WO2021000771A1 - 非接触式测量载流导线相对电缆芯几何中心偏移的方法 - Google Patents

非接触式测量载流导线相对电缆芯几何中心偏移的方法 Download PDF

Info

Publication number
WO2021000771A1
WO2021000771A1 PCT/CN2020/097955 CN2020097955W WO2021000771A1 WO 2021000771 A1 WO2021000771 A1 WO 2021000771A1 CN 2020097955 W CN2020097955 W CN 2020097955W WO 2021000771 A1 WO2021000771 A1 WO 2021000771A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
electromagnetic
coordinates
cable
carrying conductor
Prior art date
Application number
PCT/CN2020/097955
Other languages
English (en)
French (fr)
Inventor
李宏达
秋林·谢尔盖
Original Assignee
李宏达
秋林·谢尔盖
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李宏达, 秋林·谢尔盖 filed Critical 李宏达
Priority to CN202080029933.7A priority Critical patent/CN113811739B/zh
Publication of WO2021000771A1 publication Critical patent/WO2021000771A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B7/31Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B7/312Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes for measuring eccentricity, i.e. lateral shift between two parallel axes

Definitions

  • This method can be used to improve the construction quality and efficiency of measurement systems in the field of cable production and other industries.
  • the technical result of the present invention innovatively proposes a new method that can accurately measure the coordinates of the electromagnetic system to determine the degree of deviation of the current-carrying wire relative to the geometric center of the cable core.
  • the essence of the claimed method is: to determine the coordinates of the measurement object, for example, a cable with a copper core uses a device with a moving coordinate system.
  • the coordinates do not depend on the state of the object to be measured but can always be transferred as shown in Figure 1. s solution
  • the device contains several pairs of optical sensors that track the position of the cable, which are arranged at 45 degrees in the horizontal projection direction on the top of the device.
  • the device also has four electromagnetic sensors in the vertical projection, and these electromagnetic sensors form an angle of 45° with respect to the horizontal plane.
  • the first pair of optical sensors form the first optical coordinate plane
  • the second pair of optical sensors are located a certain distance behind the first pair and rotated 45° with respect to it, forming The coordinates of the second optical plane.
  • Four electromagnetic sensors are located in the center of the first and second optical planes, and these sensors are connected in opposite directions and form a reference direction on the coordinate plane. Therefore, an electromagnetic coordinate system is created, which forms a Cartesian coordinate system on a plane at a 45-degree angle to the horizontal relative to the device axis of the fixed sensor. It doesn't matter what the moving elements in the system are, either the coordinate system relative to the stationary cable, or the moving cable relative to the stationary coordinate system, or any combination of the two.
  • the shaft and the sensor located on it are firmly fixed to the movable frame of the device (see Figure 3) relative to each other.
  • the movable frame has one degree of freedom, and will produce an oscillating (or reciprocating) movement with a certain period in the working state, which is orthogonal to the position of the passing core (cable), intersects the two optical coordinate planes, and In the same way, cross the axis of the device at an angle of 45°.
  • the two optical planes are spaced a certain distance from each other and rotated at an angle of 45° relative to each other.
  • the position of these planes can adjust the angle of the core entering the working area, so that the calculated diameter of the core does not depend on the entering angle of the core, and regardless of the position of the core in the working area of the equipment, the ellipticity of the core can always be To be precise.
  • a translational movement of the coordinate system is realized by the intersection of two electromagnetic axes.
  • the coordinates of the minimum value of the operating characteristic along the Sx axis will completely coincide with the coordinates of the minimum value of the calibration characteristic, and the parabolic dependence (slope) shape of the working characteristic may be the same as the calibration characteristic The shape is significantly different.
  • the electromagnetic coordinates are calculated using two optical planes. Since the direction of the electromagnetic coordinates is inconsistent with the direction of the optical coordinates, and the angles of each optical coordinate plane are +22.52° and -22.5°, respectively, a virtual coordinate system is used in the calculation, by simply rotating each optical coordinate plane accordingly The angle can obtain the virtual coordinate system. As shown in Figure 1, the virtual coordinate system and the electromagnetic coordinate system are completely merged and combined, which is the basis for accurately determining the position of the graph along the S axis.
  • the displacement of the current-carrying conductor is measured in a non-contact manner, and the cable containing the current-carrying conductor (core wire) is stretched.
  • the electromagnetic coordinates of the minimum value of the uninsulated magnetic core will be stored in the device's memory.
  • the measuring system reads the voltage level from the electromagnetic sensor relative to the periodic oscillating movement of the cable passing through the measured area, and the coordinates of the cable position in the measured area correspond to these readings.
  • Figure 1 is a connection diagram of sensors "L1" and “L2" used to determine the position of an object "M" in space;
  • Figure 2 Sensor connection, position coordinate and output voltage relation diagram under different relative positions of the measuring object and the moving coordinate system
  • Figure 3 is a schematic diagram of a device for determining the eccentricity of a metal core (cable).
  • Figure 1 (1A and 1B) shows the connection diagram of the sensors "L1" and “L2” used to determine the position of the object "M” in space (in this case, for clarity, it is a round copper wire, Orthogonal to a piece of paper and display (in the form of a cross section) and a graph, which reflects the correlation between the output voltage "U” of the amplifier circuit "E” and the position of the object along the displacement direction of the "working area” .
  • the sensors "L1" and “L2” are connected in reverse.
  • alternating current is applied to the conductor "M”
  • a potential difference "U” is formed at the output of the amplifying circuit "E”, as shown in Fig. 1A, which is described in the form of two real parabolas "1", “2", and "3".
  • the object “M” is located orthogonally between the two sensors and moves from left to right in the work zone "Work zone” and is a conductor that induces alternating current at a specific frequency with the help of a dedicated signal source.
  • Fig. 1B In the traditional measurement scheme, it corresponds to the shape of the curve "2" in Fig. 1B.
  • the dependence of the voltage "U” on the object position is used to determine the position of the object in the stationary coordinate system.
  • the shapes of the curves "1", “2” and “3" at this time are views corresponding to the change ratio of the "z1" area in FIG. 1B.
  • This method of determining the spatial position of the conductor puts strict requirements on the stability maintenance and wide-range adjustment of the current in the conductor.
  • the adjustment depends on the constantly changing resistance of the conductor and the complex feedback circuit including the current sensor.
  • the current sensor is the The most unstable link in feedback, resulting in the inability to obtain long-term stable readings. As shown in Figure 1B, the instability of these parameters can be clearly seen.
  • the same "Sx0" coordinates of the measured object correspond to different U amplitude indications.
  • the device used to determine the coordinates of the measurement object has a mobile coordinate system, which always allows you to turn to the curve corresponding to the solution in Figure 1A regardless of the state of the measurement object. It doesn't matter what the moving elements in the system are-the coordinate system is relative to the stationary cable, or the moving cable is relative to the stationary coordinate system, or any combination of the two. At the same time, the calibration process of the entire device is composed of 2 coordinate systems, which leads to remembering the "Sx0" coordinates of each two systems perpendicular to each other. Another advantage of this measurement principle is that the measured conductor does not need nor contain a system for stabilizing induced currents. This leads to the following conclusions:
  • this is the sensor connection diagram under the condition that the moving coordinate system is at the leftmost position when the measurement object M is stationary- Figure 2a (red), and the sensor connection diagram under the central and combined position conditions-Figure 2b (black) , And the sensor connection diagram under the condition of the rightmost position-Figure 2c (green).
  • Figure 2d shows the relationship between the coordinate position-Sx, Sy and the voltage value at the output of the signal amplifier circuit-Ux, Uy.
  • Fig. 2a shows a core with offset current-carrying conductors in cross section.
  • a performance graph (parabola of the dot-dash line) is formed at the output of the measurement circuit along each of the X and Y coordinates, such as the measurement object position S and the measurement circuit output voltage U
  • the relationship is shown in the diagram.
  • the coordinates of the parabola minimum of the operating characteristics Sx1 and Sy1 will be different from the coordinates of the parabola minimum of the calibration characteristics Sx0 and Sy0 by the offset value of the current-carrying conductor. This offset is observed in both coordinates.
  • the electromagnetic coordinates are calculated using two optical coordinate planes. Since the direction of the electromagnetic coordinates is inconsistent with the direction of the optical coordinates, and the angles of each optical coordinate plane are +22.5° and -22.5°, respectively, this calculation uses a virtual value obtained by simply rotating each optical coordinate plane by a corresponding angle. Coordinate System.
  • the virtual coordinate system completely coincides with the electromagnetic coordinate system and is compatible with it, which is the basis for accurately determining the position of the graph along the S axis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

非接触式测量载流导体相对电缆线芯几何中心的位移的方法。所要求保护的方法的实质在于以下事实:为了确定测量对象的坐标,例如具有铜芯的电缆,所使用的设备具有不依赖于被测量对象的位置的可移动坐标系。确定通过的绝缘芯的电磁坐标最小值。使用光学测量系统的数据。从确定的存储在设备存储器中并在设备校准阶段计算出的非绝缘芯的电磁坐标最小值,减去当前工作绝缘芯1电磁坐标最小值。

Description

非接触式测量载流导线相对电缆芯几何中心偏移的方法 技术领域
此方法可用于提高电缆生产领域和其他行业中测量系统的构建质量和效率。
背景技术
有一种确定载流导体位置的方法(网址位于:https://pandia.ru/text/80/288/76409.php,网络档案确认发布日期为10/03/2016),利用电压与物体位置的依赖关系,使用固定坐标系测量。通过这种确定导体在空间中的位置的方法,对导体中维持电流的稳定性及其调节范围的要求非常严格,其依赖于导体不断变化的电阻和复杂的反馈电路。
发明内容
本发明的技术结果创新提出一种新方法,该方法可以精确地测量电磁系统的坐标,以确定载流导线相对于电缆芯的几何中心偏移程度。
所要求保护的方法的本质在于:要确定测量对象的坐标,例如具有铜芯的电缆使用具有移动坐标系的设备,该坐标不依赖于被测对象的状态但始终可以转到如图1所示的解决方案
导电芯偏心率的确定
为了实现我们提出的方法使用了一种设备(图3所示),该设备包含几对跟踪电缆位置的光学传感器,在设备顶部水平投影方向相互45度布置。
该设备在垂直投影中还具有四个电磁传感器,这些电磁传感器相对于水平面成45°角。
在这种情况下,第一对光学传感器(浅色光束)形成第一光学坐标平面,第二对光学传感器(深色光束)位于第一对后面一定距离并相对于其旋转45°角,形成第二光学平面坐标。四个电磁传感器位于第一和第二光学平面的中心,而这些传感器在相反的方向上连接并在坐标平面上形成一个参考方向。因此,创建了电磁坐标系,该电磁坐标系在相对于固定传感器的设备轴与水平面成45度角的平面上形成笛卡尔坐标系。系统中移动元素是什么无所谓,或是相对于静止电缆的坐标系,或是相对于静止坐标系的运动电缆,或两者任意组合。
轴和位于其上的传感器的相对彼此牢固地固定在设备可移动框架上(参见图3)。可移动框架具有一个自由度,并且在工作状态下会以一定的周期产生振荡(或往复运动)运动,该运动与通过芯(电缆)的位置正交,与两个光学坐标平面相交,并且以相同的方式以45°的角度与设备轴线交叉。两个光学平面彼此间隔一定距离,并相对于彼此旋转45° 角。这些平面的位置可调节芯子进入工作区域的角度,以使芯子的计算直径不取决于芯子的进入角度,并且无论芯子在设备工作区域中的位置如何,芯子的椭圆度始终可以精确确定。
对于坐标系的一个平移运动由两个电磁轴的交接实现。
1.确定最小通过绝缘芯的电磁坐标。在这种情况下,使用光学测量系统的数据。
2.从确定的存储在设备内存中的并在设备校准阶段进行计算的非绝缘芯电磁坐标最小值减去工作绝缘芯的当前电磁坐标最小值。
当坐标系从左向右移动时,对于X和Y坐标中的每个坐标,在测量电路的输出处都会形成性能曲线,如图2所示,其中S是测量对象的位置,U是测量电路的输出处的电压。在这种情况下,校准特性Sx1和Sy1的抛物线的最小值的坐标将与校准特性Sx0和Sy0的抛物线的最小值的坐标相差为载流导体的偏移值。在相应的坐标处观察到该偏移。如果载流导体没有从芯的几何中心发生位移,则沿Sx轴的工作特性最小值的坐标将与校准特性最小值的坐标完全重合,而工作特性的抛物线依存关系(斜率)形状可能与校准特性的形状明显不同。
电磁坐标是使用两个光学平面计算的。由于电磁坐标的方向与光学坐标的方向不一致,并且每个光学坐标平面的角度分别为+22.52°和-22.5°,因此在计算中使用虚拟坐标系,通过简单地将每个光学坐标平面旋转相应角度即可获得虚拟坐标系。如图1所示,虚拟坐标系与电磁坐标系完全重合并结合在一起,是准确确定图沿S轴的位置的基础。
我们提出的方法的实现:
通过在设备外壳中央居中的孔,以非接触方式测量载流导体的位移,拉伸包含载流导体(芯线)的电缆。此外,校准后,未绝缘磁芯的最小值的电磁坐标会存储在设备的内存中。进行测量的系统相对于穿过被测区域的电缆的周期性振荡运动,从电磁传感器读取电压电平,并且被测区域中电缆位置的坐标与这些读数相对应。从在设备校准阶段进行计算确定存储在设备内存中的非绝缘芯电磁坐标最小值减去工作绝缘芯的当前电磁坐标最小值,处理完测量结果后,确定载流导体相对于被测电缆几何中心的位移。测量结果以图形方式显示在计算机或任何便携式设备的屏幕上,以进行计算和数据处理。
附图说明
图1为用于确定对象“M”在空间中位置的传感器“L1”和“L2”的连接图;
图2测量对象与移动坐标系不同相对位置下传感器连接及位置坐标和输出电压关系图;
图3为确定金属芯子(电缆)偏心率的装置的示意图。
在这种情况下,为清晰起见,它是圆形铜导线,正交于一张纸并显示(以截面的形式)和曲线图,该图反映出放大电路“E”的输出电压“U”与对象在沿着“工作区”位移方向上的位置的相关性。
图1(1A和1B)表述了用于确定对象“M”在空间中位置的传感器“L1”和“L2”的连接图(在这种情况下,为清晰起见,它是圆形铜导线,正交于一张纸并显示(以截面的形式)和曲线图,该图反映出放大电路“E”的输出电压“U”与对象在沿着“工作区”位移方向上的位置的相关性。
为了获得用于确定物体位置的电路的最大灵敏度,传感器“L1”和“L2”反向连接。当交流电施加到导体“M”时,在放大电路“E”的输出处形成电位差“U”,见图1A,其以两实抛物线“1”,“2”,“3”的形式描述。两个传感器之间导体的空间位置。对象“M”正交位于两个传感器之间,并在工作区域“Work zone”中从左向右移动并且是一个借助专用信号源感应特定频率交流电的导体。
如果在导体“M”上感应的电流改变到较小的一侧,或者等效地,导体“M”的电阻增加,则目标对应于图中电路特性如图1抛物线“1”,但是如果电流强度增加或导体的电阻减小,则放大电路“E”的输出电压特性将为抛物线“2”,进而为抛物线“3”。在所有这些情况下,将发生以下更改:
1.在“Sx0”处沿着“U”轴的抛物线最小值在变化。
2.“z0”和“z1”区域抛物线侧分支陡度在变化。
3.抛物线最小值处的沿轴“S”的“Sx0”坐标保持不变。
需要指出,沿着传感器的位置在“垂直”方向上导体位移不会影响曲线的形状及其位置。
请看图1B,在传统的测量方案中对应着图1B中曲线“2”的形状,利用电压“U”与物体位置的依赖性,在静止坐标系中确定物体的位置。此时曲线“1”,“2”和“3”的形状是对应于图1B的“z1”区域的变化比例的视图。
这种确定导体空间位置的方法,对导体中电流的稳定性维持和宽范围调节提出苛刻的要求,该调节取决于导体不断变化的电阻以及包括电流传感器在内的复杂反馈电路,电流传感器是该反馈中最不稳定的环节,结果导致无法获得长期稳定的读数。图1B所示可清楚地看出这些参数的不稳定性,被测物相同的“Sx0”坐标对应着不同U幅度指示。
这种方案的另一个主要缺点是校准产品的过程很复杂,其中包括:
例如,存在与图1B中曲线“2”相对应的电流稳定化问题。在这种情况下要高精度的描述从0到S max区域电路“E”输出端电压相对沿着整个工作区对象位置的逆相关性形状曲线。有一些解决方案,通过引入附加的辅助传感器和反馈系统,可以使曲线“2”退化为有条件的线性相关性,但这不会改变解决问题方法的本质。
若在2维度坐标系中测量对象的位置,因此这种系统的校准非常耗时且困难。
因此,提出的解决方案的本质在于,用于确定测量对象坐标的设备具有移动坐标系,无论测量对象的状态如何,该坐标系始终允许您转到与图1A对应解决方案的曲线。系统中的移动元素是什么都无关紧要-坐标系相对于静止电缆,还是运动电缆相对于静止坐标系,或两者的任意组合。同时,由2坐标系组成整个设备的校准过程,导致记住每个相互垂直两个系统的“Sx0”坐标。该测量原理的另一个优点是,被测导体中不需要也不包含对感应电流稳定系统。由此得出以下结论:
1.首先,长期使用后设备的精度特性不会漂移。
2.其次,由于没有间接转换和坐标插值,因此测量电磁系统坐标的精度等于光学测量系统的精度,并且在校准阶段整个过程固定裸芯两个光学坐标,理论上要高竞争对手一个数量级。
3.由于简化了设备的电子器件和系统设置,因此提高了系统的可靠性。
如图2,这是当测量对象M静止条件下,移动坐标系在最左边的位置条件下传感器连接图-图2a(红色),在中央和组合位置条件下传感器连接图-图2b(黑色),及在最右边的位置条件下传感器连接图-图2c(绿色),在图2d示出了坐标位置-Sx,Sy和信号放大电路的输出处的电压值-Ux,Uy关系图。
在图2a以横截面示出了带有位置偏移的载流导体的线芯。当坐标系从左向右移动时,沿着X和Y坐标中的每个坐标在测量电路的输出处形成性能图表(点划线的抛物线),如测量对象位置S与测量电路输出电压U的关系图所示。在此情形下工作特性Sx1和Sy1的抛物线的最小值的坐标的情况下,将与校准特性Sx0和Sy0的抛物线的最小值的坐标相差载流导体的偏移值。在两个坐标中都会观察到此偏移。如果载流导体没有相对线芯的几何中心发生位移,则沿Sx轴的工作特性最小值坐标将与校准特性最小值坐标完全重合,而对工作特性的抛物线依存关系的极有可能与校准特性的形状大不相同,如图2d所示特征。
在这种情况下,计算公式如下所示:
Figure PCTCN2020097955-appb-000001
如图3,电磁坐标是使用两个光学坐标平面计算的。由于电磁坐标的方向与光学坐标的方向不一致,并且每个光学坐标平面的角度分别为+22.5°和-22.5°,因此该计算使用通过简 单地将每个光学坐标平面旋转相应角度而获得的虚拟坐标系。虚拟坐标系与电磁坐标系完全重合,并与之兼容,是准确确定沿S轴的曲线图位置的基础。

Claims (2)

  1. 非接触式测量电缆线芯相对载流导体几何中心偏移的方法,其特征在于,通过用于非接触式测量载流导体位移的装置壳体中央的孔,拉伸包含载流导线的电缆,对该设备进行校准,并将非绝缘线芯电磁坐标最小值存储在内存中;通过循环振荡或往复运动(取决于测量系统的实现方法),使测量系统相对于穿过被测区域的电缆移动,同步获取电磁传感器的电压电平读数以及与这些读数相对应的被测区域中电缆位置的坐标;从确定的存储在设备内存中的并在设备校准阶段进行计算的非绝缘芯的电磁坐标最小值中减去工作绝缘芯的当前电磁坐标最小值;处理完测量结果后,确定载流导体相对于被测电缆几何中心的位移。测量结果以图形方式显示在计算机或任何便携式设备的屏幕上,以达到可视化结果。
  2. 一种非接触式测量电缆线芯相对载流导体几何中心偏移的方法,其特征在于包括:
    创建电磁坐标系:选取两对光学传感器,其中第一对光学传感器形成第一光学坐标平面,第二对光学传感器位于第一对光学传感器后面一定距离并相对于其旋转45°角、形成第二光学平面坐标,将四个电磁传感器设置在第一和第二光学平面的中心位置,其中该电磁坐标系在相对于固定传感器的设备的轴与水平面成45°角的平面上形成笛卡尔坐标系,轴和位于其上的传感器相对彼此固定在设备的可移动框架上;
    通过在设备外壳中央居中的孔、采用以非接触方式测量载流导体的位移,拉伸包含载流导体的电缆,对该设备进行校准、并将非绝缘线芯电磁坐标最小值存储在设备的内存中;
    将设备相对于穿过被测区域的电缆周期性振荡运动,从电磁传感器中读取电压电平信息以及与电压电平信息相对应的被测区域中的电缆位置坐标,从在设备校准阶段进行计算确定存储在设备内存中的非绝缘芯电磁坐标最小值减去工作绝缘芯的当前电磁坐标最小值从而获得载流导体相对于被测电缆几何中心的位移。
PCT/CN2020/097955 2019-07-02 2020-06-24 非接触式测量载流导线相对电缆芯几何中心偏移的方法 WO2021000771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080029933.7A CN113811739B (zh) 2019-07-02 2020-06-24 非接触式测量载流导线相对电缆芯几何中心偏移的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2019120646 2019-07-02
RU2019120646 2019-07-02

Publications (1)

Publication Number Publication Date
WO2021000771A1 true WO2021000771A1 (zh) 2021-01-07

Family

ID=74100623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097955 WO2021000771A1 (zh) 2019-07-02 2020-06-24 非接触式测量载流导线相对电缆芯几何中心偏移的方法

Country Status (2)

Country Link
CN (1) CN113811739B (zh)
WO (1) WO2021000771A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116003A (ja) * 2000-10-05 2002-04-19 Takikawa Eng Kk 被覆電線用偏心度測定装置
US20050168724A1 (en) * 2002-04-08 2005-08-04 Zunbach Electronic Ag Cotactless system for measuring centricity and diameter
CN101713634A (zh) * 2008-10-06 2010-05-26 贝塔·莱塞迈克 用于电线和电缆的偏心度计以及用于测量同心度的方法
CN106091919A (zh) * 2016-06-08 2016-11-09 爱德森(厦门)电子有限公司 一种金属导线材偏心度快速检测装置及方法
CN108594151A (zh) * 2018-06-02 2018-09-28 福州大学 无磁芯电流传感器的位置误差补偿法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532588A (en) * 1993-02-26 1996-07-02 Beta Instrument Co., Ltd. Cable eccentricity gauge including an E-shaped core and a sensor coil disposed between an outer tip of the central limb and the cable
GB2283323A (en) * 1993-10-07 1995-05-03 Beta Instr Co Electrical cable insulation measurement
DE502004008925D1 (de) * 2004-12-13 2009-03-12 Zumbach Electronic Ag Eichung eines Exzentrizitätsmessgeräts mit Hilfe einer Eichhülse
EP2159534A1 (en) * 2008-08-27 2010-03-03 Beta LaserMike, Inc. Eccentricity gauge for wire and cable and method for measuring concentricity
CN109032069B (zh) * 2018-07-19 2020-11-03 西南交通大学 一种采用电涡流位移传感器的非接触式R-test测量仪球心坐标计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116003A (ja) * 2000-10-05 2002-04-19 Takikawa Eng Kk 被覆電線用偏心度測定装置
US20050168724A1 (en) * 2002-04-08 2005-08-04 Zunbach Electronic Ag Cotactless system for measuring centricity and diameter
CN101713634A (zh) * 2008-10-06 2010-05-26 贝塔·莱塞迈克 用于电线和电缆的偏心度计以及用于测量同心度的方法
CN106091919A (zh) * 2016-06-08 2016-11-09 爱德森(厦门)电子有限公司 一种金属导线材偏心度快速检测装置及方法
CN108594151A (zh) * 2018-06-02 2018-09-28 福州大学 无磁芯电流传感器的位置误差补偿法

Also Published As

Publication number Publication date
CN113811739A (zh) 2021-12-17
CN113811739B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
CN106153074B (zh) 一种惯性测量组合动态导航性能的光学标定系统和方法
CN105806202A (zh) 一种电涡流传感器的探头及电涡流传感器
TW201619618A (zh) 量測介電常數之系統及方法
Wei et al. 3D coordinates measurement based on structured light sensor
WO2021000771A1 (zh) 非接触式测量载流导线相对电缆芯几何中心偏移的方法
US20200124669A1 (en) High-frequency probe position correction technology
US11092622B2 (en) Current detection device
CN106772410A (zh) 一种激光测距仪
CN107643499B (zh) 一种高斯计和用于测量磁场强度的微控制器及控制方法
RU2722167C1 (ru) Способ бесконтактного измерения смещения токоведущего проводника от геометрического центра кабельной жилы
RU2593425C2 (ru) Способ и устройство для измерения центричности токопроводящей жилы в изоляционной оболочке
CN116359615A (zh) 一种平面近场测量中的准直装置及方法
JP2013210216A (ja) 電流検出装置及び電流検出方法
JP7241094B2 (ja) アレイアンテナを測定するための位相補償方法及び装置
JP2018125389A (ja) 電気的中点におけるrfプローブシステムの校正技術
JPH08184414A (ja) 表面形状測定方法
JP2004333167A (ja) 微小センサによる近傍界測定方法および近傍界測定装置
JP2002116003A (ja) 被覆電線用偏心度測定装置
US20200233022A1 (en) Method for determining probe angle, high-frequency test system, program and storage medium
JP2017044548A (ja) 電流センサ
JP2015194488A (ja) 位置検出装置
Prathima et al. Electronic sensors for micron resolution dimension measurement
RU150124U1 (ru) Устройство для визуализации электротепловых процессов в пленочных металлодиэлектрических структурах
CN105674909B (zh) 一种高精度二维轮廓测量方法
Wang et al. A three-dimensional vision measurement method based on double-line combined structured light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.06.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20834890

Country of ref document: EP

Kind code of ref document: A1