先に説明した図11のビーム調整絞り板ユニット1100の上方に、新たに電子ビーム107の一部を遮断するビームカット絞りユニット1300を配置している。図12に、ビーム調整絞り板130とビームカット絞り1101の構成部の拡大図を示し、
 図13に、ビームカット絞りユニット1300の構造概略図を示す。
 図13に示すビームカット絞りユニット1300は、複数個の絞り孔1307を有する円盤状(ディスク状)ビームカット絞り板1301が、回転軸1302を介してモーター1303と接続された構造となっている。また、モーター1303は、r軸電動ステージ1304に取り付けられている。円盤状ビーム成カット絞り板1301は、一様な板厚を有し、孔径の異なる複数個の絞り孔1307が形成されている。円盤状ビームカット絞り板1301は、モーター1303によってθ方向1306に回転可能であり、rステージ1304は、ステージ駆動のためのアクチュエータ(図示なし)と位置モニタのためのエンコーダ(図示なし)によってr方向1305に動作する。複数個の絞り孔1307の形状は、各々、円形である。
 図14は、ビーム調整絞り板ユニット1100のビーム調整絞り板1101と、ビームカット絞りユニット1300のームカット絞り板1301と、電子ビーム107との関係を示した図である。ここで、第1集束レンズ108で所定のクロスオーバー(集束点)1401に集束された電子ビーム107は、放出角ψで広がって試料112側に進行するものとする。このとき、絞り板1301の絞り孔1307の孔径φが、絞り板1101の絞り孔1107の孔径φよりも大きくなるように(φ>φとなるように)、絞り孔1307と絞り孔1107を組み合わせることによって、電子ビーム107の一部をカットし(遮断し)、絞り板1101の上面に照射される電子ビーム107の電流量を減らすことができる。即ち、ビームカット絞り板1301が無い構成においては、絞り孔1107を通過しない電子ビームは全てビーム調整絞り板1101でカットする必要があるため、電子ビームの加速電圧変更に伴う熱エネルギー変化(電流量の変化)の影響を受け易く、ビーム調整絞り板1101の膨張や収縮が顕著に発生する。これに対し、新たに追加したビームカット絞り板1301によって、ビーム調整絞り板1101の上面に照射されていた電子ビーム(絞り孔1107以外の領域に照射されていた電子ビーム)を極力カット(遮断)することで、電子ビームの加速電圧変更に伴う熱エネルギー変化の影響を極力減らし、ビーム調整絞り板1101の膨張や収縮を低減することが可能となる。
 ビームカット絞り板1301では、ビーム調整絞り板1101の絞り孔1107以外の領域(ビーム調整絞り板1101の上面)に照射される電子ビームを極力カットすることで、絞り板1101の上面に照射される電子ビーム107の電流量(熱エネルギー)を極力減らすことができる。使用したいビーム調整絞り板1101の絞り孔1107の孔径φが決まれば、ビームカット絞り板1301の最適な孔径φは、例えば次のように求めることができる。クロスオーバー1402からビームカット絞り板1301上面までの距離をL、クロスオーバー1402からビーム調整絞り板1101上面までの距離をHとすると、最適な孔径φは、数式7のように表すことができる。
 [数7]
 φ=φ×(L/H)
数式7を用いれば、選択可能な絞り孔1107の孔径φに合わせて、最適となる絞り孔1307の孔径φを予め求め、φとφの最適な組合せをビームカット絞り孔選択テーブル1504として、記憶部105に保存しておくことが可能である。
 図15に、図12のSEM式測長システム(荷電粒子ビームシステム)1200において、ビームカット絞り孔選択テーブルを作成するためのフローチャートを示す。コンピュータシステム133は、予め、前述した数式7を用いて、使用可能なビーム調整絞り板1101の絞り孔1107の孔径φに対して、最適なビームカット絞り板1301の絞り孔1307の孔径φを計算する(1501)。コンピュータシステム133は、当該計算結果から、孔径φと孔径φとの最適な対応関係を示すビームカット絞り孔選択テーブル1504を作成し(1502)、当該ビームカット絞り孔選択テーブル1504を記憶部105に保存する(1503)。或いは、別のコンピュータシステムが、最適な絞り孔1307の孔径φを計算するステップ(1501)とビームカット絞り孔選択テーブル1504を作成するステップ(1502)を実行し、コンピュータシステム133が、当該ビームカット絞り孔選択テーブル1504を記憶部105に保存するようにしてもよい(1503)。
 図23は、ビームカット絞り孔選択テーブル1504の一例を示す図である。
 ビームカット絞り孔選択テーブル1504は、3種類のビーム調整絞り孔1107の孔径A、B、Cに対して、各々、X、Y、Zの最適な孔径のビームカット絞り孔1307が対応するように構成されている。例えば、コンピュータシステム133は、入出力部104から孔径Aのビーム調整絞り孔1107が入力(設定)された場合、孔径Xのビームカット絞り孔1307を選択する。
 図16に、図12のSEM式測長システム(荷電粒子ビームシステム)1200において、最適なビームカット絞り孔の孔径の決定および絞り孔の位置決め調整を実行するためのフローチャートを示す。コンピュータシステム133は、入出力部104で設定(選択)されたビーム調整絞り孔の孔径φに対して(1601)、記憶部105に保存されたビームカット絞り孔選択テーブル1504を参照し(1602)、ビームカット絞り板1301に形成された複数個の絞り孔1307の中から最適な孔径φの絞り孔を決定する(1603)。コンピュータシステム133は、ビーム調整絞り板ユニット1100とビームカット絞りユニット1300におけるモーター1103、rステージ1104、モーター1303およびrステージ1304を制御し、設定したビーム調整絞り孔および決定したビームカット絞り孔の位置決め調整を行う(1604)。両絞り孔の位置決め調整後、光軸ずれが仕様内であるか否かを確認し(1605)、仕様内であればフローを終了し、仕様外であれば絞り孔の位置決めの再調整を行う(1604)。
 上記開示の実施形態によれば、電子ビームの加速電圧を変更した場合であっても、ビーム調整絞り板の膨張や収縮による経時変化を低減することできるため、装置性能の経時変化や装置間の機差が少ないSEMが実現可能となる。
 上述した実施形態のビームカット絞り孔選択テーブル1504においては、設定したビーム調整絞り孔の孔径に対して最適なビームカット絞り孔の孔径が決定されるようなテーブルを、事前に作成しておく例を示した。
 ビームカット絞り孔選択テーブルの別な実施形態としては、SEM式測長システム1200の光学条件の設定に対して最適なビームカット絞り孔の孔径が決定されるようなテーブルを、事前に作成しておくことが考えられる。例えば、電子ビーム107の加速電圧の設定(変更)に対して、ビーム調整絞り板1101の上壁面に照射される電子ビームの電流量(熱エネルギー)が常に一定となるようなビームカット絞り孔の孔径を事前に計算によって求め、ビームカット絞り孔選択テーブル1700として記憶部105に保存しておけば、電子ビーム107の加速電圧設定を変更した場合であっても、ビーム調整絞り板1101の膨張や収縮といった変形を低減することが可能となる。ビームカット絞り孔選択テーブル1700は、図15と同様のフローチャートによって作成できる。
 図17に、図12のSEM式測長システム(荷電粒子ビームシステム)1200において、絞り板選択テーブル1110およびビームカット絞り孔選択テーブル1700を使用した場合におけるフローチャートを示す。コンピュータシステム133は、入出力部104で設定(変更)された加速電圧に応じて(1701)、記憶部105に保存された絞り板厚選択テーブル1110を参照し(1702)、絞り板1101に複数個形成された絞り孔1107の中から最適な板厚の絞り孔を決定する(1703)。同様に、コンピュータシステム133は、入出力部104で設定(変更)された電子ビームの加速電圧に応じて、記憶部105に保存されたビームカット絞り孔選択テーブル1700を参照し(1704)、ビームカット絞り板1301に形成された複数個の絞り孔1307の中から最適な孔径φの絞り孔を決定する(1705)。その後のステップは、図16と同様なので、ここでの詳細説明は省略する。
 本実施例2によれば、電子ビームの加速電圧を変更した(切替えた)場合であっても、ビーム調整絞り板の熱量の変化による経時ドリフトを抑制することが可能となり、装置性能の経時変化や装置間の機差が少ない測長SEMが実現できる。
 実施例1に係る開示においては、所望の電子ビームの加速電圧に対し、最適な板厚のビーム調整絞り板を組み合わせて使用することで、ビーム調整絞り板を透過する電子数と、ビーム調整絞り板の絞り孔側壁部で散乱する電子数との総量を、最小化することが出来ることを示した。しかしながら、実施例1に係る開示では、これらの透過電子と散乱電子とを完全に排除することはできないため、フレアによるSEM像の分解能への影響を零にすることできない。
 そこで、本実施例においては、図18に示すように、ビーム調整絞り板の下方に、透過電子や散乱電子をカットするためのエネルギーフィルタ1801を配置する。図18のSEM式測長システム(荷電粒子ビームシステム)1800は、図12に示したSEM式測長システムにおいて、エネルギーフィルタ1801を追加した例である。
 図19に、ビーム調整絞り板1101とエネルギーフィルタ1801の周辺の詳細図を示す。このエネルギーフィルタ1801は、銅等の非磁性の金属線によって、格子状に形成されている。また、エネルギーフィルタ1801には、電源1903によって任意の電圧を印加することが可能である。ビーム調整絞り板1101における所定の絞り孔1107を透過した電子1901と、ビーム調整絞り板101の絞り孔1107の側壁部で散乱した電子1902とは、透過や散乱の過程で電子自身が持つエネルギーをロスするため、メインビーム(ビーム調整絞り板1101の絞り孔1107を通過したビーム)の電子より低いエネルギーを有する。本実施例においては、このエネルギー差を利用して、メインビームと透過・散乱電子との弁別を行う。即ち、コンピュータシステム133によって、エネルギーフィルタ1801に適切な負電圧を印加し、メインビームの電子より低いエネルギーを有する透過・散乱電子のみを上方へと追い返すように制御を行う。
 エネルギーフィルタ1801に印加すべき最適な負電圧は、使用する電子ビームの加速電圧に応じて事前に計算や実験によって求め、加速電圧と印加電圧との最適な組合せをエネルギーフィルタ印加電圧テーブル2000として、予め記憶部105に保存しておくことが可能である。
 図24は、エネルギーフィルタ印加電圧テーブル2000の一例を示す図である。
 エネルギーフィルタ印加電圧テーブル2000は、3種類の加速電圧25、35、45[kV]に対して、各々、V、V、Vの最適なエネルギーフィルタ印加電圧が対応するように構成されている。例えば、コンピュータシステム133は、入出力部104から45[kV]の加速電圧が入力(設定)された場合、板厚Vのエネルギーフィルタ印加電圧を選択する。
 図20に、図18のSEM式測長システム(荷電粒子ビームシステム)1800において、絞り板選択テーブル1110、ビームカット絞り孔選択テーブル1700およびエネルギーフィルタ印加電圧テーブル2000を使用した場合におけるフローチャートを示す。ステップ1701~1707のフローは、図18と同様であるため、ここでの詳細説明は省略する。1701~1706のステップを実行後、光軸ずれが仕様内であった場合は(1707)、入出力部104で設定(変更)された加速電圧に応じて、記憶部105に保存されたエネルギーフィルタ印加電圧テーブル2000を参照し(2001)、透過・散乱電子のみを弁別する最適な印加電圧を決定する(2002)。
 本実施例3によれば、メインビームと透過・散乱電子を弁別することでフレアの影響を更に抑制することが可能となるため、数100V~数10kVの幅広い加速電圧範囲で電子ビームを変化させた場合であっても、各加速電圧における画像(SEM像)の更なる高分解能化が実現できる。また、本実施例3によれば、ビーム調整絞り板の経時ドリフトを抑制することが可能となるため、装置性能の経時変化や装置間の機差が少ない測長SEMが実現可能である。
 以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 100…SEM式測長システム(荷電粒子ビームシステム)、101…ビーム照射システム(撮像ツール)、102…全体制御部、103…信号処理部、104…入出力部、105…記憶部、106…電子銃、107…電子ビーム、108…第1集束レンズ、109…第2集束レンズ、110…偏向器、111…対物レンズ、112…試料、113…ステージ、114…放出電子、115…偏向器、116…検出絞り、119…検出器、120…、121…検出器、122…エネルギーフィルタ、123…偏向器、130…ビーム調整絞り板、131…ブランキング偏向器、132…ファラデーカップ、133…コンピュータシステム

Claims (10)

  1.  荷電粒子源から放出された荷電粒子ビームの加速電圧を制御するコンピュータシステムを備えた荷電粒子ビームシステムであって、
     前記荷電粒子ビームに作用する絞りであって、厚さが異なる第1及び第2の絞りを含む第1の絞り群と、
    前記第1の絞り群における絞りを切り替える第1の絞り切り替え機構と、を備え、
     前記コンピュータシステムは、前記加速電圧の増減に応じて前記第1の絞りから前記第2の絞りに切り替えるように、前記第1の絞り切り替え機構を制御すること特徴とする荷電粒子ビームシステム。
  2.  請求項1において、
     前記第1の絞り群は、第1の円盤状絞り板に形成されること特徴とする荷電粒子ビームシステム。
  3.  請求項2において、
    前記第1の絞り切り替え機構は、前記第1の円盤状絞り板が回転するように構成されること特徴とする荷電粒子ビームシステム。
  4.  請求項2において、
     前記第1の円盤状絞り板は、同一の金属材料で形成されること特徴とする荷電粒子ビームシステム。
  5.  請求項1において、
     前記コンピュータシステムは、前記第1及び第2の絞りと前記加速電圧との対応関係を示す第1の関係情報を予め求め、当該第1の関係情報と前記加速電圧の増減に基づいて、前記第1の絞りから前記第2の絞りに切り替えるように、前記第1の絞り切り替え機構を制御すること特徴とする荷電粒子ビームシステム。
  6.  請求項1において、
     前記コンピュータシステムは、グラフィカルユーザーインターフェースから入力された前記加速電圧に基づいて、前記第1の絞り切り替え機構を制御すること特徴とする荷電粒子ビームシステム。
  7.  請求項1において、
     前記荷電粒子ビームに作用する絞りであって、孔径が異なる第3及び第4の絞りを含む第2の絞り群と、
    前記第2の絞り群における絞りを切り替える第2の絞り切り替え機構と、を備え、
     前記コンピュータシステムは、前記第1の絞りまたは前記第2の絞りの孔径に応じて、前記第2の絞り切り替え機構を制御すること特徴とする荷電粒子ビームシステム。
  8.  請求項7において、
     前記コンピュータシステムは、前記第1の絞り又は前記第2の絞りの孔径と、前記第3及び第4の絞りとの対応関係を示す第2の関係情報を予め求め、当該第2の関係情報と前記第1の絞りまたは前記第2の絞りの孔径に基づいて、前記第3の絞りから前記第4の絞りに切り替えるように、前記第2の絞り切り替え機構を制御すること特徴とする荷電粒子ビームシステム。
  9.  請求項1において、
    試料と前記第1の絞り群との間に配置され、前記荷電粒子ビームに作用するエネルギーフィルタを備え、
     前記コンピュータシステムは、前記第1の絞りまたは前記第2の絞りの孔径に応じて、前記エネルギーフィルタに印加する印加電圧を制御すること特徴とする荷電粒子ビームシステム。
  10.  請求項9において、
     前記コンピュータシステムは、前記第1の絞り又は前記第2の絞りの孔径と、前記印加電圧との対応関係を示す第3の関係情報を予め求め、当該第3の関係情報と前記第1の絞りまたは前記第2の絞りの孔径に基づいて、前記エネルギーフィルタに印加する印加電圧を制御すること特徴とする荷電粒子ビームシステム。
PCT/JP2019/026230 2019-07-02 2019-07-02 荷電粒子ビームシステム WO2021001916A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021529590A JP7182003B2 (ja) 2019-07-02 2019-07-02 荷電粒子ビームシステム
PCT/JP2019/026230 WO2021001916A1 (ja) 2019-07-02 2019-07-02 荷電粒子ビームシステム
US17/595,742 US11961704B2 (en) 2019-07-02 2019-07-02 Charged particle beam system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/026230 WO2021001916A1 (ja) 2019-07-02 2019-07-02 荷電粒子ビームシステム

Publications (1)

Publication Number Publication Date
WO2021001916A1 true WO2021001916A1 (ja) 2021-01-07

Family

ID=74100978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026230 WO2021001916A1 (ja) 2019-07-02 2019-07-02 荷電粒子ビームシステム

Country Status (3)

Country Link
US (1) US11961704B2 (ja)
JP (1) JP7182003B2 (ja)
WO (1) WO2021001916A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11749495B2 (en) * 2021-10-05 2023-09-05 KLA Corp. Bandpass charged particle energy filtering detector for charged particle tools

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236743A (ja) * 1991-09-20 1994-08-23 Jeol Ltd 電子線装置のプローブ電流設定方式
JPH07302564A (ja) * 1994-05-10 1995-11-14 Topcon Corp 走査電子顕微鏡
JP2000271237A (ja) * 1999-03-24 2000-10-03 Mitsubishi Electric Corp 放射線照射装置
JP2005044560A (ja) * 2003-07-24 2005-02-17 Nikon Corp 荷電粒子線装置用絞り、及び荷電粒子線装置
JP2013045525A (ja) * 2011-08-22 2013-03-04 Hitachi High-Technologies Corp 電子銃および荷電粒子線装置
US20150348738A1 (en) * 2014-05-30 2015-12-03 Car Zeiss Microscopy GmbH Particle beam system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065499A (ja) 1992-06-22 1994-01-14 Hitachi Ltd アパーチャ絞り及びその製造方法ならびにこれを用いた荷電ビーム描画装置
JPH06163371A (ja) 1992-11-18 1994-06-10 Hitachi Ltd 電子線描画装置
JP3688160B2 (ja) * 1999-09-17 2005-08-24 株式会社日立製作所 走査電子顕微鏡
DE102008008634B4 (de) * 2008-02-12 2011-07-07 Bruker Daltonik GmbH, 28359 Automatische Reinigung von MALDI-Ionenquellen
JP2011243540A (ja) 2010-05-21 2011-12-01 Hitachi High-Technologies Corp 透過電子顕微鏡の制限視野絞りプレート、制限視野絞りプレートの製造方法及び制限視野電子回折像の観察方法
JP6236743B2 (ja) 2013-12-24 2017-11-29 株式会社サタケ 籾摺選別機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236743A (ja) * 1991-09-20 1994-08-23 Jeol Ltd 電子線装置のプローブ電流設定方式
JPH07302564A (ja) * 1994-05-10 1995-11-14 Topcon Corp 走査電子顕微鏡
JP2000271237A (ja) * 1999-03-24 2000-10-03 Mitsubishi Electric Corp 放射線照射装置
JP2005044560A (ja) * 2003-07-24 2005-02-17 Nikon Corp 荷電粒子線装置用絞り、及び荷電粒子線装置
JP2013045525A (ja) * 2011-08-22 2013-03-04 Hitachi High-Technologies Corp 電子銃および荷電粒子線装置
US20150348738A1 (en) * 2014-05-30 2015-12-03 Car Zeiss Microscopy GmbH Particle beam system

Also Published As

Publication number Publication date
JPWO2021001916A1 (ja) 2021-01-07
JP7182003B2 (ja) 2022-12-01
US20220223372A1 (en) 2022-07-14
US11961704B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
NL2021253B1 (en) Charged particle beam device for inspection of a specimen with an array of primary charged particle beamlets and method of imaging or illuminating a specimen with an array of primary charged particle beamlets
USRE49784E1 (en) Apparatus of plural charged-particle beams
US11887807B2 (en) Apparatus of plural charged-particle beams
JP6810804B2 (ja) 試験片を検査する方法および荷電粒子マルチビーム装置
TWI650550B (zh) 用於高產量電子束檢測(ebi)的多射束裝置
US10453645B2 (en) Method for inspecting a specimen and charged particle multi-beam device
US10784070B2 (en) Charged particle beam device, field curvature corrector, and methods of operating a charged particle beam device
TW202020918A (zh) 用於多帶電粒子束的設備
JP2007012290A (ja) 荷電粒子ビーム応用装置
TWI767443B (zh) 用於形成影像之非暫時性電腦可讀媒體
JP7336926B2 (ja) 性能が向上されたマルチ電子ビーム撮像装置
US8049189B2 (en) Charged particle system
US8227752B1 (en) Method of operating a scanning electron microscope
EP2378537B1 (en) Method of operating a charged particle beam device
WO2021001916A1 (ja) 荷電粒子ビームシステム
US8101911B2 (en) Method and device for improved alignment of a high brightness charged particle gun
WO2020008492A1 (ja) 走査電子顕微鏡
EP1679734B1 (en) Multiple lens assembly and charged particle beam device comprising the same
US9202666B1 (en) Method for operating a charged particle beam device with adjustable landing energies
WO2023017107A1 (en) Charged-particle beam device for diffraction analysis
EP2182543B1 (en) Method and device for improved alignment of a high brightness charged particle gun
KR20170113491A (ko) 모노크로미터 및 이를 구비한 전자선 손실분광 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936197

Country of ref document: EP

Kind code of ref document: A1